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Dr. José Afonso Barrionuevo (PPGMap – UFRGS)
Dr. Miriam Telichevesky (PPGMat – UFRGS)

1Bolsista do Conselho Nacional de Desenvolvimento Cient́ıfico e Tecnológico (CNPq)



Agradecimentos

Primeiramente, agradeço aos meus pais, sem os quais nada disso teria sido
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Resumo

Introduzimos uma aplicação de Gauss para hipersuperf́ıcies de variedades
Riemannianas paralelizáveis e definimos uma curvatura associada. Após,
provamos um teorema de Gauss-Bonnet. Como exemplo, estudamos cuida-
dosamente o caso no qual o espaço ambiente é uma esfera Euclidiana menos
um ponto e obtemos um teorema de rigidez topológica. Ele é utilizado para
dar uma prova alternativa para um teorema de Qiaoling Wang and Changyu
Xia, o qual afirma que se uma hipersuperf́ıcie orientável imersa na esfera está
contida em um hemisfério aberto e tem curvatura de Gauss-Kronecker não-
nula então ela é difeomorfa a uma esfera. Depois, obtemos alguns invariantes
topológicos para hipersuperf́ıcies de variedades translacionais que dependem
da geometria da variedade e do espaço ambiente. Finalmente, encontramos
obstruções para a existência de certas folheações de codimensão um.
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Abstract

We introduce a Gauss map for hypersurfaces of paralellisable Riemannian
manifolds and define an associated curvature. Next, we prove a Gauss-
Bonnet theorem. As an example, we carefully study the case where the
ambient space is an Euclidean sphere minus a point and obtain a topological
rigidity theorem. We use it to provide an alternative proof for a theorem
of Qiaoling Wang and Changyu Xia, which asserts that if an orientable im-
mersed hypersurface of the sphere is contained in an open hemisphere and
has nowhere zero Gauss-Kronecker curvature, then it is diffeomorphic to a
sphere. Later, we obtain some topological invariants for hypersurfaces of
translational manifolds that depend on the geometry of the manifold and
the ambient space. Finally, we find obstructions to the existence of certain
codimension-one foliations.
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Introduction

In differential geometry, the study of submanifolds has always been a central
topic. A particularly interesting question is to describe how a manifold curves
inside another one. To tackle this and other issues, numerous definitions of
curvatures were introduced throughout history. Various branches of geometry
have then stemmed, including minimal and constant mean curvature surfaces,
their higher dimensional analogues, curvature flows and numerous problems
involving geodesics, to cite a few.

Two primary aspects that have to be considered in any of these areas
are the ambient space — the manifold where the submanifold lies in — and
the relationship between the dimension of the ambient space and that of
the submanifold. Usual ambient spaces that appear in the literature are
space forms, those of constant curvature, bounded curvature and simply
connected ones. As for dimensions, there has been extensive work dealing
with hypersurfaces — submanifolds of codimension one — and surfaces.

An important tool which has been used to study hypersurfaces Mn of
the Euclidean space Rn+1 is the Gauss map. Assuming M is orientable,
there exists a smooth choice of a unit normal vector η(p) for every point p
of M . This yields a map η from M to the unit sphere Sn ⊂ Rn+1 if we
consider the tangent spaces of M as being linear subspaces of Rn+1. The
study of its properties dates back to the 18th century, with the works of (not
surprisingly) Gauss and Euler. The variation of the normal vector along
different directions gives a clue on how the manifold bends in that direction.
For example, if M is a right cylinder on R3, then the Gauss map is constant
along any fixed generating line, indicating that it does not curve in these
directions.

There have been several constructions of this map in other contexts, ac-
cording to the geometry involved. For example, in [9] and [5], Epstein and
Bryant define a Gauss map G for hypersurfaces of the hyperbolic space Hn+1.
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viii Introduction

Their construction is as follows. Consider Hn+1 as the ball Bn+1 with the
hyperbolic metric. Given an orientable hypersurface Mn with a unit normal
vector field η and a point p ∈M , let G(p) be the intersection of the geodesic
of Hn issuing from p in the direction of η(p) with the sphere Sn = ∂Bn+1.
This yields a map G : M → Sn.

In [22], Ripoll extended the definition for an orientable hypersurface Mn

of a Lie group Gn+1 with a left-invariant metric. If η is a normal vector field
for M , then γ(p), the Gauss map at p, is the translation of η(p) to the Lie
algebra g ∼= TeG via the derivative DLp−1(p) of the left translation Lp−1 .
Thus, it is a map γ : Mn → Sn, where now Sn is the unit sphere of g.

In this setting, Meeks et al. [18] classified, using the stereographic pro-
jection of this Gauss map, the immersed constant mean curvature spheres in
a compact, simply connected homogeneous three-manifold. For each H ∈ R
there exists an immersed oriented sphere of cmc H and it is unique up to
ambient isometry.

Later, in [2], Bittencourt and Ripoll defined a Gauss map for an orientable
hypersurface Mn of a homogeneous Riemannian manifold (G/H)n+1 with an
invariant metric. Here Gn+k+1 is a Lie group with a bi-invariant metric
and Hk is a closed Lie subgroup of G. Let π : G → G/H be the natural
projection. If η : M → T (G/H) is a normal vector field for M , then the
Gauss map at a point p ∈M first lifts η(p) to the orthogonal complement of
Tx(π

−1(p)) in TxG, where π(x) = p, and then right translates this vector to
the Lie algebra g of G via the derivative DRx−1(x). This composition gives a
map from M to the unit sphere Sn+k of g. Subsequently, Ramos and Ripoll
in [21] performed the same construction for a Lie group G with a bi-invariant
pseudo Riemannian metric instead. For other applications, see [8], [10].

In this work we introduce a Gauss map for hypersurfaces lying in paral-
lelisable Riemannian manifolds — manifolds whose tangent bundle is trivial.
The detailed definitions and properties comprise the first section of Chapter
2. In the second section of this chapter we thoroughly investigate the case in
which the parallelisable manifold is the sphere with a point deleted and, as
a consequence, prove a topological rigidity theorem. This constitutes a joint
work with Jaime Ripoll, see [17].

In Chapter 3 we change our focus to foliations. The concept and some
examples are introduced in the first section. In the sequel, we define some
topological invariants for an immersed hypersurface of a parallelisable Rie-
mannian manifold. Finally, we prove some results concerning the existence
of totally geodesic foliations using the material developed in Chapter 2. This
was a joint work with Ícaro Gonçalves, see [12].

Chapter 1 was included to familiarise the reader with some basic notation
and vocabulary and to provide some tools that are used to prove Theorem

PPGMat – UFRGS viii E. Longa



ix Introduction

2.18 and Theorem 3.15. Strictly speaking, just a couple of pages could have
been written about this, but all the beauty that permeates the subject would
have been lost.

Finally, a note to the reader: all manifolds, maps, vector fields, differential
forms, etc. in this work are smooth (of class C∞) unless otherwise stated.
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CHAPTER 1

Transversality and Applications

Given a map f : M → N between manifolds and a point q ∈ N , what can
we say about the solution set {p ∈ M : f(p) = q}? Is it a manifold? More
generally, given a submanifold Z ⊆ N , what type of condition can we impose
on f for f−1(Z) to be a submanifold of M? As we will see shortly, the key
concept is transversality, a term that gained prominence in the 1950s, with
the brilliant work of René Thom (see [29]). In the sequel, we present some
applications of this concept, including an alternative definition for the Euler
characteristic of a compact manifold.

For background material concerning the subject of this chapter, the main
reference is the masterpiece “Differential Topology”, by V. Guillermin and
A. Pollack [13].

1.1 Basic notions and facts

Let us first recall some basic facts and definitions that will be used throughout
in this chapter.

A fundamental result is the Inverse Function theorem, which we cite here
for completeness. The reader can check [27].

Theorem (Inverse Function Theorem). Suppose that f : Rn → Rnis contin-
uously differentiable in an open set containing a, and detDf(a) 6= 0. Then
there is an open set V containing a and an open set W containing f(a) such
that f : V → W has a continuous inverse f−1 : W → V which is differen-
tiable and for all y ∈ W satisfies
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2 Basic notions and facts

D(f−1)(y) = [Df(f−1(y))]−1.

We use the following terms throughout this work.

Definition 1.1. Let f : Mm → Nn be a map between manifolds and p ∈M .
If

(i) Df(p) is injective (hence m ≤ n), then f is is said to be an immersion
at p;

(ii) Df(p) is surjective (hence m ≥ n), then f is said to be a submersion
at p;

(iii) Df(p) is bijective (hence m = n), then f is a local diffeomorphism
around p (due to the Inverse Function Theorem).

If (i), (ii) or (iii) holds for every point p ∈ M , then f is called an
immersion, a submersion or a local diffeomorphism, accordingly. If f is
an immersion, we say M is immersed in N . If, furthermore, f is injective
and a homeomorphism between M and f(M), with the topology induced by
N , then we say M is embedded in N . The codimension of M in N is the
number codimM = n−m. If the codimension is 1, M is called a (immersed)
hypersurface of N .

Example 1.2. Let f : Rn → Rn+k be the usual inclusion:

f(x1, . . . , xn) = (x1, . . . , xn, 0, . . . , 0).

Clearly f is an immersion, since Df(x) = f for every x ∈ Rn+k and f itself
is injective.

Example 1.3. Let f : Rn+k → Rn be the projection onto the first coordi-
nates:

f(x1, . . . , xn, xn+1, . . . , xn+k) = (x1, . . . , xn, 0, . . . , 0).

One has that f is a submersion, since Df(x) = f for every x ∈ Rn+k and f
is surjective.

As the two next theorems show, all immersions and submersions look like
the same in a certain coordinate system. The proofs for these results can be
found in either [13] or [27].
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3 Basic notions and facts

Theorem (Local Immersion Theorem). Let f : Mm → Nn be a map be-
tween manifolds and suppose f is an immersion at p ∈M . Then there exist
parametrisations ϕ : U → M and ψ : V → N around p and f(p) such that
ϕ(0) = p, ψ(0) = f(p) and

(ψ−1 ◦ f ◦ ϕ)(x1, . . . , xm) = (x1, . . . , xm, 0, . . . , 0), (x1, . . . , xn) ∈ U.

In other words, f is locally given by the inclusion of Example 1.2.

Theorem (Local Submersion Theorem). Let f : Mm → Nn be a map be-
tween manifolds and suppose f is a submersion at p ∈ M . Then there exist
parametrisations ϕ : U → M and ψ : V → N around p and f(p) such that
ϕ(0) = p, ψ(0) = f(p) and

(ψ−1 ◦ f ◦ ϕ)(x1, . . . , xm) = (x1, . . . , xn), (x1, . . . , xm) ∈ U.

Said differently, f is locally given by the inclusion of Example 1.3.

Before answering the first question of this chapter, let’s introduce the
following nomenclature.

Definition 1.4. Let f : M → N be a map between manifolds. We say that
p ∈ M is a regular point for f if Df(p) is surjective. Otherwise, p is called
a critical point or singular point. A point q ∈ N is called a regular value for
f if every point in the inverse image f−1(q) is a regular point for f . This
includes the case where q does not lie in the image of f . A point of N that
is not a regular value is called a critical value.

Example 1.5. Let {r1, r2, . . . } be an enumeration of the rational numbers.
For each i, let fi : R → R be a bump function supported in the interval
[i, i + 1] and with maximum value equal to ri (Figure 1.1). Then every
rational number is a critical value for the map f =

∑
i fi.

Figure 1.1: The function fi
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4 Basic notions and facts

One might be worried that some exotic functions may have too many
critical values, but a famous theorem, proved by A. Sard in 1942 shows that
the opposite occurs, in some sense.

Theorem (Sard, [24]). Let f : M → N be a map. Then, the set of critical
values has measure zero in N . In other words, almost every point of N is a
regular value for f .

Some clarification is needed here. A set X ⊂ Rn has measure zero if
for any ε > 0 it can be covered by a sequence of cubes in Rn having total
n-dimensional volume less than ε. A set S ⊂ Nn has measure zero if for
every parametrisation ϕ : U ⊆ Rn → N of N , the set ϕ−1(S) has measure
zero in Rn.

It is easy to see that no open set has zero measure. As a consequence, we
have the following useful corollary.

Corollary 1.6. Let f : M → N be a map. Then, the set of regular values
for f is dense in N .

We now face the initial question of the chapter.

Theorem 1.7. Let f : Mm → Nn be a map and let q ∈ N be a regular value
for f . Then f−1(q) is a submanifold of M of codimension n.

Proof. Let p ∈ f−1(q). By the Local Submersion Theorem, there exist
parametrisations ϕ : U → M and ψ : V → N around p and q such that
ϕ(0) = p, ψ(0) = q and

(ψ−1 ◦ f ◦ ϕ)(x1, . . . , xn, xn+1, . . . , xm) = (x1, . . . , xn), (x1, . . . , xm) ∈ U.

Let Ũ be the set of points (x1, . . . , xm−n) such that (0, . . . , 0, x1, . . . xm−n) lie
in U . Define ξ : Ũ →M by the rule

ξ(x1, . . . xm−n) = ϕ(0, . . . , 0, x1, . . . , xm−n).

Then ξ(Ũ) = U ∩ f−1(q) and ξ is a parametrisation of f−1(q) around p.
Hence, f−1(q) is a submanifold of M of dimension equal to m− n.

Example 1.8. Let V be a finite dimensional real vector space equipped with
an inner product 〈·, ·〉. Consider the standard differentiable structure on V .
Explicitly, let T : Rn → V be an isometry and endow V with the maximal
differentiable atlas that contains T as an element. Then, a map f : V → R
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5 Transversality

is differentiable if and only if f ◦ T : Rn → R is differentiable. In particular,
every linear map is differentiable.

Concretely, let f : V → R be defined by f(x) = 〈x, x〉. Then, for x ∈ V
and v ∈ TxV ∼= V , we have

Df(x) · v =
d

dt
f(x+ tv)|t=0 =

d

dt

[
〈x, x〉+ 2t〈x, v〉+ t2〈v, v〉

]
|t=0 = 2〈x, v〉.

Thus, every positive number is a regular value for f , and so each sphere
Sr(0) = {x ∈ V : 〈x, x〉 = r2} of radius r is a hypersurface of V , by the
previous theorem.

1.2 Transversality

We now tackle the question of whether f−1(Z) is a submanifold of M for
a given map f : Mm → Nn and a submanifold Zk. This is a local matter,
that is, f−1(Z) is a manifold if and only if every point p ∈ f−1(Z) has a
neighbourhood U in M such that f−1(Z) ∩ U is a submanifold of U . This
allows us to reduce the study of the relation f(p) ∈ Z to the simpler case in
which Z is a single point, as we next explain. If q = f(p), we may write Z
in a neighbourhood V of q by the zero set of a submersion g : V → Rn−k,
by the Local Submersion Theorem. Then, f−1(Z) is given by the zero set
of g ◦ f : f−1(V ) → Rn−k. Now we may apply Theorem 1.7 to guarantee
(g ◦ f)−1(0) is a manifold around p. For that we need 0 to be a regular value
for g ◦ f .

Since D(g◦f)(p) = Dg(q)◦Df(p), the map D(g◦f)(p) is surjective if and
only if Dg(q) maps the image of Df(p) onto Rn−k. But Dg(q) : TqN → Rn−k

is a surjective linear map whose kernel is the subspace TqZ. Thus, Dg(q)
carries a subspace of TqN onto Rn−k precisely if that subspace and TqZ
together span TqN . We conclude that g ◦ f is a submersion at p if and only
if

Df(p)(TpM) + TqZ = TqN.

This is the condition we were looking for.

Definition 1.9. A map f : M → N is transversal to a submanifold Z of N
if

Df(p)(TpM) + Tf(p)Z = Tf(p)N

for every point p ∈ f−1(Z). This is symbolised by f t Z.
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6 Transversality

The previous argument then proves:

Theorem 1.10. If the map f : M → N is transversal to a submanifold
Z of N , then the preimage f−1(Z) is a submanifold of M . Moreover, the
codimension of f−1(Z) in M equals the codimension of Z in N .

Remark 1.11. If f−1(Z) = ∅, then f is automatically transversal to Z, by
vacuity.

Note that the case Z is a single point q of N , a map f : M → N is
transversal to Z exactly when q is a regular value for f . This way, Theorem
1.10 generalises Theorem 1.7.

The most important and readily visualised special case concerns the
transversality of the inclusion map i : M → N of some submanifold M ⊂ N
with another submanifold Z ⊂ N (Figure 1.2).

Figure 1.2: Surfaces in R3

To say p ∈ M belongs to the preimage i−1(Z) simply means that p belongs
to the intersection M ∩ Z. So, i is transversal to Z if and only if

TpM + TpZ = TpN

for every p ∈ M ∩ Z. Notice that this equation is symmetric in M and Z.
When it holds, we say M and Z are transversal, and write M t Z. We have
the following corollary.
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7 Transversality

Corollary 1.12. The intersection of two transversal submanifolds M and Z
of N is again a submanifold. Moreover,

codim(M ∩ Z) = codimM + codimZ.

Consider now the situation where the manifolds are allowed to have
boundary. We would like a result similar to Theorem 1.10 for these mani-
folds. Unfortunately, the transversality of f alone does not guarantee that
f−1(Z) is a submanifold with boundary of M if M is a manifold with bound-

ary. For example, let f : H2
= {(x1, x2) ∈ R2 : x2 ≥ 0} → R be the map

(x1, x2) 7→ x2 and let Z = {0}. Then f is transversal to Z but f−1(Z) = ∂H2

is not a submanifold of H2. The right condition is an additional assumption
along the boundary.

Given a map f from a manifold with boundary M onto a boundaryless
manifold N , let ∂f : ∂M → N denote the restriction of f to the boundary
of M . The proof of next theorem is similar to that of Theorem 1.10.

Theorem 1.13. Let f be as above and suppose that both f and ∂f are
transversal to the boundaryless submanifold Z of N . Then the preimage
f−1(Z) is a submanifold with boundary

∂
[
f−1(Z)

]
= f−1(Z) ∩ ∂M,

and the codimension of f−1(Z) in M equals the codimension of Z in N .

Still in the spirit of generalising classical theorems for this broader class
of manifolds, we have

Theorem 1.14 (Sard, bis). Let f be a map from a manifold with boundary
M onto a boundaryless manifold N . Then almost every point of N is a
regular value for both f and ∂f .

Proof. If a point p ∈ ∂M is regular for ∂f , then it is regular for f , since
the derivative of ∂f at p is just the restriction of the derivative of f at p to
Tp(∂M). Thus a point q ∈ N is a critical value for f and ∂f only when q is
a critical value for f |intM or ∂f . But since intM and ∂M are boundaryless
manifolds, both sets of critical values have measure zero, by the previous
Sard theorem. Thus the complement of the set of common regular values for
f and ∂f , being the union of sets of measure zero, itself has measure zero,
as required.
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8 Transversality

We shall now see that transversality is a generic property. This means
that any map f : M → N , no matter how bizarre its behaviour with respect
to a given submanifold Z of N is, may be deformed by an arbitrary small
amount into a map that is transversal to Z (Figure 1.3).

Figure 1.3: Transversality is a generic property

In order to prove this fact, we need the following theorem, which has
importance on its own right. It deals with families of mappings. Given a
family of maps fs : M → N , indexed by a parameter s that varies over a
manifold S, consider the map F : M × S → N defined by F (p, s) = fs(p).
We require that the family vary smoothly by assuming F is smooth. We then
have:

Theorem 1.15 (The Transversality Theorem). Suppose that F : M×S → N
is a smooth map of manifolds, where only M has boundary, and let Z be a
boundaryless submanifold of N . If both F and ∂F are transversal to Z, then
for almost every s ∈ S, both fs and ∂fs are transversal to Z.

Proof. Let W = F−1(Z), which, by Theorem 1.13 is a submanifold of M ×S
with boundary ∂W = W ∩ (∂M × S). Consider π : M × S → S be the
projection onto the second factor. We shall show that whenever s ∈ S is a
regular value for π|W , then fs t Z, and whenever s is a regular value for
∂π|W , then ∂fs t Z. Since almost every s ∈ S is a regular value for both
maps, by Sard’s theorem, the result follows.

In order to show that fs t Z if s is a regular value for π|W , let fs(p) =
z ∈ Z. Because F t Z, we know that

DF (p, s)(TpM × TsS) + TzZ = TzN,

that is, given a ∈ TzN , there is a vector (w, e) ∈ TpM × TsS such that
DF (p, s) · (w, e) − a ∈ TzZ. We want to exhibit a vector v ∈ TpM such
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9 Transversality

that Dfs(p) · v − a ∈ TzZ. Since Dπ(p, s) : TpM × TsS → TsS is just the
natural projection map and s is a regular value for π|W , there exists a vector
of the form (u, e) ∈ T(p,s)W . But F (W ) ⊆ Z, so that DF (p, s) · (u, e) ∈ TzZ.
Consequently, the vector v = w − u is a solution. Indeed

Dfs(p) · v − a = DF (p, s) · (v, 0)− a = DF (p, s) · [(w, e)− (u, e)]− a
= [DF (p, s) · (w, e)− a]−DF (p, s) · (u, e) ∈ TzZ.

The same argument shows that ∂fs t Z when s is a regular value for
∂π|W .

The Transversality Theorem implies that transversal maps are generic,
at least in the case of maps f : M → Rn. To see why this is true, let S be
an open ball of Rn and define F : M × S → Rn by F (p, s) = f(p) + s. For
any fixed p ∈M , Fp = F (p, ·) is a translation of the ball S, so a submersion.
Thus, F itself is a submersion and therefore transversal to any submanifold
Z of Rn. According to the Transversality Theorem, for almost every s ∈ S,
the map fs = f + s is transversal to Z. Hence, f may be deformed into a
transversal map just by adding a small quantity s.

When the target manifold of f is a boundaryless manifold N , we cannot
add points. However, we may embed N as a submanifold in some Euclidean
space Rn and perform the previous construction. The problem is that the
map fs do not map M into N anymore, but into a neighbourhood of N . To
solve this issue, we need to use the celebrated ε-Neighbourhood Theorem:

Theorem 1.16 (ε-Neighbourhood Theorem). Let N be a boundaryless com-
pact submanifold of Rn. Then, there exists ε0 > 0such that for any ε ∈ (0, ε0),
the following properties hold:

(i) the set

Nε = {y ∈ Rn : d(y,N) < ε}

is an n-dimensional submanifold of Rn;

(ii) the map π : Nε → N , given by setting π(y) as the point in N that
minimises the distance to y, is well-defined and is a submersion.

Moreover, when N is not compact, the same conclusions hold by replacing
the constant ε0 by a positive smooth map ε0 : N → (0,∞) and defining

Nε = {y ∈ Rn : ‖y − q‖ < ε0(q) for some q ∈ N}.
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10 Transversality

Corollary 1.17. Let f : M → N be a map, N being boundaryless. Then
there is an open ball S in some Euclidean space and a map F : M × S → N
such that F (p, 0) = f(p), and for any fixed p ∈M , the map s 7→ F (p, s) is a
submersion from S to N .

Proof. Let N be embedded inside Rn and let S be the unit ball of this
Euclidean space. Define F : M × S → N by

F (p, s) = π [f(p) + ε(f(p))s] ,

where π : Nε → N is the projection map from the Tubular Neighbourhood
Theorem. It is clear that F (p, 0) = f(p) for any p ∈M . For fixed p ∈M ,

s 7→ f(p) + ε(f(p))s

is certainly a submersion from S to Nε. As the composition of submersions
is another, s 7→ F (p, s) is a submersion.

As a result of this corollary, we obtain that transversality is a generic
property in the general case of a map f : M → N . We shall need another
form of this result. Recall that two maps f, g : M → N are homotopic if
one can be continuously deformed into the other. More explicitly, there must
exist a continuous map H : M × [0, 1] → N such that H(p, 0) = f(p) and
H(p, 1) = g(p) for every point p ∈ M . If H is smooth, we say that f and g
are smoothly homotopic.

Theorem 1.18 (Transversality Homotopy Theorem). For any map f : M →
N and any boundaryless submanifold of the boundaryless manifold N , there
exists a map g : M → N smoothly homotopic to f such that g t Z and
∂g t Z.

Proof. Let F : M×S → N be the map of Corollary 1.17. By the Transversal-
ity Theorem, fs t Z and ∂fs t Z for almost s ∈ S. But each fs is smoothly
homotopic to f via (p, t) 7→ F (p, ts).

Definition 1.19. Let f : M → N be a map, where N is boundaryless, and let
C be a subset of M . We say f is transversal to a boundaryless submanifold
Z of N on C if the transversality condition

Df(p)(TpM) + Tf(p)Z = Tf(p)N

holds for every point p ∈ C ∩ f−1(Z).
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11 Transversality

Theorem 1.20 (Extension Theorem). Supose Zk is a closed submanifold of
Nn, both boundaryless, and C is a closed subset of Mm. Let f : M → N be
a map with f t Z on C and ∂f t Z on C ∩ ∂M . Then there exists a map
g : M → N smoothly homotopic to f , such that g t Z, ∂g t Z and g = f
on a neighbourhood of C.

Lemma 1.21. Let C be a closed subset of the manifold M and let U be an
open set containing C. Then there exists a smooth map β : M → [0, 1] that
is identically equal to one outside U and equal to zero on a neighbourhood of
C.

Proof. Let V be a closed set of M that is contained in U and contains C in
its interior: for example, endow M with a Riemannian metric, consider the
Urysohn function r : M → [0, 1] defined by

r(p) =
d(p, C)

d(p, C) + d(p,M \ U)
,

and set V = {p ∈ M : r(p) ≤ 1
2
}. Consider a partition of unity {ϕ, ψ}

subordinate to the open cover {U,M \ V }, with suppϕ ⊂ U and suppψ ⊂
M \ V . Now just set β = ψ.

Proof of Theorem 1.20. We first show that f t Z on a neighbourhood of
C. If p ∈ C but p 6∈ f−1(Z), then since Z is closed, M \ f−1(Z) is a
neighbourhood of p on which f t Z clearly. If p ∈ C ∩ f−1(Z), then there
is a neighbourhood W of f(p) in N and a submersion ϕ : W → Rn−k such
that f t Z at a point p′ ∈ f−1(Z ∩ W ) if and only if ϕ ◦ f is regular at
p′ (see discussion before Definition 1.9). But since being regular is an open
condition, ϕ ◦ f is regular on an open neighbourhood of p. Thus f t Z on a
neighbourhood of every point of C, and so f t Z on an open neighbourhood
U of C.

Let now β : M → [0, 1] be the function given by Lemma 1.21 for the open
set U and set τ = β2. Let F : M ×S → N be the function used in Corollary
1.17 and define G : M × S → N by G(p, s) = F (p, τ(p)s).

Claim. G t Z.

Proof of the Claim. Let (p, s) ∈ G−1(Z) and suppose initially that τ(p) 6= 0.
Then the map r ∈ S 7→ G(x, r) is a submersion as it is the composition of the
diffeomorphism r 7→ τ(p)r with the submersion r ∈ S 7→ F (p, r). This way, G
is regular at (p, s) and certainly G t Z at (p, s). When τ(p) = 0, we calculate
DG(p, s) : TpM × Rn′ → TG(p,s)N . For clarity, define µ : M × S → M × S
by µ(p, s) = (p, τ(p)s). Then
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12 Intersection number

Dµ(p, s) · (v, w) = (v, τ(p)w + (Dτ(p) · v)s)

for (v, w) ∈ TpM × Rn′ . Since G = F ◦ µ, we have

DG(p, s) · (v, w) = DF (p, τ(p)s) · (v, τ(p)w + (Dτ(p) · v)s)

= DF (p, 0) · (v, 0) = Df(p) · v

because τ(p) = 0 and F equals f when restricted to M×{0}. But if τ(p) = 0,
then p ∈ U and f t Z at p, so that

DG(p, s)(TpM × Rn′) + TG(p,s)Z = Df(p)(TpM) + Tf(p)Z = Tf(p)N,

that is, G is transversal to Z at (p, s).

An analogous argument shows that ∂G t Z. By the Transversality
Theorem there exists an s ∈ S such that the map g : M → N given by
g(p) = G(p, s) satisfies g t Z and ∂g t Z. As before, g is smoothly homo-
topic to f via (p, t) 7→ G(p, ts). Finally, if p belongs to the neighbourhood
V , where τ = 0, then g(p) = G(p, s) = F (p, 0) = f(p), as we wanted.

The next corollaries will be of great value. For the first, just notice that
∂M is always closed in M . The second follows immediately from the first.

Corollary 1.22. If, for f : M → N , the map ∂f : ∂M → N is transversal
to Z, then there exists a map g : M → N smoothly homotopic to f such that
∂g = ∂f and g t Z.

Corollary 1.23. Suppose that f : ∂M → N is a map transversal to a
boundaryless submanifold Z of the boundaryless submanifold N . If f extends
to any map M → N , then it also extends to a map that is transversal to Z
on all of M .

1.3 Intersection number

Our objective is to define the intersection number of a map f : M → N and
a submanifold Z of N . In order to do this, we need the notion of orientable
manifolds.
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13 Intersection number

Definition 1.24. An orientation on a finite dimensional real vector space V
is an equivalence class of ordered basis for V , two of these being equivalent
if the matrix of the linear transformation that maps one into the other has
positive determinant. A particular basis that belongs to the chosen orientation
is called positive.

Definition 1.25. A linear map between oriented vector spaces preserves ori-
entation if it maps positive basis into positive basis, and reverse orientation
otherwise.

For the next definition, let Hm
= {x ∈ Rm : xm ≥ 0} denote the half-

space {xm ≥ 0}.

Definition 1.26. An orientation of a manifold with boundary M is a smooth
choice of an orientation on each tangent space TpM , meaning that every point
p ∈ M lies in the image of a parametrisation ϕ : U ⊆ Hm → M such that
Dϕ(x) : Rm → Tϕ(x)M preserves orientation for each x ∈ U . If M admits an
orientation, then it is said to be orientable. By an oriented manifold we mean
a manifold together with a specified smooth orientation. If M is oriented, we
write −M to denote the same manifold with the opposite orientation.

It is an easy exercise to prove that if M is connected and orientable, then
the only two possible orientations for the underlying manifold are those of
M and −M .

If M and N are oriented and one of them is boundaryless, we define
a product orientation on M × N as follows. Given p ∈ M and q ∈ N ,
select two positive ordered basis {v1, . . . , vm} and {w1, . . . , wn} of TpM and
TqN . We specify the orientation of M × N by declaring the ordered basis
{(v1, 0), . . . , (vm, 0), (0, w1), . . . , (0, wn)} of TpM × TqN to be positive.

An orientation on M naturally induces an orientation on ∂M , called the
boundary orientation. At every point p ∈ ∂M , let ν(p) ∈ TpM be the out-
ward unit normal. We specify the orientation of ∂M by declaring the ordered
basis {v1, . . . , vm−1} of Tp(∂M) to be positive whenever {ν(p), v1, . . . , vm−1}
is a positive basis of TpM .

Example 1.27. The orientation of a zero dimensional vector space is just
a choice of sign: + or −. Consider the unit interval M = [0, 1] with its
induced standard orientation from R. At p = 1 the outward unit normal is
1 ∈ R ∼= T1R, which is positively oriented, and at p = 0, the unit normal
is −1 ∈ R ∼= T0R, which is negatively oriented. Thus, the orientation of
T1(∂M) is + and that of T0(∂M) is −.
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14 Intersection number

Example 1.28. Let M be a boundaryless oriented manifold and consider
the space [0, 1]×M . For each t ∈ [0, 1] the slice Mt = {t} ×M is naturally
diffeomorphic to M , so let us orient Mt in order to make this diffeomorphism
p 7→ (t, p) orientation preserving. We have ∂([0, 1]×M) = M0 ∪M1 as a set,
but a simple analysis show that, as an oriented manifold,

∂([0, 1]×M) = M1 −M0.

Let now M be a compact oriented one-dimensional manifold with bound-
ary. Since the boundary points of M are connected by diffeomorphic copies
of the unit interval (see [13]), we have:

Remark 1.29. The orientation signs at the boundary points of any compact
one-dimensional manifold with boundary cancel out in pairs and thus add
up to zero.

We are now ready for the main definition of this section. This is the
setting to be assumed : Mm, Nn, Zk are boundaryless oriented manifolds, M
is compact, Z is a closed submanifold of N , and m+ k = n.

Definition 1.30. Suppose f : M → N is transversal to Z. Since f−1(Z) is
a zero-dimensional submanifold of M (see Theorem 1.10), the compactness
of M implies that it consists of a finite number of points {p1, . . . , pr}. We
attribute signs to each point pi as follows. Let {v1, . . . , vm} and {w1, . . . , wk}
be positive ordered basis of TpiM and Tf(pi)Z. Then pi is positive if the ordered
basis {Df(pi) · v1, . . . , Df(pi) · vm, w1, . . . , wk} is a positive basis of Tf(pi)N ,
and we write signpi(f) = 1; otherwise, pi is negative and signpi(f) = −1.
The intersection number of f and Z, denoted I(f, Z), is the sum of the signs
of the points pi:

I(f, Z) =
∑

f(pi)∈Z

signpi(f).

We also say that the orientation number of f at pi is sign pi(f), or still, that
the intersection number between f and Z at pi is signpi(f).

Example 1.31. For a positive integer n, let f : S1 ⊂ C → R2 ∼= C be
the map z 7→ zn and let Z = {(x1, 0) : x1 ∈ R} be the x-axis. Orient S1

anticlockwise, Z in the positive x direction and R2 in the standard way. We
have
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15 Intersection number

Df(p) · v = nzn−1v,

for v ∈ TzS1 = {siz : s ∈ R} and we are using complex multiplication. Also,

f−1(Z) = {(cosθ, sin θ) : sin(nθ) = 0}

=

{
pj =

(
cos

jπ

n
, sin

jπ

n

)
: j ∈ {0, . . . , 2n− 1}

}
.

This way, if {vj = ipj} is a positive basis for TpjS1,

Df(pj) · vj = npn−1
j vj = inpnj = ineijπ = in(−1)j.

Thus, letting {1} be a positive basis for T1Z and T−1Z, the ordered basis
{in(−1)j, 1} of R2 is positive when j is odd and negative when j is even. So,

I(f, Z) =
∑
pj

signpj(f) =
2n−1∑
j=0

(−1)j+1 = 0.

Example 1.32. Let f : S1 → S1 × S1 be the map z 7→ (z, 1), which
parametrises a meridian on the torus and let Z = {1} × S1 be a parallel
on the torus (see Figure 1.4). Orient S1 anticlockwise and give S1 × S1 the
product orientation. It is clear that f−1(Z) = 1. Choose {i} and {(0, i)}
as positive basis for T1S1 and T(1,1)Z. Then, since Df(p) is the inclusion
v 7→ (v, 0), the ordered basis {(i, 0), (0, i)} of T(1,1)(S1×S1) is positive. Thus,
I(f, Z) = 1.

Figure 1.4: Two circles on the torus

One remarkable fact is that the intersection number is a homotopy in-
variant, as the next theorem shows.
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Theorem 1.33. Let f, g : M → N be two maps, transversal to the subman-
ifold Z. If f and g are smoothly homotopic, then I(f, Z) = I(g, Z).

Proof. Let H : [0, 1] ×M → N be a smooth homotopy between f and g,
with H(0, p) = f(p) and H(1, p) = g(p). By Corollary 1.23, we can suppose
H t Z. By Theorem 1.13, H−1(Z) is a compact one-dimensional manifold
with boundary

∂(H−1(Z)) = H−1(Z) ∩ (M0 ∪M1) = {0} × f−1(Z) ∪ {1} × g−1(Z).

As an oriented manifold, however,

∂(H−1(Z)) = {1} × g−1(Z)− {0} × f−1(Z).

Remark 1.29 then implies that I(g, Z)− I(f, Z) = 0, as we wanted.

This theorem allows us to define the intersection number for an arbitrary
smooth map f : M → N and a submanifold Z. Just select a homotopic map
g : M → N that is transversal to Z and put I(f, Z) = I(g, Z). The theorem
guarantees that this does not depend on the choice of g.

Another very important concept is that of degree of a map, which we now
present. It will be used in the future.

Definition 1.34. Let f : Mn → Nn be a map between manifolds of the same
dimension, where M is compact, N is connected and both are boundaryless.
The degree degq(f) of f at a point q ∈ N is defined as the intersection number
I(f, {q}).

Example 1.35. Let f : S1 → S1 be the map of Example 1.31, given by
f(z) = zn. Every point z in the circle is a regular value for f , and f−1(z)
consists of n points, all positive. Thus, degz(f) = n for all z ∈ S1.

As the next theorem shows, what happens in the preceding example can
be generalised.

Theorem 1.36. For a map f : M → N between boundaryless compact man-
ifolds of the same dimension supposing N is connected, the degree degq(f)
does not depend on the point q ∈ N .

In the proof, we will make use of the following lemma.

PPGMat – UFRGS 16 E. Longa



17 Vector fields and the Euler characteristic

Lemma 1.37. If q ∈ N is a regular value of f : M → N as in the theorem,
there exists an open neighbourhood V of q in N such that f−1(V ) = U1 ∪
· · · ∪ Ur is a disjoint union of open connected sets of M , each of which is
diffeomorphic to V under f .

Proof. The set f−1(q) consists of a finite number of points p1, . . . , pr. For
each i there exists an open set Ũi containing pi which is diffeomorphic to
an open neighbourhood Vi of q, by the Inverse Function Theorem. Since
M is compact, the image of the closed set C = M \ (Ũ1 ∪ · · · ∪ Ũr) is
a closed set that does not contain q. Let V ⊂ N an open set such that
q ∈ V ⊂ (V1 ∩ · · · ∩ Vr)∩ (N \ f(F )). Defining Ui = Ũi ∩ f−1(V ) finishes the
proof.

Proof of Theorem 1.36. Given q ∈ N , alter f homotopically, if necessary, to
make it transversal to {q} (see Transversality Homotopy Theorem). Let V
be the neighbourhood provided by Lemma 1.3. Since V and each set Ui are
connected, all points in Ui have the same sign with respect to f , for fixed i.
Thus, the function q′ 7→ degq′(f) is locally constant. Since N is connected,
it is globally constant.

Note that, in order to calculate the degree of a map f : M → N , we
simply select a regular value q ∈ N of f and count the number of preimages
of q, except that a point p ∈ f−1(q) makes a contribution of +1 or −1 to the
sum, depending on whether the isomorphism Df(p) : TpM → TqN preserves
or reverses orientation.

1.4 Vector fields and the Euler characteristic

We will now use the ideas hitherto presented to define the index of a simple
singularity of a vector field and, subsequently, define the Euler characteristic
of a compact manifold. As usual, we start by reviewing some concepts. In
this section, our manifolds are assumed to be oriented and boundaryless.

Definition 1.38. The tangent bundle of a manifold Mm is the space TM =
{(p, w) : p ∈ M, w ∈ TpM}. If {ϕα : Uα → M}α is a differentiable atlas for
M , then the collection of functions ϕ̃α : Uα × Rm → TM , defined by

ϕ̃α(x, u1, . . . , um) =

(
ϕ(x),

m∑
i=1

ui
∂ϕ

∂xi
(x)

)
, x ∈ Uα, (u1, . . . , um) ∈ Rm,

is the differentiable atlas we endow TM for it to become a differentiable
manifold of dimension 2m.
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18 Vector fields and the Euler characteristic

Notice that TM contains a naturally embedded copy of M , namely, the
zero section M0 = {(p, 0) : p ∈M}.

Definition 1.39. A vector field on M is a map v : M → TM such that
π ◦ v = idM , where π : (p, w) 7→ p is the natural projection from TM to M .
The set of vector fields on M is denoted X(M).

It is customary to think of a vector field as a choice of vector v(p) ∈ TpM
for each point p ∈M . Whenever it is convenient, we shall adopt this practise.

Definition 1.40. A point p ∈ M is a singularity for a vector field v if
v(p) = (p, 0), and is called regular otherwise.

An ODE theorem — the Tubular Flow Theorem (see [1]) — tells us that
the behaviour of a vector field around a regular point is very simple and
similar irrespective of the point. It is then natural to focus attention on the
singular points. We start with the main definition.

Definition 1.41. A vector field on a manifold M has simple singularities if
it is transversal to the zero section M0.

If M is compact, then there are only finitely many simple singularities
for a vector field on M .

The next proposition establishes a useful criterion for identifying these
singularities.

Proposition 1.42. Let v be a vector field on the manifold Mm. Suppose that
p ∈ M is an isolated singularity for v. Given a parametrisation ϕ : U → M
covering a neighbourhood where p is the only singularity for v, write

v(ϕ(x)) = −
m∑
i=1

ai(x)
∂ϕ

∂xi
(x), x ∈ U,

for some functions ai : U → R. Let ϕ(x0) = p. Then p is a simple singularity

for v if and only if det
(
∂ai
∂xj

(x0)
)
6= 0.

Proof. Let ϕ̃ : U × Rm be the parametrisation of TM given in Definition
1.38. Define θ : M → TM as the zero vector field and set

ṽ = ϕ̃−1 ◦ v ◦ ϕ : x 7→ (x,−a1(x), . . . ,−am(x))

θ̃ = ϕ̃−1 ◦ θ ◦ ϕ : x 7→ (x, 0).
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19 Vector fields and the Euler characteristic

Notice that

{
Dθ(p) · ∂ϕ

∂x1

(x0), . . . , Dθ(p) · ∂ϕ
∂xn

(x0)

}
is a basis for T(p,0)M0. So, p is simple if and only if the set

{
∂(v ◦ ϕ)

∂x1

(x0), . . . ,
∂(v ◦ ϕ)

∂xm
(x0),

∂(θ ◦ ϕ)

∂x1

(x0), . . . ,
∂(θ ◦ ϕ)

∂xm
(x0)

}
is linearly independent on T(p,0)(TM), or, equivalently, if the set

{
∂ṽ

∂x1

(x0), . . . ,
∂ṽ

∂x1

(x0),
∂θ̃

∂x1

(x0), . . . ,
∂θ̃

∂xm
(x0)

}

is linearly independent on Rm × Rm. Arranging these vectors as columns in
a 2m× 2m matrix, we obtain:

 Im Im(
− ∂ai
∂xj

(x0)
)

0

 ,
where Im is the identity matrix of order m. Thus, p is a simple singularity
precisely when the determinant of the above matrix is nonzero, yielding the
result.

Example 1.43. Let Sn be the unit sphere of Rn+1 and let p0 = (0, . . . , 1) be
the north pole. Consider the vector field v on Sn defined by

v(p) = p0 − 〈p, p0〉p, p ∈ Sn,

where 〈·, ·〉 denotes the standard inner product on Rn+1 (see Figure 1.5).
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Figure 1.5: The vector field v.

The two singularities of v are p0 and −p0. We will show that they are
simple. For this, let ϕ : B(0, 1)→ Sn be the parametrisation

ϕ(x) = (x1, . . . , xn, sq(x)) , x = (x1, . . . , xn) ∈ B(0, 1),

where sq(x) =
√

1−
∑n

i=1 x
2
i and B(0, 1) is the open unit ball of Rn. Then,

some straightforward computations yield

∂ϕ

∂xi
(x) =

(
0, . . . , 1, . . . , 0,

−xi
sq(x)

)
.

and

v(ϕ(x)) =

(
−x1sq(x), . . . ,−xnsq(x),

n∑
i=1

x2
i

)
.

So, if ai(x) = xi sq(x), we have

v(ϕ(x)) = −
m∑
i=1

ai(x)
∂ϕ

∂xi
(x), x ∈ B(0, 1)

Another simple calculation shows that

∂ai
∂xj

(x) = δijsq(x)− xixj
sq(x)

.
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So, at x = 0 the matrix
(
∂ai
∂xj

(x)
)

is the identity, which is invertible. Thus,

p0 is a simple singularity. A similar argument works for −p0, now using the
parametrisation

ψ(x) = (x1, . . . , xn,−sq(x)) , x = (x1, . . . , xn) ∈ B(0, 1)

instead. It is possible to show that

v(ψ(x)) = −
m∑
i=1

bi(x)
∂ψ

∂xi
(x), x ∈ B(0, 1),

for bi(x) = −ai(x). Then, at x = 0, the matrix
(
∂bi
∂xj

(x)
)

is minus the identity

and −p0 is simple as well.

Definition 1.44. Let v be a vector field with simple singularities on a com-
pact manifold M . The index of v at a singularity p ∈ M , denoted by Ip(v),
is the intersection number between v and M0 at (p, 0).

A careful examination of the proof of Proposition 1.42 shows that the
index can be calculated as follows:

Proposition 1.45. According to the notation of Proposition 1.42 and sup-
posing the parametrisation ϕ preserves orientation, the index of v at the
simple singularity p is given by

Ip(v) =

{
+1, if det

(
∂ai
∂xj

(x0)
)
> 0

−1 otherwise.

Since the intersection number is an homotopy invariant (see Theorem
1.33) and any two vector fields v, w on a manifold M are homotopic via
(p, t) 7→ tv(p) + (1− t)w(p), the following definition makes sense.

Definition 1.46. The Euler characteristic of a compact manifold M , denoted
by χ(M), is obtained by selecting a vector field with simple singularities and
summing the indices of the vector field at its singularities.

Remark 1.47. Our definition of Euler characteristic is a differential invari-
ant, but there is a more general definition which is invariant under homeo-
morphisms:

PPGMat – UFRGS 21 E. Longa



22 Vector fields and the Euler characteristic

χ(M) =
dimM∑
i=0

rankH i(M),

where H i(M) is the i-th cohomology group of M . It is well defined for
non-orientable manifolds as well (actually, it makes sense for any topological
space), and coincides with our definition in the orientable case.

Example 1.48. The index of the vector field v of Example 1.43 at the points
p0 and −p0 is +1 and (−1)n, respectively. So,

χ(Sn) =

{
0, if n is odd

2, if n is even.

The next theorem tells us that one aspect of this example can be gener-
alised.

Theorem 1.49. Every odd-dimensional manifold has zero Euler character-
istic.

Proof. Let Mm be an odd dimensional (orientable) compact manifold and let
v be a vector field on M with simple singularities. From what we observed
above, the sum of the indices of v is the same than that for −v. But the
singularities of v and −v are the same, and at such a point p, the index of v is

the sign of the determinant det
(
∂ai
∂xj

(x0)
)

, while the index of −v at the same

point is the sign of the determinant det
(
− ∂ai
∂xj

(x0)
)

= (−1)m det
(
∂ai
∂xj

(x0)
)

.

Thus, χ(M) = (−1)mχ(M), whence χ(M) = 0.

Example 1.50. If M = M1 ∪ · · · ∪Mk is a disjoint union of compact mani-
folds, then χ(M) = χ(M1) + · · ·+ χ(Mk).

Example 1.51. Let Mm and Nn be compact manifolds. Then χ(M ×N) =
χ(M)χ(N). To see why this is true, let v ∈ X(M) and w ∈ X(N) be
vector fields with simple singularities, and let v × w ∈ X(M × N) be the
vector field (v × w)(p, q) = (v(p), w(q)). Each singularity of v × w is simple,
by the criterion we gave earlier, for if ϕ : U → M and ψ : V → N are
parametrisations covering neighbourhoods of the singularities p ∈ M and
q ∈ N , write

v(ϕ(x)) = −
m∑
i=1

ai(x)
∂ϕ

∂xi
(x)
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and

w(ψ(y)) = −
n∑
i=1

bi(x)
∂ψ

∂xi
(y).

Then the expression of v × w on the coordinate system given by ϕ × ψ :
(x, y) 7→ (ϕ(x), ψ(y)) is

(v × w)(ϕ(x), ψ(y)) = −
m+n∑
i=1

ci(x)
∂(ϕ× ψ)

∂xj
(x, y),

where ck = ak for k ∈ {1, . . . ,m} and ck = bk for k ∈ {m + 1, . . . ,m + n}.
Consequently, the matrix

(
∂ci
∂xj

)
takes the form


(
∂ai
∂xj

)
0

0

(
∂bi
∂xj

)
 ,

whence Iv×w(p, q) = Iv(p)Iq(w) by Proposition 1.45. Thus,

χ(M ×N) =
∑
v(p)=0
w(q)=0

I(p,q)(v × w) =
∑
v(p)=0

∑
w(q)=0

Iv(p)Iq(w)

=
∑
v(p)=0

 ∑
w(q=0)

Iq(w)

 Ip(v) = χ(N)
∑
v(p)=0

Ip(v) = χ(M)χ(N).

So, for example, the n-dimensional torus T n = S1 × · · · × S1 has Euler
characteristic equal to zero. More generally, if M splits as a product K ×N ,
where K is odd dimensional, then χ(M) = 0.
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CHAPTER 2

Translational manifolds

In this chapter we shall extend the definition of a Gauss map, now for hyper-
surfaces of a parallelisable manifold. Then, we define an associated curvature
and prove a Gauss-Bonnet theorem. As an example, we study the case where
the ambient space is an Euclidean sphere minus a point and obtain a topolog-
ical rigidity theorem for its hypersurfaces. This, in turn, will serve to provide
an alternative proof for a theorem of Qiaoling Wang and Changyu Xia. It
asserts that if such an immersed hypersurface of the sphere is contained in an
open hemisphere and has nowhere zero Gauss-Kronecker curvature, then it
is diffeomorphic to a sphere. This chapter comprises the article [17], a joint
work with Jaime Ripoll.

2.1 Translational structures

Let us start with some observations on parallelisable Riemannian manifolds.

Definition 2.1. A Riemannian manifold M
n+1

is called parallelisable if its
tangent bundle TM is trivial, meaning that there exists a diffeomorphism
λ : TM →M×Rn+1, called a trivialisation, that maps each fibre {p}×TpM ∼=
TpM isomorphically onto the fibre {p} × Rn+1 ∼= Rn+1.

Definition 2.2. A referential on a manifold M
n+1

is a set of n + 1 vector
fields which are linearly independent at every point of M .

For a manifold M
n+1

to be parallelisable, it is necessary and sufficient that
it possesses a referential, for if λ : TM → M × Rn+1 is a trivialisation, then
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25 Translational structures

the vector fields vi(p) = λ−1(p, ei) form a referential, where {e1, . . . , en+1}
is a basis of Rn+1. Reciprocally, if {v1, . . . , vn+1} are everywhere linearly
independent vector fields on M , then λ : TM →M × Rn+1 defined by

λ

(
p,

n+1∑
i=1

aivi(p)

)
= (p, a1, . . . , an+1)

is a trivialisation.

Example 2.3. Every finite dimensional real vector space V is parallelisable.
Indeed, if {e1, . . . , en} is a basis for V , just consider the constant vector fields
vi(x) = ei ∈ TxV ∼= V .

Example 2.4. More generally, every Lie group is parallelisable. To see why
this is true, let Gn be a lie group and {e1, . . . , en} be a basis for the lie algebra
g of G. It is immediate that the vector fields vi(x) = DLx(e) · ei are linearly
independent at every point of G. This example includes the previous one,
and the spheres S1 and S3. Although S7 is not a Lie group, it is the last
parallelisable sphere, other than S0, of course! (See [3]).

Example 2.5. The product of two parallelisable manifold is another. For
example, the n-torus T n = S1 × · · · × S1 has this property.

Example 2.6. It is a remarkable fact that every compact orientable three-
dimensional manifold is parallelisable (see [20]).

On a parallelisable Riemannian manifold we can introduce translational
structures:

Definition 2.7. A translational structure on a parallelisable Riemannian
manifold M consists of a trivialisation Γ : TM → M × V , where V is an
(n + 1)-dimensional real vector space with an inner product, such that the
maps Γp : TpM → V implicitly defined by

(p, v) 7→ Γ(p, v) = (p,Γp(v))

are linear isometries for every point p of M . The pair
(
M,Γ

)
, or just M , if

Γ is understood from context, is called a translational Riemannian manifold,
and M is said to be equipped with a translational structure.

PPGMat – UFRGS 25 E. Longa



26 Translational structures

The maps Γp are to be thought as translations, as means of identifying
the tangent spaces to M with the vector space V . This will allow us to define
the Gauss map of a hypersurface.

Let
(
M,Γ

)
be a translational Riemannian manifold and f : Mn →M an

immersion of an orientable manifold M into M . The following constructions
are purely local, so we identify small neighbourhoods of M with their images
via f , and the tangent spaces to M with their images via Df . Let η : M →
TM be a unit normal vector field along f , and let Sn be the unit sphere of
V .

Definition 2.8. The Gauss map γ : M → Sn associated to the normal vector
field η is given by

γ(p) = Γp(η(p)), p ∈M.

The tangent space of V at any point is canonically isomorphic to V , and
the tangent space of Sn at a point x is just {x}⊥, the orthogonal complement
of x. Thus, the derivative Dγ(p) maps TpM into Tγ(p)Sn = {γ(p)}⊥ and Γ−1

p

maps the latter back into TpM . This makes possible the following:

Definition 2.9. The Γ-curvature of M is the map κΓ : M → R given by

κΓ(p) = det
(
Γ−1
p ◦Dγ(p)

)
, p ∈M.

Next, we define a special type of vector field that will play an important
role.

Definition 2.10. Given a point p ∈ M and a vector v ∈ TpM , the vector
field ṽ ∈ X(M) defined by

ṽ(q) =
(
Γ−1
q ◦ Γp

)
(v), q ∈M

is called the Γ-invariant (or simply invariant) vector field of M associated
with v.

Example 2.11 (The Euclidean translation). If M = Rn+1 and Γ : TRn+1 →
Rn+1 × Rn+1 is the identity, then the Gauss map γ for an orientable hyper-
surface M is the ordinary one. The invariant vector fields of Rn+1 are the
constant vector fields and κΓ is the Gauss-Kronecker curvature of M .
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Example 2.12 (Left translation on Lie groups). More generally, let M = G
be a Lie group and V = g be the Lie algebra of G, considered as the tangent
space of G at the identity. Choose a left invariant metric for G and define
Γ : TG→ G× g by

Γ(g, v) = (g,DLg−1(g) · v) , (g, v) ∈ TG,

where Lx : y 7→ xy is the left translation. Here, the Γ-invariant vector fields
are the left invariant vector fields of G. This is the setting studied in [22].

Example 2.13 (Parallel transport). Assume M is a Cartan-Hadamard man-
ifold, that is, a complete, connected and simply connected Riemannian man-
ifold with nonpositive sectional curvature. Given a point p0 ∈ M , the expo-
nential map at p0 is, by Hadamard’s Theorem, a diffeomorphism from Tp0M
onto M , so that every point p can be joined to p0 by a unique geodesic.
Setting V = Tp0M , we may then define Γp : TpM → V by choosing Γp(v) as
being the parallel transport of v ∈ TpM to Tp0M along this geodesic. Thus,
the invariant vector fields here are the parallel vector fields along the geodesic
rays issuing from p0.

More generally, given any complete Riemannian manifold M and a point
p0 in M , we can define the parallel transport to Tp0M on M \ Cp0 as above,
where Cp0 is the cut locus of p0 (see [26]). We study this case in detail on
the sphere (see next section).

We next describe the geometry of the Gauss map. Let ∇ be the Rieman-
nian connection of M . Recall that the shape operator of M is the section A
of the vector bundle End(TM) of endomorphisms of TM given by

Ap(v) = −∇vη, p ∈M, v ∈ TpM,

where η : M → TM is a normal vector field for M .
Similarly, we define another section of End(TM), which depends addi-

tionally on the choice of the translation Γ.

Definition 2.14. The invariant shape operator of M is the section α of the
bundle End(TM) given by

αp(v) = ∇vη̃(p), p ∈M, v ∈ TpM,

where η̃(p) is the invariant vector field associated with η(p).
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In the next section we will calculate α when M is the sphere minus one
point endowed with the translational structure induced by parallel transport.
For now, we give the following example.

Example 2.15. If M is a hypersurface of M = Rn+1 with the translational
structure of Example 2.11, then αp is identically zero for each point p of
M , since the invariant vector fields are constant. More generally, αp is zero
for any hypersurface M of a commutative Lie group G equipped with the
translational structure of Example 2.12. To see why, recall Koszul’s formula
for the connection in terms of the metric:

2〈∇XY, Z〉 = X〈Y, Z〉+ Y 〈X,Z〉 − Z〈X, Y 〉
+ 〈[X, Y ], Z〉 − 〈[X,Z], Y 〉 − 〈[Y, Z], X〉,

for X, Y, Z ∈ X(G). Given v, w ∈ TpM , we have

2〈∇vη̃(p), w〉 = v〈η̃(p), w̃〉+ η(p)〈ṽ, w̃〉 − w〈η̃(p), ṽ〉

+ 〈[ṽ, η̃(p)](p), w〉 − 〈[ṽ, w̃](p), η(p)〉 − 〈[η̃(p), w̃](p), v〉.

Notice, however, that the inner product of two invariant vector fields is a
constant function throughout G, for Γ is an isometry in each fibre. So, the
first three terms above vanish. Moreover, since G is commutative, the Lie
bracket of any two invariant fields is zero. Thus,

2〈∇vη̃(p), w〉 = 0 (2.1)

for each v, w ∈ TpM , that is to say, αp ≡ 0. It is worth noticing that in this
case, the Γ-curvature of M is also the Gauss-Kronecker curvature of M .

The proposition below establishes a relationship between γ and the ex-
trinsic geometry of M .

Proposition 2.16. For any p ∈M , the following identity holds:

Γ−1
p ◦Dγ(p) = − (Ap + αp) .

Proof. Fix p ∈ M and an orthonormal basis {v1, . . . , vn+1} of TpM such
that vn+1 = η(p). The vector fields ṽ1, . . . , ṽn+1 form a global orthonormal
referential of M , so that we can write
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η =
n+1∑
i=1

aiṽi (2.2)

for certain functions ai ∈ C∞(M). Notice that ai(p) = 0 for i ∈ {1, . . . , n}
and an+1(p) = 1.

For y ∈M we have

γ(y) = Γy(η(y)) = Γy

(
n+1∑
i=1

ai(y)ṽi(y)

)
=

n+1∑
i=1

ai(y)Γp(vi).

Therefore, if v ∈ TpM ,

Γ−1
p (Dγ(p) · v) = Γ−1

p

(
n+1∑
i=1

v(ai)Γp(vi)

)
=

n+1∑
i=1

v(ai)vi. (2.3)

From (2.2) and (2.3) we obtain

−Ap(v) = ∇vη =
n+1∑
i=1

∇v(aiṽi) =
n+1∑
i=1

[
ai(p)∇vṽi + v(ai)ṽi(p)

]
= ∇vṽn+1 +

n+1∑
i=1

v(ai)vi = αp(v) + Γ−1
p (Dγ(p) · v),

which gives the desired result.

Before proving our Gauss-Bonnet theorem, we state the change of vari-
ables formula, which will be used in the proof. The reader can check [32].

Theorem 2.17 (Change of Variables Formula). Let Mn and Nn be connected
and oriented manifolds, and consider a proper map f : M → N (for example,
if M is compact). Given an n-form ω with compact support on N , we have

∫
M

f ∗ω = deg(f)

∫
N

ω.

We now prove the main theorem of this section.
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Theorem 2.18 (Theorem 1.2, [17]). Let
(
M,Γ

)
be a translational Rieman-

nian manifold and Mn a compact, connected and orientable immersed hyper-
surface of even dimension of M , and denote by ω the volume element of M
induced by the metric of M . Then

∫
M

κΓ ω =
cn
2
χ(M),

where cn is the volume of Sn ⊂ V and χ(M) is the Euler characteristic of
M .

Proof. Firstly, orient V arbitrarily. This induces an orientation on M by re-
quiring the maps Γp to preserve orientation. We also orient M and Sn as fol-
lows: an oriented basis {w1, . . . , wn} of TpM is positive if {η(p), w1, . . . , wn}
is a positive basis of TpM , and the ordered basis {x1, . . . , xn} of TxSn is
positive precisely if {x, x1, . . . , xn} is a positive basis of V .

Let σ be the volume form of Sn induced by the metric on V . From the
fact that Γ restricts to isometries in each fibre and from the definition of κΓ,
it follows that γ∗σ = κΓ ω. Then, the change of variables formula yields

∫
M

κΓ ω =

∫
M

γ∗σ = deg(γ)

∫
Sn
σ = cn deg(γ).

It remains to show that deg(γ) = 1
2
χ(M).

For this, let {a, b} be a pair of antipodal points on Sn which are regular
values for γ (consider a regular value for the composite M → Sn → RP n,
where the last map is the natural projection onto the projective space). Let
u be a vector field on Sn having only a and b as singularities, and suppose
they are simple and of index equal to one (rotate the vector field of Example
1.43). Here is where the hypothesis on the dimension of M is important.

The singularities of v are {a1, . . . , ar} ∪ {b1, . . . , bs}, with γ(ai) = a and
γ(bi) = b. Firstly, we will show that they are simple. For this, let ϕ :
U → M a parametrisation of M around ai, with ϕ(0) = ai, so that γ is a
diffeomorphism from ϕ(U) to the open set V ⊂ Sn. Then ψ = γ|ϕ(U) ◦ ϕ :
U → V is a parametrisation of Sn around a. Write

u(ψ(x)) = −
n∑
i=1

ui(x)
∂ψ

∂xi
(x)

and
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v(ϕ(x)) = −
n∑
i=1

vi(x)
∂ϕ

∂xi
(x)

for some functions ui and vi on U . If ϕ(x) = p, then

−
n∑
i=1

vi(x)
∂ϕ

∂xi
(x) = v(ϕ(x)) = v(γ|−1

U ◦ ψ(x)) = Γ−1
p (u(ψ(x)))

= −
n∑
i=1

ui(x)Γ−1
p

(
∂ψ

∂xi
(x)

)
= −

n∑
i=1

ui(x)
(
Γ−1
p ◦Dγ(p)

)( ∂ϕ
∂xi

(x)

)
. (2.4)

So, setting

(
Γ−1
p ◦Dγ(p)

)( ∂ϕ
∂xi

(x)

)
=

n∑
j=1

fji(x)
∂ϕ

∂xj
(x),

for some functions fji on U and comparing terms on (2.4), we have

vi(x) =
n∑
j=1

fij(x)uj(x).

This way,

∂vi
∂xj

(0) =
n∑
k=1

[
∂fik
∂xj

(0)uk(0) + fik(0)
∂uk
∂xj

(0)

]
=

n∑
k=1

fik(0)
∂uk
∂xj

(0),

and, as matrices,

(
∂vi
∂xj

(0)

)
= (fij(0))

(
∂ui
∂xj

(0)

)
. (2.5)

Thus, since both matrices on the right-hand side are invertible, so is the
one on the left-hand side. By Proposition 1.42, each ai is a simple singularity
for v, and the same argument guarantees this property for each bi.
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Now notice that since (fij(0)) is the matrix of Γ−1
ai
◦Dγ(ai) on a certain ba-

sis and a is a singularity of index one for u, (2.5) implies that det
(
∂vi
∂xj

(0)
)
> 0

if and only if Γ−1
ai
◦Dγ(ai) preserves orientation. But the maps Γp preserve

orientation. Consequently, the index of v at ai is one precisely when Dγ(ai)
preserves orientation, that is to say, Iai(v) = signai(γ) holds (and analogously
for the bi). Hence,

2 deg(γ) =
r∑
i=1

signai(γ) +
s∑
i=1

signbi(γ) =
∑
v(p)=0

Ip(v) = χ(M).

A relevant question concerning a compact, connected and oriented im-

mersed hypersurface Mn of M
n+1

with normal η : M → TM is the following:
what values can the normal degree deg γ assume when we vary the immer-
sion? This question has been raised and answered by Hopf when M = Rn+1

and n is even (see [14] and [15]): the degree is uniquely determined by the
formula deg γ = 1

2
χ(M). When n is odd, Milnor proved in [19] that if M can

be immersed in Rn+1 with normal degree d then it can also be immersed with
any degree d′ which is congruent to d modulo 2. We have actually shown
the analogue of Hopf’s theorem in the proof of Theorem 2.18. As to what
are the possible values of deg γ when n is odd, we conjecture that the same
result of Milnor holds. We hope to demonstrate it in a future work.

2.2 An example and some consequences

In this section we will investigate the earlier constructions when the ambient
manifold is the sphere with a point deleted. Later, we derive a rigidity
theorem for hypersurfaces of the sphere and give an alternative proof for
Theorem 1.1 in [31].

Let M be the unit sphere Sn+1 ⊂ Rn+2 with a point −p0 removed, which
we denote by Sn+1

−p0 , and let V be the tangent space of the sphere at p0. The
metrics of Sn+1 and V are those induced from Rn+2. Given two non-antipodal
points p, q in the sphere, let τ qp : TpSn+1 → TqSn+1 be the parallel transport
along the unique geodesic joining p to q (we use the convention that that
τ pp is the identity of TpSn+1). Since this map is a linear isometry, we define

Γ : TSn+1
−p0 → Sn+1

−p0 × V by

Γ(p, v) =
(
p, τ p0p (v)

)
, (p, v) ∈ TSn+1

−p0 .
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IfMn is an orientable immersed hypersurface of Sn+1
−p0 and η : M → Rn+2 is

a unit normal vector field (tangent to the sphere), the Gauss map γ at a point
p is just the parallel transport of the normal η(p) to M along the geodesic
joining p to p0. The next proposition contains the relevant information we
will need.

Proposition 2.19. Let p and q be non-antipodal points in Sn+1. With the
above notations, the following formulae hold:

(i)

τ qp (v) = −
[
〈v, q〉

1 + 〈q, p〉

]
(q + p) + v, v ∈ TpSn+1.

(ii)

γ(p) = −
[
〈η(p), p0〉
1 + 〈p, p0〉

]
(p+ p0) + η(p).

(iii)

αp(X) =

[
〈η(p), p0〉
1 + 〈p, p0〉

]
X, X ∈ TpM.

Proof. To prove the first two items, let β : [0, tq] → Sn+1 be the unit speed
geodesic joining p to q, given by

β(t) = (cos t)p+ (sin t)q, t ∈ [0, tq],

where

q =
q − 〈q, p〉p
‖q − 〈q, p〉p‖

=
q − 〈q, p〉p√
1− 〈q, p〉2

.

For fixed v ∈ TpSn+1, let X : [0, tq] → Rn+2 be the parallel vector field
along β and tangent to the sphere with prescribed initial value X(0) = v.
Differentiating 〈X, β〉 ≡ 0, we obtain

−〈X ′, β〉 ≡ 〈X, β′〉, (2.6)
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and since X and β′ are parallel along β, 〈X, β′〉 is constant, equal to C ∈ R,
say, with

C = 〈X(0), β′(0)〉 = 〈v, q〉 =
〈v, q〉√

1− 〈q, p〉2
.

The equation for X to be a parallel vector field is X ′ − 〈X ′, β〉β ≡ 0.
Writing X = (x1, . . . , xn+2), using (2.6) and the expression for β, we have

X ′(t) = −C [(cos t)p+ (sin t)q] , t ∈ [0, tq].

The solution satisfying X(0) = v is then

X(t) = C [(cos t− 1)q − (sin t)p] + v, t ∈ [0, tq].

Noticing that cos tq = 〈q, p〉 and sin tq =
√

1− 〈q, p〉2, we finally obtain

τ qp (v) = X(tp) = −
[
〈v, q〉

1 + 〈q, p〉

]
(q + p) + v

and

γ(p) = τ p0p (η(p)) = −
[
〈η(p), p0〉
1 + 〈p, p0〉

]
(p+ p0) + η(p),

as required.
For the last item, let w = γ(p). Recall that w̃ ∈ X

(
Sn+1
−p0
)

is the invariant

vector field associated with w, and w̃ = η̃(p). From (i) we have

w̃(q) = τ qp0(w) = −
[
〈w, q〉

1 + 〈q, p0〉

]
(q + p0) + w, q ∈ Sn+1

−p0 . (2.7)

If ∇̃ denotes the Riemannian connection of Rn+2, then

αp(v) = ∇vw̃ = ∇̃vw̃ − 〈∇̃vw̃, p〉p, v ∈ TpM.

A straightforward calculation shows that
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∇̃vw̃ =

[
−〈w, v〉(1 + 〈p, p0〉) + 〈w, p〉〈v, p0〉

(1 + 〈p, p0〉)2

]
(p+ p0)−

[
〈w, p〉

1 + 〈p, p0〉

]
v.

(2.8)

Notice that 〈v, w̃(p)〉 = 〈v, η(p)〉 = 0, since v ∈ TpM . Using (2.7), we have

−〈w, v〉(1 + 〈p, p0〉) + 〈w, p〉〈v, p0〉 = 0.

Substituting this in (2.8), we obtain

∇̃vw̃ = −
[
〈w, p〉

1 + 〈p, p0〉

]
v.

Then, using formula (ii) for γ(p),

〈w, p〉 = 〈γ(p), p〉 = −
[
〈η(p), p0〉
1 + 〈p, p0〉

]
〈p+ p0, p〉+ 〈η(p), p〉 = −〈η(p), p0〉.

Hence,

αp(v) = ∇̃vw̃ =

[
〈η(p), p0〉
1 + 〈p, p0〉

]
v, v ∈ TpM.

We now state our rigidity theorem.

Theorem 2.20 (Theorem 1.3, [17]). Let Mn be a compact, connected and
oriented immersed hypersurface of Sn+1, n ≥ 2, and let R be the radius of the
smallest geodesic ball containing M . If the principal curvatures λ1, . . . , λn of
M satisfy

|λi| > tan

(
R

2

)
, ∀ i ∈ {1, . . . , n},

then M is diffeomorphic to Sn. Moreover, for any ε ∈ (0,
√

2−1) there exists
a compact, connected and oriented immersed hypersurface Mε of Sn+1 whose
principal curvatures satisfy

|λi| > ε tan

(
R

2

)
, ∀ i ∈ {1, . . . , n}, (2.9)

but Mε is not homeomorphic to a sphere.
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The above mentioned hypersurfaces Mε are given by the following lemma,
as we shall see later.

Lemma 2.21. For a parameter r ∈ (0, 1), let

Mr = S1(r)× Sn−1(s) =
{

(x, y) ∈ R2 × Rn : ‖x‖ = r, ‖y‖ = s
}
⊂ Sn+1,

where s =
√

1− r2. If R is the radius of the largest open geodesic ball of Sn+1

which does not intersect Mr, then

cosR = min{r, s}.

Proof. Recall that the distance between two points p, q in the sphere Sn+1 is
given by arccos〈p, q〉, so that

cosR = inf
{

sup{〈p, q〉 : q ∈Mr} : p ∈ Sn+1
}
.

Writing p = (x, y) ∈ R2 × Rn, we have

sup{〈p, q〉 : q ∈Mr} = sup{〈x, u〉+ 〈y, v〉 : (u, v) ∈Mr}
= r ‖x‖+ s ‖y‖ .

Thus,

cosR = inf
{
r ‖x‖+ s ‖y‖ : (x, y) ∈ Sn+1

}
= min{r, s}.

Proof of Theorem 2.20. Let η : M → Rn+2 be the unit normal vector field
which gives rise to the orientation of M and let p0 be the center of a geodesic
ball of radius R containing M . Define a function c : M → R by

c(p) =
〈η(p), p0〉
1 + 〈p, p0〉

, p ∈M

and a vector field E ∈ X(Sn+1) by

E(p) = p0 − 〈p, p0〉p, p ∈M.
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Note that 〈η(p), E(p)〉 = 〈η(p), p0〉 for p in M . Then, using Cauchy-Schwarz
inequality, we have the following estimate for c:

|c(p)| ≤ ‖η(p)‖ ‖E(p)‖
1 + 〈p, p0〉

=

√
1− 〈p, p0〉2

1 + 〈p, p0〉
=

√
1− 〈p, p0〉
1 + 〈p, p0〉

, ∀ p ∈M.

Thus,

|c(p)| ≤

√
1− cos d(p, p0)

1 + cos d(p, p0)
= tan

(
d(p, p0)

2

)
≤ tan

(
R

2

)
, ∀ p ∈M.

Let p ∈M . Choosing an orthonormal basis of TpM that diagonalises the
shape operator Ap, the matrix of −Γ−1

p ◦Dγ(p) with respect to this basis is
diagonal with entries λi(p)+c(p) 6= 0. Therefore, this map is an isomorphism
for each p ∈ M , and so is Dγ(p). Since M is compact, γ is a covering map,
and as M is connected with n ≥ 2, γ is a diffeomorphism. This proves the
first statement of the theorem.

For the second part, let ε ∈ (0,
√

2−1). We will show that it is possible to

choose r ∈ I =
(

0, 1√
2

]
so that the principal curvatures of the hypersurface

Mr ⊂ Sn+1 from Lemma 2.21 satisfy (2.9).
For any r ∈ (0, 1), the principal curvatures λi of Mr are constant, with

λ1 = −
√

1− r2

r

and

λ2 = · · · = λn =
r√

1− r2
.

If r ∈ I then r ≤
√

1− r2 and, according to Lemma 2.21, cosR = r. A simple
calculation then shows that (2.9) holds if and only if r ∈ Jε =

(
ε

1−ε ,
1

1+ε

)
.

Since ε ∈ (0,
√

2 − 1), we have Jε 6= ∅ and I ∩ Jε 6= ∅. Thus, any r in this
intersection is suitable for our purposes.

Remark 2.22. It is an open question to know whether there exists a man-
ifold Mε not homeomorphic to a sphere for which inequality 2.9 holds true
for any ε close to 1. This would show that the lower bound tan(R/2) in the
theorem is optimal.
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Lastly, we provide an alternative proof for Theorem 1.1 in [31]:

Theorem 2.23. Let Mn be a compact, connected and oriented immersed
hypersurface of Sn+1, n ≥ 2, with nowhere vanishing Gauss-Kronecker cur-
vature. If M is contained in an open hemisphere, then M is diffeomorphic
to Sn.

To begin with, we introduce some ingredients that will be used in the proof
of Theorem 2.23. Let p0 be the north pole of Sn+1 and let Sn+1

+ be the open
hemisphere centered at p0. The Beltrami map B : Sn+1

+ → Rn+1 ∼= Tp0Sn+1

is the diffeomorphism obtained by central projection:

B(p) =

(
p1

pn+2

, . . . ,
pn+1

pn+2

)
, p = (p1, . . . pn+2) ∈ Sn+1

+ .

For t > 0, let Ht : Rn+1 → Rn+1 be the homothety x 7→ tx. The map we
are interested in is Ct = B−1 ◦Ht ◦B. It can be shown that

Ct(p) =
mt(p)

‖mt(p)‖
, p ∈ Sn+1

+ ,

where mt : Sn+1
+ → Rn+2 \ {0} is defined by

mt(p) =
(
p1, . . . , pn+1,

pn+2

t

)
, p = (p1, . . . pn+2) ∈ Sn+1

+ . (2.10)

It holds that

DCt(p) · v =
1

‖mt(p)‖

{[
(t− 1)〈v, p0〉
t2 ‖mt(p)‖2

]
[(t+ 1)〈p, p0〉p− tp0] + v

}
,

for (p, v) ∈ TSn+1
+ .

Let M be an oriented hypersurface of Sn+1 with unit normal vector field
η : M → Rn+2. Recall that the second fundamental form of M at a point p
(in the direction of η) is the quadratic form IIp : TpM → R induced by the
shape operator Ap, that is,

IIp(v) = 〈Ap(v), v〉, v ∈ TpM.

Alternatively, if α : (−ε, ε) → M is a curve with α(0) = p and α′(0) = v,
then
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IIp(v) = 〈α′′(0), η(p)〉,

where the double prime indicates the usual second derivative, regarding α as
a curve in Rn+2.

Proof of Theorem 2.23. After a rotation, we may suppose M is contained in
Sn+1

+ . By Theorem 2.20 (with R = π
2
), M would be diffeomorphic to Sn if

all its principal curvatures were bigger than 1 in absolute value. This is not
necessarily true. However, defining Mt = Ct(M), we will show that if t is
sufficiently small, then this bound on the principal curvatures holds for Mt.
So, Mt, and hence M , will be difeomorphic to Sn

Let η : M → Rn+2 be the unit normal vector field that induces the
orientation of M . One can directly check that the vector field ηt : Mt → Rn+2

given by

ηt(Ct(p)) =
η(p) + (t− 1)〈η(p), p0〉p0√

1 + (t2 − 1)〈η(p), p0〉2
, p ∈M, (2.11)

is normal to Mt and has unit length.

Claim. The following relation between the second fundamental forms II and
IIt of M and Mt with respect to the normals η and ηt holds:

IItq

(
w

‖w‖

)
= Ft(p, v)IIp(v),

where

Ft(p, v) =
[(1− t2)〈p, p0〉2 + t2]

3/2

t [(1− t2)(〈p, p0〉2 + 〈v, p0〉2) + t2] [1 + (t2 − 1)〈η(p), p0〉2]1/2
.

Proof of the Claim. Let α : (−ε, ε) → M be a curve with α(0) = p and
α′(0) = v, with ‖v‖ = 1. Consider β = Ct ◦α the corresponding curve in Mt,
with β(0) = q and β′(0) = w.

Introducing the functions yt, zt : M → R given by

yt(p) =
(t+ 1)〈p, p0〉
t ‖mt(p)‖

, p ∈M
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and

zt(p) =
1

‖mt(p)‖
, p ∈M,

one has, after rearranging,

β′(s) = zt(α(s))

{[
(t− 1)〈α′(s), p0〉

t

]
[yt(α(s))β(s)− p0] + α′(s)

}
.

Differentiating and evaluating at s = 0, we obtain

β′′(0) = (Dzt(p) · v) ‖mt(p)‖w + zt(p)

{[
(t− 1)〈α′′(0), p0〉

t

]
[yt(p)q − p0]

+

[
(t− 1)〈v, p0〉

t

]
[(Dyt(p) · v) q + yt(p)w] + α′′(0)

}
.

Since 〈q, ηt(q)〉 = 〈w, ηt(q)〉 = 0, we have

〈β′′(0), ηt(q)〉 = zt(p)

[
〈α′′(0), ηt(q)〉 −

(t− 1)〈α′′(0), p0〉〈ηt(q), p0〉
t

]
.

Using expression (2.11) for ηt we arrive at

IItq(w) = 〈β′′(0), ηt(q)〉 =
IIp(v)

‖mt(p)‖ [1 + (t2 − 1)〈η(p), p0〉2]1/2
.

Furthermore,

‖w‖2 =
1

‖mt(p)‖2

[
(1− t2)(〈p, p0〉2 + 〈v, p0〉2) + t2

t2 ‖mt(p)‖2

]
.

Thus, these two last equations and the value of ‖mt(p)‖ obtainable from
(2.10) yield the desired relation between IIp and IItq

Since M is compact and contained in Sn+1
+ we may choose h, ε ∈ (0, 1)

such that 〈x, p0〉2 ≥ h and 〈η(x), p0〉2 < 1 − ε2 for all x ∈ M . We have the
following estimates if 0 < t < 1√

2
:
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(1− t2)〈p, p0〉2 + t2 ≥ h

2
,

(1− t2)(〈p, p0〉2 + 〈v, p0〉2) + t2 ≤ 3,

1 + (t2 − 1)〈η(p), p0〉2 ≤ 1.

This way,

Ft(p, v) ≥ K

t
, ∀(p, v) ∈ TM, ‖v‖ = 1,

for K = h3/2

6
√

2
.

Let λ1 ≤ · · · ≤ λn and µ1,t ≤ · · · ≤ µn,t be the principal curvatures of M
and Mt, respectively. The variational principle for eigenvalues gives

λj(p) = min
V⊆TpM
dimV=j

max
v∈V
‖v‖=1

IIp(v)

and

µj,t(Ct(p)) = min
V⊆TpM
dimV=j

max
v∈V
‖v‖=1

Ft(p, v)IIp(v).

Note that M must contain an elliptic point, that is, a point where all prin-
cipal curvatures have the same sign, which we assume to be positive. By
hypothesis, all principal curvatures must be then everywhere positive. So,
for every point p ∈M and subspace V of TpM , we have

max
v∈V
‖v‖=1

Ft(p, v)IIp(v) ≥ Ft(p, v(V )) IIp(v(V )) ≥ K

t
IIp(v(V )),

where v(V ) ∈ V satisfies ‖v(V )‖ = 1 and

IIp(v(V )) = max
v∈V
‖v‖=1

IIp(v) > 0.

Hence,
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µj,t(Ct(p)) ≥ min
V⊆TpM
dimV=j

K

t
IIp(v(V ))

=
K

t
min
V⊆TpM
dimV=j

max
v∈V
‖v‖=1

IIp(v)

=
K

t
λj(p).

Setting

λ = min
1≤j≤n

min
p∈M

λj(p) > 0,

we have

µj,t(Ct(p)) ≥
K

t
λ

for every p ∈ M and 0 < t < 1√
2
. Thus, provided that t is sufficiently

small, all principal curvatures of Mt are bigger than 1 in absolute value, as
we wanted.

Remark 2.24. We observe that the same constructions done in the sphere
can be carried out in the hyperbolic space using the Lorentzian model. In
particular, one can prove using the same technique that a compact, con-
nected and orientable hypersurface of the hyperbolic space having everywhere
nonzero Gauss-Kronecker curvature is diffeomorphic to a sphere. However,
if the Gauss-Kronecker curvature of a hypersurface in hyperbolic space is
nowhere zero, then its principal curvatures necessarily have the same sign,
and then the result follows from the Proposition of [23].
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CHAPTER 3

Some topological invariants

In this chapter we consider closed and orientable immersed hypersurfaces
of translational manifolds. Given a vector field on such a hypersurface, we
define a perturbation of its Gauss map, which allows us to obtain topological
invariants for the immersion that depends on the geometry of the manifold
and the ambient space. Later, we use these quantities to find obstructions
to the existence of certain codimension-one foliations. Apart from the first
section, this chapter constitutes the article [12], in cooperation with Ícaro
Gonçalves.

3.1 Foliations

This section will serve to introduce the concept of foliation and to give some
examples to sharpen the reader’s intuition. We recommend [6] for an excel-
lent exposition. All manifolds in this chapter are boundaryless.

Given an integer 0 ≤ k ≤ n, the Euclidean space Rn can be partitioned
into the horizontal hyperplanes Rn−k × {c}, where c ranges over Rk. Each
of these is a submanifold of Rn of codimension k, and each point p of Rn

is contained in only one such submanifold. This serves as a model for the
general definition of a foliation.

Definition 3.1 (Foliations, I). A (smooth) foliation of codimension k of a
manifold Mn is a maximal (smooth) atlas F = {ϕα : Uα → M}α satisfying
the following conditions:
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(i) The domain of ϕα is a product Uα = Uα,1 × Uα,2 ⊂ Rn−k × Rk, where
Uα,1 and Uα,2 are open balls of Rn−k and Rk, respectively.

(ii) If W = ϕα(Uα)∩ϕβ(Uβ) 6= ∅, then the change of coordinates ϕ−1
β ◦ϕα :

ϕ−1
α (W )→ ϕ−1

β (W ) preserves the foliation Rn = Rn−k ×Rk, that is, it
has the form

(ϕ−1
β ◦ ϕα)(x, y) = (ξ1(x, y), ξ2(y)), (x, y) ∈ Rn−k × Rk

The sets ϕα(Uα,1 × {c}) for c ∈ Uα,2 are called plaques of F . They are
(n− k)-dimensional embedded submanifolds of M .

Figure 3.1: The change of coordinates of a foliation.

Alternatively, we have the following definition.

Definition 3.2 (Foliations, II). A (smooth) foliation of codimension k of a
manifold Mn is a maximal collection of (smooth) maps F = {fα : Vα → Rk}α
satisfying the following conditions:

(i) Each fα is a submersion and their domains cover M .

(ii) If Vα ∩ Vβ 6= ∅, then there exists a local diffeomorphism gαβ of Rk such
that fα = gαβ ◦ fβ on Vα ∩ Vβ.

The maps fα are called the distinguished maps of F . A plaque of F is a
connected component of f−1

α (c), for c ∈ Rk.
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The curious reader is invited to check [6] for the equivalence between
these definitions.

On a foliated manifold M we define the following equivalence relation:
two points p and q are equivalent if there is a sequence of plaques α1, . . . , αr
such that αi ∩ αi+1 6= ∅, p ∈ α1 and q ∈ αr. The equivalence classes are
called the leaves of the foliation. It is possible to prove that each leaf is a
(path-connected) immersed submanifold of M . For each point p of M , we
denote by Fp the leaf of F that contains p.

As the next proposition shows, each submersion gives rise to a foliation.

Proposition 3.3. Let f : Mm → Nn be a submersion. Then there is a
foliation F of codimension n of M whose fibres are the connected components
of the level sets f−1(q), q ∈ N .

Proof. By the Local Submersion Theorem, for each point p of M there exists
parametrisations ϕ : U →M and ψ : V → N around p and f(p) such that

(i) U = B(0, 1)×B(0, 1) ⊂ Rm−n×Rn, where B(0, 1) is the open unit ball
in the correspondent space and ϕ(0, 0) = p.

(ii) V = B(0, 1) ⊂ Rn and ψ(0) = f(p).

(iii) ψ−1 ◦ f ◦ ϕ : B(0, 1) × B(0, 1) → B(0, 1) coincides with the second
projection π2 : (x, y) 7→ y.

Then the collection F of all parametrisations like ϕ form a foliation on M .
Indeed, if ϕα and ϕβ are elements of F with corresponding parametrisations
ψα and ψβ, then

π2 ◦ ϕ−1
β ◦ ϕα = (ψ−1

β ◦ f ◦ ϕ
−1
β ) ◦ ϕβ ◦ ϕα = ψ−1

β ◦ f ◦ ϕα
= ψ−1

β ◦ ψα ◦ (ψ−1
α ◦ f ◦ ϕα) = ψ−1

β ◦ ψα ◦ π2,

that is, if

(ϕ−1
β ◦ ϕα)(x, y) = (ξ1(x, y), ξ2(x, y)),

then ξ2(x, y) = ψ−1
β ◦ ψα(y) only depends on y. This shows F is a foliation

of M . Moreover, for any c ∈ B(0, 1), we have

f(ϕ(x1, c)) = ψ(π2(x1, c)) = ψ(c) = ψ(π2(x2, c)) = f(ϕ(x2, c)),

for all x1, x2 ∈ B(0, 1). Thus, the plaques (and hence, the leaves) of F are
contained in the level sets of f . This completes the proof.
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Example 3.4. Let f : R2 → R be the map f(x, y) = y − αx, where α is
a real number. The foliation Fα of R2 induced by f is by the parallel lines
y = αx+ c, c ∈ R.

Notice that the translations (x, y) 7→ (x + k, y + l), where (k, l) ∈ Z2,
maps each leaf into another. Indeed, if (x, y) ∈ f−1(c), then

f(x+ k, y + l) = y + l − α(x+ k) = (y − αx) + l − αk = c+ l − αk,

and so (x+ k, y + l) ∈ f−1(c+ l− αk). Thus, Fα descends to a foliation Fα
on the 2-torus T 2 = R2/Z2 (see Figure 3.2). If α is rational, all the leaves
of Fα are homeomorphic to circles. However, if α is irrational then they
are all homeomorphic to lines. Actually, in this case every leaf is dense on
T 2. This shows that, in general, the leaves of a foliation are only immersed
submanifolds of the ambient space.

Figure 3.2: The linear foliation on the 2-torus.

Example 3.5. Let f : R3 → R be defined by f(x, y, z) = α(r2)ez, where
r2 = x2 + y2 and α : R+ → R is a smooth function satisfying α(0) = 1,
α(1) = 0 and α′(t) < 0 for t > 0. Then f is a submersion, since

∇f(x, y, z) = (2α′(r2)xez, 2α′(r2)yez, α(r2)ez)

never vanishes. So, by the above proposition, the level sets f−1(c) foliate R3.
Notice that if c = 0, then α(r2)ez = 0, that is, r = 1. Thus, the cylinder
C = {(x, y, z) ∈ R3 : x2 + y2 = 1} is a leaf. If c > 0, then

α(r2)ez = c =⇒ ez =
c

α(r2)
=⇒ z = K − ln(α(r2)),
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for K = ln(c). Consequently, the leaves inside the cylinder C are the graphs
of the functions (x, y) 7→ K − ln(α(r2)). Since the vertical translations by
an integer amount (x, y, z) 7→ (x, y, z + n) preserve the foliation inside C,
this descends to a foliation on the solid torus D2×S1, called the (orientable)
Reeb foliation, see Figure 3.3. Its leaves are all homeomorphic to R2 and
accumulate on the boundary torus S1 × S1

A Reeb component of a codimension-one foliation F of a 3-manifold M3

is a solid torus T inside M which is the union of leaves of F , and such that
F restricted to T is equivalent to the Reeb foliation of D2 × S1 above.

Figure 3.3: The Reeb foliation on D2 × S1.

Example 3.6. Let v be a vector field without singularities on M . Then
the ODE existence theorem guarantees that the integral curves of v are the
leaves of a foliation on M .

Example 3.7. Let S2n+1 be the unit sphere of R2n+2 ∼= Cn+1. The circle
S1 ⊂ C acts on this sphere by complex multiplication:

λ · (z1, . . . , zn+1) 7→ (λz1, . . . , λzn+1).

The complex projective space CPn is the quotient of S2n+1 by this action.
The quotient map π : S2n+1 → CPn is a submersion when we induce on CPn
the differentiable structure from the sphere. Then S2n+1 is foliated by the
level sets of π, which are all homeomorphic to circles.

Example 3.8. More generally, let (E, π,B, F ) be a fibre bundle. The man-
ifolds E,B and F are called the total space, the base and the fibre, respec-
tively. The map π : E → B is a submersion subject to the following local
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triviality condition: for every point b ∈ B there exists an open neighbourhood
U of b and a diffeomorphism ϕ : π−1(U)→ U×F satisfying π1◦ϕ = π|π−1(U),
where π1 : U × F → U is the projection. The leaves of the foliation induced
by π are homeomorphic to the connected components of F .

We now introduce the concept of orientability for foliations.

Definition 3.9. Let Mn be a manifold and k a positive integer less than or
equal to n. A k-referential on M is a set of k vector fields on M which are
linearly independent at every point.

Definition 3.10. A field of k-planes on a manifold Mn is a smooth map P
that assigns to each point p of M a k-dimensional subspace P (p) of TpM . The
smoothness condition means that P is locally spanned by k-referentials. Ex-
plicitly, for every point p of M there exist an open neighbourhood U of p and
a k-referential {v1, . . . , vk} on U such that P (q) = span{v1(q), . . . , vk(q)},
for every q ∈ U . A field of 1-planes is also called a line field.

Definition 3.11. Let P be a field of k-planes on Mn. A complementary field
of planes for P is a field of (n−k)-planes P ′ on M such that P (p)⊕P ′(p) =
TpM for every point p of M .

Definition 3.12. A k-plane field on a manifold Mn is called orientable if
there exist an open covering {Uα}α of M and ordered k-referentials vα =
{vα1 , . . . , vαk } on Uα such that:

(i) P |Uα is spanned by vα.

(ii) If Uα∩Uβ 6= ∅ then the orientations of P |Uα∩Uβ determined by vα|Uα∩Uβ
and vβ|Uα∩Uβ agree.

The k-plane field is called transversely orientable if it admits an orientable
complementary field of (n− k)-planes.

A foliation F of dimension k on M naturally defines a field of k-planes
TF , which assigns to every point p of M the tangent space of the leaf through
p at p: TF(p) = TpFp. The foliation is called orientable or transversely ori-
entable according to whether this field of k-planes is orientable or transversely
orientable.

Proposition 3.13. A line field P on a manifold M is orientable if and only
if P is globally spanned by a vector field v.
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Proof. It is obvious that P is orientable if it spanned by a vector field. Recip-
rocally, suppose P is orientable and let {Uα}α and {vα} be an open covering
of M and vector fields on Uα satisfying conditions (i) and (ii) of Definition
3.12. Since the orientations agree on the overlaps Uα ∩ Uβ, there are maps
hαβ : Uα ∩ Uβ → R such that vα = hαβv

β and hαβ > 0. Introduce a Rieman-
nian metric on M and define a vector field v as follows: for a point p, let α
such that p ∈ Uα and set v(p) = vα(p)

‖vα(p)‖ . If p ∈ Uα ∩ Uβ then

vα(p)

‖vα(p)‖
=

hαβ(p)vβ(p)

‖hαβ(p)vβ(p)‖
=

vβ(p)

‖vβ(p)‖
,

so v is globally defined and clearly spans P .

Corollary 3.14. A codimension-one foliation F on the Riemannian mani-
fold M is transversely orientable if and only if there exists a unitary vector
field η on M which is orthogonal to every leaf of F .

3.2 Some topological invariants

Throughout this section, a Riemannian manifoldM
n+2

endowed with a trans-
lational structure Γ : TM → M × V will be fixed. Let Mn+1 be a compact,
connected and orientable manifold and let f : M →M be an immersion of M
into M , with a normal unitary vector field η : M → TM . We identify small
neighbourhoods of M and their images via f and the tangent spaces to M
with their images via Df . Denote by ∇ and ∇ the Riemannian connections
of M and M , respectively. Moreover, let Sn+1(r) be the sphere of radius r of
V , centred at the origin; Sn+1 will denote the unit sphere of V .

We prove the following theorem:

Theorem 3.15 (Theorem 1.1, [12]). Suppose χ(M) = 0. For a unitary
vector field v on M and positive t, consider the map ϕvt : M → V defined by

ϕvt (p) = Γp(η(p) + tv(p)), p ∈M.

Furthermore, define functions µk : M → R by

det(Dϕvt ) =
√

1 + t2
n∑
k=0

µkt
k.
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Then, the following formula holds:

∫
M

µk =

{
deg(γ)cn+1

(
n/2
k/2

)
, if n and k are even

0, if n or k is odd
(3.1)

where γ : M → Sn+1 is the Gauss map associated to η and cn+1 is the volume
of Sn+1.

We begin with a lemma.

Lemma 3.16. Let v : M → Sn+1 be defined by v(p) = Γp(v(p)). Then, the
following formula holds for every point p ∈M and w ∈ TpM :

Γ−1
p (Dv(p) · w) = ∇wv −∇wṽ(p)

= ∇wv + 〈v(p), Ap(w)〉η(p)−∇wṽ(p),

where ṽ(p) is the invariant vector field associated with v(p).

Proof. Imitate the proof of Proposition 2.16 using an orthonormal basis
{v1, . . . , vn+2} of TpM such that vn+1 = v(p) and vn+2 = η(p).

Proof of Theorem 3.15. The Change of Variables Formula gives

∫
M

(ϕvt )
∗ ω = deg (ϕvt )

∫
Sn+1(

√
1+t2)

ω = deg (ϕvt ) cn+1

(√
1 + t2

)n+1

, (3.2)

where ω is the volume form of Sn+1(
√

1 + t2). But (ϕvt )
∗ ω = det(Dϕvt )ωM , for

ωM the volume form of M . In the sequel, we will calculate this determinant.
From Lemma 3.16 and Proposition 2.16, it follows that

Γ−1
p (Dϕvt (p) · w) =− (Ap(w) + αp(w))

+ t
[
∇wv + 〈v(p), Ap(w)〉η(p)−∇wṽ(p)

]
. (3.3)

Consider an orthonormal basis {e1, . . . , en, en+1 = v(p)} of TpM . Defining
u by

u =
v(p)√
1 + t2

− tη(p)√
1 + t2

,
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one can directly check that {Γp(e1), . . . ,Γp(en),Γp(u)} is an orthonormal ba-
sis of Tϕvt (p)Sn+1(

√
1 + t2). We will express the matrix of Dϕvt (p) relative to

these basis.
As a matter of convention, upper case indices will run from 1 to n + 1,

whereas lower case ones will vary from 1 to n. This said, we define the
following quantities:

hAB = 〈Ap(eB), eA〉
αAB = 〈αp(eB), eA〉

aij = 〈∇ejv, ei〉

ãij = 〈∇ej ṽ(p), ei〉

vi = 〈∇v(p)v, ei〉

ṽi = 〈∇v(p)ṽ(p), ei〉
Using (3.3) and the fact that Γp is an isometry, it is direct to check that

(see also [4]):

〈Dϕvt (p) · ej,Γp(ei)〉 = −(hij + αij) + t(aij − ãij)
〈Dϕvt (p) · ej,Γp(u)〉 = −

√
1 + t2 (hn+1,j + αn+1,j)

〈Dϕvt (p) · v(p),Γp(ei)〉 = −(hi,n+1 + αi,n+1) + t(vi − ṽi)
〈Dϕvt (p) · v(p),Γp(u)〉 = −

√
1 + t2 (hn+1,n+1 + αn+1,n+1)

Defining line vectors by

Vi = (ai1 − ãi1, . . . , ai,n − ãi,n, vi − ṽi)
HA = (hA1 + αA1, . . . , hA,n+1 + αA,n+1) ,

the matrix of Dϕvt (p) is

Dϕvt (p) =


−H1 + tV1

...

−Hn + tVn

−
√

1 + t2Hn+1

 .

The multilinearity of the determinant gives

det (Dϕvt (p)) =
√

1 + t2
n∑
k=0

µkt
k,

where
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µ0 = (−1)n+1 det (H1, . . . , Hn, Hn+1)

µ1 = (−1)n
∑

1≤i≤n

det (H1, . . . , Vi, . . . , Hn, Hn+1)

µ2 = (−1)n−1
∑

1≤i<j≤n

det (H1, . . . , Vi, . . . , Vj, . . . , Hn, Hn+1)

...

µn = − det (V1, . . . , Vn, Hn+1) .

From this and (3.2), we conclude that

n∑
k=0

tk
∫
M

µk =

deg (ϕvt ) cn+1

∑n/2
k=0

(
n/2
k

)
t2k, if n is even

deg (ϕvt ) cn+1

√
1 + t2

∑(n−1)/2
k=0

(
(n−1)/2

k

)
t2k, if n is odd.

When n is even, both sides of the above equation are polynomials in t, and the
powers in the right hand side are all even, which implies that the coefficients
multiplying odd powers in the left hand side all vanish. When n is odd, the
presence of the factor

√
1 + t2 forces all coefficients in the left hand side to be

zero. Furthermore, notice that deg (ϕvt ) = deg(γ). To see why this is true, let
i and it be the inclusions of Sn+1 and Sn+1(

√
1 + t2) into V . The maps it ◦ϕvt

and i ◦ γ are (linearly) homotopic, so that deg(it) deg (ϕvt ) = deg(i) deg(γ).
But the degrees of both i and it are obviously equal to 1. Hence,

∫
M

µk =

{
deg(γ)cn+1

(
n/2
k/2

)
, if n and k are even

0, if n or k is odd

completing the proof.

3.3 Applications to foliation theory

Firstly, recall the definition of the shape operator in arbitrary codimension.

Definition 3.17. Let Ll be an immersed submanifold of M
n+2

with positive
codimension and let η : L → TM be a unit normal vector field along L.
The shape operator of L at the point p in the direction of η(p) is the linear
operator AN : TpL→ TpL given by
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Aη(p)(w) = −
(
∇wη

)>
, w ∈ TpL,

where (·)> indicates projection onto TpL.

Inspired by this, we extend Definition 2.14.

Definition 3.18. The invariant shape operator of L at the point p in the
direction of η(p) is the linear operator αη(p) : TpL→ TpL given by

αη(p)(w) =
(
∇wη̃(p)

)>
, w ∈ TpL.

Notice that ∇xη̃(p) ∈ {η(p)}⊥, so that this really coincides with Definition
2.14 when the codimension of L in M is 1.

Now, let F be a transversely oriented codimension-one foliation of the

compact, connected and oriented immersed hypersurface M2n+1 of M
2n+2

.
Consider a unit vector field v ∈ X(M) normal to the leaves of F (see Corollary
3.14). In this case, the matrices (−aij) and (ãij) from Theorem 3.15 at a
point p are the matrices of Av(p) and αv(p) — the shape and invariant shape
operators of the leaf Fp of F containing p — with respect to a chosen basis
of TpFp. Furthermore,

µ2n = − det


v1 − ṽ1

aij − ãij
...

v2n − ṽ2n

h2n+1,1 · · ·h2n+1,2n h2n+1,2n+1

 .

If µ2n = 0, then deg(γ) = 0 due to (3.1). This, in turn, implies that M
itself is parallelisable. Indeed, consider the vector bundle map γ̃(p, v) =
(γ(p),Γp(v)), which covers γ:

TM
γ̃−−−→ TS2n+1y y

M
γ−−−→ S2n+1

Notice that TM is the pullback of TS2n+1 by γ. If the degree of γ is zero, then
TM is trivial, since homotopic maps induce isomorphic pullback bundles (see
[32] for more details). Thus, we proved:
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Theorem 3.19 (Theorem 4.2, [12]). Let F be a transversely orientable
codimension-one foliation of the compact, connected and oriented immersed

hypersurface M2n+1 of M
2n+2

, and let v a unit length vector field tangent
to M and normal to the leaves of F . If the operator Av + αv has rank less
than or equal to 2(n− 1) along the leaves, then the degree of the Gauss map
γ : M → S2n+1 is equal to zero. In particular, M is parallelisable.

Remark 3.20. Instead of a foliation, we may assume that only a trans-
versely oriented codimension-one plane field has been given (not necessarily
integrable). The hypothesis on the rank of Av + αv is the same, but now
these operators lack some geometrical meaning.

Corollary 3.21 (Corollary 4.4, [12]). Let G2n+2 be a Lie group with a left in-
variant metric and equipped with the translational structure of Example 2.12.
Consider a compact, connected and oriented immersed hypersurface M2n+1

of G2n+2 together with a transversely orientable codimension-one foliation F
and a unit length vector field v tangent to M and normal to the leaves of F .
If G is commutative and the rank of the shape operator of the leaves is smaller
than or equal to 2(n− 1), then the degree of the Gauss map γ : M → S2n+1

is zero. In particular, M is parallelisable.

Proof. From Example 2.15 we obtain that αv is identically zero. The result
then immediately follows from Theorem 3.19.

Corollary 3.22 (Corollary 4.5, [12]). Let G and M be as in Corollary 3.21.
If M is not parallelisable, then it does not admit transversely orientable
codimension-one foliations with totally geodesic leaves.

Remark 3.23. It is a standard fact in Lie group theory that a commutative
and connected Lie group is isomorphic to Rn × T k, where T k is the k-torus.

Remark 3.24. É. Ghys classified the compact and orientable Riemannian
manifolds that admit a transversely orientable codimension-one foliation with
totally geodesic leaves in [11]. Such a foliation must be transverse to a locally
free action of the circle or M must be a specific manifold and the foliation
must be conjugated to a model, both described in this article.

The last corollary implies that the only Euclidean spheres that have a
chance to carry a transversely orientable codimension-one foliation with to-
tally geodesic leaves are those of even dimension, S3 and S7. Theorem 1 in
[30], however, states that a closed manifold has a codimension-one foliation
if and only if its Euler characteristic vanishes. This rules out the spheres of
even dimension.
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As for S3, we reason as follows. A corollary of Novikov’s theorem (see
[25], Theorem 6.4.1) states that any transversely orientable codimension-one
foliation of S3 has a Reeb component (recall Example 3.5). Moreover, a theo-
rem by Sullivan (see [28], Corollary 3) asserts that there exists a Riemannian
metric on an oriented manifold for which the leaves of a transversely ori-
entable codimension-one foliation are minimal if and only if every compact
leaf is cut by a closed transversal curve. Since a closed curve intersecting the
boundary torus of the Reeb component cannot be everywhere transversal
to the foliation, there is no metric on S3 making the leaves of the foliation
totally geodesic.

Finally, the sphere S7 can be discarded due to Corollary 8.3 of [11], which
states that if a manifold admits a Riemannian metric of strictly positive
sectional curvature, then there is no totally geodesic foliation defined on the
manifold, Sfor any Riemannian metric.
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