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\Vc prescnt a. set of six non-linear stochastic diffcrential equations for the six varia.hles which are 
relevant for the dynamica.l behavior of the ma.gnetic moments in ferrofiuids, na.mely, the three Euler 
angles of the magnetic partick, the two polar angles of thc magnetic momcnt rclativc to the partide 
anel the moelulus of the magnetic moment. The interaction between the magnetic particle anel the 
solvent fluid is modeled by dissipative and random noise torques, and so is the interaction between 
the partide and its magnetic moment, treated as an independent physica.l entity. In the a.ppropriate 
limits, the model system reduces to the cases of super-paramagnetic or of non-super-para.magnetic 
(blocked rnagnetic rnornents) pa.rticles. Nurnerical results shmv that for non-zero rnornent of inert.ia 
the precession of the magnetic moment arounel the magnetic fielel is accompa.nieel by "nutation". It 
is also indicat.ed how the dynamic cornplex susceptibility may be calculated frorn the equations of 
motion a.nd the numerica.l results show tha.t Uw nuta.tion kads to a sccond resonancc pca.k. 

I Introduction 

The rotational dynarnics of the rnagnetic rnornents in 
ferrofiuids is the essential phenomenon to explain the 
frequency dependent rnagnetic susceptibility of thcse 
materiais. Two distinct rotational rclaxation mecha
nisms may coexist in fcrrofiuids: the ::-.Jécl rclaxation, 
by 'vhich thc magnctic moment moves with respcct to 
the mecha.nical pa.rt.iclc, anel the Brmvnian, or Debye 
relaxation, corresponding to the pa.rtide's rotation in
side the fiuid. In rnost experimental situations one of 
these rnechanisrns iR dorninant, and this rnay be the 
reason why there is not., up to now, that we know, a 
satisfact.ory theory, sufficiently general to be applied 
for all situations, from the pure Nécl to thc pure Brmv
nian rclaxation, passing by all possible combinat.ions of 
thosc mechanisms. In this respcct the modcl of "tvm 
sphercs", by Fannin and Coffey[14] should bc men
tioned as a first effort. The non-incrtiallimit, i.e., whcn 
the contribution of the moments of inertia of the par
ticle to the equations of motion is negligible, in com
parison to the other forces involved, has been treated 
by Shliomis and Stepanov[3], \:Vhere they introduce the 
egg model. There they compare the magnetic particle 
\vith an egg, the yolk corresponding to the rnagnetic 
momcnt, anel show that in the non-inertial limit and 
for wcak applicd ficld thc equations of motion decou
ple, so allmving one to simultancously account for the 
combincd motion of the magnctic moment and the par-

ti de. 
The purpose of t.he present. paper is to present. a gen

eral set of equat.ions of rnotion for the r:ornbined systern 
of magnetic moment plus mechanical particle, inside a 
fiuiel. The main limitation of our approach is that wc 
elcal only with axially symmetric particles, \vith easy 
axis of magneti?.a.tion parallel to the symmetry axis. 
However, the magnetic moment is allowed to rota te in
side t.he particle, as \Vell as to have an oscillat.ing modu
lus, and the part.ide is allowed to rot.ate with respect to 
t.he solvent, which is irnrnobile wit.h respect. to the labo
ratory. The suspension is considered sufficiently dilute 
for the partide-part.ide int.erar:tion to be negligible, so 
t.hat we deal only with single partide dynarnics. 

In contradistinction to most cxisting theories, our 
approach includes in the equations of motion thc par
ticle's momcnt of inertia. To neglect incrtia may be a 
good approximation for many ferrofiuids , because of the 
smallncss of thc particlcs, but wc are prcscnting a the
ory which intends to be suffidently general to indude 
non-sta.ble suspensions, for which the particles may be 
considerably bigger. In the case of super-paramagnetic 
partides, an asper:t. which distinguishes our theory frorn 
t.he usual approaches is t.hat. t.he rotation of the poten
tial gradient on the rnagnetic rnornent, accornpanying 
the Brmvnian rotation of thc pa.rticle, is taken into ac
count. 

In section II \Ve writc the cquations of the rota
tional motion of an axially symmetric particle inside 
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a fluid (La.ngevin-type equations), based on the gener
alized Euler-Lagra.nge equations. In section III we ob
ta.in, from the equations of section II, in a convenient 
limit, the equations of motion for the magnetic moment 
f.L, vvhich reduce, in the case of consta.nt modulus of f.L, 

to the Gilbert 's equation. In section IV we arrive at 
the set of six coupled equat.ions, for the six degrees of 
freedorn, t.he t.hree Euler angles of the partide's rota
tions, t.he t.wo polar angles of f.L and its rnodulus. In 
ser:t.ion V we indicate, briefiy, hmv to r:alr:ulat.e, by nu
merical simulation of the cquat.ions of motion, the dy
namic magnetic susceptibility, a procedure which was 
more carefully explained in a previous paper[22]. Some 
less general situations are considered in section VI as 
particular cases and numerica.l results are given. 

li Rotational Dynamics of a Par
ticle in a Fluid 

Consider a particle of axially symmetric shape in sus
pension in a fiuid. The principal moments of inert.ia 

\vill be denoted by h = ! 2 and h. Disregarding t.rans
lational degrees of freedorn, its Lagrangian rnay be writ
ten in tennR of the Euler angles e' <P and 't/! (in t.he nota
tion of Goldstein[16]), taken a .. c; generalized r:oordinat.es, 
as 

1t "2 >) . 2 h : : 2 ' ' L= -(e +o~ sm ())+-(li; + ocos()) -l' ((). Q.·) (1) 2 . 2 . . . 
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where F(B, çb) is some orientation dependent potential. 
It ca.nnot depend on lJ) because of the axial symmetry 
of the partide. 

The interadion forces ( torques) between the parti
de anel the fiuid are of the dissipative and noise types. 
Therefore, they are not induded in the Lagrangian, 
but instead, we have to use the '"generalized Euler
Lagrange equat.ions", with t.he corresponding t.orques, 
represented by Qi, at t.he right hand side: 

d àL àL 
--. --=Q;, 
dt ôq; ôq; 

(2) 

where q; =(),<Por vi. 
\Ve 'vrite the non-conservative torques Qi as sums 

of dissipative and noise terms, in the form 

D:F 
Qi = --

8
. + ri(t), 
q; 

(3) 

where :F is the following Rayleigh dissipat.ion function 
[16], 

(4) 

and f; (t) are the noise torques. The dissipat.ion con
stants À and X may be differcnt because X is associ
atcd 'vith the particlc rotation around the symmetry 
axis, 'vhile À is associated with thc rotations perpen
dicular to it. Substituting Eqs. (1) , (3) and (4) into 
Eq. (2) \Ve obtain the following system of equations for 
the particle's rotation: 

I 1 ( ij - (y sin e c os e) + I:~ ~ (l}; + ~ cos e) sin e + À iJ + Ve = r e , 

h ( ~ sin2 e+ 2 ~e sin ecos e) +h cose :t ( Ó +~cose)+ 

-I:3 ('J! + ~cose)Ôsine + >- ~sin2 e+ l 'o =r .p, 

(5a) 

(5b) 

d . . . . 
h dt (1!! + q'1 cose)+ X (1!! + ó cose)= r 1/: · (5c) 

,vhere lá = 81' I ae and l & = DF/ 8</J. The expression 
( ~~ + ~cose) was lcft unbroken wherever it appears in 
the above equations because it represents the compo
nent of the angular velocity vector w along the symme
try a.xis a.nd we make use of this fa.ct in the interpreta
tion of t.he dissipative torques in terrns of the cornpo
nents of w, as follows. 

Lct us define the following four unit vectors: z, 
along thc laboratory z-axis, c, along the particlc 's sym-

mctry axis, a , perpendicular to thc plane containing c 
and z (&-plane) and b, perpendicular to thc &i-plane, 
namely, 

z = (0, o, 1) ' 

c = ( sin e r:os ~0, sin e sin q'>, r:os e) , 
zxc 

a = -.-e- = (- sin cp, cos di, O) , 
sm 

(6a) 

(6b) 

(6c) 
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b=cxa=(-cosecoscp, -cosesincp, sin8). (6d) 

As a notation to be used throughout this work, sub
scripts z, c, a or b on a vector indicate its orthogonal 
projection on the z, c, a or b directions and subscript 
c indicates the vector's projection on the plane perpen
dicular to c . 

The pa.rtide's angular velocity vector w may be de
composed into a. sum of two vectors, perpendicular a.nd 
parallel to c, re~pectively, 

with 

anel 

W = W c +wc C, 

Wr: = c X c = ( -ê sin cp - q~ sin B COR e r:os ç~, 

é cos q'J - ó sin ecos e sin rp, J) sin2 8) 

Wc = ~J + cpcose. 

The orthogonal projer:tion of wl' on the z.-a .. xis is 
• . 2 

Wcz = W c · Z = q)Hlll B , 

and the orthogonal projection of w (or of wc) on the 
direction perpendicular to the a plane is 

Wa = w · a = Wc · a = é . 
Thus \Ve see that the dissipative torques present in Eqs. 
(5a.), (5b) a.nd (5c) are given by w,, W 0, a.nd Wc, respec
tively, times the dissipation pararneters À or À

1
• 

The noise torques will be treated along these sarne 
lines. \Ve start by defining the noise torque vector b~

its orthogona.l componcnts, 

The noise becornes cornpletely defined by stating 
the statistics of its threc components. The usual pro
cedure is to consider them as statistically indcpendent, 
Gaussian white noise. This is. hmvevcr. not a ncces
sary assurnption anel we leave it open for future rnod
eling. \Vhat we need now is to know how the three 
components come into Eqs. (5). Guided by the above 
dccomposition of the dissipative torque, we are lcd to 
identify 

ro = ra' 
r 2" = r". z = ru :;in e , 
rc. 

Before '"'e proceed to deduce the equations of mo
tion for the general r:ase of rnagnetic partides in sus
pensions we show, in the next section, hmv to obt.ain, 
frorn Eqs. ( 5), the equations o f rnotion for the spherical 
coordinates of a mono-domain magnetic moment. 

111 Equations of Motion for a 
Magnetic Moment 

The magnetic moment Jt of a mono-doma.in particle i:; 
related to its internal angular momentum S by Jt = ;S, 
where ~l is the gyro-rnagnetir; far:tor. Alt.hough the rnod
ulus S of S is taken as constant in most works on supcr
paramagnetism and magnctic fluids, for vcry small par
ticles its o:;cillation may be :;ignificant and we prefer to 
allmv it to be time dependent. The modem technol
ogy allows the preparation of :;amples with ma.gnetic 
particlcs whose diametcrs are smaller than 20.4_(17] and 
super-paramagnctic clusters containing only 12 mag
netic atoms have also been reported[18]. \Ve ca.n model 
the magnetic moment by a rotating charged partide, in 
the limit of zero moments of inertia., ! 1 ---+ O, 1:; ---+ O, 
and '4~ ---+ :x> so that !J-J; = S. Bccause in thc ncxt scc
tion \Ve '"ill work with the joint system, a particlc and 
its fiuctuating magnetk moment, \Ve \Vrite the general
ized coordinates, potential energy, dissipative anel noise 
torques, \Vith a nota.tion distinct from that correspond
ing to the partide. 1\arnely, '"'e rnake the following sub
stitutions: e ---+ v, q'J ---+ if, h 'lij ---+ S, V ---+ TV, À ---+ 
Ç, X ---+ ( and r ---+ T. We also introducc hvo mod
ifications in the equation corre:;ponding to Eq. (5c), 
namely, we write S- S0 instead of S in the dissipative 
t.errn and introduce a torque lV_. , whose origin 'vill be 
explaincd uclmv. In thc said limit and \Vith thc ne\Y 
notation thc systcm of Eqs. (5) becomcs: 

(7a) 

(7/J) 

S + ((S- S0 ) +H'. = T,. (7c) 

Here we have \vritten S - S0 , instead of S, in the dis
sipation t.errn of Eq. (7c) to account. for the far:t that 
thc rclaxation of thc fluctuations of S is towards a most 
probablc (cquilibrium) valuc 50 and not towards O. It 
may a.ppear strange that, even though we have derived 
t.he equations of rnotion for S frorn the equations of 
rnotion for a syrnrnet.ric part.ide, in a convenient. lirnit., 
we have now to add a terrn "ad hor:" (S0 ), which does 
not havc an equivalcnt in the particlc's equations. This 
is so because in classical physics the equilibrium mag
netizat.ion is always zero. Nrm-z.ero equilibriurn rnag
netic rnornents can only exist because of t.he quanturn 
rnechanical nat.ure of rnatter and, therefore, cannot be 
dcduccd from a pure classical approach . The torquc 
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lY. was introduced because a crystal ficld may have an 
effective interadion with p, with origin in an orbital 
contribution to 8[29], with a possible torque cornpo
nent parallel to S. There is not an equivalent terrn in 
Eq. ( 5r:) beca use of the assurned axial syrnrnetry of the 
particle. 

It is interesting to study the behavior of Eqs. (7) 
in the absence of noise, T; = O and 'vith T'V8 = O. Eq. 
(7c) has then the trivial stationary solution S = 50 . 

Assuming this constant value for S in Eqs. (7a) and 
(7b) they reduce to 

So ;á sin t9 + ( t9 + ll'o = O , 

- So 0 sinO + ~ ;á sin 2 O + l'Vp = O . 

(8a) 

(8b) 

The conservative torques, -T;Vi! and -H'cp, have, 
usually, contributions from two different origins, the in
teraction of S with a crystalline, anisotropy field and/or 
\vith a rnagnetir: field, which can also be of several dif
ferent origins. In the r:ase of rnagnetic field, H, the 
potential energy is TV = -p · H. \Vith a little of al
gebraic vmrk one can shmv, in this case, that the set 
of Eqs. (8) is equivalent to the \vell known Gilbert 's 
equation [10], 

(::: = ~~ 1L X [H -:2 (:::] , (9) 

for IL = )S and S = 5 0 . This equation was used by 
W. F. Brown[12] as a starting point for his stochastic 
theory of super-paramagnetism, where he assumed the 
magnetic ficld H to contain a noise tenn. A more gen
eral theory for super-paramagnetism, which allows also 
for oscillations on the modulus f-1 = ''/S of the mag
netic moment, was vmrked out by Ricci and Scherer 
[20, 21 , 22], based on the set of Eqs. (7) . For this rea
son we vv·ill not continue to explore the consequences 
of Eqs. (7) in the present pa.per, turning, instead, to 
the more general a.pproach, where the rotations of the 
mechanical particle are taken into a.ccount, in addition 
to the motion of S rclative to the particle. 

IV Equations of Motion for 
Small Magnetic Particle 
Suspension 

a . 
lll 

In recent years several researchers[1, 4, 14, 23] have 
drmvn attention to the irnportance of the rnotion of 
the magnetic particle, its inertia and viscous interaction 
with the fluid , to the dyna.mic magnetic susceptibility 
of ferrofluids. A theoretir:al treatrnent of this problern, 
\vhich is both, more fundamental and more general than 
those previously published, follows naturally frorn the 
context described above. 
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Taken together, the systems ofEqs. (5) and (7) con
tain all the degrees of freedom relevant to the problem. 
To the potential energy terrns, l' in Eqs. (5) and TV in 
Eqs. (7), the interact.ion energy bet,veen the rnagnet.ic 
rnornent and t.he partide, \vhich we will denote by U, 
has to be added. Due to the particle's symmetry, this 
term ca.n only depenei on S a.nd on the angle between 
S and t.he syrnrnet.ry axis, c. It is convenient. to define 
another orthogonal set of unit vectors, related to t.he 
direction o f the rnagnetic rnornent., narnely, s, in t.he 
s direction, u, perpendicular to the sz-plane and v, 
perpendicular to the su-planc, 

s = ~ = (sinO cos <p, sin t9 sin <p, cos t9) , (lüa) 

zxs 
u = -- = (- sin, .~ c os "~ O) 

sinO '"'' r: ' 
(10b) 

v= sxu = (-coslJcos<p, -coslJsin<p, sint9). (lOc) 

The interaetion energy U ean then be writ.ten as U(S, s· 
c). In principle thc particle can intcract also with other 
ficlds, besides H, as is the case if it has an clectric 
dipole and an electric field is present. For this rea .. c;on 
we keep also t.he potential energy F(O, ifJ) in the new set. 
of equations. 

The dissipative interaction associated with the rota
tion of S rclative to the particle '"ill be written in terms 
of the relat.ive angular velocit.y vector. Sinr:e only ro
t.ations perpendir:ular to S ean lead to a rneaningful 
interar:tion torque \vith origin on the relative rnotion, 
we define the rclative angular vclocity w,. as 

w,. = -w-w8 , 

where 

-w=sxs 

is t.he angular velocity of rotation of t.he rnagnetic rno
mcnt 'vith respcct to the labora.tory and 

w 8 = s x w x s = w- (s · w)s. 

is the orthogonal projer:t.ion of t.he part.ide's angular 
velocity w on the plane perpendieular to S. The dissi
pa.tive interaction torque on the parti de is then +( w,.. 
The plus sign is because of the wa.y we defined w,., 
where the partide's angular velocity appears with a 
rninus sign. Guided by the interpret.ation of the dis
sipat.ive torque tenns of Eqs. (5) in terrns of angular 
vclocit.y components, as explained bellmv the sa.id equa.
tions, we write dmvn immediately the dissipative torque 
t.errns to be added to the left.-hand sides ( therefore, \vith 
a - sign) o f Eqs. ( 5), narnely 
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-Ç W.m = -~ w.,. · a , 

-( w.,.ez = -( [wr - (wr ·c) c] · z = -( (wrz - w.,, cos (} , 

-Ç Wrc = -~ Wr ·C . 

Of course, all this scalar products, as well as those 
which follow, in the next equations, may be easily writ
ten a.s functiom; of the four a.ngleti e, cp, !') anel ;p a.nd 
their time derivatives, by using Eqs. (6) and (10). How
ever, because scalar proclucts are very easily handlecl in 
nurnerical proceclures, we prefer to leave t.hern in this 
forrn. 

Clcarly, thc torquc on thc magnctic momcnt, duc to 
the relative motion, is the "readion" to the torque on 
the parti ele, i.e., it is equal to -(w" and, in pla.ce of ( 0 
and ( <P sin 2 v in Eq s. (7) we shall use (remem bering 

that W·r·s = Wr) 

~·w, . .,. = Çw,. · u, 

(w.,._, = (w,. · z. 

!'\o tcrm coming from thc rclativc angular vclocity Wr 

has to be added to Eq. (7c) because w,. is perpendicu
lar to S. Hmvever, there is the term ( (S- 50 ) already 
present in that equa.tion, with origin in the (quantum) 
flm:tuations of S, and this terrn will be kept. Since 
angular moment.um has to be conserved, its reaction 
countcrpart on thc particlc has to bc addcd to Eqs. 
(5). Calling 

R.= (S- So) s, 

the terms to be added to the left-ha.nd sides of Eqs. (5) 
are 

-Ç' R a = -Ç' R.· a= -Ç' (S- So) s ·a , 

-( Rr:z = -([R- ('R.· c) c] · z = -( (S- S0)[s- (s ·c) c]· z, 

-t Rc = -t R.· c = -ç' (S- So) s ·c . 

Thc noisc torqucs of intcraction bctwccn thc par
ticlc and thc magnctic momcnt can bc writtcn down 
along thc samc lincs of proccdurc as clone for thc noisc 
torques of the fiuid on the particle, a.t the end of sec
tion II. \Ve assume three orthogonal, independent, noise 
torque vectors, along the unit vectors defined with re
spect to the direction of the magnetic moment: 

r=T.s+T;,u+T;,v. (11) 

Being r the t.orque on the rnagnetir: rnornent, t.hen the 
torque on the parti de is -r. Following the sarne line 
of reasoning as done before, we ident.ify the torques in 
Eqs. (7): 

To=T;,, 

1:, = Tsz = Tv sin iJ , 

T.=Ts. 

Corrcspondingly, thc following tcrms havc to bc addcd 
to thc right-hand-sidcs of Eqs. (5): 

To = -Ta = -r·a, 
Tt, = -'Tcz = -[r- (r·c)c]·z , 
r;. = -r., = -r . c . 

Therefore, the state of the cornposecl systern, t.he 
part.ide and its magnetir: rnornent, is describecl by t.he 
G gcncrali.-;cd coordinatcs, B, qJ, 1j!, d , ;p and S, whosc 
dynamical bchavior is govcrncd by thc follmving sct of 
couplcd diffcrcntial cquations: 
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I, (B - <Y sin (} cos 8) + I:~ ;p ( 1!• + ~ cos 8) sin 8+ 

>.. iJ - çw,." + -ç' Ro + Fg + Ug = r"· - T;, , (12a) 

h(6sin2 e+ 2 ~ éisinecose) +h cose :/i!~+ ocosB)+ 

- I3 (~~· + (~ r: os B)B sin e + >.. Ó sin ~ e - fwrc-:: - Ç' Rc-z + \.~i• + U <!' = r, sin B - Tr-:: , 

!:>. :t (1!' +Ocos(})+>..' (1!' +Ocos(})- (Wn:- (R"= r"- T;.' 

(12/J) 

(12c) 

(12d) 

(12c) 

(12f) 

S '{; sin d + Çw,., + T·V,9 + U,, = +Ta , 

S cos '19 - S {J sin {} + ~Wrez + ~Vp + U 'P = + Tsz , 

S + Ç'(S- So) + Us· = Ts . 

This set of six equations is of very general appli
cability on mag;netic suspensions. It allows for a larg;e 
variety of modeling: There are t.hree independent con
servat.ive interact.ion potent.ials, 1/, U and lV, four dis
sipative pararneters, >.., >..', Ç, and Ç', and also the noise 
torques r and r, whose statist.ical properties are open 
for modcling. Particlc-particlc intcraction 'vas not cx
plicitly taken into account. 

V Dynamic Susceptibility 

To calculatc, from thc sct ofEqs.(12) thc dynamic mag
nctic susccptibility, and thcrcforc thc absorption lincs 
of ma.g;netic resonance, it is better to transform them 
into the usual form of first order differential Lang;evin 
equations[19]. 1'\oting; that the first three equations are 
second order, we introduce nevv variables, 

(} = 1] 

cp = 11 

J; + d) cos () = p (13) 

and transfonn Eqs.(12), so t.hat., together with 
Eqs.(13), v,·e have a set of nine first order equations. 
For examplc, Eq.(12a) becomcs 

h (iJ - v 2 sin ()cose) + I;~ JJ p sin () + À.rJ 

\Ve use also the Wicner· pmccsses T;Vj(t), which are 
rclated to the 'vhite noisc components r j ( or whatever 

appea.rs at the rig;ht hand side of Eqs.(12)) by 

j
·t 

TVj (t) = r J (t')dt', 
•Ü 

and make the usual substitutions rj(t)dt---+ dH•j(t) to 
write the set of stochastic differential equations in the 
form 

dX;(t) = A;(X(t), t)dt + 2::: Bij(X(t))dll'j (t) (14) 
j 

where X;(t) are the dependent variables 
17, 11, p, 8, rb, 7/';, {}, rp, S and Ai(X(t), t) and 
B;;(X(t)) are obta.ined by comparison between Eq.(14) 
and thm;e from the set of first order equations men
t.ioned above, after t.he expressions for F, U and ll/ 
have been introduced. In the typical case of magnet.ic 
resonance, with a st.rong com;tant rnagnetic field H 0 

parallcl to the z-axis anda periodic weak ficld F( t) per
pendicular to it, thc A.;(X(t), t) turn out to bc writtcn 
in the form 

A.;(X(t), t) =L {ij(X)Fj(t) + A.?(X). 
i 

(15) 

Following the procedure of reference[22], the response 
functions are then g;iven by 

<I>;J(t) = l:\rA-J(x)âA-(X;(t [ x))o),q. (16) 
k 

The syrnbol X; ( t I x) rneans the stochastic variable Xi 
at time t, given that the "vector" of stochastic vari
ables X had the value x at thc initial time t = O, 
(X;(t I x))o means avcrage ovcr many realizations of 
X;, from O to t , in abscencc ofthe pcrturbing ficld F(t) , 
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starting from thc point x, ô~c mcans dcrivativc v.rith rc
spect to the k component of the initial "point" x and 
(- · )eq means average over the equilibrium distribution 
of initial points. This equilibrium average may include 
average over the distribution of partide's characteris
tics, if polydispersity is to be considered. For exa.mple, 
if the partides are all rnade of the sarne material and 
have the sarne shape, varying only in siz.e, assurning 
some given distribution of a linear dimension, r, then 
the other particle's pararneters shell be scaled accord
ingly. For cxamplc, 

(17) 

As was shown in refcrcncc[22], Eq. (16) may be cval
uated from numerical simulations o f Eq. ( 14). From 
thc rcsults obtained for <!> ij ( t) we can then calcula te 
the susceptibility Xii ( w) by numerical Fourier-Laplace 
tra.nsform. 

VI Some Limit Cases and Re
sults of the Simulation 

Severa.l interesting limit situations are rea.dily obtained 
from Eqs.(12). The "super-paramagnetic'' limit, for 
which the pa.rtide's coordinates, (), cp, a.nd 7/\ are taken 
as constants, so that the system reduces to the last 
threc equations, or, equivalently, to Eqs. (7) , has 
bccn trcated in thrce previous papers by IUcci and 
Schcrer[20, 21, 22] . A furthcr simplification, in this 
limit, \Vhich is appropriate for most cases of practi
cal interest, follows by assuming S = S0 =constant. 

In this case thc only rclevant cquations are Eq. (12d) 
and Eq. (12e), and, moreover, the term in S also van
ishes. The noise torques T,, and T,, may then be writ
ten in terms of a stochastic magnetic field, rendering 
our set of equations in a form equivalent to Brown's 
generalization[l2] of Gilbert's equation, Eq. (9). This 
r:ase has been treated by several authors, of which a 
very interesting account is given in a recent paper by 
Gan:ia-Palacios and Láz.aro[15], \vhere rnuch nurnerical 
work is presented. 

The "blocked'' limit (also called "Brownian'' 
limit [24] o r "inertiallirnit" [2]), corresponds t.o the case 
when the magnetic moment is blockcd along the par
ticle's symmetry direction, i. c., O = () and cp = ó. 
This may happcn becausc the samplc is kept bclow the 
"blocking tempcraturc" T B [28] or beca use the mate
rial isso highly anisotropic that thc magnetic moments 
only exists parallel to the easy axis[18]. The partide is 
still immersed in a fiuid carrier, being able to rotate, 
together with its magnetic moment. 

In terms of thc sct of Eqs.(12), the blocked limit is 
obtaincd by assuming an interaction potential U of the 
form -U06(s-c), with U0 ---t co, so tha.t the only states 
energetically possible are those \Vith s = c, i.e., O = () 
and tp = cp. By summing Eq. (12a) with Eq. (12d) 
and Eq. (12b) with Eq. (12e) the interaction terms Ue 
and U0 as well as Uq, and l/; cancel out. The terms 
conta.ining w,.a, Wrcz , 'R-a, Rcz, Ta, and T ez bccome 
idcntica.lly zero, and Rc bccomes (S - S0 ) . Choosing e 
and ó to denote thc common polar a.ngles, the system 
of cquations, in the nota.tion of the prcvious scction, 
becomes: 

I, (r]- v 2 sin ecos e) +I:~ vp sin e+ À r1 + Ve + S v sin e+ VVe = r" , 

Il ( 1/ sin 2 e + 2 v T] sin e c os e) + I 3 c os e p - h PTI sin e + À v sin 2 e 

(18a) 

+ vif, + s COR e - s T/ sin () + H1
ó = rb sin () ' (18/J) 

(18c) 

(18d) 

hp + Xp - é,'(S - So) =r c- Tc , 

S+((S-So) = +T,_ . . 

This is still a rather general set of equations. A 
first obvious simplifica.tion occurs, in most cases of in
terest, \vhen S = S0 . Then also S = O and T;. = O and 
the systern is reduced to three equations. 1\Iuch work 
has been done in this case, rnainly in t.he r:ont.ext of 
eler:trir: dipolar rnoler:ules, for whir:h S = S0 = O. For 

example, l\iicConnell[25], Coffey et al. [26], a.nd Gaiduk 
and IvlcConnell[27] describe dielectric relaxation and 
dynamies of polar moleeules in great detail. 

As a simple illustra.tion \VC \Vill assume a. constant 
modulus for thc magnetic momcnt , i.c. , S = S0 , and 
for thc intcraction potcntial we considcr only l'l/ = 
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-M ·H = _AtSos ·H, ,vhcrc H = H 0z is a constant 
field. The interaction energy between the magnetic mo
ment and the field is then 

TY = -tL. H= -SoAi Ho cose. 
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\Vith this simplifications, the system of Eqs. (18) bc
comes 

I 1 (i)- 11
2 sin ecos e) +I;, vp sin e+>.. TJ + S0 11 sin e+ S0 1 H0 sin e =r" (19a) 

h (i; sin 2 e + 2 v r1 sin e c os e) + h cose p - h pr1 sin e + >..v sin 2 e - So r1 sin e = r b sin e (19b) 

hp+>..'p=rc. (19c) 

\Vc will considcr in this simplc illustration only the limit of vcry wcak noisc. Thcn Eq.(19c) has the approximatc 
stationary solution p"" O. \Vc, thcrcforc, neglcct p in Eqs.(19a) and (19b), which bccomc 

It (ri - v 2 sin ecos e) + >.. TJ + So v sin e + SoAi Ho sin e = r() . (20a) 

h ( IJ sin e + 2 v TJ cose) + À.IJ sin e - So 71 = r b , (20b) 

\vhich , togethcr \vith thc dcfinition of T) and v in 
Eqs.(13) , forma sct of four first ordcr Langcvin cqua
tions. 

The simulations, of which \ve present some results 
in the figures, have been developed along the follmving 
procedurc: An cnscmblc of 500 particles wcrc initially 
put on thc cquator, i.c., e = o and with ó = 71 = v = o 
and thc cquations of motion, with a diffcrcnt rcaliza
tion of thc noisc for cach particle, wcrc solvcd for some 
time, long cnough for thc cnscmblc to acquirc a station
ary distribution. Along this period the a.verage value of 
Sz = cos(e) (we choose S0 = 1) was ca.lculated. The re
sult is shown in Fig.1, for several values of the "moment 
of inertia", I f I*, \:Vhere I is I 1 and I* is an arbitrary 
reference value. \Ve see tha.t for very low I , (S;) in
creases rnonotonically to its stationary value ( v,:hich is 
vcry elos c to 1 beca use thc noisc is vcry lmv) , likc in 
thc supcr-paramagnctic case, whcn the ma.gnctic mo
mcnt preccsscs a.round thc ma.gnctic ficld following a 
spiral path. For biggcr va.lucs of thc inertia, e does 

not bcha.ve monotonically, but shows oscilations, a phc
nomcnon known as "nutation". 

In order to calculate the response funct.ions, the new 
state of each particle was taken as the initial state for 
500 independent realizations of the noise. A verage val
ucs of thcsc 250000 rcalizations havc bccn calculatcd 
along thc time, according to Eq. (16). By numcrical 
Fourier-Laplace transform of thc rcsponsc functions wc 
obtain the dynamic susccptibilities, X;J(w). The imag
inary part of thc diagonal componcnt, Im Xxx(w), is 
direct.ly related to the magnetic resonance line. \Ve 
show it, for several values of the moment of inertia, in 
Fig.2. For small I (~ super-paramagnetic limit) there 
is only one resona.nce peak ( - w is physically equivalent 
to +w). For bigger values of I e second peak becomes 
apparent, \vhich corresponds to the phenornenon of nu
tation, sccn in Fig.l. \Ve note that thc frcqucncy units , 
in Fig.2, are diffcrcnt for the diffcrcnt plots, and, thcrc
forc, thc absolutc valucs of thc frequcncies should not 
be uscd for comparison bctwcen thc diffcrcnt plots . 
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Figure 1. Average value of Sz(t) for four different values of the moment of inertia. 

I/I*= 0.20 
15.0 

10.0 

-5.0 

-10.0 

-15.0 [_~~-----'--~-'-------' 
0.0 

I I I*= 1.50 

0.0 
ffi 

4.0 

2.0 

0.0 

-2.0 

1/1* 1.00 

0.0 

1/1* 4.00 

0.0 
ffi 

Figure 2. Imaginary part of the susceptibility for four different values of the moment of inertia. 
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