
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ANTONIO CARLOS SCHNEIDER BECK FILHO

Transparent Reconfigurable Architecture
for Heterogeneous Applications

Thesis presented in partial
fulfillment of the requirements
for the degree of Doctor
of Computer Science

Prof. Dr. Luigi Carro
Advisor

Porto Alegre, June 2008

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Beck Filho, Antonio Carlos Schneider

Transparent Reconfigurable Architecture for Heterogeneous

Applications / Antonio Carlos Schneider Beck Filho. – Porto Alegre:
PPGC da UFRGS, 2008.

188 f.: il.

Tese (doutorado) – Universidade Federal do Rio Grande do Sul.

Programa de Pós-Graduação em Computação, Porto Alegre, BR-RS, 2008.
Advisor: Carro, Luigi.

1. Microeletrônica. 2. Arquiteturas. 3.Reconfiguráveis. I. Carro, Luigi.

II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquiria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

To Sabrina and my parents.

ACKNOWLEDGMENTS

First, I would like to give special thanks to my dear Sabrina and to my parents.

I would also like to express my gratitude to the following friends and colleagues:
Julius Mattos, Mateus Beck, Émerson Barbieri, Fernando Cortes, Leomar Rosa, Marcio
Oyamada, Emilena Specht, Alexandre Gervini, Marco Wehrmeister, Rodrigo Araújo,
Daniel Biasoli, André Brandão, Cassio Ehlers, Eduardo Funari, Marcos Pont, Rodrigo
Motta, Dalton Colombo, Renato Hentschke, Lisane Brisolara, Victor Gomes, Renato
Hubner, Luis Otávio Soares, Arnaldo Azevedo, Ivan Garcia and all the people in the
lab.

My sincere thanks to Professors Flávio Wagner, Altamiro Susin, Sérgio Bampi
and Ricardo Reis; to my advisor in The Netherlands, Professor Georgi Gaydadjiev and
to my advisor here in Brazil, Professor Luigi Carro.

Finally, I thank the Federal University of Rio Grande do Sul and the research
support agencies, CAPES and CNpQ.

The long version, in Portuguese:

Obrigado...

À Sabrina Moraes. Por ter sido trocada várias vezes pelo trabalho, pelo
computador, por papers e deadlines. Novamente.

Aos meus pais, Antonio e Léia Beck, pelo constante incentivo e por entenderem a
minha ausência.

Ao Julius Mattos, pelo enorme força que me deu quando cheguei a Porto Alegre.
Sempre presente e disposto a ajudar.

Ao Mateus Beck, primo e parceria de rejecteds.

Ao Émerson Barbieri, grande amigo e colorado.

Aos amigos que vêm desde o tempo do mestrado: Fernando Cortes, Leomar Rosa,
Marcio Oyamada, Emilena Specht, Alexandre Gervini, Marco Wehrmeister e Renato
Hentschke.

E aos amigos que vêm desde a graduação: Rodrigo Araújo, Daniel "Jacaré"
Biasoli, André Brandão e Cássio Ehlers.

Pro pessoal do Gigante da Beira-Rio: Émerson, Eduardo Funari e Marcos Pont.
Neste período, vimos o Sport Club Internacional ser campeão de tudo: Libertadores,
Mundo, Recopa, Sul Americana e muito mais. E, de quebra, goleadas nos rivais
históricos.

À gurizada parceira de palas em Porto Alegre: Fernando, Rodrigo “Buka” Motta,
Dalton “Paulista” Colombo e Mateus “Amagura”.

Ao MP3 Player Team, que fez o Femtojava em FPGA tocar 3 segundos de MP3
em loop infinito: Victor Gomes, Renato Hubner e Julius.

Pro Arnaldo Azevedo, pro Ivan Garcia, e pra turma de portugueses. Amigos que
deixei no frio da Holanda.

À turma do futebol da informática, liderada pelo Luis Otávio Soares.

Pro pessoal do nosso laboratório, 67-213, e do laboratório ao lado, 67-211.

Ao grupo de Microeletrônica, em especial ao LSE (Laboratório de Sistemas
Embarcados).

Aos professores Flávio Wagner, Altamiro Susin, Sérgio Bampi e Ricardo Reis.

Ao Professor Georgi Gaydadjiev, meu orientador durante o Sanduíche na
Holanda. E também para a TUDelft, Universidade que frequentei.

Ao Professor Luigi Carro, por me orientar novamente, passar um pouco do ímpeto
em querer conquistar o mundo e lembrar dos deadlines dos congressos.

À Universidade Federal do Rio Grande do Sul e funcionários, pelo ensino de
muita qualidade. Também, pra CAPES e pro CNpQ.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS .. 11

LIST OF FIGURES ... 13

LIST OF TABLES .. 17

ABSTRACT .. 19

RESUMO.. 20

1 INTRODUCTION ... 21

1.1 Main Motivations .. 24
1.1.1 Overcoming some limits of the parallelism ... 24
1.1.2 Using the Pure Combinational Logic Circuit Advantages 26
1.1.3 Software Compatibility and Reuse of Binary Code 26
1.1.4 Increasing Yield and Reducing Manufacture Costs 27
1.2 Main Contributions ... 29

2 RECONFIGURABLE SYSTEMS .. 33

2.1 Principles .. 33
2.2 Advantages of using Reconfigurable Logic ... 34
2.2.1 Application ... 35
2.2.2 An Example .. 36
2.3 Classification .. 38
2.3.1 RPU Coupling .. 38
2.3.2 Granularity ... 39
2.3.3 Instruction Types .. 41
2.3.4 Reconfigurability .. 42
2.4 Examples ... 42
2.4.1 Chimaera (1997) .. 42
2.4.2 GARP (1997) ... 45
2.4.3 Remarc (1998) ... 47
2.4.4 Rapid (1998) .. 50
2.4.5 Piperench (1999) ... 51
2.4.6 Molen (2001) .. 55
2.4.7 Other Reconfigurable Architectures ... 56
2.4.8 Recent Dataflow Architectures ... 57
2.5 Directions .. 59
2.5.1 Heterogeneous Behavior of the Applications ... 59
2.5.2 Potential of using Fine Grained Reconfigurable Arrays 61
2.5.3 Coarse Grain Reconfigurable Architectures ... 65

2.5.4 Comparing both granularities ... 66
2.5.5 The necessity of dynamic optimization .. 68

3 DYNAMIC OPTMIZATION TECHNIQUES ... 69

3.1 Trace Reuse .. 69
3.2 Binary Translation .. 71
3.3 Dynamic Detection and Reconfiguration .. 74
3.3.1 Warp Processing .. 74
3.3.2 Configurable Compute Array .. 77
3.4 Similarities and Differences of Previous Works 81

4 THE PROPOSED RECONFIGURABLE ARRAY 83

4.1 Java Processors targeted to Embedded Systems 83
4.1.1 A Brief Explanation of the Femtojava Processor 84
4.1.2 Architecture of the Array .. 86
4.1.3 Reconfiguration and execution ... 87
4.2 Differences in the structure: Stack vs. RISC .. 88
4.3 RISC-like Architectures .. 89
4.3.1 Architecture of the array ... 90
4.3.2 Reconfiguration and execution ... 91

5 BINARY TRANSLATION .. 93

5.1 BT Algorithm for Stack Machines ... 93
5.2 BT Algorithm for RISC machines .. 95
5.2.1 Data Structure .. 95
5.2.2 How it works ... 96
5.2.3 Example ... 97
5.2.4 Support for immediate values .. 99
5.2.5 Support for different functions in the functional units 100
5.2.6 Different groups of functional units ... 100
5.2.7 Instructions with different delays .. 100
5.2.8 Load/Store Instructions .. 101
5.2.9 Write backs in different cycles .. 101
5.2.10 Handling False Dependencies ... 102
5.2.11 Speculative Execution .. 102

6 RESULTS ... 105

6.1 Java Processors ... 105
6.1.1 Femtojava Low-Power with simple benchmarks 105
6.1.2 Femtojava Low-Power with SPEC JVM ... 110
6.1.3 Femtojava Multicycle with SPEC JVM and others 116
6.2 RISC Processors .. 119
6.2.1 Simplescalar .. 120
6.2.2 MIPS R3000 Processor ... 123
6.3 First studies about the ideal shape of the reconfigurable array 129
6.4 Conclusions .. 130

7 CONCLUSIONS, FUTURE AND ON GOING WORKS 133

7.1 Design space to be explored ... 134
7.2 Decreasing the routing area .. 134

7.3 Speculation of variable length ... 134
7.4 DSP, SIMD and other extensions .. 135
7.5 Study of the area overhead with technology scaling and future
technologies ... 135
7.6 Measuring the impact of the OS in reconfigurable systems 135
7.7 Array+BT to increase the Yield .. 135
7.8 Array+BT for fault tolerance .. 136
7.9 BT scheduling targeting to Low-Power .. 136
7.10 Comparison against Superscalar Architectures 136
7.11 Comparison against a Fine-Grain reconfigurable system 137
7.12 Attacking Different levels of granularity ... 138

PUBLICATIONS .. 141

REFERENCES ... 145

APPENDIX A CONFIGURATION FILE FOR SIMPLESCALAR 157

APPENDIX B FIRST VERSION OF THE LOW-LEVEL DIM ALGORITHM
FOR SIMPLESCALAR .. 161

APPENDIX C UMA ARQUITETURA RECONFIGURÁVEL
TRANSPARENTE PARA APLICAÇÕES HETEROGÊNEAS 183

LIST OF ABBREVIATIONS AND ACRONYMS

ALU Arithmetic and Logic Unit

AMD Advanced Micro Devices

AMIL Number of Merged Instructions

ASIC Application Specific Integrated Circuits

ASIP Application Specific Instruction set Processor

BT Binary Translation

CAD Computer Aided Design

CCA Configurable Compute Array

CDFG Control Data Flow Graph

CLB Configurable Logic Block

CMOS Complementary Metal Oxide Semiconductor

CMP Chip Multiprocessor

CORDIC Coordinate Rotation Digital Computer

CPII Cycles per Issue Interval

DCT Discrete Cosine Transform

DIM Dynamic Instruction Merging

FIFO First In, First Out

FPGA Field Programmable Gate Array

IMDCT Inverse Modified Discrete Cosine Transform

ILP Instruction Level Parallelism

IPC Instructions per Cycle

IPII Instructions per Cycle Interval

ITRS International Technological Roadmap for Semiconductors

JVM Java Virtual Machine

JIT Just-in-time

LUT Look-Up Table

MAC Multiply and Accumulate

NRE Non-Recurring Engineering

PE Processing Element

RAM Random Access Memory

RFU Reconfigurable Functional Unit

RISC Reduced Instruction Set Computer

ROM Read Only Memory

SIMD Single Instruction – Multiple Data

SSE Streaming SIMD Extensions

VLIW Very Long Instruction Word

VMM Virtual Machine Monitor

MMX Multimedia Extension

MP3 MPEG-1 Audio Layer 3

OPI Operations Per Instruction

OS Operating System

RISP Reconfigurable Instruction Set Processor

RFU Reconfigurable Functional Unit

RPU Reconfigurable Processor Unit

SMT Simultaneous Multithreading

TOS Top Of Stack

RTM Reuse Trace Memory

WAR Write After Read

WAW Write After Write

LIST OF FIGURES

Figure 1.1: There is no improvements regarding the IPC in the Intel’s Pentium Family
of processors (SIMA; FALK, 2004) .. 22

Figure 1.2: Near future limitations of performance, ILP and pipelining 22
Figure 1.3: Power consumption in present and future desktop processors 23
Figure 1.4: The proposed approach .. 29
Figure 1.5: A systematic illustration of the technique .. 30
Figure 2.1: The basic principle of a system making use of reconfigurable logic 33
Figure 2.2: Definitions of IPII, CPII and OPI .. 35
Figure 2.3: a) Execution trace of a given application; b) Trace with one merged

instruction; c) Trace with two merged instructions 37
Figure 2.4: Gains obtained when using combinational logic ... 38
Figure 2.5: Different types of RPU Coupling .. 39
Figure 2.6: A typical FPGA architecture .. 40
Figure 2.7: (a) The Chimaera Reconfigurable Array routing structure, and its (b) logic

block .. 43
Figure 2.8: Organization of the Chimaera system .. 44
Figure 2.9: A block of the GARP machine .. 46
Figure 2.10: Performance estimations for GARP machine, compared to the SPARC ... 47
Figure 2.11: Area estimation for the GARP system ... 47
Figure 2.12: General overview of the REMARC reconfigurable system....................... 48
Figure 2.13: One nano processor in the REMARC system .. 49
Figure 2.14: Motion Estimation is responsible for 98% of execution time in the MPEG2

encoder ... 50
Figure 2.15: Steps of the DES algorithm .. 50
Figure 2.16: RaPiD-I cell ... 51
Figure 2.17: The virtualization process, technique used by Piperench. (a) Normal

execution. (b) With virtualization .. 52
Figure 2.18: General overview of the Piperench structure ... 53
Figure 2.19: Detailed view of the Process Element and its connections 53
Figure 2.20: Performance improvements over a 300-mhz Ultrasparc II 55
Figure 2.21: A general overview of the Molen System .. 56
Figure 2.22: Molen Speed ups .. 56
Figure 2.23: General overview of the TRIPS architecture. From left to right: the TRIPS

Chip, TRIPS core, and an execution node ... 58
Figure 2.24: The Wavescalar architecture .. 58
Figure 2.25: Instruction per Branch Rate ... 60
Figure 2.26: How many BBs are necessary to cover a certain amount of execution

time? .. 60

Figure 2.27: Amount of execution time covered by 1, 3 or 5 basic blocks in each
application ... 61

Figure 2.28: Just a small part of the loop can be optimized ... 61
Figure 2.29: Performance gains considering different numbers of (a) subroutines and (b)

loops being executed in 1 cycle in reconfigurable logic 62
Figure 2.30: Same as presented before, but now considering 5 cycles per hot spot

execution. (a) Subroutines and (b) loops ... 63
Figure 2.31: Now considering 20 cycles per hot spot execution. (a) Subroutines and

(b) loops ... 63
Figure 2.32: Different pieces of reconfigurable logic are used to speed up the entire loop

 ... 64
Figure 2.33: Infinite configurations available for (a) subroutine optimization: each

one would take 5 cycles to be executed. (b) The same, considering loops. 64
Figure 2.34: Optimization at instruction-level with the basic block as limit. (a) 1

cycle, (b) 5 cycles, (c) 20 cycles per BB execution 66
Figure 2.35: Different algorithm behaviors that can influence the usability of a

reconfigurable system .. 68
Figure 3.1: The trace reuse approach.. 70
Figure 3.2 : A RTM entry) ... 70
Figure 3.3: Binary Translation Process .. 71
Figure 3.4: Daisy layers .. 73
Figure 3.5: DAISY system ... 73
Figure 3.6: Transmeta layers .. 74
Figure 3.7: The Warp processor system ... 75
Figure 3.8: Steps performed by the CAD software .. 75
Figure 3.9: Speedups of MicroBlaze-Based warp processor when comparing against

different versions of the an ARM. Powerstone and EEMBC benchmark
applications were used. .. 76

Figure 3.10: Normalized energy consumption in the different versions using the same
benchmark set. ... 77

Figure 3.11: Example of a CCA with 4 inputs and 2 outputs, with 7 levels of operations
allowed in sequence ... 78

Figure 3.12: An example of mapping a piece of software into the CCA 79
Figure 3.13: Speed-up versus Area overhead, represented by the cost of adders 80
Figure 4.1: Femtojava Multicycle .. 85
Figure 4.2: Femtojava Low-Power ... 85
Figure 4.3: Two cells of the Array in sequence .. 87
Figure 4.4: An example of an array’s configuration. ... 87
Figure 4.5: Because it is a stack machine, the routing in the array implemented in the

Femtojava becomes simpler .. 89
Figure 4.6: General overview of the reconfigurable array for RISC machines 90
Figure 4.7: An overview of the basic architecture of the reconfigurable array 91
Figure 4.8: A row of the reconfigurable array. The input and output multiplexers and the

functional units. ... 92
Figure 5.1: The simple process of finding an operand block in a stack machine 93
Figure 5.2: Identifying independent operand blocks .. 94
Figure 5.3: Tables necessary for the detection and configuration of the array 96
Figure 5.4: Behavior of the tables during the detection of instructions 98
Figure 5.5: The configuration of the array for the previous example 99

Figure 5.6: How the saturation point works during BT detection for future
speculative execution ... 104

Figure 6.1: Energy spent by RAM and ROM accesses .. 108
Figure 6.2: Energy spent in the core ... 108
Figure 6.3: Total energy spent by the architectures.. 109
Figure 6.4: Performance improvements - JVMSPEC .. 111
Figure 6.5: Performance improvements with restricted resources 112
Figure 6.6: Performance improvements when varying the total number of

configurations used .. 112
Figure 6.7: Performance improvements. Now, varying the total number of cells

available in the array .. 113
Figure 6.8: Energy savings varying the number of allowed configurations 114
Figure 6.9: Energy savings when varying the maximum number of cells available

in the array ... 115
Figure 6.10: Performance improvements when varying both parameters for the

compress algorithm .. 115
Figure 6.11: Energy savings achieved when varying both parameters for the

compress algorithm .. 116
Figure 6.12: Performance improvements, in simple applications, when increasing

the number of cells of the reconfigurable array ... 117
Figure 6.13: Same as the previous, but now executing a subset of the SPECjvm98 ... 117
Figure 6.14: Energy consumption, in simple applications, when increasing the

number of cells of the reconfigurable array ... 118
Figure 6.15: Same as the previous, but now executing a subset of the SPECjvm98 ... 118
Figure 6.16 – Performance improvements in both control and data flow oriented

algorithms .. 119
Figure 6.17: Performance Improvements using Dynamic Merging and the

Reconfigurable Array .. 121
Figure 6.18: The average of the performance improvements considering the size of

the cache .. 121
Figure 6.19: IPC of four different benchmarks being executed in the reconfigurable

logic with different configurations .. 123
Figure 6.20: (a) How many BBs are necessary to cover a certain execution rate

considering total execution time (b) Average size of the basic block 124
Figure 6.21: An overview of the average speed up presented with different

configurations .. 125
Figure 6.22: Power consumed by 3 different algorithms in conf. 1 and 3, with and

without speculation, 64 cache slots ... 126
Figure 6.23: Repeating the data of the previous Figure, but now for Energy

Consumption .. 127
Figure 6.24: Area overhead presented by the reconfigurable array and its special

cache .. 128
Figure 6.25: a) Original shape of the reconfigurable array b) Optimized shape 130
Figure 6.26: Performance comparison between different datapath shapes 130
Figure 7.1: Different models and theirs functional units executing various threads 139
Figure 7.2: a) Current implementation b) reconfigurable architecture based on CMP 140
Figure 7.3: Communication alternatives. a) Monolithic bus b) Segmented bus

c) Intra chip network .. 140

LIST OF TABLES

Table 1.1: IC non-recurring engineering (NRE) costs and turnaround time 28
Table 2.1: General characteristics of several reconfigurable architectures 57
Table 6.1: Comparison among different versions of the Femtojava with and

without the reconfigurable array .. 107
Table 6.2: Area of the base processors ... 109
Table 6.3: Area overhead due to the use of the reconfigurable array 109
Table 6.4: Relative Area overhead, comparing to the standalone Femtojava

Low-Power Processor .. 110
Table 6.5: Comparing the performance and energy consumption among all the

architectures ... 110
Table 6.6: Energy savings with different configurations ... 114
Table 6.7: Percentage of cycles regarding instructions that cannot be optimized 118
Table 6.8: Additional area overhead, in number of gates, when compared to the

Femtojava Low-Power processor ... 119
Table 6.9: Configurations of the superscalar processor ... 121
Table 6.10: Configurations of the array ... 122
Table 6.11: IPC in the Out-of-Order processor and the average BB size 122
Table 6.12: Speedups using the reconfigurable array coupled to the out-of-order

processor .. 123
Table 6.13: Different configurations for the array, when coupling to the MIPS

R3000 ... 124
Table 6.14: Speedups using the reconfigurable array coupled to the MIPS R3000

processor .. 125
Table 6.15: Area evaluation ... 127
Table 6.16: Number of gates, varying the number of rows and columns of the array . 128
Table 6.17: Number of bits necessary per cache slot, varying the number of rows

and columns of the array .. 129

ABSTRACT

As Moore’s law is losing steam, one already sees the phenomenon of clock
frequency reduction caused by the excessive power dissipation in general purpose
processors. At the same time, embedded systems are getting more heterogeneous,
characterized by a high diversity of computational models coexisting in a single device.
Therefore, as innovative technologies that will completely or partially replace silicon
are arising, new architectural alternatives are necessary. Although reconfigurable
computing has already shown to be a potential solution for such problems, significant
speedups are achieved just in very specific dataflow oriented software, not representing
the reality of nowadays systems. Moreover, its wide spread use is still withheld by the
need of special tools and compilers, which clearly preclude software portability and
reuse of legacy code. Based on all these facts, this thesis presents a new technique using
reconfigurable systems to optimize both control and dataflow oriented software without
the need of any modification in the source or binary codes. For that, a Binary
Translation algorithm has been developed, which works in parallel to the processor. The
proposed mechanism is responsible for transforming sequences of instructions at run-
time to be executed on a dynamic coarse-grain reconfigurable array, supporting
speculative execution. This way, it is possible to take advantage of using pure
combinational logic to speed up the execution, maintaining full binary compatibility in a
totally transparent process. Three different case studies were evaluated: a Java Processor
and a MIPS R3000 – representing the embedded systems field – and the Simplescalar
Toolset, a widely used toolset that simulates a superscalar architecture based on the
MIPS R10000 processor – representing the general-purpose market.

Keywords: Reconfigurable Array, Binary Translation, Stack Machines, MIPS.

RESUMO

Atualmente, pode-se observar que a Lei de Moore vem estagnando. A freqüência de
operação já não cresce da mesma forma, e a potência consumida aumenta drasticamente
em processadores de propósito geral. Ao mesmo tempo, sistemas embarcados vêm se
tornando cada vez mais heterogêneos, caracterizados por uma grande quantidade de
modelos computacionais diferentes, sendo executados em um mesmo dispositivo. Desta
maneira, como novas tecnologias que irão substituir totalmente ou parcialmente o silício
estão surgindo, novas soluções arquiteturais são necessárias. Apesar de sistemas
reconfiguráveis já terem demonstrado serem candidatos em potencial para os problemas
supracitados, ganhos significativos de desempenho são alcançados apenas em
programas que manipulam dados massivamente, não representando a realidade dos
sistemas atuais. Ademais, o seu uso em alta escala ainda está limitado à utilização de
ferramentas ou compiladores que, claramente, não mantêm a compatibilidade de
software e a reutilização do código binário já existente. Baseando-se nestes fatos, a
presente tese propõe uma nova técnica para, utilizando um sistema reconfigurável,
otimizar tanto programas orientados a dados como aqueles orientados a controle, sem a
necessidade de modificação do código fonte ou binário. Para isto, um algoritmo de
Tradução Binária, que trabalha em paralelo ao processador, foi desenvolvido. O
mecanismo proposto é responsável pela transformação de seqüências de instruções, em
tempo de execução, para serem executadas em uma unidade funcional reconfigurável de
granularidade grossa, suportando execução especulativa. Desta maneira, é possível
aproveitar as vantagens do uso da lógica combinacional para aumentar o desempenho e
reduzir o gasto de energia, mantendo a compatibilidade binária em um processo
totalmente transparente. Três diferentes estudos de caso foram feitos: os processadores
Java e MIPS R3000 – representando o campo de sistemas embarcados – e o conjunto de
ferramentas Simplescalar, que simula um processador superescalar baseado no MIPS
R10000 – representando o mercado de processadores de propósito geral.

Palavras-chave: Sistemas Reconfiguráveis, Tradução Binária, Máquina de pilha,
MIPS.

Uma Arquitetura Reconfigurável Transparente para Aplicações
Heterogêneas

21

1 INTRODUCTION

The possibility of increasing the number of transistors inside an integrated circuit
with the passing years, according to Moore’s Law, has been pushing performance at the
same level of growth. However, this law, as known today, will no longer exist in a near
future. The reason is very simple: physical limits of silicon (KIM et al., 2003)
(HOMPSON, 2005). Because of that, new technologies that will completely or partially
replace silicon are arising. The problem is that, according to the ITRS roadmap
(SEMICONDUCTOR, 2008), these technologies have a high level of density and are
slower than traditional scaled CMOS, or the opposite: new devices can achieve higher
speeds but with a huge area and power overhead – even when comparing to future
CMOS technology.

Additionally, high performance architectures as the diffused superscalar machines
are achieving their limits. As it is shown in (FLYNN; HUNG, 2005) and (SIMA;
FALK, 2004), there are no novelties in such systems. The advances in ILP exploitation
are stagnating: considering the Intel’s family of processors, the IPC rate has not
increased since the Pentium Pro in 1995, as Figure 1.1 shows. This occurs because these
architectures are challenging some well-known limits of the ILP (WALL, 1991). Recent
increases in performance have occurred mainly thanks to boosts in clock frequency
through the employment of deeper pipelines. Even this approach, though, is reaching its
limit. For example, the clock frequency of Intel’s Pentium 4 processor had a modest
increase from 3.06 to 3.8 GHz between 2002 and 2006 (INTEL, 2008).

Another trend is the so-called “Mobile Supercomputers” (AUSTIN et al., 2004).
In the future, embedded devices will need to perform some intensive computational
programs, such as real-time speech recognition, cryptography, augmented reality etc,
besides the conventional ones, like word and email processing. According to the cited
work, they must not exceed 75mW of power consumption. Figure 1.2 reinforces the
trend demonstrated by Figure 1.1: even considering desktop computer processors, new
architectures will not meet the requirements for future embedded systems. The star
indicates where the expected future mobile computer requirements should be in terms of
performance. The other curves represent important characteristics that will restrict
performance improvements in those systems:

 Lack of ILP, as discussed before;

 Restrictions in the critical path of the pipeline stages: Intel’s Pentium 4
microprocessor has only 12 fanout-of-four (FO4) gate delays per stage,
leaving little logic that can be bisected to produce higher clocked rates. This
becomes even worse considering that the delay of those FO4 will increase
comparing against other circuitry in the system. One already can see this

22

trend in the newest Intel processors based on the Core and Core2
architectures, which have less pipeline stages than the Pentium 4.

Figure 1.1: There is no improvements regarding the IPC in the Intel’s Pentium Family
of processors (SIMA; FALK, 2004)

Figure 1.2: Near future limitations of performance, ILP and pipelining (AUSTIN et al.,
2004)

Another concern is the excessive power consumption. As previously stated about
performance, power spent by future systems is also far from the expected, as it can be
observed in Figure 1.3. Another issue that must be pointed out is that leakage power is
becoming more important and, while a system is in standby mode, it will be the
dominant power consumed by it.

This way, one can observe that companies are migrating to chip multiprocessors
to take advantage of the extra area available, even though, as this thesis will show, there
is still a huge potential to speed up a single thread software. Therefore, the clock
frequency increase stagnation, excessive power consumption and higher hardware costs
to ILP exploitation together with the foreseen slow technologies are new architectural
challenges to be dealt with. Hence, new alternatives that can take advantage of the
integration possibilities and that can address the performance and power issues stated
before become necessary.

ILP

Process
Pipelining

ILP

23

Figure 1.3: Power consumption in present and future desktop processors (AUSTIN et
al., 2004)

In this scenario, reconfigurable architectures appear to be an attractive solution.
By translating a sequence of code into combinational logic, one can have huge
performance gains with energy savings, at the price of extra area – exactly the only
resource available nowadays and in future technologies (GUPTA; MICHELI, 1993)
(VENKATARAMANI et al., 2001) (STITT; VAHID, 2002). At the same time that
reconfigurable computing can explore the ILP of the applications, it can also speed up
sequences of data dependent instructions, which is its main advantage when comparing
to traditional architectures. Furthermore, as reconfigurable architectures are highly
based on regular circuits, another advantage emerges: it is common sense that as the
more the technology shrinks to 65 nanometers and below, the harder it will be to print
the geometries employed today, directly affecting the yield (OR-BACH, 2001).
Moreover, because circuit customization is a very expensive process, regular circuits
customized in the field are also considered as the new low cost solution.

However, reconfigurable systems have two main drawbacks. The first one is that
they are designed to handle very data intensive or streaming workloads. This means that
the main design strategy is to consider the target applications as having very few distinct
kernels for optimization. By speeding up small parts of the software, huge gains would
be achieved. In contrast, a desktop system usually executes a large number of
applications with different behaviors at the same time; and the number of applications
that a single embedded device must handle is growing, as well as the heterogeneity of
their behaviors.

The second problem is that the process of mapping pieces of code to
reconfigurable logic usually involves some kind of transformation, manual or using
special languages or tool chains. These transformations modify somehow the source or
the binary code, precluding the wide spread usage of reconfigurable systems. As the old
X86 ISA has been showing, sustaining binary compatibility, allowing legacy code reuse

Total Power
Dynamic Power
Static Power

24

and traditional programming paradigms are key factors to reduce the design cycle and
maintain backward compatibility.

Based on these two main concerns discussed above, this thesis proposes the use of
a technique called Dynamic Instruction Merging (DIM), which is a Binary Translation
(BT) method implemented in hardware. It is used to detect and transform sequences of
instructions at run time to be executed in a reconfigurable array. DIM is a totally
transparent process: there is no need for changing the code before its execution at all,
allowing full binary code reuse. With the BT mechanism, it is possible to ensure
software compatibility at any level of the design cycle, allowing the utilization of a
reconfigurable hardware without requiring any tools for the hardware/software
partitioning or special compilers.

The employed reconfigurable unit is a coarse-grained array, composed of simple
functional units and multiplexers. Being not limited to the complexity of fine-grain
configurations and using the special BT mechanism, the proposed system can also speed
up control-flow oriented software, without any distinct kernel subject to optimization.
Consequently, it is possible to increase the performance of any kind of software as well
as reduce the energy consumption, not being limited to just DSP-like or loop centered
applications, as reconfigurable systems usually do (STITT et al., 2003).

This proposal can be applied in the embedded system domain as well as in the
general-purpose one, and in this work these both fields of application are analyzed. In
the following sections, the motivations to implement the proposed technique are
discussed in more details.

1.1 Main Motivations

In this section, we discuss in more details the main motivations that inspired our
work. The first one relates to the hardware limits and costs that architectures are facing
in order to increase the ILP of the running application. Since the searching for ILP is
becoming more difficult, the second motivation is based on the use of pure
combinational logic as a solution to speed up instructions execution. However, even a
technique that could increase the performance should be passive of implementation in
nowadays technology and still sustain binary compatibility. The possibilities of
implementation and implications of code reuse lead to our next motivation. Finally, the
last one discusses about the future and new technologies, where the reliability and yield
costs will become even more important, with regularity playing a major role.

1.1.1 Overcoming some limits of the parallelism

In the future, advances in compiler technology together with significantly new and
different hardware techniques may be able to overcome some limitations of the ILP
exploitation. However, it is unlikely that such advances, when coupled with realistic
hardware, will overcome all these limits. Instead, the development of new hardware and
software techniques will continue to be one of the most important challenges in
computer design.

To better understand the main issues related to ILP exploitation, in (HENNESSY;
PATTERSON, 2003) assumptions are made for an ideal (or perfect) processor, as
follows:

1. Register renaming – It is the process of renaming target registers in order to
avoid false dependences (Write after Read and Write after Write). This way, it is

25

possible to better explore the parallelism of the running application. The perfect
processor would have an infinite number of virtual registers available to perform this
renaming and hence all false dependences could be avoided. Therefore, an unbounded
number of data independent instructions could begin to be simultaneously executed.

2. Branch prediction – It is the mechanism responsible for figuring out if the
branches will be taken or not taken, depending on where the execution currently is. The
main objective is to diminish the number of pipeline stalls due to taken branches. It is
also used as a part of the speculative mechanism to execute instructions beyond basic
blocks. In an ideal processor, all conditional branches would be correctly predicted,
meaning that the predictor is perfect.

3. Jump prediction – In the same manner, all jumps are perfectly predicted. When
combined with the branch prediction, previously discussed, the processor could have a
perfect speculation mechanism and an unbounded buffer of instructions available for
execution.

4. Memory-address alias analysis – It is the comparison among references to
memory encountered in instructions. Some of these references are calculated at run-time
and, as different instructions can access the same address of the memory in a different
order, data coherence problems can arise. In the perfect processor, all memory addresses
would be exactly known before actual execution begins and a load could be moved
before a store, once provided that both addresses are not identical.

While assumptions 2 and 3 would eliminate all control dependences, assumptions
1 and 4 would eliminate all but the true data dependences. Together, these assumptions
mean that any instruction belonging to the program’s execution could be scheduled on
the cycle immediately following the execution of the predecessor on which it depends.
It is even possible, under these assumptions, for the last dynamically executed
instruction in the program to be scheduled on the very first cycle. Thus, this set of
assumptions subsumes both control and address speculation and implements them as if
they were perfect.

The analysis of the hardware costs to get as close as possible of this ideal
processor is quite complicated. For example, let us consider the instruction window,
which represents the set of instructions that are examined for simultaneous execution. In
theory, a processor with perfect register renaming should have an instruction window of
infinite size, so it could analyze all the dependencies at the same time.

To determine whether n issuing instructions have any register dependencies
among them, assuming all instructions are register-register and the total number of
registers is unbounded, one must perform comparisons. Thus, to detect dependences
among the next 2000 instructions requires almost four million comparisons. Even
issuing only 50 instructions requires 2,450 comparisons. This cost obviously limits the
number of instructions that can be considered for issue at once. To date, the window
size has been in the range of 32 to 126, which can require over 2,000 comparisons. The
HP PA 8600 reportedly has over 7,000 comparators (HENESSY; PATTERSON, 2003).

Another good example to illustrate how much hardware a modern superscalar
design needs to execute instructions in parallel is the Alpha 21264 (KESSLER, 1999). It
issues up to four instructions per clock and initiates execution on up to six (with
significant restrictions on the instruction type, e.g., at most two load/stores), supports a
large set of renaming registers (41 integer and 41 floating point, allowing up to 80

26

instructions in-flight), and uses a large tournament-style branch predictor. Not
surprisingly, half of the power consumed by this processor is related to the ILP
exploitation (WILCOX; MANNE, 1999).

Other possible implementation constraints in a multiple issue processor, besides
the ones cited before, include: issues per clock, functional units and unit latency,
number of register file ports, functional unit queues, issue limits for branches, and
limitations on instruction commit.

1.1.2 Using the Pure Combinational Logic Circuit Advantages

There are always potential gains when passing the execution from sequential to
combinational logic. Using a combinational mechanism could be a solution to speed up
the execution of sequences of instructions that must be executed in order, due to data
dependencies. This concept is better explained with a simple example. Let us have an
nxn bit multiplier, with input and output registers. By implementing it with a cascade of
adders, one might have the execution time, in the worst case, as follows:

Tmult_combinational = tppFF + 2*n*tcell + tsetFF (1)

where tcell is the delay of an AND gate plus a 2-bits full-adder, tppFF the time
propagation of a Flip-Flop, and tsetFF the set time of the Flip-Flop.

The area of this multiplier is

Acombinational = n2 * Acell + Aregisters (2)

considering Acell and Aregisters as the area occupied by the cell and registers, respectively.

If one could do the same multiplier by the classical shift and add algorithm, and
assuming a carry propagate adder, the multiplication time would be

Tmult_sequential = n * (tppFF + n*tcell + tsetFF) (3)

And the area given by

Asequential = n*Acell + Acontrol + Aregisters (4)

with Acontrol being the area overhead due to the control unit.

Comparing equations (1) with (3), and (2) with (4), it is clear that by using a
sequential circuit one trades area by performance. Any circuit implemented as a
combinational circuit will be faster than a sequential one, but will most certainly take
much more area.

1.1.3 Software Compatibility and Reuse of Binary Code

Among thousands of products launched every day, one can observe those which
become a great success and those which completely fail. The explanation perhaps is not
just about their quality, but it is also about their standardization in the industry and the
concern of the final user on how long the product he is acquiring will be subject to
upgrades.

The x86 architecture is one of these major examples. The X86 ISA itself did not
follow the last trends in processor architectures at the time of its deployment. It was
developed at a time when memory was considered very expensive and developers used
to compete on who would implement more and different instructions in their
architectures. Its ISA is a typical example of a traditional CISC machine. Nowadays, to
handle with that, the newest X86 compatible architectures spend extra pipeline stages

27

plus a considerable area in control logic and microprogrammable ROM just to decode
these CISC instructions into RISC like ones. This way, it is possible to implement deep
pipelining and all other high performance RISC characteristics maintaining the x86
instruction set and, as a consequence, backward compatibility.

Although new instructions have been included in the x86 original instruction set,
like the SIMD MMX and SSE instructions, targeted to multimedia applications, there is
still support to the original 80 first instructions implemented in the very first X86
processor. This means that any software written for any x86 in any year, even at the end
of seventies, can be executed on the last Intel processor. This is one of the keys to
success of this family: the possibility of reusing the existing binary code, without any
kind of modification. This characteristic, called software compatibility, was one of the
reasons of why this product became the leader in its market. Intel could guarantee to its
consumers that their programs would not be surpassed during a long period of time and,
even when changing the system to a faster one, they would still be able to reuse the
same software again without any kind of modification.

Probably this is the main reason why companies such as Intel and AMD keep
implementing more power consuming superscalar techniques and trying to increase the
frequency of operation to the extreme. More accurate branch predictors, more advanced
algorithms for parallelism detection, or the use of SMT architectures like the Intel
Pentium IV with Hyperthreading (KOUFATY; MARR, 2003) or SIMD extensions
instructions such as MMX and SSE (CONTE, 1997), are some of them. However, the
basic principle of high performance architectures keeps the same: superscalarity. While
the x86 market is expanding even more, we observe a decline in the use of more elegant
and efficient instruction system architectures, such as the Alpha and the PowerPC
processors.

1.1.4 Increasing Yield and Reducing Manufacture Costs

In (OR-BACH, 2001), a discussion is made about the future of the processes of
fabrication using new technologies. According to it, standard cells, as they are today,
will not exist anymore. As the manufacturing interface is changing, regular fabrics will
soon become a necessity. How much regularity versus how much configurability is still
an open question, as well as the granularity of these regular circuits. Regularity can be
understood as a part which composes a whole, in the level of gates, standard-cells,
standard-blocks and so on. What is almost a consensus is the fact that the freedom of the
designers, represented by the irregularity of the project, will be more expensive in the
future. By the use of regular circuits, the design company will decrease costs, as well as
the possibility of manufacturing faults, since the reliability of printing the geometries
employed today in 65 nanometers and below will be a big issue.

Nowadays, the resources to create an ASIC design of moderate high volume,
complexity and low power, are considered very high. Some design companies can do it
because they have experienced designers, infrastructure and expertise. However, for the
same reasons, there are companies that just cannot afford it. For these companies, a
more regular fabric seems the best way to go as a compromise using an advanced
process. As an example, in 1997 there were 11,000 ASIC design startups. This number
dropped to 1,400 in 2003 (VAHID et al., 2003). The mask cost seems to be the primary
problem. The estimative in 2003 for the ASIC market is that it had 10,000 designs per
year with a mask cost of $20,000. The mask cost for 90-nanometer technology is around

28

$2 million. This way, to maintain the same number of ASIC designs, their costs need to
return to tens of thousands of dollars, not millions.

Moreover, it is very likely that the cost of doing the design and verification is
growing in the same proportion, increasing even more the final cost. Table 1.1 shows
sample non-recurring engineering (NRE) costs for different CMOS IC technologies
(VAHID et al., 2003). At 0.8 mm technology, the NRE costs were only about $40,000.
With each advance in IC technology, the NRE costs have increased dramatically. NRE
costs for 0.18 mm design are around $350,000, and at 0.13 mm, the costs are over $1
million. This trend is expected to continue at each subsequent technology node, making
it more difficult for designers to justify producing an IC using nowadays technologies.

Furthermore, the time it takes for a design to be manufactured at a fabrication
facility and returned to the designers in the form of an initial IC is also increasing. Table
1.1 also provides the turnaround times for various technology nodes. The turnaround
times for manufacturing an IC have almost doubled between 0.8 and 0.13 mm
technologies. Longer turnaround times lead to larger design costs and even possible loss
of revenue if the design is late to the market.

Table 1.1: IC non-recurring engineering (NRE) costs and turnaround time (VAHID et
al., 2003)

 Technology (µm)

 0.8 0.35 0.18 0.13

NRE (K) $40 $100 $350 $1000

Turnaround (days) 42 49 56 76

Because of all these reasons discussed before, there is a limit in the number of
situations that can justify producing designs using the latest IC technology. Less than
1000 out of every 10,000 ASIC designs have high enough volumes to justify fabrication
at 0.13 mm (VAHID et al., 2003). Therefore, if design costs and times for producing a
high-end IC are becoming increasingly large, just few of them will justify their
production in the future.

The problems of increasing design costs and long turnaround times are made even
more noticeable due to increasing market pressures. The time during which a company
seeks to introduce a product into the market is shrinking. This way, the designs of new
ICs are increasingly being driven by time to market concerns. With the constant
increase of the productivity gap, regularity has also another very interesting
characteristic: its scalability. Being regular, a circuit can be adapted to the product
needs, according to the niche of market it is targeted to. As scalability is one of the
consequences of regularity, it can be applied at different or higher levels. For instance,
the IBM Cell processor relies on the regularity of its multimedia processors (called
Synergistic Processing Elements), which compose the majority of the total system area.
Because of that, using regular circuits will also amortize costs related to NRE, since it
facilitates the design, testing and reuse of circuits.

Summarizing, there will be a crossover point where, if the company needs a more
customized silicon implementation, it needs be to able to afford the mask and
production costs. However, economics are clearly pushing designers toward more

29

regular structures that can be manufactured in larger quantities. Regular fabric would
solve the mask cost and many other issues such as printability, extraction, power
integrity, testing, yield etc.

1.2 Main Contributions

Taking into consideration all the motivations discussed before, the main novelty
of this work is the complete dynamic nature of the reconfigurable array: besides being
dynamic reconfigurable, the sequences of instructions to be executed on it are also
detected and transformed to an array’s reconfiguration at run-time. The reconfigurable
logic is represented by a coarse-grain array, tightly coupled to the processor, meaning
that it works as another ordinary functional unit in the processor. It is composed by off
the shelf functional units, as ALUs and multipliers, to perform the computation, and by
a set of multiplexers, responsible for the routing.

As already explained, the approach is based on a special BT hardware called
Dynamic Instruction Merging (DIM). DIM is designed to detect and transform
instruction groups for reconfigurable hardware execution at run time. As can be
observed in Figure 1.4, this is done concurrently while the main processor fetches other
instructions. When a sequence of instructions is found, following given policies that
will be explained later, a binary translation is applied to it. This BT transforms this
sequence of instructions in a configuration of the array, which will perform exactly the
same function. Thereafter, this configuration is saved in a special cache, and indexed by
the program counter (PC).

Figure 1.4: The proposed approach

The next time the saved sequence is found, the dependence analysis is no longer
necessary: the processor loads the previously stored configuration from the special
cache, the operands from the register bank, and activate the reconfigurable hardware as
functional unit. Then, the array executes that configuration in hardware (including write
back of the results), instead of using the datapath of the processor. Finally, the PC is
updated, in order to continue with the execution of the normal (not translated)

 1st time

Running program

Processor

BT

Save

PC = 0x50 PC = 0x50 PC = 0x50 PC = 0x50

Next times

Rec. Cache

Load
configuration

Reconfigurable
Array

Execute

Load
operands

Write
Back

30

instructions. Figure 1.5 shows a systematic illustration, separating in steps both
detection and reconfiguration/execution phases.

Figure 1.5: A systematic illustration of the technique

By transforming any sequence of opcodes into a single combinational operation in
the array, one can achieve great gains, since fewer accesses to program memory and less
iterations on the datapath are required. Depending on the size of the special cache used
to store the configurations, the optimization can be extended to the entire application,
not being limited to very few hot spots. Hence, it is possible to avoid the use of a
reconfigurable hardware for just a single algorithm, which would have a prohibitively
high cost. Furthermore, the proposed technique is not dependent on the available
application parallelism to speed up the code to be executed, but rather on sequences of
instructions that appear several times in the code.

In a certain way, the approach saves the dependence information of the sequences
of instructions. This way, repetitive dependence analysis for the same sequence of
instructions is avoided, as superscalar processors do. It is interesting to point out that
almost half of the number of pipeline stages of the Pentium IV processor is related to
dependence analysis (INTEL, 2008); and half of the power consumed by the core of the
Alplha 21264 processor is also related to extraction of dependence information among
instructions (WILCOX; MANNE, 1999).

In this technique, by coupling the array with a BT mechanism, software
compatibility in any level of the design cycle can be assured, without requiring any
tools for the hardware/software partitioning or special compilers, allowing easy
software porting for different machines tracking technological evolutions. Both the DIM
engine and the reconfigurable array are designed to work in parallel to the processor and
do not introduce any delay overhead or penalties for critical path of the pipeline
structure.

31

In the first part of this work, the proposed approach was implemented on a Java
software compliant architecture targeted to the embedded system domain (BECK;
CARRO, 2005) (BECK; CARRO, 2005b) (GOMES et al., 2005) (RUTZIG et al.,
2007). The employed processors were two different versions of the Femtojava Processor
(BECK; CARRO, 2003B) (GOMES et al., 2004). It was demonstrated great
performance improvements and reduction in energy consumption, even when compared
to a VLIW version of the same architecture (BECK; CARRO, 2004) (BECK; CARRO,
2004b). It was also showed that the BT Algorithm can take advantage of the particular
computational method of stack machines in order to perform the detection with a low
complexity (BECK; CARRO, 2005c) (GOMES et al., 2005b). Furthermore, it was
compared to traditional methods of detection of RISC machines (GOMES et al., 2005).

The same technique was implemented in two RISC like architectures, one
representing the general purpose computation and the other one the embedded systems
field. For the first, studies have been done (BECK et al., 2007) (BECK et al., 2006)
(BECK et al., 2006b) using the Simplescalar Toolset (BURGER; AUSTIN, 1997)
together with the benchmark suite MIBench (GUTHAUS et al., 2001). For the second, a
processor based on the MIPS R3000 was used (BECK et al., 2008), executing the same
benchmark set. As could be expected, there are differences in the structure of the array
as well as in the detection algorithm when comparing to the Java implementation, since
in the previous implementation a stack machine was used – although similar results in
terms of performance and energy were achieved.

As it will be demonstrated in the next chapters, the following advantages can be
obtained using this approach, that overcomes problems presented by high performance
nowadays architectures.

It achieves:

 High performance;

 Low energy consumption.

In opposite to existing reconfigurable systems:

 It is applicable to any kind of algorithm with different behaviors (control and
dataflow oriented software);

 It can optimize even algorithms with no distinct kernels available.

 It is technology independent – an FPGA is not necessary for its
implementation;

 It maintains binary compatibility. This way, the process is totally transparent
for the programmer and there is no need of any kind of modification in the
source code nor the use of special tools.

Moreover, other advantages are demonstrated:

 It is highly based on a regular circuit. It means that is possible to increase the
yield in future technologies.

 It is easily scalable – the size of the reconfigurable logic can vary depending
on the application needs.

 Although it is area consuming, it still can be implemented even considering
nowadays technologies.

32

Chapters 2 and 3 present the related work, clarifying some design choices that
have been done and that guided this work. Chapter 2 discusses issues related to
reconfigurable fabric. The potential of executing sequences of instructions in pure
combinational logic is also shown. Moreover, a high-level comparison between two
different array granularities is performed, together with a detailed analysis of the
behaviors of a set algorithms and which one is more suitable to be executed on each
kind of reconfigurable logic. The potential of performance improvements presented by
various reconfigurable systems are also discussed in Chapter 2, demonstrating that these
architectures can present performance boosts just on a very specific subset of
benchmarks – which does not reflect the reality of the whole set of applications both
embedded and general purpose systems are executing in these days. In Chapter 3 two
techniques related to dynamic optimization – trace reuse and binary translation – are
shown in details. Then, studies that already used in somehow both approaches with
reconfigurable architectures are discussed. Finally, the contribution and main novelty of
this work is pointed out, comparing it against these other studies.

In Chapter 4 the structure of the reconfigurable array and how it is coupled to the
target architectures are demonstrated. Chapter 5 discusses the algorithm: how
instructions are detected and transformed at run time in configurations to be executed on
the reconfigurable logic. As stated before, as case studies three different architectures
were evaluated, representing both embedded systems and general purpose domains,
with RISC and Java machines. This way, Chapters 4 and 5 are each divided in two
different sections targeting these different computational methods. The impact of using
a stack machine against a RISC based one when designing the reconfigurable array and
the binary translation algorithm is also analyzed.

Chapter 6 shows the methodology and tools employed to gather the results
considering all architectures executing a large range of benchmarks, concerning
performance, area, power and energy consumption. Finally, the last chapter discusses
future work and concludes this thesis.

33

2 RECONFIGURABLE SYSTEMS

2.1 Principles

Reconfigurable systems have already shown to be very effective, implementing
some parts of the software in a hardware reconfigurable logic. Using the same idea of
instruction reuse, by translating a sequence of operations into a combinational circuit
performing the same computation, one could speed up the system and reduce energy
consumption at the price of extra area. Huge software speedups (GUPTA; MICHELI,
1993) (VENKATARAMANI et al., 2001) (GAJSKI, 1998) (HENKEL, ERNST, 1997)
as well as system energy reduction have been previously reported (HENKEL, 1999)
(STITT; VAHID, 2002). In Figure 2.1, the basic principle of a computational system
working together with a reconfigurable hardware is illustrated. As can be observed, the
processor is responsible for the execution of a given part of the code, while the
reconfigurable logic is employed to execute the rest of it, in a more efficient manner.

Figure 2.1: The basic principle of a system making use of reconfigurable logic

Reconfigurable systems have the capability to adapt themselves to a given
application, providing hardware specialization to it. Through this adaptation, they are
expected to achieve a great improvement in performance, when compared to fixed
instruction set processors. However, because of this certain level of flexibility, the gains
are not as high as in Application Specific Instruction Set Processors (ASIPs) (JAIN et
al., 2001). This way, as ASIPs have specialized hardware that accelerate the execution
of the applications it was designed for, a system with reconfigurable capabilities would
have the almost same benefit without having to commit the hardware into silicon: it can
be adapted after design, in the same way programmable processors can adapt to
application changes.

A reconfigurable system includes a set of programmable processing units called
reconfigurable logic, which can be reconfigured in the field to implement logic
operations or functions, and programmable interconnections called reconfigurable
fabric. The reconfiguration is achieved by downloading from a memory a set of
configuration bits called configuration context, which determines the functionality of
reconfigurable logic and fabric. The time needed to configure the whole system is called
reconfiguration time, while the memory required for storing the reconfiguration data is

Running
program

Processor

Reconfigurable logic

34

called context memory. Both the reconfiguration time and context memory constitute
the reconfiguration overhead.

Reconfigurable Instruction Set Processors, also known as RISP (COMPTON;
HAUCK, 2000), will be the focus of this section. Usually a RISP has a special unit
called RPU (Reconfigurable Processor Unit), responsible for the actual computation of a
part of the software in the reconfigurable logic.

2.2 Advantages of using Reconfigurable Logic

The widely used Patterson (HENESSY; PATTERSON, 2003) metrics of relative
performance through measures such as IPC are well suited for comparing different
processor technologies and ISA, as it abstracts concepts such as clock frequency. As
described in (SIMA; FALK, 2004), however, to better understand the performance
evolution in the microprocessor industry, it is interesting to note the absolute processor
performance (Ppa) metric denoted as:

Ppa = fc * 1/CPII * IPII * OPI (operations/sec) (1)

In equation (1), CPII, IPII and OPI are described respectively as Cycles Per Issue
Interval, Instructions Per Issue Interval and Operation per Instructions, while fc is the
operating clock frequency. The first two metrics, when multiplied, form the known IPC
rate. Nevertheless, it is interesting to keep these factors separated in order to better
expose speed-up potentials.

The CPII rate informs the intrinsic temporal parallelism of the microarchitecture,
showing how frequently new instructions are issued to execution. The IPII variable is
related to the issue parallelism, or the average number of dynamically fetched
instructions issued to execution per issue interval. Finally, the OPI metric measures
intra-instruction parallelism, or the number of operations that can be issued through a
single binary instruction word. It is important to note that one should distinguish the
OPI from the IPII rate, since the first reflects changes in the binary code that should be
adapted statically to boost intrainstruction parallelism, such as data parallelism found in
SIMD architectures. Figure 2.2 illustrates these three metrics.

Throughout the microprocessor evolution history, several approaches have been
considered to improve performance by manipulating one or more of the factors of
equation (1). One of these approaches, for example, dealt with the CPII metric by
increasing instructions throughput with pipelining (HENNESSY, PATTERSON, 2003).
Moreover, the CPII metric has also been well covered with efficient branch prediction
mechanisms and with memory hierarchies, though this metric is still limited by pipeline
stalls such as the ones obtained with cache misses. The OPI rate has also been dealt
with the development of complex CISC instructions or SIMD architectures.

On the other hand, few solutions other than the superscalar approach since the
90’s explored the opportunity of increasing the IPII rate. This is an interesting fact,
since differently from the OPI rate, increasing the IPII raises excellent possibilities of
improvements, as it does not require changes or extensions to the ISA and, as a
consequence, maintains backward software compatibility.

35

Figure 2.2: Definitions of IPII, CPII and OPI

2.2.1 Application

A reconfigurable system targets to increase exactly the IPII rate. The basic idea is
to identify instructions that can be grouped and configured to execute in a
reconfigurable array. Consequently, more instructions will be issued by issue interval
(increasing the IPII rate). However, it can also influence the CPII rate, as it will be
analyzed later. Therefore, temporal and issue parallelisms are both dynamically
explored, and can be illustrated by the following equations:

IPII = (Number of Instructions)/(Number of issues) (2)

CPII = (Number of Cycles)/(Number of Issues) (3)

In order to increase the IPII number, it is necessary to increase the execution
efficiency by decreasing the number of issues. Equation (4) shows how it is affected by
the technique:

Number of Issues = Total number of executed Instructions + Number of Merged
Instructions*(1 – AMIL) (4)

where the Average Merged Instructions Length (AMIL) is the average group size in
number of instructions; while the Number of Merged Instructions counts how many
merged instructions1 were issued for execution in combinational logic. This can be
represented by the following equation:

Number of Merged Instructions = MIR * Total number of executed Instructions (5)

1 In this work the set of instructions that are executed on reconfigurable logic is called
of merged instructions, because this name is related to the proposed technique; in
previous works, several and different names have been using. However, there is no
consensus about this nomenclature

Instruction Scheduler

Binary code

Functional Units

CPU

IPII

CPII OPI

36

MIR is denoted as the Merged Instructions Rate. This is an important factor as it
exposes the density of grouped operations that can be found in an application. If MIR is
equal to one, then the whole application was mapped into an efficient mechanism and
there is no need of a processor, which is actually the case of a specialized ASIC or
complete dataflow architectures.

Furthermore, doing a deeper analysis, one can conclude that the ideal CPII also
equals to one, which means that the functional units are constantly fed by instructions
every cycle. However, due to pipeline stalls or to instructions with higher delays, the
CPII variable tends to be of a greater value. In fact, manipulating this factor is a bit
more complicated, as both the number of cycles and the number of issues are affected
by the execution of instructions in reconfigurable logic. As it will be shown in the
example, there are times when the CPII will increase; this is actually a consequence of
the augmented number of operations issued in an group of instructions.

This way, one thing that must be assured is that the CPII rate will not grow
proportionally to hide the IPC gains caused by the increase of IPII. In other words, if
the number of issues decreases, the number of cycles also has to decrease.
Consequently, a fast mechanism is necessary for reconfiguring the hardware and
executing instructions.

2.2.2 An Example

The following example illustrates the concept previously proposed.

Figure 2.3a shows a hypothetical trace with instructions a, b, c, d and e, and the
cycles at which the instruction execution ends. If one considers that the implemented
architecture has an IPII rate of one, typical of RISC scalar architectures, and that inst d
causes a pipeline stall of 5 cycles, while all other instructions are executed in one cycle,
this trace of 14 instructions would take 18 cycles to execute. This results in a CPI of
1.28.

If, however, instructions of number one to five are merged (which is represented
by Inst M, as shown in Figure 2.3b), and executed in two cycles, the whole sequence
would then be executed in 14 cycles. Note that the left column in Figure 2.3b represents
the issue number of the instruction group. Therefore, one would find the following
numbers: CPII = 1.5, AMIL = 5, and MIR = 1/14 = 0.07. Because of the capability of
speeding up the fetch and execution of the merged instructions, the final IPII would
increase to 1.4. Even though the CPII would increase from 1.28 to 1.5, the IPC rate
would grow from 0.78 to 1.

Nevertheless, one could expect further improvements if merged instructions
included Inst d, which caused a stall of 5 cycles in the processor pipeline. Supposing
that the sequence of instructions b, d and e (issue numbers of 5, 6 and 7 in Figure 2.3b)
is merged into instruction M2 and executed in 3 cycles, it would produce an impact on
the CPII that would go down to 1.375 while the IPII would rise to 1.75, resulting in an
IPC equals to 1.27. This is illustrated in Figure 2.3c. In other words, using a
reconfigurable system the interval of execution between a set of instruction and another
is longer than the usual. However, as more instructions are executed per time slice, IPC
increases.

37

Figure 2.3: a) Execution trace of a given application; b) Trace with one merged
instruction; c) Trace with two merged instructions

Later in this thesis, an ideal solution is analyzed, which is capable of executing
merged instructions in just one cycle, meaning that the CPII inside the array is 1. This
will show the potential gains of combinational logic when affecting the AMIL and IPII
rates. Although this kind of assumption can be theoretically feasible, the area overhead
in this case would be enormous. For example, operations such as multiplication
normally are not performed in just one cycle.

Figure 2.4 graphically shows how the gains are obtained. As it can be seen, the
upper part of the figure demonstrates the execution of several instructions, which are
represented as boxes. Those that have the same texture represents instructions that have
data-dependency and hence cannot be executed in parallel. Still, non-dependent
instructions can be parallelized. On the other hand, by using the combinational data-
driven approach, one is able to reduce the time spent executing several minor operations
in the processor pipeline at the cost of extra area. This represents the tradeoff between
sequential and combinational logic.

Issue Instruction Cycle

1 inst M 1
2 inst b 3
3 inst a 4
4 inst a 5
5 inst b 6
6 inst d 11
7 inst e 12
8 inst b 13
9 inst c 14
10 inst a 15

Issue Instruction Cycle

1 inst M 1
2 inst b 3
3 inst a 4
4 inst a 5
5 inst M2 8
6 inst b 9
7 inst c 10
8 inst a 11

(a) (b) (c)
Number Instruction Cycle

1 inst a 1
2 inst b 2
3 inst b 3
4 inst a 4
5 inst c 5
6 inst b 6
7 inst a 7
8 inst a 8
9 inst b 9
10 inst d 10
11 inst e 15
12 inst b 16
13 inst c 17
14 inst a 18

38

Figure 2.4: Gains obtained when using combinational logic

2.3 Classification

In the reconfigurable field, there is a great variety of classifications, as it can be
observed in some surveys published about the subject (BARAT; LAUWEREINS, 2000)
(COMPTON; HAUCK, 2000). In this revision, the most common ones are cited, since
there is still no consensus about this taxonomy.

2.3.1 RPU Coupling

How the RPU is coupled, or connected to the main processor, defines how the
interface between both of them works, including issues related to how data is transferred
and how the synchronization between the parts is performed.

The position of the RPU, relative to the microprocessor, directly affects
performance. The benefit obtained from executing a piece of code in the RPU depends
on communication and execution costs. The time needed to execute an operation in the
RPU is the sum of the time needed to transfer the processed data and the time required
to process it. If this total time is smaller than the time it would normally take in the
processor alone, then an improvement can be obtained.

The RPU can be allocated in three main places relative to the processor:

 Attached to the processor: The reconfigurable logic communicates to the
main processor through a bus.

 Coprocessor: The reconfigurable logic is located next to the processor. The
communication usually is done using a protocol similar to those used for
floating point coprocessors.

 Functional Unit: The logic is placed inside the processor. It works as an
ordinary functional unit. The decoder of the processor is responsible to
activate it, when necessary.

Figure 2.5 illustrates these three different types of RPU coupling. The two first
interconnection schemes are usually called loosely coupled. The functional unit
approach, in turn, is named as tightly coupled. As stated before, the efficiency of each

39

technique depends on two things: the time of data transfer between the components,
where, in this case, the functional unit approach is the fastest one and the attached
processor, the slowest; and the quantity of instructions executed by the RPU. Usually,
loosely coupled RPUs can execute larger chunks of code, and are faster than the tightly
coupled ones – mainly because they have more area available. For this kind of RPU,
there is a need for faster execution times: it is necessary to overcome some of the
overhead brought by the high delays presented by the data transfer.

A tightly coupled RPU, although occupying more die area (where the processor is
implemented), makes the control logic simpler, and diminishes the overhead required in
the communication between the reconfigurable array and the rest of the system, because
it can share some resources with the processor, such as the access to the register bank.
Then, when there is a RPU working as functional unit in the main processor, it is called
a Reconfigurable Functional Unit, or RFU. The first reconfigurable systems were
implemented as co-processors, or as attached processors. However, with the
manufacturing advances, with more transistors available within the same die, the RFU
approach is becoming a very common implementation.

Figure 2.5: Different types of RPU Coupling

2.3.2 Granularity

The granularity of a reconfigurable unit defines its level of data manipulation: the
building blocks for fine-grained logic are gates (efficient for bit level operations), while
in coarse-grained RFUs the blocks are larger (therefore better suited for bit parallel
operations). A fine-grain reconfigurable system consists of Processing Elements (PEs)
and interconnections that are configured at bit-level. The PEs implement any 1-bit logic
function and vast interconnection resources are responsible for the communication links
between these PEs. Fine-grain systems provide high flexibility and can be used to
implement theoretically any digital circuit. A coarse-grain reconfigurable system, in
turn, consists of reconfigurable PEs that implements word-level operations and special-
purpose interconnections retaining enough flexibility for mapping different applications
onto the system. Usually, bit-oriented algorithms can take better benefit from fine-

Processor

RFU

Co-Processor

Memory

Attached
Processor

Main Bus

I/O Bus

40

grained approach, while for computation intensive applications, the coarse-grain
approach can be the best alternative.

Coarse grain architectures are implemented using off the shelf functional units and
multiplexers or yet using special functional units targeted to a given domain of
application. Fine grain reconfigurable systems are usually implemented with FPGA. An
example of an FPGA architecture is shown in Figure 2.6. It is consists of a 2-D array of
Configurable Logic Blocks (CLBs) used to implement both combinational and
sequential logics. Each CLB typically contains two or four identical programmable
slices. Each slice usually contains two programmable cores with few inputs (typically
four) that can be programmed to implement any 1-bit logic function. Programmable
interconnects surround CLBs ensures the communication between them. These
interconnections can be either direct connections via programmable switches or a mesh
structure using Switch Boxes (S-Box), as illustrated in the example. Each S-Box
contains a number of programmable switches (e.g., pass transistor) to perform the
required interconnections between the input and output wires. Finally, programmable
I/O cells surround the array, which are responsible for the communication with the
external environment.

Figure 2.6: A typical FPGA architecture

Granularity also affects the size of the configuration stream and the configuration
time. With fine-grained logic, more information is needed to describe the reconfigurable
instruction. Coarse-grained logic descriptions are more compact, but on the other hand,
some operations can be limited due to its higher level of data manipulation.

Another issue related to the granularity is the segment size. A segment is the
minimum hardware unit that can be configured and assigned to a reconfigurable
instruction (which will be explained in the following sub-section). Segments allow
instructions to share the reconfigurable resources. If segments are used, the
configuration of the reconfigurable logic can be performed in a hierarchical manner.
Each instruction is assigned to one or more segments, and inside those segments, the
processing elements are configured.

The interconnect that connects the elements inside a segment is referred to as
intra-segment interconnect. Intersegment interconnect is used to connect different

41

segments. In FPGAs, there are different levels of intra-segment interconnect. With
coarse-grained architectures, the interconnect tends to be done using buses and crossbar
switches.

2.3.3 Instruction Types

Reconfigurable instructions are those responsible for controlling the
reconfigurable hardware, as well as for the data transfer between it and the main
processor. They are identified by special opcodes in the processor instruction set. Which
operation a reconfigurable instruction will perform is usually specified using an extra
field in the instruction word. If one considers that a list of possible operations to be
executed on reconfigurable logic is encountered in a special table, this field can give
two different kinds of information:

 Address: The address in the memory of the configuration data for the
instruction is specified in the instruction word. Example: DISC
(WIRTHLIN; HUTCHINGS, 1995).

 Instruction number: An instruction identifier of small length is embedded in
the instruction word. This identifier indexes a configuration table where an
information, such as the configuration data address, is stored. The number of
reconfigurable instructions at one time is limited by the size of the table.
Example: OneChip98 (WITTIG; CHOW, 1996).

The first approach needs more instruction word bits but has the benefit that the
number of different instructions is not limited by the size of a table, as in the second
case. When using the configuration table approach, the table can be changed on the fly,
so the processor can adapt to the task at hand at runtime. However, specialized
scheduling techniques have to be used during code generation in order to configure
what instructions will be available in the table at a given moment, during program
execution.

Moreover, there are other issues concerning instructions in reconfigurable
systems. For example, the memory accesses performed by these instructions can be
made by specialized load/store operations or implemented as stream based operations. If
the memory hierarchy supports several accesses at the same time, then the number of
memory ports can be greater than one. Moreover, the register file accessed by the RFU
can be shared with other functional units or be dedicated (such as the floating point
register file in some architectures). The dedicated register file would need less ports
than if it was shared, becoming cheaper to be implemented. Its major drawback is
register heterogeneity, resulting in more control for synchronizations.

Furthermore, reconfigurable instructions can be implemented as stream based
ones or customized. The first type can process large amounts of data in a sequential or
blocked manner. Only a small set of applications can benefit from this type, such as FIR
filtering, discrete cosine transformation (DCT) etc. Custom instructions take small
amounts of data at a time (usually from internal registers) and produce another small
amount of data. These instructions can be used in almost all applications as they impose
fewer restrictions on the characteristics of the application. Example of these operations
are bit reversal, multiply accumulate (MAC) etc.

Finally, instructions can also be classified in many other ways, such as execution
time, pipelining, internal state etc.

42

2.3.4 Reconfigurability

The reconfigurable logic inside the RFU can be programmed at different
moments. If the RFU can only be programmed at startup, this unit is not reconfigurable
(it is configurable). If the RFU can be configured after initialization, the supported
instruction set can be bigger than the size allowed by the reconfigurable logic. If the
application is divided in functionally different blocks, the RFU can be reconfigured to
the needs of each individual block. In this manner, the instruction adaptation is done in
a per block basis. Most of the reconfigurable processors belong to this kind.

Reconfiguration times depend on the size of the configuration data, which can be
quite large. These times depend on the configuration method used. For instance, in the
PRISC processor (ATHANAS; SILVERMAN, 1993), the RFU is configured by
copying the configuration data directly into the configuration memory using normal
load/store operations. If this task is performed by a configuration unit that is able to
fetch the configuration data while the processor is executing code, a performance gain
can be obtained. Furthermore, prefetching the instruction configuration data can reduce
the time the processor is stalled waiting for reconfiguration, which could be done. The
insertion of prefetching instructions could be done automatically by software tools.

The reconfigurable logic is simpler if the RFU is blocked during reconfiguration.
However, if the RFU can be used while reconfiguring, it is possible to increase
performance. This can be done, for example, by dividing the RFU in segments that can
be configured independently from each other, with no necessity of reconfiguring the
whole RFU at a time.

2.4 Examples

In the following subsections, some of the most cited works regarding
reconfigurable systems are discussed. A special subsection is added to each architecture
description, discussing briefly the behavior of the benchmark set employed for their
evaluation. Later, in this same chapter, the impact of using these benchmarks will be
better discussed. For even more details about existent reconfigurable architectures, some
recent surveys about the theme, both on coarse (THEODORIDIS et al., 2007)
(HARTENSTEIN, 2001) and fine grain (TATAS et al., 2007) systems, can be found.

2.4.1 Chimaera (1997)

Chimaera (HAUCK, 1997) was created with the claim that the current custom
computing units at that time used to suffer with communication delays. Therefore, large
chunks of the application code should be optimized to achieve reasonable performance
improvements, so it could overlap this delay. In order to decrease communication time,
this was one of the first proposals of a reconfigurable system that actually works
together with the host processor, as a tightly coupled unit, with direct access to its
register file.

The main component of the system is the reconfigurable array, which consists of
FPGA-like logic designed to support high-performance computations. It is there that all
RFU instructions will be executed. To the array, it is given direct read access to a subset
of the registers in the processor (either by adding read connections to the host’s register
file, or by creating a shadow register file which contains copies of those registers’
values).

43

The granularity of this array is fine, based on FPGA, but a modified one: there is
no state holding elements (such as flip flops or latches) inside of it, making it totally
combinational. Its routing mechanism as well as its logic blocks are illustrated in Figure
2.7a and Figure 2.7b, respectively. Furthermore, there are no pipeline stages, but there is
no claim about how this would influence the system’s critical path. The routing
mechanism was also modified (as the way lines are structured) to allow partial
reconfiguration at faster speeds. The unit accepts partial reconfiguration, although its
mechanism is not clearly described on the paper.

Figure 2.7: (a) The Chimaera Reconfigurable Array routing structure, and its (b) logic
block (HAUCK, 1997)

Another interesting aspect of this architecture is the downward flow of
information and computation through the array. There is no way to send signals back to
a higher row in the system. Moreover, the system supports more than one instruction in
the reconfigurable unit at the same time, treating the reconfigurable logic not as a fixed
resource, but instead as a cache for RFU instructions. Those instructions that have
recently been executed, or those it can otherwise predict might be needed soon, are kept
in the reconfigurable logic.

The array is coupled to a MIPS R4000 processor. As part of the host processor’s
decode logic, it is determined if the current instruction is a RFUOP opcode. If so, it
configures the RFU to produce the next result. In order to use instructions in the RFU,
the application code includes calls to the RFU (using special instructions), and the
corresponding RFU mappings are contained in the instruction segment of that
application. These special instructions are hand-coded and manually scheduled in the
original source code, which usually also suffer of some kind of transformation.

The RFU call consists of the RFUOP opcode, indicating that an RFU instruction
is being called, an ID operand that determines which specific instruction should be
executed, and the destination register operand. The information from which registers an
RFU configuration reads its operands is intrinsic in the instruction. A single RFU
instruction can use up to nine different operands. If that instruction is already present
(meaning that it is already programmed, or configured) in the RFU, the result of that
instruction is written to the destination register during the instruction’s write back cycle.
In this way, the RFU calls act just like any other instruction, fitting into the processor’s

(a) (b)

44

standard execution pipeline. If the requested instruction is not currently loaded into the
RFU, the host processor is stalled while the RFU fetches the instruction from memory
and properly reconfigures itself.

The Content Addressable Memory (CAM) determines which are the loaded
instructions in the array, where they are, and if they are completed. When a RFUOP is
found, and if the value in the CAM matches the RFUOP ID, the result from that row in
the reconfigurable array is written onto the result bus, and thus sent back to the register
file – considering that the computation is done. If the instruction corresponding to the
RFUOP ID is not present, the Caching/Prefetch control logic stalls the processor, and
loads the proper RFU instruction from memory into the array. The caching logic also
determines which parts of the reconfigurable array are overwritten by the instruction
being loaded, and attempts to retain those RFU instructions most likely to be needed in
the near future. Reconfiguration is done on a per-row basis, with one or more rows
making up a given RFU instruction.

Figure 2.8: Organization of the Chimaera system (HAUCK, 1997)

BENCHMARK EVALUATION

It was used three different algorithms for the system validation:

 Compress/SPEC92 – speedup of 1.11. The small speedup can be explained
because it is very likely that there are no distinct kernels for optimization.
This work (LIPASTI et al., 1996), about value prediction, shows that this
algorithm has a small value locality concerning loads, which could be a
reflex of a small reutilization of kernels.

 Eqntott/SPEC92 – speedup of 1.8. According to the paper: “spends about
85% of its time in a single routine, ‘cmppt’”. In the same work cited before,
Eqntott has a high degree of load value locality.

 Conway’s Game of Life – According to the paper, it is basically an array
computation. In the software version of the algorithm, more than half of the
time is spent in the routines “get_bit” and “put_bit”, which read and write the
value of individual cells. By simply replacing these routines with RFU
instructions, it is possible to get a speedup of 2.06. With manual
modification via careful hand mapping to bit parallel, a speedup of 160 times
was achieved.

45

2.4.2 GARP (1997)

The GARP machine is a reconfigurable system coupled to a MIPS II instruction
set processor (HAUSE; WAWRYNEK, 1997). With GARP, the loading and execution
of configurations in the reconfigurable array is always under the control of a program
running on the main processor. As Chimaera, the reconfigurable instructions are hand-
coded and statically scheduled. It is used a modified GCC-like design flow, using a
pseudo language bounded together with the assembly generated from a C source.

It is interesting to point out that it uses FPGA technology for the reconfigurable
logic. However, because of that, it is necessary to overcome some obstacles, such as
(according to the authors) (HAUSE; WAWRYNEK, 1997):

 FPGA machines are rarely large enough to encode entire interesting
programs all at once. Smaller configurations handling different pieces of a
program must be swapped in over time. However, configuration time is too
expensive for any configuration to be used only briefly and discarded. In real
programs, much code is not repeated often enough to be worth loading into
an FPGA.

 No circuit constructed with an FPGA can be as efficient as the same circuit
in dedicated hardware. Standard functions like multiplications and floating-
point operations are big and slow in an FPGA when compared to their
counterparts in ordinary processors.

 Problems that are worth solving with FPGAs usually involve more data than
can be kept in the FPGAs themselves. No standard model exists for attaching
external memory to FPGAs. FPGA-based machines typically include ad hoc
memory systems, designed specifically for the first application envisaged for
the machine.

 Wide acceptance in the marketplace requires binary compatibility among a
range of implementations. The current crop of FPGAs, on the other hand,
must be reprogrammed for each new chip version, even within the same
FPGA family.

Garp’s reconfigurable array is composed of entities called blocks (Figure 2.9).
One block on each row is known as a control block. The rest of the blocks in the array
are logic blocks, which correspond roughly to the CLBs of the Xilinx 4000 series
(XILINX, 2008). The Garp architecture fixes the number of columns of blocks at 24.
The number of rows is implementation-specific, but can be expected to be at least 32.
The basic “quantum” of data within the array is 2 bits. Logic blocks operate on values
as 2-bit units, and all wires are arranged in pairs to transmit 2-bit quantities. This way,
operations on 32-bit quantities generally require 16 logic blocks. Compared to typical
FPGAs, Garp expends more hardware on accelerating operations like adds and variable
shifts. The decision to make everything 2 bits wide is based on the assumption that a
large fraction of most configurations will be taken up by multi-bit operations that are
configured identically for each bit. By doubling up bits, the size of configurations— and
thus the time required to load configurations and the space taken up on the die to store
them—is reduced at the cost of some loss of flexibility

46

Rather than specify component delays as precise times that would change with
each processor generation, delays in Garp are defined in terms of the sequences that can
be fit within each array clock cycle. Only three sequences are permitted:

 short wire, simple function, short wire, simple function;

 long wire, any function not using the carry chain; or

 short wire, any function.

The loading and execution of configurations is under control of the main
processor. Several instructions have been added to the MIPS-II instruction set for this
purpose, including ones that allow the processor to move data between the array and the
processor’s own registers. The main processor has a number of instructions for
controlling the array. These include instructions for loading configurations, for copying
data between the array and the processor registers, for manipulating the array clock
counter, and for saving and restoring array state on context switches. The Garp
reconfigurable hardware can access directly the main memory system, in opposite to the
Chimaera architecture.

Figure 2.9: A block of the GARP machine (HAUSE; WAWRYNEK, 1997)

Each block in the array requires exactly 64 configuration bits (8 bytes) to specify
the sources of inputs, the function of the block, and any wires driven with outputs. No
configuration bits are needed for the array wires. A configuration of 32 rows requires
approximately 6 KB. Assuming a 128-bit path to external memory, loading a full 32-
row configuration takes 384 sequential memory accesses. At that time, a typical
processor external bus might need 50 µs to complete the load.

Since not all useful configurations will require the entire resources of the array,
Garp allows partial array configurations. The smallest configuration is one row, and
every configuration must fill exactly some number of contiguous rows. Distributed
within the array is a cache of recently used configurations, similar to an ordinary
instruction cache. Two configurations can never be active at the same time, no matter
how many array rows might be left unused by a small configuration.

BENCHMARK EVALUATION

Simulations were performed in order to gather results for Garp, since at that time
no actual hardware implementation existed. It was compared against a Sun UltraSPARC

47

1/170, a 4-way superscalar 64-bit processor with 16 kB each of on-chip instruction and
data caches. Performance estimations can be observed in Figure 2.10. In Figure 2.11
one can observe the area estimative of a hypothetical implementation in hardware of
this reconfigurable system. It would be implemented in a 0.5 µm, 4-metal-layer process
in a die size of 17.5 x 17.8 mm2. It is also compared with the same UltraSPARC.

Figure 2.10: Performance estimations for GARP machine, compared to the SPARC
(HAUSE; WAWRYNEK, 1997)

Figure 2.11: Area estimation for the GARP system (HAUSE; WAWRYNEK, 1997)

This system was evaluated with the following algorithms:

 DES - A well-know cryptography algorithm, with just one hot spot
responsible for almost 100% of execution time (ANANIAN, 1997).

 Sorting – Several kinds of sorting, including Quicksort (1 million objects).
Sorting algorithms usually have just one kernel used for sorting the
components, which is repeated several times.

 Image Dithering – It is a vector processing. Again, it is based on the same
kernel that is repeated several times through the image. In this case, a dither
was applied to a full color image of 640x480 pixels to a fixed palette of
fewer than 256 colors.

2.4.3 Remarc (1998)

REMARC comes from “Reconfigurable Multimedia Array Coprocessor”
(MIYAMORI et al., 1998). It is a reconfigurable unit, coupled to a MIPS II ISA based
RISC machine. As the name states, REMARC was specifically designed to speed up
multimedia applications. As the MIPS ISA can support up to four coprocessors, and
coprocessor 0 is already used for memory management and exception handling,
coprocessor 1 is used for a floating point unit; REMARC operates as coprocessor 2.

48

A coarse grain reconfigurable system was employed, because, according to the
authors, fine grain FPGA based reconfigurable architectures have the following
drawbacks:

 The small width of the programmable logic blocks results in large area and
delay overheads to implement wider datapaths, such as 8 or 16 bits long.

 FPGAs are slower than a custom integrated circuit and have lower logic
density.

This way, REMARC consists of an 8x8 array of nano processors and a global
control unit. The nano processor can communicate to the four adjacent ones through the
dedicated connections and to the processors in the same row and the same column
through the 32-bit Horizontal Bus (HBUS) and the 32-bit Vertical Bus (VBUS),
respectivelly. A general overview of the system can be observed in Figure 2.12.

Figure 2.12: General overview of the REMARC reconfigurable system (MIYAMORI et
al., 1998)

The nano processor consists of a 32-entry instruction RAM (nano instruction
RAM), a 16-bit ALU, a 16-bit entry data RAM, an instruction register (IR), eight 16- bit
data registers (DR), four 16-bit data input registers (DIR), and a 16-bit data output
register (DOR). The DOR registers are used to accept data from the four adjacent nano
processors (up, down, left, and right) through dedicated connections (DINU, DIND,
DINL, and DINR). The DOR register data can also be used for source data of ALU
operations or data inputs of a DIR register. These local connections provide high
bandwidth pathways within the processor array. The 16-bit ALU can execute 30
different instructions. The nano processor is demonstrated in Figure 2.3.

The nano processors do not have Program Counters (PCs) by themselves. The
global control unit generates the PC value (nano PC) for all nano processors every
cycle. All nano processors use the same nano PC and execute the instruction indexed by
it. However, each nano processor has its own nano instruction RAM. Therefore, each
nano processor can operate differently according to the nano instructions stored in this

49

local RAM. This makes it possible to achieve a limited form of Multiple Instruction
Stream, Multiple Data Stream (MIMD) operation in the processor array. At this point,
according to the authors, REMARC can be regarded as a VLIW processor in which
each instruction consists of 64 operations.

As already stated before, the global control unit controls the nano processors and
the transfer of data between them and the main processor. It includes a 1024-entry
instruction RAM (global instruction RAM), data registers, and control registers. These
registers can be accessed by the main processor directly using main processor
instructions: move from/to coprocessor or load/store coprocessor. Eight 32-bit VBUSs
are used for communication between the global control unit and the nano processors.

The reconfigurable instructions are programmed in the special REMARC
assembly language, and can be added to a regular C code using GCC.

Figure 2.13: One nano processor in the REMARC system (MIYAMORI et al., 1998)

BENCHMARK EVALUATION

Remarc executes MPEG2 decoding, optimizing just two kernels: IDCT and MC
that, according to the paper, cover more than 70% of the total execution time. It also
executes MPEG2 encoding, optimizing just Motion Estimation, which covers 98% of
total execution time, as shown in Figure 2.14. The third algorithm employed is DES,
already discussed in this same section, which can be observed in Figure 2.15. A high-
level simulation of the system demonstrated speedups ranging from a factor of 2.3 to
21.2 in the aforementioned applications.

50

Figure 2.14: Motion Estimation is responsible for 98% of execution time in the MPEG2
encoder (MIYAMORI et al., 1998)

Figure 2.15: Steps of the DES algorithm (MIYAMORI et al., 1998)

2.4.4 Rapid (1998)

RaPiD (CRONQUIST et al., 1998) is a coarse-grain architecture that allows the
dynamic construction of deeply pipelined computational datapaths from a mix of ALUs,
multipliers, registers and local memories. The goal of RaPiD is to compile regular
computations like those found in DSP applications into both an application-specific
datapath, and the program for controlling that datapath. RaPiD-I is a linear array of
functional units which can be configured to form a (mostly) linear computational
pipeline. This array of functional units is divided into identical cells. One cell for
RaPiD-I is shown in Figure 2.16. This cell comprises an integer multiplier, two integer
ALUs, six general-purpose registers and three small local memories. The complete
RaPiD-I array contains 16 of these cells.

The functional units are interconnected using a set of ten segmented busses that
run the length of the datapath. Each input of the functional units is attached to a
multiplexer that is configured to select one of eight busses. Each output of the
functional units is attached to a demultiplexer comprised of tristate drivers, each driving
one of eight busses. Each output driver can be configured independently, which allows
an output to fan out to several busses, or none at all if the functional unit is not being
used. The ALUs perform the usual logical and arithmetic operations on signed or
unsigned fixed-point 16-bit data. The two ALUs in a cell can be combined to perform a

51

pipelined 32-bit operation, most typically as a 32-bit adder for multiply-accumulate
computations.

RaPiD is programmed for a particular application by first mapping the
computation onto a datapath pipeline. The control signals are divided into static control
signals provided by configuration memory, and dynamic control which must be
provided on every cycle. The static programming bits are used to construct this pipeline
and the dynamic programming bits are used to schedule the operations of the
computation onto the datapath over time. A controller is programmed to generate the
information needed to produce the dynamic programming bits. At the time the paper
was written, the applications were mapped to the RaPiD architecture by hand. There
was no compiler or tool support at all.

Figure 2.16: RaPiD-I cell (CRONQUIST et al., 1998)

BENCHMARK EVALUATION

RaPiD executes two algorithms that have already been discussed on this section:
FIR filter and Matrix multiply, proving once more that traditional reconfigurable
architectures in general just attack one niche of applications. A performance of up 1.6
billion of operations per second was achieved in a FIR filter and Matrix multiplication.
However, there is no comparison against any other architecture.

2.4.5 Piperench (1999)

The basic principle of Piperench (GOLDSTEIN et al., 1999) is the so-called
“pipelined reconfiguration”. It means that a given kernel is broken into pieces, and these
pieces can be reconfigured and executed on demand. This way, the parts of a given
kernel are multiplexed in time and space into the reconfigurable logic. This process is
called virtualization process, and it is illustrated in Figure 2.17. In the upper part of it
(Figure 2.17a), it is demonstrated an application which was divided in 5 different
pipeline stages, taking the total of 7 cycles to be configured and executed (each stage
can be configured and used independently of each other), representing the normal
operation. Figure 2.17b shows how this application can fit in the reconfigurable
hardware after virtualization: just 3 stages of the equivalent pipeline stages presented

52

before are necessary. The pipeline stages are reconfigured on demand, according to the
kernel needs. Note that the virtual stage 1 is used to execute the equivalent of stages 1
and 4 of the original operation. This is feasible because it is done in different periods of
time. Since some stages are configured while others are executed, reconfiguration does
not decrease performance. Consequently, it is possible to execute the same piece of
software taking the same time, but with a smaller area overhead.

Figure 2.17: The virtualization process, technique used by Piperench. (a) Normal
execution. (b) With virtualization (GOLDSTEIN et al., 1999)

In its current implementation, PipeRench can be classified as an attached
processor. Figure 2.18 presents a general overview of the PipeRench architecture. A set
of physical pipeline stages are called stripes. Each stripe has an interconnection network
and a set of Processing Elements (PEs). In Figure 2.19 one can observe a more detailed
view of a PE. Each PE contains an arithmetic logic unit and a pass register file. Each
ALU in the PE contains lookup tables (LUTs) and extra circuitry for carry chains, zero
detection, and so on. Designers can implement combinational logic using a set of NB-
bit-wide ALUs. They can also cascade the carry lines of these ALUs to construct wider
ALUs by chaining them together via the interconnection network, so it is possible to
build complex combinational functions. The ALU operation is static while a particular
virtual stripe resides in a physical stripe.

Through the interconnection network, PEs can access operands from registered
outputs of the previous stripe, as well as registered or unregistered outputs of the other
PEs in the same stripe. The pass register file provides a pipelined interconnection from a
PE in one stripe to the corresponding PE in subsequent stripes. A program can write the
ALU’s output to any of the P registers in the pass register file. If the ALU does not
write to a particular register, that register’s value will come from the value in the
previous stripe’s corresponding pass register. For data values to move laterally within a
stripe, they must use the interconnection network. In each stripe, the interconnection
network accepts inputs from each PE in that stripe, plus one of the register values from
the previous stripe. Moreover, a barrel shifter in each PE shifts its inputs B – 1 bits to
the left. Thus, PipeRench can handle the data alignments necessary for word-based
arithmetic. The PEs can also access global I/O buses. These buses are necessary because
an application’s pipeline stages may physically reside in any of the fabric’s stripes.

53

Inputs to and outputs from the application must use a global bus to get to their
destination. Because of hardware virtualization constraints, the buses cannot be used to
connect consecutive stripes.

Figure 2.18: General overview of the Piperench structure (GOLDSTEIN et al., 1999)

Figure 2.19: Detailed view of the Process Element and its connections

The process of code generation uses a parameterized compiler. The compiler
begins by reading a description of the architecture. This description includes the number
of PEs per stripe, each PE’s bit width, the number of pass registers per PE, the
interconnection topology, PE delay characteristics, and so on. The source language is a
dataflow intermediate language. After parsing, the compiler inlines all modules, unrolls
all loops, and generates a straight-line, single-assignment program.

It interesting to repeat some of the reasons that motivated the authors to build this
architecture without using FPGA:

54

 Logic granularity: It is claimed that FPGAs are designed for logic replacement.
The granularity of the functional units is optimized to replace random logic, not
to perform multimedia computations.

 Configuration time: The time to load a configuration in the fabric ranges from
hundreds of microseconds to hundreds of milliseconds. For FPGAs to improve
processing speed over that of a general-purpose processor, they must amortize
this start-up latency over huge data sets, limiting their applicability.

 Forward compatibility. FPGAs require redesign or recompilation to benefit from
future chip generations.

 Hard constraints. FPGAs can implement only kernels of a fixed and relatively
small size. This size restriction makes compilation difficult and causes large,
unpredictable discontinuities between kernel size and performance.

 Compilation time. A kernel’s synthesis, placement, and routing design phases
take hundreds of seconds, taking longer than the compilation of the same kernel
for a general-purpose processor.

BENCHMARK EVALUATION

To evaluate PipeRench’s performance, the authors have also chosen dataflow
oriented software with very distinct kernels, which is a characteristic of algorithms that
are highly based on filters or transforms, as can be observed:

 Automatic target recognition (ATR): it implements the shape-sum kernel of the
Sandia algorithm for automatic target recognition;

 Cordic: it implements the Honeywell timing benchmark for Cordic vector
rotations;

 DCT: it is a 1D, 8-point discrete cosine transform;

 DCT-2D: it is a 2D discrete cosine transform;

 FIR: it is a finite-impulse response filter with 20 taps and 8-bit coefficients;

 IDEA: it implements a complete 8-round International Data Encryption
Algorithm;

 Nqueens: it is an evaluator for the N queens problem on an 8 x 8 board;

 Over: it implements the Porter-Duff over operator;

 PopCount: it is a custom instruction implementing a population count
instruction;

 IDEA: it is a block cipher.

Results for the Piperench system can be seen in Figure 2.20. This figure shows the
performance improvements of the 100MHz Piperench, built as a 128-bit-wide fabric
having 8-bits PEs with 8 registers each, over a 300MHz Ultrasparc II.

55

Figure 2.20: Performance improvements over a 300-mhz Ultrasparc II

2.4.6 Molen (2001)

The Molen processor is a FPGA based reconfigurable system with a loosely
coupled reconfigurable array. The two main components in the Molen organization
(VASSILIADIS et al., 2001) are depicted in Figure 2.21. More precisely, they are the
Core Processor, which is a GPP, and the Reconfigurable Unit (RU). The Arbiter issues
instructions to both processors; and data transfers are controlled by the Memory MUX.
The reconfigurable unit (RU), in turn, is subdivided into the pµ-code unit and the
Custom Computing Unit (CCU). The CCU is implemented in reconfigurable hardware,
e.g., a field-programmable gate array (FPGA), and memory. The application code runs
on the GPP except of the accelerated parts implemented on the CCU used to speed up
the overall program execution. Exchange of data between the main and the
reconfigurable processors is performed via the exchange registers (XREGs).

The reconfigurable processor operation is divided into two distinct phases: set and
execute. In the set phase, the CCU is configured to perform the targeted operations.
Subsequently, in the execute phase, the actual execution of the operations takes place.
Such decoupling allows the set phase to be scheduled well ahead of the execute phase,
thereby hiding the reconfiguration latency. As no actual execution is performed in the
set phase, it can even be scheduled upward across the code boundary in the instructions
preceding the RU targeted code.

A sequential consistency programming paradigm is used for MOLEN
(VASSILIADIS et al., 2003). It requires only a one-time architectural extension of a
few instructions that supports a large user reconfigurable operation space. Although the
complete ISA extension comprises 8 instructions, the minimal instruction set (πISA) of
the ρµ-code unit is enough to provide a working scenario. The instructions in this class
are: set, execute, movtx and movfx. By implementing the first two instructions
(set/execute), any suitable CCU implementation can be configured and executed in the
CCU space. The movtx and movfx instructions are needed to provide the input/output
interface between the RU targeted code and the remaining application code to pass data,
parameters or data references.

56

Figure 2.21: A general overview of the Molen System

BENCHMARK EVALUATION

Molen was evaluated with the MPEG2 encoder/decoder. The most time
consuming operations among SAD (sum of absolute difference), 2D-DCT (two
dimensional discrete cosine transform), and 2D-IDCT (two dimensional inverse DCT)
were optimized. These kernels, in turn, are the most time consuming ones in the
MPEG2 algorithm and, as already discussed before, highly dataflow oriented. Figure
2.22 demonstrates the impact of implementing these kernels as Molen hardware when
comparing against a PowerPC processor without it. Columns labeled “theory” present
the theoretically achievable maximum speed up. Columns labeled with “impl.” contain
data for the projected speedups with respect to the considered Molen implementation.

Figure 2.22: Molen Speed ups (VASSILIADIS et al., 2004)

2.4.7 Other Reconfigurable Architectures

Other processors are worth to be briefly discussed in this section. ConCISe
(RAZDAN; SMITH, 1994) has a tightly coupled reconfigurable array in the processor
core, limited to combinational logic – in the same way Chimaera was implemented. The
array is, in fact, an additional functional unit in the processor pipeline, sharing the same
resources of the other ones. As more examples, some designs employ standard fine-
grained FPGA resources, such as DISC (WIRTHLIN; HUTCHINGS, 1995), OneChip
(WITTG; CHOW, 1996), PRISM-I (ATHANAS; SILVERMAN, 1993), PRISM-II
(WAZLOWSKI et al., 1993). In the group of coarse grain reconfigurable systems, one

Memory

MUX

Main Memory

Data Fetch

Arbitrer

CCU

HW

Memory

MIPS
pµ‐code

unit

XREGs File

Instruction
Fetch

Reconfigurable
Unit

 MPEG2 encoder MPEG2 decoder

 theory impl. impl./th. theory impl. impl./th.

carphone 2.85 2.64 93% 2.02 1.94 96%

claire 2.99 2.80 94% 1.60 1.56 98%

container 3.12 2.96 95% 1.68 1.63 97%

tennis 3.37 3.18 94% 1.68 1.65 98%

57

can include: Pact-XPP (CARDOSO et al., 2002), Morphosys (SINGH et al., 1998),
Pleiades (ZHANG et al., 1998) and ADRES (MEI et al., 2003). Other reconfigurable
architectures with smaller impact on the scientific community also have been
implemented, such as: Motium (HEYSTERS et al., 2003), XiRISC (LODI et al., 2003)
and ReRISC (VASSILIADIS et al, 2006).

Table 2.1, (BARAT; LAUWEREINS, 2000) shows some of the most popular
reconfigurable architectures, demonstrating their different aspects and characteristics.
However, in opposite to what is stated on this table, the Chimaera reconfigurable unit
can take more than one cycle to execute its instructions, and it was implemented
together with a MIPS R4000 processor. It is very interesting to point out that the only
architecture presented on this table which is not fine grained is the newest one:
Piperench. That is because coarse grain reconfigurable architectures started to become
popular after the year of 2000.

Table 2.1: General characteristics of several reconfigurable architectures (BARAT;
LAUWEREINS, 2000)

2.4.8 Recent Dataflow Architectures

More recently, new dataflow architectures were proposed. These architectures
differ from regular reconfigurable systems mainly because they do not have any kind of
processor working together with it. Moreover, they abandon program counter and the
linear von-Neumann execution that could limit the amount of parallelism to be
explored. However, they are highly dependent on compilers and tools to code
generation, which involves placing parts of the code in the correct order in the
processing elements, for the synchronism, parallelism analysis etc. This way, the main
effort is on the development of these compilers and tools, not on the hardware design,
which is usually very simple.

As a first example, TRIPS (SANKARALINGAM et al., 2003) is a hybrid von-
Neumann/dataflow architecture that combines an instance of coarse-grained,
polymorphous grid processor cores with an adaptive on-chip memory system. To better
explore the application parallelism and provide a large use of available resources,
TRIPS uses three different modes of execution: D-morph that search parallelism in

58

instruction level; T-morph that works at the thread level, mapping multiple threads onto
a single TRIPS core; and S-morph that is targeted to applications like streaming media
with high data-level parallelism. Figure 2.23 gives an overview of the TRIPS
architecture.

Figure 2.23: General overview of the TRIPS architecture. From left to right: the TRIPS
Chip, TRIPS core, and an execution node (SANKARALINGAM et al., 2003)

Another example of a dataflow machine is Wavescalar (SWANSON et al., 2003)
that, likewise TRIPS, relies on the compiler to statically place instructions into its
hardware structures. Another similarity is that there is no central processing unit at all,
which is replaced by many processing nodes. As it can be observed in Figure 2.24, the
basic processing element is very similar to the one found in TRIPS. However, this
architecture is even more regular when considering its structure.

Figure 2.24: The Wavescalar architecture (SWANSON et al., 2003)

In the same work, the motivations of building a dataflow architecture are
discussed. These motivations are related to some limitations that superscalar processors
present, mainly because they are basically Von-Neumann architectures. The first thing
discussed is the so-called processor scaling wall, which emerges because of three
reasons:

 The difference in terms of speed between (fast) transistors and (slow)
wires is increasing – meaning that there is a disparity between computation
and communication;

 The increasing cost of circuit complexity;

 The decreasing of reliability of these circuits.

59

According to the authors, superscalar processors will suffer a lot because of these
reasons, since they have a huge infrastructure with slow broadcast networks, associative
searches, complex control logic and inherently centralized structures. Moreover, other
drawbacks regarding superscalar architecture can be cited:

 Their inherent complexity makes efficient implementation a daunting
challenge,

 They ignore an important source of locality in instruction streams,

 Their execution model centers around instruction fetch, an intrinsic
serialization point.

On the other hand, dataflow machines must convert control dependencies into
data dependencies. To accomplish this, they explicitly send data values to the
instructions that need them instead of broadcasting them via the register file. The
potential consumers are known at compile time, but depending on control flow, only a
subset of them should receive the values at run-time.

2.5 Directions

In this sub-section, some directions that should be taken while developing a new
reconfigurable architecture are analyzed. First, we evaluate a known benchmark set in
order to figure what is the best strategy to take in terms of granularity. Then, we study
the impact of this analysis in both fine and coarse grain reconfigurable systems
performing high levels simulations. Finally, other issues are taken into account, such as
reconfiguration and execution times, and the growing number of applications being
executed at the same time on a system.

2.5.1 Heterogeneous Behavior of the Applications

In (BECK et al., 2008b), it is used a subset of the Mibench Benchmark Suite
(GUTHAUS et al., 2001), which represents the complete set of diverse algorithm
behaviors. As a matter of fact, this suite has been chosen because, according to
(GUTHAUS et al., 2001), it has a larger range of different behaviors when compared
against other benchmark sets, e.g. SPEC2000 (HENNING, 2000). This way, the
following 18 benchmarks were evaluated: Quicksort, Susan Corners/Edges/Smoothing,
Jpeg Encoder/Decoder, Dijkstra, Patricia, StringSearch, Rinjdael Encode/Decode, Sha,
Raw Audio Coder/Decoder, GSM Coder/Decoder, Bitcount and CRC32.

First, a characterization of the algorithms regarding the number of instructions
executed per branch is done (classifying them as control or dataflow oriented based on
these numbers). As it can be observed in Figure 2.25, the RawAudio Decoder algorithm
is the most control flow oriented one (a high percentage of branches executed per
program) while the Rijndael Encoder is quite the opposite. It is important to point out
that, for reconfigurable architectures, the more instructions a basic block has, the better,
since there is more room for exploiting parallelism. Furthermore, more branches mean
additional paths that can be taken, increasing the execution time and the area consumed
by a given configuration, when implemented in reconfigurable logic.

Figure 2.26 shows the analysis of distinct kernels based on the execution rates of
the basic blocks in the programs. The methodology involves investigating the number of
basic blocks responsible for covering a certain percentage of the total number of basic
block executed. For instance, in the CRC32 algorithm, just 3 basic blocks are

60

responsible for almost 100% of the total program execution time. Again, for typical
reconfigurable systems, this algorithm can be easily optimized: one just needs to
concentrate all the design effort on that specific group of basic blocks and implement
them to reconfigurable logic.

Figure 2.25: Instruction per Branch Rate

Figure 2.26: How many BBs are necessary to cover a certain amount of execution time?

However, other algorithms, such as the widely used JPEG decoder, have no
distinct execution kernels at all. In this algorithm, 50% of the total instructions executed
are due to 20 different BBs. Hence, if one wished to have a speedup of 2x (according to
Amdahl’s law), considering ideal assumptions, all 20 different basic blocks should be
mapped into reconfigurable logic. This analysis will be presented in more details in the
next section.

The problem of not having a clear group of most executed kernels becomes even
more evident if one considers the wide range of applications that embedded systems are
implementing nowadays. In a scenario when an embedded system runs RawAudio
decoder, JPEG encoder/decoder, and StringSearch, the designer would have to
transform approximately 45 different basic blocks into the reconfigurable fabric to
achieve a maximum of 2 times performance improvement.

0

5

10

15

20

25

30
C
R
C
3
2

B
it
co
u
n
t

G
SM

 D
ec
.

G
SM

 E
n
c.

R
aw

A
u
d
io
 D

R
aw

A
u
d
io
 E

SH
A

R
ijn
d
ae
l D

ec
.

R
ijn
d
ae
l E
n
c.

St
ri
n
Se
ar
ch

P
at
ri
ci
a

D
ijk
st
ra

JP
EG

 D
ec
.

JP
EG

 E
n
c.

S.
 S
m
o
o
th

S.
 E
d
ge
s

S.
 C
o
rn
er
s

Q
so
rt

Instructions per Branch

% of execution time

of BBs

100%

80%

60%

40%

20%

0

61

Furthermore, it is interesting to point out that the algorithms with a high number
of instructions per branch tend to be the ones that need fewer kernels to achieve higher
speedups. Figure 2.27 illustrates this scenario by using the cases with 1, 3 and 5 basic
blocks. Note that, mainly when it is considered the most executed basic block only (first
bar of each benchmark), the shape of the graph is very similar to the instructions per
branch ratios shown in Figure 2.25 (with some exceptions, such as the CRC32 or JPEG
decoder algorithms). A deeper study about this issue is envisioned to indicate some
directions regarding the reconfigurable arrays optimization just based on very simple
profile statistics.

Figure 2.27: Amount of execution time covered by 1, 3 or 5 basic blocks in each
application

2.5.2 Potential of using Fine Grained Reconfigurable Arrays

In this section, the potentiality of fine grain reconfigurable arrays is evaluated.
Considering the optimization of loops and subroutines, the level of performance gains if
a determined number of hot spots is mapped to a fine grain reconfigurable logic is
analyzed. In this first experiment, it is assumed that just one piece of reconfigurable
hardware is available per loop or subroutine. This means that the only part of the code
that will be optimized by the reconfigurable logic is the one which is common in all
iterations. For example, let us assume that a loop should be executed 50 times. 100% of
the code is executed 49 times, but just 20% is executed 50 times (all the iterations). This
way, just this 20% is available for optimization, since it comprises the common
instructions executed in all loop iterations. Figure 2.28 illustrates this case. The dark
part is always executed, so just this part can be transformed to reconfigurable logic.
Moreover, subroutines that are called inside loops are not suited for optimization.

Figure 2.28: Just a small part of the loop can be optimized

}
Executed 49 timesExecuted 50 times

for (i=0;i<50;i++)

{

Reconfigurable Logic

100%

80%

60%

40%

20%

0

of BBs % of execution time

62

Figure 2.29a and Figure 2.29b show, in the y-axis, the performance improvements
(speedup factor) when implementing a different number of subroutines or loops (x-axis)
on reconfigurable logic, respectively. The hot spots are chosen in order of relevance,
where the first on the list is the most executed one (number of iterations times number
of instructions in the hot spot). It is assumed that each one of these hot spots would take
just one cycle for being executed on reconfigurable hardware. As it can be observed, the
performance gains demonstrated are very heterogeneous. For a group of algorithms, just
a small number of subroutines or loops implemented on fine grain reconfigurable logic
are necessary to show good speedups. For others, the level of optimization is very low.
One reason for the lack of optimization is the methodology used for code allocation on
the reconfigurable logic, explained above. This way, even if there are a huge number of
hot spots subject to optimization, but presenting different dynamic behaviors, just a
small number of instructions inside these hot spots could be optimized. This shows that
automatic tools, aimed at searching the best parts of the software to be transformed to
reconfigurable logic, might not be enough to achieve the necessary gains. Consequently,
human interaction for changing and adapting parts of the code would be required.

Figure 2.29: Performance gains considering different numbers of (a) subroutines and (b)
loops being executed in 1 cycle in reconfigurable logic

In the first experiment, besides considering infinite hardware resources and no
communication overhead between the processor and reconfigurable logic, it is also
assumed an infinite number of memory ports with zero delay, which is practically
infeasible for any relatively complex configuration. Now, in Figure 2.30, a more
realistic assumption is considered: each hot spot would take 5 cycles to be executed on
the reconfigurable logic. When comparing this experiment with the previous one,
although the algorithms that present performance speedups are the same, the speedup
levels vary. This obviously demonstrates that the performance impact of the optimized
hot spots is directly proportional to how much they represent considering total algorithm
execution time.

Figure 2.31 presents the same analysis that was done before, but considering more
pessimistic assumptions. Now, each hot spot would take 20 cycles to be executed on the
reconfigurable hardware. Although usually a reconfigurable unit would not take that

 (a) (b)

Optimization Optimization

#loops #subr

63

long to perform one configuration, there are some exceptions, such as large code blocks
or those that have massive memory accesses. In the same Figure, one can observe that
some algorithms present losses in performance. This means that, depending on the way
the reconfigurable logic is implemented and how the communication between the GPP
and RU is done, some hot spots may not be worth to be executed on reconfigurable
hardware.

Figure 2.30: Same as presented before, but now considering 5 cycles per hot spot
execution. (a) Subroutines and (b) loops

Figure 2.31: Now considering 20 cycles per hot spot execution. (a) Subroutines and (b)
loops

Optimization

Optimization

(a) (b)
#loops #subr

Optimization

Optimization

(a) (b)
#loops #subr

64

In Figure 2.33a and Figure 2.33b a different methodology is considered: a
subroutine or loop that can have as much reconfigurable logic as needed to be
optimized, assuming that enough reconfigurable hardware is available to support
infinite configurations. This way, entire loops or subroutines could be optimized,
regardless if all instructions inside them are executed in all iterations, in opposite to the
previous methodology. Figure 2.32 illustrates this assumption. A reconfigurable unit
would be available for each part of the code.

Figure 2.32: Different pieces of reconfigurable logic are used to speed up the entire loop

Figure 2.33: Infinite configurations available for (a) subroutine optimization: each one
would take 5 cycles to be executed. (b) The same, considering loops.

In this experiment, it is considered that the execution of each configuration would
take 5 cycles. Comparing against Figure 2.30 (same experiment using a different
methodology), huge improvements are shown, mainly when considering subroutine
optimizations. This, in fact, reinforces the use of totally or partially dynamic
reconfigurable architectures, which can adapt to the program behavior during execution.
For instance, considering a partially reconfigurable architecture executing a loop: the
part of the code that is always executed could remain in the reconfigurable unit during

Executed 1 time
Executed 25 times

Executed
50 times

for (i=0;i<50;i++)

Reconfigurable Logic 1

Optimization

Optimization

#subr #loops (a) (b)

65

all the iterations, while sequences of code that are executed in certain time intervals
could be configured when necessary.

2.5.3 Coarse Grain Reconfigurable Architectures

Now, the performance improvements when considering such architecture are
analyzed. Since it works at the instruction level and, in this case, no speculative
execution is supported, the optimization is limited to basic block boundaries. The level
of optimization is directly proportional to the usage of BBs (Figure 2.26): for a
determined basic block, the more it is executed, more performance boosts it represents.
Even though this coarse grain reconfigurable array does not demonstrate the same level
of performance gains as fine grain reconfigurable systems show, more and different
configurations are available to be executed on this kind of system. This way,
applications that do not have very distinct kernels could be optimized.

Considering the ideal assumption of one configuration taking just one cycle to be
executed, let us compare the instruction level optimization against the subroutine level,
which had shown more performance improvements than the loop level, as expected.
When comparing the results of Figure 2.34a against the ones of Figure 2.29, one can
observe that for some algorithms the number of basic blocks optimized does not matter:
just executing one subroutine in reconfigurable logic would achieve a high performance
speedup. However, mainly for the complex algorithms at the bottom of the figure, the
level of optimization is almost the same for basic blocks or subroutines. This way, using
the instruction level reconfigurable unit would be the best choice: it is easier and
cheaper to implement 10 different configurations for a coarse grain logic than 10 for the
FPGA based one.

When assuming that 5 cycles are necessary for the execution of each
configuration in coarse grain reconfigurable hardware, there is a tradeoff between
execution time and how complex the basic blocks are (in number of instructions, kind of
operations, memory accesses etc). This assumption is demonstrated in Figure 2.34b: in
the Rinjdael algorithms, the optimization is worth until a certain number of basic blocks
being implemented on reconfigurable logic. After that, there is a performance loss. In
Figure 2.34c, considering 20 cycles per basic block execution on the reconfigurable
array, this situation is even more evident. This shows that, as for fine grain
reconfigurable architectures, there is a necessity of small reconfiguration time and
context loading. However, this is easier to be achieved in this simulated coarse grain
architecture: the size of each configuration is much smaller than fine grain
configurations.

66

Figure 2.34: Optimization at instruction-level with the basic block as limit. (a) 1 cycle,
(b) 5 cycles, (c) 20 cycles per BB execution

2.5.4 Comparing both granularities

Considering fixed applications, or yet those with long lifetime periods such as an
MP3 player, FPGA based reconfigurable systems with high granularity grains still can
be a good choice. Some algorithms present huge performance improvements, such as
CRC32, SHA or Dijkstra. They need to optimize a small number of hot spots (the most
executed kernels) to achieve such gains. This strategy, however, usually requires long
development times that may not be acceptable. Furthermore, the industry trend goes to
the opposite direction: the number of different applications being executed on the
systems is increasing and the characteristics of these workloads have been changing,
getting more heterogeneous: considering the embedded systems field, some of the
applications are not as datastream oriented as they used to be in the past. Applications
with mixed (control and data flow) or pure control flow behaviors, where sometimes no
distinct kernel for optimization can be found, are gaining popularity. These affirmatives
are reinforced by the MIBench analysis in sub-section 2.5.1.

Hence, for each application, different optimizations are required. This, in
consequence, lead to an increase in the design cycle, since mapping code to
reconfigurable logic usually involves some transformation, manual or using special
languages or tool chains. The solution would be the employment of simpler coarse grain
based reconfigurable architectures. Although they do not bring as much improvement as
the fine grained approaches show, they could be easier to implement due to its
simplicity.

Furthermore, according to the authors in (THEODORIDIS et al., 2007), there are
some other reasons about why one should employ a coarse grained reconfigurable
system, as follows:

 Small configuration contexts. Coarse grain reconfigurable units need a few
configuration bits, which are order of magnitude less than those required if
FPGAs were used to implement the same operations. In the same way, a small
amount of bits is necessary to establish the interconnections among its basic
processing elements because the interconnection wires are also configured at
word level.

 Reduced reconfiguration time. Due to the previous statement, the
reconfiguration time is reduced. This permits coarse-grain reconfigurable

Sp
ee

du
p

Fa
ct

or

(b) (a) (c)

67

systems to be used in applications that demand multiple and run-time
reconfigurations.

 Reduced context memory size. Still because the first statement, the context
memory size also reduces. This allows the use of on-chips memories, which
permits switching from one configuration to another with low configuration
overhead.

 High performance and low power consumption. This stems from the hardwired
implementation of coarse grained units and the optimally design of
interconnections for the target domain.

 Silicon area efficiency and reduced routing overhead. This comes because
coarse grained units are optimally-designed hardwired units which are not built
by combing a number of CLBs and interconnection wires, which results in
reduced routing overhead and better area utilization.

In contrast, these are the main disadvantages of using a fine grain reconfigurable
array such as the ones based on FPGA, according to the same authors:

 Low performance and high power consumption. This happens because word
level modules are built by connecting a number of CLBs using a large number
of programmable switches, causing performance degradation and power
consumption increase.

 Large context and configuration time. The configuration of CLBs and
interconnections wires is performed at bit-level by applying individual
configuration signals for each CLB and wire. This results in a large
configuration context that has to be downloaded from the context memory,
increasing the configuration time. The large reconfiguration time may degrade
performance when multiple and frequently-occurred reconfigurations are
required.

 Large context memory. As a consequence of the previous statement, large
reconfiguration contexts are produced which demand a large context memory.
Because of that, in many times the reconfiguration contexts are stored in
external memories increasing even more the time for reconfiguration.

 Huge routing overhead and poor area utilization. To build a word-level unit or
datapath a large number of CLBs must be interconnected, resulting in huge
routing overhead and poor area utilization. In many times a great number of
CLBs are used only for routing purposes and not for performing logic
operations. It has been shown that in many times for the commercially
available FPGAs, up to 80–90% of the chip area is used for routing purposes
(HON, 1996).

However, still according to the authors in (THEODORIDIS et al., 2007), the
development of universal coarse-grain architecture to be used in any application is an
“unrealistic goal”. This statement comes mainly from the fact that it is very hard to
adapt the reconfigurable unit for a great number of different kernels, since the
optimization is usually done at compile time. This way, even coarse grained
architectures would be restricted to a specific domain.

68

Reinforcing this idea, it is very interesting to note that the totally of the referenced
works about reconfigurable architectures, analyzed in section 2.4, employ as benchmark
set exactly the ones which have very distinct kernels subject of optimization, and those
that are very dataflow oriented. These two characteristics make these benchmarks the
ones that are the most suitable for execution in reconfigurable fabric, as previously
discussed. They correspond to just one area in a graph considering two axis (number of
distinct kernels and control/dataflow behavior), as one can observe in Figure 2.35. As
explored in the sub-section 2.5.1, this case is far for being the reality of embedded
systems and, of course, of the general purpose computation field.

Figure 2.35: Different algorithm behaviors that can influence the usability of a
reconfigurable system

2.5.5 The necessity of dynamic optimization

As commented before, even using coarse-grain reconfigurable architectures, one
main problem still stands: they are efficient just for a determined field of application. To
make this scenario even worse, the new era of embedded systems gives to the user the
opportunity of installing and execute different applications, which behavior is non-
predictable while the production of the devices, as in the general purpose computation.
This lack of flexibility can be just solved with dynamic optimization: the system’s
ability of adapt itself during execution. This will be the subject of the next chapter.

Dataflow

Control Flow

Few distinct
Kernels

No distinct
Kernel

69

3 DYNAMIC OPTMIZATION TECHNIQUES

In this chapter, two different techniques regarding dynamic optimization are
analyzed: Trace Reuse and Binary Translation. As some of their principles are used for
dynamic optimization with reconfigurable systems, recent works regarding this subject
are discussed next. Finally, the main differences and advantages of the proposed
technique when comparing against the previously reported ones are demonstrated.

3.1 Trace Reuse

The instruction reuse approach (SODANI; SOHI, 1998) is based on the principle
of instruction repetition. This approach relies on the idea of an instruction with the same
operands is repeated a large number of times during the execution of a program
(SODANI; SOHI, 1998b). This way, instead of executing the instruction again using a
functional unit, the result of this instruction is fetched from a special memory.

The main advantage of this technique is that instructions with larger delays (such
as multiplications) can be executed faster. Additionally, there are secondary positive
effects regarding the resources of the processor, such as freeing functional units, slots in
the reservation stations and in the reorder buffer, the reduction of the instruction fetch
and data bandwidth (fewer accesses in the register bank and in the memory). These
effects potentially increase the possibility of executing additional instructions, if there is
still ILP available.

The idea of trace reuse (GONZALEZ et al., 1999) extends the previous approach,
in the sense that it is applied to a group of instructions (called of trace by the authors)
instead of just one, as illustrated in Figure 3.1. It is based on the input and output
contexts. A context is composed by the program counter, registers and memory
addresses. Trace reuse works as follows: for a given sequence of instructions, the
context of the processor, considering the first instruction of this sequence, is saved.
Then, the output context, which is the result of the whole set of instructions that belongs
to that sequence, is also saved, after this sequence was normally executed by the
processor. After that, each time that the first instruction of this sequence is sent for
execution again, the processor state is updated with the output context fetched from a
special memory, avoiding the execution of that trace on the processor. This memory is
called Reuse Trace Memory (RTM). Each entry of the RTM is illustrated in Figure 3.2.
These entries can be indexed by the PC register, for example.

70

Figure 3.1: The trace reuse approach

Figure 3.2 : A RTM entry (GONZALEZ et al., 1999)

The results presented are very promising. However, they can only be achieved
when considering optimal resources or ideal assumptions. The minimum table size
evaluated in the referred paper has 512 entries. This size would imply in a huge memory
footprint, even for nowadays on die cache implementations. Moreover, it seems that the
authors assume that the accesses in the table take just one cycle, which is very
optimistic when considering the minimum size (512 entries), and almost impossible to
be implemented with 256k entries (the maximum proposed).

The authors also implemented three different scheduling policies. Although it is
not clearly stated on the paper, it is very likely that these policies consider an infinite
window size of instructions to be analyzed. Furthermore, the scheduling is done by
some kind of “oraculus”, which means that always the best composition of traces is
considered to be saved in the special memory. It is important to stand out that defining
the best policy for scheduling these instructions can be a very complex job to be done:
multiples instructions can compose multiple traces and finding the best combination can
demand a huge computational effort – which is very hard to be executed on the fly.

This way, the study lacks of realistic assumptions that should include at same
time: a finite realistic window size, smaller RTM sizes with different and larger delays,
less registers and memory accesses allowed per cycle; a study about the costs of the
scheduling algorithm using a finite window; the costs of comparing registers and
memory values with the current trace context etc.

In (JUAN HUANG, 1999) another technique is presented, called block reuse, with
the purpose of, analogous to the one previously shown, reuse sequence of instructions.
Although this technique is less general in the sense that it is limited to basic blocks (in
the trace reuse approach a loop could be reused, for instance), the author analyzes its

Running
program

Processor
Context Table

PC = 0x50 PC = 0x50 PC = 0x50 PC = 0x50

Execute
and
save

1st time Next times

load

Write

back

71

possibilities with more realistic examples, as well as its costs. The Simplescalar Toolset
(BURGER; AUSTIN, 1997) was employed for this case-study. It simulates a MIPS-like
processor, using a configuration with four integer ALUs, one integer multiply/divide
unit – and the same number of functional units for floating points computation – issuing
and committing up to four instructions per cycle. The resulting speedup values range
from 1.01 to 1.37, with an average of 1.15. The benchmarks were compiled with the
GCC –O2 level of optimization.

Finally, in (COSTA et al., 1999) the authors presented a technique called
Dynamic Trace Memoization, which uses memoization tables in order to detect at real
time traces that can be potentially reused. In (PILLA et. al, 2003) this approach is
extended in order to support speculative execution. In (PILLA et al., 2006) the
technique is combined with value prediction and restricted hardware resources, reducing
the number of trace candidates and the size of their contexts, achieving a good speedup
of 1.21, on average.

Some of the main drawbacks of these techniques can be cited. Some algorithms
do not present gains in performance because of the low level of input locality.
Moreover, even if there is a high level of instruction reuse (or sequences of them),
usually these instructions do not have the same input context. Therefore, the main
disadvantage of this technique emerges: besides the necessity of saving the locality of
the instruction, basic block or trace, it is also demanded to save the input context. This
can lead to a huge number of possibly variations, consequently increasing the memory
necessary to keep the configurations.

3.2 Binary Translation

The concept of binary translation (ALTMAN; SHEFFER, 2000) (ALTMAN et
al., 2001) is very ample and can be applied in various levels. Basically, there is a
system, which can be implemented in hardware or software, responsible for analyzing
the running program. Then, some kind of transformation is done in the code, with the
purpose of keeping the software compatibility (the reuse of legacy code without the
need of recompilation), to provide means to enhance the performance or even both
(Figure 3.3).

Figure 3.3: Binary Translation Process

According to (ALTMAN et al., 2000), there are three different kinds of binary
translation:

 Emulator: interprets program instructions at run time. However, the
transformed instructions are not saved or cached for future reuse;

 Dynamic Translator: besides interpreting the program, it saves previous
translations to be used next time so that the overhead of translation and
optimization can be amortized over multiple executions. One example of
dynamic translation is just-in-time (JIT) compilers, as the ones used for Java
execution.

BT

Original Binary Code Modified Binary Code
Target Processor

72

 Static Translator: this kind does the job offline, having the opportunity of
more rigorous optimization. It can also be used to generate execution profiles
to give some sort of assistance for the processor in order to enhance
performance during run-time.

While in the emulator and dynamic translator approaches there are run-time
overheads due to the analysis during program execution, static translators as a stand-
alone tool requires end-user involvement – being not transparent.

Nevertheless, there are other concepts regarding Binary Translation (ALTMAN;
SHEFFER, 2000):

 Source architecture: The original (legacy) architecture from which translation
occurs;

 Target Architecture: The architecture to which translation occurs;

 Virtual Machine Monitor (VMM): the system responsible for controlling the
binary translation;

 Translation Cache: The memory where the translations can be stored. This
cache is not necessarily implemented in hardware.

Another concept intrinsically connected to binary translation is dynamic
optimization. While dynamic binary translation is JIT compilation from the binary code
of one architecture to another, dynamic optimization is run-time improvement of the
code. Usually, the general term Binary Translation is also applied when both techniques
are used together.

Besides the JIT compiler, commented before, there are other examples of the
different types of Binary Translation. The Hewlett-Packard Dynamo (BALA;
BANERJIA, 1999) operates entirely at runtime in order to dynamically generate
optimized native retranslations of the running program’s hot spots. In fact, it is a
software optimizing software, previously compiled and executing on the target machine.
It operates transparently (any kind of interference from the user is not necessary)
monitoring program behavior in order to find these hot spots to be optimized, using
low-overhead techniques. Then, this modified code is executed again when necessary.
Operating on HP-UX, Dynamo has a code size of less than 265 Kilobytes. Another
example of the same approach, but with a different purpose, is the Compaq’s FX!32,
aimed to allow the execution of 32-bit x86 Windows applications on Alpha computers.

There are other architectures that mix hardware and software to perform BT.
DAISY (GSCHWIND, 2000), from IBM, is one of those. It uses the PowerPC as source
architecture and a special architecture based on VLIW, named DAISY VLIW, as target.
The DAISY software is the VMM, responsible for the translation, and runs on the
PowerPC, as can be observed in Figure 3.4. It is important to point out that, in opposite
to Dynamo, which runs above the HPUX operating system, DAISY runs below its
operating system. This way, it can be considered even more transparent to the final user,
in the sense that one cannot identify it as a service or software running in the operating
system.

73

Figure 3.4: Daisy layers

Figure 3.5 shows how DAISY system is composed. The DAISY VMM code is
stored in the DAISY flash ROM. When the system powers up, the VMM code is copied
to the DAISY portion of memory in the PowerPC, and execution begins. After the
VMM software initializes itself and the system, it begins translating the code of the
PowerPC flash ROM to be executed on the VLIW processor. Then, this translated
firmware loads the operating system (in this case, AIX Unix), which DAISY likewise
translates and executes. After that, any application that is executed on the AIX can
benefit from the binary translation and be executed on the VLIW processor.

The decision on where blocks of instructions to be translated begins is done based
on loop back branches and function returns. The decision on what sequence worth to be
translated and executed is based on a minimal number of instructions that compose a
block, or if it has sufficient parallelism. These requirements vary depending on whether
the instructions in the block have been executed frequently or not. DAISY performs a
variety of optimizations as: ILP scheduling with data and control speculation, loop
unrolling, alias analysis, load-store telescoping, dead code elimination etc (EBCIOGLU,
1996).

Figure 3.5: DAISY system (GSCHWIND, 2000)

The Transmeta Crusoe (KLAIBER, 2000) (Figure 3.6) shares several similar
elements with DAISY. The significant difference is that Crusoe emulates an x86
system, while DAISY emulates a PowerPC. Both perform full system emulation
including not only application code, but also operating systems and other privileged
code. Furthermore, both use an underlying VLIW chip specifically designed to support
BT as target architecture, aimed for high performance. There are also similarities
regarding the optimization process: code is first interpreted and profiled and, if a

AIX

AIX Applications

DAISY Software

VLIW Machine

74

fragment turns out to be frequently executed (more than 50 times), it is translated to
native Crusoe instructions.

Aside from the different source architectures emulated, Crusoe and DAISY differ
in their intended use. DAISY is designed for use in servers and consequently is a big
machine capable of issuing 8–16 instructions per cycle, with gigabytes of total memory.
Given this large machine, the DAISY VMM emphasizes extraction of parallelism when
translating from PowerPC code. DAISY reserves 100 MB or more for itself and its
translations. Crusoe is aimed at low power and mobile applications such as laptops and
palmtops. The processor issues only 2 to 4 instructions per cycle and has 64–128 MB of
total memory in a typical system. Thus, Crusoe reserves 16 MB for itself and its
translation.

In benchmark tests, DAISY can complete the equivalent of 3 to 4 PowerPC
instructions per cycle. Transmeta has claimed that the performance of a 667-MHz
Crusoe TM5400 is about the same as a 500-MHz Pentium III (SHANKLAND, 2000).

Figure 3.6: Transmeta layers

Binary translation can also produce other effects in the future, following the

tendency of write once, run everywhere. For example, using Binary Translation in order
to perform transformations from different ISAs to a unique target architecture, all
efforts for optimization could be targeted to just one kind of hardware.

3.3 Dynamic Detection and Reconfiguration

3.3.1 Warp Processing

Trying to unify some of these ideas with reconfigurable systems, Vahid et al.
(STITT; VAHID, 2002) (LYSECKY; VAHID, 2004) presented the first studies about
the benefits and feasibility of dynamic partitioning using reconfigurable logic,
producing good results for a number of popular embedded system benchmarks. The
structure of this approach, called warp processing, is a SOC. It is composed by a
microprocessor to execute the software, another microprocessor where the CAD
algorithm runs (responsible for the hardware/software portioning), a dedicated memory
and an FPGA.

The system is illustrated in Figure 3.7, and the follow steps for its functioning are
necessary:

1. Initially, the software binary is loaded into the instruction memory;

2. The microprocessor executes the instructions from this software binary;

3. Profiler monitors the instructions and detects critical regions in binary;

Windows, Linux

X86
Applications

Code Morphing

Crusoe
Hardware

75

Then, the on-chip CAD:

4. reads in critical regions;

5. decompiles a given critical region into a control data flow graph (CDFG);

6. synthesizes the decompiled CDFG to a custom (parallel) circuit;

7. maps this circuit onto FPGA;

8. replaces instructions in the original binary to use the FPGA hardware.

Figure 3.7: The Warp processor system

The steps performed by the on-chip CAD can be observed in more details in
Figure 3.8. They can be executed on hardware because an optimized CAD algorithm
was developed, which brings a relatively small memory overhead considering this kind
of software. Moreover, besides this simpler CAD algorithm, the FPGA implementation
has a simpler logic than usual. In its switch matrices, all nets are routed using only a
single pair of channels and each Configurable Logic Block (CLB) is connected just to
its adjacent. The way routing was implemented facilitates the development of the CAD
software since, according to this same work, routing is by far the most time-consuming
on-chip CAD task. Moreover, the CLB have fewer resources than the regular ones: two
3 inputs/2 output Look-Up Tables (LUT).

Figure 3.8: Steps performed by the CAD software

µP

FPGA
On-chip CAD

Profile
r Inst

Mem

D$

76

Last results show the benefits of warp processing for soft-core processors
(LYSECKY; VAHID, 2005). The technique was implemented in a Microblaze-based
FPGA. Several embedded systems applications from the Powerstone and EEMBC
benchmark suites were analyzed. The experimental setup considers a MicroBlaze
processor implemented using the Spartan3 FPGA. The MicroBlaze processor core has a
maximum clock frequency of 85 MHz. However, the remaining FPGA circuits can
operate at up to 250 MHz. The processor was configured to include a barrel shifter and
multiplier, as the applications considered required both operations.

Figure 3.9 and Figure 3.10 present the performance speedup and energy reduction
of the MicroBlaze-based warp processor compared with a standalone MicroBlaze
processor. The software application execution was simulated on the MicroBlaze using
the Xilinx Microprocessor Debug Engine, where instruction traces for each application
were obtained. This trace was used to simulate the behavior of the on-chip profiler to
determine the single most critical region within each application.

The system was also compared with readily available hard-core processors.
Overall, the MicroBlaze warp processor has better performance than the ARM7, ARM9,
and ARM10 processors and requires less energy than the ARM10 and ARM11
processors. The ARM11 processor executing at 550 MHz is on average 260% faster
than the MicroBlaze warp processor but requires 80% more energy. Furthermore,
compared with the ARM10 executing at 325 MHz, the MicroBlaze warp processor is on
average 30% faster while requiring 26% less energy. Therefore, while the MicroBlaze
warp processor is neither the fastest nor the lowest energy alternative, it is comparable
and competitive with existing hard-core processors, while having all the flexibility
advantages associated with soft-core processors.

Figure 3.9: Speedups of MicroBlaze-Based warp processor when comparing against
different versions of the an ARM. Powerstone and EEMBC benchmark applications

were used.

77

Figure 3.10: Normalized energy consumption in the different versions using the same
benchmark set.

However, there are some drawbacks when using such technique. The first one is
that it uses a complete SOC, with different hardware communicating with each other,
which could increase the design cycle time and make it harder to test. Moreover, even if
the CAD system used is simplified, it remains complex: it does decompilation, CFG
analysis, place and route etc, requiring significant resources: up to 8 MB of memory are
necessary for its execution, still big for nowadays on-die memories. Another deficiency
is related to the FPGA: besides the long latency and area overhead, it is also power
inefficient due to the excessive switches and the considerable amount of static power
dissipated. Moreover, because of the memory footprint required for keeping
configurations, this technique is just limited to critical parts of the software, working at
its best just in very particular programs, such as the filter based ones.

3.3.2 Configurable Compute Array

In (CLARK et al., 2003) a similar reconfigurable structure comparing to the one
used in this work is presented. This array is called Configurable Compute Array (CCA)
and it is tightly coupled to an ARM processor. The proposed CCA is implemented as a
matrix of heterogeneous FUs. There are two types of FUs in this design, referred to as
type A and B, for simplicity. Type A FUs perform 32-bit addition/subtraction as well as
logical operations. Type B FUs perform only the logical operations, which include
and/or/xor/not, sign extension, bit extraction, and moves. To ease the mapping of
subgraphs onto the CCA, each row is composed of either type A FUs or type B FUs.

The matrix can be characterized by the depth, width, and operation capabilities.
Depth is the maximum length dependence chain that a CCA will support. This
corresponds to the potential vertical compression of a dataflow subgraph. Width is the
number of FUs that can work in parallel. This represents the maximum instruction-level
parallelism (ILP) available to a subgraph execution. Figure 3.11 shows the block
diagram of a CCA with depth 7. In this figure, type A functional units (FU) are
represented with white squares and type B units with gray squares. The CCA has 4
inputs and 2 outputs. Any of 4 inputs can drive the FUs in the first level. The first
output delivers the result from the bottom FU in the CCA, and the second output is
optionally driven from an intermediate result from one of the other FUs.

78

Figure 3.11: Example of a CCA with 4 inputs and 2 outputs, with 7 levels of operations
allowed in sequence

Feeding the CCA involves two steps: the discovery of which subgraphs are
suitable for running on the CCA, and their replacement by microops in the instruction
stream. Two alternative approaches are presented: static and dynamic.

Static discovery finds subgraphs for the CCA at compile time. Those are marked
in the machine code by using two additional instructions, so that a replacement
mechanism can insert the appropriate CCA microops dynamically. Using these
instructions to mark patterns allows for binary forward compatibility, meaning that as
long as future generations of CCAs support at least the same functionality of the one
compiled for, the subgraphs marked in the binary are still useful. However, as the code
is changed, the backward compatibility is lost anyway.

Dynamic discovery, in turn, assumes the use of a trace cache to perform sub-graph
discovery on the retiring instruction stream. Its main advantage is that the use of the
CCA is completely transparent to the ISA. Theoretically, the static discovery technique
can be much more complex than the dynamic version, since it is performed offline; thus,
it does a better job on finding subgraphs.

 Figure 3.12 demonstrates how a sequence of instructions is mapped into a typical
CCA configuration. In Figure 3.12a the CFG representing a part of the code in Figure
3.12b is shown. The bold circles represent the instructions that are in the critical path.
These instructions will be mapped in the CCA. Finally, Figure 3.12c shows the
measurements in terms of delay for the functional units that will be used for this
sequence. This measurement proves that it is possible to perform more than one single
computation within a single clock cycle.

79

Figure 3.12: An example of mapping a piece of software into the CCA (CLARK et al.,
2003)

The instruction grouping discovery technique proposed in this paper is highly
similar and based on the rePlay Framework (PATEL; LUMETTA, 2001). This process
of identifying potential subgraphs for optimization works as follows: initially, the
application is profiled to identify frequently executed frames. The most frequently
executed ones are then analyzed and subgraphs that can be beneficially executed on the
CCA are selected. Then, the compiler generates machine code for the application, with
the subgraphs explicitly identified to facilitate simple dynamic replacement. Frames
have the same purpose of superblocks or use the same principle of trace cache; they
have one single entry point and one single exit point, encapsulating one single flow of
control in an atomic fashion: if one instruction within a given frame is executed, the rest
of them are also executed. A frame is composed by instructions based on speculative
branch results. If one transformed branch (called as assertion) is miss predict inside the
frame, the whole frame execution is discarded.

The subgraphs considered were limited to have at most four inputs and two
outputs. Furthermore, memory, branch, and complex arithmetic operations were
excluded from the subgraphs. Previous work (YU; MITRA, 2004) has shown that
allowing more than four input or two output operands would result in very modest
performance gains when memory operations are not allowed in subgraphs. In Figure
3.13 one can observe the potential of implementing a CCA together with the
microprocessor, demonstrating the speedup versus a relative area cost of each CCA for
three different applications. As can be seen, with a small cost in terms of hardware,
good performance improvements can be achieved

Some evaluations were performed in order to analyze what would be the best
configuration for the CCA, given a determined group of benchmarks. It was shown that
the depths vary across a representative subset of three groups of benchmarks. For
example, in blowfish (part of the MIBench set), 81.42% of dynamic subgraphs had a
depth less than or equal to 4 instructions. On average of all the 29 applications executed
through the system, about 99.47% of the dynamic subgraphs have a depth 7 instructions
or less. Depth is a critical design parameter, since it directly affects the latency of the
CCA. It was discovered that a CCA with depth 4 could be used to implement more than

80

82% of the subgraphs considering that diverse group of applications. Going below depth
of 4 seriously affects the coverage of subgraphs that can be executed on the CCA.
Therefore, only CCAs with depths between 4 and 7 were considered in this study.

Figure 3.13: Speed-up versus Area overhead, represented by the cost of adders (CLARK
et al., 2003)

The search for the ideal width was also performed. Using the same set of
applications, it was figured that 4.2% of dynamic subgraphs had width of 6 or less in
row 1, with only 0.25% of them having width 7 of more. In the following rows of the
matrix, the widths decrease. For instance, the average width in row 2 is 4 or 5. This data
suggests that a CCA should be triangularly shaped to maximize the number of
subgraphs supported without wasting resources.

It is important to point out that operations involving more expensive
multiplier/divider circuits were not allowed in subgraphs, because of latency
considerations. Additionally, memory operations were also disallowed. Load operations
have non-uniform latencies, due to cache effects, and so supporting them would entail
incorporating stall circuitry into the CCA. This would increase the delay of the CCA
and make integration into the processor more difficult. Although shifts did constitute a
significant portion of the operation mix, barrel shifters were too large and incurred too
much delay for a viable CCA.

This technique also has drawbacks. The CCA does not support memory
operations, shifts and multiplications – or any operation that involves a different delay
when comparing to the functional units employed, limiting its field of application. As a
consequence of this fact, it has a limited number of inputs and outputs. Moreover, it
uses very complicated graph analysis and changes the binary in the static discovery. In
the same way, the dynamic approach also makes use of a complex graph analysis, since
it is based on the RePlay Framework (PATEL; LUMETTA, 2001), which leads to a
huge memory overhead. Because of that, just high-level simulations using the

81

Simplescalar Toolset are reported. No measurements are given in terms of area
overhead, power consumption and timing and there are no details about how a CGF is
transformed to an array’s configuration. The overheads considering the array, and the
detection and reconfiguration delays are not discussed at all.

Despite all these drawbacks, both papers discussed previously are very important
to this thesis because they show the potential of executing parts of the software in
reconfigurable logic and its feasibility.

3.4 Similarities and Differences of Previous Works

Comparing to the techniques cited before, the proposed approach also takes
advantage of a reconfigurable system, but a coarse grain one, so it can be implemented
in any technology, not being limited to FPGAs only. Together with that, the use of
binary translation avoids the need for code recompilation or the utilization of extra
tools, making the optimization process totally transparent to the programmer. Adding to
the fact that the array is not limited to the complexity of fine-grain configurations, the
binary code detection and translation algorithm are very simple, in the sense that they
take advantage of the hierarchal structure of the reconfigurable array. The system can be
implemented using trivial hardware resources, in contrast to the complex on-chip CAD
software or graph analyzers used in the related work.

Moreover, the proposed approach relies on the same basic idea of trace reuse,
where sequences of instructions are repeated. However, it presents the advantage that
just one entry in the special memory is needed for the same sequence of instructions,
even when they have different contexts (as input values from the registers). This takes
the pressure off from the cache system, making possible its implementation with a small
memory footprint, with realistic assumptions concerning execution and accesses times,
even for present days technologies. Furthermore, using the proposed technique, the
number of inputs of outputs for each context can be larger, and any instruction,
including load/store and multiplications, are supported.

82

83

4 THE PROPOSED RECONFIGURABLE ARRAY

As already explained, the proposed technique can be divided in two main groups:
the first one, which is the reconfigurable array and its implementation, and the second,
which is the Binary Translation algorithm. This chapter focus on the reconfigurable
array, leaving the discussion about the BT to the next chapter. In the following sub-
sections it is demonstrated the structure of the array, the architectures where it was
coupled and the particularities of each reconfigurable system according to these
architectures. Different processors were used, two based on Java and the others based
on the MIPS processor. As the former kind is a stack machine, and the MIPS is a pure
RISC processor, two different architectures of the reconfigurable array were
implemented, according to these two paradigms.

4.1 Java Processors targeted to Embedded Systems

While the number of embedded systems does not stop growing, new and different
applications, like cellular phones, mp3 players and digital cameras keep arriving at the
market. At the same time, embedded systems are getting more complex, smaller, more
portable and with more stringent power requirements, posing great challenges to the
design of this kind of system. Additionally, another issue is becoming more important
nowadays: the necessity of reducing the design cycle.

This last affirmative is the reason why Java is becoming more popular in
embedded environments, replacing traditional languages. Java has an object-oriented
nature, which facilitates the programming, modeling and validation of the system.
Furthermore, being multiplatform, a system that was built and tested in a desktop, for
instance, can migrate to different embedded systems with a small number of
modifications. Moreover, Java is considered a safe language, and has a small code size,
since it was built to be transmitted through internet.

Not surprisingly, recent surveys revealed that the presence of Java in devices such
as consumer electronics (digital TV, mobile phones, home networking) as well as
industrial automation (manufacturing controls, dedicated hand held devices) is
increasing day by day (MULCHANDANI, 1998) (LAWTON, 2002). Nowadays, most
of the commercialized devices as cellular phones already provide support to the
language. This means that current design goals might include a careful look on
embedded Java architectures, and their performance versus power tradeoffs must be
taken into account.

However, Java is targeted neither to performance nor to energy consumption,
since it requires an additional layer in order to execute its bytecodes, called Java Virtual
Machine (JVM), responsible for the multiplatform feature of Java. That is why
executing Java through the JVM could not be a good choice for embedded systems. A

84

solution for this issue would be the execution of Java programs directly in hardware,
taking off this additional layer, but at the same time maintaining all the advantages of
this high-level language. Using this solution highlights again another execution
paradigm that was explored in the past (KOOPMAN, 1989): stack machines. Since the
JVM is based on this paradigm, obviously the hardware for native Java execution
should follow the same approach, in order to maintain full compatibility.

Because of all the reasons discussed above, a Java processor, called Femtojava,
was designed. This processor executes natively Java bytecodes and it is targeted to
embedded systems. It is available in different versions, generated according to the
designer preferences when using the Sashimi Tool (ITO et al., 2001). In this work, the
reconfigurable array was coupled to two different versions of the Femtojava processor
(called Multicycle and Low-Power) (BECK; CARRO, 2003B) and, for performance
comparisons, its VLIW implementation is also studied (BECK; CARRO, 2004). In the
next sub-sections, the structure of this processor, the architecture of the reconfigurable
array and how they work together will be demonstrated.

4.1.1 A Brief Explanation of the Femtojava Processor

The Femtojava processor is a stack-based microcontroller that executes Java
bytecodes. General characteristics of the Femtojava processor are: reduced instruction
set, Harvard architecture, and small size. The size of its control unit is directly
proportional to the number of different bytecodes utilized by the application. From the
Sashimi Tool, the Java bytecodes of the application are analyzed, and the control unit is
generated supporting only the bytecodes used by that application. The simplest
architecture of the family is a multicycle Femtojava, which takes three to fourteen
cycles to execute each instruction, shown in Figure 4.1.

The second architecture is called Femtojava Low-Power. It has a five stages
pipeline: instruction fetch, instruction decoding, operand fetch, execution, and write
back, as shown in Figure 4.2. The first stage, instruction fetch, is composed by an
instruction queue of 9 registers. The first instruction in the queue is sent to the
instruction decoder stage. The decoder has four functions: the generation of the control
word for that instruction, to handle data dependencies, to analyze the forwarding
possibilities and to inform to the instruction queue the size of the current instruction, in
order to put the next instruction of the stream in the first place of the instruction queue.
This is necessary because of the existence of variable length instructions: they can have
one or two immediate operands, or none at all.

Operands fetch is done in a variable size register bank, defined a priori in earlier
stages of the design. Stack and the local variable pool of the methods are available in
this register bank. This structure facilitates the call and return of methods, taking
advantage of the JVM specification, where each method is located by a frame pointer in
the stack. Moreover, there are two extra registers: SP and VARS. They point to the top
of the stack and to beginning of the local variable storage of the current method,
respectively. Depending on the instruction, one of them is used as base for the operand
fetch. Once the operands are fetched, they are sent to the fourth stage, where the
operation is executed. The branch prediction is static, in order to save area. All branches
are supposed to be not taken. If the branch is taken, a penalty of three cycles is paid.
The write back stage saves, if necessary, the result of the execution stage back to the
register bank, again, using the SP or VARS as base.

85

Figure 4.1: Femtojava Multicycle

Figure 4.2: Femtojava Low-Power

In the results section, for performance comparisons, a VLIW version of the same
Java processor was used (BECK; CARRO, 2004), which is an extension of the
pipelined one. Basically, it has its functional units and instruction decoders replicated.
The additional decoders do not support the instructions for call and return of methods,
since they are always in the main flow. The local variable storage is placed just in the
first register file. When the instructions of other flows need a value from the local
variable pool, they must fetch from there. Each instruction flow has its own operand
stack, which has less registers than the main stack, since the operand stacks for the
secondary flows do not grow as much as the main flow does.

The VLIW packet has a variable size, avoiding unnecessary memory accesses. A
header in the first instruction of the word informs to the instruction fetch controller how
many instructions the current packet has. The search for ILP in the Java program is done
at the bytecode level. The algorithm works as follows: all the instructions that depend
on the result of the previous one are grouped in an operand block. The entire Java
program is divided in these groups and they can be parallelized respecting the functional
unit constraints. This approach is also used in the proposed reconfigurable system and
will be explained in more details later.

IF ID OF EX WB

00110...

M
U

X
M

U
X

M
U

X
M

U
X

A
L

U

+/-

+

PC

0

1

A

IMM

Const

SP

FRM

VAR

A

B

IR

Control

D
 a

 t
 a

 B

 u
 s

D
 a

 t
 a

 M

 e
 m

 A

 d
 d

 r
 e

 s
 s

 B

 u
 s

I
n

t
r

u
c

t
i o

 n

 B
 u

 s

P
 r

 g

 M
 e

 m

 A
 d

 d
 r

 e
 s

 s

 B
 u

 s

RAM

ROM

Input
Ports

Output
Ports

Timer

Interrupt
Handler

MAR

86

4.1.2 Architecture of the Array

The reconfigurable array is tightly coupled to the processor. It is implemented as
an ordinary functional unit in the execution stage. The array is divided in blocks, called
cells. The operand block (a sequence of Java bytecodes) previously detected by the BT
algorithm is fitted in one or more of these cells in the array. The approach to detect such
operand blocks will be demonstrated separately in the next chapter.

The cell can be observed in Figure 4.3. Three functional units (ALU, shifter,
ld/st), working in parallel, compose the initial group of the cell. After this first group,
two more groups with the same structure follow in sequence. Each cell of the array has
just one multiplier and takes exactly one processor equivalent cycle to have its
execution completed. Being limited to the critical path of the Femtojava processor, it
brings no delay overhead to the pipeline. At the end of each cell, there are two
additional functional units: a branch unit and an extended ld/st one, made for the
execution of the iastore instruction (fetches a static value from memory, taking the
address from the stack), since it needs three operands, instead of two, as usual. It is
necessary to highlight that there is no sequential logic at all in the array: no registers,
flip flops etc. It is composed just by pure combinational logic. The cell was developed
to be as small as possible, but at the same time to support the maximum number of
simple instructions, respecting the processor´s critical path. This way, just one
multiplier was included. However, because of their smaller delay, more ALUs to work
in sequence are supported within a cell.

As it is stressed in the same figure, it is important to note that one of the operands
always comes from the previous operation. This facilitates the routing of the cell, since
just one multiplexer is necessary to choose the second operand. This characteristic will
be better analyzed in the next subsection, when this array is compared to the one
implemented for RISC-like processors.

These cells can be organized side by side or in a sequential fashion depending on
the maximum number of parallel or data-dependent instructions that is desired to be
executed in the array. Figure 4.4 illustrates an array composed by 6 cells. In this
particular example, the array can execute up to two instructions in parallel at a time and
up to 9 instructions in sequence, without considering multiplications. In the best case, it
would be possible to execute 18 instructions in the array, taking a total of just 3 cycles.

87

Figure 4.3: Two cells of the Array in sequence

Figure 4.4: An example of an array’s configuration.

4.1.3 Reconfiguration and execution

While the program is executed, when an address of a reconfigurable instruction is
found, the reconfigurable unit detector sends information to the main processor. This
address is the value of the Program Counter register of the first instruction of the
sequence that was previously translated to a reconfigurable instruction by the BT
mechanism. After that, the configuration for that reconfigurable instruction is sent to the
array for its reconfiguration. As the PC is used for figure that a given sequence was
already translated, and considering that this verification can be done at the first stage of
the pipeline and the reconfigurable array is in the fourth stage, there are 3 cycles

Multiplier

Multiplier

One Cell

Multiplier

Multiplier

MultiplierMultiplier

MultiplierMultiplier

One Cell
First operand
always comes from
previous operation

88

available between the detection and the use of the array. As one cycle is necessary to
find the cache line that has the array configuration, two cycles are still available for the
reconfiguration. Finally, the control unit of the processor configures the array as the
active functional unit; wait while the array performs its functions; and upgrades the
Program Counter with the new PC address, in order to continue the normal operation.

Special attention must be given to some instructions, whenever they are in the
reconfiguration or in the execution phases. If a getstatic instruction is found (a load
access from main memory), its value will be fetched from the memory during the
reconfiguration phase, since the address is static. The value fetched is saved in the
operands field. It is also during the reconfiguration phase that the local variables of the
method are fetched. As these local variables are kept in a dual-ported register bank in
the processor, they can be fetched at the same time the static values from the memory
are. Some unexpected actions can be taken during these fetches. Cache misses can occur
in the case of getstatic accesses, or other instructions could be accessing the register
bank making impossible the load of local variables. In these cases, extra cycles are
necessary for the reconfiguration of the array.

Considering the execution phase, the two operands that will be used in the first
operation group of the first cell always come from the register bank. After that, for each
basic group of functional units of the cell, the first operand is the result of the previous
operation. As it can be observed, in each cell it is possible to make 3 simple operations
(arithmetic, logical, shift) in sequence. If in the middle of a cell it is necessary to
perform a multiplication, the result of the current cell is bypassed to the end. Then, this
multiplication will be executed in the next cell.

For instructions that save a value in the main memory, a buffer is used in order to
avoid delaying the execution. Moreover, in the case of instructions that load/store values
from/to main memory or to the local variable storage of the method, values can be
bypassed. One example of this is when there is a load instruction in a local variable
soon after a store in the same local variable. This avoids unnecessary accesses in the
register bank or in the main memory, accelerating the execution and saving power.
Finally, if there is an instruction iaload, which makes an access in the memory and
calculates the access address dynamically, and a cache miss occurs, a penalty is paid
and that cell in the array is executed again after the cache miss is resolved.

Considering the example to follow, the potential gains of using a reconfigurable
array in a Java machine is shown: if there are five simple arithmetical or logic
operations, one needs at least 11 cycles for the execution: 6 for pushing the operands
into the stack, plus 5 cycles for the operations themselves. This is the optimal
assumption, without considering pipeline stalls due to data dependency. On the other
hand, the array would execute everything in just two cycles, after this sequence was
properly translated by the BT hardware. If this sequence is repeated a certain number of
times, meaningful gains can be achieved.

4.2 Differences in the structure: Stack vs. RISC

In this section we analyze the differences of the arrays implemented in the Java
Processor and in the RISC ones. Although the basic idea is the same, the structure of the
array changes as the computational paradigm changes as well.

As explained in the last sub-section, implementing the reconfigurable array in a
Java processor has a great advantage: no routing for the first operand is necessary. This

89

occurs because Java is based on a stack machine. For instance, if one needs to subtract
two operands using the result of a previous operation and a value from the stack, three
steps are necessary: get the result from the previous operation, get the second operand
from the stack, and finally operates them. Figure 4.5 illustrates this example if it was
executed in the array. As can be observed, the subtraction is performed in the second
level of the cell, using the ALU. The first operand for this operation comes from the add
execution in the first level of the cell; and the second operand comes from a special
table that holds immediate values, through another multiplexer. This multiplexer also
could be used to bring some operand that was a result of an operation that was
performed in lower levels of the array.

Figure 4.5: Because it is a stack machine, the routing in the array implemented in the
Femtojava becomes simpler

A RISC operation, in turn, can be represented by this sequence of operations:

add R1, R3, R4

load R0, a

subtract R0, R0, R1

In opposite to stack operations, there is no guarantee that any operator in the
Subtract instruction comes from the previous operation (it could exist any operation
between the add and the subtract instruction, for instance). This way, the routing logic
and the hardware itself are more complicated, as it will be observed in the rest of this
chapter. Another important issue in stack machines is the temporality of the operands.
Once they are consumed, they will not be used anymore (they were taken off from the
stack forever). This also means that they do not need to remain in the array after they
were used. It facilitates the distribution of the context inside the reconfigurable system,
since each operand that comes from the stack will be used by just one functional unit
and no more than that. On the other hand, in RISC machines, a source operand can be
used even after it was already consumed. This way, it needs to remain available for the
rest of execution in the array. Considering the previous example, right after the subtract
operation, a multiplication, which also uses the value from R1, could be there. This fact
will affect directly the policy of distribution of operands inside the reconfigurable logic.

4.3 RISC-like Architectures

To represent the general purpose computation field, an architecture very similar to
the MIPS R10000 was employed (YEAGER, 1996), an out-of-order superscalar
processor that executes the MIPS IV instruction set. In fact, the Simplescar Toolset

a operand

b operand

subtract

TOS

ADD PUSH b SUB

90

(BURGER; AUSTIN, 1997) is used. Simplescalar is a set of simulators that can work at
different levels of abstraction. It has an instruction level simulator, a cache simulator, a
superscalar out-of-order version and so on. It is highly customizable – for instance, in
the superscalar version, innumerous options are available, from the cache size to the
number of slots available in the instruction window. The Simplescalar is also
customizable in the sense that it supports different ISAs. In this work it is used the PISA
(Portable Instruction Set Architecture) (BURGER; AUSTIN, 1997), since it is highly
based on the MIPS IV ISA. The second architecture employed is the MIPS R3000: the
classic 5-stage RISC processor, which executes the first proposed MIPS ISA. This
processor is still in use, mainly in the embedded system market.

4.3.1 Architecture of the array

A general overview of its organization is shown in Figure 4.6. The array is two
dimensional, and each instruction is allocated in an intersection between one row and
one column. If two instructions do not have data dependences, they can be executed in
parallel, in the same row. Each column is homogeneous, containing a determined
number of ordinary functional units of a particular type, e.g. ALUs, shifters, multipliers
etc. Depending on the delay of each functional unit, more than one operation can be
executed within one processor equivalent cycle. It is the case of the simple arithmetic
ones. On the other hand, more complex operations, such as multiplications, usually take
longer to be finished. The delay is dependent of the technology and the way the
functional unit was implemented. Load/store (LD/ST) units remain in a different group
of the array. The number of parallel units in this group depends on the amount of ports
available in the memory. The current version of the reconfigurable array does not
support floating point operations.

Figure 4.6: General overview of the reconfigurable array for RISC machines

For the input operands, there is a set of buses that receive the values from the
registers. These buses will be connected to each functional unit, and a multiplexer is
responsible for choosing the correct value. As can be observed in more details in Figure
4.7, where just a group with ALUs is shown, there are two multiplexers that will make
the selection of which operand will be issued to the functional unit. We call them input
multiplexers (Figure 4.7a). After the operation is completed, there is a multiplexer for
each bus line that will choose what result will continue through that line. These are the
output multiplexers (Figure 4.7b). As some of the values of the input context or old

91

results generated by previous operations can be reused by other functional units, the first
input of each output multiplexer always holds the previous result of the same bus line.
Note that, if one considers that the configuration of all multiplexers is set to zero at the
beginning of any execution, the output context will be the same of the input context.
Figure 4.8 shows in even more details another example: just one row, with five columns
and two different groups – one composed by ALUs and the other one composed by
LD/ST units. In the results chapter more details about the area overhead will be
discussed.

Figure 4.7: An overview of the basic architecture of the reconfigurable array

4.3.2 Reconfiguration and execution

The basic principle is the same as the Java architecture. The reconfiguration phase
involves: the loading of the configuration bits for the multiplexers, functional units and
immediate values from the special cache; and fetching of the operands that will be used
by that configuration from the register bank. Again, a given configuration is indexed in
the cache using the PC of its first instruction, and this address is obtained in the first
stage of the pipeline (through the PC register). This way, since the array is supposed to
start execution in the fourth stage (the execution stage in this case), there are three
cycles available for the array reconfiguration. In cases three cycles are not enough (for
example, there is a great number of operands to be fetched from the register bank) the
processor will be stalled and wait for the end of the reconfiguration process.

After the reconfiguration is finished, execution begins. Memory accesses are done
by the LD/ST units, and their access addresses can be calculated by ALUs located in
previous lines, during execution, allowing memory operations even with those addresses
that are not known at compile time. The operations that depend on the result of a load
are allocated considering a cache hit as the total load delay. Then, if a miss occurs, the

32

Input

Output

Parallel

(a)

(b)

32
32 32

92

whole array operation stops until the it is resolved. Finally, when the operands are not
used anymore for that configuration, they are written back either in the memory or in
the local registers. If there are two writes to the same register in a given configuration,
just the last one will be performed, since the first one was already consumed inside the
array by other instructions.

Figure 4.8: A row of the reconfigurable array. The input and output multiplexers and the
functional units.

LD LD

93

5 BINARY TRANSLATION

In the next two sections in this chapter, details about how the BT detection and
transformation of the code to be executed in the reconfigurable hardware are described.
This BT algorithm is called on this thesis of Dynamic Instruction Merging (DIM). The
first section demonstrates DIM used in Java machines. The second one shows how the
binary translation works for RISC processors.

5.1 BT Algorithm for Stack Machines

The search for the sequence of instructions in the Java program is done at the
bytecode level in a very similar way of what the VLIW static analyzer does (BECK;
CARRO, 2005) (BECK; CARRO, 2005b) (BECK; CARRO, 2005C). Sequences of
instructions that depend on each other are grouped in a so-called operand block. The
detection to find these blocks are very simple: when the stack pointer returns to the start
address, previously saved, an operand block is found. Therefore, to detect an operand
block just a single state machine is necessary. This is a particular characteristic of stack
architectures as shown in (BECK; CARRO, 2004).

Figure 5.1 illustrates this procedure for a given sequence of instructions. Note that
this sequence compounds an operand block. The stack pointer starts from a determined
place in the stack and in the last instruction of this sequence it returns exactly to the
same point.

Figure 5.1: The simple process of finding an operand block in a stack machine

In order to better illustrate this approach, consider the sequence of instructions
observed in Figure 5.2a. The first imul instruction will consume the operands pushed
previously, by the instructions bipush 10 and bipush 5. After that, the ishl instruction

94

will consume two more operands produced before by the previous bipush. The iadd
instruction will consume the results of imul and ishl. Then, the istore will save the result
of the iadd in the local variable pool. Finally, there are two more bipush instructions,
which operands will be used by the last imul. However, they do not use any result of the
set of instruction previously executed. In other words, their operand stacks are
independent, forming two operand blocks (Figure 5.2b). Each one of these operand
blocks compose a different configuration to be used in the future by the reconfigurable
array, and will be saved in the reconfiguration cache (Figure 5.2c).

Figure 5.2: Identifying independent operand blocks

When a basic block limit is found, or the end of an operand block, the current
operand block is finished, a write command for the reconfigurable cache is sent. This
command saves the content of the buffer to the cache and the buffer is cleaned. This
content is the list of the decoded instructions of the operand block. This list is made at
real time, as the instructions are fetched from memory. Additionally, the Program
Counter (PC) value of the beginning of the sequence must also be saved. This is how
the detector will know when a sequence of instructions was previously saved in the
cache and it is ready to be executed next time it is found. The PCs are saved in a bitmap
fashion. This way, both writes and reads are fast and, as just one bit for address is
necessary, no large amounts of memory are needed.

Each cell of the reconfigurable array (illustrated in Figure 4.3 of the previous
chapter) must have the follow data in the reconfigurable cache:

 The operands field, where it can be found constant or immediate values;
values from the memory or from the local variable storage; the value for
the bypass of operands (16 bits).

 The bits for the configuration of the functional units (5 bits).

 A pointer indicating the address of a fetch in memory or local variable
storage (16 bits).

 The bits for the multiplexers to make the routing (5 bits).

Moreover, these additional fields are necessary for the configuration of the array:

 The start and the relative end addresses, in order to update the PC value
after the sequence of instructions is executed in the array (20 bits).

 The number of cycles taken by the operation in the array (5 bits)

95

 Additional 32 bits for immediate values or pointers for the first cell, and
one more bit for the final multiplexer, for each cell in the array (33 bits).

Hence, for each cell in the array is necessary 159 bits of reconfiguration (42 bits
of each part multiplied by 3, plus 33). Consequently, if the array were formed by 3 cells,
it would be necessary 477 bits in the reconfiguration cache plus 58 bits of the additional
information, totalizing 535 bits for saving each configuration of the array.

5.2 BT Algorithm for RISC machines

As explained in Section 3.3, there are differences in the detection in RISC
machines when comparing to stack ones, making the BT process a little bit more
complex. In this subsection, how the BT algorithm for RISC machines works is shown.
To better explain it, the algorithm with many restrictions will be first demonstrated and,
gradually, it will be improved until its current implementation.

5.2.1 Data Structure

Basically, some tables are necessary in order to make the routing of the operands
inside the reconfigurable array as well as the configuration of the functional units. Other
intermediate tables are also necessary, however, they are used just during the detection
phase. These tables are illustrated in Figure 5.3, considering an array composed of
twenty ALUs (five rows with four ALUs each). They can be described as follow:

 Write bitmap table: Saves information of data dependence of each row.
This table is in fact composed by a large number of small bitmaps, more
specifically, one per row. This bitmap just informs what registers in that
row will be written. Note that it is not necessary to keep this information
for each instruction as usual. Summarizing it in a bitmap for each row, it is
possible to reduce the amount of hardware necessary to check true data
dependences (RAW – read after write).

 Resource Table: Informs if a given functional unit is being used;

 Read Table: Informs what operand from the input context must be read by
each functional unit. Note that this table has two inputs, since there are two
source operands for each functional unit. It is important to stand out that
the input context is basically an indirect table. In other words, not
necessarily the first slot needs to keep the value of the register R1.

 Writes table: This table informs what value each context slot will receive.
Note that this table is different when comparing to the read one. In the
previous table, the multiplexers were responsible for choosing what values
from the context slots would be issued to each functional unit. This table
informs what values from the whole set of the functional units that
compose each row will continue in each slot of the context bus.

 Context table: This table has two rows. The first one represents the input
context, and it will be used in the reconfiguration phase for the operands
fetch. The second one is called current table, and it will be used during the
detection phase. Its final state represents what values will be written when
the execution of the array finishes.

96

It is important to note that the tables follow the same structure as the
reconfigurable array. In the case of the Resource Table, the X-axis represents the
parallel execution of instructions through the time (y-axis). The Read Table is almost
the same, with the difference that each column of the Resource Table is split in two
(since each functional unit has two input operands). The X-axis of the Write Table is
represented by each slot of the Context. The Y-axis is exactly the same as the previous
ones: represents the result of each functional unit through the time.

Figure 5.3: Tables necessary for the detection and configuration of the array

5.2.2 How it works

To better explain the algorithm, let us start with its simplest version, considering
that the array is composed just by adders. The following steps represent pipeline stages
when considering the implementation in hardware.

Considering that

inst op_w, op_r1, op_r2

where inst is the current instruction and op_w, op_r1 and op_r2 are the
target and the source operands, respectively, the follow steps are necessary:

1st) Decode the instruction, returning the target and source registers of the current
instruction;

2nd) In the write table, for each row from 0 to N, verify if op_r1 and op_r2
exist. If any one of them or both exist in the row S, row O equals to S + 1. Considering
a bottom-up search, the row S is the last one where op_r1 or op_r2 appears, since
they may be found in more than one row. If nor op_r1 neither op_r2 exist in any row
of this table, row O equals to zero.

3rd) In the resource table, search in the columns of row O, from left to right, if
there is a resource available for use. If there exists, we call this free column as C, and
row R equals to O. If there is no resource available in row O, increment the value of O
in 1 and repeat the same operation, until finding the resource. This way, row R equals to
O + N, where N was the number of increments necessary until finding an available
resource.

4th)

a) Update the bitmap based write table in row R with the value of op_w

b) Update column C in row R of the resource table as busy

c) Search in the current context table if there are op_r1, op_r2 and op_w.
For each one of these, if they exist, point L1, L2 and W to op_r1, op_r2

Reads Table Writes table

Write
bitmap
table

Resource Table

0 0 0 0 0 0 0 0

Context table

0 0 0 0 0 0 0 0

start

current

ALU ALU ALU ALU

97

and op_w respectively. If one of them does not exist in the table, the
correspondent signal of write for each one of this values in this table is set,
and the correspondent pointer (L1, L2 or W) is updated.

5th)

a) Depending on the step 4c, the current context table is updated. If the pointer
W is being written in the table, a flag indicating that it should be written
back at the end of execution is set.

b) The initial context table is also updated, if one of the write signals
concerning op_r1 and op_r2 are set.

c) In the write table, write the value of W in the row R, column C.

d) In the read table, write the values of L1 and L2 in row R, column C (it is
important to remember that each column of this table has two slots, as
explained earlier)

Summarizing the algorithm, for each incoming instruction, the first task is the
verification of RAW (read after write) dependences. The source operands are compared
to a bitmap of target registers of each row. If the current row and all above do not have
that target register equal to any of the source operands of the current instruction, this
instruction can be allocated in that row, in a column as left as possible. After that, the
bitmap of target registers is updated. This way, for each incoming instruction it is
necessary to analyze just one bitmap per row. Indirectly, such technique increases the
size of the window of instructions, which is one of major limiting factors of increasing
the ILP exploitation in superscalar processors, due to the number of comparators that is
necessary (BURNS; GAUDIOT, 2002).

5.2.3 Example

Now it is shown a very simple example, where just add operations could be
executed in the reconfigurable array. Consider the follow sequence of instructions:

add r7, r5, r6
add r8, r7, r6
add r9, r8, r6
add r1, r2, r7
add r4, r2, r7
The reconfiguration tables would be as demonstrated in Figure 5.4, gradually.

98

Figure 5.4: Behavior of the tables during the detection of instructions

*2 *1
*0 *1

x
x

8

7

x

7

 *1

Reads Table Writes table

Write
bitmap
table

*3 *1
*2 *1 *5 *2
*0 *1

x
x x
x

9

8,1

7

*3 *1
*2 *1
*0 *1

x
x
x

9

8

7

*3 *1
*2 *1 *5 *2 *5 *2

*0 *1

x
x x x
x

9

8,1,4

7

Resource Table

5 6 0 0 0 0 0 0

Context table

5 6 7 0 0 0 0 0

start

current

5 6 0 0 0 0 0 0

5 6 7 8 0 0 0 0

start

current

5 6 0 0 0 0 0 0

5 6 7 8 9 0 0 0

start

current

5 6 0 0 0 2 0 0

5 6 7 8 9 2 1 0

start

current

5 6 0 0 0 2 0 0

5 6 7 8 9 2 1 4

start

current

*1

 *1

*1
*1

 *1

*1
*1 *2

 *1

*1
*1 *2 *3

 *1

*0 *1

Add Add Add Add
Add r7, r5, r6

Add r8, r7, r6

Add r9, r8, r6

Add r1, r2, r7

Add r4, r2, r7

99

Figure 5.5 shows how the configuration presented before would be represented in
the structure of the array after its proper reconfiguration.

Figure 5.5: The configuration of the array for the previous example

The simplest version of the algorithm has been just explained, in order to facilitate
its understanding. However, several improvements were done since the very first
version. Although the basic principles of configuration and routing remain the same, the
complete version has the additional functionalities that follow (each new functionality
discussed is incremental, meaning that the previous one was also considered):

5.2.4 Support for immediate values

Immediate values are allowed for the input context. They are treated as registers
in the start table. However, they cannot be changed (so, it is not necessary any entry for
them in the current table) and they are fixed (are loaded together with the rest of
configuration). It is important to note that, when for the upper bound limit for the input
context is reached (for both immediate values or those from the register bank), a new
configuration is started.

Now, the follow format is also available:

inst op_w, op_r1, (immed) | op_r2

These commands are added to the correspondent steps of the algorithm presented
before:

1st) Support of immediate operands as the second source operand. An extra bit is
included in this field indicating the use or not of an immediate value.

4th)

Add r7, r5, r6

Add r8, r7, r6

Add r9, r8, r6

Add r1, r2, r7 Add r4, r2, r7

r5 r6 r2

r5 r6 r7 r8 r9 r2 r1 r4

100

d) If the op_r2 is an immediate value, search for it in the immediate table. If
there exists one immediate with the same value, point L2 to it. If it does not
exist in the table, generate a write signal and update the L2 pointer.

5.2.5 Support for different functions in the functional units

A new table is employed, called resource function table, with the same structure
(same number of rows and columns) as the resource table. This table stores the
information of what operation that functional unit will perform. This way, ALU can
perform sums, subtractions, logics and, or, etc.

1st) Also makes the decoding of the type of the function

4th)

e) Update column C in row R of the resource function table with the value
decoded in the first step.

5.2.6 Different groups of functional units

Until this moment, the whole array was composed by the same kind of functional
unit: ALUs. Now, it is possible to use different units, although they have to present the
same delay as ALU to perform their functions. As already stated before, they are
divided in groups of columns, where each column is always homogeneous. For that, the
steps one and three are modified:

1st) Include bits in the decode stage to inform what group the incoming instruction
belongs.

3rd) The search for the free column C changes a little bit. Instead of starting from
the begging of the row and finishing at the end of it, the search starts at the column GS
and finishes at the column GE, where GS and GE are the bits decoded at the 1st stage
that hold the information on where the group for that instruction begins and ends in the
row, respectively. If there is no resource available in the current row O, increment the
value of O in 1 and repeat the same operation, until finding the resource. In the same
manner, the search in the above rows (if necessary) will respect the bounds of the
current instruction group, using GS and GE.

5.2.7 Instructions with different delays

Now, different delays for each functional unit are allowed. Functional units within
the same group have the very same delay. This way, the principle of homogeneity of the
columns is maintained: each column always has the same type of functional units,
which take exactly the same amount of time to perform its function as the others. The
resource table remains the same, just those cells above the current functional unit are
marked as busy. For instance, if a shifter takes one processor equivalent cycle to
perform its function, and the delay of three rows represents this cycle, the two columns
above the one already occupied by the shift instruction will also be marked as busy.

Using the same information of group given from the 1st stage, the following
changes are necessary:

4th)

b) Besides updating the column C in row R of the resource table as busy, also
update the subsequent columns C in row R + 1 … RD, where RD is N – 1.

101

N, in turn, is the number of rows necessary for the functional unit in that
group to perform its operation. R equals to RD.

5th)

e) In the write table, write the value of W in the row R, column C. Note that
now, R could be changed in the previous step according to the delay of the
functional unit.

5.2.8 Load/Store Instructions

Memory accesses are allowed. The allocation of these instructions in the array is
based on the assumption that the stores can access the same address as previous loads.
This way, the allocation is conservative: stores are always allocated after loads. In a
more advanced version, however, advanced memory alias analysis can be performed
(for instance, the mechanism could have an equivalent of the write bitmap table for
memory addresses). The delay of these functional units can be configured according to
the number of cycles necessary to access the main memory or cache. If a cache is used,
a special mechanism is provided to re-execute the instructions in the array from the
beginning, after that cache miss was resolved.

There is a major difference between load/store allocation when comparing other
functions with variable delay: they need to start/end exactly in the bounds of the
processor equivalent cycle: since memory accesses are still synchronous. For instance,
if the current incoming instruction is a load, and three levels in the array are equivalent
to a processor cycle, the instructions can only be allocated at the first, fourth, seventh
(and so on) rows. This way, the following steps are modified:

1st) Decoding of LD/ST instructions. It is necessary to separate these instructions
of the other ones with variable delay, as previously explained.

3rd) If row R not equals to RP, with RP = (mod P) + 1, where P is the number of
rows in the array which the total delay is equivalent to a processor cycle; R equals to
RP. Column C is not changed.

5.2.9 Write backs in different cycles

An extension of the context table is made. Before, the context table had just two
rows: start and current contexts. Now, there is still the start row, but there is a copy of
the current context for each row RP of the array (the row that corresponds to the
beginning of each processor equivalent cycle). This small table says what registers will
be written back in that level. The number of simultaneous writes in the register bank is
the same as the number of ports that it has. If there is more writes in the current row
than it supports, these writes are forwarded to the next level. To make it possible,
besides the BT algorithm, multiplexers had to be added to the array’s structure. If there
are two ports available, two multiplexers in each row RP are added, receiving the whole
context bus and presenting as output the value to be written back. The steps are added as
follows:

5th)

f) Depending on the step 4c – if the pointer W is being written in the table, the
row RP of the context table is updated with W. If there is no more slots
available in the row RP, increment RP until finding a slot available for that
write.

102

With that, if there are two writes in the same register within a given configuration,
both will be performed, although just the last one is necessary. This way, There is also a
comparison in the previous tables: if there is the same W marked to be written in
previous rows, it is erased from them.

5.2.10 Handling False Dependencies

Let us consider an example to better illustrate this approach, with the follow
sequence of instructions:

add r7, r5, r6
sub r5, r9, r6
mul r5, r8, r6

Between the add and the sub, there is a false dependence, named WAR (Write

After Read). In this case, the processor could not execute the sub instruction in parallel
to the add because of data coherence: the value of r5 cannot be changed at the same
time it is read. Between the same sub and the next instruction, mul, another type of false
dependence occurs, known as WAW (Write After Write), again, with R5. Because of
the same reason as before, data coherence, both instructions cannot be executed in
parallel because r5 cannot be written at the same time. They are declared as false
dependencies because one can apply techniques to avoid them, such as Register
Renaming (HENNESSY; PATTERSON, 2003), which is a very expensive process and
it has a high cost in any design of a superscalar processor (BURNS; GAUDIOT, 2002).

In the proposed BT algorithm, the context table is altered to easily handle with
false dependencies. It has a pointer indicating the last operator included in the context
table. When an operation needs this operator, the search occurs from the right to the left,
beginning at this pointer. Each new destination operator that it is included, no matter if
it is the same, has a new entry in the current table. In the example above, r5 would have
3 entries in the context table. If one considers that between the add and sub there would
have other instructions that would read R5, they would use the first entry (included
because of the add). When the sub instruction itself is found, a new entry with R5 is
added. Any instruction between the sub and mul instruction would use this last R5 entry
in the array, because the search occurs from right to the left (from the last to the first). In
the same way, any instruction executed after the mul would read the last entry of R5,
and so on. As a circular buffer is employed, the previous operators that are not used
anymore can be overwritten by new ones, when an “overflow” of the context table
occurs.

The step 4c need to be changed:

4th)

c) Search in the current context table from right to left beginning at FP, where
FP is the pointer indicating the end of the context table. For the W point,
always generate the signal for including a new entry in the next stage. For
each new entry, increment FP.

5.2.11 Speculative Execution

Before its implementation, two different ways of performing speculation were
analyzed. The first one was the speculative execution of all possibilities inside the array
(all possible basic blocks are executed), just writing back the results of the correct path

103

at the end. To gather the results, the estimator built in the Simplescalar toolset was
extended. It has shown that, although performance improvements would be achieved,
the area overhead would be huge: the array was growing too much in the horizontal
direction. This way, in this case, speculative execution would be just worth if the array
was big enough, otherwise a loss in performance could show up: instructions that would
be executed but were worthless (in the sense that their results would not be written
back) would take place of instructions that would be really valid.

The second approach (the one that was implemented), uses the same principle as
trace scheduling: the configurations of the array are indexed by the PC register and the
following basic blocks are executed speculatively (however, just one path is
considered). If they are not miss predicted, the results are written back. If they are, the
results are discarded and the control is given back to the processor, in order to execute
these instructions, using its normal flow. The approach is illustrated in Figure 5.6. For
this example, it is considered that the saturation point is 2. When the Basic Block 1
(Figure 5.6a) is found, it is allocated in the array as usual (Figure 5.6c). After that, the
branch instruction can take two paths: to the Basic Block 2 or to the Basic Block 3. In
this example, the path taken was to the Basic Block 3. This way, a variable responsible
for that branch is incremented (equals to 1). Next time Basic Block 1 is found, the BT
does not need to allocate its instructions (they have already been allocated previously).
However, again, it is verified that the same branch has taken the same path as before: to
the Basic Block 3. The variable was incremented once more, reaching the saturation
point. Consequently, the instructions of the Basic Block 3 are also allocated in the same
configuration (Figure 5.6c). On the other hand, if the path taken were to Basic Block 2,
instead of 3, the variable would be decremented. Furthermore, if, during execution, the
number of miss predictions in sequence equals to the saturation point for a given
branch, the following basic block is removed from that configuration, starting the whole
process of BT again.

A new group of functional unit in the array was created, composed by branch
units. For the write back of results, new multiplexers in each row were added. Without
speculation, the array would have a given number of multiplexers per level directly
connected to the register bank, in order to write back the results from the context (as
stated in section 5.2.9). Now, it has more multiplexers per row, divided in groups. Each
group of multiplexers belongs to a given level of speculation in the array. The values of
each group of multiplexers are saved in a buffer, waiting for a trigger, correspondent to
the level of speculation. When a given branch unit executes the branch instruction
relative to that level of speculation, the bit signal is sent, informing if the values waiting
for that trigger can be written back or should be discarded.

A special control in each row keeps track of the values that need to be written
back, for each group of multiplexers that represent each node (basic block), in the
dataflow execution tree. If there is a miss speculation, the array finishes its execution
and just writes back the results of the first basic block and the ones which previous
branches were speculated right. Then, it sends information to the speculative control
and, instead of returning the PC of the last instruction of that configuration, it returns
the one correspondent to the beginning of that basic block that was miss speculated, in
order to start the execution of the non translated instructions again (taking the right path
for that branch).

104

Figure 5.6: How the saturation point works during BT detection for future speculative
execution

A new entry in the write table indicating the level of the result being written back
was included. Note that the critical part in the implementation of speculative execution
is the control of the reconfigurable array. The BT itself needs small changes. The
following steps of the algorithms were added/modified:

1st) Also decode branch instructions. For each branch instruction, the variable L is
incremented in one. L represents the level of speculation.

3rd) During the search, consider the branch group.

5th)

a) If W needs to be added, include L with it.

(a)

(b) (c)

105

6 RESULTS

In the first part of this Chapter, results regarding the Java processor with two
different versions of the Femtojava processor are demonstrated, executing a diverse
range of benchmarks. Then, the results of the proposed approach in a RISC processor
are shown, where both the Simplescalar Toolset and the MIPS R3000 are analyzed.

6.1 Java Processors

In this section, it is presented the results and the methodology used for the
measurements when coupling the binary translation hardware and the reconfigurable
array with the Femtojava Processor. Also, two different set of benchmarks were
employed: one composed by simple benchmarks, besides a floating point sum emulation
algorithm and a MP3 player; and a sub-set of the SPECJVM (SPEC, 2004). This sub-set
was chosen because it represents the large range of different behaviors of the
SPECJVM. Two versions of the Femtojava processors were employed – Low power
and Multicycle, besides the VLIW version used for comparison purposes.

6.1.1 Femtojava Low-Power with simple benchmarks

The tool utilized to provide data on the energy consumption, memory usage and
performance is a configurable compiled-code cycle-accurate simulator, called CACO-
PS (BECK; CARRO, 2003). The CACO-PS is a SystemC like simulator that calculates
the power consumed based on the switching activity of the system components. This
way, it is possible to compare the dynamic power consumed by different versions of the
Femtojava processor. In opposite to the next experiments, in these static power is not
considered. The estimation for the memory consumption was done based on data
available on (PUTTASWAMY et al., 2002). The area was evaluated using the Altera
Quartus-II for Windows (ALTERA, 2008) and was computed in number of gates, after
synthesis of the VHDL versions of them.

In this experiment (and all concerning the Femtojava processor), it was considered
the cache organization as being fully associative, so any address can go to any place in
the cache. Also, it is considered that there is no replacement of data at all. It means that,
once the configuration is saved in the cache, it stays there until the end of program
execution. This is a disadvantage for the proposed technique: even if the configuration
is reused just a few times, it can take place of other one that could bring better results. In
the future, replacement techniques will be used (it is important to note, however, that
replacement techniques are used for RISC processors).

The group of benchmarks is composed by: Sin computation using the CORDIC
method, as a representative of arithmetic libraries; sort – bubble, select and quick, in a
array of 10 or 100 elements – and search (binary and sequential), used in schedulers;
IMDCT (Inverse Modified Discrete Cosine Transformation), as an important part

106

present in various decompression algorithms, plus more three unrolled versions in order
to expose the parallelism; a library to emulate sums of floating point numbers, since the
Java processors do not support floating point operations yet; and finally a complete
MP3 player that executes 4 frames of 40kbit, 22050Hz, joint stereo. The algorithm is
divided in six parts, because of limitations of the simulation tool at that time.

Initially, in Table 6.1 the performance of all the benchmark set in the Low Power
architecture and in the different versions of the VLIW is evaluated, and compared to the
Java processor coupled to the reconfigurable array. As can be observed in this table, for
the VLIW processor, better results are found when unrolled versions of the IMDCT are
used (IMDCT u1, IMDCT u2 and IMDCT u3), compared to the non unrolled version.
The reason for this is that there are less conditional branches, which reduces the number
of cycles lost because of braches miss predictions, and (mainly) because there is more
parallelism exposed. On the other hand, algorithms like the floating point sums
emulation do not show performance improvements when the number of instructions
available per packet in the VLIW grows. This occurs because there is no more ILP
available to be explored. Thus, increasing the size of the VLIW packet does not matter
at all.

Still in the Table 6.1, in the column Reconfigurable Array – Sequential, it is
shown the greatest advantage of using an array with BT to explore every part of the
algorithm. Even in algorithms that do not present a high level of parallelism to be
explored like the floating point sums emulation, or in the sort or search ones, great gains
are achieved. Furthermore, when the VLIW architecture shows good performance
boosts in some algorithms, such as the unrolled versions of IMDCT with a high level of
ILP exposed, the array presents even better results. Finally, there is the column entitled
Reconfigurable Array – Parallel. This column shows results considering that the array
also explores the ILP available, executing instructions in parallel. As in the VLIW
version (although in different levels), significant improvements were obtained just in a
few algorithms, mainly in the unrolled versions of IMDCT. This reinforces the idea of
exploring any sequential part of the software, not being dependent just of the parallelism
available.

In the second part of the table, data concerning the reconfigurable array is
presented. In the first column of this second part, it is shown how many instruction
sequences were saved to the cache and were reused in the array. In the second, the
number of times that these sequences were reused is demonstrated. As a good example
on how the reuse of code is important, let us discuss the sort family of algorithms. When
versions that sort 100 elements are executed, more array configurations are reused,
bringing an even better result with no area overhead: the number of different
reconfigurations and cells in the array do not increase. The next column shows the
maximum number of cycles necessary to reconfigure the array from the cache. The forth
column exhibits the maximum number of cells that these sequences occupied
considering that there is no parallelism available. On the other hand, when parallelism is
explored in the array, sometimes more cells are necessary. The last column shows these
values.

In Figure 6.1 the energy consumption in the ROM and RAM accesses of the Low-
Power version with and without the array are compared against the 4 instruction/packet
VLIW version, since the values of energy spent in memory accesses in this VLIW
architecture are very similar to the 2 and 8 instructions/packet ones. As it can be

107

observed, the array saves energy in ROM accesses. Instructions that would be fetched in
the memory are instead directly executed in the array, because the dataflow equivalent
of this sequence is saved in the reconfiguration cache. In the same way, power
consumed in the RAM memory and in the register bank is saved, because now there are
a specific cache for loads of static values and the bypass of operands inside the array.

Regarding the energy spent just in the core, presented in Figure 6.2: even with the
extra power spent because of the addition of the reconfiguration cache, there are still
gains in terms of energy consumption in some algorithms. This occurs because a
considerable amount of instructions that would use the five stages of the pipeline of the
processor and its sequential logic are now being executed on combinational logic in the
array.

Table 6.1: Comparison among different versions of the Femtojava with and without the
reconfigurable array

Algorithm

Number of cycles Data about the array
Low-

Power

VLIW (instructions per packet) Reconfigurable Array #dif.
reconf.

#Seq.
 reused

#max
rec.

#max
Seq. cells

#max
Par.
cells 2 4 8 Sequencial Parallel

Sin 755 599 592 583 383 383 8 64 3 2 2
BubbleSort 10 2424 2013 1923 1923 712 600 7 177 3 4 4
SelectSort 10 1930 1689 1689 1689 532 514 8 182 3 3 6
QuickSort 10 1516 1246 1246 1246 496 496 13 132 3 2 2
BuubleSort 100 339797 268610 268610 268610 61541 47840 7 22458 3 4 6
SelectSort 100 134090 127466 127533 127533 30700 30502 8 15280 3 3 6
QuickSort 100 13239 10649 10649 10649 5007 5007 13 2804 3 2 2
Binary Search 403 369 365 365 176 176 5 33 3 2 2
Seq.l Search 1997 1776 1774 1774 658 658 2 253 3 2 2
IMDCT 40306 33128 33071 32994 9399 4287 7 2407 4 10 15
IMDCT u1 31500 18062 12191 9604 7624 2512 16 825 4 10 15
IMDCT u2 30372 17329 11546 9114 6972 2436 13 804 4 10 15
IMDCT u3 18858 11230 9838 7807 2852 2780 7 745 3 4 6
F. P. Sums 14531 12475 12314 12296 6760 6729 37 660 4 3 4
MP3 part 1 242153 210818 200721 183818 103549 102936 140 12317 5 4 6
MP3 part 2 109396 92735 92735 92735 65010 65010 11 8138 3 3 3
MP3 part 3 64488 49346 49346 49346 45525 45525 22 9190 3 2 2
MP3 part 4 41587 33860 34471 31436 22097 22097 5 2876 4 3 3
MP3 part 5 35895 34405 15905 8959 9016 9016 5 1212 3 3 3
MP3 part 6 159017 103441 73482 51124 36405 31485 53 6005 7 11 15

108

Figure 6.1: Energy spent by RAM and ROM accesses

Figure 6.2: Energy spent in the core

Figure 6.3 shows the total energy consumption of the system considering the
RAM, ROM, core and the additional BT hardware that makes the dynamic code
analysis. It is important to note that great gains were achieved in energy consumption in
all algorithms, proving the technique effectiveness.

109

Figure 6.3: Total energy spent by the architectures

Table 6.2 shows the area occupied by the Low Power and VLIW versions of the
Java processors. In Table 6.3 it is presented the area occupied by the Low-Power
version with different configurations of the reconfigurable array (the maximum number
of reconfigurations allowed versus the total number of cells available in the array),
counting its cache and the BT hardware. As can be observed in this table, the
reconfigurable array, when coupled to the Java processor, even in its simpler version,
brings a significant area overhead when compared to the 8 instructions/packet VLIW
architecture. However, this was expected, since reconfigurable arrays are very area-
intensive due to their great number of functional units. Though counterintuitive, this
extra area leads to energy savings, since fewer accesses to program memory and less
iterations on the processor datapath are required. Table 6.4 shows the same information
as Table 6.3, but in relative numbers.

Table 6.2: Area of the base processors

Table 6.3: Area overhead due to the use of the reconfigurable array

PROCESSOR LOW
POWER

VLIW (INSTRUCTIONS/ PACKET)
2 4 8

Area (gates) 131215 213850 367675 675395

 # Cells
Reconf.

2 3 4 7 10

5 757091 993999 1230907 1941630 2652353
10 1039631 1406301 1772971 2872981 3972990
15 1322172 1818604 2315036 3804332 5293628
20 1604712 2230906 2857100 4735683 6614265
40 2734873 3880116 5025358 8461087 11896815

110

Table 6.4: Relative Area overhead, comparing to the standalone Femtojava Low-Power
Processor

Finally, Table 6.5 compares the Java processor with the reconfigurable array
against all other architectures, in terms of energy and performance, considering the best
configuration of the array for each benchmark, according to the Table 6.1, Table 6.5
shows how faster the version with the reconfigurable array is, and how much energy it
saves. As it can be observed, huge energy savings are achieved when compared to any
architecture (10.89 times less energy against the low-power version on the average).
There are also meaningful performance improvements even when comparing to the 8
instructions/packet VLIW version (2.77 times faster in the mean).

Table 6.5: Comparing the performance and energy consumption among all the
architectures

6.1.2 Femtojava Low-Power with SPEC JVM

For the SPECjvm98 benchmark set, a different approach was used, because of the

benchmark code size. A trace was generated using the Kaffe Virtual Machine. For

 Energy Performance
Reconfigurable

Array vs.
Low

Power
VLIW

2
VLIW

4
VLIW

8
Low

Power
VLIW

2
VLIW

4
VLIW

8
Sin 1.89 1.93 1.79 1.83 1.97 1.56 1.55 1.52
Sort - Bubble 10 3.98 4.35 4.21 4.29 4.04 3.35 3.21 3.21
Sort - Select 10 8.09 7.76 7.76 7.91 3.76 3.29 3.29 3.29
Sort - Quick 10 3.19 3.18 3.18 3.24 3.05 2.51 2.51 2.51
Sort - Bubble 100 34.59 19.95 20.04 1.60 7.10 5.61 5.61 5.61
Sort - Select 100 26.23 24.17 24.17 24.67 4.40 4.18 4.18 4.18
Sort - Quick 100 5.74 5.73 5.72 5.82 2.64 2.13 2.13 2.13
Search - Binary 2.00 2.31 2.31 2.35 2.29 2.10 2.08 2.08
Search – Seq. 15.04 16.44 16.45 16.71 3.03 2.70 2.69 2.69
IMDCT 28.33 24.14 24.15 24.65 9.40 7.73 7.71 7.70
IMDCT u1 19.89 16.34 15.70 15.02 12.54 7.19 4.85 3.82
IMDCT u2 21.72 17.93 17.04 16.35 12.47 7.11 4.74 3.74
IMDCT u3 26.68 20.76 21.38 20.24 6.78 4.04 3.54 2.81
F. Point Sums 1.53 1.26 1.25 1.27 2.16 1.85 1.83 1.83
MP3 Part 1 1.87 0.79 0.82 0.86 2.35 2.05 1.95 1.79
MP3 Part 2 3.42 2.74 2.99 3.05 1.68 1.43 1.43 1.43
MP3 Part 3 1.19 1.95 1.95 1.99 1.42 1.08 1.08 1.08
MP3 Part 4 2.71 3.00 2.80 2.84 1.88 1.53 1.56 1.42
MP3 Part 5 4.91 4.67 7.94 13.96 3.98 3.82 1.76 0.99
MP3 Part 6 4.71 5.39 6.34 8.36 5.05 3.29 2.33 1.62

Average 10.89 9.24 9.40 8.85 4.60 3.43 3.00 2.77

 # Cells
Reconf.

2 3 4 7 10

5 5.77 7.58 9.38 14.80 20.21
10 7.92 10.72 13.51 21.90 30.28
15 10.08 13.86 17.64 28.99 40.34
20 12.23 17.00 21.77 36.09 50.41
40 20.84 29.57 38.30 64.48 90.67

111

performance and power measurements, an analyzer, which was modified and extended
from a previous version used for measurements in the VLIW version of the processor,
was employed (BECK; CARRO, 2004). The measurements were based on the same
principle of the so-called instructions simulators (TIWARI et al., 1994), where there is a
table with performance and power consumption data for each instruction.

The SPECjvm98 suite was developed to evaluate the hardware and software
aspects of the JVM client platform providing different tests derived from real
applications that are commercially available. For this simulation, all floating-point
operations were converted to integer ones since the Femtojava does not support a
floating-point unit. Additionally, the benchmarks can also be executed with three
different input sizes. All evaluations here presented are based on the traces obtained
from the smaller input size, the s1 data set. It is important to note that this small amount
of data is a disadvantaged scenario: it is very likely that there is less repeated code to be
mapped to the array when comparing to the bigger input data sets.

Firstly, Figure 6.4 demonstrates the different performance improvements of the
employed benchmark set when comparing the Femtojava Low-Power with the array
against the standalone processor. Besides, it is considered that all configurations are
available in the cache and that there is no limit to the number of cells that can be
implemented (both in sequence as in parallel). This number represents the maximum
theoretical speed up.

Figure 6.4: Performance improvements - JVMSPEC

Now, the analysis is limited to:

 The cache size was varied from 4 to 32 different configurations;

 The number of available cells implemented in the array was varied from 1 to 5
cells, which sums up a variation from 1 to 5 multipliers and 3 to 15 ALUs in
series.

Increasing the number of cells or the cache size would not show a large
improvement when comparing to the configuration with 32 cache slots and 5 cells, since
a saturation in terms of optimization begins to occur.

In Figure 6.5 the same results presented in the previous figure are shown, only
now the number of cells is limited to 5 and only the 32 most executed code sequences
are saved in the cache. This figure shows as reference the best performance case with

1,98

2,80

1,84
1,69

2,09 2,08

1,69
1,85

2,82

0,00

0,50

1,00

1,50

2,00

2,50

3,00

check compress jess raytrace dB

javac mtrt jack mpegaudio

112

the proposed restrictions. The consequence of varying the other parameters is analyzed
in Figure 6.6 and Figure 6.7.

Figure 6.5: Performance improvements with restricted resources

As it can be observed from Figure 6.5 and comparing to Figure 6.4, the performance
degradation is not significant in the majority of the whole set of algorithms – even with
those restrictions and without using a cache policy that could improve results allowing
more configurations to be reused. Nevertheless, it is notable a more important
degradation of performance in the mpegaudio application. This can be attributed to the
characteristics of how this code was programmed, as it will be discussed later. In Figure
6.6, the effect of varying the cache size while maintaining the number of implemented
cells in 5 is analyzed. This graph clearly shows the dependence of performance
improvements with the number of configurations available in the cache. For all
algorithms, a greater number of available configurations contributed to performance
increases. Using 32 configurations it is shown that, in the mean, almost 80% of the
theoretical speedups is achieved.

Figure 6.6: Performance improvements when varying the total number of configurations
used

It has to be pointed out that algorithms such as compress do benefit from an
increased number of used configurations. This demonstrates that this application has a

1,57

2,28

1,34
1,57 1,56

1,78
1,57 1,54 1,48

0,00

0,50

1,00

1,50

2,00

2,50

check compress jess
raytrace dB javac
mtrt jack mpegaudio

0,00

0,50

1,00

1,50

2,00

2,50

32 16 8 4
check compress jess

raytrace dB javac

mtrt jack mpegaudio

113

great number of code sequences that are highly reused. In the same manner, the effect of
varying the number of available cells while maintaining the cache size holding 32
configurations is shown in Figure 6.7. While the previous figure showed a dependence
of performance with the available number of configurations, this one shows that most
algorithms do not actually benefit from having more than 2 cells in sequence. By
consequence, this fact also demonstrates that normally the size of the most used operand
blocks is not that large. Then again, the exception is made with the mpegaudio
application. In this program, there exists big operand blocks that are highly executed.
Therefore, the application would take benefit from having more available cells in the
reconfigurable array.

Figure 6.7: Performance improvements. Now, varying the total number of cells
available in the array

When evaluating the impact of varying the parameters regarding energy
consumption (array size and number of different configurations) it is important to
observe that they directly influence the cache size. A bigger cache size could mean that
more energy will be spent when reading and writing to this memory. On the other hand,
increasing the cache size also could mean that more instructions and operands will be
kept and, consequently, less reads to the RAM and ROM are necessary, thus saving
energy. The energy tradeoff analysis regarding this discussion is primarily presented in
Figure 6.8, while the table showing the energy gains for different configurations is
shown in Table 6.6. As it can be seen, the impact of a bigger cache does not strongly
influence the energy savings. The importance of saving RAM and ROM accesses is
clear, as the increased number of available configurations increases energy savings.
Once again, it is important to highlight that no cache policy is being used. Therefore,
there is a potential for saving even more energy, since, with that, more configurations
could be saved in the cache without increasing its size.

Figure 6.9 shows the effect of varying the number of implemented cells on the
overall energy savings. Once again, having more than 2 cells also did not show much
improvements for most benchmarks with the exception of the mpegaudio. It is also
visible that energy gains start to decrease when implementing more than 3 cells for most
algorithms. This happens due to the increased cache size that is indeed not being fully
used.

0,00

0,50

1,00

1,50

2,00

2,50

5 4 3 2 1
check compress jess

raytrace dB javac

mtrt jack mpegaudio

114

Table 6.6: Energy savings with different configurations

Figure 6.8: Energy savings varying the number of allowed configurations

The different characteristics found in the mpegaudio application can be justified
on how it was programmed. It is a totally data-flow algorithm, which performs intensive
mathematical operations that can easily be mapped to a great number of available units
in the array. Moreover, this particular implementation of the mpegaudio application, as
it is described in the SPEC documentation, has little amount of garbage collection. This
demonstrates that the algorithm is not very object-oriented. It is interesting to note that
less object orientation also favors the use of the reconfigurable array since operations
such as new as well as method invocations are computational intensive and cannot be
mapped. This same reason also explains more modest results for performance gains and
energy savings in the jess and the jack algorithms: in these applications new objects are
continuously allocated. The effect of object allocation operations and other Java
particular operations that cannot be executed on the array will be analyzed in the next
section.

0,00%

10,00%

20,00%

30,00%

40,00%

32 16 8 4
check compress jess
raytrace dB javac
mtrt jack mpegaudio

#cells #conf. check compress jess raytrace dB javac mpegaudio mtrt jack
5 32 30,10% 45,97% 19,14% 39,65% 36,36% 44,51% 38,70% 39,81% 16,73%
5 16 23,92% 31,55% 11,26% 37,20% 26,87% 41,93% 28,74% 37,35% 12,09%
5 8 20,26% 25,17% 6,43% 27,78% 19,15% 24,88% 17,96% 27,91% 9,06%
5 4 14,53% 17,43% 3,15% 13,59% 12,81% 13,90% 15,77% 13,65% 6,16%
4 32 30,60% 45,96% 19,13% 39,65% 36,37% 44,54% 35,84% 39,72% 16,74%
4 16 24,12% 31,57% 11,25% 37,20% 26,87% 41,95% 26,42% 37,27% 12,11%
4 8 20,33% 25,16% 6,41% 27,78% 19,15% 24,91% 19,97% 27,83% 9,09%
4 4 14,55% 17,43% 3,13% 13,57% 12,81% 13,93% 13,74% 13,60% 6,18%
3 32 31,10% 46,00% 19,14% 39,65% 36,37% 44,51% 34,45% 39,81% 16,73%
3 16 24,32% 31,58% 11,26% 37,20% 26,87% 41,93% 26,10% 37,35% 12,09%
3 8 20,41% 25,18% 6,43% 27,78% 19,15% 24,88% 19,66% 27,91% 9,06%
3 4 14,57% 17,44% 3,15% 13,59% 12,81% 13,90% 13,43% 13,65% 6,16%
2 32 30,39% 45,55% 18,19% 37,58% 34,48% 38,09% 33,82% 37,62% 16,38%
2 16 23,89% 31,12% 11,27% 34,79% 26,89% 35,70% 26,72% 34,82% 12,10%
2 8 20,49% 24,71% 6,44% 27,83% 19,17% 24,60% 19,31% 27,85% 9,08%
2 4 14,59% 17,00% 3,16% 13,61% 12,83% 13,96% 13,08% 13,61% 6,18%
1 32 30,79% 37,47% 18,12% 34,44% 31,93% 35,69% 33,10% 34,52% 16,86%
1 16 24,60% 28,18% 12,04% 31,69% 25,64% 33,67% 26,61% 31,76% 12,16%
1 8 20,56% 18,73% 6,47% 27,70% 19,21% 24,20% 20,57% 27,76% 10,11%
1 4 14,60% 14,05% 3,19% 13,58% 12,86% 14,83% 13,12% 13,62% 7,58%

115

Figure 6.9: Energy savings when varying the maximum number of cells available in the
array

Finally, to illustrate the effect of simultaneously varying both parameters (cache
and size of the array), Figure 6.10 and Figure 6.11 show two 3D graphs for performance
improvements and energy savings of the compress algorithm that represents the general
behavior of most applications of the SPECjvm98 benchmark.

Figure 6.10: Performance improvements when varying both parameters for the
compress algorithm

0,00%

5,00%

10,00%

15,00%

20,00%

25,00%

30,00%

35,00%

40,00%

45,00%

50,00%

5 4 3 2 1
check compress jess

raytrace dB javac

mpegaudio mtrt jack

5

4
3
2
1

0,00

0,50

1,00

1,50

2,00

2,50

32 16 8 4

cells

configurations

116

Figure 6.11: Energy savings achieved when varying both parameters for the
compress algorithm

6.1.3 Femtojava Multicycle with SPEC JVM and others

Now, the Femtojava Multicycle with the reconfigurable array is compared against
its standalone pipelined version. The objective here is to demonstrate the potential of the
array when coupling it with a very simple processor: gains are shown even when
comparing to a more powerful processor. This way, it is possible to save area and
design time, concerning the main processor.

The results are supported by simulation, using the same methodology presented in
the previous section. The only difference is that Synopsis Power Compiler
(SYNOPSYS, 2006) was used for dynamic and leakage power consumption
computation. All results were based on the TSMC 0.18 technology. Data about power
consumption in the main memory comes from (PUTTASWAMY et al., 2002). A mix of
the previous algorithms employed before was used for this experiment: sort and search
algorithms, IMDCT (plus three unrolled versions) and the MP3 player. The second
group is a subset of SPECjvm98 package.

In Figure 6.12 and Figure 6.13 the performance improvements in these two
separated groups are shown. In the X-axis the number of cells available in the array is
varied, while the Y-axis presents a normalized value that compares the results of the
Femtojava Multicycle with the reconfigurable array against the Femtojava Low-Power,
where the value one is its own performance. As can be observed, as more cells are
available, more performance gains are achieved. Depending on the algorithm, however,
as no speculative execution is done, there is a limit in the optimization. This limit is
exactly the average size of the basic blocks of the application. In all the following
presented results, in order to limit the design space, a reconfiguration cache of 8 slots is
used, since increasing the number of slots available up to 512 would bring a
performance increase of just 10%, on average.

5

4
3
2
1

0,00%

10,00%

20,00%

30,00%

40,00%

50,00%

32 16 8 4

cells

configurations

117

Figure 6.12: Performance improvements, in simple applications, when increasing the
number of cells of the reconfigurable array

Figure 6.13: Same as the previous, but now executing a subset of the SPECjvm98

It is important to point out that Java is an object oriented language. This way, as
already commented before, depending on the level of object orientation employed and
style of programming, it is possible to find a huge number of instructions for the
manipulation of these objects. As these instructions are complex and divided in several
microoperations, taking more than one cycle to be executed, they cannot be optimized
by the proposed approach. In Table 6.7 the percentage of cycles (Control Cycles) spent
for this kind of instruction considering the whole program execution is shown. It is
important to note that almost any instruction in RISC processors could be executed in
the combinational logic because, opposite to CISC-based native Java bytecodes, RISC
instructions are simple and do not have any kind of instruction that involves complex
microcoding. The same table also explains the reason why some algorithms do not show
any performance improvements in Figure 6.13. They are exactly those that have a huge
percentage of instructions that cannot be optimized.

Figure 6.14 and Figure 6.15 present energy savings because of the reconfigurable
system. As stated before, there are three main reasons for these: execution of large
sequences of instructions in pure combinational logic, instead of using all the structure
of the processor; the avoidance of repeating the dependence analysis again and again for
the same sequence; and, since this information is kept inside the processor in a special

8x
7x
6x
5x
4x
3x
2x
1x

Speedup

1.8x
1.6x
1.4x
1.2x

1x
0.8x
0.6x
0.4x
0.2x

Speedup

118

cache, the number of accesses to the instruction memory decreases considerably. This
way, even if the size of the core increases, because of extra hardware for the detection,
extra combinational hardware and the special cache memory, great energy advantages
still appear.

Table 6.7: Percentage of cycles regarding instructions that cannot be optimized

Figure 6.14: Energy consumption, in simple applications, when increasing the
number of cells of the reconfigurable array

Figure 6.15: Same as the previous, but now executing a subset of the SPECjvm98

100%

80%

60%

40%

20%

0%

Energy
Consumption

100%

80%

60%

40%

20%

0%

Energy
Consumption

 Total Cycles Control Cycles %

check 4 887 426 3 184 402 65.15

jess 39 394 726 28 252 774 71.72

db 7 751 709 5 036 323 64.97

javac 34 641 256 19 921 273 57.51

mpegaudio 327 158 420 82 163 257 25.11

mtrt 340 980 938 242 897 076 71.23

jack 465 479 393 354 870 998 76.24

quick 1 766 905 51.25

bubble 3 641 1 545 42.43

mp3 13 231 903 5 227 433 39.51

binary 518 294 56.76

imdct 82 187 43 224 52.59

Imdct1 73 123 28 538 39.03

Imdct2 69 658 26 644 38.25

Imdct3 36 383 14 922 41.01

119

 shows the area overhead when the Femtojava Low Power is compared against the
Femtojava Multicyle with the reconfigurable architecture, considering different number
of cells that compose the array and different configurations that is supported in the
special cache. As can be observed, the reconfigurable system, even in its simpler
version, shows a considerable area overhead.

Table 6.8: Additional area overhead, in number of gates, when compared to the
Femtojava Low-Power processor

Finally, in Figure 6.16 a comparison is done between two very different
benchmarks: one very control flow oriented (mtrt), and the other one mostly dataflow
(mpegaudio), with 1 or 20 cells available in the array for optimization (x-axis). The
objective is to show that, besides speeding up the execution of dataflow algorithms, as
expected, it is also possible to increase the performance of control flow programs. The
same Figure presents the execution time improvements when considering all
instructions executed, and when considering just the set of instructions passive of
optimization, as discussed before.

Figure 6.16 – Performance improvements in both control and data flow oriented
algorithms

6.2 RISC Processors

In this section, it is analyzed the RISC implementation of the reconfigurable array.
Firstly, it was simulated using the Simplescalar Toolset. This way, it was also possible
to compare the performance of the reconfigurable system against an Out-of-order
superscalar processor. Then, results considering the coupling of the BT and

% of instructions executed in the
reconfigurable array

All instructions

Just instructions passive of optimization

 # Cells
conf.

1 2 3 4 5

4 84 929 99 325 113 722 128 119 142 516
8 92 503 106 899 121 296 135 693 150 090
16 105 318 119 714 134 111 148 508 162 905
32 133 155 147 551 161 948 176 345 190 742
64 200 265 214 661 229 058 243 455 257 852

120

reconfigurable array with a MIPS R3000 are shown – representing the embedded
system market.

6.2.1 Simplescalar

For the performance analysis, an performance estimator was built and integrated
to the simplest version of the Simplescalar toolset (BURGER; AUSTIN, 1997): sim-
safe. It was implemented in C (the language was used because the Simplescalar itself
also was programmed in C), and for performance measurements, it follows a very
similar approach that Tiwari et al. (TIWARI et al., 1994) uses. This estimator analyses
instructions at run time, during the execution of the software. As it is totally integrated
to the Simplescalar toolset, one can change some parameters, as the number of
functional units of the array, number of lines, columns, delay of each functional unit etc.
In addition, it provides the statistics considering different reconfigurable cache sizes,
and gives the average time spent by several operations, as execution of the sequences,
context load time, write back time etc. It is important to point out that a low-level
description of the algorithm has been developed, and it is aimed to be integrated with
the most complicated version of the simplescalar toolset.

In this first experiment, the Simplescalar ToolSet was configured to use the PISA
architecture (which is based on the MIPS IV ISA) and to behave like an ordinary in-
order MIPS processor (very similar to the MIPS R3000 processor), executing a subset
of the MiBench (GUTHAUS, 2001), with the follow algorithms: Basicmath, Bitcount,
Qsort, Tiffdither, Tiffmedian, Dijkstra, Patricia, Ghostscript, StringSearch, Sha, CRC,
FFTinv and FFT. This subset of benchmarks has a different average of branches per
instruction. This way, the behavior of the approach in algorithms that are more control
or dataflow oriented can be better analyzed. It is considered a memory where it is
possible to make two reads and one write per cycle and a latency of one cycle to fetch
values from the cache. This assumption is in somehow very pessimistic. For instance,
the authors in (GONZALEZ et al., 1999) considered for trace reuse the capability to
perform 16 reads+writes per cycle, including register and memory values. Developed
architectures such as the Alpha 21264 (KESSLER, 1999) can perform up to 14 accesses
per cycle (8 register reads, 4 register writes and 2 memory references). Therefore, the
employed configuration could be easily implemented in nowadays memory systems.

Figure 6.17 shows the performance improvements over a in-order MIPS based
processor, where the Y axis is the relative time spent by the algorithm according to the
size of the reconfiguration cache, shown in the X axis (where zero means not using the
reconfigurable array). It is considered that the array is always big enough to execute the
largest configuration found. Analyzing the figure, one could notice that depending on
the algorithm, a small number of cache slots is enough. As the cache replacement policy
implemented for this analysis was FIFO (First In, First Out), this cache must be large
enough to support all the basic blocks that are being executed inside a determined
period of time in order to allow their reuse. For instance, consider that an algorithm is
composed by a main loop and inside this loop there are five basic blocks. If there are
four slots available in the cache, the first time the first basic block will be reused (in the
second iteration of the loop), it will not be in the cache anymore. This was, all the
detection process should be done again. Therefore, in this case, no optimization would
be achieved.

Figure 6.18 shows the average gain (Y axis) concerning all algorithms for each
different cache size (X axis). Depending on the this size, the algorithms can be executed

121

up to three times faster. To show the potential of the technique in this processor, the
ideal curve represents the performance gain when considering 1 cycle per merged
instruction executed. It is important to point out that in this experiment there was no
exploration beyond basic blocks. It is common sense that in order to achieve higher
performance improvements this exploration should be done, and that is way the
overspread superscalar processors use aggressive speculation to increase even more the
instruction level parallelism.

Figure 6.17: Performance Improvements using Dynamic Merging and the
Reconfigurable Array

Figure 6.18: The average of the performance improvements considering the size of
the cache

This way, the next experiment was adding the capability of performing
speculative execution in the array. Moreover, the Simplescalar was configured to
behave as close as possible to the Superscalar Out-Of-Order MIPS R10000 processor,
for performance comparisons. Its configuration is summarized in Table 6.9. More
details about it can be found in Appendix A, at the end of this thesis, where the
configuration file employed is shown.

Table 6.9: Configurations of the superscalar processor

0

2

4

6

8

0 2 4 6 8 16 32 64 128 256

Speedup

Ideal

Out of Order

Fetch, decode and commit up to 4 instructions
Register Update Unit 16 entries
Load/Store Queue 16 entries
Functional Units 2 Integer ALU, 1 multiplier, 2 memory ports
Branch Predictor Bimodal/512 entries

0

20

40

60

80

100

120

0 2 4 6 8 16 32 64 128 256

Basicmath

CRC

dijkstra

patricia

qsort

sha

Susan Corners

Susan Edges

Susan Smoothing

tiff2bw

tiff2rgba

tiffdither

tiffmedianCache

#cycles %

#Cache
Slots

#cycles %

#Cache Slots

Speedup %

122

Table 6.10 shows three different configurations for the array that was employed in
the experiments. The last configuration was used in order to try to figure out what is the
real potential of the proposed technique. For each array configuration, the size of the
reconfiguration cache is also varied: 2 to 512 slots, using the FIFO policy. The impact
of doing speculation is evaluated considering optimization of up to three basic blocks
ahead. Finally, the cache memory was increased in order to achieve almost no cache
misses, so it was possible to evaluate the results without the influence of it. It is
important to stand out that the impact of both misses of the reconfiguration cache as the
speculation are considered for the simulation.

Table 6.10: Configurations of the array

Table 6.11a shows the IPC of the out-of-order processor cited before. This table
can be used to compare the IPC of this processor against the IPC of the instructions that
are executed inside the array, in different configurations, which is shown in Figure 6.19.
For each configuration, three different speculation policies are demonstrated: no
speculation, 1 and 2 basic blocks ahead. The number of slots available in the
reconfigurable cache was also changed (4, 16, 64, 128 and 512). The four benchmarks
presented in this figure were chosen because they represent a very control-oriented
algorithm, a dataflow one and a midterm between both, plus the CRC, which is the
biggest benchmark in the subset. In Table 6.11b the benchmarks are classified according
to the average number of branches per instructions.

Table 6.11: IPC in the Out-of-Order processor and the average BB size

 As it is shown in Figure 6.19, it is possible to achieve a higher IPC when
executing instructions in the reconfigurable array in comparison to the out-of-order
superscalar processor, in almost all variations. However, the overall optimization when
using the proposed technique depends on how many instructions are executed in the
reconfigurable logic instead of using the normal flow of the processor. Table 6.12

Algorithm IPC - Out-of-
Order

 BB size

Basicmath 1.43 5.8751
CRC 2.13 7.9954
dijkstra 1.76 5.6011
Jpeg decode 1.86 6.2554
patricia 1.40 4.4255
qsort 1.79 4.6243
sha 1.94 7.9381
stringsearch 1.60 4.8709
Susan Smoothing 1.64 15.8098
Susan Corners 1.83 13.4952
tiff2bw 1.90 22.5567
tiff2rgba 1.92 13.4952
tiffdither 1.56 18.9188
tiffmedian 1.91 30.686

(a) (b)

 Reconfigurable Array
C #1 C #2 C #3

#Lines 27 54 99
#Columns 11 16 30
#ALU / line 8 8 11
#Multipliers / 1 2 3
#Ld/st / line 2 6 8

123

shows the overall speedup obtained when coupling the reconfigurable array to the out-
of-order processor against the standalone out-of-order. It is important to notice that
reconfigurable systems in general can just show improvements when the programs are
very dataflow oriented. The proposed technique, on the other hand, can optimize control
and data oriented programs, as it can be observed by the results.

Figure 6.19: IPC of four different benchmarks being executed in the reconfigurable
logic with different configurations

Table 6.12: Speedups using the reconfigurable array coupled to the out-of-order
processor

6.2.2 MIPS R3000 Processor

For this experiment, an improved VHDL version of the Minimips processor
(MINIMIPS, 2008), which is based on the R3000 version, was employed. For area
evaluation, again, it was used the Mentor Leonardo Spectrum (LEONARDO, 2008)
and, for power estimations, Synopsis PowerCompiler (SYNOPSYS, 2006), both with
the TSMC 0.18u library. Estimates on both processor and reconfigurable cache were

Algorithm #Cycles in the
Out-Of-Order

% of Speed Up - Out-of-Order coupled to array with configuration 1 % of Speed Up - Out-of-Order coupled to array with configuration 3

No Speculation Speculation 2 Speculation 3 No Speculation Speculation 2 Speculation 3
4 64 256 4 64 256 4 64 256 4 64 256 4 64 256 4 64 256

Basicmath 111169924 5.03 13.75 17.85 3.52 14.49 21.79 3.40 15.22 23.31 5.76 19.27 26.40 4.63 19.83 30.33 4.86 20.52 32.14
CRC 399531928 -16.01 -16.03 -16.03 -5.20 -5.21 -5.21 9.03 9.03 9.03 3.97 3.97 3.97 8.12 8.14 8.14 20.75 20.77 20.77
dijkstra 31094638 -22.29 -24.31 -24.33 1.30 1.25 1.25 8.45 8.46 8.46 -21.96 -20.08 -20.04 1.00 4.34 4.36 4.13 7.65 7.67
Jpeg decode 3942226 -9.15 -9.72 -9.77 4.63 3.24 3.29 7.11 7.45 7.61 9.76 11.92 12.05 16.55 18.94 19.06 16.77 19.51 19.68
patricia 95927575 4.41 13.30 13.72 3.99 14.42 21.52 3.26 14.22 21.96 5.06 17.97 18.89 5.25 18.80 29.07 4.57 18.58 29.80
qsort 23435690 -8.76 -11.69 -11.69 -0.58 4.18 4.18 0.37 -30.41 -30.21 24.29 38.95 38.95 16.79 43.74 43.74 16.44 40.72 40.72
sha 6800950 11.56 13.07 13.07 27.22 33.45 33.45 26.30 31.29 31.29 22.57 25.48 25.48 39.91 48.66 48.66 41.27 50.28 50.28
stringsearch 115917 16.32 20.16 21.23 28.95 35.20 35.24 28.50 35.39 35.38 21.02 27.05 30.57 31.25 41.02 41.17 31.04 42.61 42.63
S. Smoothing 15628090 -0.94 -3.22 -3.22 0.31 -0.99 -1.00 2.13 1.59 1.59 25.35 35.66 35.69 26.87 37.95 37.96 23.73 32.05 32.04
S. Corners 533870 2.16 1.79 1.79 4.40 4.29 4.28 1.13 4.29 4.28 32.69 41.44 41.44 37.53 41.44 41.45 33.89 37.13 37.12
tiff2bw 27391803 -4.24 -4.38 -4.42 0.88 0.82 0.82 -0.20 -0.20 -0.20 -5.65 -5.42 -5.39 19.08 19.60 19.60 24.41 25.22 25.22
tiff2rgba 23796384 -10.94 -11.39 -11.40 -1.53 -1.75 -1.75 -1.19 -1.39 -1.40 57.19 57.83 57.83 58.29 59.69 59.69 47.30 48.87 48.87
tiffdither 188757828 1.48 8.88 8.92 6.65 9.34 9.41 4.47 -21.46 -23.52 4.33 18.15 18.30 10.73 19.33 19.57 7.95 14.31 14.60
tiffmedian 93254386 3.95 3.74 3.73 12.91 12.82 12.82 7.42 7.38 7.38 14.13 14.11 14.13 27.23 27.43 27.43 27.36 27.72 27.72

6

5

4

3

2

1

IPC

6

5

4

3

2

1

IPC

6

5

4

3

2

1

IPC

C
on

fig
ur

at
io

n.
 #

1
C

on
fig

ur
at

io
n.

 #
2

C
on

fig
ur

at
io

n.
 #

3

Speculation 2 Speculation 3No Speculation Out of Order

crc string susan tiff2

124

done using these tools. Data about power consumption in the main memory was taken
from (PUTTASWAMY et al., 2002).The system was evaluated with the Mibench
Benchmark Suite (GUTHAUS et al., 2001). All benchmarks with no representative
floating point computations and that could be compiled successfully to the target
architecture were utilized.

Firstly, the information given in the in the Chapter 3, section 3.2.1, is repeated in
Figure 6.20 to reinforce two different concepts: algorithms can be control or dataflow
oriented; and they can have few or a large number of distinct kernels subject of
optimization. In Figure 6.20b it is characterized the algorithms regarding the number of
instructions executed per branch (classifying them as control or dataflow oriented).
Figure 6.20a shows the results of the investigation on the number of BBs responsible for
a certain percentage of the total number of basic block execution figures. It is
convenient to remember that, as more dataflow and as fewer distinct kernels an
algorithm has, the better for conventional reconfigurable systems. This fact, on the other
hand, is not a limiting factor for the proposed approach, as it will be shown later.

Figure 6.20: (a) How many BBs are necessary to cover a certain execution rate
considering total execution time (b) Average size of the basic block

Table 6.13 shows three different configurations for the array used in the

experiments. For each one it is varied the size of the reconfiguration cache: 16, 64 and
512 slots, and it is evaluated the impact of performing speculation, up to three basic
blocks.

Table 6.13: Different configurations for the array, when coupling to the MIPS R3000

Table 6.14 demonstrates the speed up of the reconfigurable array for the same
three configurations. It is ordered to show the most dataflow algorithms at the top and
the most control flow ones at the bottom. In Configuration #3 with speculation, an
average performance improvement of more than 2.5 times is achieved. Moreover, gains
are shown regardless of the instruction/branch rate, even for very control oriented

C #1 C #2 C #3
#Lines 24 48 150
#Columns 11 16 20
#ALU / line 8 8 12
#Multipliers / line 1 2 2
#Ld/st / line 2 6 6

7.65
4.89
6.25
16.09
3.79
4.04
15.28
22.27
25.45
4.67
7.20
6.51
15.60
7.63
11.24
6.52
6.83
4.81

of BBs

100%

80%

60%

40%

20%

0

% of execution time
#instructions/branch

(a) (b)

125

algorithms such as RawAudio Decoder and Quicksort, as well as those which do not
have distinct kernels, such as Susan Corners. Together with these results, there is an
extra table at the right, demonstrating the overall optimization assuming infinite
hardware resources for the array. As it can be observed, with the best configuration it is
possible to get very close to this theoretical speedup in several algorithms: just in five of
them there is a significant difference between the most aggressive configuration and the
ideal. In fact, the algorithms that can most benefit from hardware infinite resources are
exactly the dataflow ones, since they demand more lines in the array, mainly when
speculation is used. They have as most executed kernels basic blocks with a huge
number of instructions. On the other hand, in algorithms which have no distinct kernels,
the most important resource to be increased is the number of slots available in the cache
memory. Figure 6.21 summarizes the results Table 6.14.

Table 6.14: Speedups using the reconfigurable array coupled to the MIPS R3000
processor

Figure 6.21: An overview of the average speed up presented with different
configurations

At this moment, one can analyze the power and energy consumed by the system.

Figure 6.22 demonstrates the average power consumed by cycle in the Array
coupled to the MIPS processor, with configurations #1 and #3 (shown as C#1 and C#3),
considering 64 cache slots, and executing the algorithms Rijndael E., Rawaudio D. and

Ideal

No
Spec Spec

5.10 8.05
4.68 7.42
1.70 2.19
2.72 4.37
1.91 4.87
1.65 3.52
1.53 1.92
2.77 4.39
2.19 3.07
2.17 2.66
2.21 2.60
1.72 2.25
3.31 3.68
1.76 1.83
1.89 2.97
1.77 2.67
1.61 2.00
1.64 1.79
2.32 3.36

D
at

a
Fl

ow

C
on

tr
ol

 F
lo

w

Algorithm
Speed Up – Configuration #1 Speed Up – Configuration #2 Speed Up – Configuration #3

No Speculation Speculation No Speculation Speculation No Speculation Speculation
16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 16 64 256

Rijindael E. 1.05 1.20 1.21 1.05 1.24 1.24 1.05 1.71 1.73 1.06 1.55 1.55 1.05 3.46 3.60 1.06 2.68 2.68
Rijindael D. 1.07 1.21 1.21 1.07 1.25 1.25 1.07 1.63 1.64 1.07 1.55 1.55 1.07 3.32 3.33 1.07 2.32 2.32

GSM E. 1.63 1.65 1.68 2.01 2.05 2.13 1.63 1.65 1.68 2.03 2.07 2.17 1.63 1.65 1.69 2.03 2.07 2.19
JPEG E. 1.95 2.04 2.07 1.79 1.88 1.89 2.50 2.72 2.77 3.55 4.27 4.37 2.50 2.72 2.77 3.55 4.27 4.37

SHA 1.90 1.90 1.90 3.81 3.84 3.84 1.90 1.91 1.91 4.80 4.84 4.84 1.90 1.91 1.91 4.80 4.84 4.84
Susan Smothing 1.49 1.60 1.65 2.70 2.99 3.31 1.49 1.61 1.65 2.83 3.14 3.52 1.49 1.61 1.65 2.83 3.14 3.52

CRC 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92
JPEG D. 1.92 2.03 2.04 1.64 1.78 1.78 2.05 2.21 2.22 2.02 2.54 2.55 2.05 2.21 2.22 2.03 2.62 2.63
Patricia 1.49 1.84 1.93 1.58 2.05 2.23 1.49 1.86 1.95 1.64 2.17 2.37 1.49 1.86 1.95 1.64 2.17 2.37

Susan Corners 1.22 1.49 1.72 1.31 1.47 1.91 1.38 1.79 2.17 1.56 1.79 2.64 1.38 1.79 2.17 1.56 1.79 2.64
Susan Edges 1.23 1.42 1.64 1.29 1.48 1.83 1.43 1.70 2.20 1.47 1.74 2.43 1.43 1.70 2.20 1.53 1.81 2.58

Dijkstra 1.59 1.71 1.71 2.03 2.21 2.22 1.59 1.72 1.72 2.04 2.24 2.24 1.59 1.72 1.72 2.04 2.24 2.24
GSM D. 1.28 1.28 1.29 1.27 1.28 1.29 1.62 1.62 1.65 1.48 1.50 1.52 2.79 2.79 2.93 2.37 2.49 2.58
Bitcount 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83

Stringsearch 1.38 1.61 1.86 1.56 2.22 2.77 1.38 1.62 1.89 1.57 2.30 2.96 1.38 1.62 1.89 1.57 2.30 2.96
Quicksort 1.37 1.74 1.74 1.69 2.32 2.33 1.37 1.77 1.77 1.80 2.66 2.67 1.37 1.77 1.77 1.80 2.66 2.67

RawAudio E. 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00
RawAudio D. 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79

Average 1.51 1.63 1.68 1.80 1.98 2.09 1.58 1.78 1.86 2.03 2.33 2.49 1.65 2.04 2.13 2.08 2.50 2.67

126

JPEG E., the most control and data flow ones, and a mid-term, respectively. The same
Figure also shows the MIPS processor without the reconfigurable array. The
consumption is shown separated for the core, data and instruction memories,
reconfigurable array and cache, and BT hardware. It is interesting to note that the major
responsible for power consumption are the memory accesses. In third place comes the
reconfigurable array. The power spent by this hardware depends on how much it is used
during the program execution. The MIPS processor, reconfiguration cache and the BT
hardware plays a minor role on this scenario.

Figure 6.22: Power consumed by 3 different algorithms in conf. 1 and 3, with and
without speculation, 64 cache slots

In Figure 6.23 the same experiment is repeated, but now analyzing the total
energy consumption. As the power consumed per cycle is very similar when executing
MIPS+array and just MIPS, but the number of cycles is reduced in the first case, energy
savings are achieved. Making a deeper analysis, there are three main reasons for these
savings:

 The execution of the instructions in a more effective way in combinational
logic, instead of using the processor path.

Avoidance of repeated parallelism analysis. As commented before, there is no
necessity of performing the analysis repeatedly for the same sequence of code, since

DIM saves this information in its special cache. This is a very important characteristic,
since, recalling again, almost half of the number of pipeline stages of the Pentium 4

processor (INTEL, 2008); and half of the power spent the Alpha 21264 processor are
related to the extraction of dependence information among instructions (WILCOX;

MANNE, 1999). As it can be observed in

 Figure 6.22, when using DIM, more power is spent in the core, because of
the BT hardware, reconfigurable array and its cache. On the other hand,
there is no need for fetching a great amount of instructions, since they
reside in the reconfigurable cache, after their proper translation to an
array’s configuration.

127

Figure 6.23: Repeating the data of the previous Figure, but now for Energy
Consumption

For configuration #2, with 64 cache slots, the proposed system consumes 1.73

times less energy on average than the standalone MIPS core. Moreover, assuming that
the MIPS itself would be enough to handle real time constraints necessary for a given
application, one could reduce the system clock frequency to achieve exactly the same
performance level of the processor - thus decreasing even more the power and energy
consumptions.

In order to give an idea of the area overhead, Table 6.15a shows the number of
functional units and multiplexers necessary to implement configuration #1 of Table 1,
and what is the number of gates they consume. In the same table one can also find the
area occupied by the DIM hardware. Table 6.15b shows the number of bits necessary to
store one configuration in the reconfigurable cache. Note that, although 256 bits are
necessary for the Write Bitmap Table, they are not added to the final total, since it is
temporary and used just during detection. In Table 6.15c, the number of Bytes needed
for different cache sizes is presented.

Table 6.15: Area evaluation

Figure 6.24 represents the MIPS layout with the reconfigurable array. According
to (YEAGER, 1996), the total number of transistors of core in the MIPS R10000 is 2.4
million. As presented in table 4a, the array together with the hardware detection
occupies 664,102 gates. Considering that one gate is equivalent to 4 transistors, which
would be the amount necessary to implement a NAND or NOR gates, the whole system
would take nearly 2.66 million transistors to be implemented. This way, the
reconfigurable array and DIM hardware would take nearly 2.66 million transistors to be

(c) (b)

Table #bits
Write Bitmap 256
Resource 786
Reads Table 1,632
Writes Table 576
Context Start 40
Context 40
Immediate 128
Total 3,202

#Slots #Bytes
2 833
4 1,601
8 3,300
16 6,404
32 13,012
64 25,616
128 51,304
256 102,464

(a)

Unit # Gates
ALU 192 300,288
LD/ST 36 1,968
Multiplier 6 40,134
Input Mux 408 261,936
Output Mux 216 58,752
DIM Hardware 1,024
Total 664,102

128

implemented. The area overhead is represented in Figure 6b. In this figure is also
presented the area occupied by the reconfigurable cache, in number of different
configurations it can support. This is an approximation, since it was not considered that
the cache was fully associative (it is very likely that the area overhead will be slightly
higher). The MimiMIPS, in turn, occupies 26,712 gates.

Figure 6.24: Area overhead presented by the reconfigurable array and its special
cache

Finally, Table 6.16 and Table 6.17 show, respectively, the number of gates
occupied by the functional units and the bits necessary to save each configuration in the
cache, when varying the number of rows and columns of the reconfigurable array.

Table 6.16: Number of gates, varying the number of rows and columns of the array

MiniMIPS

#lines #columns #functional units #gates

ALU LD/ST Mult ALU LD/ST Mult MUX
in

MUX
out

ALU LD/ST Mult MUX in MUX
out

Total

12
8 2 1 96 8 4 192 96 150144 2624 26756 138672 29376 347572
8 6 1 96 24 4 192 96 150144 7872 26756 159216 29376 373364
12 6 2 144 24 8 288 96 225216 7872 53512 225984 29376 541960

24
8 2 1 192 16 8 384 192 300288 5248 53512 277344 58752 695144
8 6 1 192 48 8 384 192 300288 15744 53512 318432 58752 746728
12 6 2 288 48 16 576 192 450432 15744 107024 451968 58752 1083920

33
8 2 1 264 22 11 528 264 412896 7216 73579 381348 80784 955823
8 6 1 264 66 11 528 264 412896 21648 73579 437844 80784 1026751
12 6 2 396 66 22 792 264 619344 21648 147158 621456 80784 1490390

48
8 2 1 384 32 16 768 384 600576 10496 107024 554688 117504 1390288
8 6 1 384 96 16 768 384 600576 31488 107024 636864 117504 1493456
12 6 2 576 96 32 1152 384 900864 31488 214048 903936 117504 2167840

96
8 2 1 768 64 32 1536 768 1201152 20992 214048 1109376 235008 2780576
8 6 1 768 192 32 1536 768 1201152 62976 214048 1273728 235008 2986912
12 6 2 1152 192 64 2304 768 1801728 62976 428096 1807872 235008 4335680

150
8 2 1 1200 100 50 2400 1200 1876800 32800 334450 1733400 367200 4344650
8 6 1 1200 300 50 2400 1200 1876800 98400 334450 1990200 367200 4667050
12 6 2 1800 300 100 3600 1200 2815200 98400 668900 2824800 367200 6774500

129

Table 6.17: Number of bits necessary per cache slot, varying the number of rows and
columns of the array

#lines #columns #functional units #bits

ALU LD/ST Mult ALU LD/ST Mult MUX
in

MUX
out

12
8 2 1 96 8 4 192 96 248
8 6 1 96 24 4 192 96 268
12 6 2 144 24 8 288 96 357

24
8 2 1 192 16 8 384 192 455
8 6 1 192 48 8 384 192 495
12 6 2 288 48 16 576 192 672

33
8 2 1 264 22 11 528 264 609
8 6 1 264 66 11 528 264 664
12 6 2 396 66 22 792 264 908

48
8 2 1 384 32 16 768 384 868
8 6 1 384 96 16 768 384 948
12 6 2 576 96 32 1152 384 1302

96
8 2 1 768 64 32 1536 768 1694
8 6 1 768 192 32 1536 768 1854
12 6 2 1152 192 64 2304 768 2562

150
8 2 1 1200 100 50 2400 1200 2623
8 6 1 1200 300 50 2400 1200 2873
12 6 2 1800 300 100 3600 1200 3979

6.3 First studies about the ideal shape of the reconfigurable array

In (RUTZIG, 2008), studies about the ideal shape of the reconfigurable array
considering a wide range of different applications were performed. Instead of using the
rectangular shape, a tool was developed to execute several algorithms with different
behaviors in order to find the best placement and usage of functional units in the array
with the minimal performance loss possible. Significant results were achieved
concerning the area occupied by the system. Figure 6.25a shows the original shape of
the array. Figure 6.25b demonstrates it after the optimization analysis.

Figure 6.26 shows the average gain in performance considering all benchmarks and
varying the cache memory size when comparing the reconfigurable array with different
shapes to the architecture without the array. It is possible to observe in this figure that the
new shape had a small performance loss (5.8% in average) when comparing to the data
path 1 (original rectangular shape with a large amount of functional units). However,
when comparing the new shape to the data path 2, which is also based on the traditional
rectangular shape, but with a similar number of functional units as the new shape has, the
new configuration has a performance improvement of 3%. Even though this relative gain
appears to be low, it is important to point out that there is an area reduction of almost
15% over the data path 2. In other words, when considering the same number of
functional units, the new shape presents a small performance improvement and a
considerable area reduction when comparing to the traditional shape.

130

Figure 6.25: a) Original shape of the reconfigurable array b) Optimized shape

Figure 6.26: Performance comparison between different datapath shapes

6.4 Conclusions

Considering the different processors analyzed, although the significant area
overhead and increase in power consumption, there was an important improvement on
the performance and reduction in energy consumption – since parts of the code are
executed in a more efficient mechanism.

Regarding the experiments with the Femtojava Low-Power processor, two main
issues must be addressed in the future. The first one is the computation of the static
power consumption (although it was considered in the other experiments, including the
one with the Femtojava Multicycle). Moreover, the area was calculated in FPGA and, in
this case, the cache memory was oversized: FPGAs, when using its logic, tend to

(a) (b)

131

occupy a good number of resources to implement memories. Furthermore, considering
the whole set of experiments with the Femtojava processor, the inclusion of a
replacement policy for the reconfigurable cache must be done.

Considering all experiments, the performance numbers are mainly gathered
through simulation. As these simulations are cycle accurate, the level of accuracy is
high. All overheads, such as reconfiguration, context loading and write back were
considered. The only exception was the simulations using sim-safe (section 6.2.1). In
opposite to all other simulations performed, sim-safe works at the instruction level. This
way, an average IPC was considered, based on several simulations previously
performed in the cycle accurate simulator.

Regarding the area estimate, it depends on how the tool performs the place and
routing. It is important to note that the area estimate, using the VHDL versions of the
hardware, was done before place and routing. This way, depending on the tool
methodology, more area will spent. In FPGA, for example, a great number of resources
is spent with the routing mechanism. This way, the tradeoff presented by the array tends
to be better on ASIC technologies. Moreover, as already previously stated, there is an
error margin considering the cache area estimates: it was not considered that it would be
fully associative. Furthermore, there is also the control mechanism for context input and
output. Although it is a simple state machine, it will bring an additional area overhead.

Depending on the technology, more or less functional units can be allocated
within a level in the array (processor equivalent cycle). Although this possibility is very
unlikely to happen, because there is no wasted time with sequential logic as the ordinary
pipeline stages of the processor presents, the worst case would be as follow: there is no
room in the critical path to allocate more than one ALU per level in the array. In this
case, one could think on decrease the frequency of operation so more ALU can be
allocated per level. Although the array would not present performance gains, there
would be huge energy savings.

Finally, the leakage power (one of the main responsible for the static power
consumption) is still considered low in the employed technologies used in the
experiments presented in this work. However, static power in future technologies will
become more important. This way, studies have been done to take advantage of the
structure of the array to decrease also static power.

132

133

7 CONCLUSIONS, FUTURE AND ON GOING WORKS

In this work we introduced a new approach that explores the potential of replacing
the traditional execution flow for combinational logic. Employing similar techniques
used by well-known dataflow architectures, but maintaining binary compatibility, good
performance improvements and energy savings have been achieved. In Chapter 2 and 3
we contextualized our work, demonstrating from where the basic ideas come and how
exactly our contribution fits in. We also demonstrated the potential of using
reconfigurable systems and how the recent proposed ones just cover one niche of
applications. In Chapter 4 and 5 the structure of the array and the BT algorithms were
presented, considering the particularities of each architecture used as case study.
Finally, in chapter 6, results for these architectures were shown, proving that is possible
to optimize any kind of algorithm using pure combinational logic, and still allowing the
reuse of binary code in a transparent process.

The list presented below summarizes the main contributions of this thesis:

 For Java processors (stack machines)

o The development of the reconfigurable array structure;

o The development of the BT algorithm;

o Measurements in terms of area, performance and power/energy
consumption, coupling the array to the Femtojava Low Power and
Multicycle processors, and comparing the results against its VLIW
version;

o The VLIW analyzer, which was previously developed (BECK;
CARRO, 2004c), was extended to support the array/BT simulation.
Approximately 1800 lines in C code were written.

 For the MIPS and Simplescalar out-of-order Processors (RISC machines)

o The development of the reconfigurable array structure;

o The development of the BT algorithm;

o A profiler to measure the potentials of the technique was developed
to be used with the Simplescalar Toolset; more than 1700 lines in C
code were written. Later, this profiler was adapted to be used together
with the MIPS simulator (RUTZIG; CARRO, 2008);

 Using this simulator, various tradeoffs analysis were done,
such as the study of what would be the best speculation policy
to be used.

134

o Another profiler, working at a lower level, was also developed. It can
be seen in Appendix B.

o A MIPS core VHDL, called miniMIPS (MINIMIPS, 2008), was
depurated and modified. The original version could not run even the
simplest algorithms;

 First experiments simulating different reconfigurable arrays with different
granularities have been done, in order to classify these reconfigurable
systems according to their potentials and niche of applications. A simulator,
coupled to the MIPS SystemC based description, was developed, with nearly
700 lines in C++

Besides, there are a large number of future and ongoing works, as it will be
discussed in the next subsections.

7.1 Design space to be explored

There is still a huge design space to be explored, with a lot of open questions,
such as: what is the ideal size of the array; how many instructions it can execute in
parallel; how many results it can write back to the registers or memory per cycle; how
many configurations the special cache can store, and what is the best replacement policy
for it; how deep is the ideal speculation regarding basic blocks etc. Moreover, all these
configurations can be different depending on the characteristics of the benchmark. That
is why it is also planned to simulate other benchmarks, such as SPEC and Mediabench.
Concerning specific Java Optimizations, first studies have already been done in order to
optimize code at the object level (MATTOS, 2007).

7.2 Decreasing the routing area

The problem of the routing area in reconfigurable systems is a very well know
issue. Although it is more evident in fine-grain reconfigurable systems based on
FPGAs, it can also be observed in coarse grain ones. Depending on the configuration
used in the array presented in this work, the area presented just by the multiplexers can
reach half the total area of the reconfigurable system, as can be observed in Figure
6.24a. This way, different structures such as multistage networks have been tested in
order to decrease the area (FERREIRA et al., 2008). It is important to stress that
different routing techniques can affect the BT algorithm. By consequence, it is very
likely that the BT algorithm will have to suffer changes.

7.3 Speculation of variable length

The speculation performed in the reconfigurable array has a fixed length, meaning
that it will always speculatively execute a fixed number of basic blocks. However, with
small modifications in the BT algorithm, it is possible to make the speculation with a
variable number of basic blocks to be executed ahead. For instance, the BT could
speculate until there are no more resources available in the array. Currently, it stops
speculating if it reaches the pre determined depth in the tree, even if there is free room
available in the array. It would also influence the reconfiguration cache, since each slot
for each configuration should have more space. Another alternative would be the use of
a cache slot with variable length, where some kind of flag could indicate the end of one
configuration and the beginning of the other.

135

7.4 DSP, SIMD and other extensions

Following a trend that can be observed in nowadays reconfigurable systems, the
study about adding DSP extensions in the array is a future work. This can be achieved
by either adding new hardware or optimizing the routing mechanism (for instance, in
the case of Multiply-and-Accumulate operations). The BT hardware should be adapted
in order to detect these new instructions. This work should involve the search for the
most common DSP instructions in a program’s execution. This way, it would be
possible to know the tradeoff of implementing such extensions.

In the case of SIMD instructions, the BT would detect in what set of instructions it
could be applied, and configure the array according to it. Two different implementation
alternatives must be evaluated: the first solution would be to increase word length of the
functional units (so they could execute a SIMD instruction in one of these functional
units, after it was detected and transformed), or optimize the routing between a given
group of functional units to support multiple data with a single operation.

This approach could be extended to any kind of special instruction depending on
the field of application desired. The greatest advantage of such extensions is that the
array does not lose its generality: if it has any kind of extension and it is not used, the
only drawback is the unutilized extra area of the array.

7.5 Study of the area overhead with technology scaling and future
technologies

This study concerns the analysis of the area overhead according to future
technologies. What is the impact of using the array with an even larger area available in
a near future? Furthermore, what are the possibilities of implementing the array using
other technologies instead of silicon? According to the roadmap (ITRS, 2006) these new
technologies are slow but present huge integration possibilities, or the opposite.
Considering the fact that the array is very regular and easily scalable, could this be an
advantage?

7.6 Measuring the impact of the OS in reconfigurable systems

In conventional reconfigurable systems, the source code needs to be available, so
it could be optimized to be executed on reconfigurable logic. However, some of the
most used Operating Systems (OS) in the market do not have their source code
available. This way, any part of the OS, such as system calls, could not be optimized at
all. Some algorithms (even those that are part of benchmark sets) spend a considerable
amount of time exactly with system calls (for instance, read/write from/to files). This
way, a future work would be the analysis of this limiting factor on conventional
reconfigurable systems, and the comparison of it against the proposed technique that, in
turn, can optimize any part of the software, including OS parts that have already been
compiled. This could answer the following question: what is the importance of
optimizing the OS in the overall system speedup?

7.7 Array+BT to increase the Yield

One of the major problems that the industry faces nowadays is the yield rate. The
number of processors that are produced is directly influenced by the faults that occurs
during the manufacturing process. Considering general purpose processors, if one fault

136

occurs in its control or datapath, the whole processor cannot be used anymore. On the
other hand, if the fault happens at the cache memory and the processor has, for instance,
two separate banks, the processor maybe can still be used (the Intel Celeron processors
are one of these examples) (INTEL, 2008).

Considering that the array can be coupled to a very simple processor, the
percentage of area occupied by the reconfigurable logic would be enormous. If some
fault occurs in a given part of the reconfigurable array (for instance, a given functional
unit), that part would be isolated (it could be marked as always used in the resource
table, for instance) and the array could be used without any kind of modification. A test
could be done at the beginning of execution, using an algorithm to test all parts of the
reconfigurable array, in order to mark the failed parts. As the array occupies the
majority of the die area, it is very likely that any fail will occur at the reconfigurable
part, increasing the overall yield rate.

7.8 Array+BT for fault tolerance

Several approaches replicate hardware in order to verify if the circuit is working
properly. For instance, two processors can execute exactly the same software and
compare their results to verify the validity of them. The reconfigurable array can also be
used for this purpose. For example, instead of stalling the processor while executing
sequences in the array, both can work together, comparing their results at the end of
their execution. Another approach would be executing just certain parts of the software,
which could be chosen randomly, so the execution overhead for the verification would
be reduced. There are many opportunities in this field. For instance, only one array
could be shared between various processors in a CMP to be used only for fault
tolerance.

7.9 BT scheduling targeting to Low-Power

Considering the way the BT algorithm works now, it is target to achieve the
highest level of parallelism possible. However, instead of trying to reach the maximum
performance, the BT scheduler could try to place instructions in the array with the
objective of keeping the largest possible number of functional units turned off –
decreasing the power consumed by the system. For example, even if there is an
opportunity of executing two instructions in parallel, but one of the functional units
necessary for that operation was turned off in a previous configuration, another
functional unit would be chosen, probably taking more time to execute the current
configuration.

7.10 Comparison against Superscalar Architectures

Although in the results section a comparison with a superscalar architecture was
demonstrated, the analysis lacks of a more theoretical background. For instance, one of
the major problems about finding ILP in superscalar architectures is the number of
comparators needed in the instruction queue. On the other hand, the complexity of this
comparison when using the proposed approach diminishes, since the BT takes
advantage of the hierarchy of the array: information about data dependency is
summarized for each row. Moreover, the proposed reconfigurable system can be
compared to complex superscalar architectures with different characteristics of the one

137

evaluated in this work, such as the number of pipeline stages, number of functional
units, size of the instruction window etc.

7.11 Comparison against a Fine-Grain reconfigurable system

Is a coarse grain reconfigurable system faster than a FPGA based one? If one
considers that the granularity of the first is coarser than the second, a simple operation
would be executed faster in a coarse grain array. However, at bit manipulation, FPGAs
tend to obtain an advantage. The routing, on the other hand, depends on the level of
manipulation in the array. If words are computed, FPGA will spend more area and time
to connect the bits to form this word.

Another particular issue when comparing specifically fine grain arrays with the
proposed system: FPGA synthesis tools are more intelligent and have more time to
build a configuration. This would be an advantage that could overcome some of the
routing and allocation problems cited before. The BT system, on the other hand, needs
to use a fixed structure and does not have any time to optimize it: the routing algorithm
should be as simple as possible. Another interesting comparison would be using fixed
configurations with a fine grain array, generated by a specific tool; against a coarse
grain array exactly in the same conditions: fixed configurations also produced by a
synthesis tool – so a fair environment would be available.

FIRST STUDIES WITH MOLEN

First studies about this comparison have already been performed, using Molen, a
fine grain reconfigurable architecture that was introduced in chapter 2. To transform
parts of code to be executed in Molen hardware, the C2VHDL, a tool developed by the
same group, was employed. This tools aims at automatically transform a given C code
in VHDL. Using the MiBench benchmark set, GSM has shown an improvement of 1.8x.
Four more examples besides this one were executed: ADPCM, dijkstra, quick and
bubble sort. However, some of them do not show performance improvements, while in
others the speedup is very small, even if they are dataflow oriented algorithms.

Furthermore, these results consider that the additional hardware generated to be
executed as the Molen reconfigurable system do not increase the critical path of the
processor (it would take just one processor’s equivalent cycle to execute the whole
operation). It means that it would have the same processor’s frequency of operation,
which is very likely to not happen as previous implemented examples (VASSILIADIS
et al., 2001) have already shown. This can be explained because of the code
transformation tool, which are at its first stages of development: it does not consider
critical paths while generating the VHDL cores. For instance, it is considered that a
multiply operation would take the same time to be executed as an addition.
Furthermore, it does not explore parallel operations at all. Therefore, for a better
comparison and analysis, applications kernels need to be generated by hand.

This way, after the kernels were proper implemented, it will also be considered
characteristics of the bench set (control or dataflow oriented; number of distinct
kernels), which study has already begun, as one can see in chapter 2. This comparison
must consider the three axis (power, performance and area). There is no study between
two different reconfigurable architectures with different implementation strategies using
exactly the same environment and peripheral components, and still considering the
different behaviors of the benchmark set.

138

The toolset is already ready to be used. There is the SystemC like MIPS simulator
adapted both to work with DIM and Molen as a GPP. For Molen, the simulator shows
the hot spots considering basic blocks, or loops, or functions. Furthermore, the VHDL
code of the MIPS processor and both reconfigurable architectures is available. The
power consumption would follow the same methodology presented before for the
BT/array, and the Xilinx XPower (XILINX, 2008b) could be used to figure the power
spent by the FPGA based Molen system.

7.12 Attacking Different levels of granularity

MULTITHREADING

The search for processing power in a reduced design space has also been
modifying the whole paradigm of parallelism exploitation. The focus has been changed,
where complex and superpipelined superscalar processors are giving space to
multiprocessors sometimes composed by simpler processors, increasing the scalability.
The parallelism grain is not explored just at the instruction level anymore, but also at
threads and processes. Figure 7.1 shows the difference between superscalar,
multithreaded and simultaneous multithreading processors. Each square represents one
functional unit of the processor. Each line (horizontal set of functional units) represents
the processor state at each cycle. If one square is filled, it means that the correspondent
functional unit was used. When it is empty, that functional unit was idle at that time.

Not using functional units through the time can be characterized as horizontal or
vertical waste. Horizontal waste occurs when one or more functional units were not
used within a cycle. Vertical waste means that all units within a cycle were not used (the
whole cycle was wasted). Figure 7.1a demonstrates the execution sequence on a
superscalar processor. In such processor, there is just the execution of one thread at a
time. When, for some reason (as data dependences), there are no enough instructions to
feed the functional units, there is horizontal waste. If there is no instruction at all to be
issued to the functional units at a given cycle (this could happen when there is a cache
miss, for example), vertical waste is characterized. The first kind of waste can be
observed in cycles 1, 2, 5, 7 e 9, while the second kind in cycles 3, 4, 6, 8 and 10, in
Figure 7.1a.

In Figure 7.1b and Figure 7.1c the behavior of the multithread and SMT
processors are shown, respectively. The Multithread architecture can fetch instructions
from different threads in different cycles, avoiding the vertical waste. For instance,
while the processor is treating a cache miss of one thread, instructions can be fetched
from another thread. The SMT architecture, on the other hand, can fetch instructions
from different threads within the same cycle. This way, if there is a limit in the ILP of
one thread, the functional units can be fed from others. By consequence, the horizontal
waste is also dramatically reduced. In this architecture, the processor dynamically
allocates the instructions from different threads in the functional units. For example, let
us consider that in a processor there are eight functional units available, and in a given
cycle the thread ILP is of five. The processor can fetch the 3 left instructions at run time
from other threads to issue to the reminiscent functional units. Examples of SMT
implementations are: Intel Pentium 4 (which technology is called Hyperthreading),
Alpha EV8, IBM Power 5 and Sun Microsystems’ UltraSPARC T1.

It is important to note that there is horizontal and vertical waste in reconfigurable
architectures, as there is in superscalar processors. In the literature there is no study

139

about the possibility of using reconfigurable systems based on the SMT paradigm.
Considering the proposed approach, the functional characteristics may facilitate the
implementation of this technique. As it is composed by a large number of functional
units, these can be fed of instructions from different threads, with a control mechanism
for the input context and write back of results – and a special concern about maintaining
data coherence and allowing communication between threads.

To became a reality, it is necessary the implementation of the control mechanism,
which must be responsible for separating the input and output contexts, originated from
different threads that are being executed simultaneously in the array. Other analysis can
be performed, such as the study on the influence of the amount and kind of
communication between threads on the performance and size of the array. It is
important to highlight that the study of ideal size and other tradeoffs will be changed
because of the fact that the reconfigurable array will execute more than one thread at a
time.

Figure 7.1: Different models and theirs functional units executing various threads

CMP

Processors such as Core2Duo (Intel) and AMD Athlon 64 X2 (AMD) are
examples of another trend in the development of architectures: multiple processors in a
chip, also known as CMP (Chip Multiprocessor). One of the main reasons that motivate
designers to use CMP is the reduced design time necessary for its development, since
the processors employed are usually already validated (because of the reuse of existent
designs). This way, all the effort is focused on the communication between the
components.

Reconfigurable systems have been used to optimize a single threaded software.
This way, using these systems following the CMP strategy cited before can be a good
focus of research. Considering the proposed approach, Figure 7.2a shows its current
implementation: the communication between the components of the architecture and the

T
I

M
E

Superescalar Multithreaded SMT

Cycle 1

Cycle 2

Cycle 3

Cycle 4

Cycle 5

Cycle 6

Cycle 7

Cycle 8

Cycle 9

Cycle 10

(a) (b) (c)

Thread 1

Thread 2

Thread 3

Thread 4

140

processor is done using dedicated buses, which makes its implementation not scalable
considering the increment on the number of available RFUs. Figure 7.2b, in turn,
illustrates how a CMP model could be implemented. With a new communication
mechanism, it would be possible to increase the number of RFUs.

Figure 7.2: a) Current implementation b) reconfigurable architecture based on CMP

There are a great number of open questions concerning reconfigurable CMP
architectures, such as: how much parallelism is available, energy consumption,
scalability, testability, fault tolerance, reusability, communication etc. Moreover, a new
BT algorithm need to be developed, in order to analyze the partitioning of processes at
run time, so they can be executed on different reconfigurable architectures, following
the same premise of maintaining software compatibility.

Furthermore, it is necessary to analyze means of communication between the
components, as well as memory sharing, such as monolithic buses (Figure 7.3a) or
segmented (Figure 7.3b); use of a crossbar or even intrachip networks (Figure 7.3c).
Finally, the possibility of implementing a heterogeneous architecture, composed by
different reconfigurable units that can be used according to the process requirements at
a given moment, can be evaluated. Similar studies using ordinary processors were done
in (OLUKOTUN et al., 1996).

Figure 7.3: Communication alternatives. a) Monolithic bus b) Segmented bus c) Intra
chip network

(a) (b) (c)

RFU

RFU

RFU

BT

Cache GPP

RFU RFU RFU

BT

Cache
GPP

RFU RFU RFU

BT

Cache
GPP

RFU RFU RFU

Comunicação

BT

Cache
GPP

RFU

BT

Cache

BI DI BO EX ER

(a) (b)

Communication

141

PUBLICATIONS

BECK FILHO, A. C. S.; MATTOS, J. C.; WAGNER, F. R.; CARRO, L. CACO-PS: A
General Purpose Cycle-Accurate Configurable Power Simulator. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 16., 2003, São Paulo.
Proceedings… Washington: IEEE Computer Society, 2003. p. 349-354.

BECK FILHO, A. C. S.; CARRO, L. Low Power Java Processor for Embedded
Applications. In: IFIP WG 10.5 INTERNATIONAL CONFERENCE ON VERY
LARGE SCALE INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 12., 2003,
Darmstadt. Proceedings… Darmstadt: Technische Universitat Darmstadt, 2003. p. 239-
244.

BECK FILHO, A. C. S.; CARRO, L. A VLIW Low Power Java Processor for
Embedded Applications. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN, SBCCI, 17., 2004, Porto de Galinhas. Proceedings… New York:
ACM Press, 2004. p. 157-162.

BECK FILHO, A. C. S.; CARRO, L. Um Processador Java VLIW com Baixo Consumo
de Potência para Sistemas Embarcados. In: WORKSHOP IBERCHIP, 10., 2004,
Cartagena de Indias. Proceedings… Cartagena de Indias: Universidad de los Andes,
2004. p. 114.

BECK FILHO, A. C. S.; CARRO, L. Dynamic Reconfiguration with Binary
Translation: Breaking the ILP barrier with Software Compatibility. In: DESIGN
AUTOMATION CONFERENCE, DAC, 42., 2005, Anaheim. Proceedings… New
York: ACM Press, 2005, p. 732-737.

BECK FILHO, A. C. S.; CARRO, L.. Application of Binary Translation to Java
Reconfigurable Architectures. In INTERNATIONAL PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM - WORKSHOP 3 (RAW), IPDPS,
2005. Proceedings… Washington: IEEE Computer Society, 2005, p. 156.2.

BECK FILHO, A. C. S.; GOMES, V. F.; CARRO, L. Exploiting Java Through Binary
Translation for Low Power Embedded Reconfigurable Systems. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 18., 2005,
Florianópolis. Proceedings… Washington: IEEE Computer Society, 2005. p. 92-97.

BECK, A. C. S. ; CARRO, Luigi . Low Power Java Processor for Embedded
Applications. In: Glesner,M.; Reis, R.; Indrusiak, L.; Eveking, H... (Org.). VLSI-SOC:
From Systems to Chips. 1 ed. Boston: Springer, 2006, v. 1, p. 213-228.

142

BECK FILHO, A. C. S.; RUTZIG, M. B.; CARRO, L. Cache Performance Impacts for
Stack Machines in Embedded Systems. In: SYMPOSIUM ON INTEGRATED
CIRCUITS AND SYSTEMS DESIGN, SBCCI, 19., 2006, Ouro Preto. Proceedings…
New York: ACM Press, 2006. p. 155-160.

BECK FILHO, A. C. S.; GOMES, V. F.; CARRO, L. Automatic Dataflow Execution
with Reconfiguration and Dynamic Instruction Merging. In: IFIP WG 10.5
INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION OF
SYSTEM-ON-CHIP, VLSI-SOC, 14., 2006, Nice. Proceedings… Nice: University of
Grenoble, 2006, p. 30-35.

BECK, A. C. S.; GOMES, V. F.; CARRO, L. Dynamic Instruction Merging and a
Reconfigurable Array: Dataflow Execution with Software Compatibility. In:
INTERNATIONAL WORKSHOP ON APPLIED RECONFIGURABLE
COMPUTING, ARC, 2006, Delft. Proceedings… Berlin/Heidelberg: Springer, 2006, p.
449-454.

BECK, A. C. S.; RUTZIG, M. B.; CARRO, L. Advantages of Java Processors in Cache
Performance and Power for Embedded Applications. INTERNATIONAL WORKSHOP
ON SYSTEMS, ARCHITECTURES, MODELING, AND SIMULATION, SAMOS,
2006, Samos. Proceedings…, Berlin/Heidelberg: Springer, v. 4017, 2006, p. 321-330.

BECK FILHO, A. C. S.; CARRO, L. Transparent Acceleration of Data Dependent
Instructions for General Purpose Processors. In: IFIP WG 10.5 INTERNATIONAL
CONFERENCE ON VERY LARGE SCALE INTEGRATION OF SYSTEM-ON-
CHIP, VLSI-SOC, 15., 2007, Atlanta. Proceedings… Atlanta: Georgia Institute of
Technology, 2007, p. 66-71.

BECK, A. C. S.; RUTZIG, M. B.; GAYDADJIEV, G.; CARRO, Luigi. Transparent
Reconfigurable Acceleration for Heterogeneous Embedded Applications. In: DESIGN,
AUTOMATION AND TEST IN EUROPE, DATE, 2008, Munique. Proceedings…
Washington: IEEE Computer Society, 2008. p. 1208-1213.

BECK, A. C. S.; RUTZIG, M. B.; GAYDADJIEV, G.; CARRO, Luigi. Run-time
Adaptable Architectures for Heterogeneous Behavior Embedded Systems. In:
INTERNATIONAL WORKSHOP ON APPLIED RECONFIGURABLE
COMPUTING, ARC, 2008, Londres. Proceedings… Berlin/Heidelberg: Springer,
2008, p. 111-124.

FERREIRA, R., MARCONE, L, RUTZIG, M., BECK, A.C. S., CARRO, L. Reducing
Interconnection Cost In Coarse-Grained Dynamic Computing Through Multistage
Network. In: INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE
LOGIC AND APPLICATIONS, FPL, 2008, Heidelberg. To be published.

GOMES, V. F.; BECK, A. C. S.; CARRO, L. A VHDL Implementation of a Low
Power Pipelined Java Processor for Embedded Applications In: WORKSHOP
IBERCHIP, 10., 2004, Cartagena de Indias. Proceedings… Cartagena de Indias:
Universidad de los Andes, 2004. p. 102.

143

GOMES, V. F.; BECK, A. C. S.; CARRO L. Trading Time and Space on Low Power
Embedded Architectures with Dynamic Instruction Merging. Journal of Low Power
Electronics, Estados Unidos, v. 1, n. 3, 2005, p. 249-258.

GOMES, V. F.; BECK, A. C. S.; CARRO, L. Advantages of Java Machines in the
Dynamic ILP Exploitation for Low-Power Embedded Systems. In: IFIP WG 10.5
INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION OF
SYSTEM-ON-CHIP, VLSI-SOC, 13., 2005, Perth. Proceedings… Perth: Edith Cowan
University, 2005, p. 1 – 6.

MATTOS, Julio C. B.; BECK, A. C. S.; CARRO, L. Object-Oriented Reconfiguration.
In: IEEE/IFIP INTERNATIONAL WORKSHOP ON RAPID SYSTEM
PROTOTYPING, RSP, 18., 2007, Porto Alegre. Proceedings... Washington: IEEE
Computer Society, 2007, p. 69-72.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Transparent Dataflow Execution for
Embedded Applications. In: IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM
ON VLSI, ISVLSI, 2007, Porto Alegre. Proceedings… Washington: IEEE Computer
Society, 2007, p. 47-54.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Balancing Reconfigurable Data Path
Resources According to Application Requirements. In INTERNATIONAL
PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM - WORKSHOP
RAW, IPDPS, 2008. Proceedings… Washington: IEEE Computer Society, 2008, p. 1-
8.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Measuring the Efficiency of Cache
Memory on Java Processors for Embedded Systems. Journal of Integrated Circuits
and Systems, São Paulo, v. 2, n. 1, p. 7-13, Mar. 2007.

144

145

REFERENCES

ALTERA Quartus-II Homepage. Available at:
<http://www.altera.com/products/software/quartus-ii/subscription-edition/qts-se-
index.html>. Visited on: Aug. 4th, 2008.

ALTMAN, E. R.; KAELI, D.; SHEFFER, Y. Welcome to the Opportunities of Binary
Translation. Computer, Los Alamitos, v.33, n.3, p. 40-45, Mar. 2000.

ALTMAN, K. E. et al. Advances and Future Challenges in Binary Translation and
Optimization. Proceedings of the IEEE, Los Alamitos, CA, v.89, n.11, p. 1710-1722,
Nov. 2001.

ANANIAN, C.S. Reconfigurable Cryptography: A Hardware Compiler for
Cryptographic Applications. [S.1.]: Massachusetts Institute of Technology (MIT), CS
Department, 1997. Technical Report.

ATHANAS, P. M.; SILVERMAN, H. F. Processor reconfiguration through instruction-
set metamorphosis. Computer, Los Alamitos, CA, v.36, n.3, p. 11-18, Mar. 1993.

AUSTIN, T. et al. Mobile Supercomputers. Computer, Los Alamitos, v.37, n.5, p. 81-
83, May 2004.

BALA, E. D. V.; DUESTERWALD, E.; BANERJIA, S. Dynamo: a transparent
dynamic optimization system. In: CONFERENCE ON PROGRAMMING
LANGUAGE DESIGN AND IMPLEMENTATION, 2000, Vancouver. Proceedings…
New York: ACM Press, 2000. p. 1-12.

BARAT, F.; LAUWEREINS, R. Reconfigurable Instruction Set Processors: A Survey.
In: INTERNATIONAL WORKSHOP ON RAPID SYSTEM PROTOTYPING, RSP,
11., 2000, Paris. Proceedings… Washington: IEEE Computer Society, 2000. p. 168-
173.

BECK FILHO, A. C. S.; MATTOS, J. C.; WAGNER, F. R.; CARRO, L. CACO-PS: A
General Purpose Cycle-Accurate Configurable Power Simulator. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 16., 2003, São Paulo.
Proceedings… Washington: IEEE Computer Society, 2003. p. 349-354.

BECK FILHO, A. C. S.; CARRO, L. Low Power Java Processor for Embedded
Applications. In: IFIP WG 10.5 INTERNATIONAL CONFERENCE ON VERY
LARGE SCALE INTEGRATION OF SYSTEM-ON-CHIP, VLSI-SOC, 12., 2003,
Darmstadt. Proceedings… Darmstadt: Technische Universitat Darmstadt, 2003. p. 239-
244.

146

BECK FILHO, A. C. S.; CARRO, L. A VLIW Low Power Java Processor for
Embedded Applications. In: SYMPOSIUM ON INTEGRATED CIRCUITS AND
SYSTEMS DESIGN, SBCCI, 17., 2004, Porto de Galinhas. Proceedings… New York:
ACM Press, 2004. p. 157-162.

BECK FILHO, A. C. S.; CARRO, L. Um Processador Java VLIW com Baixo Consumo
de Potência para Sistemas Embarcados. In: WORKSHOP IBERCHIP, 10., 2004,
Cartagena de Indias. Proceedings… Cartagena de Indias: Universidad de los Andes,
2004. p. 114.

BECK FILHO, A. C. S. Uso da Técnica VLIW para Aumento de Performance e
Redução do Consumo de Potência em Sistemas Embarcados Baseados em Java.
2004. 130 f. Dissertação (Mestrado em Ciência da Computação) – Instituto de
Informática, UFRGS, Porto Alegre.

BECK FILHO, A. C. S.; CARRO, L. Dynamic Reconfiguration with Binary
Translation: Breaking the ILP barrier with Software Compatibility. In: DESIGN
AUTOMATION CONFERENCE, DAC, 42., 2005, Anaheim. Proceedings… New
York: ACM Press, 2005, p. 732-737.

BECK FILHO, A. C. S.; CARRO, L. Application of Binary Translation to Java
Reconfigurable Architectures. In: IEEE INTERNATIONAL PARALLEL AND
DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 19., 2005,
RECONFIGURABLE ARCHITECTURES WORKSHOP, RAW, 3, 2005, Denver.
Proceedings… Los Alamitos: IEEE Computer Society, 2005. p. 156.2.

BECK FILHO, A. C. S.; GOMES, V. F.; CARRO, L. Exploiting Java Through Binary
Translation for Low Power Embedded Reconfigurable Systems. In: SYMPOSIUM ON
INTEGRATED CIRCUITS AND SYSTEMS DESIGN, SBCCI, 18., 2005,
Florianópolis. Proceedings… Washington: IEEE Computer Society, 2005. p. 92-97.

BECK FILHO, A. C. S.; GOMES, V. F.; CARRO, L. Automatic Dataflow Execution
with Reconfiguration and Dynamic Instruction Merging. In: IFIP WG 10.5
INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION OF
SYSTEM-ON-CHIP, VLSI-SOC, 14., 2006, Nice. Proceedings… Grenoble: Tima,
2006. p. 30-35.

BECK, A. C. S.; GOMES, V. F.; CARRO, L. Dynamic Instruction Merging and a
Reconfigurable Array: Dataflow Execution with Software Compatibility. In:
INTERNATIONAL WORKSHOP ON APPLIED RECONFIGURABLE
COMPUTING, ARC, 2006, Delft. Revised Selected Papers. Berlin: Springer, 2006. p.
449-454.

BECK FILHO, A. C. S.; CARRO, L. Transparent Acceleration of Data Dependent
Instructions for General Purpose Processors. In: IFIP WG 10.5 INTERNATIONAL
CONFERENCE ON VERY LARGE SCALE INTEGRATION OF SYSTEM-ON-
CHIP, VLSI-SOC, 15., 2007, Atlanta. Proceedings… New York: IEEE, 2007. p. 66-71.

BECK, A. C. S.; RUTZIG, M. B.; GAYDADJIEV, G.; CARRO, L. Transparent
Reconfigurable Acceleration for Heterogeneous Embedded Applications. In: DESIGN,

147

AUTOMATION AND TEST IN EUROPE, DATE, 2008, Munique. Proceedings…
New York: ACM SIGDA, 2008. p. 1208-1213.

BECK, A. C. S.; RUTZIG, M. B.; GAYDADJIEV, G.; CARRO, L. Run-time
Adaptable Architectures for Heterogeneous Behavior Embedded Systems. In:
INTERNATIONAL WORKSHOP ON APPLIED RECONFIGURABLE
COMPUTING, ARC, 2008, London. Revised Selected Papers. Berlin/Heidelberg:
Springer, 2008. p. 111-124.

BURGER, D.; AUSTIN, T. M. The SimpleScalar Tool Set, Version 2.0. ACM
SIGARCH Computer Architecture News, New York, v.26, n.3, p. 13-25, June 1997.

BURNS, J.; GAUDIOT, J. L. SMT Layout Overhead and Scalability. IEEE
Transactions on Parallel and Distributed Systems, Piscataway, v.13, n.2, p.142-155,
Feb. 2002.

CARDOSO, J. M. P.; WEINHARDT, M. XPP-VC: A C Compiler with Temporal
Partitioning for the PACT-XPP Architecture. In: INTERNATIONAL CONFERENCE
ON FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS:
RECONFIGURABLE COMPUTING IS GOING MAINSTREAM, 12., 2002,
Montpellier. Proceedings… Londres: Springer-Verlag, 2002. p.864-874.

CLARK, N.; ZHONG, H.; MAHLKE, S. Processor Acceleration Through Automated
Instruction Set Customization. In: INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE, MICRO, 36., 2003, San Diego. Proceedings…
Washington: IEEE Computer Society, 2003. p. 129-140.

COMPTON, K.; HAUCK, S. Reconfigurable Computing: A Survey of Systems and
Software. ACM Computing Surveys, New York, v.34, n.2, p. 171-210, June 2002.

CONTE, G. The long and winding road to high-performance image processing with
MMX/SSE. In: IEEE INTERNATIONAL WORKSHOP ON COMPUTER
ARCHITECTURES FOR MACHINE PERCEPTION, CAMP, 5., 2000, Padova.
Proceedings... Washington: IEEE Computer Society, 2000. p. 1368–1372.

COSTA, A. T.; FRANÇA, F. M. G.; CHAVES FILHO, E. M. The Dynamic Trace
Memoization Reuse Technique. In: INTERNATIONAL CONFERENCE ON
PARALLEL ARCHITECTURES AND COMPILATION TECHNIQUES, PACT, 9.,
2000, Philadelphia. Proceedings… Washington: IEEE Computer Society, 2000. p. 92-
99.

CRONQUIST, D. C. et al. Specifying and Compiling Applications for RaPiD. In: IEEE
SYMPOSIUM ON FPGAS FOR CUSTOM COMPUTING MACHINES, FCCM, 1998,
Napa Valley. Proceedings… Washington: IEEE Computer Society, 1998. p. 116-125.

DEHNERT, J. C. et al. The Transmeta Code Morphing Software: Using Speculation,
Recovery, and Adaptive Retranslation to Address Real-Life Challenges. In:
INTERNATIONAL SYMPOSIUM ON CODE GENERATION AND
OPTIMIZATION: FEEDBACK-DIRECTED AND RUNTIME OPTIMIZATION,
2003, San Francisco. Proceedings… Washington: IEEE Computer Society, 2003. p.
15-24.

148

EBCIOGLU, E.; ALTMAN, E. R. DAISY: Dynamic compilation for 100%
architectural compatibility. In: INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE , ISCA, 24., 1997, Denver. Proceedings… New York: ACM Press,
1997. p. 26-37.

FERREIRA, R.; MARCONE, L.; RUTZIG, M.; BECK, A. C. S.; CARRO, L. Reducing
Interconnection Cost In Coarse-Grained Dynamic Computing Through Multistage
Network. In: INTERNATIONAL CONFERENCE ON FIELD PROGRAMMABLE
LOGIC AND APPLICATIONS, FPL, 2008, Heidelberg. To be published.

FLYNN, M. J.; HUNG, P. Microprocessor Design Issues: Thoughts on the Road Ahead.
IEEE Micro, Los Alamitos, v.25, n.3, p. 16-31, May 2005.

GAJSKI, D. et al. SpecSyn: An Environment Supporting the Specify-Explore-Refine
Paradigm for Hardware/Software System Design. IEEE Transactions on Very Large
Scale Integration Systems, New York, v.6, n.1, p. 84-100, 1998.

GOLDSTEIN, S. et al. PipeRench: A Coprocessor for Streaming Multimedia
Acceleration. In: INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE, ISCA, 26., Atlanta, 1999. Proceedings… Washington: IEEE
Computer Society, 1999. p. 28-39.

GOMES, V. F.; BECK, A. C. S.; CARRO, L. A VHDL Implementation of a Low
Power Pipelined Java Processor for Embedded Applications In: WORKSHOP
IBERCHIP, 10., 2004, Cartagena de Indias. Proceedings… Cartagena de Indias:
Universidad de los Andes, 2004. p. 102.

GOMES, V. F.; BECK, A. C. S.; CARRO L. Trading Time and Space on Low Power
Embedded Architectures with Dynamic Instruction Merging. Journal of Low Power
Electronics, USA, v. 1, n. 3, p. 249-258, 2005.

GOMES, V. F.; BECK, A. C. S.; CARRO, L. Advantages of Java Machines in the
Dynamic ILP Exploitation for Low-Power Embedded Systems. In: IFIP WG 10.5
INTERNATIONAL CONFERENCE ON VERY LARGE SCALE INTEGRATION OF
SYSTEM-ON-CHIP, VLSI-SOC, 13., 2005, Perth. Proceedings… Perth: IFIP, 2005.
p. 1 – 6.

GONZÁLEZ, A.; TUBELLA, J.; MOLINA, C. Trace-Level Reuse. In:
INTERNATIONAL CONFERENCE ON PARALLEL PROCESSING, ICPP, 28.,
1999, Wakamatsu. Proceedings… Washington: IEEE Computer Society, 1999. p. 30-
37.

GSCHWIND, K. E. M.; ALTMAN, E.; SATHAYE, S. Binary Translation and
Architecture Convergence Issues for IBM System/390. In: INTERNATIONAL
CONFERENCE ON SUPERCOMPUTING, ICS, 2000, Santa Fe. Proceedings…
Washington: IEEE Computer Society, 2000. p. 336–347.

GUPTA, R. K.; MICHELI G. D. Hardware-Software Co-Synthesis for Digital Systems.
IEEE Design and Test of Computers, Los Alamitos, v.10, n.3, p. 29-41, July 1993.

149

GUTHAUS, M. R. et al. MiBench: A Free, Commercially Representative Embedded
Benchmark Suite. In: WORKSHOP ON WORKLOAD CHARACTERIZATION,
WWC, 4., 2001, Texas. Proceedings… Washington: IEEE Computer Society, 2001. p.
3-14

HARTENSTEIN, R. W. Coarse Grain Reconfigurable Architecture. In: ASIA AND
SOUTH PACIFIC DESIGN AUTOMATION CONFERENCE, ASP-DAC, 6., 2001,
Yokohama. Proceedings… New York: ACM Press, 2001. p. 564-570.

HAUCK, S. The Chimaera Reconfigurable Functional Unit. In: IEEE SYMPOSIUM
ON FPGA-BASED CUSTOM COMPUTING MACHINES, FCCM, 5., 1997, Napa
Valley. Proceedings… Washington: IEEE Computer Society, 1997. p. 87-96.

HAUSE, J. R.; WAWRZYNEK, J. Garp: A MIPS Processor with a Reconfigurable
Coprocessor. In: IEEE SYMPOSIUM ON FPGA-BASED CUSTOM COMPUTING
MACHINES, FCCM, 5., 1997, Napa Valley. Proceedings… Washington: IEEE
Computer Society, 1997. p. 12-21.

HENKEL, J. A Low Power Hardware/Software Partitioning Approach for Core-Based
Embedded Systems. In: DESIGN AUTOMATION CONFERENCE, DAC, 36., 1999,
New Orleans. Proceedings… New York: ACM Press, 1999. p. 122-127.

HENKEL, J.; ERNST, R. A Hardware/Software Partitioner using a Dynamically
Determined Granularity. In: DESIGN AUTOMATION CONFERENCE, DAC, 34.,
1997, Anaheim. Proceedings… New York: ACM Press, 1997. p. 691-696.

HENNESSY, J. L.; PATTERSON, D. A. Computer Architecture: A Quantitative
Approach. 3rd ed. Amsterdam: Morgan Kaufmann, 2003.

HENNING, J. L. SPEC CPU2000: Measuring CPU Performance in the New
Millennium. Computer, Los Alamitos, v.33, n.7, p. 28-35, July 2000.

HEYSTERS, P.; SMIT, G.; MOLENKAMP, E. A Flexible and Energy-Efficient
Coarse-Grained Reconfigurable Architecture for Mobile Systems. Journal of
Supercomputing, Hingham, v.26, n.3, p. 283-308, Nov. 2003.

HOMPSON, S. E. et al. In search of "forever," continued transistor scaling one new
material at a time. IEEE Transactions on Semiconductor Manufacturing, New York,
v. 18, n.1, p. 26-36, Feb. 2005.

HON, A. Reconfigurable Accelerators. [S.l.]: Massachusetts Institute of Technology
(MIT), Artificial Intelligence Laboratory, 1996. (Technical Report 1586).

HUANG, J.; LILJA, D. Exploiting Basic Block Value Locality with Block Reuse. In:
INTERNATIONAL SYMPOSIUM ON HIGH PERFORMANCE COMPUTER
ARCHITECTURE, HPCA, 5., 1999, Orlando. Proceedings… Washington: IEEE
Computer Society, 1999. p. 106-114.

INTEL Pentium 4 Homepage. Available at: <http://www.mentor.com/sysnthesis>.
Visited on: June 5th, 2008.

150

ITO, S. A.; CARRO, L.; JACOBI, R. P. Making Java Work for Microcontroller
Applications. IEEE Design & Test of Computers, Los Alamitos, v. 18, n. 5, p. 100-
110, Sept. 2001.

SEMICONDUCTOR Industry Association Home Page. Available at:
<http://www.itrs.net>. Visited on: July 31th, 2008.

JAIN, M. K.; BALAKRISHNAN, M.; KUMAR, A. ASIP Design Methodologies :
Survey and Issues. In: INTERNATIONAL CONFERENCE ON VLSI DESIGN, 4.,
2001, Bangalore. Proceedings… Washington: IEEE Computer Society, 2001. p. 76-81.

KESSLER, R. E. The Alpha 21264 microprocessor. IEEE Micro, Los Alamitos, v. 19,
n. 2, p. 24-36, Mar. 1999.

KIM, N. S. et al. Leakage Current: Moore's Law Meets Static Power, Computer, Los
Alamitos, v. 36, p. 68-75, Dec. 2003.

KLAIBER A. The technology behind Crusoe processors. [S.l.]: Transmeta
Corporation, 2003. Technical Report.

KOOPMAN JUNIOR, P. K. Stack Computers, the new wave. Chichester: Ellis
Horwood, 1989.

KOUFATY, D.; MARR, D. T. Hyperthreading technology in the netburst
microarchitecture. IEEE Micro, Los Alamitos, v. 23, n. 2, p. 56-65, Mar. 2003.

LAWTON, G. Moving Java into Mobile Phones. Computer, Los Alamitos, v.35, n.6, p.
17-20, 2002.

LEE, M. Design and Implementation of the MorphoSys Reconfigurable
ComputingProcessor. Journal of VLSI Signal Processing Systems, Hingham, v. 24, n.
2-3, p. 147-164, Mar. 2000.

LEONARDO Spectrum Homepage. Available at: <http://www.mentor.com>. Visited
on: July 25th, 2008.

LIPASTI, M. H.; WILKERSON, C. B.; SHEN, P. S. Value locality and load value
prediction. In: INTERNATIONAL CONFERENCE ON ARCHITECTURAL
SUPPORT FOR PROGRAMMING LANGUAGES AND OPERATING SYSTEMS,
ASPLOS, 7., 1996, Cambridge. Proceedings… New York: ACM Press, 1996. p. 138-
147.

LODI, A. et al. A VLIW Processor With Reconfigurable Instruction Set for Embedded
Applications. IEEE Journal of Solid-State Circuits, Los Alamitos, v. 38, n. 11, p.
1876–1886, Nov. 2003.

LYSECKY, R.; VAHID, F. A Configurable Logic Architecture for Dynamic
Hardware/Software Partitioning. In: DESIGN, AUTOMATION AND TEST IN
EUROPE, DATE, 2004, Paris. Proceedings… Washington: IEEE Computer Society,
2004. p. 10480-10485.

151

LYSECKY, R.; VAHID, F. A Study of the Speedups and Competitiveness of FPGA
Soft Processor Cores using Dynamic Hardware/Software Partitioning. In: DESIGN,
AUTOMATION AND TEST IN EUROPE, DATE, 2005, Munique. Proceedings…
Washington: IEEE Computer Society, 2005. p. 18-23.

MATTOS, J. C. B.; BECK, A. C. S.; CARRO, Luigi. Object-Oriented Reconfiguration.
In: IEEE/IFIP INTERNATIONAL WORKSHOP ON RAPID SYSTEM
PROTOTYPING, RSP, 18., 2007, Porto Alegre. Proceedings... Los Alamitos: IEEE
Computer Society, 2007. p. 69-72.

MEI, B. et al. ADRES: An architecture with tightly coupled VLIW processor and
coarse-grained reconfigurable matrix. In: FIELD-PROGRAMMABLE LOGIC AND
APPLICATIONS, FPL, 2003, Lisbon. Proceedings... Berlin: Springer, 2003. p. 61-70.

MINIMIPS VHDL. Available at: <http://www.opencores.org>. Visited on: July 31st,
2008.

MIYAMORI, T.; OLUKOTUN, K. REMARC: Reconfigurable Multimedia Array
Coprocessor. In: SYMPOSIUM ON FIELD PROGRAMMABLE GATE ARRAYS, 6.,
1998, Monterey. Proceedings… New York: ACM Press, 1998. p. 261-265.

MULCHANDANI, D. Java for Embedded Systems. IEEE Internet Computing, Los
Alamitos, v. 31, n. 10, p. 30-39, 1998.

OR-BACH, Z. (When) will FPGAs kill ASICs? In: DESIGN AUTOMATION
CONFERENCE, DAC, 38., 2001, Las Vegas. Proceedings… New York: ACM Press,
2001. p. 321-322.

OLUKOTUN, K. et al. The Case for a Single-Chip Multiprocessor. In:
INTERNATIONAL SYMPOSIUM ARCHITECTURAL SUPPORT FOR
PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS, 7., 1996,
Cambridge. Proceedings… New York: ACM Press, 1996. p. 2-11.

PATEL, S. J.; LUMETTA, S. S. rePLay: A Hardware Framework for Dynamic
Optimization. IEEE Transactions Computers, Washington, v. 50, n. 6, p. 590-608,
June 2001.

PILLA, M.; NAVAUX, P.; COSTA, A.; FRANCA, F.; CHILDERS, B.; SOFFA, M.
The limits of speculative trace reuse on deeply pipelined processors. In: SYMPOSIUM
ON COMPUTER ARCHITECTURE AND HIGH PERFORMANCE COMPUTING,
SBAC-PAD, 15., 2003, São Paulo. Proceedings… Los Alamitos: IEEE Computer
Society, 2003. p. 36-43.

PILLA, M. L.; CHILDERS, B. R.; COSTA, A. T. DA; FRANCA, F. M. G.; NAVAUX,
P. O. A. A Speculative Trace Reuse Architecture with Reduced Hardware
Requirements. In: INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE AND HIGH PERFORMANCE COMPUTING, SBAC-PAD, 18.,
2006, Ouro Preto. Proceedings… Los Alamitos: IEEE Computer Society, 2006. p. 47-
54.

152

PUTTASWAMY, K. et al. System Level Power-Performance Trade-Offs in Embedded
Systems Using Voltage and Frequency Scaling of Off-Chip Buses and Memory. In:
INTERNATIONAL SYMPOSIUM ON SYSTEMS SYNTHESIS, ISSS, 15., 2002,
Kyoto. Proceedings… New York: ACM Press, 2002. p. 225-230.

RAZDAN, R.; SMITH, M. D. A High-Performance Microarchitecture With Hardware-
Programmable Functional Units. In: INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE, 27., 1994, San Jose. Proceedings… New York: ACM
Press, 1994. p. 172-180.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Transparent Dataflow Execution for
Embedded Applications. In: IEEE COMPUTER SOCIETY ANNUAL SYMPOSIUM
ON VLSI, ISVLSI, 2007, Porto Alegre. Proceedings… Los Alamitos: IEEE Computer
Society, 2007. p. 47-54.

RUTZIG, M. B.; BECK, A. C. S.; CARRO, L. Balancing Reconfigurable Data Path
Resources According to Application Requirements. In: IEEE INTERNATIONAL
PARALLEL AND DISTRIBUTED PROCESSING SYMPOSIUM, IPDPS, 22.;
RECONFIGURABLE ARCHITECTURES WORKSHOP, RAW, 6., 2008, Miami.
Proceedings… Los Alamitos: IEEE Computer Society, 2005. p. 1-8.

SANKARALINGAM, K. et al. Exploiting ILP, TLP and DLP with the Polymorphous
TRIPS Architecture. In: INTERNATIONAL SYMPOSIUM ON COMPUTER
ARCHITECTURE, ISCA, 30., 2003, San Diego. Proceedings… New York: ACM
Press, 2003. p. 422-433.

SHANKLAND S. Transmeta shoots for 700 MHz with new chip. 2000. Available at:
<http://cnet.com/news/0-1003-200-1 526 340.html?tag=st.ne.ni.rnbot.rn.ni>. Visited on:
July 31th, 2008.

SIMA, D.; FALK, H. Decisive aspects in the evolution of microprocessors.
Proceedings of the IEEE, Los Alamitos, v. 92, n. 12, p. 1896-1926, Dec. 2004.

SODANI, A.; SOHI, G. S. An Empirical Analysis of Instruction Repetition. In:
INTERNATIONAL CONFERENCE ON ARCHITECTURAL SUPPORT FOR
PROGRAMMING LANGUAGES AND OPERATING SYSTEMS, ASPLOS, 8., 1998,
San Jose. Proceedings… New York: ACM Press, 1998. p. 35-45.

SODANI, A., SOHI, G. S. Understanding the Differences Between Value Prediction
and Instruction Reuse. In: ACM/IEEE INTERNATIONAL SYMPOSIUM ON
MICROARCHITECTURE, MICRO, 31., 1998, Dallas. Proceedings… Washington:
IEEE Computer Society, 1998. p. 205-215.

SPEC Jvm98 Benchmarks. Available at: < http://www.spec.org/jvm98/>. Visited on:
July 31th, 2008.

STITT, G.; LYSECKY, R.; VAHID, F. Dynamic Hardware/Software Partitioning: A
First Approach. In: DESIGN AUTOMATION CONFERENCE, DAC, 40., 2003,
Anaheim. Proceedings… New York: ACM Press, 2003. p. 250-255.

153

STITT, G.; VAHID, F. Hardware/Software Partitioning of Software Binaries. In:
IEEE/ACM INTERNATIONAL CONFERENCE ON COMPUTER AIDED DESIGN,
ICCAD, 2002, San Jose. Proceedings… New York: ACM Press, 2002. p. 164-170.

STITT, G.; VAHID, F. The Energy Advantages of Microprocessor Platforms with On-
Chip Configurable Logic. IEEE Design and Test of Computers, Los Alamitos, v. 19,
n. 3, p. 36-43, July 2002.

SWANSON, S. et al. WaveScalar. In: ACM/IEEE INTERNATIONAL SYMPOSIUM
ON MICROARCHITECTURE, MICRO, 36., 2003, San Diego. Proceedings…
Washington: IEEE Computer Society, 2003. p. 291-302.

SYNOPSYS Power Compiler Homepage. Available at:
<http://www.synopsys.com/products/power/power_ds.html>. Visited on: July 31th,
2008.

TATAS, K.; SIOZIOS, K.; SOUDRIS D. A Survey of Existing Fine-Grain
Reconfigurable Architectures and CAD tools. Basic Definitions, Critical Design
Issues and Existing Coarse-grain Reconfigurable Systems. Berlin: Springer, 2007.
p. 3-87.

THEODORIDIS, G.; SOUDRIS, D.; VASSILIADIS, S. A Survey of Coarse-Grain
Reconfigurable Architectures and Cad Tools. Basic Definitions, Critical Design Issues
and Existing Coarse-grain Reconfigurable Systems. In: VASSILIADIS, S.; SOUDRIS,
D. (Ed.). Fine and Coarse Grain Reconfigurable Computing. Berlin: Springer, 2007.
p. 89-149.

TIWARI, V.; MALIK, S.; WOLFE, A. Power Analysis of Embedded Software: a First
Step Towards Software Power Minimization. In: INTERNATIONAL CONFERENCE
ON COMPUTER AIDED DESIGN, 1994, San Jose. Proceedings… Washington:
IEEE Computer Society, 1994. p. 384-390.

VAHID, F. et al. Highly configurable platforms for embedded computing systems.
Microelectronics journal, Amsterdam, v. 34, n. 11, p. 1025-1029, 2003.

VASSILIADIS, N. et al. A RISC Architecture Extended by an Efficient Tightly
Coupled Reconfigurable Unit. International Journal of Electronics, London, v. 93, n.
6, p. 421-438, 2006.

VASSILIADIS, S. et al. The Molen Polymorphic Processor. IEEE Transactions on
Computers, Washington, v. 53, n. 11, p. 1363-1375, Nov. 2004.

VASSILIADIS, S. et al. The Molen Programming Paradigm. In: INTERNATIONAL
WORKSHOP ON SYSTEMS, ARCHITECTURES, MODELING, AND
SIMULATION, SAMOS, 3., 2004, Samos. Proceedings… Berlin: Springer, 2004. p. 1-
10. (Lecture Notes in Computer Science, v. 3133).

VASSILIADIS, S.; WONG, S.; COTOFANA. S. The MOLEN ρµ-coded processor. In:
FIELD-PROGRAMMABLE LOGIC AND APPLICATIONS, FPL, 11., 2001, Belfast.
Proceedings... Berlin: Springer, 2001. p. 275-285.

154

VENKATARAMANI G. et al. A Compiler Framework for Mapping Applications to a
Coarse-grained Reconfigurable Computer Architecture. In: INTERNATIONAL
CONFERENCE ON COMPILERS, ARCHITECTURE AND SYNTHESIS FOR
EMBEDDED SYSTEMS, CASES, 2001, Atlanta. Proceedings… New York: ACM
Press, 2001. p. 116-125.

WALL D. W. Limits of instruction-level parallelism. In: INTERNATIONAL
CONFERENCE ON ARCHITECTURAL SUPPORT FOR PROGRAMMING
LANGUAGES AND OPERATING SYSTEMS, ASPLOS, 4., 1991, Santa Clara.
Proceedings… New York: ACM Press, 1991. p. 176-188.

WAZLOWSKI M., M. et al. PRISM-II compiler and architecture, In: IEEE
SYMPOSIUM ON FPGA'S FOR CUSTOM COMPUTING MACHINES, FCCM, 3.,
1993, Napa Valley. Proceedings… Washington: IEEE Computer Society, 1993. p. 9-
16.

WILCOX, K.; MANNE, S. Alpha processors: A history of power issues and a look to
the future. In: COOLCHIPS TUTORIAL AN INDUSTRIAL PERSPECTIVE ON
LOW POWER PROCESSOR DESIGN, 1999, Monterey. Proceedings… Washington:
IEEE Computer Society, 1999.

WIRTHLIN, M. J.; HUTCHINGS, B. L. A Dynamic Instruction Set Computer. In:
IEEE SYMPOSIUM ON FPGA'S FOR CUSTOM COMPUTING MACHINES, FCCM,
3., 1995, Napa Valley. Proceedings… Washington: IEEE Computer Society, 1995. p.
99-107.

WIRTHLIN, M. J.; HUTCHINGS, B. L.; GILSON, K. L. The Nano Processor: A Low
Resource Reconfigurable Processor. In IEEE WORKSHOP ON FPGAS FOR
CUSTOM COMPUTING MACHINES, 1994, Napa Valley. Proceedings…
Washington: IEEE Computer Society, 1994. p. 23-30.

WITTIG R. D.; CHOW P. OneChip: an FPGA processor with reconfigurable logic. In
IEEE WORKSHOP ON FPGAS FOR CUSTOM COMPUTING MACHINES, 1996,
Napa Valley. Proceedings… Washington: IEEE Computer Society, 1996. p. 126-135.

XILINX, The Programmable Logic Data Book. Available at:
<http://www.xilinx.com/partinfo/databook.htm>. Last access: June 10th, 2008.

XILINX Xpower. Available at:
<http://www.xilinx.com/products/design_tools/logic_design/verification/xpower.htm>.
Last access: 10 jun. 2008.

YEAGER, K. C. The MIPS R10000 Superscalar Microprocessor. IEEE Micro, Los
Alamitos, v. 16, n. 2, p. 28-40, April 1996.

YU, P.; MITRA, T. Characterizing Embedded Applications for Instruction-Set
Extensible Processors. In: DESIGN AUTOMATION CONFERENCE, DAC, 41.,
2004, San Diego. Proceedings… New York: ACM Press, 2004. p. 723-728.

155

ZHANG, H. et al. A 1-V Heterogeneous Reconfigurable DSP IC for Wireless Baseband
Digital Signal Processing. IEEE Journal of Solid-State Circuits, Los Alamitos, v. 35,
n. 11, p. 1697-1704, Nov. 2000.

156

157

APPENDIX A CONFIGURATION FILE FOR
SIMPLESCALAR

The configuration file employed for simulations using the Simplescalar toolset,
regarding section 6.2.1, is shown below. This configuration was made so the simulator
could behave as close as possible to the MIPS R10000 processor

GENERAL

random number generator seed (0 for timer seed)
-seed 1

initialize and terminate immediately
-q false

restore EIO trace execution from <fname>
-chkpt <null>

redirect simulator output to file (non-interactive only)
-redir:sim <null>

redirect simulated program output to file
-redir:prog <null>

simulator scheduling priority
-nice 0

maximum number of inst's to execute
-max:inst 0

number of insts skipped before timing starts
-fastfwd 0

generate pipetrace, i.e., <fname|stdout|stderr> <range>
-ptrace <null>

profile stat(s) against text addr's (mult uses ok)
-pcstat <null>

operate in backward-compatible bugs mode (for testing only)
-bugcompat false

BRANCH PREDICTOR

extra branch mis-prediction latency
-fetch:mplat 3

branch predictor type {nottaken|taken|perfect|bimod|2lev|comb}
-bpred bimod

158

bimodal predictor config (<table size>)
-bpred:bimod 512

2-level predictor config (<l1size> <l2size> <hist_size> <xor>)
-bpred:2lev 1 1024 8 0

combining predictor config (<meta_table_size>)
-bpred:comb 1024

return address stack size (0 for no return stack)
-bpred:ras 8

BTB config (<num_sets> <associativity>)
-bpred:btb 512 1

CARACTERISTICAS GERAIS - SUPERESCALAR

speed of front-end of machine relative to execution core
-fetch:speed 1

instruction fetch queue size (in insts)
-fetch:ifqsize 4

speculative predictors update in {ID|WB} (default non-spec)
-bpred:spec_update <null>

instruction decode B/W (insts/cycle)
-decode:width 4

instruction issue B/W (insts/cycle)
-issue:width 4

run pipeline with in-order issue
-issue:inorder false

issue instructions down wrong execution paths
-issue:wrongpath true

instruction commit B/W (insts/cycle)
-commit:width 4

register update unit (RUU) size
-ruu:size 16

load/store queue (LSQ) size
-lsq:size 16

UNIDADES FUNCIONAIS

total number of integer ALU's available
-res:ialu 2

total number of integer multiplier/dividers available
-res:imult 1

total number of memory system ports available (to CPU)
-res:memport 2

total number of floating point ALU's available
-res:fpalu 2

total number of floating point multiplier/dividers available
-res:fpmult 1

159

CACHE

############## Level 1

l1 inst cache config, i.e., {<config>|dl1|dl2|none}
-cache:il1 il1:16384:32:1:l

l1 instruction cache hit latency (in cycles)
-cache:il1lat 1

l1 data cache config, i.e., {<config>|none}
-cache:dl1 dl1:16384:32:4:l

l1 data cache hit latency (in cycles)
-cache:dl1lat 1

############## Level 2

l2 data cache config, i.e., {<config>|none}
-cache:dl2 ul2:16384:64:4:l

l2 data cache hit latency (in cycles)
-cache:dl2lat 1

l2 instruction cache config, i.e., {<config>|dl2|none}
-cache:il2 dl2

l2 instruction cache hit latency (in cycles)
-cache:il2lat 1

##############

flush caches on system calls
-cache:flush false

convert 64-bit inst addresses to 32-bit inst equivalents
-cache:icompress false

MEMORIA

memory access latency (<first_chunk> <inter_chunk>)
-mem:lat 1 1

memory access bus width (in bytes)
-mem:width 8

TLB

instruction TLB config, i.e., {<config>|none}
-tlb:itlb itlb:4096:4096:4:l

data TLB config, i.e., {<config>|none}
-tlb:dtlb dtlb:4096:4096:4:l

inst/data TLB miss latency (in cycles)
-tlb:lat

160

161

APPENDIX B FIRST VERSION OF THE LOW-LEVEL DIM
ALGORITHM FOR SIMPLESCALAR

#include <stdio.h>
#include <string.h>
#include "machine.h"
#include "regs.h"
//#include "memory.h"
#include "simple_array_hardware.h"

//#define DEBUG_ON
//#define CACHE_DEBUG
//#define DEBUG_RECONFIGURABLE_ARRAY_ON

//
//
//
//
// GENERAL DEFINITIONS
//
//
//
//

// Definicao das caracteristicas do array

#define REC_ARRAY_LINES 30

struct groups_specification {
 int start;
 int length;
} context_group[10];

// Resources
#define REC_ARRAY_RESOURCE_LD 0
#define REC_ARRAY_RESOURCE_ALU 1

void set_resources () {
 context_group[REC_ARRAY_RESOURCE_LD].start = 0;
 context_group[REC_ARRAY_RESOURCE_LD].length = 2;

 context_group[REC_ARRAY_RESOURCE_ALU].start =
context_group[REC_ARRAY_RESOURCE_LD].length;
 context_group[REC_ARRAY_RESOURCE_ALU].length = 3;

 return;
}

#define REC_ARRAY_RESOURCE_TOTAL 5
#define REC_ARRAY_RESOURCE_TOTAL_READ (REC_ARRAY_RESOURCE_TOTAL * 2)
//////////////////////////////

#define REC_ARRAY_CONTEXT 24
#define REC_ARRAY_IMMED 24
#define REC_ARRAY_CONTEXT_TOTAL 48 // REC_ARRAY_CONTEXT + IMEDIATO

//

162

// Tables

// Bitmap writes
int bitmap_writes[REC_ARRAY_LINES];

// Resources
// int resource_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL];
int resource_table_bitmap[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL];
int resource_table_function[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL];

// reads write
int read_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL_READ];
int write_table[REC_ARRAY_LINES][REC_ARRAY_CONTEXT];

// context
int context_table[REC_ARRAY_CONTEXT_TOTAL];
int context_table_start[REC_ARRAY_CONTEXT_TOTAL];
int context_table_flag[REC_ARRAY_CONTEXT_TOTAL]; // 0 - free, 1 - busy, 2 - write

#define CONTEXT_FLAG_FREE 0
#define CONTEXT_FLAG_BUSY 1
#define CONTEXT_FLAG_WRITE 2

int context_table_regpointer_r1_write;
int context_table_regpointer_r2_write;
int context_table_regpointer_w_write;
int context_table_next_free = 0;
int context_table_next_immed_free = REC_ARRAY_CONTEXT; // comeca no final da tabela
"normal"

//
// Start tables

void DTM_start_tables () {
 int i,j;

 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 context_table[j] = -1;
 context_table_start[j] = -1;
 }

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 context_table_flag[j] = CONTEXT_FLAG_FREE;
 }

 for (i=0;i<REC_ARRAY_LINES;i++) {

 bitmap_writes[i] = 0;
 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) {
 resource_table_bitmap[i][j] = 0;
 resource_table_function[i][j] = 0;
 }

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++)
 read_table[i][j] = 0;

 for (j=0;j<REC_ARRAY_CONTEXT;j++)
 write_table[i][j] = 0;

 }

 context_table_next_free = 0;
 context_table_next_immed_free = REC_ARRAY_CONTEXT;

 set_resources ();

 return;
}

//
//
//
//

163

// CACHE
//
//
//
//

#define N_REC_CACHE 16

struct array_cache {

 int read_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL_READ];
 int write_table[REC_ARRAY_LINES][REC_ARRAY_CONTEXT];
 int resource_table_function[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL];

 int context_table[REC_ARRAY_CONTEXT_TOTAL];
 int context_table_start[REC_ARRAY_CONTEXT_TOTAL];
 int context_table_flag[REC_ARRAY_CONTEXT_TOTAL]; // 0 - free, 1 - busy, 2 - write

 md_addr_t start_pc, end_pc;

 int fifo_position;

} rec_cache[N_REC_CACHE];

void start_cache_DTM () {
 int i;

 for (i=0;i<N_REC_CACHE;i++) {
 rec_cache[i].fifo_position = -1;
 rec_cache[i].start_pc = -1;
 }

 return;
}

void debug_DTM(void);

void add_configuration (int slot, int pc, int pc_final) {

 int i,j;

 // Grava a configuracao atual neste slot
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 rec_cache[slot].context_table[j] = context_table[j];
 rec_cache[slot].context_table_start[j] = context_table_start[j];
 }

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 rec_cache[slot].context_table_flag[j] = context_table_flag[j];
 }

 #ifdef DEBUG_ON
 printf("aaaaaaaa SLOT %i\n", slot);
 #endif

 for (i=0;i<REC_ARRAY_LINES;i++) {

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) {
 rec_cache[slot].resource_table_function[i][j] = resource_table_function[i][j];
 }

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++)
 rec_cache[slot].read_table[i][j] = read_table[i][j];

 for (j=0;j<REC_ARRAY_CONTEXT;j++)
 rec_cache[slot].write_table[i][j] = write_table[i][j];
 }
 ///////////////////////

 rec_cache[slot].start_pc = pc;
 rec_cache[slot].end_pc = pc_final;

 #ifdef DEBUG_ON
 debug_DTM();

164

 #endif

 return;
}

int cache_DTM (md_addr_t pc, md_addr_t pc_final, int rw) {
 int i,where_hit = -1,j;
 int k;
 static int fifo_pointer = 0;

 for (i=0;i<N_REC_CACHE;i++) {
 if (rec_cache[i].start_pc == pc) {
 where_hit = i;
 }
 }

#ifdef CACHE_DEBUG
 printf("-*-*-*-*-*-*-*-*-* CACHE CONFIGURATION -*-*-*-*-*-*-*-*-*\n");
 for (i=0;i<N_REC_CACHE;i++) {
 printf("%8x - %i\n", rec_cache[i].start_pc, rec_cache[i].fifo_position);
/*
 if (rec_cache[i].start_pc == 0x402980) {

 printf("SLOT %i\n\n", i);

 printf("\n***
***\n");
 printf("Tabela de contexto inicial de reads\n\n");

 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++)
 printf("%3i ",rec_cache[i].context_table_start[j]);

 printf("\n\nTabela de contexto atual\n\n");

 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 printf("%3i ",rec_cache[i].context_table[j]);
 }

 printf("\n");

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 printf("%3i ",rec_cache[i].context_table_flag[j]);
 }

 printf("\n");

 printf("***
*\n");
 printf("Bitmap * Tabela de * Tabela de Reads *
Tabela de \n");
 printf("Writes * Recursos * *
Writes \n");

 printf("***
*\n");

 for (k=0;k<REC_ARRAY_LINES;k++) {

 printf("0000 ");
 printf(" * ");

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)
 //if (resource_table_bitmap[k][j])
 printf("%2x ", rec_cache[i].resource_table_function[k][j]);

 printf(" * ");

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++)
 printf("%2i ", rec_cache[i].read_table[k][j]);

 printf(" * ");

165

 for (j=0;j<REC_ARRAY_CONTEXT;j++)
 printf("%2i ", rec_cache[i].write_table[k][j]);

 printf("\n");

 }

 printf("\n\n\n");
 }
*/
 }
 printf("-*-\n");
#endif

 if (rw) {
 // Nao achou, inclui
 if (where_hit == -1) {
 add_configuration(fifo_pointer,pc,pc_final);
 fifo_pointer++;
 if (fifo_pointer == N_REC_CACHE) fifo_pointer = 0;
/*

 for(i=0;i<N_REC_CACHE;i++) {
 if ((rec_cache[i].fifo_position == (N_REC_CACHE - 1)) ||
(rec_cache[i].start_pc == -1)) {
 add_configuration(i,pc,pc_final);
 where_hit = i;
 break;
 }
 }
*/
 }
 }
/*
 if (where_hit != -1) {
 rec_cache[where_hit].fifo_position = 0;

 for(j=0;j<N_REC_CACHE;j++) {
 if ((j != where_hit) && (rec_cache[j].fifo_position != -1)) {
 rec_cache[j].fifo_position++;
 }
 }
 }
*/
 return where_hit;

}

//
//
//
//
// ARRAY HARDWARE
//
//
//
//

// array components

int mux (int entrada[], int controle) {
 return entrada[controle];
}

int alu (int entrada_A, int entrada_B, int controle) {
 int function, type;

 function = (controle >> 4) & 0xf;
 type = controle & 0xf;

 switch (function) {
 case 0:
 // INSTR ADD
 // INSTR ADDU
 // INSTR ADDI

166

 // ADDIU ADDIU

 //if (type == 0)
 return entrada_A + entrada_B;
 //else
 //addu...

 break;

 case 1:

 // INSTR SUB
 // INSTR SUBU

 //if (type == 0)
 return entrada_A - entrada_B;
 //else
 //subu...

 break;

 case 2:

 // INSTR AND_
 // INSTR ANDI

 return entrada_A & entrada_B;
 break;

 case 3:

 // INSTR OR_
 // INSTR ORI

 return entrada_A | entrada_B;
 break;

 case 4:

 // INSTR XOR
 // INSTR XORI

 return entrada_A ^ entrada_B;
 break;

 case 5:

 // INSTR NOR
 // Conferir

 return ~(entrada_A | entrada_B);
 break;

 case 6:

 // INSTR SLL
 if (type == 0) {
 return entrada_A << (entrada_B & 0xff);
 }
 // INSTR SLLV
 else if (type == 1) {
 return entrada_A << entrada_B;
 }
 // INSTR SRL
 else if (type == 2) {
 int partial_res = entrada_A, i;
 for (i= (entrada_B & 0xff) ;i>0;i--)
 partial_res = (partial_res >> 1) & 0x7fffffff; // right sem signal
 return partial_res;

 }
 // INSTR SRLV
 else if (type == 3) {

167

 int partial_res = entrada_A, i;
 for (i= entrada_B;i>0;i--)
 partial_res = (partial_res >> 1) & 0x7fffffff;
 return partial_res;
 }
 // INSTR SRA
 else if (type == 4) {
 int partial_res = entrada_A, i;
 for (i= (entrada_B & 0xff) ;i>0;i--)
 partial_res = (partial_res >> 1) + (entrada_A & 0x80000000);

 return partial_res;
 }
 // INSTR SRAV
 else if (type == 5) {
 int partial_res = entrada_A, i;
 for (i= entrada_B ;i>0;i--)
 partial_res = (partial_res >> 1) + (entrada_A & 0x80000000);

 return partial_res;
 }
 break;

 // set less than
 case 7:

 // INSTR SLT
 if (type == 0) {
 if (entrada_A < entrada_B) return 1;
 }
 // INSTR SLTU
 else if (type == 1) {
 if ((unsigned) entrada_A < entrada_B) return 1;
 }
 // INSTR SLTI
 else if (type == 2) {
 if (entrada_A < entrada_B) return 1;
 }
 // INSTR SLTIU
 else if (type == 3) {
 if ((unsigned) entrada_A < entrada_B) return 1;
 }

 else return 0;

 break;

 }

 return 0;
}

int ld (int entrada_A, int entrada_B, int controle) {
 int function, type, temp;

 function = (controle >> 4) & 0xf;
 type = controle & 0xf;

 switch (function) {
 case 0:
 if (type == 0) { // byte LB
 temp = (read_memory(entrada_A + entrada_B)) & 0xff;
 if (temp & 0x80) temp |= 0xffffff00;
 return temp;
 }
 else if (type == 3) { // byte unsigned LBU
 return (read_memory(entrada_A + entrada_B)) & 0xff;
 }

 else if (type == 1) { // half LH
 temp = (read_memory(entrada_A + entrada_B)) & 0xffff;

168

 if (temp & 0x8000) temp |= 0xffff0000;
 return temp;
 }

 else if (type == 5) // half unsigned LHU
 return (read_memory(entrada_A + entrada_B)) & 0xffff;

 else if (type == 2) // word LW
 return read_memory(entrada_A + entrada_B);
 //else
 //{ printf("naaaaah\n"); exit(0); }
 //MEM_WRITE_WORD(mem, addr, *((word_t *)p));
 break;

 case 1:
 return entrada_B << 16;
 break;

 }

 return 0;
}

// context loading

void load_context(int contexto_atual[], int GPR_regs[], int slot) {
 int j,i;

 if (slot != -1) { // Trabalha apenas com o contexto atual
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 context_table[j] = rec_cache[slot].context_table[j];
 context_table_start[j] = rec_cache[slot].context_table_start[j];
 }

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 context_table_flag[j] = rec_cache[slot].context_table_flag[j];
 }

 for (i=0;i<REC_ARRAY_LINES;i++) {

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)
 resource_table_function[i][j] =
rec_cache[slot].resource_table_function[i][j];

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++)
 read_table[i][j] = rec_cache[slot].read_table[i][j];

 for (j=0;j<REC_ARRAY_CONTEXT;j++)
 write_table[i][j] = rec_cache[slot].write_table[i][j];
 }
 }

 ///////////////////////

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 if (context_table_start[j] != -1) {
 contexto_atual[j] = GPR_regs[context_table_start[j]];
 }
 else
 contexto_atual[j] = -1;
 }

 for (j=REC_ARRAY_CONTEXT;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 contexto_atual[j] = context_table_start[j];
 }

 return;
}

int resultado_contexto_atual[REC_ARRAY_CONTEXT_TOTAL];

int reconfigurable_array (int GPR_regs[], int slot){
 int linha, coluna, contexto;
 int saida_unidade_funcional[REC_ARRAY_RESOURCE_TOTAL];
 int (*unidade_funcional_corrente) ();

169

 load_context(resultado_contexto_atual, GPR_regs, slot);

 for (linha = 0; linha < REC_ARRAY_LINES; linha++) {

 #ifdef DEBUG_RECONFIGURABLE_ARRAY_ON

 printf("\n\n\n");
 printf("Contexto atual\n");
 printf("---\n");

 for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) {
 if (context_table[contexto] != -1)
 printf("r%i =\t %8x \t\t%i\n", context_table[contexto],
resultado_contexto_atual[contexto], context_table_flag[contexto]);
 }

 printf("---\n");
 printf("\n");
 for (contexto = 0; contexto < REC_ARRAY_CONTEXT_TOTAL; contexto ++) {
 printf("%4x ", resultado_contexto_atual[contexto]);
 }

 printf("\n");
 printf("---\n");

 #endif

 for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++) {

 if (coluna >= context_group[REC_ARRAY_RESOURCE_LD].start &&
 coluna < context_group[REC_ARRAY_RESOURCE_LD].length) {

 unidade_funcional_corrente = ld;
 }

 else if (coluna >= context_group[REC_ARRAY_RESOURCE_LD].length &&
 coluna < (context_group[REC_ARRAY_RESOURCE_ALU].start +
context_group[REC_ARRAY_RESOURCE_ALU].length))

 unidade_funcional_corrente = alu;
 /////

 saida_unidade_funcional[coluna] =
 unidade_funcional_corrente (mux(resultado_contexto_atual, read_table[linha][
coluna * 2]),
 mux(resultado_contexto_atual, read_table[linha][(coluna * 2) + 1]),
 resource_table_function[linha][coluna]
);

 }

 #ifdef DEBUG_RECONFIGURABLE_ARRAY_ON
 printf("Entradas\n");
 for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++) {

 printf("%8x %8x --",
 mux(resultado_contexto_atual, read_table[linha][coluna * 2]),
 mux(resultado_contexto_atual, read_table[linha][(coluna * 2) + 1])
);
 }
 printf("\n");
 printf("---\n");

 printf("Saidas\n");
 for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++)
 printf(" %8x --", saida_unidade_funcional[coluna]);

 printf("\n");
 printf("---\n");
 #endif

170

 // Todos menos o campo dos imediatos
 for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) {
 if (write_table[linha][contexto] > 0)
 resultado_contexto_atual[contexto] =
mux(saida_unidade_funcional,write_table[linha][contexto] - 1);
 }
 }

 // write back dos resultados

 for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) {
 if ((context_table[contexto] != -1) && (context_table_flag[contexto] ==
CONTEXT_FLAG_WRITE))
 regs.regs_R[context_table[contexto]] = resultado_contexto_atual[contexto];
 }

 // retorna o novo pc
 return rec_cache[slot].end_pc;
}

//
//
//
//
// DTM
//
//
//
//

//
// Warning

void BUM (int error) {

 printf("BUUUUUUUUUUUUUUUUUM\n\n");

 switch (error) {
 case 0: printf("Number of lines\n"); break;
 }

 exit(0);
}

//
//
//

//
// 5th stage

void DTM_fill_tables_2st_step (
 int op_r1, int op_r2, int op_w, int resource_line, int resource_columm,
 int context_table_pointer_r1,int context_table_pointer_r2,int
context_table_pointer_w,
 int context_table_regpointer_r1_write,int context_table_regpointer_r2_write,int
context_table_regpointer_w_write,
 int immed, int immed_use) {

 int pointer_r1, pointer_r2, pointer_w;

 if (context_table_regpointer_r1_write == 1) {
 pointer_r1 = context_table_next_free++;
 context_table[pointer_r1] = op_r1;
 }
 else
 pointer_r1 = context_table_pointer_r1;

 if (context_table_regpointer_r2_write == 1) {
 if (immed_use) {
 pointer_r2 = context_table_next_immed_free++;

171

 context_table[pointer_r2] = immed;
 }
 else{
 pointer_r2 = context_table_next_free++;
 context_table[pointer_r2] = op_r2;
 }
 }
 else

 if (context_table_regpointer_w_write == 1) {
 pointer_w = context_table_next_free++;
 context_table[pointer_w] = op_w;
 context_table_flag[pointer_w] = CONTEXT_FLAG_WRITE;
 }
 else
 pointer_w = context_table_pointer_w;

 if (context_table_regpointer_r1_write == 1)
 context_table_start[pointer_r1] = op_r1;

 if (context_table_regpointer_r2_write == 1) {
 if (immed_use)
 context_table_start[pointer_r2] = immed;
 else
 context_table_start[pointer_r2] = op_r2;
 }

 read_table[resource_line][resource_columm * 2] = pointer_r1;
 read_table[resource_line][(resource_columm * 2) + 1] = pointer_r2;

 write_table[resource_line][pointer_w] = resource_columm + 1;

}

//
// 4th stage
void DTM_fill_tables_1st_step (int op_r1, int op_r2, int op_w, int resource_line, int
resource_columm, int immed, int immed_use, int function, int type) {

 int i;
 int context_table_pointer_temp_r1 = 0;
 int context_table_pointer_temp_r2 = 0;
 int context_table_pointer_temp_w = 0;

 int op_w_bits;
 op_w_bits = 1 << op_w;
 bitmap_writes[resource_line] |= op_w_bits;

 resource_table_bitmap[resource_line][resource_columm] = 1;

bits
 resource_table_function[resource_line][resource_columm] = (function << 4) | (type &
0xf);

 context_table_regpointer_r1_write = context_table_regpointer_r2_write =
context_table_regpointer_w_write = 1;

 for (i=0;i<REC_ARRAY_CONTEXT;i++) {
 if (context_table[i] == op_r1) {
 context_table_pointer_temp_r1 = i;
 context_table_regpointer_r1_write = 0;
 }

 if (context_table[i] == op_w) {
 context_table_flag[i] = CONTEXT_FLAG_FREE;
 }

 }

 if (!immed_use) {
 for (i=0;i<REC_ARRAY_CONTEXT;i++) {
 if (context_table[i] == op_r2) {
 context_table_pointer_temp_r2 = i;

172

 context_table_regpointer_r2_write = 0;
 }
 }
 }

 #ifdef DEBUG_ON
 printf("**\n");
 printf("** FOURTH STAGE\n");
 printf("**\n");
 printf("Context pointers\n");
 printf("op_r1 = %i w =
%i\n",context_table_pointer_temp_r1,context_table_regpointer_r1_write);
 printf("op_r2 = %i w =
%i\n",context_table_pointer_temp_r2,context_table_regpointer_r2_write);
 printf("op_w = %i w = %i\n",context_table_pointer_temp_w
,context_table_regpointer_w_write);
 #endif

 DTM_fill_tables_2st_step (
 op_r1, op_r2, op_w, resource_line, resource_columm,

 context_table_pointer_temp_r1,context_table_pointer_temp_r2,context_table_pointer_tem
p_w,

 context_table_regpointer_r1_write,context_table_regpointer_r2_write,context_table_reg
pointer_w_write,
 immed, immed_use
);

}

//
// 3rd stage

void DTM_check_resource_table (int group, int op_r1, int op_r2, int op_w, int
dependence_line, int immed, int immed_use, int function, int type) {
 int resource_line, resource_columm = 0;
 int found = 0;

 for (resource_line = dependence_line;resource_line < REC_ARRAY_LINES;resource_line++)
{
 for (resource_columm = context_group[group].start;
 resource_columm < (context_group[group].start + context_group[group].length);
 resource_columm++) {
 if (resource_table_bitmap[resource_line][resource_columm] == 0) {
 found = 1;
 break;
 }
 }
 if (found) break;
 }

 if (!found) BUM(0);

 DTM_fill_tables_1st_step (op_r1, op_r2, op_w, resource_line, resource_columm, immed,
immed_use, function, type);

}

//
// 2nd stage

void DTM_check_dependences (int group, int op_r1, int op_r2, int op_w, int immed, int
immed_use, int function, int type) {
 int dependence_line = 0;
 int i;

 int op_r1_bits = 0, op_r2_bits = 0, op_bits;
 if (op_r1 != -1) op_r1_bits = 1 << op_r1;
 if (op_r2 != -1) op_r2_bits = 1 << op_r2;

 op_bits = op_r1_bits | op_r2_bits;

173

 for (i=0;i<REC_ARRAY_LINES;i++)
 if ((bitmap_writes[i] & op_bits) != 0) dependence_line = i + 1;

 #ifdef DEBUG_ON
 printf("**\n");
 printf("** SECOND STAGE\n");
 printf("**\n");

 printf("dependence line = %i\n", dependence_line);
 printf("group = %2i op_r1 = %2i op_r2 = %2i op_w = %2i immed =
%i\n",group,op_r1,op_r2,op_w,immed);
 #endif

 if (dependence_line >= REC_ARRAY_LINES) BUM(0);

 DTM_check_resource_table(group, op_r1, op_r2, op_w, dependence_line, immed,
immed_use, function, type);

}

//
// Primeiro Estagio
int DTM_instrution_decoder (md_inst_t inst, int verifica_existe) {

 // Separa operadores de read e write
 int op_r1, op_r2, op_w, immed, immed_use;

 int group;
 int function = 0, type = 0;

 int rs,rt,rd;

 rs = (inst.b >> 24) & 0xff;
 rt = (inst.b >> 16) & 0xff;
 rd = (inst.b >> 8) & 0xff;
 immed = inst.b & 0xffff;

 immed_use = 0;

 switch(inst.a) {

 ///
 // Loads/Stores
 ///

 // A extensao de sinal do IMMED pode ser feita na propria unidade funcional!
 // Pensar em hardware. Da pra dar um merge em tudo e apenas mudar o type. IF
dentro de IF
 // Load - type = 0

 case LB: // 0x20:
 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 0; type = 0;
 break;
 case LBU: // 0x22:
 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 0; type = 3;
 break;

174

 case LH: // 0x24:
 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 0; type = 1;
 break;

 case LHU: // 0x26:
 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 0; type = 5;
 break;

 case LW: // 0x28:
 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 0; type = 2;
 break;

 case LUI:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;

 group = REC_ARRAY_RESOURCE_LD;
 function = 1; type = 0;
 break;

 // Store - function = 2
/*
 case SW: // 0x28:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_LD;
 function = 0;
 type = 1;
 break;
*/
 ///
 // arithmetic and logic
 ///

 // function

 // 0 - add
 // 1 - sub
 // 2 - and
 // 3 - or
 // 4 - xor
 // 5 - nor
 //
 // type até aqui

175

 // 0 - signed
 // 1 - unsigned
 //
 // 6 - shift
 // 7 - set

 case ADD: // 0x40:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 0;
 type = 0;

 break;

 case ADDU: // 0x42:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 0;
 type = 1;

 break;

 // Imediato

 case ADDI: // 0x41:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;
 function = 0;
 type = 0;

 break;

 case ADDIU: // 0x43:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 0;
 type = 1;

 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 break;

 //

 case SUB: // 0x44:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 1;

 break;

 case SUBU: // 0x45:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

176

 function = 1;
 type = 1;

 break;

 //

 case AND_: // 0x4e:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 2;

 break;

 // Imediato

 case ANDI: // 0x4f:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 2;

 break;

 //

 case OR: // 0x50:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 3;

 break;

 // Imediato

 case ORI: // 0x51:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 3;

 break;

 //

 case XOR: // 0x52:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 4;

 break;

 // Imediato

 case XORI: // 0x53:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;

177

 function = 4;

 break;
 //

 case NOR: // 0x54:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 5;

 break;

 //
 //shifts

 case SLLV: // 0x56:
 op_w = rd;
 op_r1 = rt;
 op_r2 = rs;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 6;
 type = 1;

 break;

 case SRLV: // 0x58:
 op_w = rd;
 op_r1 = rt;
 op_r2 = rs;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 6;
 type = 3;

 break;

 case SRAV: // 0x5a:
 op_w = rd;
 op_r1 = rt;
 op_r2 = rs;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 6;
 type = 5;

 break;

 // SHAMT (= immed & 0ff)

 case SLL: // 0x55:
 op_w = rd;
 op_r1 = rt;
 op_r2 = -1;
 group = REC_ARRAY_RESOURCE_ALU;

 immed_use = 1;
 function = 6;
 type = 0;

 break;

 case SRL: // 0x57:
 op_w = rd;
 op_r1 = rt;
 op_r2 = -1;
 group = REC_ARRAY_RESOURCE_ALU;

 immed_use = 1;
 function = 6;
 type = 2;

178

 break;

 case SRA: // 0x59:
 op_w = rd;
 op_r1 = rt;
 op_r2 = -1;
 group = REC_ARRAY_RESOURCE_ALU;

 immed_use = 1;
 function = 6;
 type = 4;

 break;

 //
 // set less than
 case SLT: // 0x5b:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 7; type = 0;

 break;

 case SLTU: // 0x5d:
 op_w = rd;
 op_r1 = rs;
 op_r2 = rt;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 7; type = 1;

 break;

 // Imediato

 case SLTI: // 0x5c:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;
 function = 7; type = 2;

 // extensao de sinal
 if (immed & 0x8000) immed |= 0xffff0000;

 break;

 case SLTIU: // 0x5e:
 op_w = rt;
 op_r1 = rs;
 op_r2 = -1;
 immed_use = 1;
 group = REC_ARRAY_RESOURCE_ALU;

 function = 7; type = 3;

 break;

 default:
 #ifdef DEBUG_ON
 printf("************** \n\nNao achei %x\n", inst.a);
 #endif
 if (verifica_existe) return 0;

 }

 if (verifica_existe) return 1;

 // Chama o segundo estagio
 DTM_check_dependences(group, op_r1, op_r2, op_w, immed, immed_use, function, type);

179

}

//
//
//

//
// DTM

int DTM (md_inst_t inst, md_addr_t pc) {

 DTM_instrution_decoder(inst, 0);

 return 0;

}

//
//
//
//
// DEBUG
//
//
//
//

int debug_confere_resultado (int GPR_regs[]) {
 int j;

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 if (context_table_flag[j] == CONTEXT_FLAG_WRITE) {
 if (resultado_contexto_atual[j] != GPR_regs[context_table[j]]) {
 printf("\n\n");
 printf("r%i \t array = %x registrador = %x \n",context_table[j],
resultado_contexto_atual[j], GPR_regs[context_table[j]]);
 return context_table[j];
 }
 }
 }

 return -1;

}

void debug_DTM () {
 int i,j;

 printf("\n***
***\n");
 printf("Tabela de contexto inicial de reads\n\n");

 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++)
 printf("%3i ",context_table_start[j]);

 printf("\n\nTabela de contexto atual\n\n");

 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) {
 printf("%3i ",context_table[j]);
 }

 printf("\n");

 for (j=0;j<REC_ARRAY_CONTEXT;j++) {
 printf("%3i ",context_table_flag[j]);
 }

 printf("\n");
 printf("***
*\n");

180

 printf("Bitmap * Tabela de * Tabela de Reads * Tabela de
\n");
 printf("Writes * Recursos * * Writes
\n");
 printf("***
*\n");

 for (i=0;i<REC_ARRAY_LINES;i++) {

 printf("%4x ", bitmap_writes[i]);
 printf(" * ");

/* for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)
 printf("%2i ", resource_table_bitmap[i][j]);
*/

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)
 //if (resource_table_bitmap[i][j])
 printf("%2x ", resource_table_function[i][j]);

 printf(" * ");

 for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++)
 printf("%2i ", read_table[i][j]);

 printf(" * ");

 for (j=0;j<REC_ARRAY_CONTEXT;j++)
 printf("%2i ", write_table[i][j]);

 printf("\n");

 }

 printf("\n\n\n");

 return;
}

#ifdef DEBUG_ON

int main_DTM() {

 md_inst_t inst[50];
 int i = 0, j = 0;

 // rs, rt, rd

 //ADD
 //0x op_r1 op_r2 op_w xx
 //LB
 //0x op_r1 op_w xx xx

 // add r7,r5,r6
 inst[j].a = ADD;
 inst[j++].b = 0x050607ff;
 // add r7,r7,r6
 inst[j].a = ADD;
 inst[j++].b = 0x070608ff;
 // add r2,r8,r6
 inst[j].a = ADD;
 inst[j++].b = 0x080609ff;
 // add r1,r2,r7
 inst[j].a = ADD;
 inst[j++].b = 0x020701ff;
 // lb r7,r2
 inst[j].a = ADD;
 inst[j++].b = 0x020704ff;

 inst[j].a = -1;

 DTM_start_tables ();

 do {

181

 printf("\n\n\n");
 md_print_insn(inst[i], 0, stdout); printf("\n");
 printf("%s %s\n", MD_OP_NAME(inst[i].a), MD_OP_FORMAT(inst[i].a));
 printf("----------------------------------\n");

 DTM (inst[i],0);

 debug_DTM();
 } while (inst[++i].a != -1);

 //reconfigurable_array();

 return 0;
}

#endif

182

183

APPENDIX C UMA ARQUITETURA RECONFIGURÁVEL
TRANSPARENTE PARA APLICAÇÕES

HETEROGÊNEAS

A possibilidade se adicionar cada vez mais e mais transistores dentro de um
circuito integrado, de acordo com a lei de Moore, faz com que o aumento de
desempenho atinja o mesmo patamar de crescimento. Entretanto, esta lei poderá mudar
em um futuro não muito distante, por uma simples razão: os limites físicos do silício
estão sendo alcançados. Outro aspecto visível do limite tecnológico atual é o aumento
da potência dissipada pelos circuitos integrados (CI), graças às correntes de fuga e ao
chaveamento natural de bilhões de transistores. Este fato tem um impacto diferente em
computadores de propósito geral, onde sistemas de refrigeração cada vez mais robustos
têm de ser usados; ou em sistemas embarcados móveis, onde a energia gasta é o fator
principal para aumentar o tempo de utilização do aparelho sem a necessidade de
recarga. Além do mais, novas tecnologias que irão substituir completa ou parcialmente
o silício estão surgindo. De acordo com o ITRS Roadmap (SEMICONDUCTOR, 2008),
estas tecnologias possuem um alto grau de densidade e são lentas comparadas à CMOS,
ou o oposto: novos dispositivos podem atingir altas velocidades, mas com uma grande
ocupação de área e consumo de potência, mesmo quando levadas em conta tecnologias
CMOS futuras.

Em paralelo com a questão tecnológica, arquiteturas tradicionais de alto
desempenho, como os difundidos processadores superescalares, estão atingindo seus
limites. Como demonstrado em (FLYNN; HUNG, 2005) e (SIMA; FALK, 2004), não
há nenhuma novidade arquitetural em tais sistemas nos últimos anos. Ademais, recentes
incrementos de desempenho foram ocasionados apenas pelo aumento na freqüência de
operação. Entretanto, este recurso também está chegando a um ponto de estagnação. Por
exemplo, a freqüência de operação do processador Pentium IV da Intel aumentou
apenas de 3,06 para 3,8GHz entre 2002 e 2006 (INTEL, 2008).

Em (OR-BACH, 2001), é discutido o futuro dos processos de fabricação
usando novas tecnologias. De acordo com este trabalho, células padrão (standard cells),
como são utilizadas atualmente, não existirão mais. Como os métodos de fabricação
estão mudando, circuitos regulares logo se tornarão uma necessidade. Entenda-se por
circuitos regulares aqueles que apresentam uma grande repetição de uma mesma e
simples estrutura, seja no nível das portas, células, blocos etc. É também um consenso
que a liberdade hoje oferecida para os projetistas, representada pela irregularidade do
projeto, será mais cara no futuro. Desta maneira, utilizando lógica regular, as
companhias irão reduzir custos, como também a possibilidade da diminuição do número
de falhas do circuito, já que a confiabilidade da impressão de geometrias utilizadas hoje
em 65 nanômetros já é considerada um grande problema.

184

Desta maneira, por diferentes razões anteriormente discutidas, tanto no âmbito
de sistemas embarcados quanto no de computação de propósito geral, a redução no
aumento constante de freqüência junto com os novos limites impostos pelas recentes
tecnologias são novos desafios arquiteturais que precisam ser tratados.

Alternativas Arquiteturais

Sistemas Reconfiguráveis

As várias abordagens de exploração do paralelismo utilizadas atualmente
recaem no mesmo problema: o paradigma de programação. O modelo Von Neumann
traz consigo uma limitação nesta exploração, causada pelo seu modelo orientado a
controle (control-driven), que tem a sua execução conduzida pelo contador de
programa. Máquinas dataflow, entretanto, exploram o máximo paralelismo da aplicação
utilizando um modelo orientado a dados (data-driven). Basicamente, a execução de
certa operação se dá quando os dados requisitados para tal estiverem disponíveis. Neste
cenário, arquiteturas reconfiguráveis aparecem como uma solução muito atrativa. O fato
que motiva a utilização deste tipo de arquitetura é que estas se localizam entre os dois
modelos citados anteriormente. Assim, consegue-se obter uma arquitetura
implementável atualmente, que explora um alto grau de paralelismo, ainda utilizando
compiladores, ferramentas e métodos baseados em Von Neumann já existentes.

Ao mesmo tempo que a computação baseada em reconfiguração pode explorar
o paralelismo entre as instruções, ela também pode diminuir o tempo de processamento
de instruções dependentes entre si. Esta é a sua maior vantagem em relação às
arquiteturas tradicionais utilizadas atualmente. Usando a mesma idéia de reutilização de
instruções, transforma-se uma seqüência de operações (parte do código de programa)
em um equivalente implementado em circuito combinacional, que executa exatamente
as mesmas funções. Assim, aumenta-se o desempenho do sistema (HENKEL, ERNST,
1997) (VENKATARAMANI et al., 2001), reduzindo drasticamente o seu consumo de
energia (STITT; VAHID, 2002) – pelo preço do incremento de área ocupada.

A Figura 1 ilustra este processo de forma simplificada. Geralmente, uma
arquitetura reconfigurável é formada por uma Unidade Funcional Reconfigurável
(Reconfigurable Function Unit - RFU); uma unidade capaz de realizar a reconfiguração
da RFU; e um processador de propósito geral (General Purpose Processor - GPP).
Outra vantagem na utilização de sistemas reconfiguráveis é que estes são altamente
regulares, formados por replicações de estruturas idênticas, enquadrando-se exatamente
como uma arquitetura a ser utilizada para solucionar os problemas de fabricação e
produção, citados anteriormente.

Figura 1 – O funcionamento básico de um sistema reconfigurável

Programa
sendo executado

Processa

Lógica

185

Como exemplo de sistemas reconfiguráveis, podem ser citados os sistemas
Chimaera (HAUCK, 1997) e ConCISe (RAZDAN; SMITH, 1994), que possuem uma
unidade reconfigurável fortemente acoplada ao núcleo do processador, formada
totalmente por lógica combinacional. Esta unidade é, de fato, uma unidade funcional
adicional no pipeline do processador, compartilhando os mesmos recursos das outras
unidades. Esta técnica faz com que o controle da unidade seja simples, diminuindo o
gasto adicional (tanto em desempenho quanto potência) requerido na comunicação entre
a unidade reconfigurável e o resto do sistema.

Por sua vez, o processador GARP (HAUSE; WAWRYNEK, 1997) é baseado
na arquitetura MIPS, e possui uma unidade fracamente acoplada ao processador. Assim,
a comunicação com esta unidade é feita através de instruções move dedicadas. Outro
exemplo é a arquitetura Molen (VASSILIADIS et al., 2001), que possui uma unidade
reconfigurável externa, utilizada para fazer otimizações nos núcleos principais do
programa.

A técnica de reconfiguração também foi aplicada em outros níveis
arquiteturais, impondo mudanças radicais no paradigma de programação, envolvendo o
desenvolvimento de novos compiladores e ferramentas. Como um exemplo
significativo, o processador TRIPS (SANKARALINGAM et al., 2003) é baseado na
execução de blocos (ou conjuntos) de instruções em lógica combinacional. São
utilizados pequenos núcleos de granularidade grossa (compostos por nodos, que por sua
vez são formados por uma pequena memória com os operandos, uma unidade lógica e
aritmética e um roteador). Da maneira pelo qual foram projetados, estes núcleos podem
ser agrupados para explorar um vasto conjunto de diferentes tipos de paralelismo, que
vão desde o no nível de dados até threads. Todavia, toda a análise e alocação destas
partes do software nos pequenos núcleos são feitas totalmente pelo compilador.
Colocando este conceito ao extremo, pode-se também citar como exemplo
representativo o processador Wavescalar (SWANSON et al., 2003), uma arquitetura
totalmente dataflow.

 Tradução Binária

Outra técnica para aumentar o desempenho do sistema e que também pode
trazer um baixo consumo de energia é o uso de Tradução Binária (Binary Translation)
(ALTMAN; SHEFFER, 2000). Nesta técnica, o sistema por si próprio monitora o
código binário do programa que está sendo executado e detecta os núcleos mais
executados do software, com o intuito de otimizá-los. Dentre as otimizações existentes
relacionadas a esta técnica, estão a recompilação dinâmica e a gravação do resultado de
traduções anteriores em uma cache especial. Como exemplo, o processador Crusoe da
Transmeta (KLAIBER, 2000) é baseado em um processador VLIW (Very Long
Instruction Word) onde a aplicação é analisada em tempo de execução, com o objetivo
de achar as melhores partes de software para melhor explorar o paralelismo disponível
entre as instruções. Uma das grandes vantagens no uso desta técnica é que o processo é
transparente, o que significa que não é necessária mudança alguma no código fonte ou
binário da aplicação (envolvendo, por exemplo, recompilação), o que consequentemente
não causa rompimento algum no fluxo padrão de desenvolvimento de software.

186

Reutilização de Seqüências de Instruções

O primeiro estudo sobre a reutilização de seqüências de instruções foi feito em
(GONZALEZ et al., 1999). A idéia básica é, após a primeira vez que uma seqüência de
instruções for executada, guardar o seu contexto (valores de entrada e saída de
registradores, endereços de memória, contador de programa etc.) em uma memória
especial e, da próxima vez que esta mesma seqüência for encontrada, reutilizá-la através
de seu contexto salvo, ao invés de executá-la novamente.

Contudo, o tamanho deste contexto e da seqüência de instruções (chamada de
trace) pode se tomar enorme, limitando o campo de ação de tal técnica, e incrementando
a complexidade do algoritmo responsável pela detecção das instruções e pela sua
reutilização. Bons resultados apenas são alcançados quando suposições muito otimistas
são feitas, como a reutilização de uma seqüência levar apenas um ciclo de relógio.

Motivações

Como discutido anteriormente, arquiteturas reconfiguráveis aparecem como
sérias candidatas para se tornarem uma destas soluções. Entretanto, é necessário ter
muito cuidado quando se propõe novas possibilidades arquiteturais, já que há um claro
requisito de se manter a compatibilidade de software e paradigmas tradicionais de
programação. Estes são fatores chave para reduzir o ciclo de desenvolvimento de um
produto, permitindo que ele possa ser lançado o mais rápido possível no mercado. E é
este exatamente o maior problema de arquiteturas reconfiguráveis atualmente: são
necessários compiladores ou ferramentas especiais, que claramente não sustentam o
conceito de portabilidade de software, principalmente no campo de computação de
propósito geral. Além do mais, outra restrição faz com que estas arquiteturas não sejam
ainda amplamente utilizadas: somente partes específicas de um programa são
otimizadas. Assim, apenas programas bem específicos, como aqueles que fazem
processamento digital de sinais, são beneficiados por esta técnica – o que não reflete a
realidade dos sistemas de propósito geral nem da nova geração de sistemas embarcados.

Solução Proposta

Unificando todas as idéias citadas na seção anterior, em (STITT; VAHID,
2002) (LYSECKY; VAHID, 2004) foram apresentados primeiros estudos sobre os
benefícios e a possibilidade de implementação do particionamento dinâmico usando
lógica reconfigurável, movendo dinamicamente, em tempo de execução, núcleos do
software para a unidade reconfigurável – técnica esta chamada de Warp Processing.
Entretanto, esta técnica ainda é limitada apenas às partes mais criticas do software,
como os laços mais executados, já que sua unidade reconfigurável é implementada em
FPGA: há um alto grau de complexidade no algoritmo de detecção e reconfiguração, já
que há um enorme número de configurações possíveis que pode ser feita em tal
estrutura. Desta maneira, altos ganhos são apenas atingidos em algoritmos que possuem
poucas instruções de controle, onde seus núcleos são bastante distintos do resto do
programa, como filtros. Algoritmos que possuem mais estruturas de controle ou que
possuem um comportamento misto não conseguem tirar proveito de tal técnica.
Ademais, o fato da obrigatoriedade do uso de FPGA faz com que a migração do Warp
Processing para processadores convencionais utilizados atualmente seja mais
complicada.

187

Este trabalho, entretanto, propõe o uso de uma unidade reconfigurável de
granularidade grossa, fortemente acoplada ao processador, composta por unidades
funcionais simples e multiplexadores que, por ser independente de qualquer tecnologia,
não está limitada à alta complexidade de configurações de granularidade fina. Esta
unidade reconfigurável é usada em conjunto com uma técnica de Tradução Binária
chamada Dynamic Instruction Merging, que é usada para detectar seqüências de
instruções em tempo de execução para serem enviadas para a unidade reconfigurável.
Transformando em lógica combinacional qualquer seqüência de instruções, não ficando
limitado às partes críticas do programa, aumentos no desempenho são obtidos mesmo
em programas que possuem muito controle ou em programas que não apresentam um
alto nível de paralelismo entre suas instruções. É exatamente a natureza de
granularidade grossa que faz com que isso seja possível: o algoritmo de detecção
dinâmica e de configuração da unidade reconfigurável torna-se mais simples, e uma
quantidade menor de memória para guardar estas configurações é necessária. Desta
maneira, a principal novidade de tal arquitetura é seu caráter dinâmico: além da unidade
reconfigurável ser dinamicamente configurada, as seqüências de instruções a serem
executadas nela também são detectadas e transformadas em uma configuração do array
em tempo de execução.

Contribuições

Além da unidade reconfigurável, o hardware especial foi desenvolvido com o
objetivo de fazer a transformação. Quando esta unidade percebe que há um certo
número de instruções que podem ser executadas na unidade, uma tradução binária é
aplicada a esta seqüência. Esta tradução transforma a seqüência original de instruções
em uma configuração da unidade reconfigurável, que por sua vez desempenha
exatamente a mesma função desta seqüência. Após isto ocorrer, esta configuração é
gravada em uma memória especial, chamada cache de reconfiguração. Na próxima vez
que esta seqüência for achada, a unidade irá executar esta configuração na unidade
reconfigurável ao invés da seqüência normal de instruções do processador. Desta vez, a
análise de dependência não é mais necessária: o processador simplesmente necessita
recuperar as informações de configuração da memória especial. Desta forma,
dependendo do tamanho desta cache especial, o aumento de desempenho pode ser
estendido para qualquer parte do programa, não apenas nos laços mais executados do
mesmo.

Na primeira parte do trabalho desenvolvido, a técnica foi acoplada ao Femtojava
(BECK; CARRO, 2003), um processador para sistemas embarcados que executa
nativamente bytecodes da linguagem Java (BECK; CARRO, 2005) (BECK; CARRO,
2005B). Foi mostrado um grande aumento de desempenho e redução no consumo de
energia, mesmo quando comparada a versões VLIW da mesma arquitetura (BECK;
CARRO, 2004). Os dados de desempenho e potência foram obtidos através de
simulação, utilizando uma ferramenta configurável ciclo-a-ciclo (BECK; CARRO,
2003B). Somando-se a isso, foi mostrado também que a técnica de Dynamic Instruction
Merging pode ser beneficiada do método particular de computação de máquinas de
pilha, podendo assim detectar e transformar as instruções com um baixo nível de
complexidade (BECK; CARRO, 2005B). Esta também foi comparada com métodos
tradicionais de detecção de máquinas RISC (GOMES et al., 2005) (GOMES et al.,
2005B).

188

Após, o trabalho foi focado na implementação da mesma técnica em
arquiteturas RISC. Como poderia ser esperado, há diferenças tanto na estrutura da
unidade reconfigurável como no algoritmo de detecção, já que anteriormente uma
máquina de pilha foi utilizada. Primeiramente, a técnica foi implementada usando a
ferramenta Simplescalar (BURGER; AUSTIN, 1997) junto com o conjunto de
benchmarks MIBench (GUTHAUS et al., 2001). Desta forma, foi possível comparar a
técnica proposta com processadores superescalares (BECK et al., 2007) (BECK et al.,
2006) (BECK et al., 2006b). Foi demonstrado que houve aumento de desempenho em
relação a estes, resolvendo alguns problemas conhecidos de limitação de paralelismo. O
terceiro estudo de caso foi a implementação da técnica em um processador MIPS
R3000, amplamente utilizado em sistemas embarcados (BECK et al., 2008).
Novamente, ótimos resultados foram alcançados. Outros trabalhos periféricos também
foram desenvolvidos: uma ferramenta que automaticamente, dependendo do
paralelismo disponível na aplicação, constrói a unidade reconfigurável composta por um
número mínimo de unidades funcionais que explora tal paralelismo, resultando em uma
grande diminuição na área e na potência do circuito reconfigurável (RUTZIG et al.,
2008).

