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Resumo 

Mais de metade das florestas do mundo são florestas secundárias e a sucessão 

determinística prevê que muitos aspectos das florestas originais serão recuperados. 

Por outro lado, os remanescentes florestais encontram-se em paisagens fragmentadas 

nas quais às alterações microclimáticas induzidas por efeitos de bordas podem levar a 

uma sucessão retrogressiva, denominada "secundarização". Assim, as comunidades 

florestais atuais tendem a convergir em termos de estrutura e funções que 

desempenham no ecossistema, e a compreensão da dinâmica de espécies e de 

comunidades tornou-se uma preocupação fundamental dos estudos florestais. A 

heterogeneidade do habitat, juntamente com diferenças ecofisiológicas entre espécies, 

leva à segregação destas ao longo de gradientes espaciais ou temporais. Aqui, 

avaliamos a estrutura filogenética e a variação da composição filogenética das 

comunidades arbóreas florestais buscando evidenciar padrões de segregação ao longo 

do gradiente sucessional. No segundo capítulo, avaliamos o poder preditivo das 

características funcionais sobre as mudanças demográficas de curto prazo (intervalo 

de cinco anos) de 20 espécies arbóreas subtropicais. No terceiro, comparamos a 

dinâmica de curto prazo de comunidades florestais secundárias e remanescentes no 

fragmentado bioma da Mata Atlântica. Nossos resultados mostraram que as linhagens 

principais segregam ao longo do gradiente sucessional devido a requerimentos 

conservados de nichos de clados basais, revelando sua associação funcional a 

florestas mais antigas, enquanto Eudicots podem ocorrer ao longo do gradiente. No 

nível das espécies, atributos foliares foram preditivos de mudanças demográficas de 

curto prazo e, no nível de comunidade, atributos foliares e massa das sementes 

captaram melhor as mudanças na composição funcional de curto prazo. Constatou-se 

o aumento de atributos conservativos em florestas secundárias e a perda de biomassa, 
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devido à queda de grandes árvores, nas florestas remanescentes, expressando a perda 

de uma importante característica estrutural dessas florestas. 

Palavras chave: NRI, filobetadiversidade, composição funcional, florestas secundárias 

e remanescentes, mudanças temporais  
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Abstract 

More than half of the natural world’s forest is secondary forest and deterministic 

succession predicts that many features of pre-disturbed forests will be recovered. On 

the other hand, remnant old-growth forests are mostly within fragmented landscapes 

and edge-induced microclimatic conditions may lead to a retrogressive succession, 

named ‘secondarization’. Thereby current forests tend to converge in terms of 

community structure and ecosystem function and the understanding of species and 

community dynamics became a main concern of forest studies. Habitat heterogeneity 

together with ecophysiological differences between species would carry to species 

segregation along spatial or temporal gradients. Here we evaluated the phylogenetic 

structure of communities and phylogenetic composition variation to evidence patterns 

of segregation along the succession of tree species. In the second chapter, we 

evaluated the predictive power of the functional traits on short-term demographic 

changes (five years interval) of 20 subtropical tree species. In the third, we compared 

the short-term dynamics of secondary and old-growth forest communities in the 

fragmented Atlantic forest biome. Our results showed that the main lineages segregate 

along the successional gradient due to conserved niche requirements of the early-

divergent clades reveling their functional association to older successional forests, 

whereas Eudicots can occur over the gradient. At species level, leaf functional traits 

were predictive of the short-term demographic changes and, at the community level, 

leaf traits and seed mass better captured the short-term functional composition 

changes of the communities. We found the rise of conservative traits at secondary 

forests and biomass loss, due to fall of big trees, at the old-growth communities 

expressing the loss of an important structural feature of these forests. 

Key words: NRI, phylobetadiversity, functional composition, secondary and old-
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growth forests, temporal changes 
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Introdução Geral 

A Floresta Atlântica é uma das regiões floristicamente mais ricas e mais 

ameaçadas do mundo, possuindo um número excepcional de endemismos (Myers et 

al. 2000; Metzger 2009; Forzza et al. 2012). Porém, ao longo de 500 anos de 

ocupação pelo homem branco, cerca de 90% do bioma foi efetivamente desmatado 

(Ribeiro et al. 2009). Hoje, a floresta está restrita a fragmentos em geral pequenos 

(<100 ha; Ranta et al. 1998) e sob a pressão dos efeitos de borda associados à 

fragmentação (Laurance 2008; Tabarelli et al. 2012), resultando na perda de 

características funcionais ligadas ao interior da floresta (Nascimento et al. 2006; 

Girão et al. 2007; Michalski et al. 2007; Santos et al. 2008; Lopes et al. 2009). Apesar 

de inúmeras medidas protetivas legais, o Bioma segue perdendo área florestal para dar 

espaço a atividades econômicas (p. ex. agrícolas, pastoris, assentamentos urbanos).   

Neste contexto, as florestas secundárias passam a ter uma grande importância 

na manutenção de espécies, na conectividade entre fragmentos florestais e no 

desempenho de diversos serviços ecossistêmicos, importância esta que excede em 

muito os limites da floresta Atlântica, pois as florestas secundárias representam cerca 

de 50% da cobertura florestal natural no mundo (Wright 2005; FAO 2015). Apesar de 

sua importância, as florestas secundárias não retornam ao estado pré-distúrbio 

(Chazdon 2003) e organismos que evoluíram em profunda dependência da floresta 

podem não encontrar refúgio em florestas sucessionais resultando em lacunas na 

recuperação da biodiversidade e dos serviços ambientais prestados pela floresta. 

Acresce-se ainda o fato de que florestas secundárias e remanescentes estão sujeitas a 

efeitos de mudanças ambientais locais decorrentes da fragmentação e das mudanças 

climáticas em escala global, as quais vêm alterando padrões de sobrevivência, 

crescimento e abundância de espécies (Laurance et al. 2006; Lewis et al. 2009).  
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A sucessão vegetal é caracterizada pela substituição de espécies, as quais 

segregam no espaço e no tempo de acordo com a variação na disponibilidade de 

recursos. As espécies arbóreas se distribuem ao longo de um continuum de distintas 

histórias de vida (Wright et al. 2010) possibilitando sua coexistência através da 

partição dos recursos no espaço e no tempo e resultando na substituição destas plantas 

ao longo de gradientes ambientais. Diferenças nas histórias de vida das espécies 

podem ser descritas pelos seus atributos funcionais, que são características 

morfológicos-fisiológicas-fenológicas que influenciam a sobrevivência, o crescimento 

e a reprodução das plantas (Violle et al. 2007). Num dos estremos deste continuum 

encontramos espécies com características funcionais aquisitivas que possibilitam a 

rápida conversão de nutrientes em tecidos resultando em um rápido crescimento e 

maturação reprodutiva. No outro extremo estão as espécies conservativas que 

produzem tecidos resistentes e duradouros, exigindo maior investimento da planta e 

um crescimento mais lento. Assim, diferentes estados de um mesmo atributo 

(diferenciando a história de vida das espécies) irão contribuir de forma diferencial 

para a performance dos indivíduos nas comunidades, e diferentes atributos irão 

capturar distintos aspectos das estratégias das plantas (Wright et al. 2007; Laughlin 

2014). Desta forma, a segregação de espécies ao longo de gradientes ambientais 

associado ao uso de características funcionais pode evidenciar a maneira como as 

plantas respondem às mudanças ambientais, tornando-se uma ferramenta preditiva 

para o estudo da dinâmica florestal (McGill et al. 2006). 

O objetivo geral deste estudo foi avaliar as mudanças estruturais,  funcionais e 

filogenéticas entre estágios sucessionais, visando elucidar respostas funcionais e 

adaptativas das plantas às diferentes condições ambientais que estes estágios 

oferecem.  No primeiro capítulo, relacionamos a história evolutiva das espécies 
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arbóreas florestais e suas características funcionais ao gradiente sucessional. 

Utilizando a substituição do espaço pelo tempo (cronossequências) avaliamos 

florestas sucessionais com sítios entre 6 e 50 anos desde o abandono agrícola e 

florestas remanescentes (que nunca sofreram corte raso), buscando evidenciar a 

associação de diferentes linhagens/espécies e suas características adaptativas a partes 

deste gradiente. O segundo capítulo teve por objetivo avaliar a estrutura populacional 

e a dinâmica de espécies comuns em florestas secundárias e/ou em remanescentes 

florestais  considerando a variação nas suas abundâncias e suas áreas basais e o poder 

preditivo de suas características funcionais na dinâmica de curta duração destas 

espécies (intervalo de cinco anos).  No terceiro capítulo, objetivamos compreender 

como as comunidades estão mudando no tempo, para tanto, comparamos as mudanças 

funcionais e estruturais (abundância e área basal) na dinâmica de curta duração de 

comunidades florestais em estágio sucessional avançado (cerca de 50 anos) e em 

remanescentes florestais. Estes dois estágios da floresta apresentam características 

estruturais e ambientais semelhantes, porém distinta composição florística (Zanini et 

al. 2014) então buscamos responder as seguintes perguntas: Há diferenças na 

dinâmica funcional e estrutural entre estas florestas? Se a dinâmica é distinta, são 

direcionais estas mudanças? É esperado que florestas sucessionais adquiram 

características mais conservativas ao longo do tempo e que tenham ganho em área 

basal decorrente do crescimento dos indivíduos. Por outro lado a perda de área basal e 

de características conservativas (ou o aumento de atributos aquisitivos) pode indicar a 

abertura de clareiras ou a ‘secundarização’- um processo descrito como uma sucessão 

retrogressiva, no qual a floresta tardia perde indivíduos sensíveis a mudanças 

ambientais decorrentes da fragmentação florestal. Ao longo destes três capítulos 
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abordamos dinâmica de comunidades e espécies sob a perspectiva histórica, 

populacional e de comunidades.   
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Abstract  

The tropical Atlantic rainforest was fully developed at the Holocene and 

wetter and warmer environmental conditions made possible the migration of this 

forest to higher southern latitudes (30’ S), already in the subtropical region. Here we 

used the space-for-time substitution to analyze phylogenetic structure of communities 

and phylogenetic composition variation to evidence patterns of species and lineages 

segregation along the succession for three ontogenetic stages of tree species. In 

addition, we correlated the phylogenetic composition variation with the community 

functional trait composition variation, searching for associations with functional and 

evolutionary history. We expected that lineages would segregate along the 

successional gradient reflecting clear patterns of phylogenetic structure and 

composition through the time, if lineages have conserved their niche requirements. 

However, if recent diversification had lead to convergence and divergence of traits in 
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distinct lineages, enabling them to occur in different phases of the successional 

gradient, we should find neither segregations nor clear phylogenetic structure 

patterns. Our results showed that the main lineages segregate along the successional 

gradient due to conserved niche requirements of the early-divergent clades – 

Magnoliids and Monocots - reveling their association to older successional forests, 

whereas Eudicots were principally associated to early successional stages, but can 

occur over the gradient and their co-occurrence with the early divergent nodes in 

older successional stages lead to a higher phylogenetic dispersion in such 

communities. Moreover Magnoliids segregate along the three forest strata and is 

associated to functional features that enhance its performance in the dense forest. 

Further, the phylogenetic relationships of the terminal nodes suggest that more recent 

historical forces had shaped distinct ecological strategies enabling closely and 

distantly related species to coexist in the advanced succession.  

Key words: NRI, clades, phylobetadiversity, functional composition 

 

Introduction 

Atlantic forest is regarded as the oldest forest formation in Brazil (Rizzini 

1997) and one of the most diverse regions floristically in the world (Forzza et al. 

2012). Historical events as remote as the Gondwana separation that had conformed 

South America geomorphology and more recent historical events associated to the last 

glaciation and interglacial period had shaped dispersal opportunities and barriers 

through time (Hughes et al. 2013). Along the quaternary, forest have expanded and 

retracted east and southwards creating great opportunities of speciation and shaping 

the phytophysiognomies that can be seen today: Atlantic rainforest on the coast line, 
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seasonal forest towards west, and Araucaria forest in the highlands (Behling 1998, 

Carnaval and Moritz 2008, Ledru et al. 2015). The tropical Atlantic rainforest was 

fully developed at the Holocene and wetter and warmer environmental conditions 

made possible the migration of this forest through the coastal lowlands and Atlantic 

slopes to higher southern latitudes (30’ S), already in the subtropical region (Rambo 

1956, Behling and Negrelle 2001).  

Considering that plants will establish and regenerate in environments to which 

they are well adapted (Ackerly 2003), habitat heterogeneity along this latitudinal 

gradient together with ecophysiological differences between species would carry to a 

species segregation along spatial or temporal gradients (forest development). Under 

the evolutionary perspective, it is assumed that close related species tend to be more 

similar in term of traits, conserving characteristics along its evolutionary history, 

which is named phylogenetic conservatism of traits (Ackerly 2003, Losos 2008, 

Wiens et al. 2010). The retention of traits in a lineage is associated to the 

environmental condition in which the lineage evolved and can reveal environmental 

preferences or restrictions to the lineages (Ackerly 2003, Duarte 2011). The migration 

towards south with implicit lower temperatures and away from speciation centers 

(Carnaval and Moritz 2008, Murray-Smith et al. 2009) overpasses filters, but the 

number of species able to reach the southern subtropical Atlantic rainforest is 

reduced. This richness pattern is predicted by the tropical niche conservatism 

hypothesis (Wiens and Donoghue 2004), which expects higher richness in warm and 

rainy environments because this conditions match with the ancestral niche of many 

extant clades. Nevertheless, species may establish in suboptimal environments 

“challenging the held idea that species in communities are perfectly adapted to their 

current habitat” (Valiente-Banuet and Verdú 2013). The great speciation through drier 
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and temperate environmental conditions along the Quaternary had lead more recently 

evolved clades to adapt to harsh conditions (Valiente-Banuet et al. 2006). The 

migration of tropical species may be though facilitated by such clades (Valiente-

Banuet et al. 2006, Behling 2007) that can establish in harsh environments and 

ameliorate the conditions under their canopies for lineages with conserved ancient 

niche requirement (Valiente-Banuet and Verdú 2007, 2013).  

In the ecological scale, coexistence of species in high diverse forests is the 

expression of evolutionary processes that distribute the tree species along a continuum 

of life-history characteristics (Wright et al. 2010), enabling them to partition the 

resources through space and time (Cavender-Bares et al. 2009, Götzenberger et al. 

2012). Forest succession offers an opportunity to explore how species from a regional 

pool segregate from initial to mature forests expressing distinct life-histories and may 

shedding light in historical adaptations of different lineages to distinct environmental 

conditions provided along the succession. As considered earlier, species or lineages 

adaptations will be reflected in trait differences that may be or not phylogenetically 

conserved. Traits are phenotypic attributes (morphological, physiological, 

phenological) considered functional if they influence the ability of a plant to grow, 

survive and reproduce (Violle et al. 2007). They may be further considered adaptive if 

they occur in a particular environment enhancing the species (or individual) 

performance in that environment (Ackerly 2003). 

Phylogenetic community studies commonly use phylogenetic structure as a 

proxy of functional structure, but this approach has been recently criticized (Gerhold 

et al. 2015). It is assumed that environmental harshness (as for example in the 

beginning of the succession) leads to an assembly of more similar species in traits and 

more closely related than expected by chance (phylogenetic clustering) and, with the 
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improve of abiotic conditions (as in advanced succession), the similarity of traits 

between coexistent species may probably reduce under the limited resources, leading 

to communities with functionally distinct and phylogenetic distant species 

composition (phylogenetic overdispersion) (Cavender-Bares et al. 2009, Pausas and 

Verdú 2010). Tropical forest succession studies often find older communities 

displaying phylogenetic overdispersed patterns, but phylogenetic clustering has been 

less often found (Letcher 2009, Norden et al. 2012, Muscarella et al. 2016) and very 

little is known about the role of different lineages along the succession (Letcher et al. 

2015). 

Here we expect that lineages would segregate along the successional gradient 

reflecting clear patterns of phylogenetic structure and composition through the time, if 

lineages have conserved their niche requirements. However, if recent diversification 

had lead to convergence and divergence of traits in distinct lineages, enabling them to 

occur in different phases of the successional gradient, we should find neither 

segregations nor clear phylogenetic structure patterns. We used the space-for-time 

substitution (Pickett 1989) to analyze phylogenetic structure of communities (alpha 

diversity) and phylogenetic composition variation to evidence patterns of species and 

lineages segregation along the succession (beta diversity and phylobetadiversity) for 

three ontogenetic stages of tree species (seedlings, saplings and adult trees). In 

addition, we correlated the phylogenetic composition variation with the community 

functional trait composition variation, searching for associations with the functional 

and the evolutionary history.  
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Methods 

Study Area 

We studied tree species communities in permanent plots (Sistema de Parcelas 

Permanentes do Corredor Mata Atlântica Sul no Nordeste do Rio Grande do Sul) 

installed in the southernmost part (29°42’S, 50°11’W - Maquiné county) of the 

Brazilian Atlantic Forest. Climate is humid subtropical, type Cfa according to 

Köppen’s classification, with mean annual temperature above 18°C, absence of a dry 

period, and an annual mean rainfall of 1400 to 1800 mm (Hasenack and Ferraro 1989, 

Nimer 1990). Studied forests are located in the lower-montane forest zone, in plots 

that ranged from 259 to 456 m a.s.l., minimizing floristic variation related to altitude 

(Teixeira et al. 1986). Natural vegetation consists of subtropical moist broadleaf forest 

and corresponds to the subtropical portion of the Atlantic Forest sensu stricto 

(Oliveira-Filho 2009). Soils are derived from basalt, and are classified as shallow litic 

leptsols with occasional rocky outcrops and luvic phaeozem (Streck et al. 2008). 

Landscape was highly fragmented in the past centuries, but many crops production 

have moved recently (around 40 years) to more flat areas leaving extensive areas to 

natural recovery. Today the landscape is a highly connected system of secondary 

forests with distinct ages of natural regeneration and old-growth forest remnants.   

Sampling design and species data collection  

Four chronosequences were evaluated in three valleys of the Maquiné River 

Basin, each one containing a set of successional forests differing in time since 

abandonment, ranging between 6 to 45 years old, associated to old-growth stands 

without register of clearcuting. Successional forests were selected based on semi-

structured interviews with local informants gauging land use-history and time elapsed 
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since abandonment. Aerial photographs from 1964 and satellite images Landsat 5 TM 

and 7ETM (base year: 2002) were used to cross check information from informants. 

We delimited an area of 0.25 ha for each forest sampling, a common size for slash-

and-burn fields in the region (the main subsistence agricultural practice in the past), 

within which vegetation data was sampled. Nested design was used to the survey of 

three forest strata. Each 0.25 ha forest area had three circular plots of 100 m2, 

randomly located, for the sample of tree individuals with diameter at breast height 

(DBH) ≥ 10 cm. Within these plots, 40 m2 was used for the sample of individuals 

between 1 and 9.9 cm DBH and 4 m2 for seedlings (individuals taller than 0.30 cm 

and with less than 1 cm DBH). These size classes are hereafter referring as ‘trees’, 

‘juveniles’ and ‘seedlings’. All sub-samples were integrated within each forest area 

(0.25 ha), comprising then a total of 29 sampling units for each stratum. We obtained 

a matrix of species abundances in the communities (29 sampling units) that described 

the species composition along the chronosequence for each stratum. Arborescent ferns 

(two species) were excluded from the analysis due their strong phylogenetic and 

functional distinctiveness. Angiosperm trees were identified to species and grouped 

into families following APG IV (2016). 

Traits and community functional composition (CWM) 

The species had their leaf traits measured from field samples following 

standard protocols (Cornelissen et al. 2003, Pérez-Harguindeguy et al. 2013). Three to 

15 individuals per species were measured and the average value was used to represent 

each species in the analysis. Leaf traits here considered are specific leaf area (SLA, 

mm2.mg-1), leaf surface area (LA, cm2), leaf dry matter content (LDMC, mg.g-1), leaf 

nitrogenous and phosphorus concentration (LNC and LPC, percent of N and P mass 

per total mass, %). Further traits were wood density (WD, g.cm-3) and seed mass (SM, 
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g), which were compiled from the literature. Average of the genus for WD was used 

for six species with just one occurrence following Chave et al. (2009). The traits WD 

and SM still had some missing data, but only for species with very few occurrences. 

Palms were maintained in the functional analysis, but without value for WD. 

Functional composition of communities was obtained scaling up species trait values 

to the community level considering species abundance per forest community 

(community-weighted means - CWM; FD package, Laliberté et al. 2014), for each 

forest stratum (seedlings, juveniles, and trees).  

Phylogeny construction   

The 150 species sampled in the three strata were integrated in the phylogenetic 

tree, which was built with molecular sequences of nuclear (ITS1, ITS2, and ETS) and 

chloroplastidial markers (rbcL, matK, trnL-trnF spacer, trnL, psbA-trnH spacer and 

ndhF), known to resolve species relationships at higher and lower taxonomic levels. 

Molecular data was accessed in the GenBank (December 2015, Benson et al. 2013); 

sequences were obtained for 81 species and congeneric were used for 39 species. The 

remaining 30 species were manually merged in the resulting phylogeny, splitting 

them halfway along their congener branch with sequence data. Sequences alignment 

were made using MAFFT v.7.266 (Katoh and Standley 2013), SATé v.2.2.7 (Liu et 

al. 2012) and AliView (Larsson 2014) programs and the phylogeny was reconstructed 

using a maximum-likelihood approach (ML) with estimated bootstrap support values 

for each node  through the RAxML v.8.2.4 software (Stamatakis 2014). Branch 

lengths were adjusted to the rate of evolution of the used markers and transformed to 

become proportional to divergence time through rate smoothing. Molecular dating 

was calculated at the package “ape” v.3.2, chronopl function (Paradis et al. 2004), in 
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the R Statistical Environment (R Core Team 2016). Further details of phylogeny 

construction can be seeing in the supplement material (Appendix 1, S1). 

Phylogenetic community structure and composition 

The net relatedness index (NRI) is a measure of community phylogenetic 

structure, which expresses alpha phylogenetic diversity and was calculated for each 

forest stratum. NRI measures the mean pairwise phylogenetic distance of the taxa in a 

sample relative to the species poll, and though accounting for deeper phylogenetic 

relationships (Webb et al. 2002). The index was abundance-weighted and tested for 

significance against ‘phylogeny.pool’ null model using the package ‘‘picante’’ 

(Kembel et al. 2010) in the R statistical software (R Core Team 2016). The values of 

the standardized effect sizes (ses.mpd and ses.mntd) were multiply by -1 to be 

equivalent to the Webb’ indices. Positive NRI values indicate clustering and negative 

values indicate overdispersion.  

Phylogenetic community composition was accessed performing phylogenetic 

fuzzy-weighting method (Pillar and Duarte 2010, Duarte et al. 2016), which uses the 

phylogenetic similarities between taxa to scale up the species phylogenetic 

relationships to the community level, accounting for species abundances. Analysis 

was run in the package SYNCSA (Debastiani and Pillar 2012) and the obtained 

phylogenetic matrix (matrix P) incorporates species pairwise phylogenetic distances 

and phylogenetic unbalance of clade distribution across communities, thus assessing 

phylogenetic beta diversity among communities (Duarte et al. 2016). We computed a 

P matrix for each forest stratum. 

Data analysis 

Successional stages were categorized for analyzes purpose according time of 
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recovery: stage 1 (S1) comprised forests between 6 and 10 years of recovery (n= 5); 

stage 2 (S2) included those between 11 and 25 years (n= 7); stage 3 (S3) between 26 

and 45 years (n= 8); and finally stage 4 (S4) comprised old-growth forests (n= 9). A 

vector with the successional stages was used to represent the successional gradient.  

NRI was tested against the successional gradient by linear regression analysis. 

Phylogenetic composition variation was analyzed by Principal Coordinates of 

Phylogenetic Structure analysis (PCPS, Duarte 2011), which are vectors of a principal 

coordinates analysis (PCoA) of the P matrix that express the phylogenetic variation 

across communities (Pillar and Duarte 2010, Duarte et al. 2016). PCPS vectors enable 

to explored clade distribution and its association to environmental conditions (our 

successional gradient). The PCPS axes with higher eigenvalues describe phylogenetic 

patterns related to more basal nodes of the phylogeny and, as eigenvalues decrease, 

the corresponding PCPS tend to describe phylogenetic patterns related to more 

terminal nodes (Duarte et al. 2012). To test if the phylogenetic composition is 

associated to the successional gradient and if this variation is dependent on the 

relatedness of species, PCPS vectors with more than 5% of explanation were 

submitted to two distinct null models (site and taxa shuffles) tested by generalized 

linear models (GLM). Site shuffle is a permutation procedure that assumes the 

independence between communities and the environmental gradient, permuting 

communities across the gradient; if the null model is rejected we conclude that 

successional gradient affect species distribution across communities. Taxa shuffle 

permute terminal tips (species) across the phylogenetic tree to generate random 

phylogenetic relationships and test again the association with the environmental 

gradient; if null model is rejected, we concluded that the segregation of species along 

the succession is dependent on the phylogenetic relatedness among them. We also 
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evaluated phylogenetic composition differences between successional stages by 

ANOVA and a further ‘TukeyHSD’ procedure to better visualize which stages were 

distinct, with the package ‘stats’ (R Core Team 2016).  

Finally, PCPS vectors (phylogenetic composition) selected by GLM analyzes 

were tested for significant correlation with CWM values (functional composition) 

with randomization test performed with the software MULTIV (Pillar 2001) 

Results 

The studied successional gradient presented 150 species distributed in 46 

families. Among the major lineages 56.6% of the species are representatives of the 

Superrosids, 26% of the Superasterids, 13.3% of the Magnoliids, 2.6% of the 

Monocots (Arecaceae family) and 1.3% of the Proteales (Proteaceae and Sabiaceae). 

The most represented families were Myrtaceae (14 species), Euphorbiaceae (10), 

Lauraceae (12), Fabaceae (9) and Meliaceae (8).    

Phylogenetic structure described by NRI showed a clear increase in the 

phylogenetic overdispersion along the successional gradient for trees and juveniles 

(Fig. 1). Positive NRI values were found in younger successional forests (S1) moving 

towards more negative values as forests become older (P < 0.001), however most of 

the communities presented values between significance thresholds and can be 

considered as random structured. Old-growth forests (S4) displayed significant 

overdispersed communities (4 for trees and 5 for juveniles), but some clustered 

communities were also found (1 for trees and 2 for juveniles). Communities described 

by seedlings had a wide variation of NRI values along the successional gradient (i.e. 

regression model not significant), but some significant phylogenetic overdispersion 

values were found in all successional stages (Fig. 1). 
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Figure 1: Phylogenetic structure of tree, juvenile and seedling communities along a 
successional gradient measured by Net Relatedness Index (NRI). Successional stages 
1 to 3 represent intervals in years of natural regeneration since abandonment (S1:  6 to 
10; S2: 10 to 24; S3: 25 to 45) and stage 4 (S4) are old-growth forests. White circles 
represent significant phylogenetic overdispersion and black circles represent 
phylogenetic clustering (P < 0.05). 
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The phylogenetic composition of forest communities had significant patterns 

along the successional gradient for all strata. Tree communities showed significant 

differences in species composition (P= 0.001 site shuffle) and lineages composition 

(P= 0.05 taxa shuffle) along the successional gradient (Tab. 1, Fig. 2). The first PCPS 

explained 24% of the tree phylogenetic variation (phylobetadiversity) and expressed 

the segregation of the major angiosperms lineages. Early divergent lineages related to 

more basal nodes of the phylogeny, i.e. Monocots (Arecaceae) and Magnoliids 

(Lauraceae, Monimiaceae, Annonaceae and Myristicaceae), were associated to older 

forests (S3 and S4). Variation in the main lineages expressed by PCPS 1 was strongly 

correlated with variation in functional composition of forests along the successional 

gradient (Tab. 2). Younger forests were associated to Eudicots (Superasterids, 

Superosids and Proteaceae) and to lower CWM values of LA, LDMC, LPC, SM and 

WD. Sabiaceae was recently included in the Proteales (APG IV 2016), but here it 

segregated from Proteaceae. Sabiaceae stayed with older communities (S3, S4) and 

Proteaceae clustered with the younger communities (S1, S2). 

Table1: Significant principal coordinates of phylogenetic structure (PCPS, 
phylogenetic composition) tested against null models (taxa shuffle and site shuffle) 
along the successional gradient for three forest strata: trees, juveniles and seedlings. 
GLM results (R2 and P) are given. Distinct letters among successional stages (see 
legend in Fig. 1) indicate significant contrasts (P<0.007), given the variation of the 
respective PCPS.  
Stratum PCPS axes R2 P Differences Successional stages 

Trees PCPS.1 (24%) 0.49 < 0.001 site and taxa S1a S2ab S3bc S4c 

Juveniles PCPS.1 (29%) 0.55 < 0.001 site S1a S2a S3a S4b 

 

PCPS.2 (15%) 0.55 < 0.001 site S1a S2a S3b S4a 

Seedlings PCPS.1 (31%) 0.32 < 0.001 site  S1ac  S2ac  S3ab S4c 

  PCPS.4 (5%) 0.19 0.03 site S1 a S2 a S3 ab S4 b 

 



! 26!

Table 2: Pearson correlation between functional composition (CWM, community 
weighted means of traits) and phylogenetic composition (PCPS, principal components 
of phylogenetic structure that displayed significant patterns with the successional 
gradient, Tab. 1) for three forest strata (trees, juveniles and seedlings) (* P< 0.05; ** 
P< 0.005). 
  Trees Juveniles Seedlings 

CWM of 
traits PCPS.1 PCPS.1 PCPS.2 PCPS.1 PCPS.4 

SLA -0.30 -0.36 -0.13  0.10 -0.03 

LA  0.42*  0.71**  0.18 -0.13  0.18 

LDMC  0.55**  0.31  0.51** -0.13 -0.59 

LNC  0.05 -0.65** -0.02  0.31 -0.38 

LPC  0.47*  0.07  0.34 -0.12 -0.19 

SM  0.78**  0.89** -0.02  0.03  0.01 

WD  0.50** -0.19  0.35 -0.02 -0.51 
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Figure 2: Ordination diagram of the first two PCPS vectors representing the 
phylogenetic composition of tree communities. Successional communities (S1 to S4, 
see legend in Fig. 1) are represented by triangles: white=S1, pale gray=S2, dark 
gray=S3 and black=old growth. Distinct shapes represented the main angiosperm 
lineages, and representative families can be seen on the scatter diagram. Significant 
correlations between functional composition and the PCPS.1 can be seen following 
the direction of the arrow (WD: wood density, LDMC: leaf dry matter content, LPC: 
leaf phosphorous concentration, LA: leaf area, SM: seed mass).  

Considering the juveniles and seedlings, we also saw differences in the 

phylogenetic composition along the successional stages (site shuffle; P=0.001 for 

juveniles and P=0.007 for seedlings), but the patterns were not dependent on the 

phylogenetic relatedness among species (taxa shuffle). Juveniles of old-growth forests 

(S4) differed from all other forest stages (PCPS 1, 29% explanation), showing straight 

relations with Arecaceae (Euterpe edulis, Bactris setosa, Geonoma gamiova) and the 

species Virola bicuhyba, the only representative of Myristicaceae. The variation in the 

phylogenetic composition was also correlated with the functional composition (Tab. 

2). Old-growth juvenile communities displayed bigger leaves (LA), heavier seeds 

(SM) and lower leaf nitrogen content (LNC). The second PCPS (15% explanation) 

indicated juvenile communities of S3 differing from all other successional stages, due 

to its relation with three Magnoliid families: Lauraceae (mainly represented by 

Endlicheria paniculata and Nectandra oppositifolia, but with 5 other species), 

Magnoliaceae (Magnolia ovata) and Monimiaceae (Mollinedia schottiana). 

Phylogenetic composition of S3 communities (positive values of PCPS.2) is 

correlated to lower CWM values of LDMC (Fig. 3; Tab. 1 and 2).  
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Figure 3: Ordination diagram of the juvenile phylogenetic community composition 
described by the first two PCPS vectors. Successional communities are represented by 
triangles: white=S1, pale gray=S2, dark gray=S3 and black=old growth. Distinct 
shapes represented the main angiosperm lineages, and representative families can be 
seen on the scatter diagram. Correlation and the direction of the relationship between 
community functional composition and the PCPS.1, related to LA, SM and LNCA 
and PCPS.2 considering leaf dry matter content are indicated by the arrows.  

Two PCPS (PCPS.1 and PCPS.4) showed significant differences for seedling 

species composition along the succession (Tab. 1 and Fig. 4). The first PCPS (31% of 

explanation) reveals differences between the two older stages (S3 and S4): a strong 

participation of species from Magnoliids in S3 (Lauraceae, Monimiaceae, 

Magnoliaceae, Annonaceae and Myristicaceae) and species from distinct lineages 

sharing importance in S4. Beyond the great importance of E. edulis in the old-growth 

seedling communities, six species from Myrtaceae and three of Meliaceae, among 

other families, increased their importance in S4 forests. The PCPS.4 explained only 
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5% of the phylogenetic composition variation and indicate significant differences 

between S4 and S1 and S2 (Tab.1). Seedlings of S4 were associated manly to 

Superasterids. No correlation between functional and phylogenetic composition was 

found for seedlings communities (Tab. 2). 

 
Figure 4: Ordination diagram of the phylogenetic community composition of 
seedlings described by the first and the fourth PCPS vectors. Successional 
communities are represented by triangles: white=S1, pale gray=S2, dark gray=S3 and 
black=old growth. Distinct shapes represented the main angiosperm lineages, and 
representative families can be seen on the scatter diagram.  

Discussion 

We found that phylogenetic structure and composition respond to forest 

succession, generally increasing the phylogenetic dispersion and the participation of 

early-divergent nodes as forest became older. The increasing phylogenetic dispersion 

indicated by the NRI values of trees along the successional gradient expresses deeper 
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clade relationship, as the co-occurrence of Monocots (Arecaceae), Magnoliids and 

Eudicots in older forests (S3, S4), in contrast with the predominance of Eudicots 

(Superrosids, Superasterids and Proteaceae) in younger stages (S1, S2). Besides, this 

PCPS.1 reinforce the clade segregation along the gradient, also revealed by species 

substitution (Zanini et al. 2014), which demonstrate phylobetadiversity pattern given 

the time of forest succession.  

Early-divergent nodes (e.g. Arecaceae and Magnoliids) were associated to 

dense forest environmental conditions. This may be explained by drought intolerance 

and high moisture dependence of the early angiosperms (Feild and Arens 2007, Feild 

et al. 2009),  supporting the niche conservatism idea for these lineages (Wiens and 

Donoghue 2004, Wiens et al. 2010). The Magnolliids association to shady and wet 

environments is attributed to conserved traits that limit the photosynthetic 

performance to a narrow range of water availability (Feild et al. 2009). The 

segregation of Magnolliids to certain environmental conditions has been found in 

local gradient scale (Duarte 2011) and macroecological (Carlucci et al. 2016) studies. 

Arecaceae is a pantropical distributed clade, being among the oldest monocots 

(Janssen and Bremer 2004). Because of its association to warm and humid climates it 

has been used as a paleoindicator (Walther et al. 2007) and its actual distribution is 

constrained by low temperatures (Gatti et al. 2008) reveling temperature-related niche 

conservatism (Eiserhardt et al. 2011, Kissling et al. 2012). Therefore distribution and 

physiological requirements of those lineages support the hypothesis that lineages 

track environment to which they are already adapted (Donoghue 2008), evidenced 

here by their segregation along the successional gradient, supporting phylogenetic 

niche conservatism (Ackerly 2003) and phylogenetic habitat filtering (Duarte 2011).  

CWM of traits correlated with the PCPS.1 of trees evidence the adaptation of 
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these lineages (Magnoliids and Arecaceae) to the shaded forest and follow the 

predicted differences in life-history strategies accordingly to older forest stages 

(Poorter et al. 2008, Wright et al. 2010). Such strategies characterize slow-growth 

shade-tolerant species as conservative species that invest in long-leaved tissues (high 

leaf dry matter content, leaf area, wood density) and heavy seeds. Moreover, high leaf 

phosphorus concentration enhances the photosynthetic capacity (Reich et al. 2009) 

and may confer an adaptive advantage of these lineages to deep shade environments. 

NRI values of juvenile communities had a similar phylogenetic structure of 

trees. However segregation of species was not dependent on the relatedness indicating 

that species from distinct clades can occupy different positions along the successional 

gradient. The association of Arecaceae and Virola bicuhyba (PCPS.1) to heavy seeds 

and bigger leaves in this stratum also express adaptive strategies to shade (Givnish et 

al. 2005), optimizing light interception (LA) (Reich et al. 2003) and shade tolerance 

during the establishment (SM) (Muller-Landau 2010, Lebrija-Trejos et al. 2016). On 

the other end of this axis we found the association of (mainly) Eudicots species with 

communities functionally described by higher leaf nitrogen concentration, which is a 

trait of fast-growth species (Wright et al. 2004, Reich 2014), often important at initial 

successional stages. Further the PCPS.1 of trees and juveniles evidenced the role of 

the Eudicots in the colonization of open environments facilitating the establishment of 

early-divergent lineages (Valiente-Banuet et al. 2006). Among Eudicots, 

Superasterids seedlings were also related to old-growth forests (PCPS.4), indicating 

the participation of small statured gap-dependent and understory species. The PCPS.2 

of juveniles reveals the association of Magnoliids species to S3 (about 40-50 years of 

succession), which appears again in the seedling communities (PCPS.1 of seedlings). 

This association reinforce the clade segregation found at the tree stratum, which may 
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not be evidenced by the PCPS analysis for juveniles due to the ameliorated conditions 

offered by the already established canopy (tree stratum) making possible the 

recruitment of this lineage in younger successional stages. The association of 

functional composition of juveniles and the phylogenetic composition indicates lower 

values of LDMC in S3 than in initial (S1, S2) and older (S4) stages. Thinner leaves 

promote better CO2 diffusion due to lower number of cells and less thickness of 

mesophyll layers and is an adaptation to shade environments that lead to lower 

LDMC values (Pérez-Harguindeguy et al. 2013) and reinforce the affinity of 

Magnoliid species to such conditions. The higher LDMC values associated to initial 

and final successional stages are expected due to adaptations to avoid desiccation 

under high insolation (as in the initial successional stages), but also due the need of 

long-lived resistant leaves able to persist in the resources poor environment of older 

successional stages (Cornelissen et al. 2003).  

Conclusions 

We found that the main lineages segregate along the successional gradient due 

to conserved niche requirements of the early-divergent clades. Early-divergent clades 

establish under the developed canopy reveling their association to dense forests (older 

successional forests) and to phylogenetic habitat filtering, whereas Eudicots were 

principally associated to early successional stages. Eudicots can, however, also occur 

over the gradient and their co-occurrence with the early divergent nodes in older 

successional stages lead to a higher phylogenetic dispersion in such communities. 

Moreover phylogenetic relationships of the terminal nodes suggest that more recent 

historical forces had shaped distinct ecological strategies enabling closely and 

distantly related species to coexist in the advanced succession.  
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Further the association of phylogenetic and functional perspectives of the 

communities along the succession shed light in the evolutionary history that had 

shaped life-history strategies and adaptive features of species and clades current found 

along the successional gradient. 
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Supplementary material. Chapter 1 

Appendix 1: Phylogenetic tree in Newick format and the molecular phylogeny 

reconstruction workflow.  

Molecular phylogeny reconstruction 

To reconstruct the phylogenetic tree containing the species sampled at the tree, 

juvenile, and seedling stages, we used molecular sequences available at GenBank 

(accessed in December 2015; Benson et al. 2013). We used sequences of nuclear 

(ITS1, ITS2, and ETS) and chloroplastidial markers (rbcL, matK, trnL-trnF spacer, 

trnL, psbA-trnH spacer and ndhF), known to resolve species relationships at higher 

and lower taxonomic levels. When searching for sequences at GenBank, we checked 

for species synonyms and found sequences for 81 species of 150 sampled species. 

The remaining 69 species without sequence data were represented by 39 genera of 

which we used sequences of congeneric relatives, always looking for species that 

occur geographically close to the sampled area and/or presenting most of the used 

markers. For genera with more than one species within these 39 genera, we used only 

one species. Remaining species (30 spp.) were manually merged in the resulting 

phylogeny, splitting them halfway along their congener branch with sequence data. 

There was only one genus (Myrrhinium Schott), which did not present any sequence 

at GenBank, and it was merged at the root of Myrtaceae family. 

The sequences were aligned using the MAFFT v.7.266 software (Katoh & 

Standley 2013), choosing the X-INS-i alignment strategy (Katoh & Toh 2008) for the 

markers ITS1, ITS2, ETS, trnL-trnF spacer and trnL intron, which takes into account 

a secondary structure information of RNA. For rbcL, matK and ndhF we used the E-

INS-i alignment strategy. The sequences aligned using  MAFFT v.7.266 software 
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were employed via the CIPRES Science Gateway v. 3.3 (Miller et al. 2010). For the 

psbA-trnH spacer we used the software SATé v.2.2.7 (Liu et al. 2012), aligning sub-

groups through MAFFT, merging sub-alignments through MUSCLE (Edgar 2004) 

and using a start tree reconstructed through the Phylocom/Phylomatic software (Webb 

& Donoghue 2005; Webb et al. 2008) according to the phylogenetic hypothesis of 

Magallón et al. (2015). Using the AliView software (Larsson 2014), we manually 

trimmed the alignment tips. Finally, the alignments were concatenated in a 

supermatrix using the software FASconCAT (Kück & Meusemann 2010). 

The phylogenetic tree was reconstructed using a maximum-likelihood 

approach (ML) through the RAxML v.8.2.4 software (Stamatakis 2014) via the 

CIPRES Science Gateway v. 3.3 (Miller et al. 2010). The chosen model was the 

GTR+GAMMA+I, setting partitions for each marker. The ML searches were defined 

to 1,000 times and a bootstrap support value was estimated for each node. We chose 

Amborella trichopoda Baill. (Amborellaceae) and Nymphaea alba L. 

(Nymphaeaceae), early-divergent angiosperm species, as the outgroup and used a 

backbone constraint tree reconstructed using the Phylocom/Phylomatic software 

(Webb & Donoghue 2005; Webb et al. 2008) based on the APG4 phylogenetic 

hypothesis (APG 2016) with a resolution to the order level. The constraint tree was 

used to limit the software searches to trees compatible with its topology, reducing the 

artifact of patchy dataset (Roquet et al. 2013). Moreover, the order resolution level of 

the constraint tree let free the ML inference to determine the relationships between 

families within each order. 

The resulting phylogeny had their branch lengths representing the rate of 

evolution of the used markers, and we transformed it to be proportional to divergence 

time through rate smoothing. For this we used the non-parametric rate smoothing 
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technique (Sanderson 1997), setting the smoothing parameter (lambda) to one. The 

molecular dating was calculated through the function chronopl using the correlated 

model at the package ape v.3.2, (Paradis et al. 2004), in the R Statistical Environment 

(R Core Team 2016). 

 

Phylogenetic tree 

(((((Annona_neosericea:0.07847206614,Annona_neosalicifolia:0.07847206614,Annona_glabra:0.0784
7206599,Annona_rugulosa:0.07847206599):0.722394493,Magnolia_ovata:0.800866559)100:0.061626
18463,Virola_bicuhyba:0.8624927437)100:0.05429280104,((Hennecartia_omphalandra:0.0507797057
5,Mollinedia_schottiana:0.05077970575)100:0.5168016568,(NI_lauraceae:0.07666868002,(Nectandra
_puberula:0.03833434003,Nectandra_megapotamica:0.03833433987,Nectandra_oppositifolia:0.03833
434003):0.03833433987,((Ocotea_elegans:0.06454301213,(Ocotea_silvestris:0.04577663065,(Endlich
eria_paniculata:0.03699153823,Ocotea_puberula:0.03699153823)90:0.008785092414)99:0.018766381
32,Ocotea_odorifera:0.06454301197,Ocotea_sp:0.06454301197):4.541676756e-
06,(Aiouea_saligna:0.03187776077,Cinnamomum_glaziovii:0.03187776077)97:0.03266979287)89:0.
0121211261):0.4909126828)100:0.3492041821)100:0.08321445531,((Euterpe_edulis:0.04335957847,
(Geonoma_gamiova:0.03462040898,(Bactris_setosa:0.02427304293,Syagrus_romanzoffiana:0.024273
04293)59:0.01034736605)53:0.008739169488)100:0.9560519927,((Roupala_brasiliensis:0.908740732
2,Meliosma_sellowii:0.9087407322)100:0.006479552487,(((Guapira_opposita:0.02490312112,Pisonia
_ambigua:0.02490312112)100:0.7828083795,(((Diospyros_inconstans:0.5138982757,(Myrsine_lorent
ziana:0.256949138,Myrsine_loefgrenii:0.256949138,Myrsine_coriacea:0.2569491379,Myrsine_guiane
nsis:0.256949138):0.2569491379)100:0.03110542442,(Chrysophyllum_viride:0.1284745689,Chrysop
hyllum_inornatum:0.1284745691):0.4165291312)100:0.1900216579,((((Ilex_dumosa:0.1086766119,(I
lex_paraguariensis:0.08470972935,(Ilex_brevicuspis:0.0205041103,Ilex_microdonta:0.0205041103)10
0:0.06420561905)77:0.02396688254)100:0.4704301721,Citronella_paniculata:0.579106784)100:0.074
24834298,((Schefflera_calva:0.5792432196,Escallonia_bifida:0.5792432196)51:0.00411726007,(((Pip
tocarpha_axillaris:0.1528952948,Baccharis_microdonta:0.1528952948)75:0.02525930422,Trixis_prae
stans:0.178154599)89:0.05506183965,Dasyphyllum_spinescens:0.2332164386)100:0.350144041)100:
0.06999464727)100:0.04085955899,(((Recordia_reitzii:0.2340452741,((Cybistax_antisyphilitica:0.095
12819553,Handroanthus_umbellatus:0.09512819553)100:0.07929492099,Aegiphila_integrifolia:0.174
4231165)100:0.05962215761)100:0.3099298462,(Cordia_americana:0.1700056564,(Cordia_ecalycula
ta:0.1487477035,Cordia_trichotoma:0.1487477035)70:0.02125795293)100:0.3739694639)42:0.02019
581036,(((Aspidosperma_australe:0.302263266,Strychnos_brasiliensis:0.302263266)100:0.137108254
8,((Faramea_montevidensis:0.2106905725,(Psychotria_carthagenensis:0.1053452863,Psychotria_suter
ella:0.1053452863):0.1053452863)100:0.1521787291,(Randia_ferox:0.2328046757,Posoqueria_latifol
ia:0.2328046757)100:0.1300646259)100:0.0765022192)100:0.1076259878,(Cestrum_intermedium:0.1
763289317,(Solanum_sp:0.08816446596,Solanum_variabile:0.08816446585,Solanum_pseudoquina:0.
08816446585,Solanum_sanctaecatharinae:0.08816446585):0.08816446585)100:0.3706685769)61:0.01
717342214)100:0.1300437553)100:0.04081067213)100:0.07268614257)100:0.01639556459,((((((((So
rocea_bonplandii:0.2940656273,(Maclura_tinctoria:0.2698893287,(Brosimum_glaziovii:0.248551149
5,(Ficus_adhatodifolia:0.06959663859,(Ficus_luschnathiana:0.004049550414,Ficus_cestrifolia:0.0040
49550414)100:0.06554708817)100:0.1789545109)72:0.02133817921)62:0.02417629864)100:0.14925
07143,((Boehmeria_caudata:0.3111135532,(Cecropia_glaziovii:0.1447329675,Coussapoa_microcarpa:
0.1447329675)94:0.1663805857)75:0.06408799117,(Urera_baccifera:0.1876007722,Urera_nitida:0.18
76007723):0.1876007722)100:0.06811479724)82:0.02225832892,(Celtis_iguanaea:0.2659848984,Tre
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ma_micrantha:0.2659848984)100:0.1995897721)100:0.09350891755,Hovenia_dulcis:0.5590835881)1
00:0.06472922305,Prunus_subcoriacea:0.6238128111)100:0.07876765688,(Bauhinia_forficata:0.4983
220672,(((Erythrina_falcata:0.3009962746,(Lonchocarpus_cultratus:0.03108528382,Muellera_campes
tris:0.03108528382)100:0.2699109908)97:0.08820414496,(Dalbergia_frutescens:0.1435838506,(Mach
aerium_stipitatum:0.0717919253,Machaerium_paraguariense:0.07179192546):0.0717919253)100:0.24
5616569)89:0.08762072678,((Inga_marginata:0.0295597772,Inga_sessilis:0.02955977735):0.0295597
772,Albizia_edwallii:0.05911955439)100:0.417701592)64:0.02150092076)100:0.2042584008)100:0.0
3629992825,((Maytenus_evonymoides:0.02884636319,Maytenus_ilicifolia:0.02884636319)100:0.657
7504801,(Lamanonia_ternata:0.6865940463,(((Erythroxylum_deciduum:0.5126077376,(((Banara_tom
entosa:0.06893767475,Banara_parviflora:0.06893767494):0.06893767475,(Xylosma_pseudosalzmanii
:0.06893767475,Xylosma_tweediana:0.06893767494):0.06893767475)100:0.1728988386,(Casearia_o
bliqua:0.06698031769,Casearia_decandra:0.06698031747,Casearia_sylvestris:0.06698031747):0.2437
938706)100:0.2018335496)50:0.04773703879,(Hirtella_hebeclada:0.534980321,Hieronyma_alchorne
oides:0.534980321)35:0.02536445545)22:0.006495208582,(Garcinia_gardneriana:0.5492645567,((((A
lchornea_triplinervia:0.1910889244,Alchornea_glandulosa:0.1910889246):0.1910889244,(((Pachystro
ma_longifolium:0.149334681,Sebastiania_brasiliensis:0.149334681)32:5.52996098e-
06,(Sapium_glandulosum:0.06981804382,Stillingia_oppositifolia:0.06981804382)100:0.07952216718
)100:0.1015226015,Actinostemon_concolor:0.2508628125)100:0.1313150363)75:0.03276971169,Tetr
orchidium_rubrivenium:0.4149475605)54:0.01890466367,Croton_macrobothrys:0.4338522241)100:0.
1154123326)37:0.01757542828)100:0.1197540613)100:2.796906529e-
06)100:0.05228355298)100:0.03182884806,(((Tibouchina_sellowiana:0.1182870872,(Leandra_dasytri
cha:0.04881653583,(Miconia_sp:0.02748704738,Miconia_cinerascens:0.02748704712,Miconia_pusill
iflora:0.02748704712):0.02132948872)100:0.06947055138)100:0.4951879403,(Campomanesia_xanth
ocarpa:0.1156913786,Myrrhinium_atropurpureum:0.1156913786,((Psidium_cattleianum:0.059063152
11,Psidium_guajava:0.05906315211)100:0.04694102318,((((Eugenia_rostrifolia:0.03999059912,Euge
nia_bacopari:0.03999059912)32:0.001433894442,Eugenia_multicostata:0.04142449357)35:0.0027735
95609,Eugenia_verticillata:0.04419808917)100:0.05479267036,((Myrciaria_delicatula:0.06265656385
,Neomitranthes_gemballae:0.06265656385)58:0.02665540632,((Calyptranthes_grandifolia:0.0358191
1465,Calyptranthes_lucida:0.0358191149):0.03581911465,(Myrcia_pubipetala:0.05897160288,Myrcia
_tijucensis:0.05897160288)100:0.01266662643)89:0.01767374086)48:0.009678789364)43:0.0070134
15763)29:0.00968720333)100:0.4977836489)100:0.1424582119,(((Luehea_divaricata:0.3574426732,
Pseudobombax_grandiflorum:0.3574426732)100:0.1526177062,Daphnopsis_fasciculata:0.510060379
4)100:0.1848344234,(((Allophylus_edulis:0.06744959285,Allophylus_guaraniticus:0.06744959307):0.
06744959285,((Matayba_elaeagnoides:0.04331747441,Matayba_intermedia:0.04331747465):0.04331
747441,Cupania_vernalis:0.08663494881)78:0.04826423687)100:0.3454565974,(((Zanthoxylum_rhoi
folium:0.07967979965,Zanthoxylum_astrigerum:0.07967979987):0.07967979965,(Esenbeckia_grandi
flora:0.1231651305,Pilocarpus_pennatifolius:0.1231651305)94:0.03619446881)100:0.1838873608,(((
Trichilia_pallens:0.05564496642,Trichilia_claussenii:0.0556449662,Trichilia_lepidota:0.05564496642
):0.0556449662,(Cabralea_canjerana:0.07551942617,Guarea_macrophylla:0.07551942617)100:0.0357
7050618)100:0.1167118365,Cedrela_fissilis:0.2280017689)100:0.1152451912)100:0.137108823)100:
0.2145390197)100:0.06103843665)100:0.01477600484)100:0.05339782092)100:0.09111321951)100:
0.08419128644)100:0.0005884288364)100:0.07950356311; 
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Abstract 

Aims Secondary forests represent about 50% of current natural forest cover and the 

understanding of its dynamic for species conservation became extremely important. 

Meanwhile remaining old-growth forests face human disturbances at global and local 

scales that affect species performance in short and long-term. The response of trees to 

the environment is mediated by functional traits that influence the ability of a plant to 

grow, survive and reproduce, shaping individual fitness and leading to a differential 

demographic performance. Stem size distribution (SSD) of trees is assumed to predict 

population changes, since long-lived organisms lack adequate demographic data. 

Forest conservation state, global, and local environmental changes are likely to 

influence both, fitness and demography. Here we evaluated the predictive power of 

SSD, summarized by the coefficient of skewness (g1), and functional traits on short-

term demographic changes of 20 subtropical trees, considering two ontogenetic 

stages. We also compared the SSD of four common species between secondary and 

old-growth forests. 

Methods Tree species data are from permanent plots installed in the southernmost 

part (29°42’S, 50°11’W) of the Atlantic Forest in Brazil. Most abundant tree species 

in secondary and old-growth forest had their patterns of SSD evaluated and 

significance of skewness (g1) tested for normality by Shapiro-Wilk normality-test 

with Bonferroni correction (p≤0.0025). Short-term demographic changes 

corresponded to the variations in abundance (∆A) and basal area (∆BA) within five 

years of monitoring, while the functional traits comprised four plant dimensions: leaf 

traits, height at maturity, wood density, and seed mass. The influence of these 

functional dimensions and of stem size distribution (g1) on species demographic 
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changes (∆A and ∆BA) of trees (dbh ≥ 5cm) and juveniles (≥1cm dbh <5cm) was 

tested with multiple linear regression models and model selection with Akaike 

Information Criterion.  

Important findings Short-term demographic changes were better captured by leaf 

traits and the g1 revealing that (i) common secondary species with high positive g1 

values are predicted to have greater basal area gain due to growth and recruitment of 

new individuals at adult stages, (ii) species characterized by acquisitive leaf traits and 

displaying a negative g1 are predicted to lose juvenile and adult individuals, and (iii) 

species with conservative leaf traits (old-growth species) are predicted to lose adult 

individuals, irrespective of positive or negative g1 values, but basal area loss due to 

mortality is partially recovered by growth and recruitment of juveniles with 

conservative leaf strategies. Regarding the four species analyzed in both forest 

conservation statuses, we observed a greater proportion of saplings in secondary 

forests, indicating a higher fitness in disturbed environments. The combination of g1 

and leaf traits to understand local scale subtropical trees dynamics has shown to be a 

useful tool, even in a short-term demographic study. 

 

Key words: secondary and old-growth forests, functional traits, temporal changes, 

species abundance, growth-mortality trade-off 
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Introduction 

Tree species are distributed along a continuum of the growth-mortality trade-

off, in which species that grow fast are more susceptible to early death and the slow-

growing are able to compete and survive longer within poor resource conditions 

(Tilman 1994; Rees 2001). Differences in the species life histories are determined by 

functional traits that are morphological-physiological-phenological attributes that 

influence the ability of a plant to grow, survive and reproduce (Violle et al. 2007), 

shaping individuals fitness, and leading to a differential demographic performance of 

the species (Poorter et al. 2008; Wright et al. 2010). Therefore in one extreme of the 

growth-mortality trade-off are the fast-growing species usually associated to resource-

rich environments, such as forest gaps and disturbed sites. These species are 

characterized by high-acquisitive traits, as for example high leaf nitrogen and 

phosphorous concentration, high specific leaf area and low wood density, enabling 

them to reach the canopy quickly (Wright et al. 2010; Reich 2014) or to fade at 

juvenile stage if environmental conditions become unfavorable (Coomes et al. 2003; 

Uriarte et al. 2012). In the other side long-lived and thicker leaves, with high leaf dry 

matter content, and hard woods characterize slow-growing species. These species can 

tolerate stresses such as shaded environments for long, until the access to light 

become available (Kobe et al. 1995), enabling then the small plants to grow to larger 

sizes. Hence, the fitness of an individual is also related to its maturity, leading to 

differential species growth and survival rates (Kraft et al. 2010). Such differences 

may be further associated to the relative importance of distinct traits on the plant 

fitness among ontogenetic stages (Visser et al. 2016), contributing to shape the 

species population structure.  
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The species life history is reflected in its stem size distribution (SSD), which 

can be seen as a picture of the population structure in a certain time. Slow-growing 

species usually have many small plants waiting for an opportunity to get larger, while 

fast-growing species invest in overtop its neighbors passing quick to larger size 

classes and leaving few youngers behind (Condit et al. 1998; Wright et al. 2003). So, 

in the population perspective, a SSD right skewed usually characterize slow-growing 

species, while a SSD left skewed characterize the fast-growing ones (Wright et al. 

2003). It is also often assumed that species with SSD skewed to many young 

individuals (right skewed) would suggest population maintenance or increase, while 

species with more adult trees in relation to the young (left skewed) would indicate 

population decline (Condit et al. 1998; Feeley et al. 2007). Further, temporal and 

spatial resource-partition within forest habitats support species coexistence, in which 

plant abilities to explore distinct resources are associated to species life history and 

functional traits (Kobe et al. 1995; Pacala and Rees 1998), likely influencing 

individuals fitness and SSD of the species. Gap-dependent species, for example, can 

persist due to resource-rich ‘windows’ in the time and space and their left skew 

distribution is a consequence of these processes.  

Worldwide forests are facing global and local environmental changes that 

affect species differentially, leading to changes in species abundance and growth 

patterns (Laurance et al. 2006; Lewis et al. 2009) and even causing species die-offs 

(Allen et al. 2010). The response of trees to the environmental changes is mediated by 

plants functional traits. Changes in the environmental conditions (local human-

induced and climate driven changes) thus alter individual fitness and change species 

demographic performances (Pacala and Rees 1998; Coomes and Allen 2007; Uriarte 

et al. 2012). Besides, the forecast of the incapability of tropical forest species to 
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respond to climate changes through acclimation, adaptation or migration (Feeley et al. 

2012) makes urgent the need of understanding how species populations respond to 

environmental changes: which traits are the most affected (response traits) and what 

sort of consequences can be expected in the species demography? These are questions 

that deserve to be assigned.  

Here we first evaluate the SSD of 20 subtropical tree species to have a picture 

of their population structure. We predicted the SSD of species as being associated to 

the growth-mortality trade-off, with fast-growing species having a left skewed SSD 

and slow-growing a right skewed. Considering that environmental conditions can alter 

the fitness of individuals, we selected four common species that occur in both 

secondary and old-growth forests and compared their SSD in relation to the 

conservation status of the forest, aiming to understand intraspecific shifts in 

demography.  

Second, we evaluated the predictive power of the coefficient of skewness (g1), 

which summarizes the symmetry of species SSD (Bendel et al. 1989), and of four 

functional dimensions of plant strategies (Wright et al. 2007; Laughlin 2014) on 

short-term changes (5 years) in abundance and basal area of juveniles and adults of 

tree species (hereafter referred as ‘juveniles’ versus ‘trees’) with pooled data from 

both forest status. Functional dimensions were represented by traits expressing (1) 

competition for light (height at maturity - H), (2) plant growth ability (wood density - 

WD) (Poorter et al. 2008), (3) stress tolerance and fecundity (seed mass - SM) 

(Muller-Landau 2010; Terborgh et al. 2014), and (4) plant investments in light 

interception and water economy (leaf surface area), metabolic rates (specific leaf area, 

leaf nitrogen and phosphorous concentration, N:P ratio), resistance to hazards and 

leaf-life-span (leaf thickness, leaf dry matter content, leaf deciduousness) (Reich et al. 
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1997; Wright et al. 2004). We expected species with a left-skewed SSD (negative g1) 

and acquisitive plant strategies (fast-growing species) to loose individuals and gain 

basal area, strongly affecting the juvenile stage. Acquisitive traits lead to fast 

individual growth (basal area gain), but as these species are often gap-associated, 

under shaded conditions, they either may move quickly to higher size classes or fade. 

On the other side, we predicted right-skewed species distributions (positive g1) and 

conservative plant strategies (e.g. high WD, SM, H, and leaf dry matter content – 

slow-growing species) having lower demographic changes or just an increase in 

abundance due to the recruitment of individuals, that consequently contribute to the 

maintenance or increase of the total basal area of the species. 

Methods 

Study Area 

Tree species data are from permanent plots (Sistema de Parcelas Permanentes do 

Corredor Mata Atlântica Sul no Nordeste do Rio Grande do Sul) installed in the 

southernmost part (29°42’S, 50°11’W- Maquiné county) of the Atlantic Forest in 

Brazil. Climate is subtropical humid, type Cfa according to Köppen’s classification, 

with mean annual temperature above 18°C, absence of a dry period, and an annual 

mean rainfall of 1400 to 1800 mm (Hasenack and Ferraro 1989; Nimer 1990). Forest 

are located in the lower-montane forest zone (Teixeira et al. 1986) of the Maquiné 

River Hydrographic Basin, in sites that ranged from 50 to 456 m a.s.l.. Natural 

vegetation consists of subtropical moist broadleaf forest and corresponds to the 

subtropical portion of the Atlantic Forest sensu stricto (Oliveira-Filho 2009). Study 

forests comprise two successional categories, secondary (6 to 50 years since 

abandonment) and old-growth forests (remnants without register of clearcuting), 
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characterizing two distinct conservation statuses. Notwithstanding, forests in distinct 

successional stages are currently the predominant vegetation cover of the region, 

characterizing a highly connected system (Zanini et al. 2014). Soils are derived from 

basalt, and are classified as shallow litic leptsols with occasional rocky outcrops and 

luvic phaeozem (Streck et al. 2008). 

Species data 

We disposed randomly 39 circular sampling units (100 m2) in old-growth forests and 

72 in secondary forests to sample trees ≥ 10 cm of diameter at breast height (dbh), 

obtaining 0.39 ha and 0.72 ha of sampling area respectively. Within the 100 m2 

sampling units we situated subplots of 40 m2 for the survey of individuals between 1-

10 cm dbh, obtaining a sample of 0.156 and 0.288 ha for the juveniles in old-growth 

and secondary forests, respectively. Demographic parameters (see Demographic 

changes) were obtained from older secondary forest (fifty-year secondary forests – 24 

sampling units) and old-growth forests (24 sampling units) pooled, which were 

surveyed in 2009 (t1) and again in 2014 (t2).  

Stem size distributions (SSD) 

Twenty most abundant tree species (from 19 to 350 individuals each) had their 

patterns of SSD evaluated. For that purpose, we calculated the coefficient of skewness 

(g1), which summarizes the evenness or symmetry of truncated lognormal 

distributions (Bendel et al. 1989) and is defined by 

!1 = !!! ! !!!! !!
!!! !!! !! 

where n, xi, ! and s represent the number of individuals, the logarithm of dbh for 

individual i, the mean of xi, and the standard deviation of the xi, respectively.  g1<0 
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expresses SSD with relatively few small and many large stems (left-skewed); g1>0 

expresses SSD with few large and many smaller stems (right-skewed) (Bendel et al. 

1989). Trees with multiple stems had an averaged stem diameter value calculated. 

The g1 of four species that were sufficiently common was analyzed separately 

for each forest status (secondary and old-growth) and also together, just to have a 

general SSD in comparison to all other species. These four species were: Mollinedia 

schottiana (Spreng.) Perkins, Actinostemon concolor (Spreng.) Müll. Arg, Psychotria 

suterella Müll. Arg, and Euterpe edulis Mart..  

Species Traits 

Leaf traits were measured in the field following standard protocols (Cornelissen et al. 

2003; Pérez-Harguindeguy et al. 2013). Traits from 3 to 15 individuals per species 

were measured and the average value was used to represent each species in the 

analysis. Leaf traits here considered are specific leaf area (SLA, mm2.mg-1), leaf 

surface area (LA, cm2), leaf dry matter content (LDMC, mg.g-1), leaf nitrogenous and 

phosphorus concentration (LNC and LNP, percent N and P mass per total mass, %), 

leaf N:P ratio (NP, unitless) and leaf thickness (LT, mm). Leaf thickness was 

estimated following Vile et al. (2005) (LT= 1/SLA*LDMC). Together with these leaf 

traits we used leaf deciduousness (LD, 1= deciduous and semi-deciduous; 0= 

evergreen), height at maturity (H, m), wood density (WD, g.cm-3), and seed mass 

(SM, g), with data compiled from the literature.  

Demographic changes  

We estimated the species abundance variation (∆Ai = ln(Nt1) –ln(Nt2)/t ; where N is 

the number of individuals of species i, t1 and t2 are, respectively, the first and the 

second survey, and t is the time interval in years) and the species basal area variation 
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(∆BAi = ln(Bat2) – ln(Bat1)/t ; where Ba (m2) is the sum of stem basal area of species i 

in t1 and t2 respectively). According to this, “∆A > 0” represents loss of individuals 

and “∆BA > 0” represents gain in stem biomass. We are referring to these rates as 

‘demographic changes’ throughout the text and they were calculated with pooled data 

for forests, but separately for trees (dbh≥5cm) and juveniles (≥1cm dbh <5cm). As we 

considered species with at least six individuals in the first survey, from the 20 species 

evaluated for the adult stage (trees), we remained with 12 species for the juvenile 

stage analysis. 

Data analysis 

The significance of skewness at the stem size distribution (g1) was tested for 

normality by Shapiro-Wilk normality-test with Bonferroni correction (p≤0.0025). 

Non-significant skewed distribution indicates that SSD do not differ from a normal 

distribution. 

We tested the influence of four functional plant dimensions (leaf, wood 

density, height at maturity and seed mass) and stem size distribution (g1) on species 

demographic changes (∆A and ∆BA) of trees and juveniles with multiple linear 

regression models. Leaf thickness was log-transformed to meet normality. To reduce 

the number of leaf variables, we first submit them to Relative Variable Importance 

analysis (MiMIn Package, Barton 2015), which sums Akaike weights of all models 

including each explanatory variable, considering all combinations of models. So we 

just included in the tested regression models leaf variables with higher importance 

values (Supplement 1), which were: LNC and LPC for abundance variation (∆A) and 

LNC, LPC and N:P for basal area variation (∆BA) of juveniles; LA, LNC, LPC, LD, 

N:P for ∆A and LD, LA, LT for ∆BA of trees. The explanatory variables of the 

models were then composed by these respective leaf traits, wood density, seed mass, 
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height at maturity, and the g1, while species demographic changes (∆A, ∆BA) of trees 

and juveniles were employed as response variables. Principal Component Analysis 

(PCA) was performed to visualize traits relationships among the species and, 

afterwards, demographic changes (∆A, ∆BA) and size distributions (g1) were 

correlated with the axes and added on the diagram. 

The best models for species demographic changes were selected using Akaike 

Information Criterion (Burnham and Anderson 2002), with correction for small 

samples (AICc) (Hurvich and Tsai 1998). A rank of the models according to their 

support of the data was generated, where the differences between the lowest AICc and 

the other AICc values (delta AICc) were used to visualize distinctions in model 

support. Differences greater than 2 in the delta AICc were considered as a threshold 

for model support (Burnham and Anderson 2002) ('bbmle' package, Bolker 2015). 

Models were tested with and without Euterpe edulis Mart. (Arecaceae), as 

palms lack secondary growth, but as results did not change with its inclusion we are 

maintaining it. 

Results 

Stem size distribution (SSD) 

A total of 1,610 individuals were measured in the first survey, 922 in 

secondary forest sites and 688 in old-growth forest sites. Irrespectively of the site 

occurrence, most of the values of the coefficient of skewness (g1) of the 20 species 

were around zero (Fig. 1a), showing few extreme values, and the huge majority of 

individuals were in the lowest dbh category (Fig. 1b). Four species have significant 

negative g1 values, indicating the concentration of SSD towards larger stem sizes, and 

10 species have significant positive g1 values, that express a greater abundance of 
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small stems compared to larger ones (Tab. 1). Five species with negative g1 and one 

with positive g1 were not significant different from normal distributions, suggesting 

an even distribution (P≤0.0025) (Tab. 1).  

 

Figure 1: Stem size distribution patterns of 20 tree species from southern Atlantic 
forest. (a) Distribution histogram of the coefficient of skewness values (g1) of all 20 
species, and the (b) histogram of the dbh distribution of all individuals. 

By considering all individuals sampled either in secondary or in old-growth 

forests, we have positives SSD for both forest types (g1= 0.44 and 0.26, respectively; 

Supplement 2), as most individuals have dbh smaller or equal to 20 cm. Small 

differences can be observed between size classes, but the main difference was among 

the proportion of individuals within the first classe (1-10 cm dbh): secondary forest 

had 57% of individuals between 1-5 cm dbh and 15% between 5-10 cm dbh, while in 

old-growth forests these classes represented 43% and 27%, respectively.  

Table 1: Number of individuals (n) according to the sampled species in old-growth 
and secondary forests, and their respective general coefficient of skewness (g1), that 
is, irrespective of site occurrence. ‘*’ indicates significant skewed values. Species are 
also identified by its successional group, following Grings and Brack (2009): 
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pio=pioneer, ise= initial secondary, lse=late secondary. Species are ordered according 
the g1 value. 

Species Old-
growth (n) 

Secondary 
(n) g1 

 
Successional 

group 
Meliosma sellowii (Spreng.) Perkins 21 2 -1.09 lse 
Alchornea triplinervia (Spreng.) Müll. Arg. 6 24 -0.87 ise 
Chrysophyllum inornatum Mart. 22 - -0.66 lse 
Sapium glandulosum (L.) Morong 1 24 -0.41 pio 
Tetrorchidium rubrivenium Poepp. 9 36   -0.40* lse 
Cabralea canjerana (Vell.) Mart. 16 155   -0.29* ise 
Actinostemon concolor (Spreng.) Müll. Arg. 106 18   -0.06* lse 
Casearia sylvestris Sw. 7 70   -0.05* ise 
Ficus adhatodifolia Schott ex Spreng. 4 20 -0.01 lse 
Lonchocarpus cultratus  (Vell.) A.M.G.  1 41  0.003* ise Azevedo & H.C. Lima 
Mollinedia triflora (Spreng.) Tul. 8 24   0.09* lse 
Sorocea bonplandii (Baill.) W.C. Burger,  69 6   0.23* lse Lanjouw & Boer 
Euterpe edulis Mart. 230 120   0.23* lse 
Mollinedia schottiana (Spreng.) Perkins 59 97   0.27* lse 
Garcinia gardneriana (Planch. & Triana) 
Zappi 19 - 0.29 lse 

Psychotria suterella Müll.Arg 34 159   0.36* lse 
Luehea divaricata Mart. 1 19   0.36* ise 
Inga marginata Wild. 8 90   0.41* ise 
Trichilia claussenii C. DC. 40 5   0.43* lse 
Guapira opposita (Vell.) Reitz 27 12   0.64* ise 

 

Differences in the proportional abundance of species (Tab. 1) can indicate the 

predominance of the species either in old-growth or secondary sites, but we find 

species with positive and negative g1 for each forest type. Concerning the four 

species that were analyzed for SSD in both forest conservation statuses (M. 

schottiana, A. concolor, P. suterella, and E. edulis), we can evidence some influences 

on the SSD of these species, being the g1 values smaller in old-growth sites. M. 

schottiana and A. concolor changed significantly from left skewed negative g1 values 

in old-growth forests (-0.18 and -0.18, respectively) to positive right-skewed 

distributions in secondary forests (0.26 and 1.22, respectively). P. suterella displayed 
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a positive g1 in secondary forests (0.49) and a normal distribution in the old-growth, 

which expresses a proportional number between juveniles and trees. E. edulis had 

positive right-skewed values in both forests types (0.20 and 0.29, respectively in 

secondary and old-growth forests). 

Demographic changes  

PCA diagrams show the association between species functional traits and their 

correlation with demographic changes of each stage (juvenile and trees) and SSD (g1) 

(Fig. 2). The diagram with axes PC1 and PC2 displays a gradient from acquisitive 

light-demanding species (on the upper right) to acquisitive shade-tolerant, on the 

upper left side, ending with conservative shade-tolerant species in the lower part. 

More specifically, axis 1 separates light-demanding trees with higher LPC and LNC, 

large and deciduous leaves (LA, LD), and taller at maturity (H) (right side) from 

shade-tolerant species (left side). Axis 2 splits shade-tolerant conservative species 

with thicker and resistant leaves (LT, LDMC), dense woods (WD) and heavy seeds 

(SM) (bottom) from acquisitive species with higher metabolic rates (higher SLA, 

LNC), which may are light-demanding (on the right) or shade-tolerant species (on the 

left). Axis 3 splits light-demanding species (bottom), with higher N:P ratio, deciduous 

(LD) and taller, from those with large and perennial leaves, higher LPC, dense wood 

and heavy seeds.  
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Figure 2: PCA ordination diagrams of 20 tree species described by their functional 
traits (SLA, specific leaf area; LA, leaf area; LNC, leaf nitrogen content; LPC, leaf 
phosphorous content; N.P, N:P ratio; LD, leaf deciduousness, LDMC, leaf dry matter 
content, LT, leaf thickness; WD, wood density; H, height at maturity; SM, seed 
mass). Coefficient of skewness (g1) and species demographic changes, regarding 
variation in basal area (BA) and abundance (A) for trees (T) and juveniles (J), were 
correlated with PCA axis afterwards. Diagrams comprise the variation of axes 1 and 2 
(left plot) and axes 1 and 3 (right plot). 

The selected regression models (Tab. 2) indicated trees with small leaves (- 

LA), lower leaf nitrogen concentration (-LNC), taller at maturity (+ H) and deciduous 

(+LD) to be more prone to lose individuals (models ∆A T1 and T2; see also ‘A.T’ at the 

Fig. 2). These models predicted loss of individuals of species with conservative traits 

(small leaves, lower LNC), and deciduous, tall pioneer/initial secondary species. 

Some representative species of the conservative strategy are Actinostemon concolor, 

Garcinia gardneriana, Sorocea bonplandii, whereas pioneer/initial secondary species 

are Sapium glandulosum, Luehea divaricata, Lonchocarpus cultratus and Achornea 

triplinervia. 

Table 2: Best models for the variation in abundance (∆A, number of individuals) and 
variation in basal area (∆BA) of tree species in adult stage (n=20) and in the juvenile 



! 63!

stage (n=12), regressed four traits strategy dimensions and the population structure 
descriptor (g1). Only the selected variables for the models are shown: LA, leaf area; 
LNC and LPC, leaf nitrogen and phosphorous concentration; N:P, nitrogen and 
phosphorous ratio; LD, leaf deciduousness; LDMC, leaf dry matter content; LT, leaf 
thickness; H, height at maturity. Akaike information criterion (AICc), models weight 
and Delta AICc are given. 
  Models LA LNC LPC N:P LD LT H g1 ∆AICc df weight AICc 

Tr
ee

s 

∆AT1 -0.001 -0.06 - - - - 0.004 - 0 5 0.23 -71.13 

∆AT2 -0.001 -0.04 - - 0.03 - - - 1.7 6 0.10 -69.40 

∆BAT1 0.002 - - - 0.11 -0.07 - 0.05 0 6 0.36 -63.55 

∆BAT2 0.001 - - - 0.10 - - 0.06 2.0 5 0.13 -61.51 

Ju
ve

ni
le

 

∆AJ1 - 0.03 0.05 - 

 

- 0.004 - 0 5 0.26 -45.88 

∆AJ2 - 0.04 0.05 -   - - - 1.1 4 0.15 -44.76 

∆AJ3 - 0.05 - - 

 

- - - 1.4 3 0.13 -44.47 

∆AJ4 - 0.04 - - 

 

- 0.004 - 1.7 4 0.11 -44.15 

∆AJ5 - - 0.07 - 

 

- 0.005 - 1.8 4 0.11 -44.10 

∆BAJ1 - - -0.22 - 

 

- - - 0 3 0.23 -24.26 

∆BAJ2 - -0.07 -0.18 - 

 

- - - 0.2 4 0.21 -24.05 

∆BAJ3 - -0.11 - 0.01 

 

- - - 1.4 4 0.11 -22.81 

 

Basal area increase was predicted for trees with large, deciduous and thinner 

leaves (+LA, +LD, -LT) and positive g1. Axis 3, in the diagram shows the association 

of basal area increment of trees (BA.T) with LD of those fast-growing pioneer and 

secondary species. Axis 2 shed light on the participation of the shade-tolerant species 

manly recruiting new individuals (lower A.T, upper part of the diagram). These 

species display a high number of established juveniles (high g1), high SLA and 

thinner leaves and they are the late secondary dominants, such as Guapira opposita, 

Mollinedia schottiana, M. triflora and P. suterella.  

Juvenile demographic changes were well explained by traits associated to the 

second axis (PC2) of the Fig. 2. Given the juvenile stage, species with higher values 
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of leaf nitrogen (+LNC) and phosphorous concentration (+LPC), and taller at maturity 

were predicted to have a higher loss of individuals (models ∆A J1 to J5; see ‘A.J’ at the 

Fig. 2). Within this stage, we could not analyze pioneers (too few individuals) and 

examples of more acquisitive species are Casearia sylvestris, Guapira opposita and 

Cabralea canjerana. Furthermore, juveniles of species with lower nitrogen (-LNC) 

and phosphorous concentration (-LPC) and higher N:P ratio are predicted to have 

higher biomass gain (models ∆BAJ1 to J3; see ‘BA.J’ at the Fig. 2). These are species 

with conservative leaf traits (low LPC and LNC) that are frequent in old-growth 

forests, such as S. bonplandii, G. gardneriana, A. concolor and E. edulis.  

Discussion 

Some insights were found for the species dynamics through their population 

structure (SSD) and their short-term demographic variation. The first is that although 

species life histories are prevalent to determine SSD, habitat conditions influenced the 

fitness of individuals of some species, changing the population structure and the 

coefficient of skewness under forests with distinct conservation statuses (old-growth 

vs. secondary). The second is that two functional dimensions, leaf traits and the whole 

plant (here, height at maturity), predicted changes in the short-term species 

demography, with slight differences among which leaf traits have explained the 

dynamic of adults or juveniles.  

Demographic structure and dynamics in changing environments 

SSD is often considered a weak predictor of population changes (Condit et al. 

1998). Nevertheless Feeley and collaborators (2007) found among distinct indices of 

SSD that the coefficient of skewness was the only one that captured population 

changes over the subsequent 10-15 years more often than a random expectation. At 
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local scale, as in our study, populations with many saplings tended to increase 

abundance and those with few saplings tend to decline or increase slowly, but g1 

would not be informative across broader spatial scales. Also, intraspecific differences 

in sapling abundances characterized by the coefficient of skewness as those found 

here between forest conservation statuses are considered useful tools to predict trends 

in population changes (Feeley et al. 2007).  

The four species that were compared according to their demography in each 

forest status are trees that established mainly after canopy closure (about 20 years 

after abandonment, Zanini et al. 2014). These species had higher g1 values in 

secondary forests, suggesting a higher fitness of the juveniles in this resource-rich-

environment (Uriarte et al. 2012). In the old-growth forests three of these species 

displayed a higher proportion of adults, suggesting an earlier establishment of such 

individuals likely associated to local disturbance events, such as forest gaps. Lower 

resource availability and competition (Tilman 1994; Rees 2001; Reich 2014) in old-

growth forests may reduce the establishment of new individuals of these species and 

influence the fitness of those already established, affecting the proportion of small 

stems in some populations (Coomes et al. 2003). So, the positive g1 value found for 

these three species irrespectively to forest conservation state expresses the high 

number of small stems of these species at the secondary forests. E. edulis did not 

change its SSD significantly between the forest conservation statuses here analyzed, 

but by looking in the database we can see that the establishment starts in older 

secondary forests (the species is absent in young secondary forests), which may 

indicate some requirements of mature forest conditions to a successful establishment 

(Givnish et al. 2005). Although the wide niche germination breath of E. edulis (Braz 

et al. 2012) saplings establishment is limited by frost (Gatti et al. 2008) and high sun 
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exposure due to photoinhibition and the lack of hydraulic adjustments to high 

evaporative demand conditions (Gatti et al. 2014) limiting its success in open areas.  

The higher g1 values in the secondary forest indicate a general higher 

proportion of small stems in species populations and describe the ‘immaturity’ of 

these forests. Differences in the occurrence and/or the abundance of the species 

between secondary and old-growth forest reveal a striking different florist 

composition between forests. In our study we found an association between negative 

g1 values and species classified as initial secondary species (ise). This and their 

abundance pattern (higher in the secondary forests) are expressions of species life 

history. They are acquisitive species, with individuals growing fast to higher size 

classes and associated to disturbed environments. Although this pattern of negative g1 

can indicate a population “decline” of a species, when associated to fast-growing 

species, it can be seen as a temporal and spatial resource partition strategy, in which 

the species will disperse from one period or local site to another place with favorable 

conditions (Denslow 1980; Pacala 1996). Among the species with negative g1, 

Tetrorchidium rubrivenium was originally classified as late secondary species (Grings 

and Brack 2009). However, given its leaf traits and the abundance in secondary 

forests, it should be better consider this species as an initial secondary tree in further 

studies (Aidar et al. 2003).  

Relations between demographic changes, functional traits and population structure 

Species with acquisitive strategies were predicted to increase in basal area of 

adults and to lose juveniles and adults. These findings are consonant with the growth 

mortality trade-off (Poorter et al. 2008; Wright et al. 2010). As pointed out by Reich 

et al (1997), photosynthesis, dark respiration, and leaf nitrogen concentration decline 

with increasing leaf life span, a gradient described here by the first and second axes of 
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the PCA and captured by the models. The predicted mortality of acquisitive species in 

the juvenile stage elucidated the bottleneck commonly observed in species with this 

life history. Further, the predicted basal area gain of adults as a response of higher g1 

values may thus be an expression of the growth and recruitment of shade-tolerant 

species.  Some of the species with positive g1 are uncommon in old-growth forests 

but abundant in secondary forests. These are manly understory secondary species with 

acquisitive leaf strategies (high SLA and low LT). The potential greater 

photosynthetic rates, due to their higher LNC (light demanding and deciduous 

species) and higher SLA (light demanding and understory/shade-tolerant acquisitive 

species) (Reich et al. 1997; Cornelissen et al. 2003), allow these two groups of 

acquisitive species to grow fast to the maturity, providing seeds to the system more 

quickly (Pacala and Rees 1998; Moles and Westoby 2006). Secondary shade-tolerant 

species are likely maintaining their populations and dominance in secondary forests 

due to the favorable environmental conditions and their high number of juveniles.  

On the other hand, some low-abundant species quite exclusive from old-

growth forest  (e.g. G. gardneriana, M. sellowii and C. inornatum) presented size 

distributions that did not differ from a normal distribution. These are slow-growing 

species that are expected to have positive g1 with many small stems waiting for an 

opportunity to grow. Nevertheless, the lower proportion of juveniles of such 

conservative species may be related to a dispersal limitation, as they have large fruits 

and seeds dispersed by large animals such as monkeys (Galetti et al. 2011). The 

defaunation of large-bodied seed dispersers is indicated as a driver of the loss of 

large-seeded trees (Cramer et al. 2007; Bello et al. 2015). Thus given the functional 

strategy of such late successional species, the SSD found here suggest they can be 

under a shift in their population structure in the near future as, contrarily to the initial 
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expectation, these species did not present many seedlings and saplings in comparison 

to their adult proportion.  

The loss of adult trees was also predicted for species with small leaves and 

low leaf nitrogen concentration, which expresses the mortality of old-growth species 

with low metabolic rates mainly limited by nitrogen (Reich et al. 2009; Wu et al. 

2012). Moreover, given the juvenile stage models, we can see a new generation of 

species with conservative leaf strategies recruiting and growing in the forests. The 

basal area gain of juveniles with conservative leaf strategies (low LNC e LPC) is 

expressing the growth of survivors and new recruiters of late successional species 

(Finegan et al. 2015), which agree with a higher potential survival of conservative 

species, predicted by the growth mortality trade-off. However, our results also 

predicted higher mortality for conservative species in the adult stage. That is, such 

species are losing adult individuals and some of them were characterized by SSD not 

strongly positive skewed or yet negative skewed. So the maintenance of some old-

growing species in the studied forests may be under concern because they do not meet 

the parameters of population grow suggested by Condit et al. (1998) and Feeley et al. 

(2007), which should meet high survival rates, growth of juveniles, and right skewed 

distribution. 

Conservation implications  

Secondary forests worldwide represent about 50% of the remaining natural 

forest cover (Wright 2005) and the understandings of its dynamic and role in the 

conservation of species have became extremely important. Meanwhile remaining old-

growth forest face human disturbance at global and local scales (Lewis et al. 2004; 

Lewis et al. 2009), despite its undeniable importance for biodiversity, that affects 

species performance in short and long-term. In our study we found (i) abundant 
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secondary species with high g1 values having higher basal area gain in the short-term 

dynamic, suggesting they still can keep high abundance in this forest, (ii) some old-

growth species were absent or in very low abundance in the secondary forests 

shedding light on the requirement of mature forests conditions for the establishment 

and survival of some species (Laurance 2008; Gardner et al. 2009), and (iii) adult 

trees limited by leaf nitrogen are predicted to have a higher loss of individuals in the 

short-term dynamics, which was not expected by the growth-mortality trade-off 

(Poorter et al. 2008; Wright et al. 2010).  

The 20 species here analyzed are considered common in the southern Atlantic 

Forest, widely distributed and able to occupy various forest habitats, with abundant 

local populations (Caiafa and Martins 2010). Although, some of these 20 species were 

better associated to mature forests, being found only in old-growth forests with 

relative low frequency and abundance, whereas some species with very few 

individuals could not be included in the analyses and others were found only as 

seedlings with slightly or no changes along the studied period. Despite we recognize 

the natural presence of many rare species in tropical and subtropical forest 

communities (Hubbell 1979), defaunation, selective logging in the past, and reduced 

fecundity (Hobbs et al. 2003) are possible causes of their low frequency and 

abundance. These factors, together with stochastic hazards they may be exposed 

during the time elapsed from seedlings to the reproductive maturity (Moles and 

Westoby 2006), give us a picture of the challenges those species face to not perish 

under current conditions of remaining forests. 

Considering our results and making a parallel with studies in highly 

fragmented forests we suggest that mid-successional disturbance-adapted species are 

likely to dominate for decades due to their greater abundance and elevated seed rain 
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and they can be favored by the increasing frequency and intensity of disturbances 

associated to extreme climatic events (like El Niño Southern Oscillations) (Wright 

and Calderon 2006). The maintenance of early successional species by self-

replacement is being suggested for the highly fragmented Atlantic forest (Tabarelli et 

al. 2012). In our study, forests are not isolated fragments but are within a matrix of 

different successional stages. Early successional species fade after canopy closure. 

However composition of the older secondary forests (40- 50 years) is still more 

similar to younger sites than to the old-growth forests (Zanini et al. 2014) and our 

results evidenced the loose of conservative old-growth species, the maintenance of 

abundant secondary species, and the challenge faced by old-growth species in 

maintain their populations. 
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Supplementary material. Chapter 2 

Supplement 1. Importance values of the leaf traits on basal area variation and 

abundance variation (∆BA and ∆A) found for adult stature ‘Trees’ (dbh≥5cm) and for 

‘Juvenile’ trees (1cm≤dbh ≤5cm); bold indicates the selected variables used in further 

analysis. 

Trees (128 models) 

∆BA LD LA LT SLA N.P LNC LDMC LPC 

Importance: 0.97 0.96 0.78 0.17 0.17 0.16 0.13 0.12 

∆A LA LNC LPC LD N.P LT LDM SLA 

Importance: 0.52 0.51 0.29 0.28 0.28 0.16 0.15 0.15 

Juveniles (64 models) 

∆BA LPC LNC N:P LT SLA LDMC SLA 

Importance: 0.76 0.49 0.23 0.12 0.09 0.8 0.7 

∆A LNC LPC LDMC N:P SLA LA LT 

Importance: 0.93 0.38 0.2 0.19 0.11 0.06 0.06 
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Supplement 2. Histogram of stem size distribution (SSD) of all individuals sampled in 

old-growth (a) and secondary (b) forests. Considering this SSD, g1 for (a) is 0.26 and 

for (b) is 0.44. 
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Supplement 3. Description of species traits (LDMC: leaf dry matter content; SLA: specific leaf area; LA: leaf area; LNC and LPC: leaf nitrogen and 
phosphorous concentration; N:P, nitrogen and phosphorus ratio; LD: leaf deciduousness; LT: leaf thickness; WD: wood density; H: height at maturity; SM: 
seed mass) and demographic  changes (∆A= variation in individuals abundance; ∆BA=variation in basal area) for adult stature trees and juveniles.  

  Trees  Juveniles Traits 

Specie ∆A ∆BA ∆A ∆BA LDMC SLA LA LNC LPC N:P LD LT WD H SM 

Actinostemon concolor 0.026 -0.056 -0.033 0.022 366.13 8.77 29.38 1.14 0.07 16.21 0 0.31 0.66 20 0.380 

Alchornea triplinervia 0.019 0.021 NA NA 430.56 8.04 26.50 1.82 0.13 14.00 1 0.29 0.467 28 0.021 

Cabralea canjerana 0.000 0.015 0.017 -0.087 313.78 16.64 33.97 2.11 0.15 14.07 0 0.19 0.54 25 0.833 

Casearia sylvestris 0.000 -0.047 0.081 -0.248 366.89 11.17 14.97 2.28 1.21 1.89 0 0.24 0.71 22 0.012 

Chrysophyllum inornatum 0 -0.05 NA NA 389.77 9.63 13.59 1.56 0.83 1.88 0 0.27 0.78 17 1.900 

Euterpe edulis -0.067 0.142 -0.007 0.031 419.74 13.00 96.58 1.42 0.11 12.91 0 0.18 0.39 20 0.50 

Ficus adhatodifolia -0.024 0.051 NA NA 281.07 9.58 90.88 2.12 1.14 1.86 0 0.37 0.58 30 0.0002 

Garcinia gardneriana 0.027 0.008 -0.031 0.054 449.65 8.13 22.96 1.01 0.07 14.43 0 0.27 0.87 16 3.000 

Guapira opposita -0.071 0.033 0.024 0.027 229.15 15.15 25.36 2.78 0.14 19.86 0 0.29 0.83 21 0.143 

Inga marginata 0.024 -0.007 0.081 -0.193 427.48 11.93 15.43 2.62 0.15 17.47 0 0.20 0.58 26 1.000 

Lonchocarpus cultratus 0.015 0.123 0.033 -0.009 337.04 17.75 10.33 2.09 0.11 19.00 1 0.17 0.77 25 0.164 

Luehea divaricata 0.027 0.137 NA NA 365.38 12.59 19.55 1.68 0.23 7.30 1 0.22 0.563 26 0.004 
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Meliosma sellowii 0.062 -0.025 NA NA 290.40 15.89 42.56 1.23 0.10 12.30 0 0.22 0.62 24 2.000 

Mollinedia schottiana 0.000 0.005 -0.014 -0.032 283.65 23.64 33.36 1.87 0.18 10.39 0 0.15 0.6 15 0.381 

Mollinedia triflora -0.102 0.103 NA NA 295.65 20.53 24.07 1.90 0.09 21.11 0 0.16 0.494 11 0.381 

Psychotria suterella  0.052 -0.044 -0.006 -0.038 221.94 25.65 16.43 1.75 0.09 19.44 0 0.18 0.56 15 0.800 

Sapium glandulosum 0.031 0.022 NA NA 290.08 8.99 21.10 1.96 0.15 13.08 1 0.38 0.44 31 0.059 

Sorocea bonplandii 0.010 0.001 -0.006 0.029 430.99 9.59 22.67 1.23 0.10 12.30 0 0.24 0.615 24 0.313 

Tetrorchidium rubrivenium -0.067 0.017 NA NA 226.13 13.05 46.82 2.61 1.41 1.85 0 0.34 0.46 29 0.025 

Trichilia claussenii -0.048 0.011 -0.040 -0.015 401.39 14.00 27.98 1.82 0.11 16.55 0 0.18 0.68 18 0.161 
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Abstract 

Aims More than half of the natural world’s forest is secondary forest and 

deterministic succession predicts that many features of pre-disturbed forests will be 

recovered. On the other hand, remnant old-growth forests are mostly within 

fragmented landscapes and edge-induced microclimatic conditions may lead to a 

retrogressive succession, named ‘secondarization’. Thereby current forests tend to 

converge in terms of community structure and ecosystem function. Here we compared 

the short-term dynamics (five years interval) of secondary and old-growth forest 

communities in the highly fragmented Atlantic forest biome. Considering these two 

processes – succession and secondarization - we expected the rise of conservative 



!
!

85!

plant traits and biomass for secondary forests and the reduction of such traits and 

biomass loss for remnant old-growth forests. 

Methods Community data consist of permanent plots (100 m2) installed in old-growth 

and secondary forests in the southernmost part (29°42’S, 50°11’W) of the Atlantic 

Forest in Brazil. We analyzed (i) ‘community structure changes’ - variation in 

community abundance and basal area per sampling unit - and ‘functional composition 

changes’ – percent of change in the community weighted mean of traits - of tree 

communities between two surveys (t1 and t2), and (ii) the predictive power of the 

functional composition of t1 regarding four trait dimensions (leaf traits, seed mass, 

height at maturity, and wood density) on the community structure changes for 

juveniles (≥1cm dbh <5cm) and adult trees (dbh ≥ 5cm) tested by Linear Mixed 

Models and selected by Akaike Information Criterion.  

Important findings Leaf traits and seed mass better captured the short-term 

functional composition changes. The advance of secondary forest towards 

conservative traits was confirmed for both strata. Old-growth communities lose 

biomass due to fall of big trees expressing the loss of an important structural feature 

of these forests. But functional composition changes did not evidence 

secondarization. Five-year interval might be a short period for the dynamic of long-

lived organisms, such as trees, but with the association of structural and functional 

features of the communities it proved to be a useful time span to reveal interesting 

aspects of forest dynamics. 

Key words: forest conservation, succession, functional traits, Atlantic forest, biomass 

changes  
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 “There is a pressing need for better process-level understanding of 
the dynamics of tree communities in the moist and wet tropics.”  

“Realistic forest dynamics models of these ecosystems will be 
needed for simulation of how these complex communities function 
and how they will respond to future environmental change. 
Empirical assessments of the growth patterns of representative tree 
species in these forests will be fundamental for the development of 
such models.” 

(Clark and Clark 2001) 

 

Introduction 

Worldwide changes of forest cover reflect both the opening of new 

agricultural lands and the regrowth of secondary forests after abandonment of 

croplands. In the tropics, the high loss of forest cover is being masked by the rapid re-

growth of secondary forests (Letcher and Chazdon 2009; Metzger et al. 2009; Hansen 

et al. 2013), which comprehend about 65% of world’s natural forest cover (FAO 

2015). If, on the one hand, ecological succession recovers biomass, diversity, and 

partially the structure of pre-disturbed forests (Chazdon 2003), on the other hand, 

remnants of old-growth forests may be negatively affected by environmental shifts 

associated with edge-effects (Laurance 2008). In this context the understanding of 

secondary and old-growth forest dynamics is a main concern of human-modified 

environments.  

Deterministic processes predict that as succession progresses late successional 

species may outcompete early successional plants. Thus, fast-growth high-acquisitive 

species will gradually be replaced by more conservative ones (Rees 2001; Carreño-

Rocabado et al. 2012; Whitfeld et al. 2012). But, in some cases, succession may lead 

to alternative stable states, in which early successional trees keep their dominance 
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through cycles of self-replacement (Tabarelli et al. 2008). Such alternative state can 

be a consequence of land use history (Mesquita et al. 2001; Chazdon et al. 2007; 

Jakovac et al. 2016) and/or of edge-induced microclimatic conditions, which favor the 

performance of early successional species (Laurance et al. 2002; Laurance et al. 2006; 

Lôbo et al. 2011). If the succession progresses, a rapid recovery in biomass and 

structural features is expected, as shown by chronosequence studies, but not in species 

composition (Guariguata and Ostertag 2001; Chazdon 2003; Goosem et al. 2016; 

Poorter et al. 2016) and function (Carreño-Rocabado et al. 2012; Whitfeld et al. 2012; 

Lohbeck et al. 2014). Therefore, secondary forests have shown to be still distinct from 

old-growth forests (Piotto et al. 2009; Dent et al. 2013; Zanini et al. 2014), and the 

understanding of community dynamics and processes that underlie the recovery and 

the functions of these forests are still incomplete (Fridley 2013).  

At the same time, landscape driven processes have been pointed as responsible 

for changes in fragmented old-growth forests. Most of the old-growth forests are 

remnants of the once continuous forest, immersed in fragmented landscapes (e.g. 

Ribeiro et al. 2009) and under the pressure of edge effects. These remnants experience 

changes in species composition and functional traits specially in their edges (≈100 m 

into the forest) (Laurance et al. 2006; Tabarelli et al. 2012). Some reported changes 

are the loss of large trees (due to physiological stress and wind turbulence) (Oliveira 

et al. 2008) and reproductive traits diversity (Girão et al. 2007; Santos et al. 2008; 

Lopes et al. 2009), and the increase of small-seeded softwood species (Laurance et al. 

2006; Michalski et al. 2007). Further, it has been suggested that communities exposed 

to pervasive disturbances may experience an endogenous process of biotic 

homogenization, a retrogressive succession, called ‘secondarization’ (Tabarelli et al. 

2008; Tabarelli et al. 2012). This process is characterized by predictable changes in 
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the relative contribution of species sharing similar life history traits, as the 

proliferation of r-strategists species and the collapse of the shade-tolerant/old-growth 

flora in forest edges and small fragments (Oliveira et al. 2008; Santos et al. 2008; 

Lôbo et al. 2011; Tabarelli et al. 2012). 

Facing these two processes, forest recovery (succession) and degeneration 

(secondarization), remnants and secondary forests tend to converge in terms of 

community structure and ecosystem function (Joly et al. 2014). In this study, we 

compare short-term dynamics of juvenile and adult tree forest communities (hereafter 

‘juveniles’ and ‘trees’) of two successional stages – advanced secondary forests (with 

about 50 years of recovery since abandonment) and old-growth forest remnants. 

Dynamics are expressed by the variation in abundance (∆A) and in basal area (∆BA) 

of tree communities in five years interval, referred hereafter as ‘community structure 

changes’. Considering that many ecosystem processes are determined by the 

dominant species (mass-effect theory; Grime 1998), we are also analyzing the 

community dynamics through changes in the community functional composition – 

i.e., the community-weighted mean of trait values (Carreño-Rocabado et al. 2012; Iida 

et al. 2014; Finegan et al. 2015), which describe de dominant trait value of 

communities by weighting species trait values by species abundance. For this 

purpose, we used four trait dimensions of plant strategies (leaf, wood density, seed 

mass, height at maturity) to express distinct functional facets, as suggested by 

Laughlin (2014). These trait dimensions can also tell us about the position of the trees 

along the successional spectrum (Wright et al. 2010; Reich 2014), in which early 

successional species are mainly described by acquisitive traits, such as high values of 

specific leaf area (SLA) and leaf nitrogen concentration (LNC), softwoods, high 

fecundity (many and small seeds) and dispersal capacity. Those characteristics enable 
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the trees to growth fast, quickly achieving the canopy and the reproductive maturity. 

In the other extreme of the spectrum we find species with high conservative strategies 

(e.g., low SLA and LNC, hardwoods, big seeds) characterized by slow-growth and 

high survivorship under scarce resource conditions (Rees 2001; Poorter et al. 2008; 

Wright et al. 2010). Therefore, functional composition based on such traits would 

express the community position along the successional stages (from early to late 

successional communities).  

We hypothesize that secondary forest dynamics progress towards more 

conservative communities, losing early successional species and increasing the 

participation of conservative ones in both strata, with a positive balance in biomass 

gain of adult trees. At the same time, old-growth remnant forests would be losing 

adult individuals and biomass due to the response of environmental changes, caused 

by fragmentation, leading to reduction in conservative traits. Thus, we first search for 

differences in community structure changes between secondary and remnant old-

growth forests for both juveniles and trees. Then we test if the community functional 

composition from the first survey (t1) could predict the community structure changes 

(∆A and ∆BA) occurred in the juvenile and the tree strata within five years of 

interval. Finally, we compared the functional composition changes between the first 

survey (t1) and the second survey (t2) of juveniles and trees in secondary and in 

remnant forests. 

Methods 

Study Area 

We studied tree communities in permanent plots (Sistema de Parcelas 

Permanentes do Corredor Mata Atlântica Sul no Nordeste do Rio Grande do Sul) 
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installed in the southernmost part (29°42’S, 50°11’W- Maquiné county) of the 

Brazilian Atlantic Forest. Climate is subtropical humid, type Cfa according to 

Köppen’s classification, with mean annual temperature above 18°C, absence of a dry 

period, and an annual mean rainfall of 1400 to 1800 mm (Hasenack and Ferraro 1989; 

Nimer 1990). Study sites are located in the lower-montane forest zone, from 50 to 456 

m a.s.l. (Teixeira et al. 1986). Natural vegetation consists of subtropical moist 

broadleaf forest and corresponds to the subtropical portion of the Atlantic Forest 

sensu stricto (Oliveira-Filho 2009). Soils are derived from basalt, and are classified as 

shallow litic leptsols and luvic phaeozem (Streck et al. 2008). Landscape was highly 

fragmented in the past centuries until the end of 1960’s, since then crops production 

moved to flatter areas leaving extensive areas to natural forest recovery. Today the 

landscape is a highly connected system of secondary forests and old-growth forest 

remnants (most remnants are no longer isolated).   

Species and community data 

Twenty-four random plots were installed in two distinct secondary forests, 

with about 50 years since abandonment, and twenty-four in two remnants of old-

growth forests, without register of clearcuting. Sampling units are circular plots with 

an area of 100 m2 established for the survey of trees ≥10 cm diameter at breast height 

(dbh). Within them we situated 4 systematic subplots of 10 m2 for individuals with 

dbh between 1 and 10 cm dbh. Data of plants between 5 and 10 cm dbh were 

integrated with those of large trees (≥10 cm) to compose the adult tree stratum, also 

named ‘tree community’. Individuals between 1 and 4.99 cm dbh were considered 

juveniles, named ‘juvenile community’. Community plots were surveyed in 2009 (t1) 

and again in 2014 (t2). One hundred and fourteen tree species were registered in the 
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surveys (92 of trees and 77 of juveniles), out of which, four palms and 1 arborescent 

fern were excluded from the analysis due to their distinct life form and ecological 

strategies. Therefore, plots with the dominance of the arborescent fern or palms were 

removed and we analyzed 24 communities of secondary forest, but 23 and 22 of 

remnants, respectively for trees and juveniles. Final tree community data presented 89 

species and juvenile community 73 species.  

Traits 

The species had their leaf traits measured from field samples following 

standard protocols (Cornelissen et al. 2003; Pérez-Harguindeguy et al. 2013) 

considering mature leaves of adult trees. Three to 15 individuals per species were 

measured and the average value was used to represent each species in the analysis. 

Leaf traits we considered were specific leaf area (SLA, mm2.mg-1), leaf surface area 

(LA, cm2), leaf dry matter content (LDMC, mg.g-1), leaf nitrogenous and phosphorus 

concentration (LNC and LNP, percent N and P mass per total mass, %) and leaf 

thickness (LT, mm). Leaf thickness was estimated following Vile et al. (2005) (LT= 

1/SLA*LDMC). Further traits were leaf deciduousness (LD, 1= deciduous and semi-

deciduous trees; 0= evergreen trees), height at maturity (H, m), wood density (WD, 

g.cm-3), and seed mass (SM, g), all compiled from the literature. Average of the genus 

for WD was used for some species with just one occurrence following Chave et al. 

(2009). 

Community functional composition 

Functional composition of communities was obtained scaling up species trait 

values to the community level considering species abundance per community in the 
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first (t1) and in the second (t2) survey (Community-weighted means - CWM; FD 

package, Laliberté et al. 2014). Each trait has a mean value per community per time 

(t1 and t2) and per forest stratum (trees and juveniles). Functional composition 

differences between surveys for each forest stratum and successional stage were 

calculated as percentage of changes between t1 and t2: ∆CWM= [(t2- t1)/ t1]*100.  

Community structure 

Variation in abundance of individuals (∆A) and variation in basal area (∆BA) 

were calculated for each community to express forest dynamics. Here we consider all 

co-occurring individuals and calculate sampling unit (community) values not taking 

into account species identity. We estimated the abundance variation (∆A = ln(Nt1) –

ln(Nt2)/t ; where N is the number of individuals, t1 and t2 are, respectively, the first and 

the second survey, and t is the time interval in years) and the basal area variation 

(∆BA = ln(Bat2) – ln(Bat1)/t ; where Ba is the stem basal area) calculated for juveniles 

and trees separately. According to this, “∆A > 0” represents loss of individuals and 

“∆BA > 0” represents gain in basal area (i.e. above ground biomass gain).  

Data analysis 

We tested the differences in ∆A and ∆BA for trees and juveniles between the 

forest successional stages (remnants and secondary communities) with variance 

analysis ('stats’ package - R Core Team 2012). 

The predictive power of functional composition based on four trait dimensions 

(leaf features, wood density, height at maturity and seed mass) on ∆A and ∆BA was 

analyzed with regression models. For this purpose community functional composition 

of t1 (CWM t1) was used as a predictor of ∆A and ∆BA for each forest strata and 
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successional stage separately. Prior to this analysis we applied the Multi-Model 

inference ('MuMIn' Package, Barton 2015) to select the most important leaf trait to 

∆A and ∆BA for each forest strata and successional stage. We included then only the 

variables with importance above 0.1 in the models (Supplementary material 1). Linear 

Mixed Models, with site as a random variable, were run with the selected leaf 

variables together with the others functional dimensions (i.e. wood density, height at 

maturity, seed mass) and tested against null models. The best models were selected 

using Akaike Information Criterion (Burnham and Anderson 2002) with correction 

for small samples (AICc) (Hurvich and Tsai 1998). A rank of the models according to 

their support of the data was generated, where the differences between the lowest 

AICc and the other AICc values (delta AICc) were used to visualize distinctions in 

model support. Differences greater than 2 in the delta AICc were considered as a 

threshold for model support (Burnham and Anderson 2002) (MuMIn Package, Barton 

2015).  

Differences in functional composition between t1 and t2 or functional changes 

in time were tested with MANOVA for juveniles and trees in each successional stage. 

These variance analyses were blocked within each community (sampling unit) and 

tested with permutation (1000 iterations) with the software MULTIV (Pillar 2012).  

Results 

Variance analysis indicated differences in the basal area gain and loss between 

secondary and remnant tree communities in the short-term dynamics (∆BA, P=0.002; 

fig. 1). Remnants had lost more basal area than they had recovered in five-years time. 

Secondary communities had more gain then loss of basal area. Differences in the tree 

abundance (∆A) were not significant between successional stages, although secondary 
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forest showed higher rates of recruitment (negative values). Juvenile communities did 

not show significant differences neither for ∆BA nor for ∆A (Supplementary material 

2), though recruitment tends to be higher (∆A, P=0.07) at secondary forests than at 

remnants.  

 

Figure 1: Boxplots between remnant and secondary forest communities considering 
basal area variation (∆BA) and abundance variation (∆A) for tree communities. 
Differences are significant only for ∆BA of trees (P= 0.002).  

Community functional composition of the first survey predicted only the ∆BA 

of trees in remnants (tab. 1). Leaf thickness was negatively related with basal area 

gain and was the only variable selected in the model. Variation in basal area of trees 

in the secondary forests and variation in abundance of individuals (∆A) of trees and 

juveniles from both successional stages did not differ from null models.  

 

Table 1: Best model for community variation in basal area (∆BA) of remnant forests 
predicted by the community functional composition (CWM) of four trait dimensions 
of plant strategies: selected leaf variables (LT, leaf thickness; LPC, leaf phosphorous 
concentration; LNC, leaf nitrogen concentration, LD, leaf deciduousness); WD, wood 
density; H, height at maturity; SM, seed mass. Akaike information criterion (AICc), 
delta and model weight are given.  
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Communities effect value of CWM of traits AICc delta weight 

Models LT LPC LNC LD WD H SM 
   

∆BA Remnant  -2.02 - - - - - - -23.72 0 0.385 

 

Functional composition changes between t1 and t2 were significant in 

secondary forests for juveniles (P=0.03) and trees (P=0.04). Percentages of changes 

from the first survey are expressed in the Figure 2. The greater changes in tree 

communities (fig. 2a) were the reduction of LA (-31.7%), SM (-14.1%), SLA (-5.6%) 

and LD (-2.8%), and the increase of LPC (5.2%), LT (3.5%), H (1.7%), LDMC 

(1.5%) and WD (0.18%). Juvenile communities (fig. 2b) had the biggest change in 

LD (-23%) and small changes in H, SM, WD and LA (-4%, -3.1%, -2.7%, 1.5% 

respectively). Remnant communities did not have significant functional composition 

changes in this five years interval. 

 

Figure 2: Percent of changes in the community functional composition in five years 
interval (t1 and t2) considering SLA, specific leaf area; LA, leaf area; LDMC, leaf dry 
matter content; LNC, leaf nitrogen concentration; LPC, leaf phosphorous 
concentration; LT, leaf thickness; LD, leaf deciduousness; H, height at maturity; WD, 
wood density and SM, seed mass. 

 

Discussion 
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Secondary forests 

In our short-term study we found secondary tree communities increasing their 

basal area (aboveground biomass) and having a great stem turnover (mortality and 

recruitment, data range of ∆A). The detected gain in basal area in the secondary 

communities indicates their higher productivity, and express the higher acquisitive 

functional composition of the established tree community (Finegan et al. 2015).  

We expected higher mortality rates at secondary forests due to the high 

density of individuals (Zanini et al. 2014) and the thinning process predicted for 

secondary forests, as found, for example, in the study of Rozendaal and Chazdon 

(2014). Instead, we evidenced higher values of recruitment (negative ∆A) in 

secondary communities, which is indicating that juveniles achieved the tree layer (dbh 

≥ 5 cm) along the last five years and suggests that gaps are still being filled in these 

successional forests with approximately 50 years of development. 

Secondary forest structure changes (of both strata) were not predicted by 

initial functional composition (t1), which can suggest that stochastic demographic 

events are prevailing over predictive directional changes in the short-term dynamics. 

Distinctly from early successional forests dominated by pioneers that certainly loose 

their dominance (dying) when the canopy closes, our secondary forests are advanced 

successional forests composed mainly by long lived secondary species (Zanini et al. 

2014), but the mortality of these individuals is little predictable yet. The high turnover 

of stems and the lack of predictive power of the models suggest that these secondary 

forests are still extremely dynamic.  

Nevertheless, the tree and juvenile strata of secondary forests showed 

significant functional composition changes in five years interval. The most prominent 

changes at the tree layer were the reduction of SLA, LA and LD and the increase in 
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LPC and LT. This set of functional changes are expected considering the advance of 

the succession (Lohbeck et al. 2015; Schönbeck et al. 2015) and indicates that 

functional composition of communities are becoming more conservative, with a 

predominance of smaller, thicker evergreen leaves. However, the reduction of SM for 

the tree stratum is contrary to the expected ongoing of the succession. Surrounding 

vegetation matrix is suggested to be an important driver of floristic changes in forest 

fragments (Nascimento et al. 2006) and is likely to influence composition through 

succession. The study region has been highly degraded in the past and today 57% of 

the respective river basin land is covered by initial (22%) and intermediate (35%) 

secondary forests (Becker et al. 2004). The reduction of SM may be due to the high 

abundance of small-seeded shade-tolerant species in the surrounding successional 

forests. Further, late successional species with large fruits and heavy seeds may 

experience limitations in their dispersion (Cramer et al. 2007; Bello et al. 2015), and 

if propagules arrive, the new individuals may take decades to reach the reproductive 

size (Moles and Westoby 2006). Considering juveniles, changes were subtle and some 

traits displayed the same direction and a similar range of variation found for juveniles 

of remnant communities (e.g. changes in SLA, LDMC, LPC). The stronger change for 

secondary juvenile communities was found in LD, which is a trait closely related with 

early successional light-demanding species and indicates that juvenile deciduous 

species did not thrive in this shaded and competitive environment. The reduction of 

plant height, seed mass and wood density at juvenile layer, although small, is possibly 

an effect of the “understory reinitiation” (Chazdon 2008) with the recruitment of 

shade-tolerant understory and subcanopy species. Further, juvenile communities did 

not differ in basal area variation between forest stages, suggesting that juvenile 

communities are performing a similar productivity in secondary and remnant forests. 
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This can be explained by the compensatory effects among photosynthetic capacity of 

shade-intolerant and assimilation rates of shade-tolerant juveniles growing under low 

light conditions (Niinemets 2006) resulting in similar productivity.  

Remnant old-growth forests 

Remnant tree communities are mainly loosing biomass, which differs from 

secondary forests that showed biomass gain. Considering that variation in abundance 

of individuals did not differ significantly between these two forest stages we can 

conclude that this loss is manly due to the falling of big trees, which store higher 

biomass in their stems. The resource availability hypothesis predicts the increase in 

above ground biomass and stem turnover through time in mature forests (Lewis et al. 

2004; Lewis et al. 2009) due to the increment of atmospheric CO2, but we found 

biomass loss instead. In a small-scale, as in our study, this result may express gap 

openings in which new recruits were not in sufficient numbers and/or did not grow 

fast enough to neutralize the loss of basal area during the studied time interval. In a 

15-year long study that investigated the contribution of gap phase in the biomass 

variation of four distinct mature forests, Feeley et al. (2007) found increase, decrease 

and stable biomass, suggesting that local drivers may prevail over global 

drivers. Thus, local drivers, such as edge effects and defaunation, may play a more 

important role. Remnant communities in our study areas that had experienced 

fragmentation during decades are small sized (Ribeiro et al. 2009) and within a forest 

matrix with different successional stages. Biomass loss near forest edges (≈100 m of 

the edge) due to desiccation and wind turbulence has been evidenced in other 

fragmented systems (Nascimento and Laurance 2004; Laurance et al. 2006). 

Moreover, the decay in large bodied frugivorous lead to a decay in large-seeded 
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animal dispersed trees, which have high carbon storage and positive correlation with 

maximum tree height and wood density (Bello et al. 2015).  

Models predicted that tree communities with thicker leaves are prone to have 

the highest loss of basal area. This result expresses the predicted loss of late 

successional canopy species with thicker leaves, a conservative leaf strategy (Iida et 

al. 2014). Nevertheless, functional changes in the short time did not reveal directional 

shifts neither for trees nor for juveniles in remnant communities, thus not evidencing 

a clear ‘secondarization’ process. However, trees are affected by a past landscape 

structure showing a time-lag response to past events (Metzger 2009). Therefore, the 

fall of larger and older trees, which leaded to the biomass loss of conservative species, 

may be partially attributed to the strong fragmentation and defaunation experienced 

by these forests.  

What short-term functional composition changes can tell us about forest dynamics?  

To our knowledge this is the first study of forest dynamics focused on 

functional community traits in the subtropical portion of the Atlantic Forest, which is 

a hotspot of biodiversity and an extremely threatened forest (Myers et al. 2000; 

Metzger 2009). Leaf traits and seed mass better captured the short-term functional 

composition changes. Our study confirmed the hypothesis of the directional changes 

in functional composition of secondary forests towards more advanced successional 

communities (conservative traits). Secondary forests are getting more conservative 

leaves, but the recovery to heavier seed mass, which would be also expected, did not 

occurred. We also confirmed the loss of biomass and conservative traits in old-growth 

forests, which are associated to the fall of big trees that in turn express the loss of an 

important structural feature of these forests. Further changes in the remnant 
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communities did not express directional changes that could evidence the 

‘secondarization’ hypothesis. Nevertheless, to complete the understanding of the 

dynamics of remnant forest communities will be necessary further monitoring.  Five-

year interval can be considered a short period to analyze dynamics of long-lived 

organisms, such as trees. However, when the changes in community structure are 

associated with changes in functional composition, short-term dynamics proved to be 

a useful time spans to reveal interesting properties of community dynamic, especially 

considering forests under anthropic pressure (as fragmentation and hunting) and under 

recovery (as secondary forests). 
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Supplementary material. Chapter 3 

Appendix 1 

Multi-model inference of the leaf functional composition, for tree and juvenile communities 

at remnant and secondary forest, considering variation in basal area (∆BA) and number of 

individuals (∆A). Selected variables are in bold. 

Remnant tree communities 

∆BA LT LD LNC LPC SLA LDMC LA 

Importance: 0.72 0.18 0.12 0.07 <0.01 <0.01 <0.01 

∆A LT LPC LD LNC SLA LDMC LA 

Importance: 0.36 0.1 0.07 0.05 <0.01 <0.01 <0.01 

Secondary tree communities 

∆BA LPC LNC LT LD LDMC SLA LA 

Importance: 0.51 0.25 0.17 0.03 0.02 0.01 <0.01 

∆A LNC LT LPC LD LA SLA LDMC 

Importance: 0.268 0.149 0.114 0.06 0.016 <0.01 <0.01 

        
         Remnant juvenile communities 

∆BA LT LD LNC LPC SLA LA LDMC 

Importance: 0.291 0.162 0.129 0.045 0.025 <0.01 <0.01 

∆A LT LD LNC LPC SLA LA LDMC 

Importance: 0.214 0.164 0.13 0.027 <0.01 <0.01 <0.01 

Secondary juvenile communities 

∆BA LT LNC LPC LD LA SLA LDMC 

Importance: 0.278 0.162 0.131 0.084 0.061 <0.01 <0.01 

∆A LT LNC LPC LD SLA LA LDMC 

Importance: 0.217 0.132 0.083 0.052 <0.01 <0.01 <0.01 
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Neste estudo evidenciamos a segregação entre as principais linhagens das 

angiospermas – Magniliids, Monocots, Eudicots – ao longo do gradiente sucessional, 

identificando que Magnoliids e Monocts (Arecaceae), clados ancestrais, conservam 

requerimentos de nicho que remontam às condições ambientais nas quais tiveram suas 

origens. No ambiente atual, encontram-se ligados ao ambiente florestal avançado 

(estágios avançados de sucessão), e suas características funcionais elucidam 

estratégias adaptativas que otimizam sua performance no ambiente florestal. Além 

disso, evidenciamos filtros ambientais filogenéticos que limitam o estabelecimento 

destes clados em ambientes abertos (estágios iniciais da sucessão), nos quais reinam 

os Eudicots. A coexistência das principais linhagens de angiospermas nos estágios 

mais avançados da sucessão leva ao aumento da diversidade filogenética e  evidencia 

a diferenciação dos Eudicots a uma ampla gama de condições ambientais. Os 

requerimentos de nicho evidenciados para Magnoliids e Arecaceae sugerem que, 

perante os cenários de fragmentação das florestas, a regeneração de muitas espécies 

destes grupos seja afetada.  

Quando consideramos a estrutura populacional de 20 espécies abundantes na 

floresta, observamos que o ganho de área basal no estrato superior da floresta foi 

predito por dois grupos de espécies iniciais secundárias: aquelas normalmente 

ocupantes de clareiras e as tolerantes à sombra e com grande número de indivíduos 

jovens. Encontramos, ainda, que a perda de indivíduos foi prevista por estratégias 

conservativas, as quais são ligadas as espécies de crescimento lento associadas às 

florestas mais preservadas. Em um intervalo de cinco anos, espécies com estratégias 

aquisitivas ganharam biomassa, crescendo e/ou recrutando novos indivíduos no 

estrato superior. Estas espécies, normalmente ligadas a ambientes perturbados, 

quando estabelecidas atingem rapidamente o dossel potencializando sua capacidade 
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de maturação e dispersão. Por outro lado,  espécies mais conservativas perderam 

indivíduos neste estrato, sugerindo senescência ou morte decorrente de estresses 

gerados por alterações ambientais relacionadas à fragmentação. Quando consideramos 

os indivíduos juvenis, o resultado se inverte: aquisitivas perdem indivíduos e 

conservativas ganham área basal. Indicando que espécies aquisitivas ligadas a 

ambientes mais ensolarados recrutam mas não sobrevivem até a fase adulta no 

ambiente sombreado. Nossos resultados seguem padrões previstos pelo trade-off entre 

mortalidade-crescimento, relacionado as diferentes estratégias de vida das espécies; 

porém, a ocorrência da perda de indivíduos de espécies conservativas não pode ser 

explicada por este trade-off, visto que estas espécies geralmente possuem alta 

sobrevivência e longevidade. Observou-se, ainda, a ocorrência de altos valores do 

coeficiente de skewness – que reflete a estrutura das populações – associados às 

espécies iniciais secundárias tolerantes a sombra, indicando que estas seguem 

regenerando e que, provavelmente, seguirão mantendo suas altas abundâncias, 

especialmente nas florestas secundárias onde são dominantes.   

Saindo do nível dos clados e das espécies e passando para o nível da 

comunidade, comparamos a dinâmica de florestas remanescentes e secundárias. 

Encontramos que as florestas remanescentes estão perdendo área basal (i.e. perdendo 

biomassa), a qual não é decorrente de uma maior perda de indivíduos, mas 

especificamente da perda de indivíduos grandes - detentores de grande área basal. 

Nossos modelos indicaram que indivíduos mais suscetíveis são aqueles possuidores 

de folhas espessas, uma característica foliar de conservação de nutrientes ligada a 

espécies de crescimento lento e tolerantes a sombra. No entanto, mudanças funcionais 

significativas nas comunidades no intervalo de cinco anos foram encontradas apenas 

para as florestas secundárias, indicando mudanças direcionais que expressam o 
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amadurecimento destas florestas levando ao aumento de características conservativas 

nessas comunidades.  

Com estes três estudos conseguimos elucidar os requerimentos de clados e 

espécies e suas associações a ambientes perturbados ou conservados, os quais levam à 

segregação destes no espaço e no tempo. Concluímos que a conservação de clados 

basais e espécies de características conservativas está ligada aos estágios mais 

avançados da floresta e que mudanças ambientais como aquelas decorrentes da 

fragmentação florestal podem afetar negativamente as populações destas e 

positivamente aquelas espécies dominantes de florestas secundárias. Mudanças nas 

abundâncias e na produtividade (ganho de área basal) foram preditas por 

características funcionais das espécies e comunidades. Desta forma, as características 

funcionais das espécies e a composição funcional são informações que podem auxiliar 

no monitoramento da dinâmica florestal, bem como na elaboração de projetos de 

restauração florestal e no desenvolvimento de modelos que incorporem cenários de 

mudanças climáticas.  
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