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ABSTRACT 

As Moore’s law is losing steam, one already sees the phenomenon of clock 
frequency reduction caused by the excessive power dissipation in general purpose 
processors. At the same time, embedded systems are getting more heterogeneous, 
characterized by a high diversity of computational models coexisting in a single device. 
Therefore, as innovative technologies that will completely or partially replace silicon 
are arising, new architectural alternatives are necessary. Although reconfigurable 
computing has already shown to be a potential solution for such problems, significant 
speedups are achieved just in very specific dataflow oriented software, not representing 
the reality of nowadays systems. Moreover, its wide spread use is still withheld by the 
need of special tools and compilers, which clearly preclude software portability and 
reuse of legacy code. Based on all these facts, this thesis presents a new technique using 
reconfigurable systems to optimize both control and dataflow oriented software without 
the need of any modification in the source or binary codes. For that, a Binary 
Translation algorithm has been developed, which works in parallel to the processor. The 
proposed mechanism is responsible for transforming sequences of instructions at run-
time to be executed on a dynamic coarse-grain reconfigurable array, supporting 
speculative execution. This way, it is possible to take advantage of using pure 
combinational logic to speed up the execution, maintaining full binary compatibility in a 
totally transparent process. Three different case studies were evaluated: a Java Processor 
and a MIPS R3000 – representing the embedded systems field – and the Simplescalar 
Toolset, a widely used toolset that simulates a superscalar architecture based on the 
MIPS R10000 processor – representing the general-purpose market. 
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RESUMO 

Atualmente, pode-se observar que a Lei de Moore vem estagnando. A freqüência de 
operação já não cresce da mesma forma, e a potência consumida aumenta drasticamente 
em processadores de propósito geral. Ao mesmo tempo, sistemas embarcados vêm se 
tornando cada vez mais heterogêneos, caracterizados por uma grande quantidade de 
modelos computacionais diferentes, sendo executados em um mesmo dispositivo. Desta 
maneira, como novas tecnologias que irão substituir totalmente ou parcialmente o silício 
estão surgindo, novas soluções arquiteturais são necessárias. Apesar de sistemas 
reconfiguráveis já terem demonstrado serem candidatos em potencial para os problemas 
supracitados, ganhos significativos de desempenho são alcançados apenas em 
programas que manipulam dados massivamente, não representando a realidade dos 
sistemas atuais. Ademais, o seu uso em alta escala ainda está limitado à utilização de 
ferramentas ou compiladores que, claramente, não mantêm a compatibilidade de 
software e a reutilização do código binário já existente. Baseando-se nestes fatos, a 
presente tese propõe uma nova técnica para, utilizando um sistema reconfigurável, 
otimizar tanto programas orientados a dados como aqueles orientados a controle, sem a 
necessidade de modificação do código fonte ou binário. Para isto, um algoritmo de 
Tradução Binária, que trabalha em paralelo ao processador, foi desenvolvido. O 
mecanismo proposto é responsável pela transformação de seqüências de instruções, em 
tempo de execução, para serem executadas em uma unidade funcional reconfigurável de 
granularidade grossa, suportando execução especulativa. Desta maneira, é possível 
aproveitar as vantagens do uso da lógica combinacional para aumentar o desempenho e 
reduzir o gasto de energia, mantendo a compatibilidade binária em um processo 
totalmente transparente. Três diferentes estudos de caso foram feitos: os processadores 
Java e MIPS R3000 – representando o campo de sistemas embarcados – e o conjunto de 
ferramentas Simplescalar, que simula um processador superescalar baseado no MIPS 
R10000 – representando o mercado de processadores de propósito geral. 
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1 INTRODUCTION 

The possibility of increasing the number of transistors inside an integrated circuit 
with the passing years, according to Moore’s Law, has been pushing performance at the 
same level of growth. However, this law, as known today, will no longer exist in a near 
future. The reason is very simple: physical limits of silicon (KIM et al., 2003) 
(HOMPSON, 2005). Because of that, new technologies that will completely or partially 
replace silicon are arising. The problem is that, according to the ITRS roadmap 
(SEMICONDUCTOR, 2008), these technologies have a high level of density and are 
slower than traditional scaled CMOS, or the opposite: new devices can achieve higher 
speeds but with a huge area and power overhead – even when comparing to future 
CMOS technology.  

Additionally, high performance architectures as the diffused superscalar machines 
are achieving their limits. As it is shown in (FLYNN; HUNG, 2005) and (SIMA; 
FALK, 2004), there are no novelties in such systems. The advances in ILP exploitation 
are stagnating: considering the Intel’s family of processors, the IPC rate has not 
increased since the Pentium Pro in 1995, as Figure 1.1 shows. This occurs because these 
architectures are challenging some well-known limits of the ILP (WALL, 1991). Recent 
increases in performance have occurred mainly thanks to boosts in clock frequency 
through the employment of deeper pipelines. Even this approach, though, is reaching its 
limit. For example, the clock frequency of Intel’s Pentium 4 processor had a modest 
increase from 3.06 to 3.8 GHz between 2002 and 2006 (INTEL, 2008). 

Another trend is the so-called “Mobile Supercomputers” (AUSTIN et al., 2004). 
In the future, embedded devices will need to perform some intensive computational 
programs, such as real-time speech recognition, cryptography, augmented reality etc, 
besides the conventional ones, like word and email processing.  According to the cited 
work, they must not exceed 75mW of power consumption. Figure 1.2 reinforces the 
trend demonstrated by Figure 1.1: even considering desktop computer processors, new 
architectures will not meet the requirements for future embedded systems. The star 
indicates where the expected future mobile computer requirements should be in terms of 
performance. The other curves represent important characteristics that will restrict 
performance improvements in those systems: 

 Lack of ILP, as discussed before; 

 Restrictions in the critical path of the pipeline stages:  Intel’s Pentium 4 
microprocessor has only 12 fanout-of-four (FO4) gate delays per stage, 
leaving little logic that can be bisected to produce higher clocked rates. This 
becomes even worse considering that the delay of those FO4 will increase 
comparing against other circuitry in the system. One already can see this 
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trend in the newest Intel processors based on the Core and Core2 
architectures, which have less pipeline stages than the Pentium 4. 

 

 

 

 

 

 

 

 

Figure 1.1: There is no improvements regarding the IPC in the Intel’s Pentium Family 
of processors (SIMA; FALK, 2004) 

 

 

 

 

 

 

 

 

 

Figure 1.2: Near future limitations of performance, ILP and pipelining (AUSTIN et al., 
2004) 

 

Another concern is the excessive power consumption. As previously stated about 
performance, power spent by future systems is also far from the expected, as it can be 
observed in Figure 1.3. Another issue that must be pointed out is that leakage power is 
becoming more important and, while a system is in standby mode, it will be the 
dominant power consumed by it. 

This way, one can observe that companies are migrating to chip multiprocessors 
to take advantage of the extra area available, even though, as this thesis will show, there 
is still a huge potential to speed up a single thread software. Therefore, the clock 
frequency increase stagnation, excessive power consumption and higher hardware costs 
to ILP exploitation together with the foreseen slow technologies are new architectural 
challenges to be dealt with. Hence, new alternatives that can take advantage of the 
integration possibilities and that can address the performance and power issues stated 
before become necessary. 
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Figure 1.3: Power consumption in present and future desktop processors (AUSTIN et 
al., 2004) 

 

In this scenario, reconfigurable architectures appear to be an attractive solution. 
By translating a sequence of code into combinational logic, one can have huge 
performance gains with energy savings, at the price of extra area – exactly the only 
resource available nowadays and in future technologies (GUPTA; MICHELI, 1993) 
(VENKATARAMANI et al., 2001) (STITT; VAHID, 2002). At the same time that 
reconfigurable computing can explore the ILP of the applications, it can also speed up 
sequences of data dependent instructions, which is its main advantage when comparing 
to traditional architectures. Furthermore, as reconfigurable architectures are highly 
based on regular circuits, another advantage emerges: it is common sense that as the 
more the technology shrinks to 65 nanometers and below, the harder it will be to print 
the geometries employed today, directly affecting the yield (OR-BACH, 2001). 
Moreover, because circuit customization is a very expensive process, regular circuits 
customized in the field are also considered as the new low cost solution.  

However, reconfigurable systems have two main drawbacks. The first one is that 
they are designed to handle very data intensive or streaming workloads. This means that 
the main design strategy is to consider the target applications as having very few distinct 
kernels for optimization. By speeding up small parts of the software, huge gains would 
be achieved. In contrast, a desktop system usually executes a large number of 
applications with different behaviors at the same time; and the number of applications 
that a single embedded device must handle is growing, as well as the heterogeneity of 
their behaviors.  

The second problem is that the process of mapping pieces of code to 
reconfigurable logic usually involves some kind of transformation, manual or using 
special languages or tool chains. These transformations modify somehow the source or 
the binary code, precluding the wide spread usage of reconfigurable systems. As the old 
X86 ISA has been showing, sustaining binary compatibility, allowing legacy code reuse 
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and traditional programming paradigms are key factors to reduce the design cycle and 
maintain backward compatibility. 

Based on these two main concerns discussed above, this thesis proposes the use of 
a technique called Dynamic Instruction Merging (DIM), which is a Binary Translation 
(BT) method implemented in hardware. It is used to detect and transform sequences of 
instructions at run time to be executed in a reconfigurable array. DIM is a totally 
transparent process: there is no need for changing the code before its execution at all, 
allowing full binary code reuse. With the BT mechanism, it is possible to ensure 
software compatibility at any level of the design cycle, allowing the utilization of a 
reconfigurable hardware without requiring any tools for the hardware/software 
partitioning or special compilers.  

The employed reconfigurable unit is a coarse-grained array, composed of simple 
functional units and multiplexers. Being not limited to the complexity of fine-grain 
configurations and using the special BT mechanism, the proposed system can also speed 
up control-flow oriented software, without any distinct kernel subject to optimization. 
Consequently, it is possible to increase the performance of any kind of software as well 
as reduce the energy consumption, not being limited to just DSP-like or loop centered 
applications, as reconfigurable systems usually do (STITT et al., 2003).  

This proposal can be applied in the embedded system domain as well as in the 
general-purpose one, and in this work these both fields of application are analyzed. In 
the following sections, the motivations to implement the proposed technique are 
discussed in more details. 

1.1 Main Motivations 

In this section, we discuss in more details the main motivations that inspired our 
work. The first one relates to the hardware limits and costs that architectures are facing 
in order to increase the ILP of the running application. Since the searching for ILP is 
becoming more difficult, the second motivation is based on the use of pure 
combinational logic as a solution to speed up instructions execution. However, even a 
technique that could increase the performance should be passive of implementation in 
nowadays technology and still sustain binary compatibility. The possibilities of 
implementation and implications of code reuse lead to our next motivation. Finally, the 
last one discusses about the future and new technologies, where the reliability and yield 
costs will become even more important, with regularity playing a major role. 

1.1.1 Overcoming some limits of the parallelism 

In the future, advances in compiler technology together with significantly new and 
different hardware techniques may be able to overcome some limitations of the ILP 
exploitation. However, it is unlikely that such advances, when coupled with realistic 
hardware, will overcome all these limits. Instead, the development of new hardware and 
software techniques will continue to be one of the most important challenges in 
computer design. 

To better understand the main issues related to ILP exploitation, in (HENNESSY; 
PATTERSON, 2003) assumptions are made for an ideal (or perfect) processor, as 
follows: 

1. Register renaming – It is the process of renaming target registers in order to 
avoid false dependences (Write after Read and Write after Write). This way, it is 
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possible to better explore the parallelism of the running application. The perfect 
processor would have an infinite number of virtual registers available to perform this 
renaming and hence all false dependences could be avoided. Therefore, an unbounded 
number of data independent instructions could begin to be simultaneously executed. 

2. Branch prediction – It is the mechanism responsible for figuring out if the 
branches will be taken or not taken, depending on where the execution currently is. The 
main objective is to diminish the number of pipeline stalls due to taken branches. It is 
also used as a part of the speculative mechanism to execute instructions beyond basic 
blocks. In an ideal processor, all conditional branches would be correctly predicted, 
meaning that the predictor is perfect. 

3. Jump prediction – In the same manner, all jumps are perfectly predicted. When 
combined with the branch prediction, previously discussed, the processor could have a 
perfect speculation mechanism and an unbounded buffer of instructions available for 
execution. 

4. Memory-address alias analysis – It is the comparison among references to 
memory encountered in instructions. Some of these references are calculated at run-time 
and, as different instructions can access the same address of the memory in a different 
order, data coherence problems can arise. In the perfect processor, all memory addresses 
would be exactly known before actual execution begins and a load could be moved 
before a store, once provided that both addresses are not identical. 

While assumptions 2 and 3 would eliminate all control dependences, assumptions 
1 and 4 would eliminate all but the true data dependences. Together, these assumptions 
mean that any instruction belonging to the program’s execution could be scheduled on 
the cycle immediately following the execution of the predecessor on which it depends. 
It is even possible, under these assumptions, for the last dynamically executed 
instruction in the program to be scheduled on the very first cycle. Thus, this set of 
assumptions subsumes both control and address speculation and implements them as if 
they were perfect.  

The analysis of the hardware costs to get as close as possible of this ideal 
processor is quite complicated. For example, let us consider the instruction window, 
which represents the set of instructions that are examined for simultaneous execution. In 
theory, a processor with perfect register renaming should have an instruction window of 
infinite size, so it could analyze all the dependencies at the same time.  

To determine whether n issuing instructions have any register dependencies 
among them, assuming all instructions are register-register and the total number of 
registers is unbounded, one must perform comparisons. Thus, to detect dependences 
among the next 2000 instructions requires almost four million comparisons. Even 
issuing only 50 instructions requires 2,450 comparisons. This cost obviously limits the 
number of instructions that can be considered for issue at once. To date, the window 
size has been in the range of 32 to 126, which can require over 2,000 comparisons. The 
HP PA 8600 reportedly has over 7,000 comparators (HENESSY; PATTERSON, 2003). 

Another good example to illustrate how much hardware a modern superscalar 
design needs to execute instructions in parallel is the Alpha 21264 (KESSLER, 1999). It 
issues up to four instructions per clock and initiates execution on up to six (with 
significant restrictions on the instruction type, e.g., at most two load/stores), supports a 
large set of renaming registers (41 integer and 41 floating point, allowing up to 80 
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instructions in-flight), and uses a large tournament-style branch predictor. Not 
surprisingly, half of the power consumed by this processor is related to the ILP 
exploitation (WILCOX; MANNE, 1999). 

Other possible implementation constraints in a multiple issue processor, besides 
the ones cited before, include: issues per clock, functional units and unit latency, 
number of register file ports, functional unit queues, issue limits for branches, and 
limitations on instruction commit.  

1.1.2 Using the Pure Combinational Logic Circuit Advantages 

There are always potential gains when passing the execution from sequential to 
combinational logic. Using a combinational mechanism could be a solution to speed up 
the execution of sequences of instructions that must be executed in order, due to data 
dependencies. This concept is better explained with a simple example. Let us have an 
nxn bit multiplier, with input and output registers. By implementing it with a cascade of 
adders, one might have the execution time, in the worst case, as follows: 

Tmult_combinational = tppFF + 2*n*tcell + tsetFF (1) 

where tcell is the delay of an AND gate plus a 2-bits full-adder, tppFF the time 
propagation of a Flip-Flop, and tsetFF the set time of the Flip-Flop. 

The area of this multiplier is  

Acombinational = n2 * Acell + Aregisters (2) 

considering Acell and Aregisters as the area occupied by the cell and registers, respectively. 

If one could do the same multiplier by the classical shift and add algorithm, and 
assuming a carry propagate adder, the multiplication time would be  

Tmult_sequential = n * (tppFF + n*tcell + tsetFF)     (3) 

And the area given by  

Asequential = n*Acell + Acontrol + Aregisters  (4) 

with Acontrol being the area overhead due to the control unit. 

Comparing equations (1) with (3), and (2) with (4), it is clear that by using a 
sequential circuit one trades area by performance. Any circuit implemented as a 
combinational circuit will be faster than a sequential one, but will most certainly take 
much more area.  

1.1.3 Software Compatibility and Reuse of Binary Code 

Among thousands of products launched every day, one can observe those which 
become a great success and those which completely fail. The explanation perhaps is not 
just about their quality, but it is also about their standardization in the industry and the 
concern of the final user on how long the product he is acquiring will be subject to 
upgrades. 

The x86 architecture is one of these major examples. The X86 ISA itself did not 
follow the last trends in processor architectures at the time of its deployment. It was 
developed at a time when memory was considered very expensive and developers used 
to compete on who would implement more and different instructions in their 
architectures. Its ISA is a typical example of a traditional CISC machine. Nowadays, to 
handle with that, the newest X86 compatible architectures spend extra pipeline stages 
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plus a considerable area in control logic and microprogrammable ROM just to decode 
these CISC instructions into RISC like ones. This way, it is possible to implement deep 
pipelining and all other high performance RISC characteristics maintaining the x86 
instruction set and, as a consequence, backward compatibility. 

Although new instructions have been included in the x86 original instruction set, 
like the SIMD MMX and SSE instructions, targeted to multimedia applications, there is 
still support to the original 80 first instructions implemented in the very first X86 
processor. This means that any software written for any x86 in any year, even at the end 
of seventies, can be executed on the last Intel processor. This is one of the keys to 
success of this family: the possibility of reusing the existing binary code, without any 
kind of modification. This characteristic, called software compatibility, was one of the 
reasons of why this product became the leader in its market. Intel could guarantee to its 
consumers that their programs would not be surpassed during a long period of time and, 
even when changing the system to a faster one, they would still be able to reuse the 
same software again without any kind of modification.  

Probably this is the main reason why companies such as Intel and AMD keep 
implementing more power consuming superscalar techniques and trying to increase the 
frequency of operation to the extreme. More accurate branch predictors, more advanced 
algorithms for parallelism detection, or the use of SMT architectures like the Intel 
Pentium IV with Hyperthreading (KOUFATY; MARR, 2003) or SIMD extensions 
instructions such as MMX and SSE (CONTE, 1997), are some of them. However, the 
basic principle of high performance architectures keeps the same: superscalarity. While 
the x86 market is expanding even more, we observe a decline in the use of more elegant 
and efficient instruction system architectures, such as the Alpha and the PowerPC 
processors.  

1.1.4 Increasing Yield and Reducing Manufacture Costs 

In (OR-BACH, 2001), a discussion is made about the future of the processes of 
fabrication using new technologies. According to it, standard cells, as they are today, 
will not exist anymore. As the manufacturing interface is changing, regular fabrics will 
soon become a necessity. How much regularity versus how much configurability is still 
an open question, as well as the granularity of these regular circuits. Regularity can be 
understood as a part which composes a whole, in the level of gates, standard-cells, 
standard-blocks and so on. What is almost a consensus is the fact that the freedom of the 
designers, represented by the irregularity of the project, will be more expensive in the 
future. By the use of regular circuits, the design company will decrease costs, as well as 
the possibility of manufacturing faults, since the reliability of printing the geometries 
employed today in 65 nanometers and below will be a big issue.  

Nowadays, the resources to create an ASIC design of moderate high volume, 
complexity and low power, are considered very high. Some design companies can do it 
because they have experienced designers, infrastructure and expertise. However, for the 
same reasons, there are companies that just cannot afford it. For these companies, a 
more regular fabric seems the best way to go as a compromise using an advanced 
process. As an example, in 1997 there were 11,000 ASIC design startups. This number 
dropped to 1,400 in 2003 (VAHID et al., 2003). The mask cost seems to be the primary 
problem. The estimative in 2003 for the ASIC market is that it had 10,000 designs per 
year with a mask cost of $20,000. The mask cost for 90-nanometer technology is around 
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$2 million. This way, to maintain the same number of ASIC designs, their costs need to 
return to tens of thousands of dollars, not millions.  

Moreover, it is very likely that the cost of doing the design and verification is 
growing in the same proportion, increasing even more the final cost. Table 1.1 shows 
sample non-recurring engineering (NRE) costs for different CMOS IC technologies 
(VAHID et al., 2003). At 0.8 mm technology, the NRE costs were only about $40,000.  
With each advance in IC technology, the NRE costs have increased dramatically. NRE 
costs for 0.18 mm design are around $350,000, and at 0.13 mm, the costs are over $1 
million. This trend is expected to continue at each subsequent technology node, making 
it more difficult for designers to justify producing an IC using nowadays technologies.  

Furthermore, the time it takes for a design to be manufactured at a fabrication 
facility and returned to the designers in the form of an initial IC is also increasing. Table 
1.1 also provides the turnaround times for various technology nodes. The turnaround 
times for manufacturing an IC have almost doubled between 0.8 and 0.13 mm 
technologies. Longer turnaround times lead to larger design costs and even possible loss 
of revenue if the design is late to the market.  

 

Table 1.1: IC non-recurring engineering (NRE) costs and turnaround time (VAHID et 
al., 2003) 

 Technology (µm) 

 0.8 0.35 0.18 0.13 

NRE (K) $40 $100 $350 $1000 

Turnaround (days) 42 49 56 76 

 

Because of all these reasons discussed before, there is a limit in the number of 
situations that can justify producing designs using the latest IC technology. Less than 
1000 out of every 10,000 ASIC designs have high enough volumes to justify fabrication 
at 0.13 mm (VAHID et al., 2003). Therefore, if design costs and times for producing a 
high-end IC are becoming increasingly large, just few of them will justify their 
production in the future.  

The problems of increasing design costs and long turnaround times are made even 
more noticeable due to increasing market pressures. The time during which a company 
seeks to introduce a product into the market is shrinking. This way, the designs of new 
ICs are increasingly being driven by time to market concerns. With the constant 
increase of the productivity gap, regularity has also another very interesting 
characteristic: its scalability. Being regular, a circuit can be adapted to the product 
needs, according to the niche of market it is targeted to. As scalability is one of the 
consequences of regularity, it can be applied at different or higher levels. For instance, 
the IBM Cell processor relies on the regularity of its multimedia processors (called 
Synergistic Processing Elements), which compose the majority of the total system area. 
Because of that, using regular circuits will also amortize costs related to NRE, since it 
facilitates the design, testing and reuse of circuits. 

Summarizing, there will be a crossover point where, if the company needs a more 
customized silicon implementation, it needs be to able to afford the mask and 
production costs. However, economics are clearly pushing designers toward more 
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regular structures that can be manufactured in larger quantities. Regular fabric would 
solve the mask cost and many other issues such as printability, extraction, power 
integrity, testing, yield etc. 

1.2 Main Contributions 

Taking into consideration all the motivations discussed before, the main novelty 
of this work is the complete dynamic nature of the reconfigurable array: besides being 
dynamic reconfigurable, the sequences of instructions to be executed on it are also 
detected and transformed to an array’s reconfiguration at run-time. The reconfigurable 
logic is represented by a coarse-grain array, tightly coupled to the processor, meaning 
that it works as another ordinary functional unit in the processor. It is composed by off 
the shelf functional units, as ALUs and multipliers, to perform the computation, and by 
a set of multiplexers, responsible for the routing. 

As already explained, the approach is based on a special BT hardware called 
Dynamic Instruction Merging (DIM). DIM is designed to detect and transform 
instruction groups for reconfigurable hardware execution at run time. As can be 
observed in Figure 1.4, this is done concurrently while the main processor fetches other 
instructions. When a sequence of instructions is found, following given policies that 
will be explained later, a binary translation is applied to it. This BT transforms this 
sequence of instructions in a configuration of the array, which will perform exactly the 
same function. Thereafter, this configuration is saved in a special cache, and indexed by 
the program counter (PC).  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.4: The proposed approach 

The next time the saved sequence is found, the dependence analysis is no longer 
necessary: the processor loads the previously stored configuration from the special 
cache, the operands from the register bank, and activate the reconfigurable hardware as 
functional unit. Then, the array executes that configuration in hardware (including write 
back of the results), instead of using the datapath of the processor. Finally, the PC is 
updated, in order to continue with the execution of the normal (not translated) 
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instructions. Figure 1.5 shows a systematic illustration, separating in steps both 
detection and reconfiguration/execution phases. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1.5: A systematic illustration of the technique 

By transforming any sequence of opcodes into a single combinational operation in 
the array, one can achieve great gains, since fewer accesses to program memory and less 
iterations on the datapath are required. Depending on the size of the special cache used 
to store the configurations, the optimization can be extended to the entire application, 
not being limited to very few hot spots. Hence, it is possible to avoid the use of a 
reconfigurable hardware for just a single algorithm, which would have a prohibitively 
high cost. Furthermore, the proposed technique is not dependent on the available 
application parallelism to speed up the code to be executed, but rather on sequences of 
instructions that appear several times in the code. 

In a certain way, the approach saves the dependence information of the sequences 
of instructions. This way, repetitive dependence analysis for the same sequence of 
instructions is avoided, as superscalar processors do. It is interesting to point out that 
almost half of the number of pipeline stages of the Pentium IV processor is related to 
dependence analysis (INTEL, 2008); and half of the power consumed by the core of the 
Alplha 21264 processor is also related to extraction of dependence information among 
instructions (WILCOX; MANNE, 1999).  

In this technique, by coupling the array with a BT mechanism, software 
compatibility in any level of the design cycle can be assured, without requiring any 
tools for the hardware/software partitioning or special compilers, allowing easy 
software porting for different machines tracking technological evolutions. Both the DIM 
engine and the reconfigurable array are designed to work in parallel to the processor and 
do not introduce any delay overhead or penalties for critical path of the pipeline 
structure.  
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In the first part of this work, the proposed approach was implemented on a Java 
software compliant architecture targeted to the embedded system domain (BECK; 
CARRO, 2005) (BECK; CARRO, 2005b) (GOMES et al., 2005) (RUTZIG et al., 
2007). The employed processors were two different versions of the Femtojava Processor 
(BECK; CARRO, 2003B) (GOMES et al., 2004). It was demonstrated great 
performance improvements and reduction in energy consumption, even when compared 
to a VLIW version of the same architecture (BECK; CARRO, 2004) (BECK; CARRO, 
2004b). It was also showed that the BT Algorithm can take advantage of the particular 
computational method of stack machines in order to perform the detection with a low 
complexity (BECK; CARRO, 2005c) (GOMES et al., 2005b). Furthermore, it was 
compared to traditional methods of detection of RISC machines (GOMES et al., 2005).  

The same technique was implemented in two RISC like architectures, one 
representing the general purpose computation and the other one the embedded systems 
field. For the first, studies have been done (BECK et al., 2007) (BECK et al., 2006) 
(BECK et al., 2006b) using the Simplescalar Toolset (BURGER; AUSTIN, 1997) 
together with the benchmark suite MIBench (GUTHAUS et al., 2001). For the second, a 
processor based on the MIPS R3000 was used (BECK et al., 2008), executing the same 
benchmark set. As could be expected, there are differences in the structure of the array 
as well as in the detection algorithm when comparing to the Java implementation, since 
in the previous implementation a stack machine was used – although similar results in 
terms of performance and energy were achieved.  

As it will be demonstrated in the next chapters, the following advantages can be 
obtained using this approach, that overcomes problems presented by high performance 
nowadays architectures.  

It achieves: 

 High performance; 

 Low energy consumption. 

In opposite to existing reconfigurable systems: 

 It is applicable to any kind of algorithm with different behaviors (control and 
dataflow oriented software); 

 It can optimize even algorithms with no distinct kernels available. 

 It is technology independent – an FPGA is not necessary for its 
implementation; 

 It maintains binary compatibility. This way, the process is totally transparent 
for the programmer and there is no need of any kind of modification in the 
source code nor the use of special tools. 

Moreover, other advantages are demonstrated: 

 It is highly based on a regular circuit. It means that is possible to increase the 
yield in future technologies.  

 It is easily scalable – the size of the reconfigurable logic can vary depending 
on the application needs. 

 Although it is area consuming, it still can be implemented even considering 
nowadays technologies. 
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Chapters 2 and 3 present the related work, clarifying some design choices that 
have been done and that guided this work. Chapter 2 discusses issues related to 
reconfigurable fabric. The potential of executing sequences of instructions in pure 
combinational logic is also shown. Moreover, a high-level comparison between two 
different array granularities is performed, together with a detailed analysis of the 
behaviors of a set algorithms and which one is more suitable to be executed on each 
kind of reconfigurable logic. The potential of performance improvements presented by 
various reconfigurable systems are also discussed in Chapter 2, demonstrating that these 
architectures can present performance boosts just on a very specific subset of 
benchmarks – which does not reflect the reality of the whole set of applications both 
embedded and general purpose systems are executing in these days. In Chapter 3 two 
techniques related to dynamic optimization – trace reuse and binary translation – are 
shown in details. Then, studies that already used in somehow both approaches with 
reconfigurable architectures are discussed. Finally, the contribution and main novelty of 
this work is pointed out, comparing it against these other studies.  

In Chapter 4 the structure of the reconfigurable array and how it is coupled to the 
target architectures are demonstrated. Chapter 5 discusses the algorithm: how 
instructions are detected and transformed at run time in configurations to be executed on 
the reconfigurable logic. As stated before, as case studies three different architectures 
were evaluated, representing both embedded systems and general purpose domains, 
with RISC and Java machines. This way, Chapters 4 and 5 are each divided in two 
different sections targeting these different computational methods. The impact of using 
a stack machine against a RISC based one when designing the reconfigurable array and 
the binary translation algorithm is also analyzed. 

Chapter 6 shows the methodology and tools employed to gather the results 
considering all architectures executing a large range of benchmarks, concerning 
performance, area, power and energy consumption. Finally, the last chapter discusses 
future work and concludes this thesis. 
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2 RECONFIGURABLE SYSTEMS 

2.1 Principles 

Reconfigurable systems have already shown to be very effective, implementing 
some parts of the software in a hardware reconfigurable logic. Using the same idea of 
instruction reuse, by translating a sequence of operations into a combinational circuit 
performing the same computation, one could speed up the system and reduce energy 
consumption at the price of extra area. Huge software speedups (GUPTA; MICHELI, 
1993) (VENKATARAMANI et al., 2001) (GAJSKI, 1998) (HENKEL, ERNST, 1997) 
as well as system energy reduction have been previously reported (HENKEL, 1999) 
(STITT; VAHID, 2002). In Figure 2.1, the basic principle of a computational system 
working together with a reconfigurable hardware is illustrated. As can be observed, the 
processor is responsible for the execution of a given part of the code, while the 
reconfigurable logic is employed to execute the rest of it, in a more efficient manner. 

 

 

 

 

 

Figure 2.1: The basic principle of a system making use of reconfigurable logic 

Reconfigurable systems have the capability to adapt themselves to a given 
application, providing hardware specialization to it. Through this adaptation, they are 
expected to achieve a great improvement in performance, when compared to fixed 
instruction set processors. However, because of this certain level of flexibility, the gains 
are not as high as in Application Specific Instruction Set Processors (ASIPs) (JAIN et 
al., 2001). This way, as ASIPs have specialized hardware that accelerate the execution 
of the applications it was designed for, a system with reconfigurable capabilities would 
have the almost same benefit without having to commit the hardware into silicon: it can 
be adapted after design, in the same way programmable processors can adapt to 
application changes.  

A reconfigurable system includes a set of programmable processing units called 
reconfigurable logic, which can be reconfigured in the field to implement logic 
operations or functions, and programmable interconnections called reconfigurable 
fabric. The reconfiguration is achieved by downloading from a memory a set of 
configuration bits called configuration context, which determines the functionality of 
reconfigurable logic and fabric. The time needed to configure the whole system is called 
reconfiguration time, while the memory required for storing the reconfiguration data is 
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called context memory. Both the reconfiguration time and context memory constitute 
the reconfiguration overhead. 

Reconfigurable Instruction Set Processors, also known as RISP (COMPTON; 
HAUCK, 2000), will be the focus of this section. Usually a RISP has a special unit 
called RPU (Reconfigurable Processor Unit), responsible for the actual computation of a 
part of the software in the reconfigurable logic. 

2.2 Advantages of using Reconfigurable Logic 

The widely used Patterson (HENESSY; PATTERSON, 2003) metrics of relative 
performance through measures such as IPC are well suited for comparing different 
processor technologies and ISA, as it abstracts concepts such as clock frequency. As 
described in (SIMA; FALK, 2004), however, to better understand the performance 
evolution in the microprocessor industry, it is interesting to note the absolute processor 
performance (Ppa) metric denoted as: 

Ppa = fc * 1/CPII * IPII * OPI (operations/sec)  (1) 

In equation (1), CPII, IPII and OPI are described respectively as Cycles Per Issue 
Interval, Instructions Per Issue Interval and Operation per Instructions, while fc is the 
operating clock frequency. The first two metrics, when multiplied, form the known IPC 
rate. Nevertheless, it is interesting to keep these factors separated in order to better 
expose speed-up potentials.  

The CPII rate informs the intrinsic temporal parallelism of the microarchitecture, 
showing how frequently new instructions are issued to execution. The IPII variable is 
related to the issue parallelism, or the average number of dynamically fetched 
instructions issued to execution per issue interval. Finally, the OPI metric measures 
intra-instruction parallelism, or the number of operations that can be issued through a 
single binary instruction word. It is important to note that one should distinguish the 
OPI from the IPII rate, since the first reflects changes in the binary code that should be 
adapted statically to boost intrainstruction parallelism, such as data parallelism found in 
SIMD architectures. Figure 2.2 illustrates these three metrics. 

Throughout the microprocessor evolution history, several approaches have been 
considered to improve performance by manipulating one or more of the factors of 
equation (1). One of these approaches, for example, dealt with the CPII metric by 
increasing instructions throughput with pipelining (HENNESSY, PATTERSON, 2003). 
Moreover, the CPII metric has also been well covered with efficient branch prediction 
mechanisms and with memory hierarchies, though this metric is still limited by pipeline 
stalls such as the ones obtained with cache misses. The OPI rate has also been dealt 
with the development of complex CISC instructions or SIMD architectures. 

On the other hand, few solutions other than the superscalar approach since the 
90’s explored the opportunity of increasing the IPII rate. This is an interesting fact, 
since differently from the OPI rate, increasing the IPII raises excellent possibilities of 
improvements, as it does not require changes or extensions to the ISA and, as a 
consequence, maintains backward software compatibility. 
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Figure 2.2: Definitions of IPII, CPII and OPI 

2.2.1 Application 

A reconfigurable system targets to increase exactly the IPII rate. The basic idea is 
to identify instructions that can be grouped and configured to execute in a 
reconfigurable array. Consequently, more instructions will be issued by issue interval 
(increasing the IPII rate). However, it can also influence the CPII rate, as it will be 
analyzed later. Therefore, temporal and issue parallelisms are both dynamically 
explored, and can be illustrated by the following equations: 

IPII = (Number of Instructions)/(Number of issues) (2) 

CPII = (Number of Cycles)/(Number of Issues) (3) 

In order to increase the IPII number, it is necessary to increase the execution 
efficiency by decreasing the number of issues. Equation (4) shows how it is affected by 
the technique: 

Number of Issues = Total number of executed Instructions + Number of Merged 
Instructions*(1 – AMIL) (4) 

where the Average Merged Instructions Length (AMIL) is the average group size in 
number of instructions; while the Number of Merged Instructions counts how many 
merged instructions1 were issued for execution in combinational logic. This can be 
represented by the following equation: 

Number of Merged Instructions = MIR * Total number of executed Instructions (5)  

                                                 
1 In this work the set of instructions that are executed on reconfigurable logic is called 
of merged instructions, because this name is related to the proposed technique; in 
previous works, several and different names have been using. However, there is no 
consensus about this nomenclature 
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MIR is denoted as the Merged Instructions Rate. This is an important factor as it 
exposes the density of grouped operations that can be found in an application. If MIR is 
equal to one, then the whole application was mapped into an efficient mechanism and 
there is no need of a processor, which is actually the case of a specialized ASIC or 
complete dataflow architectures. 

Furthermore, doing a deeper analysis, one can conclude that the ideal CPII also 
equals to one, which means that the functional units are constantly fed by instructions 
every cycle. However, due to pipeline stalls or to instructions with higher delays, the 
CPII variable tends to be of a greater value. In fact, manipulating this factor is a bit 
more complicated, as both the number of cycles and the number of issues are affected 
by the execution of instructions in reconfigurable logic. As it will be shown in the 
example, there are times when the CPII will increase; this is actually a consequence of 
the augmented number of operations issued in an group of instructions.  

This way, one thing that must be assured is that the CPII rate will not grow 
proportionally to hide the IPC gains caused by the increase of IPII. In other words, if 
the number of issues decreases, the number of cycles also has to decrease. 
Consequently, a fast mechanism is necessary for reconfiguring the hardware and 
executing instructions. 

2.2.2 An Example 

The following example illustrates the concept previously proposed.  

Figure 2.3a shows a hypothetical trace with instructions a, b, c, d and e, and the 
cycles at which the instruction execution ends. If one considers that the implemented 
architecture has an IPII rate of one, typical of RISC scalar architectures, and that inst d 
causes a pipeline stall of 5 cycles, while all other instructions are executed in one cycle, 
this trace of 14 instructions would take 18 cycles to execute. This results in a CPI of 
1.28. 

If, however, instructions of number one to five are merged (which is represented 
by Inst M, as shown in Figure 2.3b), and executed in two cycles, the whole sequence 
would then be executed in 14 cycles. Note that the left column in Figure 2.3b represents 
the issue number of the instruction group. Therefore, one would find the following 
numbers: CPII = 1.5, AMIL = 5, and MIR = 1/14 = 0.07. Because of the capability of 
speeding up the fetch and execution of the merged instructions, the final IPII would 
increase to 1.4. Even though the CPII would increase from 1.28 to 1.5, the IPC rate 
would grow from 0.78 to 1. 

Nevertheless, one could expect further improvements if merged instructions 
included Inst d, which caused a stall of 5 cycles in the processor pipeline. Supposing 
that the sequence of instructions b, d and e (issue numbers of 5, 6 and 7 in Figure 2.3b) 
is merged into instruction M2 and executed in 3 cycles, it would produce an impact on 
the CPII that would go down to 1.375 while the IPII would rise to 1.75, resulting in an 
IPC equals to 1.27. This is illustrated in Figure 2.3c. In other words, using a 
reconfigurable system the interval of execution between a set of instruction and another 
is longer than the usual. However, as more instructions are executed per time slice, IPC 
increases. 
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Figure 2.3: a) Execution trace of a given application; b) Trace with one merged 
instruction; c) Trace with two merged instructions 

 

Later in this thesis, an ideal solution is analyzed, which is capable of executing 
merged instructions in just one cycle, meaning that the CPII inside the array is 1. This 
will show the potential gains of combinational logic when affecting the AMIL and IPII 
rates. Although this kind of assumption can be theoretically feasible, the area overhead 
in this case would be enormous. For example, operations such as multiplication 
normally are not performed in just one cycle.  

Figure 2.4 graphically shows how the gains are obtained. As it can be seen, the 
upper part of the figure demonstrates the execution of several instructions, which are 
represented as boxes. Those that have the same texture represents instructions that have 
data-dependency and hence cannot be executed in parallel. Still, non-dependent 
instructions can be parallelized. On the other hand, by using the combinational data-
driven approach, one is able to reduce the time spent executing several minor operations 
in the processor pipeline at the cost of extra area. This represents the tradeoff between 
sequential and combinational logic. 

 

Issue Instruction Cycle 

1 inst M 1 
2 inst b 3 
3 inst a 4 
4 inst a 5 
5 inst b 6 
6 inst d 11 
7 inst e 12 
8 inst b 13 
9 inst c 14 
10 inst a 15 

 

Issue Instruction Cycle 

1 inst M 1 
2 inst b 3 
3 inst a 4 
4 inst a 5 
5 inst M2 8 
6 inst b 9 
7 inst c 10 
8 inst a 11 

 

(a) (b) (c)
Number Instruction Cycle 

1 inst a 1 
2 inst b 2 
3 inst b 3 
4 inst a 4 
5 inst c 5 
6 inst b 6 
7 inst a 7 
8 inst a 8 
9 inst b 9 
10 inst d 10 
11 inst e 15 
12 inst b 16 
13 inst c 17 
14 inst a 18 
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Figure 2.4: Gains obtained when using combinational logic 

 

2.3 Classification 

In the reconfigurable field, there is a great variety of classifications, as it can be 
observed in some surveys published about the subject (BARAT; LAUWEREINS, 2000) 
(COMPTON; HAUCK, 2000). In this revision, the most common ones are cited, since 
there is still no consensus about this taxonomy. 

2.3.1 RPU Coupling 

How the RPU is coupled, or connected to the main processor, defines how the 
interface between both of them works, including issues related to how data is transferred 
and how the synchronization between the parts is performed. 

The position of the RPU, relative to the microprocessor, directly affects 
performance. The benefit obtained from executing a piece of code in the RPU depends 
on communication and execution costs. The time needed to execute an operation in the 
RPU is the sum of the time needed to transfer the processed data and the time required 
to process it. If this total time is smaller than the time it would normally take in the 
processor alone, then an improvement can be obtained. 

The RPU can be allocated in three main places relative to the processor: 

 Attached to the processor: The reconfigurable logic communicates to the 
main processor through a bus. 

 Coprocessor: The reconfigurable logic is located next to the processor. The 
communication usually is done using a protocol similar to those used for 
floating point coprocessors. 

 Functional Unit: The logic is placed inside the processor. It works as an 
ordinary functional unit. The decoder of the processor is responsible to 
activate it, when necessary. 

Figure 2.5 illustrates these three different types of RPU coupling. The two first 
interconnection schemes are usually called loosely coupled. The functional unit 
approach, in turn, is named as tightly coupled. As stated before, the efficiency of each 
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technique depends on two things: the time of data transfer between the components, 
where, in this case, the functional unit approach is the fastest one and the attached 
processor, the slowest; and the quantity of instructions executed by the RPU. Usually, 
loosely coupled RPUs can execute larger chunks of code, and are faster than the tightly 
coupled ones – mainly because they have more area available. For this kind of RPU, 
there is a need for faster execution times: it is necessary to overcome some of the 
overhead brought by the high delays presented by the data transfer. 

A tightly coupled RPU, although occupying more die area (where the processor is 
implemented), makes the control logic simpler, and diminishes the overhead required in 
the communication between the reconfigurable array and the rest of the system, because 
it can share some resources with the processor, such as the access to the register bank. 
Then, when there is a RPU working as functional unit in the main processor, it is called 
a Reconfigurable Functional Unit, or RFU. The first reconfigurable systems were 
implemented as co-processors, or as attached processors. However, with the 
manufacturing advances, with more transistors available within the same die, the RFU 
approach is becoming a very common implementation. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Different types of RPU Coupling 

 

2.3.2 Granularity 

The granularity of a reconfigurable unit defines its level of data manipulation: the 
building blocks for fine-grained logic are gates (efficient for bit level operations), while 
in coarse-grained RFUs the blocks are larger (therefore better suited for bit parallel 
operations). A fine-grain reconfigurable system consists of Processing Elements (PEs) 
and interconnections that are configured at bit-level. The PEs implement any 1-bit logic 
function and vast interconnection resources are responsible for the communication links 
between these PEs. Fine-grain systems provide high flexibility and can be used to 
implement theoretically any digital circuit. A coarse-grain reconfigurable system, in 
turn, consists of reconfigurable PEs that implements word-level operations and special-
purpose interconnections retaining enough flexibility for mapping different applications 
onto the system. Usually, bit-oriented algorithms can take better benefit from fine-
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grained approach, while for computation intensive applications, the coarse-grain 
approach can be the best alternative.  

Coarse grain architectures are implemented using off the shelf functional units and 
multiplexers or yet using special functional units targeted to a given domain of 
application. Fine grain reconfigurable systems are usually implemented with FPGA. An 
example of an FPGA architecture is shown in Figure 2.6. It is consists of a 2-D array of 
Configurable Logic Blocks (CLBs) used to implement both combinational and 
sequential logics. Each CLB typically contains two or four identical programmable 
slices. Each slice usually contains two programmable cores with few inputs (typically 
four) that can be programmed to implement any 1-bit logic function. Programmable 
interconnects surround CLBs ensures the communication between them. These 
interconnections can be either direct connections via programmable switches or a mesh 
structure using Switch Boxes (S-Box), as illustrated in the example. Each S-Box 
contains a number of programmable switches (e.g., pass transistor) to perform the 
required interconnections between the input and output wires. Finally, programmable 
I/O cells surround the array, which are responsible for the communication with the 
external environment.  

 

 

 

 

 

 

 

 

 

 

Figure 2.6: A typical FPGA architecture 

 

Granularity also affects the size of the configuration stream and the configuration 
time. With fine-grained logic, more information is needed to describe the reconfigurable 
instruction. Coarse-grained logic descriptions are more compact, but on the other hand, 
some operations can be limited due to its higher level of data manipulation.  

Another issue related to the granularity is the segment size. A segment is the 
minimum hardware unit that can be configured and assigned to a reconfigurable 
instruction (which will be explained in the following sub-section). Segments allow 
instructions to share the reconfigurable resources. If segments are used, the 
configuration of the reconfigurable logic can be performed in a hierarchical manner. 
Each instruction is assigned to one or more segments, and inside those segments, the 
processing elements are configured. 

The interconnect that connects the elements inside a segment is referred to as 
intra-segment interconnect. Intersegment interconnect is used to connect different 
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segments. In FPGAs, there are different levels of intra-segment interconnect. With 
coarse-grained architectures, the interconnect tends to be done using buses and crossbar 
switches. 

2.3.3 Instruction Types 

Reconfigurable instructions are those responsible for controlling the 
reconfigurable hardware, as well as for the data transfer between it and the main 
processor. They are identified by special opcodes in the processor instruction set. Which 
operation a reconfigurable instruction will perform is usually specified using an extra 
field in the instruction word. If one considers that a list of possible operations to be 
executed on reconfigurable logic is encountered in a special table, this field can give 
two different kinds of information: 

 Address: The address in the memory of the configuration data for the 
instruction is specified in the instruction word. Example: DISC 
(WIRTHLIN; HUTCHINGS, 1995). 

 Instruction number: An instruction identifier of small length is embedded in 
the instruction word. This identifier indexes a configuration table where an 
information, such as the configuration data address, is stored. The number of 
reconfigurable instructions at one time is limited by the size of the table. 
Example: OneChip98 (WITTIG; CHOW, 1996). 

The first approach needs more instruction word bits but has the benefit that the 
number of different instructions is not limited by the size of a table, as in the second 
case. When using the configuration table approach, the table can be changed on the fly, 
so the processor can adapt to the task at hand at runtime. However, specialized 
scheduling techniques have to be used during code generation in order to configure 
what instructions will be available in the table at a given moment, during program 
execution. 

Moreover, there are other issues concerning instructions in reconfigurable 
systems. For example, the memory accesses performed by these instructions can be 
made by specialized load/store operations or implemented as stream based operations. If 
the memory hierarchy supports several accesses at the same time, then the number of 
memory ports can be greater than one. Moreover, the register file accessed by the RFU 
can be shared with other functional units or be dedicated (such as the floating point 
register file in some architectures). The dedicated register file would need less ports 
than if it was shared, becoming cheaper to be implemented. Its major drawback is 
register heterogeneity, resulting in more control for synchronizations. 

Furthermore, reconfigurable instructions can be implemented as stream based 
ones or customized. The first type can process large amounts of data in a sequential or 
blocked manner. Only a small set of applications can benefit from this type, such as FIR 
filtering, discrete cosine transformation (DCT) etc. Custom instructions take small 
amounts of data at a time (usually from internal registers) and produce another small 
amount of data. These instructions can be used in almost all applications as they impose 
fewer restrictions on the characteristics of the application. Example of these operations 
are bit reversal, multiply accumulate (MAC) etc.  

Finally, instructions can also be classified in many other ways, such as execution 
time, pipelining, internal state etc. 
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2.3.4 Reconfigurability 

The reconfigurable logic inside the RFU can be programmed at different 
moments. If the RFU can only be programmed at startup, this unit is not reconfigurable 
(it is configurable). If the RFU can be configured after initialization, the supported 
instruction set can be bigger than the size allowed by the reconfigurable logic. If the 
application is divided in functionally different blocks, the RFU can be reconfigured to 
the needs of each individual block. In this manner, the instruction adaptation is done in 
a per block basis. Most of the reconfigurable processors belong to this kind.  

Reconfiguration times depend on the size of the configuration data, which can be 
quite large. These times depend on the configuration method used. For instance, in the 
PRISC processor (ATHANAS; SILVERMAN, 1993), the RFU is configured by 
copying the configuration data directly into the configuration memory using normal 
load/store operations. If this task is performed by a configuration unit that is able to 
fetch the configuration data while the processor is executing code, a performance gain 
can be obtained. Furthermore, prefetching the instruction configuration data can reduce 
the time the processor is stalled waiting for reconfiguration, which could be done. The 
insertion of prefetching instructions could be done automatically by software tools. 

The reconfigurable logic is simpler if the RFU is blocked during reconfiguration. 
However, if the RFU can be used while reconfiguring, it is possible to increase 
performance. This can be done, for example, by dividing the RFU in segments that can 
be configured independently from each other, with no necessity of reconfiguring the 
whole RFU at a time.  

2.4 Examples 

In the following subsections, some of the most cited works regarding 
reconfigurable systems are discussed. A special subsection is added to each architecture 
description, discussing briefly the behavior of the benchmark set employed for their 
evaluation. Later, in this same chapter, the impact of using these benchmarks will be 
better discussed. For even more details about existent reconfigurable architectures, some 
recent surveys about the theme, both on coarse (THEODORIDIS et al., 2007) 
(HARTENSTEIN, 2001) and fine grain (TATAS et al., 2007) systems, can be found.  

2.4.1 Chimaera (1997) 

Chimaera (HAUCK, 1997) was created with the claim that the current custom 
computing units at that time used to suffer with communication delays. Therefore, large 
chunks of the application code should be optimized to achieve reasonable performance 
improvements, so it could overlap this delay.  In order to decrease communication time, 
this was one of the first proposals of a reconfigurable system that actually works 
together with the host processor, as a tightly coupled unit, with direct access to its 
register file.  

The main component of the system is the reconfigurable array, which consists of 
FPGA-like logic designed to support high-performance computations. It is there that all 
RFU instructions will be executed. To the array, it is given direct read access to a subset 
of the registers in the processor (either by adding read connections to the host’s register 
file, or by creating a shadow register file which contains copies of those registers’ 
values). 
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The granularity of this array is fine, based on FPGA, but a modified one: there is 
no state holding elements (such as flip flops or latches) inside of it, making it totally 
combinational. Its routing mechanism as well as its logic blocks are illustrated in Figure 
2.7a and Figure 2.7b, respectively. Furthermore, there are no pipeline stages, but there is 
no claim about how this would influence the system’s critical path. The routing 
mechanism was also modified (as the way lines are structured) to allow partial 
reconfiguration at faster speeds. The unit accepts partial reconfiguration, although its 
mechanism is not clearly described on the paper. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.7: (a) The Chimaera Reconfigurable Array routing structure, and its (b) logic 
block (HAUCK, 1997) 

Another interesting aspect of this architecture is the downward flow of 
information and computation through the array. There is no way to send signals back to 
a higher row in the system. Moreover, the system supports more than one instruction in 
the reconfigurable unit at the same time, treating the reconfigurable logic not as a fixed 
resource, but instead as a cache for RFU instructions. Those instructions that have 
recently been executed, or those it can otherwise predict might be needed soon, are kept 
in the reconfigurable logic.  

The array is coupled to a MIPS R4000 processor. As part of the host processor’s 
decode logic, it is determined if the current instruction is a RFUOP opcode. If so, it 
configures the RFU to produce the next result. In order to use instructions in the RFU, 
the application code includes calls to the RFU (using special instructions), and the 
corresponding RFU mappings are contained in the instruction segment of that 
application. These special instructions are hand-coded and manually scheduled in the 
original source code, which usually also suffer of some kind of transformation.  

The RFU call consists of the RFUOP opcode, indicating that an RFU instruction 
is being called, an ID operand that determines which specific instruction should be 
executed, and the destination register operand. The information from which registers an 
RFU configuration reads its operands is intrinsic in the instruction. A single RFU 
instruction can use up to nine different operands. If that instruction is already present 
(meaning that it is already programmed, or configured) in the RFU, the result of that 
instruction is written to the destination register during the instruction’s write back cycle. 
In this way, the RFU calls act just like any other instruction, fitting into the processor’s 
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standard execution pipeline. If the requested instruction is not currently loaded into the 
RFU, the host processor is stalled while the RFU fetches the instruction from memory 
and properly reconfigures itself.  

The Content Addressable Memory (CAM) determines which are the loaded 
instructions in the array, where they are, and if they are completed. When a RFUOP is 
found, and if the value in the CAM matches the RFUOP ID, the result from that row in 
the reconfigurable array is written onto the result bus, and thus sent back to the register 
file – considering that the computation is done. If the instruction corresponding to the 
RFUOP ID is not present, the Caching/Prefetch control logic stalls the processor, and 
loads the proper RFU instruction from memory into the array. The caching logic also 
determines which parts of the reconfigurable array are overwritten by the instruction 
being loaded, and attempts to retain those RFU instructions most likely to be needed in 
the near future. Reconfiguration is done on a per-row basis, with one or more rows 
making up a given RFU instruction. 

 

 

 

 

 

 

 

 

 

Figure 2.8: Organization of the Chimaera system (HAUCK, 1997) 

 

BENCHMARK EVALUATION 

It was used three different algorithms for the system validation:  

 Compress/SPEC92 – speedup of 1.11. The small speedup can be explained 
because it is very likely that there are no distinct kernels for optimization. 
This work (LIPASTI et al., 1996), about value prediction, shows that this 
algorithm has a small value locality concerning loads, which could be a 
reflex of a small reutilization of kernels. 

 Eqntott/SPEC92 – speedup of 1.8. According to the paper: “spends about 
85% of its time in a single routine, ‘cmppt’”. In the same work cited before, 
Eqntott has a high degree of load value locality. 

 Conway’s Game of Life – According to the paper, it is basically an array 
computation. In the software version of the algorithm, more than half of the 
time is spent in the routines “get_bit” and “put_bit”, which read and write the 
value of individual cells. By simply replacing these routines with RFU 
instructions, it is possible to get a speedup of 2.06. With manual 
modification via careful hand mapping to bit parallel, a speedup of 160 times 
was achieved. 

 



 

 

 

45 

 

2.4.2 GARP (1997) 

The GARP machine is a reconfigurable system coupled to a MIPS II instruction 
set processor (HAUSE; WAWRYNEK, 1997). With GARP, the loading and execution 
of configurations in the reconfigurable array is always under the control of a program 
running on the main processor. As Chimaera, the reconfigurable instructions are hand-
coded and statically scheduled. It is used a modified GCC-like design flow, using a 
pseudo language bounded together with the assembly generated from a C source.  

It is interesting to point out that it uses FPGA technology for the reconfigurable 
logic. However, because of that, it is necessary to overcome some obstacles, such as 
(according to the authors) (HAUSE; WAWRYNEK, 1997):  

 FPGA machines are rarely large enough to encode entire interesting 
programs all at once. Smaller configurations handling different pieces of a 
program must be swapped in over time. However, configuration time is too 
expensive for any configuration to be used only briefly and discarded. In real 
programs, much code is not repeated often enough to be worth loading into 
an FPGA. 

 No circuit constructed with an FPGA can be as efficient as the same circuit 
in dedicated hardware. Standard functions like multiplications and floating-
point operations are big and slow in an FPGA when compared to their 
counterparts in ordinary processors. 

 Problems that are worth solving with FPGAs usually involve more data than 
can be kept in the FPGAs themselves. No standard model exists for attaching 
external memory to FPGAs. FPGA-based machines typically include ad hoc 
memory systems, designed specifically for the first application envisaged for 
the machine. 

 Wide acceptance in the marketplace requires binary compatibility among a 
range of implementations. The current crop of FPGAs, on the other hand, 
must be reprogrammed for each new chip version, even within the same 
FPGA family. 

Garp’s reconfigurable array is composed of entities called blocks (Figure 2.9). 
One block on each row is known as a control block. The rest of the blocks in the array 
are logic blocks, which correspond roughly to the CLBs of the Xilinx 4000 series 
(XILINX, 2008). The Garp architecture fixes the number of columns of blocks at 24. 
The number of rows is implementation-specific, but can be expected to be at least 32. 
The basic “quantum” of data within the array is 2 bits. Logic blocks operate on values 
as 2-bit units, and all wires are arranged in pairs to transmit 2-bit quantities. This way, 
operations on 32-bit quantities generally require 16 logic blocks. Compared to typical 
FPGAs, Garp expends more hardware on accelerating operations like adds and variable 
shifts. The decision to make everything 2 bits wide is based on the assumption that a 
large fraction of most configurations will be taken up by multi-bit operations that are 
configured identically for each bit. By doubling up bits, the size of configurations— and 
thus the time required to load configurations and the space taken up on the die to store 
them—is reduced at the cost of some loss of flexibility 
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Rather than specify component delays as precise times that would change with 
each processor generation, delays in Garp are defined in terms of the sequences that can 
be fit within each array clock cycle. Only three sequences are permitted: 

 short wire, simple function, short wire, simple function; 

 long wire, any function not using the carry chain; or 

 short wire, any function. 

The loading and execution of configurations is under control of the main 
processor. Several instructions have been added to the MIPS-II instruction set for this 
purpose, including ones that allow the processor to move data between the array and the 
processor’s own registers. The main processor has a number of instructions for 
controlling the array. These include instructions for loading configurations, for copying 
data between the array and the processor registers, for manipulating the array clock 
counter, and for saving and restoring array state on context switches. The Garp 
reconfigurable hardware can access directly the main memory system, in opposite to the 
Chimaera architecture. 

 

 

 

 

 

 

 

 

 

 

Figure 2.9: A block of the GARP machine (HAUSE; WAWRYNEK, 1997) 

Each block in the array requires exactly 64 configuration bits (8 bytes) to specify 
the sources of inputs, the function of the block, and any wires driven with outputs. No 
configuration bits are needed for the array wires. A configuration of 32 rows requires 
approximately 6 KB. Assuming a 128-bit path to external memory, loading a full 32-
row configuration takes 384 sequential memory accesses. At that time, a typical 
processor external bus might need 50 µs to complete the load. 

Since not all useful configurations will require the entire resources of the array, 
Garp allows partial array configurations. The smallest configuration is one row, and 
every configuration must fill exactly some number of contiguous rows. Distributed 
within the array is a cache of recently used configurations, similar to an ordinary 
instruction cache. Two configurations can never be active at the same time, no matter 
how many array rows might be left unused by a small configuration. 

BENCHMARK EVALUATION 

Simulations were performed in order to gather results for Garp, since at that time 
no actual hardware implementation existed. It was compared against a Sun UltraSPARC 
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1/170, a 4-way superscalar 64-bit processor with 16 kB each of on-chip instruction and 
data caches. Performance estimations can be observed in Figure 2.10. In Figure 2.11 
one can observe the area estimative of a hypothetical implementation in hardware of 
this reconfigurable system. It would be implemented in a 0.5 µm, 4-metal-layer process 
in a die size of 17.5 x 17.8 mm2. It is also compared with the same UltraSPARC. 

 

 

Figure 2.10: Performance estimations for GARP machine, compared to the SPARC 
(HAUSE; WAWRYNEK, 1997) 

 

 

 

 

 

 

 

 

Figure 2.11: Area estimation for the GARP system (HAUSE; WAWRYNEK, 1997) 

 

This system was evaluated with the following algorithms: 

 DES - A well-know cryptography algorithm, with just one hot spot 
responsible for almost 100% of execution time (ANANIAN, 1997). 

 Sorting – Several kinds of sorting, including Quicksort (1 million objects). 
Sorting algorithms usually have just one kernel used for sorting the 
components, which is repeated several times.  

 Image Dithering – It is a vector processing. Again, it is based on the same 
kernel that is repeated several times through the image. In this case, a dither 
was applied to a full color image of 640x480 pixels to a fixed palette of 
fewer than 256 colors. 

 

2.4.3 Remarc (1998) 

REMARC comes from “Reconfigurable Multimedia Array Coprocessor” 
(MIYAMORI et al., 1998). It is a reconfigurable unit, coupled to a MIPS II ISA based 
RISC machine. As the name states, REMARC was specifically designed to speed up 
multimedia applications. As the MIPS ISA can support up to four coprocessors, and 
coprocessor 0 is already used for memory management and exception handling, 
coprocessor 1 is used for a floating point unit; REMARC operates as coprocessor 2. 
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A coarse grain reconfigurable system was employed, because, according to the 
authors, fine grain FPGA based reconfigurable architectures have the following 
drawbacks: 

 The small width of the programmable logic blocks results in large area and 
delay overheads to implement wider datapaths, such as 8 or 16 bits long. 

 FPGAs are slower than a custom integrated circuit and have lower logic 
density. 

This way, REMARC consists of an 8x8 array of nano processors and a global 
control unit. The nano processor can communicate to the four adjacent ones through the 
dedicated connections and to the processors in the same row and the same column 
through the 32-bit Horizontal Bus (HBUS) and the 32-bit Vertical Bus (VBUS), 
respectivelly. A general overview of the system can be observed in Figure 2.12. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.12: General overview of the REMARC reconfigurable system (MIYAMORI et 
al., 1998) 

The nano processor consists of a 32-entry instruction RAM (nano instruction 
RAM), a 16-bit ALU, a 16-bit entry data RAM, an instruction register (IR), eight 16- bit 
data registers (DR), four 16-bit data input registers (DIR), and a 16-bit data output 
register (DOR). The DOR registers are used to accept data from the four adjacent nano 
processors (up, down, left, and right) through dedicated connections (DINU, DIND, 
DINL, and DINR). The DOR register data can also be used for source data of ALU 
operations or data inputs of a DIR register. These local connections provide high 
bandwidth pathways within the processor array. The 16-bit ALU can execute 30 
different instructions. The nano processor is demonstrated in Figure 2.3. 

The nano processors do not have Program Counters (PCs) by themselves. The 
global control unit generates the PC value (nano PC) for all nano processors every 
cycle. All nano processors use the same nano PC and execute the instruction indexed by 
it. However, each nano processor has its own nano instruction RAM. Therefore, each 
nano processor can operate differently according to the nano instructions stored in this 
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local RAM. This makes it possible to achieve a limited form of Multiple Instruction 
Stream, Multiple Data Stream (MIMD) operation in the processor array. At this point, 
according to the authors, REMARC can be regarded as a VLIW processor in which 
each instruction consists of 64 operations. 

As already stated before, the global control unit controls the nano processors and 
the transfer of data between them and the main processor. It includes a 1024-entry 
instruction RAM (global instruction RAM), data registers, and control registers. These 
registers can be accessed by the main processor directly using main processor 
instructions: move from/to coprocessor or load/store coprocessor. Eight 32-bit VBUSs 
are used for communication between the global control unit and the nano processors.  

The reconfigurable instructions are programmed in the special REMARC 
assembly language, and can be added to a regular C code using GCC.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.13: One nano processor in the REMARC system (MIYAMORI et al., 1998) 

 

BENCHMARK EVALUATION 

Remarc executes MPEG2 decoding, optimizing just two kernels: IDCT and MC 
that, according to the paper, cover more than 70% of the total execution time. It also 
executes MPEG2 encoding, optimizing just Motion Estimation, which covers 98% of 
total execution time, as shown in Figure 2.14. The third algorithm employed is DES, 
already discussed in this same section, which can be observed in Figure 2.15. A high-
level simulation of the system demonstrated speedups ranging from a factor of 2.3 to 
21.2 in the aforementioned applications. 
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Figure 2.14: Motion Estimation is responsible for 98% of execution time in the MPEG2 
encoder (MIYAMORI et al., 1998) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.15: Steps of the DES algorithm (MIYAMORI et al., 1998) 

 

2.4.4 Rapid (1998) 

RaPiD (CRONQUIST et al., 1998) is a coarse-grain architecture that allows the 
dynamic construction of deeply pipelined computational datapaths from a mix of ALUs, 
multipliers, registers and local memories. The goal of RaPiD is to compile regular 
computations like those found in DSP applications into both an application-specific 
datapath, and the program for controlling that datapath. RaPiD-I is a linear array of 
functional units which can be configured to form a (mostly) linear computational 
pipeline. This array of functional units is divided into identical cells. One cell for 
RaPiD-I is shown in Figure 2.16. This cell comprises an integer multiplier, two integer 
ALUs, six general-purpose registers and three small local memories. The complete 
RaPiD-I array contains 16 of these cells. 

The functional units are interconnected using a set of ten segmented busses that 
run the length of the datapath. Each input of the functional units is attached to a 
multiplexer that is configured to select one of eight busses. Each output of the 
functional units is attached to a demultiplexer comprised of tristate drivers, each driving 
one of eight busses. Each output driver can be configured independently, which allows 
an output to fan out to several busses, or none at all if the functional unit is not being 
used. The ALUs perform the usual logical and arithmetic operations on signed or 
unsigned fixed-point 16-bit data. The two ALUs in a cell can be combined to perform a 
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pipelined 32-bit operation, most typically as a 32-bit adder for multiply-accumulate 
computations.  

RaPiD is programmed for a particular application by first mapping the 
computation onto a datapath pipeline. The control signals are divided into static control 
signals provided by configuration memory, and dynamic control which must be 
provided on every cycle. The static programming bits are used to construct this pipeline 
and the dynamic programming bits are used to schedule the operations of the 
computation onto the datapath over time. A controller is programmed to generate the 
information needed to produce the dynamic programming bits. At the time the paper 
was written, the applications were mapped to the RaPiD architecture by hand. There 
was no compiler or tool support at all. 

 

 

 

 

 

 

 

 

 

 

Figure 2.16: RaPiD-I cell (CRONQUIST et al., 1998) 

 

BENCHMARK EVALUATION 

RaPiD executes two algorithms that have already been discussed on this section: 
FIR filter and Matrix multiply, proving once more that traditional reconfigurable 
architectures in general just attack one niche of applications. A performance of up 1.6 
billion of operations per second was achieved in a FIR filter and Matrix multiplication. 
However, there is no comparison against any other architecture. 

 

2.4.5 Piperench (1999) 

The basic principle of Piperench (GOLDSTEIN et al., 1999) is the so-called 
“pipelined reconfiguration”. It means that a given kernel is broken into pieces, and these 
pieces can be reconfigured and executed on demand. This way, the parts of a given 
kernel are multiplexed in time and space into the reconfigurable logic. This process is 
called virtualization process, and it is illustrated in Figure 2.17. In the upper part of it 
(Figure 2.17a), it is demonstrated an application which was divided in 5 different 
pipeline stages, taking the total of 7 cycles to be configured and executed (each stage 
can be configured and used independently of each other), representing the normal 
operation. Figure 2.17b shows how this application can fit in the reconfigurable 
hardware after virtualization: just 3 stages of the equivalent pipeline stages presented 
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before are necessary. The pipeline stages are reconfigured on demand, according to the 
kernel needs. Note that the virtual stage 1 is used to execute the equivalent of stages 1 
and 4 of the original operation. This is feasible because it is done in different periods of 
time. Since some stages are configured while others are executed, reconfiguration does 
not decrease performance. Consequently, it is possible to execute the same piece of 
software taking the same time, but with a smaller area overhead. 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.17: The virtualization process, technique used by Piperench. (a) Normal 
execution. (b) With virtualization (GOLDSTEIN et al., 1999) 

In its current implementation, PipeRench can be classified as an attached 
processor. Figure 2.18 presents a general overview of the PipeRench architecture. A set 
of physical pipeline stages are called stripes. Each stripe has an interconnection network 
and a set of Processing Elements (PEs). In Figure 2.19 one can observe a more detailed 
view of a PE. Each PE contains an arithmetic logic unit and a pass register file. Each 
ALU in the PE contains lookup tables (LUTs) and extra circuitry for carry chains, zero 
detection, and so on. Designers can implement combinational logic using a set of NB-
bit-wide ALUs. They can also cascade the carry lines of these ALUs to construct wider 
ALUs by chaining them together via the interconnection network, so it is possible to 
build complex combinational functions. The ALU operation is static while a particular 
virtual stripe resides in a physical stripe. 

Through the interconnection network, PEs can access operands from registered 
outputs of the previous stripe, as well as registered or unregistered outputs of the other 
PEs in the same stripe. The pass register file provides a pipelined interconnection from a 
PE in one stripe to the corresponding PE in subsequent stripes. A program can write the 
ALU’s output to any of the P registers in the pass register file. If the ALU does not 
write to a particular register, that register’s value will come from the value in the 
previous stripe’s corresponding pass register. For data values to move laterally within a 
stripe, they must use the interconnection network. In each stripe, the interconnection 
network accepts inputs from each PE in that stripe, plus one of the register values from 
the previous stripe. Moreover, a barrel shifter in each PE shifts its inputs B – 1 bits to 
the left. Thus, PipeRench can handle the data alignments necessary for word-based 
arithmetic. The PEs can also access global I/O buses. These buses are necessary because 
an application’s pipeline stages may physically reside in any of the fabric’s stripes. 
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Inputs to and outputs from the application must use a global bus to get to their 
destination. Because of hardware virtualization constraints, the buses cannot be used to 
connect consecutive stripes. 

 

 

 

 

 

 

 

 

 

 

Figure 2.18: General overview of the Piperench structure (GOLDSTEIN et al., 1999) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.19: Detailed view of the Process Element and its connections 

The process of code generation uses a parameterized compiler. The compiler 
begins by reading a description of the architecture. This description includes the number 
of PEs per stripe, each PE’s bit width, the number of pass registers per PE, the 
interconnection topology, PE delay characteristics, and so on. The source language is a 
dataflow intermediate language. After parsing, the compiler inlines all modules, unrolls 
all loops, and generates a straight-line, single-assignment program. 

It interesting to repeat some of the reasons that motivated the authors to build this 
architecture without using FPGA: 
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 Logic granularity: It is claimed that FPGAs are designed for logic replacement. 
The granularity of the functional units is optimized to replace random logic, not 
to perform multimedia computations. 

 Configuration time: The time to load a configuration in the fabric ranges from 
hundreds of microseconds to hundreds of milliseconds. For FPGAs to improve 
processing speed over that of a general-purpose processor, they must amortize 
this start-up latency over huge data sets, limiting their applicability. 

 Forward compatibility. FPGAs require redesign or recompilation to benefit from 
future chip generations. 

 Hard constraints. FPGAs can implement only kernels of a fixed and relatively 
small size. This size restriction makes compilation difficult and causes large, 
unpredictable discontinuities between kernel size and performance. 

 Compilation time. A kernel’s synthesis, placement, and routing design phases 
take hundreds of seconds, taking longer than the compilation of the same kernel 
for a general-purpose processor. 

 

BENCHMARK EVALUATION 

To evaluate PipeRench’s performance, the authors have also chosen dataflow 
oriented software with very distinct kernels, which is a characteristic of algorithms that 
are highly based on filters or transforms, as can be observed: 

 Automatic target recognition (ATR): it implements the shape-sum kernel of the 
Sandia algorithm for automatic target recognition; 

 Cordic: it implements the Honeywell timing benchmark for Cordic vector 
rotations; 

 DCT: it is a 1D, 8-point discrete cosine transform; 

 DCT-2D: it is a 2D discrete cosine transform; 

 FIR: it is a finite-impulse response filter with 20 taps and 8-bit coefficients; 

 IDEA: it implements a complete 8-round International Data Encryption 
Algorithm; 

 Nqueens: it is an evaluator for the N queens problem on an 8 x 8 board; 

 Over: it implements the Porter-Duff over operator; 

 PopCount: it is a custom instruction implementing a population count 
instruction; 

 IDEA: it is a block cipher. 

Results for the Piperench system can be seen in Figure 2.20. This figure shows the 
performance improvements of the 100MHz Piperench, built as a 128-bit-wide fabric 
having 8-bits PEs with 8 registers each, over a 300MHz Ultrasparc II. 
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Figure 2.20: Performance improvements over a 300-mhz Ultrasparc II 

 

2.4.6 Molen (2001) 

The Molen processor is a FPGA based reconfigurable system with a loosely 
coupled reconfigurable array. The two main components in the Molen organization 
(VASSILIADIS et al., 2001) are depicted in Figure 2.21. More precisely, they are the 
Core Processor, which is a GPP, and the Reconfigurable Unit (RU). The Arbiter issues 
instructions to both processors; and data transfers are controlled by the Memory MUX.  
The reconfigurable unit (RU), in turn, is subdivided into the pµ-code unit and the 
Custom Computing Unit (CCU). The CCU is implemented in reconfigurable hardware, 
e.g., a field-programmable gate array (FPGA), and memory. The application code runs 
on the GPP except of the accelerated parts implemented on the CCU used to speed up 
the overall program execution. Exchange of data between the main and the 
reconfigurable processors is performed via the exchange registers (XREGs).  

The reconfigurable processor operation is divided into two distinct phases: set and 
execute. In the set phase, the CCU is configured to perform the targeted operations. 
Subsequently, in the execute phase, the actual execution of the operations takes place. 
Such decoupling allows the set phase to be scheduled well ahead of the execute phase, 
thereby hiding the reconfiguration latency. As no actual execution is performed in the 
set phase, it can even be scheduled upward across the code boundary in the instructions 
preceding the RU targeted code. 

A sequential consistency programming paradigm is used for MOLEN 
(VASSILIADIS et al., 2003). It requires only a one-time architectural extension of a 
few instructions that supports a large user reconfigurable operation space. Although the 
complete ISA extension comprises 8 instructions, the minimal instruction set (πISA) of 
the ρµ-code unit is enough to provide a working scenario. The instructions in this class 
are: set, execute, movtx and movfx. By implementing the first two instructions 
(set/execute), any suitable CCU implementation can be configured and executed in the 
CCU space. The movtx and movfx instructions are needed to provide the input/output 
interface between the RU targeted code and the remaining application code to pass data, 
parameters or data references. 
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Figure 2.21: A general overview of the Molen System 

 

BENCHMARK EVALUATION 

Molen was evaluated with the MPEG2 encoder/decoder. The most time 
consuming operations among SAD (sum of absolute difference), 2D-DCT (two 
dimensional discrete cosine transform), and 2D-IDCT (two dimensional inverse DCT) 
were optimized. These kernels, in turn, are the most time consuming ones in the 
MPEG2 algorithm and, as already discussed before, highly dataflow oriented. Figure 
2.22 demonstrates the impact of implementing these kernels as Molen hardware when 
comparing against a PowerPC processor without it. Columns labeled “theory” present 
the theoretically achievable maximum speed up. Columns labeled with “impl.” contain 
data for the projected speedups with respect to the considered Molen implementation. 

 

 

 

 

 

 

Figure 2.22: Molen Speed ups (VASSILIADIS et al., 2004) 

 

2.4.7 Other Reconfigurable Architectures 

Other processors are worth to be briefly discussed in this section. ConCISe 
(RAZDAN; SMITH, 1994) has a tightly coupled reconfigurable array in the processor 
core, limited to combinational logic – in the same way Chimaera was implemented. The 
array is, in fact, an additional functional unit in the processor pipeline, sharing the same 
resources of the other ones. As more examples, some designs employ standard fine-
grained FPGA resources, such as DISC (WIRTHLIN; HUTCHINGS, 1995), OneChip 
(WITTG; CHOW, 1996), PRISM-I (ATHANAS; SILVERMAN, 1993), PRISM-II 
(WAZLOWSKI et al., 1993). In the group of coarse grain reconfigurable systems, one 
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can include: Pact-XPP (CARDOSO et al., 2002), Morphosys (SINGH  et al., 1998), 
Pleiades (ZHANG et al., 1998) and ADRES (MEI et al., 2003). Other reconfigurable 
architectures with smaller impact on the scientific community also have been 
implemented, such as: Motium (HEYSTERS et al., 2003), XiRISC (LODI et al., 2003) 
and ReRISC (VASSILIADIS et al, 2006). 

Table 2.1, (BARAT; LAUWEREINS, 2000) shows some of the most popular 
reconfigurable architectures, demonstrating their different aspects and characteristics. 
However, in opposite to what is stated on this table, the Chimaera reconfigurable unit 
can take more than one cycle to execute its instructions, and it was implemented 
together with a MIPS R4000 processor. It is very interesting to point out that the only 
architecture presented on this table which is not fine grained is the newest one: 
Piperench. That is because coarse grain reconfigurable architectures started to become 
popular after the year of 2000.  

 

Table 2.1: General characteristics of several reconfigurable architectures (BARAT; 
LAUWEREINS, 2000) 

 

 

 

 

 

 

 

 

 

 

 

2.4.8 Recent Dataflow Architectures 

More recently, new dataflow architectures were proposed. These architectures 
differ from regular reconfigurable systems mainly because they do not have any kind of 
processor working together with it. Moreover, they abandon program counter and the 
linear von-Neumann execution that could limit the amount of parallelism to be 
explored. However, they are highly dependent on compilers and tools to code 
generation, which involves placing parts of the code in the correct order in the 
processing elements, for the synchronism, parallelism analysis etc. This way, the main 
effort is on  the development of these compilers and tools, not on the hardware design, 
which is usually very simple.  

As a first example, TRIPS (SANKARALINGAM et al., 2003) is a hybrid von-
Neumann/dataflow architecture that combines an instance of coarse-grained, 
polymorphous grid processor cores with an adaptive on-chip memory system. To better 
explore the application parallelism and provide a large use of available resources, 
TRIPS uses three different modes of execution: D-morph that search parallelism in 
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instruction level; T-morph that works at the thread level, mapping multiple threads onto 
a single TRIPS core; and S-morph that is targeted to applications like streaming media 
with high data-level parallelism. Figure 2.23 gives an overview of the TRIPS 
architecture. 

 

 

 

 

 

 

 

Figure 2.23: General overview of the TRIPS architecture. From left to right: the TRIPS 
Chip, TRIPS core, and an execution node (SANKARALINGAM et al., 2003) 

Another example of a dataflow machine is Wavescalar (SWANSON et al., 2003) 
that, likewise TRIPS, relies on the compiler to statically place instructions into its 
hardware structures. Another similarity is that there is no central processing unit at all, 
which is replaced by many processing nodes. As it can be observed in Figure 2.24, the 
basic processing element is very similar to the one found in TRIPS. However, this 
architecture is even more regular when considering its structure.  

 

 

 

 

 

 

 

 

Figure 2.24: The Wavescalar architecture (SWANSON et al., 2003) 

In the same work, the motivations of building a dataflow architecture are 
discussed. These motivations are related to some limitations that superscalar processors 
present, mainly because they are basically Von-Neumann architectures. The first thing 
discussed is the so-called processor scaling wall, which emerges because of three 
reasons:  

 The difference in terms of speed between (fast) transistors and (slow) 
wires is increasing – meaning that there is a disparity between computation 
and communication;  

 The increasing cost of circuit complexity;  

 The decreasing of reliability of these circuits. 
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According to the authors, superscalar processors will suffer a lot because of these 
reasons, since they have a huge infrastructure with slow broadcast networks, associative 
searches, complex control logic and inherently centralized structures. Moreover, other 
drawbacks regarding superscalar architecture can be cited:  

 Their inherent complexity makes efficient implementation a daunting 
challenge, 

 They ignore an important source of locality in instruction streams,  

 Their execution model centers around instruction fetch, an intrinsic 
serialization point. 

On the other hand, dataflow machines must convert control dependencies into 
data dependencies. To accomplish this, they explicitly send data values to the 
instructions that need them instead of broadcasting them via the register file. The 
potential consumers are known at compile time, but depending on control flow, only a 
subset of them should receive the values at run-time.  

2.5 Directions 

In this sub-section, some directions that should be taken while developing a new 
reconfigurable architecture are analyzed. First, we evaluate a known benchmark set in 
order to figure what is the best strategy to take in terms of granularity. Then, we study 
the impact of this analysis in both fine and coarse grain reconfigurable systems 
performing high levels simulations. Finally, other issues are taken into account, such as 
reconfiguration and execution times, and the growing number of applications being 
executed at the same time on a system.  

2.5.1 Heterogeneous Behavior of the Applications 

In (BECK et al., 2008b), it is used a subset of the Mibench Benchmark Suite 
(GUTHAUS et al., 2001), which represents the complete set of diverse algorithm 
behaviors. As a matter of fact, this suite has been chosen because, according to 
(GUTHAUS et al., 2001), it has a larger range of different behaviors when compared 
against other benchmark sets, e.g. SPEC2000 (HENNING, 2000). This way, the 
following 18 benchmarks were evaluated: Quicksort, Susan Corners/Edges/Smoothing, 
Jpeg Encoder/Decoder, Dijkstra, Patricia, StringSearch, Rinjdael Encode/Decode, Sha, 
Raw Audio Coder/Decoder, GSM Coder/Decoder, Bitcount and CRC32. 

First, a characterization of the algorithms regarding the number of instructions 
executed per branch is done (classifying them as control or dataflow oriented based on 
these numbers). As it can be observed in Figure 2.25, the RawAudio Decoder algorithm 
is the most control flow oriented one (a high percentage of branches executed per 
program) while the Rijndael Encoder is quite the opposite. It is important to point out 
that, for reconfigurable architectures, the more instructions a basic block has, the better, 
since there is more room for exploiting parallelism. Furthermore, more branches mean 
additional paths that can be taken, increasing the execution time and the area consumed 
by a given configuration, when implemented in reconfigurable logic.  

Figure 2.26 shows the analysis of distinct kernels based on the execution rates of 
the basic blocks in the programs. The methodology involves investigating the number of 
basic blocks responsible for covering a certain percentage of the total number of basic 
block executed. For instance, in the CRC32 algorithm, just 3 basic blocks are 
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responsible for almost 100% of the total program execution time. Again, for typical 
reconfigurable systems, this algorithm can be easily optimized: one just needs to 
concentrate all the design effort on that specific group of basic blocks and implement 
them to reconfigurable logic. 

 

 

 

 

 

 

 

 

 

 

Figure 2.25: Instruction per Branch Rate 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.26: How many BBs are necessary to cover a certain amount of execution time? 

However, other algorithms, such as the widely used JPEG decoder, have no 
distinct execution kernels at all. In this algorithm, 50% of the total instructions executed 
are due to 20 different BBs. Hence, if one wished to have a speedup of 2x (according to 
Amdahl’s law), considering ideal assumptions, all 20 different basic blocks should be 
mapped into reconfigurable logic. This analysis will be presented in more details in the 
next section. 

The problem of not having a clear group of most executed kernels becomes even 
more evident if one considers the wide range of applications that embedded systems are 
implementing nowadays. In a scenario when an embedded system runs RawAudio 
decoder, JPEG encoder/decoder, and StringSearch, the designer would have to 
transform approximately 45 different basic blocks into the reconfigurable fabric to 
achieve a maximum of 2 times performance improvement. 
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Furthermore, it is interesting to point out that the algorithms with a high number 
of instructions per branch tend to be the ones that need fewer kernels to achieve higher 
speedups.  Figure 2.27 illustrates this scenario by using the cases with 1, 3 and 5 basic 
blocks. Note that, mainly when it is considered the most executed basic block only (first 
bar of each benchmark), the shape of the graph is very similar to the instructions per 
branch ratios shown in Figure 2.25 (with some exceptions, such as the CRC32 or JPEG 
decoder algorithms). A deeper study about this issue is envisioned to indicate some 
directions regarding the reconfigurable arrays optimization just based on very simple 
profile statistics. 

 

 

 

 

 

 

 

 

Figure 2.27: Amount of execution time covered by 1, 3 or 5 basic blocks in each 
application 

 

2.5.2 Potential of using Fine Grained Reconfigurable Arrays 

In this section, the potentiality of fine grain reconfigurable arrays is evaluated. 
Considering the optimization of loops and subroutines, the level of performance gains if 
a determined number of hot spots is mapped to a fine grain reconfigurable logic is 
analyzed. In this first experiment, it is assumed that just one piece of reconfigurable 
hardware is available per loop or subroutine. This means that the only part of the code 
that will be optimized by the reconfigurable logic is the one which is common in all 
iterations. For example, let us assume that a loop should be executed 50 times. 100% of 
the code is executed 49 times, but just 20% is executed 50 times (all the iterations). This 
way, just this 20% is available for optimization, since it comprises the common 
instructions executed in all loop iterations. Figure 2.28 illustrates this case. The dark 
part is always executed, so just this part can be transformed to reconfigurable logic. 
Moreover, subroutines that are called inside loops are not suited for optimization.  

 
 
 
 
 
 
 
 
 
 
 

Figure 2.28: Just a small part of the loop can be optimized 
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Figure 2.29a and Figure 2.29b show, in the y-axis, the performance improvements 
(speedup factor) when implementing a different number of subroutines or loops (x-axis) 
on reconfigurable logic, respectively. The hot spots are chosen in order of relevance, 
where the first on the list is the most executed one (number of iterations times number 
of instructions in the hot spot). It is assumed that each one of these hot spots would take 
just one cycle for being executed on reconfigurable hardware. As it can be observed, the 
performance gains demonstrated are very heterogeneous. For a group of algorithms, just 
a small number of subroutines or loops implemented on fine grain reconfigurable logic 
are necessary to show good speedups. For others, the level of optimization is very low. 
One reason for the lack of optimization is the methodology used for code allocation on 
the reconfigurable logic, explained above. This way, even if there are a huge number of 
hot spots subject to optimization, but presenting different dynamic behaviors, just a 
small number of instructions inside these hot spots could be optimized. This shows that 
automatic tools, aimed at searching the best parts of the software to be transformed to 
reconfigurable logic, might not be enough to achieve the necessary gains. Consequently, 
human interaction for changing and adapting parts of the code would be required. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Figure 2.29: Performance gains considering different numbers of (a) subroutines and (b) 
loops being executed in 1 cycle in reconfigurable logic 

In the first experiment, besides considering infinite hardware resources and no 
communication overhead between the processor and reconfigurable logic, it is also 
assumed an infinite number of memory ports with zero delay, which is practically 
infeasible for any relatively complex configuration. Now, in Figure 2.30, a more 
realistic assumption is considered: each hot spot would take 5 cycles to be executed on 
the reconfigurable logic. When comparing this experiment with the previous one, 
although the algorithms that present performance speedups are the same, the speedup 
levels vary. This obviously demonstrates that the performance impact of the optimized 
hot spots is directly proportional to how much they represent considering total algorithm 
execution time. 

Figure 2.31 presents the same analysis that was done before, but considering more 
pessimistic assumptions. Now, each hot spot would take 20 cycles to be executed on the 
reconfigurable hardware. Although usually a reconfigurable unit would not take that 
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long to perform one configuration, there are some exceptions, such as large code blocks 
or those that have massive memory accesses. In the same Figure, one can observe that 
some algorithms present losses in performance. This means that, depending on the way 
the reconfigurable logic is implemented and how the communication between the GPP 
and RU is done, some hot spots may not be worth to be executed on reconfigurable 
hardware. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

Figure 2.30: Same as presented before, but now considering 5 cycles per hot spot 
execution. (a) Subroutines and (b) loops  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 2.31: Now considering 20 cycles per hot spot execution. (a) Subroutines and (b) 
loops 
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In Figure 2.33a and Figure 2.33b a different methodology is considered: a 
subroutine or loop that can have as much reconfigurable logic as needed to be 
optimized, assuming that enough reconfigurable hardware is available to support 
infinite configurations. This way, entire loops or subroutines could be optimized, 
regardless if all instructions inside them are executed in all iterations, in opposite to the 
previous methodology. Figure 2.32 illustrates this assumption. A reconfigurable unit 
would be available for each part of the code. 

 
 
 
 
 
 
 
 
 

 

 

Figure 2.32: Different pieces of reconfigurable logic are used to speed up the entire loop 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

Figure 2.33: Infinite configurations available for (a) subroutine optimization: each one 
would take 5 cycles to be executed. (b) The same, considering loops. 

In this experiment, it is considered that the execution of each configuration would 
take 5 cycles. Comparing against Figure 2.30 (same experiment using a different 
methodology), huge improvements are shown, mainly when considering subroutine 
optimizations. This, in fact, reinforces the use of totally or partially dynamic 
reconfigurable architectures, which can adapt to the program behavior during execution. 
For instance, considering a partially reconfigurable architecture executing a loop: the 
part of the code that is always executed could remain in the reconfigurable unit during 
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all the iterations, while sequences of code that are executed in certain time intervals 
could be configured when necessary. 

 

2.5.3 Coarse Grain Reconfigurable Architectures 

Now, the performance improvements when considering such architecture are 
analyzed. Since it works at the instruction level and, in this case, no speculative 
execution is supported, the optimization is limited to basic block boundaries. The level 
of optimization is directly proportional to the usage of BBs (Figure 2.26): for a 
determined basic block, the more it is executed, more performance boosts it represents. 
Even though this coarse grain reconfigurable array does not demonstrate the same level 
of performance gains as fine grain reconfigurable systems show, more and different 
configurations are available to be executed on this kind of system. This way, 
applications that do not have very distinct kernels could be optimized. 

Considering the ideal assumption of one configuration taking just one cycle to be 
executed, let us compare the instruction level optimization against the subroutine level, 
which had shown more performance improvements than the loop level, as expected. 
When comparing the results of Figure 2.34a against the ones of Figure 2.29, one can 
observe that for some algorithms the number of basic blocks optimized does not matter: 
just executing one subroutine in reconfigurable logic would achieve a high performance 
speedup. However, mainly for the complex algorithms at the bottom of the figure, the 
level of optimization is almost the same for basic blocks or subroutines. This way, using 
the instruction level reconfigurable unit would be the best choice: it is easier and 
cheaper to implement 10 different configurations for a coarse grain logic than 10 for the 
FPGA based one. 

When assuming that 5 cycles are necessary for the execution of each 
configuration in coarse grain reconfigurable hardware, there is a tradeoff between 
execution time and how complex the basic blocks are (in number of instructions, kind of 
operations, memory accesses etc). This assumption is demonstrated in Figure 2.34b: in 
the Rinjdael algorithms, the optimization is worth until a certain number of basic blocks 
being implemented on reconfigurable logic. After that, there is a performance loss. In 
Figure 2.34c, considering 20 cycles per basic block execution on the reconfigurable 
array, this situation is even more evident. This shows that, as for fine grain 
reconfigurable architectures, there is a necessity of small reconfiguration time and 
context loading. However, this is easier to be achieved in this simulated coarse grain 
architecture: the size of each configuration is much smaller than fine grain 
configurations. 
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Figure 2.34: Optimization at instruction-level with the basic block as limit. (a) 1 cycle, 
(b) 5 cycles, (c) 20 cycles per BB execution 

  

2.5.4 Comparing both granularities 

Considering fixed applications, or yet those with long lifetime periods such as an 
MP3 player, FPGA based reconfigurable systems with high granularity grains still can 
be a good choice. Some algorithms present huge performance improvements, such as 
CRC32, SHA or Dijkstra. They need to optimize a small number of hot spots (the most 
executed kernels) to achieve such gains. This strategy, however, usually requires long 
development times that may not be acceptable. Furthermore, the industry trend goes to 
the opposite direction: the number of different applications being executed on the 
systems is increasing and the characteristics of these workloads have been changing, 
getting more heterogeneous: considering the embedded systems field, some of the 
applications are not as datastream oriented as they used to be in the past. Applications 
with mixed (control and data flow) or pure control flow behaviors, where sometimes no 
distinct kernel for optimization can be found, are gaining popularity. These affirmatives 
are reinforced by the MIBench analysis in sub-section 2.5.1. 

Hence, for each application, different optimizations are required. This, in 
consequence, lead to an increase in the design cycle, since mapping code to 
reconfigurable logic usually involves some transformation, manual or using special 
languages or tool chains. The solution would be the employment of simpler coarse grain 
based reconfigurable architectures. Although they do not bring as much improvement as 
the fine grained approaches show, they could be easier to implement due to its 
simplicity.  

Furthermore, according to the authors in (THEODORIDIS et al., 2007), there are 
some other reasons about why one should employ a coarse grained reconfigurable 
system, as follows: 

 Small configuration contexts. Coarse grain reconfigurable units need a few 
configuration bits, which are order of magnitude less than those required if 
FPGAs were used to implement the same operations. In the same way, a small 
amount of bits is necessary to establish the interconnections among its basic 
processing elements because the interconnection wires are also configured at 
word level. 

 Reduced reconfiguration time. Due to the previous statement, the 
reconfiguration time is reduced. This permits coarse-grain reconfigurable 
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systems to be used in applications that demand multiple and run-time 
reconfigurations. 

 Reduced context memory size. Still because the first statement, the context 
memory size also reduces. This allows the use of on-chips memories, which 
permits switching from one configuration to another with low configuration 
overhead. 

 High performance and low power consumption. This stems from the hardwired 
implementation of coarse grained units and the optimally design of 
interconnections for the target domain. 

 Silicon area efficiency and reduced routing overhead. This comes because 
coarse grained units are optimally-designed hardwired units which are not built 
by combing a number of CLBs and interconnection wires, which results in 
reduced routing overhead and better area utilization. 

In contrast, these are the main disadvantages of using a fine grain reconfigurable 
array such as the ones based on FPGA, according to the same authors: 

 Low performance and high power consumption. This happens because word 
level modules are built by connecting a number of CLBs using a large number 
of programmable switches, causing performance degradation and power 
consumption increase. 

 Large context and configuration time. The configuration of CLBs and 
interconnections wires is performed at bit-level by applying individual 
configuration signals for each CLB and wire. This results in a large 
configuration context that has to be downloaded from the context memory, 
increasing the configuration time. The large reconfiguration time may degrade 
performance when multiple and frequently-occurred reconfigurations are 
required. 

 Large context memory. As a consequence of the previous statement, large 
reconfiguration contexts are produced which demand a large context memory. 
Because of that, in many times the reconfiguration contexts are stored in 
external memories increasing even more the time for reconfiguration. 

 Huge routing overhead and poor area utilization. To build a word-level unit or 
datapath a large number of CLBs must be interconnected, resulting in huge 
routing overhead and poor area utilization. In many times a great number of 
CLBs are used only for routing purposes and not for performing logic 
operations. It has been shown that in many times for the commercially 
available FPGAs, up to 80–90% of the chip area is used for routing purposes 
(HON, 1996). 

However, still according to the authors in (THEODORIDIS et al., 2007), the 
development of universal coarse-grain architecture to be used in any application is an 
“unrealistic goal”. This statement comes mainly from the fact that it is very hard to 
adapt the reconfigurable unit for a great number of different kernels, since the 
optimization is usually done at compile time. This way, even coarse grained 
architectures would be restricted to a specific domain.  
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Reinforcing this idea, it is very interesting to note that the totally of the referenced 
works about reconfigurable architectures, analyzed in section 2.4, employ as benchmark 
set exactly the ones which have very distinct kernels subject of optimization, and those 
that are very dataflow oriented. These two characteristics make these benchmarks the 
ones that are the most suitable for execution in reconfigurable fabric, as previously 
discussed. They correspond to just one area in a graph considering two axis (number of 
distinct kernels and control/dataflow behavior), as one can observe in Figure 2.35. As 
explored in the sub-section 2.5.1, this case is far for being the reality of embedded 
systems and, of course, of the general purpose computation field. 

 

 

 

 

 

 

 

 

 

Figure 2.35: Different algorithm behaviors that can influence the usability of a 
reconfigurable system 

 

 

2.5.5 The necessity of dynamic optimization 

As commented before, even using coarse-grain reconfigurable architectures, one 
main problem still stands: they are efficient just for a determined field of application. To 
make this scenario even worse, the new era of embedded systems gives to the user the 
opportunity of installing and execute different applications, which behavior is non-
predictable while the production of the devices, as in the general purpose computation. 
This lack of flexibility can be just solved with dynamic optimization: the system’s 
ability of adapt itself during execution. This will be the subject of the next chapter. 
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3 DYNAMIC OPTMIZATION TECHNIQUES 

In this chapter, two different techniques regarding dynamic optimization are 
analyzed: Trace Reuse and Binary Translation. As some of their principles are used for 
dynamic optimization with reconfigurable systems, recent works regarding this subject 
are discussed next. Finally, the main differences and advantages of the proposed 
technique when comparing against the previously reported ones are demonstrated. 

3.1 Trace Reuse 

The instruction reuse approach (SODANI; SOHI, 1998) is based on the principle 
of instruction repetition. This approach relies on the idea of an instruction with the same 
operands is repeated a large number of times during the execution of a program 
(SODANI; SOHI, 1998b). This way, instead of executing the instruction again using a 
functional unit, the result of this instruction is fetched from a special memory.  

The main advantage of this technique is that instructions with larger delays (such 
as multiplications) can be executed faster. Additionally, there are secondary positive 
effects regarding the resources of the processor, such as freeing functional units, slots in 
the reservation stations and in the reorder buffer, the reduction of the instruction fetch 
and data bandwidth (fewer accesses in the register bank and in the memory). These 
effects potentially increase the possibility of executing additional instructions, if there is 
still ILP available. 

The idea of trace reuse (GONZALEZ et al., 1999) extends the previous approach, 
in the sense that it is applied to a group of instructions (called of trace by the authors) 
instead of just one, as illustrated in Figure 3.1. It is based on the input and output 
contexts. A context is composed by the program counter, registers and memory 
addresses. Trace reuse works as follows: for a given sequence of instructions, the 
context of the processor, considering the first instruction of this sequence, is saved. 
Then, the output context, which is the result of the whole set of instructions that belongs 
to that sequence, is also saved, after this sequence was normally executed by the 
processor. After that, each time that the first instruction of this sequence is sent for 
execution again, the processor state is updated with the output context fetched from a 
special memory, avoiding the execution of that trace on the processor. This memory is 
called Reuse Trace Memory (RTM). Each entry of the RTM is illustrated in Figure 3.2. 
These entries can be indexed by the PC register, for example. 
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Figure 3.1: The trace reuse approach 

 

 

Figure 3.2 : A RTM entry (GONZALEZ et al., 1999) 

The results presented are very promising. However, they can only be achieved 
when considering optimal resources or ideal assumptions. The minimum table size 
evaluated in the referred paper has 512 entries. This size would imply in a huge memory 
footprint, even for nowadays on die cache implementations. Moreover, it seems that the 
authors assume that the accesses in the table take just one cycle, which is very 
optimistic when considering the minimum size (512 entries), and almost impossible to 
be implemented with 256k entries (the maximum proposed).  

The authors also implemented three different scheduling policies. Although it is 
not clearly stated on the paper, it is very likely that these policies consider an infinite 
window size of instructions to be analyzed. Furthermore, the scheduling is done by 
some kind of “oraculus”, which means that always the best composition of traces is 
considered to be saved in the special memory. It is important to stand out that defining 
the best policy for scheduling these instructions can be a very complex job to be done: 
multiples instructions can compose multiple traces and finding the best combination can 
demand a huge computational effort – which is very hard to be executed on the fly. 

This way, the study lacks of realistic assumptions that should include at same 
time: a finite realistic window size, smaller RTM sizes with different and larger delays, 
less registers and memory accesses allowed per cycle; a study about the costs of the 
scheduling algorithm using a finite window; the costs of comparing registers and 
memory values with the current trace context etc. 

In (JUAN HUANG, 1999) another technique is presented, called block reuse, with 
the purpose of, analogous to the one previously shown, reuse sequence of instructions. 
Although this technique is less general in the sense that it is limited to basic blocks (in 
the trace reuse approach a loop could be reused, for instance), the author analyzes its 
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possibilities with more realistic examples, as well as its costs. The Simplescalar Toolset  
(BURGER; AUSTIN, 1997) was employed for this case-study. It simulates a MIPS-like 
processor, using a configuration with four integer ALUs, one integer multiply/divide 
unit – and the same number of functional units for floating points computation – issuing 
and committing up to four instructions per cycle. The resulting speedup values range 
from 1.01 to 1.37, with an average of 1.15. The benchmarks were compiled with the 
GCC –O2 level of optimization. 

Finally, in (COSTA et al., 1999) the authors presented a technique called 
Dynamic Trace Memoization, which uses memoization tables in order to detect at real 
time traces that can be potentially reused. In (PILLA et. al, 2003) this approach is 
extended in order to support speculative execution. In (PILLA et al., 2006) the 
technique is combined with value prediction and restricted hardware resources, reducing 
the number of trace candidates and the size of their contexts, achieving a good speedup 
of 1.21, on average. 

Some of the main drawbacks of these techniques can be cited. Some algorithms 
do not present gains in performance because of the low level of input locality. 
Moreover, even if there is a high level of instruction reuse (or sequences of them), 
usually these instructions do not have the same input context. Therefore, the main 
disadvantage of this technique emerges: besides the necessity of saving the locality of 
the instruction, basic block or trace, it is also demanded to save the input context. This 
can lead to a huge number of possibly variations, consequently increasing the memory 
necessary to keep the configurations.  

3.2 Binary Translation 

The concept of binary translation (ALTMAN; SHEFFER, 2000) (ALTMAN et 
al., 2001) is very ample and can be applied in various levels. Basically, there is a 
system, which can be implemented in hardware or software, responsible for analyzing 
the running program. Then, some kind of transformation is done in the code, with the 
purpose of keeping the software compatibility (the reuse of legacy code without the 
need of recompilation), to provide means to enhance the performance or even both 
(Figure 3.3). 

 

 

 

Figure 3.3: Binary Translation Process 

According to (ALTMAN et al., 2000), there are three different kinds of binary 
translation: 

 Emulator: interprets program instructions at run time. However, the 
transformed instructions are not saved or cached for future reuse; 

 Dynamic Translator: besides interpreting the program, it saves previous 
translations to be used next time so that the overhead of translation and 
optimization can be amortized over multiple executions. One example of 
dynamic translation is just-in-time (JIT) compilers, as the ones used for Java 
execution. 
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 Static Translator: this kind does the job offline, having the opportunity of 
more rigorous optimization. It can also be used to generate execution profiles 
to give some sort of assistance for the processor in order to enhance 
performance during run-time. 

While in the emulator and dynamic translator approaches there are run-time 
overheads due to the analysis during program execution, static translators as a stand-
alone tool requires end-user involvement – being not transparent.  

Nevertheless, there are other concepts regarding Binary Translation (ALTMAN; 
SHEFFER, 2000): 

 Source architecture: The original (legacy) architecture from which translation 
occurs; 

 Target Architecture: The architecture to which translation occurs; 

 Virtual Machine Monitor (VMM): the system responsible for controlling the 
binary translation; 

 Translation Cache: The memory where the translations can be stored. This 
cache is not necessarily implemented in hardware. 

Another concept intrinsically connected to binary translation is dynamic 
optimization. While dynamic binary translation is JIT compilation from the binary code 
of one architecture to another, dynamic optimization is run-time improvement of the 
code. Usually, the general term Binary Translation is also applied when both techniques 
are used together. 

Besides the JIT compiler, commented before, there are other examples of the 
different types of Binary Translation. The Hewlett-Packard Dynamo (BALA; 
BANERJIA, 1999) operates entirely at runtime in order to dynamically generate 
optimized native retranslations of the running program’s hot spots. In fact, it is a 
software optimizing software, previously compiled and executing on the target machine. 
It operates transparently (any kind of interference from the user is not necessary) 
monitoring program behavior in order to find these hot spots to be optimized, using 
low-overhead techniques. Then, this modified code is executed again when necessary. 
Operating on HP-UX, Dynamo has a code size of less than 265 Kilobytes. Another 
example of the same approach, but with a different purpose, is the Compaq’s FX!32, 
aimed to allow the execution of 32-bit x86 Windows applications on Alpha computers. 

There are other architectures that mix hardware and software to perform BT. 
DAISY (GSCHWIND, 2000), from IBM, is one of those. It uses the PowerPC as source 
architecture and a special architecture based on VLIW, named DAISY VLIW, as target. 
The DAISY software is the VMM, responsible for the translation, and runs on the 
PowerPC, as can be observed in Figure 3.4. It is important to point out that, in opposite 
to Dynamo, which runs above the HPUX operating system, DAISY runs below its 
operating system. This way, it can be considered even more transparent to the final user, 
in the sense that one cannot identify it as a service or software running in the operating 
system. 
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Figure 3.4: Daisy layers 

Figure 3.5 shows how DAISY system is composed. The DAISY VMM code is 
stored in the DAISY flash ROM. When the system powers up, the VMM code is copied 
to the DAISY portion of memory in the PowerPC, and execution begins. After the 
VMM software initializes itself and the system, it begins translating the code of the 
PowerPC flash ROM to be executed on the VLIW processor. Then, this translated 
firmware loads the operating system (in this case, AIX Unix), which DAISY likewise 
translates and executes. After that, any application that is executed on the AIX can 
benefit from the binary translation and be executed on the VLIW processor. 

The decision on where blocks of instructions to be translated begins is done based 
on loop back branches and function returns. The decision on what sequence worth to be 
translated and executed is based on a minimal number of instructions that compose a 
block, or if it has sufficient parallelism. These requirements vary depending on whether 
the instructions in the block have been executed frequently or not. DAISY performs a 
variety of optimizations as: ILP scheduling with data and control speculation, loop 
unrolling, alias analysis, load-store telescoping, dead code elimination etc (EBCIOGLU, 
1996).  

 

Figure 3.5: DAISY system (GSCHWIND, 2000) 

The Transmeta Crusoe (KLAIBER, 2000) (Figure 3.6) shares several similar 
elements with DAISY. The significant difference is that Crusoe emulates an x86 
system, while DAISY emulates a PowerPC. Both perform full system emulation 
including not only application code, but also operating systems and other privileged 
code. Furthermore, both use an underlying VLIW chip specifically designed to support 
BT as target architecture, aimed for high performance. There are also similarities 
regarding the optimization process: code is first interpreted and profiled and, if a 
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fragment turns out to be frequently executed (more than 50 times), it is translated to 
native Crusoe instructions. 

Aside from the different source architectures emulated, Crusoe and DAISY differ 
in their intended use. DAISY is designed for use in servers and consequently is a big 
machine capable of issuing 8–16 instructions per cycle, with gigabytes of total memory. 
Given this large machine, the DAISY VMM emphasizes extraction of parallelism when 
translating from PowerPC code. DAISY reserves 100 MB or more for itself and its 
translations. Crusoe is aimed at low power and mobile applications such as laptops and 
palmtops. The processor issues only 2 to 4 instructions per cycle and has 64–128 MB of 
total memory in a typical system. Thus, Crusoe reserves 16 MB for itself and its 
translation. 

In benchmark tests, DAISY can complete the equivalent of 3 to 4 PowerPC 
instructions per cycle. Transmeta has claimed that the performance of a 667-MHz 
Crusoe TM5400 is about the same as a 500-MHz Pentium III (SHANKLAND, 2000). 

 

 
 

 

 

 
 
 
 

Figure 3.6: Transmeta layers 

 
Binary translation can also produce other effects in the future, following the 

tendency of write once, run everywhere. For example, using Binary Translation in order 
to perform transformations from different ISAs to a unique target architecture, all 
efforts for optimization could be targeted to just one kind of hardware. 

3.3 Dynamic Detection and Reconfiguration 

3.3.1 Warp Processing 

Trying to unify some of these ideas with reconfigurable systems, Vahid et al. 
(STITT; VAHID, 2002) (LYSECKY; VAHID, 2004) presented the first studies about 
the benefits and feasibility of dynamic partitioning using reconfigurable logic, 
producing good results for a number of popular embedded system benchmarks. The 
structure of this approach, called warp processing, is a SOC. It is composed by a 
microprocessor to execute the software, another microprocessor where the CAD 
algorithm runs (responsible for the hardware/software portioning), a dedicated memory 
and an FPGA.  

The system is illustrated in Figure 3.7, and the follow steps for its functioning are 
necessary: 

1. Initially, the software binary is loaded into the instruction memory; 

2. The microprocessor executes the instructions from this software binary; 

3. Profiler monitors the instructions and detects critical regions in binary; 
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Then, the on-chip CAD:  

4. reads in critical regions; 

5. decompiles a given critical region into a control data flow graph (CDFG); 

6. synthesizes the decompiled CDFG to a custom (parallel) circuit; 

7. maps this circuit onto FPGA; 

8. replaces instructions in the original binary to use the FPGA hardware. 

 

 

 

 

 

 

 

 

Figure 3.7: The Warp processor system 

The steps performed by the on-chip CAD can be observed in more details in 
Figure 3.8. They can be executed on hardware because an optimized CAD algorithm 
was developed, which brings a relatively small memory overhead considering this kind 
of software. Moreover, besides this simpler CAD algorithm, the FPGA implementation 
has a simpler logic than usual. In its switch matrices, all nets are routed using only a 
single pair of channels and each Configurable Logic Block (CLB) is connected just to 
its adjacent. The way routing was implemented facilitates the development of the CAD 
software since, according to this same work, routing is by far the most time-consuming 
on-chip CAD task. Moreover, the CLB have fewer resources than the regular ones: two 
3 inputs/2 output Look-Up Tables (LUT).  

 

Figure 3.8: Steps performed by the CAD software 
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Last results show the benefits of warp processing for soft-core processors 
(LYSECKY; VAHID, 2005). The technique was implemented in a Microblaze-based 
FPGA. Several embedded systems applications from the Powerstone and EEMBC 
benchmark suites were analyzed. The experimental setup considers a MicroBlaze 
processor implemented using the Spartan3 FPGA. The MicroBlaze processor core has a 
maximum clock frequency of 85 MHz. However, the remaining FPGA circuits can 
operate at up to 250 MHz. The processor was configured to include a barrel shifter and 
multiplier, as the applications considered required both operations. 

Figure 3.9 and Figure 3.10 present the performance speedup and energy reduction 
of the MicroBlaze-based warp processor compared with a standalone MicroBlaze 
processor. The software application execution was simulated on the MicroBlaze using 
the Xilinx Microprocessor Debug Engine, where instruction traces for each application 
were obtained. This trace was used to simulate the behavior of the on-chip profiler to 
determine the single most critical region within each application.  

The system was also compared with readily available hard-core processors. 
Overall, the MicroBlaze warp processor has better performance than the ARM7, ARM9, 
and ARM10 processors and requires less energy than the ARM10 and ARM11 
processors. The ARM11 processor executing at 550 MHz is on average 260% faster 
than the MicroBlaze warp processor but requires 80% more energy. Furthermore, 
compared with the ARM10 executing at 325 MHz, the MicroBlaze warp processor is on 
average 30% faster while requiring 26% less energy. Therefore, while the MicroBlaze 
warp processor is neither the fastest nor the lowest energy alternative, it is comparable 
and competitive with existing hard-core processors, while having all the flexibility 
advantages associated with soft-core processors. 

 

 

Figure 3.9: Speedups of MicroBlaze-Based warp processor when comparing against 
different versions of the an ARM. Powerstone and EEMBC benchmark applications 

were used.   
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Figure 3.10: Normalized energy consumption in the different versions using the same 
benchmark set. 

 

However, there are some drawbacks when using such technique. The first one is 
that it uses a complete SOC, with different hardware communicating with each other, 
which could increase the design cycle time and make it harder to test. Moreover, even if 
the CAD system used is simplified, it remains complex: it does decompilation, CFG 
analysis, place and route etc, requiring significant resources: up to 8 MB of memory are 
necessary for its execution, still big for nowadays on-die memories. Another deficiency 
is related to the FPGA: besides the long latency and area overhead, it is also power 
inefficient due to the excessive switches and the considerable amount of static power 
dissipated. Moreover, because of the memory footprint required for keeping 
configurations, this technique is just limited to critical parts of the software, working at 
its best just in very particular programs, such as the filter based ones. 

3.3.2 Configurable Compute Array 

In (CLARK et al., 2003) a similar reconfigurable structure comparing to the one 
used in this work is presented. This array is called Configurable Compute Array (CCA) 
and it is tightly coupled to an ARM processor. The proposed CCA is implemented as a 
matrix of heterogeneous FUs. There are two types of FUs in this design, referred to as 
type A and B, for simplicity. Type A FUs perform 32-bit addition/subtraction as well as 
logical operations. Type B FUs perform only the logical operations, which include 
and/or/xor/not, sign extension, bit extraction, and moves. To ease the mapping of 
subgraphs onto the CCA, each row is composed of either type A FUs or type B FUs. 

The matrix can be characterized by the depth, width, and operation capabilities. 
Depth is the maximum length dependence chain that a CCA will support. This 
corresponds to the potential vertical compression of a dataflow subgraph. Width is the 
number of FUs that can work in parallel. This represents the maximum instruction-level 
parallelism (ILP) available to a subgraph execution. Figure 3.11 shows the block 
diagram of a CCA with depth 7. In this figure, type A functional units (FU) are 
represented with white squares and type B units with gray squares. The CCA has 4 
inputs and 2 outputs. Any of 4 inputs can drive the FUs in the first level. The first 
output delivers the result from the bottom FU in the CCA, and the second output is 
optionally driven from an intermediate result from one of the other FUs. 
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Figure 3.11: Example of a CCA with 4 inputs and 2 outputs, with 7 levels of operations 
allowed in sequence 

Feeding the CCA involves two steps: the discovery of which subgraphs are 
suitable for running on the CCA, and their replacement by microops in the instruction 
stream. Two alternative approaches are presented: static and dynamic.  

Static discovery finds subgraphs for the CCA at compile time. Those are marked 
in the machine code by using two additional instructions, so that a replacement 
mechanism can insert the appropriate CCA microops dynamically. Using these 
instructions to mark patterns allows for binary forward compatibility, meaning that as 
long as future generations of CCAs support at least the same functionality of the one 
compiled for, the subgraphs marked in the binary are still useful. However, as the code 
is changed, the backward compatibility is lost anyway.  

Dynamic discovery, in turn, assumes the use of a trace cache to perform sub-graph 
discovery on the retiring instruction stream. Its main advantage is that the use of the 
CCA is completely transparent to the ISA. Theoretically, the static discovery technique 
can be much more complex than the dynamic version, since it is performed offline; thus, 
it does a better job on finding subgraphs. 

 Figure 3.12 demonstrates how a sequence of instructions is mapped into a typical 
CCA configuration. In Figure 3.12a the CFG representing a part of the code in Figure 
3.12b is shown. The bold circles represent the instructions that are in the critical path. 
These instructions will be mapped in the CCA. Finally, Figure 3.12c shows the 
measurements in terms of delay for the functional units that will be used for this 
sequence. This measurement proves that it is possible to perform more than one single 
computation within a single clock cycle. 
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Figure 3.12: An example of mapping a piece of software into the CCA (CLARK et al., 
2003) 

The instruction grouping discovery technique proposed in this paper is highly 
similar and based on the rePlay Framework (PATEL; LUMETTA, 2001). This process 
of identifying potential subgraphs for optimization works as follows: initially, the 
application is profiled to identify frequently executed frames. The most frequently 
executed ones are then analyzed and subgraphs that can be beneficially executed on the 
CCA are selected. Then, the compiler generates machine code for the application, with 
the subgraphs explicitly identified to facilitate simple dynamic replacement. Frames 
have the same purpose of superblocks or use the same principle of trace cache; they 
have one single entry point and one single exit point, encapsulating one single flow of 
control in an atomic fashion: if one instruction within a given frame is executed, the rest 
of them are also executed. A frame is composed by instructions based on speculative 
branch results. If one transformed branch (called as assertion) is miss predict inside the 
frame, the whole frame execution is discarded.  

The subgraphs considered were limited to have at most four inputs and two 
outputs. Furthermore, memory, branch, and complex arithmetic operations were 
excluded from the subgraphs. Previous work (YU; MITRA, 2004) has shown that 
allowing more than four input or two output operands would result in very modest 
performance gains when memory operations are not allowed in subgraphs. In Figure 
3.13 one can observe the potential of implementing a CCA together with the 
microprocessor, demonstrating the speedup versus a relative area cost of each CCA for 
three different applications. As can be seen, with a small cost in terms of hardware, 
good performance improvements can be achieved 

Some evaluations were performed in order to analyze what would be the best 
configuration for the CCA, given a determined group of benchmarks. It was shown that 
the depths vary across a representative subset of three groups of benchmarks. For 
example, in blowfish (part of the MIBench set), 81.42% of dynamic subgraphs had a 
depth less than or equal to 4 instructions. On average of all the 29 applications executed 
through the system, about 99.47% of the dynamic subgraphs have a depth 7 instructions 
or less. Depth is a critical design parameter, since it directly affects the latency of the 
CCA. It was discovered that a CCA with depth 4 could be used to implement more than 
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82% of the subgraphs considering that diverse group of applications. Going below depth 
of 4 seriously affects the coverage of subgraphs that can be executed on the CCA. 
Therefore, only CCAs with depths between 4 and 7 were considered in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.13: Speed-up versus Area overhead, represented by the cost of adders (CLARK 
et al., 2003) 

 

The search for the ideal width was also performed. Using the same set of 
applications, it was figured that 4.2% of dynamic subgraphs had width of 6 or less in 
row 1, with only 0.25% of them having width 7 of more. In the following rows of the 
matrix, the widths decrease. For instance, the average width in row 2 is 4 or 5. This data 
suggests that a CCA should be triangularly shaped to maximize the number of 
subgraphs supported without wasting resources. 

It is important to point out that operations involving more expensive 
multiplier/divider circuits were not allowed in subgraphs, because of latency 
considerations. Additionally, memory operations were also disallowed. Load operations 
have non-uniform latencies, due to cache effects, and so supporting them would entail 
incorporating stall circuitry into the CCA. This would increase the delay of the CCA 
and make integration into the processor more difficult. Although shifts did constitute a 
significant portion of the operation mix, barrel shifters were too large and incurred too 
much delay for a viable CCA. 

This technique also has drawbacks. The CCA does not support memory 
operations, shifts and multiplications – or any operation that involves a different delay 
when comparing to the functional units employed, limiting its field of application. As a 
consequence of this fact, it has a limited number of inputs and outputs. Moreover, it 
uses very complicated graph analysis and changes the binary in the static discovery. In 
the same way, the dynamic approach also makes use of a complex graph analysis, since 
it is based on the RePlay Framework (PATEL; LUMETTA, 2001), which leads to a 
huge memory overhead. Because of that, just high-level simulations using the 
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Simplescalar Toolset are reported. No measurements are given in terms of area 
overhead, power consumption and timing and there are no details about how a CGF is 
transformed to an array’s configuration. The overheads considering the array, and the 
detection and reconfiguration delays are not discussed at all.  

Despite all these drawbacks, both papers discussed previously are very important 
to this thesis because they show the potential of executing parts of the software in 
reconfigurable logic and its feasibility. 

3.4 Similarities and Differences of Previous Works 

Comparing to the techniques cited before, the proposed approach also takes 
advantage of a reconfigurable system, but a coarse grain one, so it can be implemented 
in any technology, not being limited to FPGAs only. Together with that, the use of 
binary translation avoids the need for code recompilation or the utilization of extra 
tools, making the optimization process totally transparent to the programmer. Adding to 
the fact that the array is not limited to the complexity of fine-grain configurations, the 
binary code detection and translation algorithm are very simple, in the sense that they 
take advantage of the hierarchal structure of the reconfigurable array. The system can be 
implemented using trivial hardware resources, in contrast to the complex on-chip CAD 
software or graph analyzers used in the related work.  

Moreover, the proposed approach relies on the same basic idea of trace reuse, 
where sequences of instructions are repeated. However, it presents the advantage that 
just one entry in the special memory is needed for the same sequence of instructions, 
even when they have different contexts (as input values from the registers). This takes 
the pressure off from the cache system, making possible its implementation with a small 
memory footprint, with realistic assumptions concerning execution and accesses times, 
even for present days technologies. Furthermore, using the proposed technique, the 
number of inputs of outputs for each context can be larger, and any instruction, 
including load/store and multiplications, are supported.  
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4 THE PROPOSED RECONFIGURABLE ARRAY 

As already explained, the proposed technique can be divided in two main groups: 
the first one, which is the reconfigurable array and its implementation, and the second, 
which is the Binary Translation algorithm. This chapter focus on the reconfigurable 
array, leaving the discussion about the BT to the next chapter. In the following sub-
sections it is demonstrated the structure of the array, the architectures where it was 
coupled and the particularities of each reconfigurable system according to these 
architectures. Different processors were used, two based on Java and the others based 
on the MIPS processor. As the former kind is a stack machine, and the MIPS is a pure 
RISC processor, two different architectures of the reconfigurable array were 
implemented, according to these two paradigms. 

4.1 Java Processors targeted to Embedded Systems 

While the number of embedded systems does not stop growing, new and different 
applications, like cellular phones, mp3 players and digital cameras keep arriving at the 
market. At the same time, embedded systems are getting more complex, smaller, more 
portable and with more stringent power requirements, posing great challenges to the 
design of this kind of system. Additionally, another issue is becoming more important 
nowadays: the necessity of reducing the design cycle. 

This last affirmative is the reason why Java is becoming more popular in 
embedded environments, replacing traditional languages. Java has an object-oriented 
nature, which facilitates the programming, modeling and validation of the system. 
Furthermore, being multiplatform, a system that was built and tested in a desktop, for 
instance, can migrate to different embedded systems with a small number of 
modifications. Moreover, Java is considered a safe language, and has a small code size, 
since it was built to be transmitted through internet.  

Not surprisingly, recent surveys revealed that the presence of Java in devices such 
as consumer electronics (digital TV, mobile phones, home networking) as well as 
industrial automation (manufacturing controls, dedicated hand held devices) is 
increasing day by day (MULCHANDANI, 1998) (LAWTON, 2002). Nowadays, most 
of the commercialized devices as cellular phones already provide support to the 
language. This means that current design goals might include a careful look on 
embedded Java architectures, and their performance versus power tradeoffs must be 
taken into account. 

However, Java is targeted neither to performance nor to energy consumption, 
since it requires an additional layer in order to execute its bytecodes, called Java Virtual 
Machine (JVM), responsible for the multiplatform feature of Java. That is why 
executing Java through the JVM could not be a good choice for embedded systems. A 
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solution for this issue would be the execution of Java programs directly in hardware, 
taking off this additional layer, but at the same time maintaining all the advantages of 
this high-level language. Using this solution highlights again another execution 
paradigm that was explored in the past (KOOPMAN, 1989): stack machines. Since the 
JVM is based on this paradigm, obviously the hardware for native Java execution 
should follow the same approach, in order to maintain full compatibility. 

Because of all the reasons discussed above, a Java processor, called Femtojava, 
was designed. This processor executes natively Java bytecodes and it is targeted to 
embedded systems. It is available in different versions, generated according to the 
designer preferences when using the Sashimi Tool (ITO et al., 2001). In this work, the 
reconfigurable array was coupled to two different versions of the Femtojava processor 
(called Multicycle and Low-Power) (BECK; CARRO, 2003B) and, for performance 
comparisons, its VLIW implementation is also studied (BECK; CARRO, 2004). In the 
next sub-sections, the structure of this processor, the architecture of the reconfigurable 
array and how they work together will be demonstrated. 

4.1.1 A Brief Explanation of the Femtojava Processor 

The Femtojava processor is a stack-based microcontroller that executes Java 
bytecodes. General characteristics of the Femtojava processor are: reduced instruction 
set, Harvard architecture, and small size. The size of its control unit is directly 
proportional to the number of different bytecodes utilized by the application. From the 
Sashimi Tool, the Java bytecodes of the application are analyzed, and the control unit is 
generated supporting only the bytecodes used by that application. The simplest 
architecture of the family is a multicycle Femtojava, which takes three to fourteen 
cycles to execute each instruction, shown in Figure 4.1.  

The second architecture is called Femtojava Low-Power. It has a five stages 
pipeline: instruction fetch, instruction decoding, operand fetch, execution, and write 
back, as shown in Figure 4.2. The first stage, instruction fetch, is composed by an 
instruction queue of 9 registers. The first instruction in the queue is sent to the 
instruction decoder stage. The decoder has four functions: the generation of the control 
word for that instruction, to handle data dependencies, to analyze the forwarding 
possibilities and to inform to the instruction queue the size of the current instruction, in 
order to put the next instruction of the stream in the first place of the instruction queue. 
This is necessary because of the existence of variable length instructions: they can have 
one or two immediate operands, or none at all.  

Operands fetch is done in a variable size register bank, defined a priori in earlier 
stages of the design.  Stack and the local variable pool of the methods are available in 
this register bank. This structure facilitates the call and return of methods, taking 
advantage of the JVM specification, where each method is located by a frame pointer in 
the stack. Moreover, there are two extra registers: SP and VARS. They point to the top 
of the stack and to beginning of the local variable storage of the current method, 
respectively. Depending on the instruction, one of them is used as base for the operand 
fetch. Once the operands are fetched, they are sent to the fourth stage, where the 
operation is executed. The branch prediction is static, in order to save area. All branches 
are supposed to be not taken. If the branch is taken, a penalty of three cycles is paid. 
The write back stage saves, if necessary, the result of the execution stage back to the 
register bank, again, using the SP or VARS as base.  
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Figure 4.1: Femtojava Multicycle 

 

 

 

 

Figure 4.2: Femtojava Low-Power 

In the results section, for performance comparisons, a VLIW version of the same 
Java processor was used (BECK; CARRO, 2004), which is an extension of the 
pipelined one. Basically, it has its functional units and instruction decoders replicated. 
The additional decoders do not support the instructions for call and return of methods, 
since they are always in the main flow. The local variable storage is placed just in the 
first register file. When the instructions of other flows need a value from the local 
variable pool, they must fetch from there. Each instruction flow has its own operand 
stack, which has less registers than the main stack, since the operand stacks for the 
secondary flows do not grow as much as the main flow does.  

The VLIW packet has a variable size, avoiding unnecessary memory accesses. A 
header in the first instruction of the word informs to the instruction fetch controller how 
many instructions the current packet has. The search for ILP in the Java program is done 
at the bytecode level. The algorithm works as follows: all the instructions that depend 
on the result of the previous one are grouped in an operand block. The entire Java 
program is divided in these groups and they can be parallelized respecting the functional 
unit constraints. This approach is also used in the proposed reconfigurable system and 
will be explained in more details later. 
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4.1.2 Architecture of the Array 

The reconfigurable array is tightly coupled to the processor. It is implemented as 
an ordinary functional unit in the execution stage. The array is divided in blocks, called 
cells. The operand block (a sequence of Java bytecodes) previously detected by the BT 
algorithm is fitted in one or more of these cells in the array. The approach to detect such 
operand blocks will be demonstrated separately in the next chapter. 

The cell can be observed in Figure 4.3. Three functional units (ALU, shifter, 
ld/st), working in parallel, compose the initial group of the cell. After this first group, 
two more groups with the same structure follow in sequence. Each cell of the array has 
just one multiplier and takes exactly one processor equivalent cycle to have its 
execution completed. Being limited to the critical path of the Femtojava processor, it 
brings no delay overhead to the pipeline. At the end of each cell, there are two 
additional functional units: a branch unit and an extended ld/st one, made for the 
execution of the iastore instruction (fetches a static value from memory, taking the 
address from the stack), since it needs three operands, instead of two, as usual. It is 
necessary to highlight that there is no sequential logic at all in the array: no registers, 
flip flops etc. It is composed just by pure combinational logic. The cell was developed 
to be as small as possible, but at the same time to support the maximum number of 
simple instructions, respecting the processor´s critical path. This way, just one 
multiplier was included. However, because of their smaller delay, more ALUs to work 
in sequence are supported within a cell. 

As it is stressed in the same figure, it is important to note that one of the operands 
always comes from the previous operation. This facilitates the routing of the cell, since 
just one multiplexer is necessary to choose the second operand. This characteristic will 
be better analyzed in the next subsection, when this array is compared to the one 
implemented for RISC-like processors. 

These cells can be organized side by side or in a sequential fashion depending on 
the maximum number of parallel or data-dependent instructions that is desired to be 
executed in the array. Figure 4.4 illustrates an array composed by 6 cells. In this 
particular example, the array can execute up to two instructions in parallel at a time and 
up to 9 instructions in sequence, without considering multiplications. In the best case, it 
would be possible to execute 18 instructions in the array, taking a total of just 3 cycles. 
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Figure 4.3: Two cells of the Array in sequence 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4: An example of an array’s configuration.  

4.1.3 Reconfiguration and execution 

While the program is executed, when an address of a reconfigurable instruction is 
found, the reconfigurable unit detector sends information to the main processor. This 
address is the value of the Program Counter register of the first instruction of the 
sequence that was previously translated to a reconfigurable instruction by the BT 
mechanism. After that, the configuration for that reconfigurable instruction is sent to the 
array for its reconfiguration. As the PC is used for figure that a given sequence was 
already translated, and considering that this verification can be done at the first stage of 
the pipeline and the reconfigurable array is in the fourth stage, there are 3 cycles 
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available between the detection and the use of the array. As one cycle is necessary to 
find the cache line that has the array configuration, two cycles are still available for the 
reconfiguration. Finally, the control unit of the processor configures the array as the 
active functional unit; wait while the array performs its functions; and upgrades the 
Program Counter with the new PC address, in order to continue the normal operation.  

Special attention must be given to some instructions, whenever they are in the 
reconfiguration or in the execution phases. If a getstatic instruction is found (a load 
access from main memory), its value will be fetched from the memory during the 
reconfiguration phase, since the address is static. The value fetched is saved in the 
operands field. It is also during the reconfiguration phase that the local variables of the 
method are fetched. As these local variables are kept in a dual-ported register bank in 
the processor, they can be fetched at the same time the static values from the memory 
are. Some unexpected actions can be taken during these fetches. Cache misses can occur 
in the case of getstatic accesses, or other instructions could be accessing the register 
bank making impossible the load of local variables. In these cases, extra cycles are 
necessary for the reconfiguration of the array. 

Considering the execution phase, the two operands that will be used in the first 
operation group of the first cell always come from the register bank. After that, for each 
basic group of functional units of the cell, the first operand is the result of the previous 
operation. As it can be observed, in each cell it is possible to make 3 simple operations 
(arithmetic, logical, shift) in sequence. If in the middle of a cell it is necessary to 
perform a multiplication, the result of the current cell is bypassed to the end. Then, this 
multiplication will be executed in the next cell.  

For instructions that save a value in the main memory, a buffer is used in order to 
avoid delaying the execution. Moreover, in the case of instructions that load/store values 
from/to main memory or to the local variable storage of the method, values can be 
bypassed. One example of this is when there is a load instruction in a local variable 
soon after a store in the same local variable. This avoids unnecessary accesses in the 
register bank or in the main memory, accelerating the execution and saving power.  
Finally, if there is an instruction iaload, which makes an access in the memory and 
calculates the access address dynamically, and a cache miss occurs, a penalty is paid 
and that cell in the array is executed again after the cache miss is resolved. 

Considering the example to follow, the potential gains of using a reconfigurable 
array in a Java machine is shown: if there are five simple arithmetical or logic 
operations, one needs at least 11 cycles for the execution: 6 for pushing the operands 
into the stack, plus 5 cycles for the operations themselves. This is the optimal 
assumption, without considering pipeline stalls due to data dependency. On the other 
hand, the array would execute everything in just two cycles, after this sequence was 
properly translated by the BT hardware. If this sequence is repeated a certain number of 
times, meaningful gains can be achieved. 

4.2 Differences in the structure: Stack vs. RISC 

In this section we analyze the differences of the arrays implemented in the Java 
Processor and in the RISC ones. Although the basic idea is the same, the structure of the 
array changes as the computational paradigm changes as well.  

As explained in the last sub-section, implementing the reconfigurable array in a 
Java processor has a great advantage: no routing for the first operand is necessary. This 
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occurs because Java is based on a stack machine. For instance, if one needs to subtract 
two operands using the result of a previous operation and a value from the stack, three 
steps are necessary: get the result from the previous operation, get the second operand 
from the stack, and finally operates them. Figure 4.5 illustrates this example if it was 
executed in the array. As can be observed, the subtraction is performed in the second 
level of the cell, using the ALU. The first operand for this operation comes from the add 
execution in the first level of the cell; and the second operand comes from a special 
table that holds immediate values, through another multiplexer. This multiplexer also 
could be used to bring some operand that was a result of an operation that was 
performed in lower levels of the array. 

 

 

 

 

 

 

 

Figure 4.5: Because it is a stack machine, the routing in the array implemented in the 
Femtojava becomes simpler 

 

A RISC operation, in turn, can be represented by this sequence of operations: 

add R1, R3, R4 

load R0, a 

subtract R0, R0, R1 

In opposite to stack operations, there is no guarantee that any operator in the 
Subtract instruction comes from the previous operation (it could exist any operation 
between the add and the subtract instruction, for instance). This way, the routing logic 
and the hardware itself are more complicated, as it will be observed in the rest of this 
chapter. Another important issue in stack machines is the temporality of the operands. 
Once they are consumed, they will not be used anymore (they were taken off from the 
stack forever). This also means that they do not need to remain in the array after they 
were used. It facilitates the distribution of the context inside the reconfigurable system, 
since each operand that comes from the stack will be used by just one functional unit 
and no more than that. On the other hand, in RISC machines, a source operand can be 
used even after it was already consumed. This way, it needs to remain available for the 
rest of execution in the array. Considering the previous example, right after the subtract 
operation, a multiplication, which also uses the value from R1, could be there. This fact 
will affect directly the policy of distribution of operands inside the reconfigurable logic.  

4.3 RISC-like Architectures 

To represent the general purpose computation field, an architecture very similar to 
the MIPS R10000 was employed (YEAGER, 1996), an out-of-order superscalar 
processor that executes the MIPS IV instruction set. In fact, the Simplescar Toolset 
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(BURGER; AUSTIN, 1997) is used. Simplescalar is a set of simulators that can work at 
different levels of abstraction. It has an instruction level simulator, a cache simulator, a 
superscalar out-of-order version and so on. It is highly customizable – for instance, in 
the superscalar version, innumerous options are available, from the cache size to the 
number of slots available in the instruction window. The Simplescalar is also 
customizable in the sense that it supports different ISAs. In this work it is used the PISA 
(Portable Instruction Set Architecture) (BURGER; AUSTIN, 1997), since it is highly 
based on the MIPS IV ISA. The second architecture employed is the MIPS R3000: the 
classic 5-stage RISC processor, which executes the first proposed MIPS ISA. This 
processor is still in use, mainly in the embedded system market. 

4.3.1 Architecture of the array 

A general overview of its organization is shown in Figure 4.6. The array is two 
dimensional, and each instruction is allocated in an intersection between one row and 
one column. If two instructions do not have data dependences, they can be executed in 
parallel, in the same row.  Each column is homogeneous, containing a determined 
number of ordinary functional units of a particular type, e.g. ALUs, shifters, multipliers 
etc. Depending on the delay of each functional unit, more than one operation can be 
executed within one processor equivalent cycle. It is the case of the simple arithmetic 
ones. On the other hand, more complex operations, such as multiplications, usually take 
longer to be finished. The delay is dependent of the technology and the way the 
functional unit was implemented.  Load/store (LD/ST) units remain in a different group 
of the array. The number of parallel units in this group depends on the amount of ports 
available in the memory. The current version of the reconfigurable array does not 
support floating point operations. 

 

 

 

 

 

 

 

 

 

 

Figure 4.6: General overview of the reconfigurable array for RISC machines 

For the input operands, there is a set of buses that receive the values from the 
registers. These buses will be connected to each functional unit, and a multiplexer is 
responsible for choosing the correct value. As can be observed in more details in Figure 
4.7, where just a group with ALUs is shown, there are two multiplexers that will make 
the selection of which operand will be issued to the functional unit. We call them input 
multiplexers (Figure 4.7a). After the operation is completed, there is a multiplexer for 
each bus line that will choose what result will continue through that line. These are the 
output multiplexers (Figure 4.7b). As some of the values of the input context or old 
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results generated by previous operations can be reused by other functional units, the first 
input of each output multiplexer always holds the previous result of the same bus line. 
Note that, if one considers that the configuration of all multiplexers is set to zero at the 
beginning of any execution, the output context will be the same of the input context. 
Figure 4.8 shows in even more details another example: just one row, with five columns 
and two different groups – one composed by ALUs and the other one composed by 
LD/ST units. In the results chapter more details about the area overhead will be 
discussed. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.7: An overview of the basic architecture of the reconfigurable array 

 

4.3.2 Reconfiguration and execution 

The basic principle is the same as the Java architecture. The reconfiguration phase 
involves: the loading of the configuration bits for the multiplexers, functional units and 
immediate values from the special cache; and fetching of the operands that will be used 
by that configuration from the register bank. Again, a given configuration is indexed in 
the cache using the PC of its first instruction, and this address is obtained in the first 
stage of the pipeline (through the PC register). This way, since the array is supposed to 
start execution in the fourth stage (the execution stage in this case), there are three 
cycles available for the array reconfiguration. In cases three cycles are not enough (for 
example, there is a great number of operands to be fetched from the register bank) the 
processor will be stalled and wait for the end of the reconfiguration process. 

After the reconfiguration is finished, execution begins. Memory accesses are done 
by the LD/ST units, and their access addresses can be calculated by ALUs located in 
previous lines, during execution, allowing memory operations even with those addresses 
that are not known at compile time. The operations that depend on the result of a load 
are allocated considering a cache hit as the total load delay. Then, if a miss occurs, the 
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whole array operation stops until the it is resolved. Finally, when the operands are not 
used anymore for that configuration, they are written back either in the memory or in 
the local registers. If there are two writes to the same register in a given configuration, 
just the last one will be performed, since the first one was already consumed inside the 
array by other instructions.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.8: A row of the reconfigurable array. The input and output multiplexers and the 
functional units. 
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5 BINARY TRANSLATION 

In the next two sections in this chapter, details about how the BT detection and 
transformation of the code to be executed in the reconfigurable hardware are described. 
This BT algorithm is called on this thesis of Dynamic Instruction Merging (DIM). The 
first section demonstrates DIM used in Java machines. The second one shows how the 
binary translation works for RISC processors. 

5.1 BT Algorithm for Stack Machines 

The search for the sequence of instructions in the Java program is done at the 
bytecode level in a very similar way of what the VLIW static analyzer does (BECK; 
CARRO, 2005) (BECK; CARRO, 2005b) (BECK; CARRO, 2005C). Sequences of 
instructions that depend on each other are grouped in a so-called operand block. The 
detection to find these blocks are very simple: when the stack pointer returns to the start 
address, previously saved, an operand block is found. Therefore, to detect an operand 
block just a single state machine is necessary. This is a particular characteristic of stack 
architectures as shown in (BECK; CARRO, 2004).  

Figure 5.1 illustrates this procedure for a given sequence of instructions. Note that 
this sequence compounds an operand block. The stack pointer starts from a determined 
place in the stack and in the last instruction of this sequence it returns exactly to the 
same point. 

 

 

 

 

 

 

 

 

 

 

Figure 5.1: The simple process of finding an operand block in a stack machine 

In order to better illustrate this approach, consider the sequence of instructions 
observed in Figure 5.2a. The first imul instruction will consume the operands pushed 
previously, by the instructions bipush 10 and bipush 5. After that, the ishl instruction 
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will consume two more operands produced before by the previous bipush. The iadd 
instruction will consume the results of imul and ishl. Then, the istore will save the result 
of the iadd in the local variable pool. Finally, there are two more bipush instructions, 
which operands will be used by the last imul. However, they do not use any result of the 
set of instruction previously executed. In other words, their operand stacks are 
independent, forming two operand blocks (Figure 5.2b). Each one of these operand 
blocks compose a different configuration to be used in the future by the reconfigurable 
array, and will be saved in the reconfiguration cache (Figure 5.2c).  

 

Figure 5.2: Identifying independent operand blocks 

When a basic block limit is found, or the end of an operand block, the current 
operand block is finished, a write command for the reconfigurable cache is sent. This 
command saves the content of the buffer to the cache and the buffer is cleaned. This 
content is the list of the decoded instructions of the operand block. This list is made at 
real time, as the instructions are fetched from memory. Additionally, the Program 
Counter (PC) value of the beginning of the sequence must also be saved. This is how 
the detector will know when a sequence of instructions was previously saved in the 
cache and it is ready to be executed next time it is found. The PCs are saved in a bitmap 
fashion. This way, both writes and reads are fast and, as just one bit for address is 
necessary, no large amounts of memory are needed.  

Each cell of the reconfigurable array (illustrated in Figure 4.3 of the previous 
chapter) must have the follow data in the reconfigurable cache:  

 The operands field, where it can be found constant or immediate values; 
values from the memory or from the local variable storage; the value for 
the bypass of operands (16 bits). 

 The bits for the configuration of the functional units (5 bits). 

 A pointer indicating the address of a fetch in memory or local variable 
storage (16 bits). 

 The bits for the multiplexers to make the routing (5 bits). 

Moreover, these additional fields are necessary for the configuration of the array: 

 The start and the relative end addresses, in order to update the PC value 
after the sequence of instructions is executed in the array (20 bits). 

 The number of cycles taken by the operation in the array (5 bits) 
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 Additional 32 bits for immediate values or pointers for the first cell, and 
one more bit for the final multiplexer, for each cell in the array (33 bits). 

Hence, for each cell in the array is necessary 159 bits of reconfiguration (42 bits 
of each part multiplied by 3, plus 33). Consequently, if the array were formed by 3 cells, 
it would be necessary 477 bits in the reconfiguration cache plus 58 bits of the additional 
information, totalizing 535 bits for saving each configuration of the array. 

5.2 BT Algorithm for RISC machines 

As explained in Section 3.3, there are differences in the detection in RISC 
machines when comparing to stack ones, making the BT process a little bit more 
complex. In this subsection, how the BT algorithm for RISC machines works is shown. 
To better explain it, the algorithm with many restrictions will be first demonstrated and, 
gradually, it will be improved until its current implementation.  

5.2.1 Data Structure 

Basically, some tables are necessary in order to make the routing of the operands 
inside the reconfigurable array as well as the configuration of the functional units. Other 
intermediate tables are also necessary, however, they are used just during the detection 
phase. These tables are illustrated in Figure 5.3, considering an array composed of 
twenty ALUs (five rows with four ALUs each). They can be described as follow: 

 Write bitmap table: Saves information of data dependence of each row. 
This table is in fact composed by a large number of small bitmaps, more 
specifically, one per row. This bitmap just informs what registers in that 
row will be written. Note that it is not necessary to keep this information 
for each instruction as usual. Summarizing it in a bitmap for each row, it is 
possible to reduce the amount of hardware necessary to check true data 
dependences (RAW – read after write). 

 Resource Table: Informs if a given functional unit is being used; 

 Read Table: Informs what operand from the input context must be read by 
each functional unit. Note that this table has two inputs, since there are two 
source operands for each functional unit. It is important to stand out that 
the input context is basically an indirect table. In other words, not 
necessarily the first slot needs to keep the value of the register R1.  

 Writes table: This table informs what value each context slot will receive. 
Note that this table is different when comparing to the read one. In the 
previous table, the multiplexers were responsible for choosing what values 
from the context slots would be issued to each functional unit. This table 
informs what values from the whole set of the functional units that 
compose each row will continue in each slot of the context bus.  

 Context table: This table has two rows. The first one represents the input 
context, and it will be used in the reconfiguration phase for the operands 
fetch. The second one is called current table, and it will be used during the 
detection phase. Its final state represents what values will be written when 
the execution of the array finishes.  
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It is important to note that the tables follow the same structure as the 
reconfigurable array. In the case of the Resource Table, the X-axis represents the 
parallel execution of instructions through the time (y-axis). The Read Table is almost 
the same, with the difference that each column of the Resource Table is split in two 
(since each functional unit has two input operands). The X-axis of the Write Table is 
represented by each slot of the Context. The Y-axis is exactly the same as the previous 
ones: represents the result of each functional unit through the time. 

 

 

 

 

 

 

 

Figure 5.3: Tables necessary for the detection and configuration of the array 

5.2.2 How it works 

To better explain the algorithm, let us start with its simplest version, considering 
that the array is composed just by adders. The following steps represent pipeline stages 
when considering the implementation in hardware. 

Considering that 

inst op_w, op_r1, op_r2  

where inst is the current instruction and op_w, op_r1 and op_r2 are the 
target and the source operands, respectively, the follow steps are necessary: 

1st) Decode the instruction, returning the target and source registers of the current 
instruction; 

2nd) In the write table, for each row from 0 to N, verify if op_r1 and op_r2 
exist. If any one of them or both exist in the row S, row O equals to S + 1. Considering 
a bottom-up search, the row S is the last one where op_r1 or op_r2 appears, since 
they may be found in more than one row. If nor op_r1 neither op_r2 exist in any row 
of this table, row O equals to zero.  

3rd) In the resource table, search in the columns of row O, from left to right, if 
there is a resource available for use. If there exists, we call this free column as C, and 
row R equals to O. If there is no resource available in row O, increment the value of O 
in 1 and repeat the same operation, until finding the resource. This way, row R equals to 
O + N, where N was the number of increments necessary until finding an available 
resource.  

4th)   

a)  Update the bitmap based write table in row R with the value of op_w 

b)  Update column C in row R of the resource table as busy 

c)  Search in the current context table if there are op_r1, op_r2 and op_w. 
For each one of these, if they exist, point L1, L2 and W to op_r1, op_r2 
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and op_w respectively. If one of them does not exist in the table, the 
correspondent signal of write for each one of this values in this table is set, 
and the correspondent pointer (L1, L2 or W) is updated. 

5th)  

a)  Depending on the step 4c, the current context table is updated. If the pointer 
W is being written in the table, a flag indicating that it should be written 
back at the end of execution is set. 

b)  The initial context table is also updated, if one of the write signals 
concerning op_r1 and op_r2 are set. 

c)  In the write table, write the value of W in the row R, column C.  

d)  In the read table, write the values of L1 and L2 in row R, column C (it is 
important to remember that each column of this table has two slots, as 
explained earlier) 

Summarizing the algorithm, for each incoming instruction, the first task is the 
verification of RAW (read after write) dependences. The source operands are compared 
to a bitmap of target registers of each row. If the current row and all above do not have 
that target register equal to any of the source operands of the current instruction, this 
instruction can be allocated in that row, in a column as left as possible. After that, the 
bitmap of target registers is updated. This way, for each incoming instruction it is 
necessary to analyze just one bitmap per row. Indirectly, such technique increases the 
size of the window of instructions, which is one of major limiting factors of increasing 
the ILP exploitation in superscalar processors, due to the number of comparators that is 
necessary (BURNS; GAUDIOT, 2002).  

5.2.3 Example 

Now it is shown a very simple example, where just add operations could be 
executed in the reconfigurable array. Consider the follow sequence of instructions: 

add r7, r5, r6 
add r8, r7, r6 
add r9, r8, r6 
add r1, r2, r7 
add r4, r2, r7 
The reconfiguration tables would be as demonstrated in Figure 5.4, gradually. 
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Figure 5.4: Behavior of the tables during the detection of instructions 
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Figure 5.5 shows how the configuration presented before would be represented in 
the structure of the array after its proper reconfiguration. 

 

 

 

 

 

 

 

 

 

 
 

Figure 5.5: The configuration of the array for the previous example 
 

The simplest version of the algorithm has been just explained, in order to facilitate 
its understanding. However, several improvements were done since the very first 
version. Although the basic principles of configuration and routing remain the same, the 
complete version has the additional functionalities that follow (each new functionality 
discussed is incremental, meaning that the previous one was also considered): 

5.2.4 Support for immediate values 

Immediate values are allowed for the input context. They are treated as registers 
in the start table. However, they cannot be changed (so, it is not necessary any entry for 
them in the current table) and they are fixed (are loaded together with the rest of 
configuration). It is important to note that, when for the upper bound limit for the input 
context is reached (for both immediate values or those from the register bank), a new 
configuration is started. 

Now, the follow format is also available: 

inst op_w, op_r1, (immed) | op_r2  

These commands are added to the correspondent steps of the algorithm presented 
before: 

1st) Support of immediate operands as the second source operand. An extra bit is 
included in this field indicating the use or not of an immediate value. 

4th)   
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d) If the op_r2 is an immediate value, search for it in the immediate table. If 
there exists one immediate with the same value, point L2 to it. If it does not 
exist in the table, generate a write signal and update the L2 pointer. 

5.2.5 Support for different functions in the functional units 

A new table is employed, called resource function table, with the same structure 
(same number of rows and columns) as the resource table. This table stores the 
information of what operation that functional unit will perform. This way, ALU can 
perform sums, subtractions, logics and, or, etc. 

1st) Also makes the decoding of the type of the function 

4th)   

e) Update column C in row R of the resource function table with the value 
decoded in the first step. 

5.2.6 Different groups of functional units 

Until this moment, the whole array was composed by the same kind of functional 
unit: ALUs. Now, it is possible to use different units, although they have to present the 
same delay as ALU to perform their functions. As already stated before, they are 
divided in groups of columns, where each column is always homogeneous. For that, the 
steps one and three are modified: 

1st) Include bits in the decode stage to inform what group the incoming instruction 
belongs. 

3rd) The search for the free column C changes a little bit. Instead of starting from 
the begging of the row and finishing at the end of it, the search starts at the column GS 
and finishes at the column GE, where GS and GE are the bits decoded at the 1st stage 
that hold the information on where the group for that instruction begins and ends in the 
row, respectively. If there is no resource available in the current row O, increment the 
value of O in 1 and repeat the same operation, until finding the resource. In the same 
manner, the search in the above rows (if necessary) will respect the bounds of the 
current instruction group, using GS and GE. 

5.2.7 Instructions with different delays 

Now, different delays for each functional unit are allowed. Functional units within 
the same group have the very same delay. This way, the principle of homogeneity of the 
columns is maintained: each column always has the same type of functional units, 
which take exactly the same amount of time to perform its function as the others. The 
resource table remains the same, just those cells above the current functional unit are 
marked as busy. For instance, if a shifter takes one processor equivalent cycle to 
perform its function, and the delay of three rows represents this cycle, the two columns 
above the one already occupied by the shift instruction will also be marked as busy. 

Using the same information of group given from the 1st stage, the following 
changes are necessary: 

4th)   

b)  Besides updating the column C in row R of the resource table as busy, also 
update the subsequent columns C in row R + 1 … RD, where RD is N – 1. 
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N, in turn, is the number of rows necessary for the functional unit in that 
group to perform its operation. R equals to RD. 

5th)  

e) In the write table, write the value of W in the row R, column C. Note that 
now, R could be changed in the previous step according to the delay of the 
functional unit. 

5.2.8 Load/Store Instructions 

Memory accesses are allowed. The allocation of these instructions in the array is 
based on the assumption that the stores can access the same address as previous loads. 
This way, the allocation is conservative: stores are always allocated after loads. In a 
more advanced version, however, advanced memory alias analysis can be performed 
(for instance, the mechanism could have an equivalent of the write bitmap table for 
memory addresses). The delay of these functional units can be configured according to 
the number of cycles necessary to access the main memory or cache. If a cache is used, 
a special mechanism is provided to re-execute the instructions in the array from the 
beginning, after that cache miss was resolved. 

There is a major difference between load/store allocation when comparing other 
functions with variable delay: they need to start/end exactly in the bounds of the 
processor equivalent cycle: since memory accesses are still synchronous. For instance, 
if the current incoming instruction is a load, and three levels in the array are equivalent 
to a processor cycle, the instructions can only be allocated at the first, fourth, seventh 
(and so on) rows. This way, the following steps are modified: 

1st) Decoding of LD/ST instructions. It is necessary to separate these instructions 
of the other ones with variable delay, as previously explained. 

3rd) If row R not equals to RP, with RP = (mod  P) + 1, where P is the number of 
rows in the array which the total delay is equivalent to a processor cycle; R equals to 
RP. Column C is not changed.  

5.2.9 Write backs in different cycles 

An extension of the context table is made. Before, the context table had just two 
rows: start and current contexts. Now, there is still the start row, but there is a copy of 
the current context for each row RP of the array (the row that corresponds to the 
beginning of each processor equivalent cycle). This small table says what registers will 
be written back in that level. The number of simultaneous writes in the register bank is 
the same as the number of ports that it has. If there is more writes in the current row 
than it supports, these writes are forwarded to the next level. To make it possible, 
besides the BT algorithm, multiplexers had to be added to the array’s structure. If there 
are two ports available, two multiplexers in each row RP are added, receiving the whole 
context bus and presenting as output the value to be written back. The steps are added as 
follows: 

5th)  

f)  Depending on the step 4c – if the pointer W is being written in the table, the 
row RP of the context table is updated with W. If there is no more slots 
available in the row RP, increment RP until finding a slot available for that 
write. 
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With that, if there are two writes in the same register within a given configuration, 
both will be performed, although just the last one is necessary. This way, There is also a 
comparison in the previous tables: if there is the same W marked to be written in 
previous rows, it is erased from them. 

5.2.10 Handling False Dependencies 

Let us consider an example to better illustrate this approach, with the follow 
sequence of instructions: 

add r7, r5, r6 
sub r5, r9, r6 
mul r5, r8, r6 

 
Between the add and the sub, there is a false dependence, named WAR (Write 

After Read). In this case, the processor could not execute the sub instruction in parallel 
to the add because of data coherence: the value of r5 cannot be changed at the same 
time it is read. Between the same sub and the next instruction, mul, another type of false 
dependence occurs, known as WAW (Write After Write), again, with R5. Because of 
the same reason as before, data coherence, both instructions cannot be executed in 
parallel because r5 cannot be written at the same time. They are declared as false 
dependencies because one can apply techniques to avoid them, such as Register 
Renaming (HENNESSY; PATTERSON, 2003), which is a very expensive process and 
it has a high cost in any design of a superscalar processor (BURNS; GAUDIOT, 2002). 

In the proposed BT algorithm, the context table is altered to easily handle with 
false dependencies. It has a pointer indicating the last operator included in the context 
table. When an operation needs this operator, the search occurs from the right to the left, 
beginning at this pointer. Each new destination operator that it is included, no matter if 
it is the same, has a new entry in the current table. In the example above, r5 would have 
3 entries in the context table. If one considers that between the add and sub there would 
have other instructions that would read R5, they would use the first entry (included 
because of the add). When the sub instruction itself is found, a new entry with R5 is 
added. Any instruction between the sub and mul instruction would use this last R5 entry 
in the array, because the search occurs from right to the left (from the last to the first). In 
the same way, any instruction executed after the mul would read the last entry of R5, 
and so on. As a circular buffer is employed, the previous operators that are not used 
anymore can be overwritten by new ones, when an “overflow” of the context table 
occurs. 

The step 4c need to be changed: 

4th)   

c)  Search in the current context table from right to left beginning at FP, where 
FP is the pointer indicating the end of the context table. For the W point, 
always generate the signal for including a new entry in the next stage. For 
each new entry, increment FP.  

5.2.11 Speculative Execution 

Before its implementation, two different ways of performing speculation were 
analyzed. The first one was the speculative execution of all possibilities inside the array 
(all possible basic blocks are executed), just writing back the results of the correct path 
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at the end. To gather the results, the estimator built in the Simplescalar toolset was 
extended. It has shown that, although performance improvements would be achieved, 
the area overhead would be huge: the array was growing too much in the horizontal 
direction. This way, in this case, speculative execution would be just worth if the array 
was big enough, otherwise a loss in performance could show up: instructions that would 
be executed but were worthless (in the sense that their results would not be written 
back) would take place of instructions that would be really valid.  

The second approach (the one that was implemented), uses the same principle as 
trace scheduling: the configurations of the array are indexed by the PC register and the 
following basic blocks are executed speculatively (however, just one path is 
considered). If they are not miss predicted, the results are written back. If they are, the 
results are discarded and the control is given back to the processor, in order to execute 
these instructions, using its normal flow. The approach is illustrated in Figure 5.6. For 
this example, it is considered that the saturation point is 2. When the Basic Block 1 
(Figure 5.6a) is found, it is allocated in the array as usual (Figure 5.6c). After that, the 
branch instruction can take two paths: to the Basic Block 2 or to the Basic Block 3. In 
this example, the path taken was to the Basic Block 3. This way, a variable responsible 
for that branch is incremented (equals to 1). Next time Basic Block 1 is found, the BT 
does not need to allocate its instructions (they have already been allocated previously). 
However, again, it is verified that the same branch has taken the same path as before: to 
the Basic Block 3. The variable was incremented once more, reaching the saturation 
point. Consequently, the instructions of the Basic Block 3 are also allocated in the same 
configuration (Figure 5.6c). On the other hand, if the path taken were to Basic Block 2, 
instead of 3, the variable would be decremented. Furthermore, if, during execution, the 
number of miss predictions in sequence equals to the saturation point for a given 
branch, the following basic block is removed from that configuration, starting the whole 
process of BT again. 

A new group of functional unit in the array was created, composed by branch 
units. For the write back of results, new multiplexers in each row were added. Without 
speculation, the array would have a given number of multiplexers per level directly 
connected to the register bank, in order to write back the results from the context (as 
stated in section 5.2.9). Now, it has more multiplexers per row, divided in groups. Each 
group of multiplexers belongs to a given level of speculation in the array. The values of 
each group of multiplexers are saved in a buffer, waiting for a trigger, correspondent to 
the level of speculation. When a given branch unit executes the branch instruction 
relative to that level of speculation, the bit signal is sent, informing if the values waiting 
for that trigger can be written back or should be discarded.  

A special control in each row keeps track of the values that need to be written 
back, for each group of multiplexers that represent each node (basic block), in the 
dataflow execution tree. If there is a miss speculation, the array finishes its execution 
and just writes back the results of the first basic block and the ones which previous 
branches were speculated right. Then, it sends information to the speculative control 
and, instead of returning the PC of the last instruction of that configuration, it returns 
the one correspondent to the beginning of that basic block that was miss speculated, in 
order to start the execution of the non translated instructions again (taking the right path 
for that branch). 
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Figure 5.6: How the saturation point works during BT detection for future speculative 
execution 

 

A new entry in the write table indicating the level of the result being written back 
was included. Note that the critical part in the implementation of speculative execution 
is the control of the reconfigurable array. The BT itself needs small changes. The 
following steps of the algorithms were added/modified: 

1st) Also decode branch instructions. For each branch instruction, the variable L is 
incremented in one. L represents the level of speculation. 

3rd) During the search, consider the branch group. 

5th)  

a) If W needs to be added, include L with it. 
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6 RESULTS 

In the first part of this Chapter, results regarding the Java processor with two 
different versions of the Femtojava processor are demonstrated, executing a diverse 
range of benchmarks. Then, the results of the proposed approach in a RISC processor 
are shown, where both the Simplescalar Toolset and the MIPS R3000 are analyzed. 

6.1 Java Processors 

In this section, it is presented the results and the methodology used for the 
measurements when coupling the binary translation hardware and the reconfigurable 
array with the Femtojava Processor. Also, two different set of benchmarks were 
employed: one composed by simple benchmarks, besides a floating point sum emulation 
algorithm and a MP3 player; and a sub-set of the SPECJVM (SPEC, 2004). This sub-set 
was chosen because it represents the large range of different behaviors of the 
SPECJVM. Two versions of the Femtojava processors were employed – Low power 
and Multicycle, besides the VLIW version used for comparison purposes.  

6.1.1 Femtojava  Low-Power with simple benchmarks 

The tool utilized to provide data on the energy consumption, memory usage and 
performance is a configurable compiled-code cycle-accurate simulator, called CACO-
PS (BECK; CARRO, 2003). The CACO-PS is a SystemC like simulator that calculates 
the power consumed based on the switching activity of the system components. This 
way, it is possible to compare the dynamic power consumed by different versions of the 
Femtojava processor. In opposite to the next experiments, in these static power is not 
considered. The estimation for the memory consumption was done based on data 
available on (PUTTASWAMY et al., 2002). The area was evaluated using the Altera 
Quartus-II for Windows (ALTERA, 2008) and was computed in number of gates, after 
synthesis of the VHDL versions of them. 

In this experiment (and all concerning the Femtojava processor), it was considered 
the cache organization as being fully associative, so any address can go to any place in 
the cache. Also, it is considered that there is no replacement of data at all. It means that, 
once the configuration is saved in the cache, it stays there until the end of program 
execution. This is a disadvantage for the proposed technique: even if the configuration 
is reused just a few times, it can take place of other one that could bring better results. In 
the future, replacement techniques will be used (it is important to note, however, that 
replacement techniques are used for RISC processors). 

The group of benchmarks is composed by: Sin computation using the CORDIC 
method, as a representative of arithmetic libraries; sort – bubble, select and quick, in a 
array of 10 or 100 elements – and search (binary and sequential), used in schedulers; 
IMDCT (Inverse Modified Discrete Cosine Transformation), as an important part 
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present in various decompression algorithms, plus more three unrolled versions in order 
to expose the parallelism; a library to emulate sums of floating point numbers, since the 
Java processors do not support floating point operations yet; and finally a complete 
MP3 player that executes 4 frames of 40kbit, 22050Hz, joint stereo. The algorithm is 
divided in six parts, because of limitations of the simulation tool at that time. 

Initially, in Table 6.1 the performance of all the benchmark set in the Low Power 
architecture and in the different versions of the VLIW is evaluated, and compared to the 
Java processor coupled to the reconfigurable array. As can be observed in this table, for 
the VLIW processor, better results are found when unrolled versions of the IMDCT are 
used (IMDCT u1, IMDCT u2 and IMDCT u3), compared to the non unrolled version. 
The reason for this is that there are less conditional branches, which reduces the number 
of cycles lost because of braches miss predictions, and (mainly) because there is more 
parallelism exposed. On the other hand, algorithms like the floating point sums 
emulation do not show performance improvements when the number of instructions 
available per packet in the VLIW grows. This occurs because there is no more ILP 
available to be explored. Thus, increasing the size of the VLIW packet does not matter 
at all.  

Still in the Table 6.1, in the column Reconfigurable Array – Sequential, it is 
shown the greatest advantage of using an array with BT to explore every part of the 
algorithm. Even in algorithms that do not present a high level of parallelism to be 
explored like the floating point sums emulation, or in the sort or search ones, great gains 
are achieved. Furthermore, when the VLIW architecture shows good performance 
boosts in some algorithms, such as the unrolled versions of IMDCT with a high level of 
ILP exposed, the array presents even better results. Finally, there is the column entitled 
Reconfigurable Array – Parallel. This column shows results considering that the array 
also explores the ILP available, executing instructions in parallel. As in the VLIW 
version (although in different levels), significant improvements were obtained just in a 
few algorithms, mainly in the unrolled versions of IMDCT. This reinforces the idea of 
exploring any sequential part of the software, not being dependent just of the parallelism 
available. 

In the second part of the table, data concerning the reconfigurable array is 
presented. In the first column of this second part, it is shown how many instruction 
sequences were saved to the cache and were reused in the array. In the second, the 
number of times that these sequences were reused is demonstrated. As a good example 
on how the reuse of code is important, let us discuss the sort family of algorithms. When 
versions that sort 100 elements are executed, more array configurations are reused, 
bringing an even better result with no area overhead: the number of different 
reconfigurations and cells in the array do not increase. The next column shows the 
maximum number of cycles necessary to reconfigure the array from the cache. The forth 
column exhibits the maximum number of cells that these sequences occupied 
considering that there is no parallelism available. On the other hand, when parallelism is 
explored in the array, sometimes more cells are necessary. The last column shows these 
values.  

In Figure 6.1 the energy consumption in the ROM and RAM accesses of the Low-
Power version with and without the array are compared against the 4 instruction/packet 
VLIW version, since the values of energy spent in memory accesses in this VLIW 
architecture are very similar to the 2 and 8 instructions/packet ones. As it can be 
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observed, the array saves energy in ROM accesses. Instructions that would be fetched in 
the memory are instead directly executed in the array, because the dataflow equivalent 
of this sequence is saved in the reconfiguration cache. In the same way, power 
consumed in the RAM memory and in the register bank is saved, because now there are 
a specific cache for loads of static values and the bypass of operands inside the array.  

Regarding the energy spent just in the core, presented in Figure 6.2: even with the 
extra power spent because of the addition of the reconfiguration cache, there are still 
gains in terms of energy consumption in some algorithms. This occurs because a 
considerable amount of instructions that would use the five stages of the pipeline of the 
processor and its sequential logic are now being executed on combinational logic in the 
array.  

Table 6.1: Comparison among different versions of the Femtojava with and without the 
reconfigurable array 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Algorithm 

Number of cycles Data about the array 
Low-

Power 

VLIW (instructions per packet) Reconfigurable Array #dif.  
reconf. 

#Seq. 
 reused 

#max 
rec. 

#max 
Seq. cells 

#max 
Par. 
cells 2 4 8 Sequencial Parallel 

Sin 755 599 592 583 383 383 8 64 3 2 2 
BubbleSort 10 2424 2013 1923 1923 712 600 7 177 3 4 4 
SelectSort 10 1930 1689 1689 1689 532 514 8 182 3 3 6 
QuickSort 10 1516 1246 1246 1246 496 496 13 132 3 2 2 
BuubleSort 100 339797 268610 268610 268610 61541 47840 7 22458 3 4 6 
SelectSort 100 134090 127466 127533 127533 30700 30502 8 15280 3 3 6 
QuickSort 100 13239 10649 10649 10649 5007 5007 13 2804 3 2 2 
Binary Search 403 369 365 365 176 176 5 33 3 2 2 
Seq.l Search 1997 1776 1774 1774 658 658 2 253 3 2 2 
IMDCT 40306 33128 33071 32994 9399 4287 7 2407 4 10 15 
IMDCT u1 31500 18062 12191 9604 7624 2512 16 825 4 10 15 
IMDCT u2 30372 17329 11546 9114 6972 2436 13 804 4 10 15 
IMDCT u3 18858 11230 9838 7807 2852 2780 7 745 3 4 6 
F. P. Sums 14531 12475 12314 12296 6760 6729 37 660 4 3 4 
MP3 part 1 242153 210818 200721 183818 103549 102936 140 12317 5 4 6 
MP3 part 2 109396 92735 92735 92735 65010 65010 11 8138 3 3 3 
MP3 part 3 64488 49346 49346 49346 45525 45525 22 9190 3 2 2 
MP3 part 4 41587 33860 34471 31436 22097 22097 5 2876 4 3 3 
MP3 part 5 35895 34405 15905 8959 9016 9016 5 1212 3 3 3 
MP3 part 6 159017 103441 73482 51124 36405 31485 53 6005 7 11 15 
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Figure 6.1: Energy spent by RAM and ROM accesses 

 

Figure 6.2: Energy spent in the core 

Figure 6.3 shows the total energy consumption of the system considering the 
RAM, ROM, core and the additional BT hardware that makes the dynamic code 
analysis. It is important to note that great gains were achieved in energy consumption in 
all algorithms, proving the technique effectiveness. 
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Figure 6.3: Total energy spent by the architectures 

Table 6.2 shows the area occupied by the Low Power and VLIW versions of the 
Java processors. In Table 6.3 it is presented the area occupied by the Low-Power 
version with different configurations of the reconfigurable array (the maximum number 
of reconfigurations allowed versus the total number of cells available in the array), 
counting its cache and the BT hardware. As can be observed in this table, the 
reconfigurable array, when coupled to the Java processor, even in its simpler version, 
brings a significant area overhead when compared to the 8 instructions/packet VLIW 
architecture. However, this was expected, since reconfigurable arrays are very area-
intensive due to their great number of functional units. Though counterintuitive, this 
extra area leads to energy savings, since fewer accesses to program memory and less 
iterations on the processor datapath are required. Table 6.4 shows the same information 
as Table 6.3, but in relative numbers. 

Table 6.2: Area of the base processors 

 
 
 
 
 
 

Table 6.3: Area overhead due to the use of the reconfigurable array 

 
 
 
 
 

 

 

 

 

 

PROCESSOR LOW 
POWER 

VLIW (INSTRUCTIONS/ PACKET) 
2 4 8 

Area (gates) 131215 213850 367675 675395 

              # Cells 
# Reconf. 

2 3 4 7 10 

5 757091 993999 1230907 1941630 2652353 
10 1039631 1406301 1772971 2872981 3972990 
15 1322172 1818604 2315036 3804332 5293628 
20 1604712 2230906 2857100 4735683 6614265 
40 2734873 3880116 5025358 8461087 11896815 
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Table 6.4: Relative Area overhead, comparing to the standalone Femtojava Low-Power 
Processor 

 

 

 

 

 

 

Finally, Table 6.5 compares the Java processor with the reconfigurable array 
against all other architectures, in terms of energy and performance, considering the best 
configuration of the array for each benchmark, according to the Table 6.1, Table 6.5 
shows how faster the version with the reconfigurable array is, and how much energy it 
saves. As it can be observed, huge energy savings are achieved when compared to any 
architecture (10.89 times less energy against the low-power version on the average). 
There are also meaningful performance improvements even when comparing to the 8 
instructions/packet VLIW version (2.77 times faster in the mean).  

Table 6.5: Comparing the performance and energy consumption among all the 
architectures 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

6.1.2 Femtojava Low-Power with SPEC JVM 

 
For the SPECjvm98 benchmark set, a different approach was used, because of the 

benchmark code size. A trace was generated using the Kaffe Virtual Machine. For 

  Energy Performance 
Reconfigurable 

Array vs. 
Low 

Power 
VLIW 

2 
VLIW 

4 
VLIW 

8 
Low 

Power
VLIW 

2 
VLIW 

4 
VLIW 

8 
Sin 1.89 1.93 1.79 1.83 1.97 1.56 1.55 1.52 
Sort - Bubble 10 3.98 4.35 4.21 4.29 4.04 3.35 3.21 3.21 
Sort - Select 10 8.09 7.76 7.76 7.91 3.76 3.29 3.29 3.29 
Sort - Quick 10 3.19 3.18 3.18 3.24 3.05 2.51 2.51 2.51 
Sort - Bubble 100 34.59 19.95 20.04 1.60 7.10 5.61 5.61 5.61 
Sort - Select 100 26.23 24.17 24.17 24.67 4.40 4.18 4.18 4.18 
Sort - Quick 100 5.74 5.73 5.72 5.82 2.64 2.13 2.13 2.13 
Search - Binary 2.00 2.31 2.31 2.35 2.29 2.10 2.08 2.08 
Search – Seq. 15.04 16.44 16.45 16.71 3.03 2.70 2.69 2.69 
IMDCT 28.33 24.14 24.15 24.65 9.40 7.73 7.71 7.70 
IMDCT u1 19.89 16.34 15.70 15.02 12.54 7.19 4.85 3.82 
IMDCT u2 21.72 17.93 17.04 16.35 12.47 7.11 4.74 3.74 
IMDCT u3 26.68 20.76 21.38 20.24 6.78 4.04 3.54 2.81 
F. Point Sums 1.53 1.26 1.25 1.27 2.16 1.85 1.83 1.83 
MP3 Part 1 1.87 0.79 0.82 0.86 2.35 2.05 1.95 1.79 
MP3 Part 2 3.42 2.74 2.99 3.05 1.68 1.43 1.43 1.43 
MP3 Part 3 1.19 1.95 1.95 1.99 1.42 1.08 1.08 1.08 
MP3 Part 4 2.71 3.00 2.80 2.84 1.88 1.53 1.56 1.42 
MP3 Part 5 4.91 4.67 7.94 13.96 3.98 3.82 1.76 0.99 
MP3 Part 6 4.71 5.39 6.34 8.36 5.05 3.29 2.33 1.62 

Average 10.89 9.24 9.40 8.85 4.60 3.43 3.00 2.77 

              # Cells 
# Reconf. 

2 3 4 7 10 

5 5.77 7.58 9.38 14.80 20.21 
10 7.92 10.72 13.51 21.90 30.28 
15 10.08 13.86 17.64 28.99 40.34 
20 12.23 17.00 21.77 36.09 50.41 
40 20.84 29.57 38.30 64.48 90.67 
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performance and power measurements, an analyzer, which was modified and extended 
from a previous version used for measurements in the VLIW version of the processor, 
was employed (BECK; CARRO, 2004). The measurements were based on the same 
principle of the so-called instructions simulators (TIWARI et al., 1994), where there is a 
table with performance and power consumption data for each instruction.  

The SPECjvm98 suite was developed to evaluate the hardware and software 
aspects of the JVM client platform providing different tests derived from real 
applications that are commercially available. For this simulation, all floating-point 
operations were converted to integer ones since the Femtojava does not support a 
floating-point unit. Additionally, the benchmarks can also be executed with three 
different input sizes. All evaluations here presented are based on the traces obtained 
from the smaller input size, the s1 data set. It is important to note that this small amount 
of data is a disadvantaged scenario: it is very likely that there is less repeated code to be 
mapped to the array when comparing to the bigger input data sets.  

Firstly, Figure 6.4 demonstrates the different performance improvements of the 
employed benchmark set when comparing the Femtojava Low-Power with the array 
against the standalone processor. Besides, it is considered that all configurations are 
available in the cache and that there is no limit to the number of cells that can be 
implemented (both in sequence as in parallel). This number represents the maximum 
theoretical speed up. 

 

Figure 6.4: Performance improvements - JVMSPEC 

Now, the analysis is limited to:  

 The cache size was varied from 4 to 32 different configurations; 

 The number of available cells implemented in the array was varied from 1 to 5 
cells, which sums up a variation from 1 to 5 multipliers and 3 to 15 ALUs in 
series.  

Increasing the number of cells or the cache size would not show a large 
improvement when comparing to the configuration with 32 cache slots and 5 cells, since 
a saturation in terms of optimization begins to occur. 

In Figure 6.5 the same results presented in the previous figure are shown, only 
now the number of cells is limited to 5 and only the 32 most executed code sequences 
are saved in the cache. This figure shows as reference the best performance case with 
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the proposed restrictions. The consequence of varying the other parameters is analyzed 
in Figure 6.6 and Figure 6.7.  

 

Figure 6.5: Performance improvements with restricted resources 

As it can be observed from Figure 6.5 and comparing to Figure 6.4, the performance 
degradation is not significant in the majority of the whole set of algorithms – even with 
those restrictions and without using a cache policy that could improve results allowing 
more configurations to be reused. Nevertheless, it is notable a more important 
degradation of performance in the mpegaudio application. This can be attributed to the 
characteristics of how this code was programmed, as it will be discussed later. In Figure 
6.6, the effect of varying the cache size while maintaining the number of implemented 
cells in 5 is analyzed. This graph clearly shows the dependence of performance 
improvements with the number of configurations available in the cache.  For all 
algorithms, a greater number of available configurations contributed to performance 
increases. Using 32 configurations it is shown that, in the mean, almost 80% of the 
theoretical speedups is achieved. 

 

Figure 6.6: Performance improvements when varying the total number of configurations 
used 

It has to be pointed out that algorithms such as compress do benefit from an 
increased number of used configurations. This demonstrates that this application has a 
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great number of code sequences that are highly reused. In the same manner, the effect of 
varying the number of available cells while maintaining the cache size holding 32 
configurations is shown in Figure 6.7. While the previous figure showed a dependence 
of performance with the available number of configurations, this one shows that most 
algorithms do not actually benefit from having more than 2 cells in sequence. By 
consequence, this fact also demonstrates that normally the size of the most used operand 
blocks is not that large. Then again, the exception is made with the mpegaudio 
application. In this program, there exists big operand blocks that are highly executed. 
Therefore, the application would take benefit from having more available cells in the 
reconfigurable array. 

 

Figure 6.7: Performance improvements. Now, varying the total number of cells 
available in the array 

When evaluating the impact of varying the parameters regarding energy 
consumption (array size and number of different configurations) it is important to 
observe that they directly influence the cache size. A bigger cache size could mean that 
more energy will be spent when reading and writing to this memory. On the other hand, 
increasing the cache size also could mean that more instructions and operands will be 
kept and, consequently, less reads to the RAM and ROM are necessary, thus saving 
energy. The energy tradeoff analysis regarding this discussion is primarily presented in 
Figure 6.8, while the table showing the energy gains for different configurations is 
shown in Table 6.6. As it can be seen, the impact of a bigger cache does not strongly 
influence the energy savings. The importance of saving RAM and ROM accesses is 
clear, as the increased number of available configurations increases energy savings. 
Once again, it is important to highlight that no cache policy is being used. Therefore, 
there is a potential for saving even more energy, since, with that, more configurations 
could be saved in the cache without increasing its size.  

Figure 6.9 shows the effect of varying the number of implemented cells on the 
overall energy savings. Once again, having more than 2 cells also did not show much 
improvements for most benchmarks with the exception of the mpegaudio. It is also 
visible that energy gains start to decrease when implementing more than 3 cells for most 
algorithms. This happens due to the increased cache size that is indeed not being fully 
used.  
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Table 6.6: Energy savings with different configurations 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.8: Energy savings varying the number of allowed configurations 

The different characteristics found in the mpegaudio application can be justified 
on how it was programmed. It is a totally data-flow algorithm, which performs intensive 
mathematical operations that can easily be mapped to a great number of available units 
in the array. Moreover, this particular implementation of the mpegaudio application, as 
it is described in the SPEC documentation, has little amount of garbage collection. This 
demonstrates that the algorithm is not very object-oriented. It is interesting to note that 
less object orientation also favors the use of the reconfigurable array since operations 
such as new as well as method invocations are computational intensive and cannot be 
mapped. This same reason also explains more modest results for performance gains and 
energy savings in the jess and the jack algorithms: in these applications new objects are 
continuously allocated. The effect of object allocation operations and other Java 
particular operations that cannot be executed on the array will be analyzed in the next 
section. 
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#cells #conf. check compress jess raytrace dB javac mpegaudio mtrt jack
5 32 30,10% 45,97% 19,14% 39,65% 36,36% 44,51% 38,70% 39,81% 16,73% 
5 16 23,92% 31,55% 11,26% 37,20% 26,87% 41,93% 28,74% 37,35% 12,09% 
5 8 20,26% 25,17% 6,43% 27,78% 19,15% 24,88% 17,96% 27,91% 9,06% 
5 4 14,53% 17,43% 3,15% 13,59% 12,81% 13,90% 15,77% 13,65% 6,16% 
4 32 30,60% 45,96% 19,13% 39,65% 36,37% 44,54% 35,84% 39,72% 16,74% 
4 16 24,12% 31,57% 11,25% 37,20% 26,87% 41,95% 26,42% 37,27% 12,11% 
4 8 20,33% 25,16% 6,41% 27,78% 19,15% 24,91% 19,97% 27,83% 9,09% 
4 4 14,55% 17,43% 3,13% 13,57% 12,81% 13,93% 13,74% 13,60% 6,18% 
3 32 31,10% 46,00% 19,14% 39,65% 36,37% 44,51% 34,45% 39,81% 16,73% 
3 16 24,32% 31,58% 11,26% 37,20% 26,87% 41,93% 26,10% 37,35% 12,09% 
3 8 20,41% 25,18% 6,43% 27,78% 19,15% 24,88% 19,66% 27,91% 9,06% 
3 4 14,57% 17,44% 3,15% 13,59% 12,81% 13,90% 13,43% 13,65% 6,16% 
2 32 30,39% 45,55% 18,19% 37,58% 34,48% 38,09% 33,82% 37,62% 16,38% 
2 16 23,89% 31,12% 11,27% 34,79% 26,89% 35,70% 26,72% 34,82% 12,10% 
2 8 20,49% 24,71% 6,44% 27,83% 19,17% 24,60% 19,31% 27,85% 9,08% 
2 4 14,59% 17,00% 3,16% 13,61% 12,83% 13,96% 13,08% 13,61% 6,18% 
1 32 30,79% 37,47% 18,12% 34,44% 31,93% 35,69% 33,10% 34,52% 16,86% 
1 16 24,60% 28,18% 12,04% 31,69% 25,64% 33,67% 26,61% 31,76% 12,16% 
1 8 20,56% 18,73% 6,47% 27,70% 19,21% 24,20% 20,57% 27,76% 10,11% 
1 4 14,60% 14,05% 3,19% 13,58% 12,86% 14,83% 13,12% 13,62% 7,58% 
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Figure 6.9: Energy savings when varying the maximum number of cells available in the 
array 

Finally, to illustrate the effect of simultaneously varying both parameters (cache 
and size of the array), Figure 6.10 and Figure 6.11 show two 3D graphs for performance 
improvements and energy savings of the compress algorithm that represents the general 
behavior of most applications of the SPECjvm98 benchmark.  

 

Figure 6.10: Performance improvements when varying both parameters for the 
compress algorithm 
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Figure 6.11: Energy savings achieved when varying both parameters for the 
compress algorithm 

 

6.1.3 Femtojava Multicycle with SPEC JVM and others 

Now, the Femtojava Multicycle with the reconfigurable array is compared against 
its standalone pipelined version. The objective here is to demonstrate the potential of the 
array when coupling it with a very simple processor: gains are shown even when 
comparing to a more powerful processor. This way, it is possible to save area and 
design time, concerning the main processor. 

The results are supported by simulation, using the same methodology presented in 
the previous section. The only difference is that Synopsis Power Compiler 
(SYNOPSYS, 2006) was used for dynamic and leakage power consumption 
computation. All results were based on the TSMC 0.18 technology. Data about power 
consumption in the main memory comes from (PUTTASWAMY et al., 2002). A mix of 
the previous algorithms employed before was used for this experiment: sort and search 
algorithms, IMDCT (plus three unrolled versions) and the MP3 player. The second 
group is a subset of SPECjvm98 package.  

In Figure 6.12 and Figure 6.13 the performance improvements in these two 
separated groups are shown. In the X-axis the number of cells available in the array is 
varied, while the Y-axis presents a normalized value that compares the results of the 
Femtojava Multicycle with the reconfigurable array against the Femtojava Low-Power, 
where the value one is its own performance. As can be observed, as more cells are 
available, more performance gains are achieved. Depending on the algorithm, however, 
as no speculative execution is done, there is a limit in the optimization. This limit is 
exactly the average size of the basic blocks of the application. In all the following 
presented results, in order to limit the design space, a reconfiguration cache of 8 slots is 
used, since increasing the number of slots available up to 512 would bring a 
performance increase of just 10%, on average.  
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Figure 6.12: Performance improvements, in simple applications, when increasing the 
number of cells of the reconfigurable array 

 

Figure 6.13: Same as the previous, but now executing a subset of the SPECjvm98 

It is important to point out that Java is an object oriented language. This way, as 
already commented before, depending on the level of object orientation employed and 
style of programming, it is possible to find a huge number of instructions for the 
manipulation of these objects. As these instructions are complex and divided in several 
microoperations, taking more than one cycle to be executed, they cannot be optimized 
by the proposed approach. In Table 6.7 the percentage of cycles (Control Cycles) spent 
for this kind of instruction considering the whole program execution is shown. It is 
important to note that almost any instruction in RISC processors could be executed in 
the combinational logic because, opposite to CISC-based native Java bytecodes, RISC 
instructions are simple and do not have any kind of instruction that involves complex 
microcoding. The same table also explains the reason why some algorithms do not show 
any performance improvements in Figure 6.13. They are exactly those that have a huge 
percentage of instructions that cannot be optimized. 

 

Figure 6.14 and Figure 6.15 present energy savings because of the reconfigurable 
system. As stated before, there are three main reasons for these: execution of large 
sequences of instructions in pure combinational logic, instead of using all the structure 
of the processor; the avoidance of repeating the dependence analysis again and again for 
the same sequence; and, since this information is kept inside the processor in a special 
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cache, the number of accesses to the instruction memory decreases considerably. This 
way, even if the size of the core increases, because of extra hardware for the detection, 
extra combinational hardware and the special cache memory, great energy advantages 
still appear. 

Table 6.7: Percentage of cycles regarding instructions that cannot be optimized 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.14: Energy consumption, in simple applications, when increasing the 
number of cells of the reconfigurable array 

 

 

 

 

 

 

 

 

 

Figure 6.15: Same as the previous, but now executing a subset of the SPECjvm98 
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 Total Cycles Control Cycles % 

check 4 887 426 3 184 402 65.15 

jess 39 394 726 28 252 774 71.72 

db 7 751 709 5 036 323 64.97 

javac 34 641 256 19 921 273 57.51 

mpegaudio 327 158 420 82 163 257 25.11 

mtrt 340 980 938 242 897 076 71.23 

jack 465 479 393 354 870 998 76.24 

quick 1 766 905 51.25 

bubble 3 641 1 545 42.43 

mp3 13 231 903  5 227 433 39.51 

binary 518 294 56.76 

imdct 82 187 43 224 52.59 

Imdct1 73 123 28 538 39.03 

Imdct2 69 658 26 644 38.25 

Imdct3 36 383 14 922 41.01 
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 shows the area overhead when the Femtojava Low Power is compared against the 
Femtojava Multicyle with the reconfigurable architecture, considering different number 
of cells that compose the array and different configurations that is supported in the 
special cache. As can be observed, the reconfigurable system, even in its simpler 
version, shows a considerable area overhead.  

 

Table 6.8: Additional area overhead, in number of gates, when compared to the 
Femtojava Low-Power processor 

 

 

 

 

 

 

Finally, in Figure 6.16 a comparison is done between two very different 
benchmarks: one very control flow oriented (mtrt), and the other one mostly dataflow 
(mpegaudio), with 1 or 20 cells available in the array for optimization (x-axis). The 
objective is to show that, besides speeding up the execution of dataflow algorithms, as 
expected, it is also possible to increase the performance of control flow programs. The 
same Figure presents the execution time improvements when considering all 
instructions executed, and when considering just the set of instructions passive of 
optimization, as discussed before.  

 

 

 

 

 

 

 

 

 

 

Figure 6.16 – Performance improvements in both control and data flow oriented 
algorithms 

6.2 RISC Processors 

In this section, it is analyzed the RISC implementation of the reconfigurable array. 
Firstly, it was simulated using the Simplescalar Toolset. This way, it was also possible 
to compare the performance of the reconfigurable system against an Out-of-order 
superscalar processor. Then, results considering the coupling of the BT and 

 

% of instructions executed in the 
reconfigurable array

All instructions 

Just instructions passive of optimization  

              # Cells 
# conf. 

1 2 3 4 5 

4 84 929 99 325 113 722 128 119 142 516 
8 92 503 106 899 121 296 135 693 150 090 
16 105 318 119 714 134 111 148 508 162 905 
32 133 155 147 551 161 948 176 345 190 742 
64 200 265 214 661 229 058 243 455 257 852 
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reconfigurable array with a MIPS R3000 are shown – representing the embedded 
system market. 

6.2.1 Simplescalar 

For the performance analysis, an performance estimator was built and integrated 
to the simplest version of the Simplescalar toolset (BURGER; AUSTIN, 1997): sim-
safe. It was implemented in C (the language was used because the Simplescalar itself 
also was programmed in C), and for performance measurements, it follows a very 
similar approach that Tiwari et al. (TIWARI et al., 1994) uses. This estimator analyses 
instructions at run time, during the execution of the software. As it is totally integrated 
to the Simplescalar toolset, one can change some parameters, as the number of 
functional units of the array, number of lines, columns, delay of each functional unit etc. 
In addition, it provides the statistics considering different reconfigurable cache sizes, 
and gives the average time spent by several operations, as execution of the sequences, 
context load time, write back time etc. It is important to point out that a low-level 
description of the algorithm has been developed, and it is aimed to be integrated with 
the most complicated version of the simplescalar toolset.  

In this first experiment, the Simplescalar ToolSet was configured to use the PISA 
architecture (which is based on the MIPS IV ISA) and to behave like an ordinary in-
order MIPS processor (very similar to the MIPS R3000 processor), executing a subset 
of the MiBench (GUTHAUS, 2001), with the follow algorithms: Basicmath, Bitcount, 
Qsort, Tiffdither, Tiffmedian, Dijkstra, Patricia, Ghostscript, StringSearch, Sha, CRC, 
FFTinv and FFT. This subset of benchmarks has a different average of branches per 
instruction. This way, the behavior of the approach in algorithms that are more control 
or dataflow oriented can be better analyzed. It is considered a memory where it is 
possible to make two reads and one write per cycle and a latency of one cycle to fetch 
values from the cache. This assumption is in somehow very pessimistic. For instance, 
the authors in (GONZALEZ et al., 1999) considered for trace reuse the capability to 
perform 16 reads+writes per cycle, including register and memory values. Developed 
architectures such as the Alpha 21264 (KESSLER, 1999) can perform up to 14 accesses 
per cycle (8 register reads, 4 register writes and 2 memory references). Therefore, the 
employed configuration could be easily implemented in nowadays memory systems. 

Figure 6.17 shows the performance improvements over a in-order MIPS based 
processor, where the Y axis is the relative time spent by the algorithm according to the 
size of the reconfiguration cache, shown in the X axis (where zero means not using the 
reconfigurable array). It is considered that the array is always big enough to execute the 
largest configuration found. Analyzing the figure, one could notice that depending on 
the algorithm, a small number of cache slots is enough. As the cache replacement policy 
implemented for this analysis was FIFO (First In, First Out), this cache must be large 
enough to support all the basic blocks that are being executed inside a determined 
period of time in order to allow their reuse. For instance, consider that an algorithm is 
composed by a main loop and inside this loop there are five basic blocks. If there are 
four slots available in the cache, the first time the first basic block will be reused (in the 
second iteration of the loop), it will not be in the cache anymore. This was, all the 
detection process should be done again. Therefore, in this case, no optimization would 
be achieved. 

Figure 6.18 shows the average gain (Y axis) concerning all algorithms for each 
different cache size (X axis). Depending on the this size, the algorithms can be executed 
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up to three times faster. To show the potential of the technique in this processor, the 
ideal curve represents the performance gain when considering 1 cycle per merged 
instruction executed. It is important to point out that in this experiment there was no 
exploration beyond basic blocks. It is common sense that in order to achieve higher 
performance improvements this exploration should be done, and that is way the 
overspread superscalar processors use aggressive speculation to increase even more the 
instruction level parallelism. 

 

 

 

 

 

 

 

 

 

Figure 6.17: Performance Improvements using Dynamic Merging and the 
Reconfigurable Array 

 

 

Figure 6.18: The average of the performance improvements considering the size of 
the cache 

This way, the next experiment was adding the capability of performing 
speculative execution in the array. Moreover, the Simplescalar was configured to 
behave as close as possible to the Superscalar Out-Of-Order MIPS R10000 processor, 
for performance comparisons. Its configuration is summarized in Table 6.9. More 
details about it can be found in Appendix A, at the end of this thesis, where the 
configuration file employed is shown. 

Table 6.9: Configurations of the superscalar processor 
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Table 6.10 shows three different configurations for the array that was employed in 
the experiments. The last configuration was used in order to try to figure out what is the 
real potential of the proposed technique. For each array configuration, the size of the 
reconfiguration cache is also varied: 2 to 512 slots, using the FIFO policy. The impact 
of doing speculation is evaluated considering optimization of up to three basic blocks 
ahead. Finally, the cache memory was increased in order to achieve almost no cache 
misses, so it was possible to evaluate the results without the influence of it. It is 
important to stand out that the impact of both misses of the reconfiguration cache as the 
speculation are considered for the simulation. 

Table 6.10: Configurations of the array 

 

 

 

 

 

Table 6.11a shows the IPC of the out-of-order processor cited before. This table 
can be used to compare the IPC of this processor against the IPC of the instructions that 
are executed inside the array, in different configurations, which is shown in Figure 6.19. 
For each configuration, three different speculation policies are demonstrated: no 
speculation, 1 and 2 basic blocks ahead. The number of slots available in the 
reconfigurable cache was also changed (4, 16, 64, 128 and 512). The four benchmarks 
presented in this figure were chosen because they represent a very control-oriented 
algorithm, a dataflow one and a midterm between both, plus the CRC, which is the 
biggest benchmark in the subset. In Table 6.11b the benchmarks are classified according 
to the average number of branches per instructions.  

Table 6.11: IPC in the Out-of-Order processor and the average BB size 

 

 

 

 

 

 

 

 

 

  As it is shown in Figure 6.19, it is possible to achieve a higher IPC when 
executing instructions in the reconfigurable array in comparison to the out-of-order 
superscalar processor, in almost all variations. However, the overall optimization when 
using the proposed technique depends on how many instructions are executed in the 
reconfigurable logic instead of using the normal flow of the processor. Table 6.12 

Algorithm IPC - Out-of-
Order 

 BB size 

Basicmath 1.43  5.8751 
CRC 2.13  7.9954 
dijkstra 1.76  5.6011 
Jpeg decode 1.86  6.2554 
patricia 1.40  4.4255 
qsort 1.79  4.6243 
sha 1.94  7.9381 
stringsearch 1.60  4.8709 
Susan Smoothing 1.64  15.8098 
Susan Corners 1.83  13.4952 
tiff2bw 1.90  22.5567 
tiff2rgba 1.92  13.4952 
tiffdither 1.56  18.9188 
tiffmedian 1.91  30.686 

(a) (b) 

 Reconfigurable Array 
C #1 C #2 C #3 

#Lines 27 54 99 
#Columns 11 16 30 
#ALU /  line 8 8 11 
#Multipliers / 1 2 3 
#Ld/st / line 2 6 8 
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shows the overall speedup obtained when coupling the reconfigurable array to the out-
of-order processor against the standalone out-of-order. It is important to notice that 
reconfigurable systems in general can just show improvements when the programs are 
very dataflow oriented. The proposed technique, on the other hand, can optimize control 
and data oriented programs, as it can be observed by the results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.19: IPC of four different benchmarks being executed in the reconfigurable 
logic with different configurations 

 

Table 6.12: Speedups using the reconfigurable array coupled to the out-of-order 
processor 

 

 

 

 
 

 

 

6.2.2 MIPS R3000 Processor 

For this experiment, an improved VHDL version of the Minimips processor 
(MINIMIPS, 2008), which is based on the R3000 version, was employed. For area 
evaluation, again, it was used the Mentor Leonardo Spectrum (LEONARDO, 2008) 
and, for power estimations, Synopsis PowerCompiler (SYNOPSYS, 2006), both with 
the TSMC 0.18u library. Estimates on both processor and reconfigurable cache were 

Algorithm #Cycles in the 
Out-Of-Order  

% of Speed Up - Out-of-Order coupled to array with configuration 1 % of Speed Up - Out-of-Order coupled to array with configuration 3 

No Speculation Speculation 2 Speculation 3 No Speculation Speculation 2 Speculation 3 
4 64 256 4 64 256 4 64 256 4 64 256 4 64 256 4 64 256 

Basicmath 111169924 5.03 13.75 17.85 3.52 14.49 21.79 3.40 15.22 23.31 5.76 19.27 26.40 4.63 19.83 30.33 4.86 20.52 32.14 
CRC 399531928 -16.01 -16.03 -16.03 -5.20 -5.21 -5.21 9.03 9.03 9.03 3.97 3.97 3.97 8.12 8.14 8.14 20.75 20.77 20.77 
dijkstra 31094638 -22.29 -24.31 -24.33 1.30 1.25 1.25 8.45 8.46 8.46 -21.96 -20.08 -20.04 1.00 4.34 4.36 4.13 7.65 7.67 
Jpeg decode 3942226 -9.15 -9.72 -9.77 4.63 3.24 3.29 7.11 7.45 7.61 9.76 11.92 12.05 16.55 18.94 19.06 16.77 19.51 19.68 
patricia 95927575 4.41 13.30 13.72 3.99 14.42 21.52 3.26 14.22 21.96 5.06 17.97 18.89 5.25 18.80 29.07 4.57 18.58 29.80 
qsort 23435690 -8.76 -11.69 -11.69 -0.58 4.18 4.18 0.37 -30.41 -30.21 24.29 38.95 38.95 16.79 43.74 43.74 16.44 40.72 40.72 
sha 6800950 11.56 13.07 13.07 27.22 33.45 33.45 26.30 31.29 31.29 22.57 25.48 25.48 39.91 48.66 48.66 41.27 50.28 50.28 
stringsearch 115917 16.32 20.16 21.23 28.95 35.20 35.24 28.50 35.39 35.38 21.02 27.05 30.57 31.25 41.02 41.17 31.04 42.61 42.63 
S. Smoothing 15628090 -0.94 -3.22 -3.22 0.31 -0.99 -1.00 2.13 1.59 1.59 25.35 35.66 35.69 26.87 37.95 37.96 23.73 32.05 32.04 
S. Corners 533870 2.16 1.79 1.79 4.40 4.29 4.28 1.13 4.29 4.28 32.69 41.44 41.44 37.53 41.44 41.45 33.89 37.13 37.12 
tiff2bw 27391803 -4.24 -4.38 -4.42 0.88 0.82 0.82 -0.20 -0.20 -0.20 -5.65 -5.42 -5.39 19.08 19.60 19.60 24.41 25.22 25.22 
tiff2rgba 23796384 -10.94 -11.39 -11.40 -1.53 -1.75 -1.75 -1.19 -1.39 -1.40 57.19 57.83 57.83 58.29 59.69 59.69 47.30 48.87 48.87 
tiffdither 188757828 1.48 8.88 8.92 6.65 9.34 9.41 4.47 -21.46 -23.52 4.33 18.15 18.30 10.73 19.33 19.57 7.95 14.31 14.60 
tiffmedian 93254386 3.95 3.74 3.73 12.91 12.82 12.82 7.42 7.38 7.38 14.13 14.11 14.13 27.23 27.43 27.43 27.36 27.72 27.72 
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done using these tools. Data about power consumption in the main memory was taken 
from (PUTTASWAMY et al., 2002).The system was evaluated with the Mibench 
Benchmark Suite (GUTHAUS et al., 2001). All benchmarks with no representative 
floating point computations and that could be compiled successfully to the target 
architecture were utilized.  

Firstly, the information given in the in the Chapter 3, section 3.2.1, is repeated in 
Figure 6.20 to reinforce two different concepts: algorithms can be control or dataflow 
oriented; and they can have few or a large number of distinct kernels subject of 
optimization. In Figure 6.20b it is characterized the algorithms regarding the number of 
instructions executed per branch (classifying them as control or dataflow oriented). 
Figure 6.20a shows the results of the investigation on the number of BBs responsible for 
a certain percentage of the total number of basic block execution figures. It is 
convenient to remember that, as more dataflow and as fewer distinct kernels an 
algorithm has, the better for conventional reconfigurable systems. This fact, on the other 
hand, is not a limiting factor for the proposed approach, as it will be shown later. 

 
 

 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.20: (a) How many BBs are necessary to cover a certain execution rate 
considering total execution time  (b) Average size of the basic block 

 
Table 6.13 shows three different configurations for the array used in the 

experiments. For each one it is varied the size of the reconfiguration cache: 16, 64 and 
512 slots, and it is evaluated the impact of performing speculation, up to three basic 
blocks. 

Table 6.13: Different configurations for the array, when coupling to the MIPS R3000 

 

 
 
 

 
 

Table 6.14 demonstrates the speed up of the reconfigurable array for the same 
three configurations. It is ordered to show the most dataflow algorithms at the top and 
the most control flow ones at the bottom. In Configuration #3 with speculation, an 
average performance improvement of more than 2.5 times is achieved. Moreover, gains 
are shown regardless of the instruction/branch rate, even for very control oriented 

C #1 C #2 C #3
#Lines 24 48 150 
#Columns 11 16 20 
#ALU /  line 8 8 12 
#Multipliers / line 1 2 2 
#Ld/st / line 2 6 6 
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algorithms such as RawAudio Decoder and Quicksort, as well as those which do not 
have distinct kernels, such as Susan Corners. Together with these results, there is an 
extra table at the right, demonstrating the overall optimization assuming infinite 
hardware resources for the array. As it can be observed, with the best configuration it is 
possible to get very close to this theoretical speedup in several algorithms: just in five of 
them there is a significant difference between the most aggressive configuration and the 
ideal. In fact, the algorithms that can most benefit from hardware infinite resources are 
exactly the dataflow ones, since they demand more lines in the array, mainly when 
speculation is used. They have as most executed kernels basic blocks with a huge 
number of instructions. On the other hand, in algorithms which have no distinct kernels, 
the most important resource to be increased is the number of slots available in the cache 
memory. Figure 6.21 summarizes the results Table 6.14. 

Table 6.14: Speedups using the reconfigurable array coupled to the MIPS R3000 
processor 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.21: An overview of the average speed up presented with different 
configurations 

 

At this moment, one can analyze the power and energy consumed by the system.  

Figure 6.22 demonstrates the average power consumed by cycle in the Array 
coupled to the MIPS processor, with configurations #1 and #3 (shown as C#1 and C#3), 
considering 64 cache slots, and executing the algorithms Rijndael E., Rawaudio D. and 
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Spec Spec 

5.10 8.05 
4.68 7.42 
1.70 2.19 
2.72 4.37 
1.91 4.87 
1.65 3.52 
1.53 1.92 
2.77 4.39 
2.19 3.07 
2.17 2.66 
2.21 2.60 
1.72 2.25 
3.31 3.68 
1.76 1.83 
1.89 2.97 
1.77 2.67 
1.61 2.00 
1.64 1.79 
2.32 3.36 
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Algorithm 
Speed Up – Configuration #1 Speed Up – Configuration #2 Speed Up – Configuration #3 

No Speculation Speculation No Speculation Speculation No Speculation Speculation 
16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 16 64 256 

Rijindael E. 1.05 1.20 1.21 1.05 1.24 1.24 1.05 1.71 1.73 1.06 1.55 1.55 1.05 3.46 3.60 1.06 2.68 2.68 
Rijindael D. 1.07 1.21 1.21 1.07 1.25 1.25 1.07 1.63 1.64 1.07 1.55 1.55 1.07 3.32 3.33 1.07 2.32 2.32 

GSM E. 1.63 1.65 1.68 2.01 2.05 2.13 1.63 1.65 1.68 2.03 2.07 2.17 1.63 1.65 1.69 2.03 2.07 2.19 
JPEG E. 1.95 2.04 2.07 1.79 1.88 1.89 2.50 2.72 2.77 3.55 4.27 4.37 2.50 2.72 2.77 3.55 4.27 4.37 

SHA 1.90 1.90 1.90 3.81 3.84 3.84 1.90 1.91 1.91 4.80 4.84 4.84 1.90 1.91 1.91 4.80 4.84 4.84 
Susan Smothing 1.49 1.60 1.65 2.70 2.99 3.31 1.49 1.61 1.65 2.83 3.14 3.52 1.49 1.61 1.65 2.83 3.14 3.52 

CRC 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 1.53 1.53 1.53 1.92 1.92 1.92 
JPEG D. 1.92 2.03 2.04 1.64 1.78 1.78 2.05 2.21 2.22 2.02 2.54 2.55 2.05 2.21 2.22 2.03 2.62 2.63 
Patricia 1.49 1.84 1.93 1.58 2.05 2.23 1.49 1.86 1.95 1.64 2.17 2.37 1.49 1.86 1.95 1.64 2.17 2.37 

Susan Corners 1.22 1.49 1.72 1.31 1.47 1.91 1.38 1.79 2.17 1.56 1.79 2.64 1.38 1.79 2.17 1.56 1.79 2.64 
Susan Edges 1.23 1.42 1.64 1.29 1.48 1.83 1.43 1.70 2.20 1.47 1.74 2.43 1.43 1.70 2.20 1.53 1.81 2.58 

Dijkstra 1.59 1.71 1.71 2.03 2.21 2.22 1.59 1.72 1.72 2.04 2.24 2.24 1.59 1.72 1.72 2.04 2.24 2.24 
GSM D. 1.28 1.28 1.29 1.27 1.28 1.29 1.62 1.62 1.65 1.48 1.50 1.52 2.79 2.79 2.93 2.37 2.49 2.58 
Bitcount 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 1.76 1.76 1.76 1.83 1.83 1.83 

Stringsearch 1.38 1.61 1.86 1.56 2.22 2.77 1.38 1.62 1.89 1.57 2.30 2.96 1.38 1.62 1.89 1.57 2.30 2.96 
Quicksort 1.37 1.74 1.74 1.69 2.32 2.33 1.37 1.77 1.77 1.80 2.66 2.67 1.37 1.77 1.77 1.80 2.66 2.67 

RawAudio E. 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 1.60 1.61 1.61 1.98 1.99 2.00 
RawAudio D. 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 1.64 1.64 1.64 1.79 1.79 1.79 

Average 1.51 1.63 1.68 1.80 1.98 2.09 1.58 1.78 1.86 2.03 2.33 2.49 1.65 2.04 2.13 2.08 2.50 2.67 
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JPEG E., the most control and data flow ones, and a mid-term, respectively. The same 
Figure also shows the MIPS processor without the reconfigurable array. The 
consumption is shown separated for the core, data and instruction memories, 
reconfigurable array and cache, and BT hardware. It is interesting to note that the major 
responsible for power consumption are the memory accesses. In third place comes the 
reconfigurable array. The power spent by this hardware depends on how much it is used 
during the program execution. The MIPS processor, reconfiguration cache and the BT 
hardware plays a minor role on this scenario. 

 

 
 
 
 
 
 
 
 
 
 
 
 

 

Figure 6.22: Power consumed by 3 different algorithms in conf. 1 and 3, with and 
without speculation, 64 cache slots 

In Figure 6.23 the same experiment is repeated, but now analyzing the total 
energy consumption. As the power consumed per cycle is very similar when executing 
MIPS+array and just MIPS, but the number of cycles is reduced in the first case, energy 
savings are achieved. Making a deeper analysis, there are three main reasons for these 
savings: 

 The execution of the instructions in a more effective way in combinational 
logic, instead of using the processor path.  

Avoidance of repeated parallelism analysis. As commented before, there is no 
necessity of performing the analysis repeatedly for the same sequence of code, since 

DIM saves this information in its special cache. This is a very important characteristic, 
since, recalling again, almost half of the number of pipeline stages of the Pentium 4 

processor (INTEL, 2008); and half of the power spent the Alpha 21264 processor are 
related to the extraction of dependence information among instructions (WILCOX; 

MANNE, 1999). As it can be observed in  

 Figure 6.22, when using DIM, more power is spent in the core, because of 
the BT hardware, reconfigurable array and its cache.  On the other hand, 
there is no need for fetching a great amount of instructions, since they 
reside in the reconfigurable cache, after their proper translation to an 
array’s configuration. 
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Figure 6.23: Repeating the data of the previous Figure, but now for Energy 
Consumption 

 
For configuration #2, with 64 cache slots, the proposed system consumes 1.73 

times less energy on average than the standalone MIPS core. Moreover, assuming that 
the MIPS itself would be enough to handle real time constraints necessary for a given 
application, one could reduce the system clock frequency to achieve exactly the same 
performance level of the processor - thus decreasing even more the power and energy 
consumptions. 

In order to give an idea of the area overhead, Table 6.15a shows the number of 
functional units and multiplexers necessary to implement configuration #1 of Table 1, 
and what is the number of gates they consume. In the same table one can also find the 
area occupied by the DIM hardware. Table 6.15b shows the number of bits necessary to 
store one configuration in the reconfigurable cache. Note that, although 256 bits are 
necessary for the Write Bitmap Table, they are not added to the final total, since it is 
temporary and used just during detection. In Table 6.15c, the number of Bytes needed 
for different cache sizes is presented. 

Table 6.15: Area evaluation 

 

 

 

 

 

 

 

Figure 6.24 represents the MIPS layout with the reconfigurable array. According 
to (YEAGER, 1996), the total number of transistors of core in the MIPS R10000 is 2.4 
million. As presented in table 4a, the array together with the hardware detection 
occupies 664,102 gates. Considering that one gate is equivalent to 4 transistors, which 
would be the amount necessary to implement a NAND or NOR gates, the whole system 
would take nearly 2.66 million transistors to be implemented. This way, the 
reconfigurable array and DIM hardware would take nearly 2.66 million transistors to be 

(c) (b) 

Table #bits 
Write Bitmap 256 
Resource 786 
Reads Table 1,632 
Writes Table 576 
Context Start 40 
Context 40 
Immediate 128 
Total 3,202 

#Slots #Bytes 
2 833 
4 1,601 
8 3,300 
16 6,404 
32 13,012 
64 25,616 
128 51,304 
256 102,464 

(a) 

Unit # Gates 
ALU 192 300,288 
LD/ST 36 1,968 
Multiplier 6 40,134 
Input Mux 408 261,936 
Output Mux 216 58,752 
DIM Hardware 1,024 
Total 664,102 
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implemented. The area overhead is represented in Figure 6b. In this figure is also 
presented the area occupied by the reconfigurable cache, in number of different 
configurations it can support. This is an approximation, since it was not considered that 
the cache was fully associative (it is very likely that the area overhead will be slightly 
higher). The MimiMIPS, in turn, occupies 26,712 gates. 

 
 
 
 
 
 
 
 
 

Figure 6.24: Area overhead presented by the reconfigurable array and its special 
cache 

 

Finally, Table 6.16 and Table 6.17 show, respectively, the number of gates 
occupied by the functional units and the bits necessary to save each configuration in the 
cache, when varying the number of rows and columns of the reconfigurable array. 

 

Table 6.16: Number of gates, varying the number of rows and columns of the array 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

MiniMIPS 

#lines #columns #functional units #gates 

ALU LD/ST Mult ALU LD/ST Mult MUX 
in 

MUX 
out 

ALU LD/ST Mult MUX in MUX 
out 

Total 

12 
8 2 1 96 8 4 192 96 150144 2624 26756 138672 29376 347572 
8 6 1 96 24 4 192 96 150144 7872 26756 159216 29376 373364 
12 6 2 144 24 8 288 96 225216 7872 53512 225984 29376 541960 

24 
8 2 1 192 16 8 384 192 300288 5248 53512 277344 58752 695144 
8 6 1 192 48 8 384 192 300288 15744 53512 318432 58752 746728 
12 6 2 288 48 16 576 192 450432 15744 107024 451968 58752 1083920 

33 
8 2 1 264 22 11 528 264 412896 7216 73579 381348 80784 955823 
8 6 1 264 66 11 528 264 412896 21648 73579 437844 80784 1026751 
12 6 2 396 66 22 792 264 619344 21648 147158 621456 80784 1490390 

48 
8 2 1 384 32 16 768 384 600576 10496 107024 554688 117504 1390288 
8 6 1 384 96 16 768 384 600576 31488 107024 636864 117504 1493456 
12 6 2 576 96 32 1152 384 900864 31488 214048 903936 117504 2167840 

96 
8 2 1 768 64 32 1536 768 1201152 20992 214048 1109376 235008 2780576 
8 6 1 768 192 32 1536 768 1201152 62976 214048 1273728 235008 2986912 
12 6 2 1152 192 64 2304 768 1801728 62976 428096 1807872 235008 4335680 

150 
8 2 1 1200 100 50 2400 1200 1876800 32800 334450 1733400 367200 4344650 
8 6 1 1200 300 50 2400 1200 1876800 98400 334450 1990200 367200 4667050 
12 6 2 1800 300 100 3600 1200 2815200 98400 668900 2824800 367200 6774500 
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Table 6.17: Number of bits necessary per cache slot, varying the number of rows and 
columns of the array 

#lines #columns #functional units #bits 

ALU LD/ST Mult ALU LD/ST Mult MUX 
in 

MUX 
out 

12 
8 2 1 96 8 4 192 96 248 
8 6 1 96 24 4 192 96 268 
12 6 2 144 24 8 288 96 357 

24 
8 2 1 192 16 8 384 192 455 
8 6 1 192 48 8 384 192 495 
12 6 2 288 48 16 576 192 672 

33 
8 2 1 264 22 11 528 264 609 
8 6 1 264 66 11 528 264 664 
12 6 2 396 66 22 792 264 908 

48 
8 2 1 384 32 16 768 384 868 
8 6 1 384 96 16 768 384 948 
12 6 2 576 96 32 1152 384 1302 

96 
8 2 1 768 64 32 1536 768 1694 
8 6 1 768 192 32 1536 768 1854 
12 6 2 1152 192 64 2304 768 2562 

150 
8 2 1 1200 100 50 2400 1200 2623 
8 6 1 1200 300 50 2400 1200 2873 
12 6 2 1800 300 100 3600 1200 3979 

 
 

6.3 First studies about the ideal shape of the reconfigurable array 

In (RUTZIG, 2008), studies about the ideal shape of the reconfigurable array 
considering a wide range of different applications were performed. Instead of using the 
rectangular shape, a tool was developed to execute several algorithms with different 
behaviors in order to find the best placement and usage of functional units in the array 
with the minimal performance loss possible. Significant results were achieved 
concerning the area occupied by the system. Figure 6.25a shows the original shape of 
the array. Figure 6.25b demonstrates it after the optimization analysis.  

Figure 6.26 shows the average gain in performance considering all benchmarks and 
varying the cache memory size when comparing the reconfigurable array with different 
shapes to the architecture without the array. It is possible to observe in this figure that the 
new shape had a small performance loss (5.8% in average) when comparing to the data 
path 1 (original rectangular shape with a large amount of functional units). However, 
when comparing the new shape to the data path 2, which is also based on the traditional 
rectangular shape, but with a similar number of functional units as the new shape has, the 
new configuration has a performance improvement of 3%. Even though this relative gain 
appears to be low, it is important to point out that there is an area reduction of almost 
15% over the data path 2. In other words, when considering the same number of 
functional units, the new shape presents a small performance improvement and a 
considerable area reduction when comparing to the traditional shape. 
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Figure 6.25: a) Original shape of the reconfigurable array b) Optimized shape 

 

 

 

 

 

 

 

 

 

Figure 6.26: Performance comparison between different datapath shapes 

6.4 Conclusions 

Considering the different processors analyzed, although the significant area 
overhead and increase in power consumption, there was an important improvement on 
the performance and reduction in energy consumption – since parts of the code are 
executed in a more efficient mechanism.  

Regarding the experiments with the Femtojava Low-Power processor, two main 
issues must be addressed in the future. The first one is the computation of the static 
power consumption (although it was considered in the other experiments, including the 
one with the Femtojava Multicycle). Moreover, the area was calculated in FPGA and, in 
this case, the cache memory was oversized: FPGAs, when using its logic, tend to 

  
(a) (b) 
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occupy a good number of resources to implement memories. Furthermore, considering 
the whole set of experiments with the Femtojava processor, the inclusion of a 
replacement policy for the reconfigurable cache must be done.  

Considering all experiments, the performance numbers are mainly gathered 
through simulation. As these simulations are cycle accurate, the level of accuracy is 
high.  All overheads, such as reconfiguration, context loading and write back were 
considered. The only exception was the simulations using sim-safe (section 6.2.1). In 
opposite to all other simulations performed, sim-safe works at the instruction level. This 
way, an average IPC was considered, based on several simulations previously 
performed in the cycle accurate simulator.  

Regarding the area estimate, it depends on how the tool performs the place and 
routing. It is important to note that the area estimate, using the VHDL versions of the 
hardware, was done before place and routing. This way, depending on the tool 
methodology, more area will spent. In FPGA, for example, a great number of resources 
is spent with the routing mechanism. This way, the tradeoff presented by the array tends 
to be better on ASIC technologies. Moreover, as already previously stated, there is an 
error margin considering the cache area estimates: it was not considered that it would be 
fully associative. Furthermore, there is also the control mechanism for context input and 
output. Although it is a simple state machine, it will bring an additional area overhead.  

Depending on the technology, more or less functional units can be allocated 
within a level in the array (processor equivalent cycle). Although this possibility is very 
unlikely to happen, because there is no wasted time with sequential logic as the ordinary 
pipeline stages of the processor presents, the worst case would be as follow: there is no 
room in the critical path to allocate more than one ALU per level in the array. In this 
case, one could think on decrease the frequency of operation so more ALU can be 
allocated per level. Although the array would not present performance gains, there 
would be huge energy savings.  

Finally, the leakage power (one of the main responsible for the static power 
consumption) is still considered low in the employed technologies used in the 
experiments presented in this work. However, static power in future technologies will 
become more important. This way, studies have been done to take advantage of the 
structure of the array to decrease also static power. 
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7 CONCLUSIONS, FUTURE AND ON GOING WORKS 

In this work we introduced a new approach that explores the potential of replacing 
the traditional execution flow for combinational logic. Employing similar techniques 
used by well-known dataflow architectures, but maintaining binary compatibility, good 
performance improvements and energy savings have been achieved. In Chapter 2 and 3 
we contextualized our work, demonstrating from where the basic ideas come and how 
exactly our contribution fits in. We also demonstrated the potential of using 
reconfigurable systems and how the recent proposed ones just cover one niche of 
applications. In Chapter 4 and 5 the structure of the array and the BT algorithms were 
presented, considering the particularities of each architecture used as case study. 
Finally, in chapter 6, results for these architectures were shown, proving that is possible 
to optimize any kind of algorithm using pure combinational logic, and still allowing the 
reuse of binary code in a transparent process.  

The list presented below summarizes the main contributions of this thesis: 

 For Java processors (stack machines) 

o The development of the reconfigurable array structure; 

o The development of the BT algorithm; 

o Measurements in terms of area, performance and power/energy 
consumption, coupling the array to the Femtojava Low Power and 
Multicycle processors, and comparing the results against its VLIW 
version; 

o The VLIW analyzer, which was previously developed (BECK; 
CARRO, 2004c), was extended to support the array/BT simulation. 
Approximately 1800 lines in C code were written. 

 For the MIPS and Simplescalar out-of-order Processors (RISC machines) 

o The development of the reconfigurable array structure; 

o The development of the BT algorithm; 

o A profiler to measure the potentials of the technique was developed 
to be used with the Simplescalar Toolset; more than 1700 lines in C 
code were written. Later, this profiler was adapted to be used together 
with the MIPS simulator (RUTZIG; CARRO, 2008); 

 Using this simulator, various tradeoffs analysis were done, 
such as the study of what would be the best speculation policy 
to be used. 
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o Another profiler, working at a lower level, was also developed. It can 
be seen in Appendix B. 

o A MIPS core VHDL, called miniMIPS (MINIMIPS, 2008), was 
depurated and modified. The original version could not run even the 
simplest algorithms; 

 First experiments simulating different reconfigurable arrays with different 
granularities have been done, in order to classify these reconfigurable 
systems according to their potentials and niche of applications. A simulator, 
coupled to the MIPS SystemC based description, was developed, with nearly 
700 lines in C++ 

Besides, there are a large number of future and ongoing works, as it will be 
discussed in the next subsections. 

7.1 Design space to be explored 

There is still a huge design space to be explored, with a lot of open questions, 
such as: what is the ideal size of the array; how many instructions it can execute in 
parallel; how many results it can write back to the registers or memory per cycle; how 
many configurations the special cache can store, and what is the best replacement policy 
for it; how deep is the ideal speculation regarding basic blocks etc. Moreover, all these 
configurations can be different depending on the characteristics of the benchmark. That 
is why it is also planned to simulate other benchmarks, such as SPEC and Mediabench. 
Concerning specific Java Optimizations, first studies have already been done in order to 
optimize code at the object level (MATTOS, 2007).  

7.2 Decreasing the routing area 

The problem of the routing area in reconfigurable systems is a very well know 
issue. Although it is more evident in fine-grain reconfigurable systems based on 
FPGAs, it can also be observed in coarse grain ones. Depending on the configuration 
used in the array presented in this work, the area presented just by the multiplexers can 
reach half the total area of the reconfigurable system, as can be observed in Figure 
6.24a. This way, different structures such as multistage networks have been tested in 
order to decrease the area (FERREIRA et al., 2008). It is important to stress that 
different routing techniques can affect the BT algorithm. By consequence, it is very 
likely that the BT algorithm will have to suffer changes. 

7.3 Speculation of variable length 

The speculation performed in the reconfigurable array has a fixed length, meaning 
that it will always speculatively execute a fixed number of basic blocks. However, with 
small modifications in the BT algorithm, it is possible to make the speculation with a 
variable number of basic blocks to be executed ahead. For instance, the BT could 
speculate until there are no more resources available in the array. Currently, it stops 
speculating if it reaches the pre determined depth in the tree, even if there is free room 
available in the array. It would also influence the reconfiguration cache, since each slot 
for each configuration should have more space. Another alternative would be the use of 
a cache slot with variable length, where some kind of flag could indicate the end of one 
configuration and the beginning of the other. 
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7.4 DSP, SIMD and other extensions 

Following a trend that can be observed in nowadays reconfigurable systems, the 
study about adding DSP extensions in the array is a future work. This can be achieved 
by either adding new hardware or optimizing the routing mechanism (for instance, in 
the case of Multiply-and-Accumulate operations). The BT hardware should be adapted 
in order to detect these new instructions. This work should involve the search for the 
most common DSP instructions in a program’s execution. This way, it would be 
possible to know the tradeoff of implementing such extensions. 

In the case of SIMD instructions, the BT would detect in what set of instructions it 
could be applied, and configure the array according to it. Two different implementation 
alternatives must be evaluated: the first solution would be to increase word length of the 
functional units (so they could execute a SIMD instruction in one of these functional 
units, after it was detected and transformed), or optimize the routing between a given 
group of functional units to support multiple data with a single operation. 

This approach could be extended to any kind of special instruction depending on 
the field of application desired. The greatest advantage of such extensions is that the 
array does not lose its generality: if it has any kind of extension and it is not used, the 
only drawback is the unutilized extra area of the array.  

7.5 Study of the area overhead with technology scaling and future 
technologies 

This study concerns the analysis of the area overhead according to future 
technologies. What is the impact of using the array with an even larger area available in 
a near future? Furthermore, what are the possibilities of implementing the array using 
other technologies instead of silicon? According to the roadmap (ITRS, 2006) these new 
technologies are slow but present huge integration possibilities, or the opposite. 
Considering the fact that the array is very regular and easily scalable, could this be an 
advantage? 

7.6 Measuring the impact of the OS in reconfigurable systems 

In conventional reconfigurable systems, the source code needs to be available, so 
it could be optimized to be executed on reconfigurable logic. However, some of the 
most used Operating Systems (OS) in the market do not have their source code 
available. This way, any part of the OS, such as system calls, could not be optimized at 
all. Some algorithms (even those that are part of benchmark sets) spend a considerable 
amount of time exactly with system calls (for instance, read/write from/to files). This 
way, a future work would be the analysis of this limiting factor on conventional 
reconfigurable systems, and the comparison of it against the proposed technique that, in 
turn, can optimize any part of the software, including OS parts that have already been 
compiled. This could answer the following question: what is the importance of 
optimizing the OS in the overall system speedup? 

7.7 Array+BT to increase the Yield 

One of the major problems that the industry faces nowadays is the yield rate. The 
number of processors that are produced is directly influenced by the faults that occurs 
during the manufacturing process. Considering general purpose processors, if one fault 
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occurs in its control or datapath, the whole processor cannot be used anymore. On the 
other hand, if the fault happens at the cache memory and the processor has, for instance, 
two separate banks, the processor maybe can still be used (the Intel Celeron processors 
are one of these examples) (INTEL, 2008). 

Considering that the array can be coupled to a very simple processor, the 
percentage of area occupied by the reconfigurable logic would be enormous. If some 
fault occurs in a given part of the reconfigurable array (for instance, a given functional 
unit), that part would be isolated (it could be marked as always used in the resource 
table, for instance) and the array could be used without any kind of modification. A test 
could be done at the beginning of execution, using an algorithm to test all parts of the 
reconfigurable array, in order to mark the failed parts. As the array occupies the 
majority of the die area, it is very likely that any fail will occur at the reconfigurable 
part, increasing the overall yield rate. 

7.8 Array+BT for fault tolerance 

Several approaches replicate hardware in order to verify if the circuit is working 
properly. For instance, two processors can execute exactly the same software and 
compare their results to verify the validity of them. The reconfigurable array can also be 
used for this purpose. For example, instead of stalling the processor while executing 
sequences in the array, both can work together, comparing their results at the end of 
their execution. Another approach would be executing just certain parts of the software, 
which could be chosen randomly, so the execution overhead for the verification would 
be reduced. There are many opportunities in this field. For instance, only one array 
could be shared between various processors in a CMP to be used only for fault 
tolerance. 

7.9  BT scheduling targeting to Low-Power 

Considering the way the BT algorithm works now, it is target to achieve the 
highest level of parallelism possible. However, instead of trying to reach the maximum 
performance, the BT scheduler could try to place instructions in the array with the 
objective of keeping the largest possible number of functional units turned off – 
decreasing the power consumed by the system. For example, even if there is an 
opportunity of executing two instructions in parallel, but one of the functional units 
necessary for that operation was turned off in a previous configuration, another 
functional unit would be chosen, probably taking more time to execute the current 
configuration. 

7.10  Comparison against Superscalar Architectures 

Although in the results section a comparison with a superscalar architecture was 
demonstrated, the analysis lacks of a more theoretical background. For instance, one of 
the major problems about finding ILP in superscalar architectures is the number of 
comparators needed in the instruction queue. On the other hand, the complexity of this 
comparison when using the proposed approach diminishes, since the BT takes 
advantage of the hierarchy of the array: information about data dependency is 
summarized for each row. Moreover, the proposed reconfigurable system can be 
compared to complex superscalar architectures with different characteristics of the one 
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evaluated in this work, such as the number of pipeline stages, number of functional 
units, size of the instruction window etc.  

7.11  Comparison against a Fine-Grain reconfigurable system 

Is a coarse grain reconfigurable system faster than a FPGA based one? If one 
considers that the granularity of the first is coarser than the second, a simple operation 
would be executed faster in a coarse grain array. However, at bit manipulation, FPGAs 
tend to obtain an advantage. The routing, on the other hand, depends on the level of 
manipulation in the array. If words are computed, FPGA will spend more area and time 
to connect the bits to form this word. 

Another particular issue when comparing specifically fine grain arrays with the 
proposed system: FPGA synthesis tools are more intelligent and have more time to 
build a configuration. This would be an advantage that could overcome some of the 
routing and allocation problems cited before. The BT system, on the other hand, needs 
to use a fixed structure and does not have any time to optimize it: the routing algorithm 
should be as simple as possible. Another interesting comparison would be using fixed 
configurations with a fine grain array, generated by a specific tool; against a coarse 
grain array exactly in the same conditions: fixed configurations also produced by a 
synthesis tool – so a fair environment would be available. 

FIRST STUDIES WITH MOLEN 

First studies about this comparison have already been performed, using Molen, a 
fine grain reconfigurable architecture that was introduced in chapter 2. To transform 
parts of code to be executed in Molen hardware, the C2VHDL, a tool developed by the 
same group, was employed. This tools aims at automatically transform a given C code 
in VHDL. Using the MiBench benchmark set, GSM has shown an improvement of 1.8x. 
Four more examples besides this one were executed: ADPCM, dijkstra, quick and 
bubble sort. However, some of them do not show performance improvements, while in 
others the speedup is very small, even if they are dataflow oriented algorithms.  

Furthermore, these results consider that the additional hardware generated to be 
executed as the Molen reconfigurable system do not increase the critical path of the 
processor (it would take just one processor’s equivalent cycle to execute the whole 
operation). It means that it would have the same processor’s frequency of operation, 
which is very likely to not happen as previous implemented examples (VASSILIADIS 
et al., 2001) have already shown. This can be explained because of the code 
transformation tool, which are at its first stages of development: it does not consider 
critical paths while generating the VHDL cores. For instance, it is considered that a 
multiply operation would take the same time to be executed as an addition. 
Furthermore, it does not explore parallel operations at all. Therefore, for a better 
comparison and analysis, applications kernels need to be generated by hand. 

This way, after the kernels were proper implemented, it will also be considered 
characteristics of the bench set (control or dataflow oriented; number of distinct 
kernels), which study has already begun, as one can see in chapter 2. This comparison 
must consider the three axis (power, performance and area). There is no study between 
two different reconfigurable architectures with different implementation strategies using 
exactly the same environment and peripheral components, and still considering the 
different behaviors of the benchmark set.  



  

 

 

138 

The toolset is already ready to be used. There is the SystemC like MIPS simulator 
adapted both to work with DIM and Molen as a GPP. For Molen, the simulator shows 
the hot spots considering basic blocks, or loops, or functions. Furthermore, the VHDL 
code of the MIPS processor and both reconfigurable architectures is available. The 
power consumption would follow the same methodology presented before for the 
BT/array, and the Xilinx XPower (XILINX, 2008b) could be used to figure the power 
spent by the FPGA based Molen system. 

7.12 Attacking Different levels of granularity 

MULTITHREADING 

The search for processing power in a reduced design space has also been 
modifying the whole paradigm of parallelism exploitation. The focus has been changed, 
where complex and superpipelined superscalar processors are giving space to 
multiprocessors sometimes composed by simpler processors, increasing the scalability. 
The parallelism grain is not explored just at the instruction level anymore, but also at 
threads and processes. Figure 7.1 shows the difference between superscalar, 
multithreaded and simultaneous multithreading processors. Each square represents one 
functional unit of the processor. Each line (horizontal set of functional units) represents 
the processor state at each cycle. If one square is filled, it means that the correspondent 
functional unit was used. When it is empty, that functional unit was idle at that time. 

Not using functional units through the time can be characterized as horizontal or 
vertical waste. Horizontal waste occurs when one or more functional units were not 
used within a cycle. Vertical waste means that all units within a cycle were not used (the 
whole cycle was wasted). Figure 7.1a demonstrates the execution sequence on a 
superscalar processor. In such processor, there is just the execution of one thread at a 
time. When, for some reason (as data dependences), there are no enough instructions to 
feed the functional units, there is horizontal waste. If there is no instruction at all to be 
issued to the functional units at a given cycle (this could happen when there is a cache 
miss, for example), vertical waste is characterized. The first kind of waste can be 
observed in cycles 1, 2, 5, 7 e 9, while the second kind in cycles 3, 4, 6, 8 and 10, in 
Figure 7.1a. 

In Figure 7.1b and Figure 7.1c the behavior of the multithread and SMT 
processors are shown, respectively. The Multithread architecture can fetch instructions 
from different threads in different cycles, avoiding the vertical waste. For instance, 
while the processor is treating a cache miss of one thread, instructions can be fetched 
from another thread. The SMT architecture, on the other hand, can fetch instructions 
from different threads within the same cycle. This way, if there is a limit in the ILP of 
one thread, the functional units can be fed from others. By consequence, the horizontal 
waste is also dramatically reduced. In this architecture, the processor dynamically 
allocates the instructions from different threads in the functional units. For example, let 
us consider that in a processor there are eight functional units available, and in a given 
cycle the thread ILP is of five. The processor can fetch the 3 left instructions at run time 
from other threads to issue to the reminiscent functional units. Examples of SMT 
implementations are: Intel Pentium 4 (which technology is called Hyperthreading), 
Alpha EV8, IBM Power 5 and Sun Microsystems’ UltraSPARC T1. 

It is important to note that there is horizontal and vertical waste in reconfigurable 
architectures, as there is in superscalar processors. In the literature there is no study 
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about the possibility of using reconfigurable systems based on the SMT paradigm. 
Considering the proposed approach, the functional characteristics may facilitate the 
implementation of this technique. As it is composed by a large number of functional 
units, these can be fed of instructions from different threads, with a control mechanism 
for the input context and write back of results – and a special concern about maintaining 
data coherence and allowing communication between threads.  

To became a reality, it is necessary the implementation of the control mechanism, 
which must be responsible for separating the input and output contexts, originated from 
different threads that are being executed simultaneously in the array. Other analysis can 
be performed, such as the study on the influence of the amount and kind of 
communication between threads on the performance and size of the array. It is 
important to highlight that the study of ideal size and other tradeoffs will be changed 
because of the fact that the reconfigurable array will execute more than one thread at a 
time. 

 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

Figure 7.1: Different models and theirs functional units executing various threads 

 
CMP 

Processors such as Core2Duo (Intel) and AMD Athlon 64 X2 (AMD) are 
examples of another trend in the development of architectures: multiple processors in a 
chip, also known as CMP (Chip Multiprocessor). One of the main reasons that motivate 
designers to use CMP is the reduced design time necessary for its development, since 
the processors employed are usually already validated (because of the reuse of existent 
designs). This way, all the effort is focused on the communication between the 
components. 

Reconfigurable systems have been used to optimize a single threaded software. 
This way, using these systems following the CMP strategy cited before can be a good 
focus of research. Considering the proposed approach, Figure 7.2a shows its current 
implementation: the communication between the components of the architecture and the 
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processor is done using dedicated buses, which makes its implementation not scalable 
considering the increment on the number of available RFUs. Figure 7.2b, in turn, 
illustrates how a CMP model could be implemented. With a new communication 
mechanism, it would be possible to increase the number of RFUs.  

 
 

 

 

 

 

 

 

 

Figure 7.2: a) Current implementation b) reconfigurable architecture based on CMP 

There are a great number of open questions concerning reconfigurable CMP 
architectures, such as: how much parallelism is available, energy consumption, 
scalability, testability, fault tolerance, reusability, communication etc. Moreover, a new 
BT algorithm need to be developed, in order to analyze the partitioning of processes at 
run time, so they can be executed on different reconfigurable architectures, following 
the same premise of maintaining software compatibility.  

Furthermore, it is necessary to analyze means of communication between the 
components, as well as memory sharing, such as monolithic buses (Figure 7.3a) or 
segmented (Figure 7.3b); use of a crossbar or even intrachip networks (Figure 7.3c). 
Finally, the possibility of implementing a heterogeneous architecture, composed by 
different reconfigurable units that can be used according to the process requirements at 
a given moment, can be evaluated. Similar studies using ordinary processors were done 
in (OLUKOTUN et al., 1996).  

 

 

 

 

 

 

 

Figure 7.3: Communication alternatives. a) Monolithic bus b) Segmented bus c) Intra 
chip network 
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APPENDIX A CONFIGURATION FILE FOR 
SIMPLESCALAR 

The configuration file employed for simulations using the Simplescalar toolset, 
regarding section 6.2.1, is shown below. This configuration was made so the simulator 
could behave as close as possible to the MIPS R10000 processor 

 
############################################################################## 
##  GENERAL 
############################################################################## 
 
# random number generator seed (0 for timer seed) 
-seed                             1 
 
# initialize and terminate immediately 
# -q                          false 
 
# restore EIO trace execution from <fname> 
# -chkpt                     <null> 
 
# redirect simulator output to file (non-interactive only) 
# -redir:sim                 <null> 
 
# redirect simulated program output to file 
# -redir:prog                <null> 
 
# simulator scheduling priority 
-nice                             0 
 
# maximum number of inst's to execute 
-max:inst                         0 
 
# number of insts skipped before timing starts 
-fastfwd                          0 
 
# generate pipetrace, i.e., <fname|stdout|stderr> <range> 
# -ptrace                    <null> 
 
# profile stat(s) against text addr's (mult uses ok) 
# -pcstat                    <null> 
 
# operate in backward-compatible bugs mode (for testing only) 
-bugcompat                    false 
 
 
############################################################################## 
##  BRANCH PREDICTOR 
############################################################################## 
 
# extra branch mis-prediction latency 
-fetch:mplat                      3 
 
# branch predictor type {nottaken|taken|perfect|bimod|2lev|comb} 
-bpred                        bimod 
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# bimodal predictor config (<table size>) 
-bpred:bimod           512 
 
# 2-level predictor config (<l1size> <l2size> <hist_size> <xor>) 
-bpred:2lev            1 1024 8 0 
 
# combining predictor config (<meta_table_size>) 
-bpred:comb            1024 
 
# return address stack size (0 for no return stack) 
-bpred:ras                        8 
 
# BTB config (<num_sets> <associativity>) 
-bpred:btb             512 1 
 
############################################################################## 
##  CARACTERISTICAS GERAIS - SUPERESCALAR 
############################################################################## 
 
# speed of front-end of machine relative to execution core 
-fetch:speed                      1 
 
# instruction fetch queue size (in insts) 
-fetch:ifqsize                    4 
 
# speculative predictors update in {ID|WB} (default non-spec) 
# -bpred:spec_update         <null> 
 
# instruction decode B/W (insts/cycle) 
-decode:width                     4 
 
# instruction issue B/W (insts/cycle) 
-issue:width                      4 
 
# run pipeline with in-order issue 
-issue:inorder                false 
 
# issue instructions down wrong execution paths 
-issue:wrongpath               true 
 
# instruction commit B/W (insts/cycle) 
-commit:width                     4 
 
# register update unit (RUU) size 
-ruu:size                        16 
 
# load/store queue (LSQ) size 
-lsq:size                        16 
 
############################################################################## 
##  UNIDADES FUNCIONAIS 
############################################################################## 
 
# total number of integer ALU's available 
-res:ialu                         2 
 
# total number of integer multiplier/dividers available 
-res:imult                        1 
 
# total number of memory system ports available (to CPU) 
-res:memport                      2 
 
# total number of floating point ALU's available 
-res:fpalu                        2 
 
# total number of floating point multiplier/dividers available 
-res:fpmult                       1 
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############################################################################## 
##  CACHE 
############################################################################## 
 
############## Level 1 
 
# l1 inst cache config, i.e., {<config>|dl1|dl2|none} 
-cache:il1             il1:16384:32:1:l 
 
# l1 instruction cache hit latency (in cycles) 
-cache:il1lat                     1 
 
# l1 data cache config, i.e., {<config>|none} 
-cache:dl1             dl1:16384:32:4:l 
 
# l1 data cache hit latency (in cycles) 
-cache:dl1lat                     1 
 
############## Level 2 
 
# l2 data cache config, i.e., {<config>|none} 
-cache:dl2             ul2:16384:64:4:l 
 
# l2 data cache hit latency (in cycles) 
-cache:dl2lat                     1 
 
# l2 instruction cache config, i.e., {<config>|dl2|none} 
-cache:il2                      dl2 
 
# l2 instruction cache hit latency (in cycles) 
-cache:il2lat                     1 
 
############## 
 
# flush caches on system calls 
-cache:flush                  false 
 
# convert 64-bit inst addresses to 32-bit inst equivalents 
-cache:icompress              false 
 
############################################################################## 
##  MEMORIA 
############################################################################## 
 
# memory access latency (<first_chunk> <inter_chunk>) 
-mem:lat                        1 1 
 
# memory access bus width (in bytes) 
-mem:width                        8 
 
############################################################################## 
##  TLB 
############################################################################## 
 
# instruction TLB config, i.e., {<config>|none} 
-tlb:itlb              itlb:4096:4096:4:l 
 
# data TLB config, i.e., {<config>|none} 
-tlb:dtlb              dtlb:4096:4096:4:l 
 
# inst/data TLB miss latency (in cycles) 
-tlb:lat 
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APPENDIX B FIRST VERSION OF THE LOW-LEVEL DIM 
ALGORITHM FOR SIMPLESCALAR 

#include <stdio.h> 
#include <string.h> 
#include "machine.h" 
#include "regs.h" 
//#include "memory.h" 
#include "simple_array_hardware.h" 
 
//#define DEBUG_ON 
//#define CACHE_DEBUG 
//#define DEBUG_RECONFIGURABLE_ARRAY_ON 
 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
// GENERAL DEFINITIONS 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
// Definicao das caracteristicas do array 
 
#define REC_ARRAY_LINES 30 
 
struct groups_specification { 
 int start; 
 int length; 
} context_group[10]; 
 
 
// Resources 
#define REC_ARRAY_RESOURCE_LD 0 
#define REC_ARRAY_RESOURCE_ALU 1 
 
void set_resources () { 
 context_group[REC_ARRAY_RESOURCE_LD].start = 0; 
 context_group[REC_ARRAY_RESOURCE_LD].length = 2; 
  
 context_group[REC_ARRAY_RESOURCE_ALU].start = 
context_group[REC_ARRAY_RESOURCE_LD].length; 
 context_group[REC_ARRAY_RESOURCE_ALU].length = 3; 
 
 return;  
} 
 
#define REC_ARRAY_RESOURCE_TOTAL 5 
#define REC_ARRAY_RESOURCE_TOTAL_READ (REC_ARRAY_RESOURCE_TOTAL * 2) 
////////////////////////////// 
 
#define REC_ARRAY_CONTEXT 24 
#define REC_ARRAY_IMMED 24 
#define REC_ARRAY_CONTEXT_TOTAL 48  // REC_ARRAY_CONTEXT + IMEDIATO 
 
 
//////////////////////////////////////////////////////////////////////// 
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// Tables 
 
// Bitmap writes 
int bitmap_writes[REC_ARRAY_LINES]; 
 
// Resources 
// int resource_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL]; 
int resource_table_bitmap[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL]; 
int resource_table_function[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL]; 
 
// reads write 
int read_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL_READ]; 
int write_table[REC_ARRAY_LINES][REC_ARRAY_CONTEXT]; 
 
// context 
int context_table[REC_ARRAY_CONTEXT_TOTAL];  
int context_table_start[REC_ARRAY_CONTEXT_TOTAL]; 
int context_table_flag[REC_ARRAY_CONTEXT_TOTAL];  // 0 - free, 1 - busy, 2 - write 
 
#define CONTEXT_FLAG_FREE  0 
#define CONTEXT_FLAG_BUSY  1 
#define CONTEXT_FLAG_WRITE 2 
 
int context_table_regpointer_r1_write; 
int context_table_regpointer_r2_write; 
int context_table_regpointer_w_write; 
int context_table_next_free = 0; 
int context_table_next_immed_free = REC_ARRAY_CONTEXT; // comeca no final da tabela 
"normal" 
 
//////////////////////////////////////////////////////////////////////// 
// Start tables 
 
void DTM_start_tables () { 
 int i,j; 
 
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
  context_table[j] = -1; 
  context_table_start[j] = -1; 
 } 
 
 for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
  context_table_flag[j] = CONTEXT_FLAG_FREE; 
 } 
 
 
 for (i=0;i<REC_ARRAY_LINES;i++) { 
 
  bitmap_writes[i] = 0; 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) { 
   resource_table_bitmap[i][j] = 0; 
   resource_table_function[i][j] = 0; 
  } 
 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++) 
   read_table[i][j] = 0; 
 
  for (j=0;j<REC_ARRAY_CONTEXT;j++) 
   write_table[i][j] = 0; 
 
 } 
 
 context_table_next_free = 0; 
 context_table_next_immed_free = REC_ARRAY_CONTEXT; 
  
 set_resources (); 
 
 return; 
} 
 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
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// CACHE 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
#define N_REC_CACHE 16 
 
struct array_cache { 
  
 int read_table[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL_READ]; 
 int write_table[REC_ARRAY_LINES][REC_ARRAY_CONTEXT]; 
 int resource_table_function[REC_ARRAY_LINES][REC_ARRAY_RESOURCE_TOTAL]; 
 
 int context_table[REC_ARRAY_CONTEXT_TOTAL];  
 int context_table_start[REC_ARRAY_CONTEXT_TOTAL]; 
 int context_table_flag[REC_ARRAY_CONTEXT_TOTAL];  // 0 - free, 1 - busy, 2 - write 
 
 md_addr_t start_pc, end_pc; 
 
 int fifo_position; 
 
} rec_cache[N_REC_CACHE]; 
 
void start_cache_DTM () { 
 int i; 
  
 for (i=0;i<N_REC_CACHE;i++) { 
  rec_cache[i].fifo_position = -1; 
  rec_cache[i].start_pc = -1; 
 } 
  
  
 return; 
} 
 
void debug_DTM(void); 
 
void add_configuration (int slot, int pc, int pc_final) { 
 
 int i,j; 
 
 // Grava a configuracao atual neste slot 
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
  rec_cache[slot].context_table[j] = context_table[j]; 
  rec_cache[slot].context_table_start[j] = context_table_start[j]; 
 } 
 
 for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
  rec_cache[slot].context_table_flag[j] = context_table_flag[j]; 
 } 
 
 #ifdef DEBUG_ON 
 printf("aaaaaaaa SLOT %i\n", slot); 
 #endif 
 
 for (i=0;i<REC_ARRAY_LINES;i++) { 
 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)  { 
   rec_cache[slot].resource_table_function[i][j] = resource_table_function[i][j]; 
  } 
 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++) 
   rec_cache[slot].read_table[i][j] = read_table[i][j]; 
 
  for (j=0;j<REC_ARRAY_CONTEXT;j++) 
   rec_cache[slot].write_table[i][j] = write_table[i][j]; 
 } 
 /////////////////////// 
 
 rec_cache[slot].start_pc = pc; 
 rec_cache[slot].end_pc = pc_final; 
 
 #ifdef DEBUG_ON 
 debug_DTM(); 



  

 

 

164 

 #endif 
  
 return; 
} 
 
int cache_DTM (md_addr_t pc, md_addr_t pc_final, int rw) { 
 int i,where_hit = -1,j; 
 int k; 
 static int fifo_pointer = 0; 
 
 
 for (i=0;i<N_REC_CACHE;i++) { 
  if (rec_cache[i].start_pc == pc) { 
   where_hit = i; 
  } 
 } 
 
#ifdef CACHE_DEBUG 
 printf("-*-*-*-*-*-*-*-*-* CACHE CONFIGURATION -*-*-*-*-*-*-*-*-*\n"); 
 for (i=0;i<N_REC_CACHE;i++) { 
  printf("%8x - %i\n", rec_cache[i].start_pc, rec_cache[i].fifo_position); 
/* 
  if (rec_cache[i].start_pc == 0x402980) { 
 
    printf("SLOT %i\n\n", i); 
 
   
 printf("\n***************************************************************************
***\n"); 
    printf("Tabela de contexto inicial de reads\n\n"); 
    
    for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) 
     printf("%3i ",rec_cache[i].context_table_start[j]); 
    
    printf("\n\nTabela de contexto atual\n\n"); 
    
    for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
     printf("%3i ",rec_cache[i].context_table[j]); 
    } 
    
    printf("\n"); 
    
    for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
     printf("%3i ",rec_cache[i].context_table_flag[j]); 
    } 
    
    printf("\n"); 
   
 printf("*****************************************************************************
*\n"); 
    printf("Bitmap *    Tabela de    *        Tabela de Reads         *    
Tabela de  \n"); 
    printf("Writes *     Recursos    *                                *      
Writes   \n"); 
   
 printf("*****************************************************************************
*\n"); 
    
    for (k=0;k<REC_ARRAY_LINES;k++) { 
    
     printf("0000 "); 
     printf("  * "); 
    
    
     for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) 
      //if (resource_table_bitmap[k][j]) 
       printf("%2x ", rec_cache[i].resource_table_function[k][j]); 
    
     printf(" * "); 
    
     for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++) 
      printf("%2i ", rec_cache[i].read_table[k][j]); 
    
     printf(" * "); 
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     for (j=0;j<REC_ARRAY_CONTEXT;j++) 
      printf("%2i ", rec_cache[i].write_table[k][j]); 
    
     printf("\n"); 
    
    } 
    
    printf("\n\n\n"); 
  } 
*/   
 } 
 printf("-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-*-\n"); 
#endif 
 
 if (rw) { 
  // Nao achou, inclui 
  if (where_hit == -1) { 
    add_configuration(fifo_pointer,pc,pc_final); 
    fifo_pointer++; 
    if (fifo_pointer == N_REC_CACHE) fifo_pointer = 0; 
/* 
    
   for(i=0;i<N_REC_CACHE;i++) { 
    if ( (rec_cache[i].fifo_position == (N_REC_CACHE - 1)) || 
(rec_cache[i].start_pc == -1) ) { 
     add_configuration(i,pc,pc_final); 
     where_hit = i; 
     break; 
    } 
   } 
*/ 
  } 
 } 
/* 
 if (where_hit != -1) { 
  rec_cache[where_hit].fifo_position = 0; 
 
  for(j=0;j<N_REC_CACHE;j++) {  
   if ( (j != where_hit) && (rec_cache[j].fifo_position != -1 ) ) { 
    rec_cache[j].fifo_position++; 
   } 
  } 
    } 
*/ 
 return where_hit; 
 
} 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
// ARRAY HARDWARE 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
// array components 
 
int mux (int entrada[], int controle) { 
 return entrada[controle]; 
} 
 
int alu (int entrada_A, int entrada_B, int controle) { 
 int function, type; 
 
 function = (controle >> 4) & 0xf; 
 type = controle & 0xf; 
  
 switch (function) { 
  case 0:  
   // INSTR  ADD 
   // INSTR  ADDU 
   // INSTR  ADDI 
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   // ADDIU  ADDIU 
    
   //if (type == 0) 
    return entrada_A + entrada_B; 
   //else 
   //addu... 
     
  break;  
 
  case 1: 
 
   // INSTR  SUB 
   // INSTR  SUBU 
 
   //if (type == 0) 
    return entrada_A - entrada_B; 
   //else 
   //subu... 
 
  break;  
 
  case 2: 
    
   // INSTR  AND_ 
   // INSTR  ANDI 
 
   return entrada_A & entrada_B; 
  break; 
 
  case 3: 
    
   // INSTR  OR_ 
   // INSTR  ORI 
 
   return entrada_A | entrada_B; 
  break; 
 
  case 4: 
    
   // INSTR  XOR 
   // INSTR  XORI 
 
   return entrada_A ^ entrada_B; 
  break; 
 
  case 5: 
    
   // INSTR  NOR 
   // Conferir 
 
   return ~(entrada_A | entrada_B); 
  break; 
 
  case 6: 
    
    
    
   // INSTR  SLL 
   if (type == 0) { 
    return entrada_A << ( entrada_B & 0xff); 
   } 
   // INSTR  SLLV 
   else if (type == 1) { 
    return entrada_A << entrada_B; 
   } 
   // INSTR  SRL 
   else if (type == 2) { 
    int partial_res = entrada_A, i; 
    for (i= (entrada_B & 0xff) ;i>0;i--) 
     partial_res = (partial_res >> 1) & 0x7fffffff; // right sem signal 
    return partial_res; 
    
   } 
   // INSTR  SRLV 
   else if (type == 3) { 
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    int partial_res = entrada_A, i; 
    for (i= entrada_B;i>0;i--) 
     partial_res = (partial_res >> 1) & 0x7fffffff; 
    return partial_res; 
   } 
   // INSTR  SRA  
   else if (type == 4) { 
    int partial_res = entrada_A, i; 
    for (i= (entrada_B & 0xff) ;i>0;i--) 
     partial_res = (partial_res >> 1) + (entrada_A & 0x80000000);  
 
    return partial_res; 
   } 
   // INSTR  SRAV 
   else if (type == 5) { 
    int partial_res = entrada_A, i; 
    for (i= entrada_B ;i>0;i--) 
     partial_res = (partial_res >> 1) + (entrada_A & 0x80000000);  
 
    return partial_res;    
    } 
  break; 
   
 
  // set less than 
  case 7: 
 
   // INSTR  SLT 
   if (type == 0) { 
    if (entrada_A < entrada_B) return 1; 
   } 
   // INSTR  SLTU 
   else if (type == 1) { 
    if ( (unsigned) entrada_A < entrada_B) return 1; 
   } 
   // INSTR  SLTI 
   else if (type == 2) { 
    if (entrada_A < entrada_B) return 1; 
   } 
   // INSTR  SLTIU 
   else if (type == 3) { 
    if ( (unsigned) entrada_A < entrada_B) return 1; 
   } 
 
 
    
   else return 0; 
 
  break; 
 
 } 
 
 return 0; 
} 
 
 
int ld (int entrada_A, int entrada_B, int controle) { 
 int function, type, temp; 
 
 function = (controle >> 4) & 0xf; 
 type = controle & 0xf; 
 
 switch (function) {  
  case 0: 
   if (type == 0) {   // byte  LB 
    temp = (read_memory(entrada_A + entrada_B)) & 0xff; 
    if (temp & 0x80) temp |= 0xffffff00; 
    return temp;     
   }  
   else if (type == 3) {  // byte unsigned LBU 
    return (read_memory(entrada_A + entrada_B)) & 0xff; 
   }  
 
   else if (type == 1) {  // half  LH 
    temp = (read_memory(entrada_A + entrada_B)) & 0xffff; 
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    if (temp & 0x8000) temp |= 0xffff0000; 
    return temp;     
   } 
    
   else if (type == 5)   // half unsigned LHU 
    return (read_memory(entrada_A + entrada_B)) & 0xffff; 
 
   else if (type == 2)   // word  LW 
    return read_memory(entrada_A + entrada_B); 
   //else  
    //{ printf("naaaaah\n"); exit(0); } 
    //MEM_WRITE_WORD(mem, addr, *((word_t *)p)); 
  break; 
 
  case 1: 
   return entrada_B << 16; 
  break;  
  
 } 
 
 return 0; 
} 
 
// context loading 
 
void load_context(int contexto_atual[], int GPR_regs[], int slot) {  
 int j,i; 
 
 if (slot != -1) {  // Trabalha apenas com o contexto atual 
  for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
   context_table[j] = rec_cache[slot].context_table[j]; 
   context_table_start[j] = rec_cache[slot].context_table_start[j]; 
  } 
  
  for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
   context_table_flag[j] = rec_cache[slot].context_table_flag[j]; 
  } 
  
  for (i=0;i<REC_ARRAY_LINES;i++) { 
  
   for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++)  
    resource_table_function[i][j] = 
rec_cache[slot].resource_table_function[i][j]; 
  
   for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++) 
    read_table[i][j] = rec_cache[slot].read_table[i][j]; 
  
   for (j=0;j<REC_ARRAY_CONTEXT;j++) 
    write_table[i][j] = rec_cache[slot].write_table[i][j]; 
  } 
 } 
 
 /////////////////////// 
 
 for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
  if (context_table_start[j] != -1) { 
   contexto_atual[j] = GPR_regs[context_table_start[j]]; 
  } 
  else  
   contexto_atual[j] = -1; 
 } 
 
 for (j=REC_ARRAY_CONTEXT;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
  contexto_atual[j] = context_table_start[j]; 
 } 
  
 return;  
} 
 
int resultado_contexto_atual[REC_ARRAY_CONTEXT_TOTAL]; 
 
int reconfigurable_array (int GPR_regs[], int slot){ 
 int linha, coluna, contexto; 
 int saida_unidade_funcional[REC_ARRAY_RESOURCE_TOTAL]; 
 int (*unidade_funcional_corrente) (); 
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 load_context(resultado_contexto_atual, GPR_regs, slot); 
 
 for (linha = 0; linha < REC_ARRAY_LINES; linha++) { 
 
  #ifdef DEBUG_RECONFIGURABLE_ARRAY_ON 
 
   printf("\n\n\n"); 
   printf("Contexto atual\n"); 
   printf("-------------------------------------------------\n"); 
  
   for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) { 
    if (context_table[contexto] != -1) 
     printf("r%i =\t %8x \t\t%i\n", context_table[contexto], 
resultado_contexto_atual[contexto], context_table_flag[contexto]); 
   } 
  
   printf("-------------------------------------------------\n"); 
   printf("\n"); 
   for (contexto = 0; contexto < REC_ARRAY_CONTEXT_TOTAL; contexto ++) { 
     printf("%4x ", resultado_contexto_atual[contexto]); 
   } 
  
   printf("\n"); 
   printf("-------------------------------------------------\n"); 
 
  #endif 
 
  
  for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++) { 
 
   if (coluna >= context_group[REC_ARRAY_RESOURCE_LD].start &&  
    coluna < context_group[REC_ARRAY_RESOURCE_LD].length) { 
    
    unidade_funcional_corrente = ld; 
   } 
 
   else if (coluna >= context_group[REC_ARRAY_RESOURCE_LD].length &&  
    coluna < (context_group[REC_ARRAY_RESOURCE_ALU].start + 
context_group[REC_ARRAY_RESOURCE_ALU].length) ) 
     
    unidade_funcional_corrente = alu; 
   ///// 
 
   saida_unidade_funcional[coluna] =  
   unidade_funcional_corrente ( mux(resultado_contexto_atual, read_table[linha][ 
coluna * 2]), 
     mux(resultado_contexto_atual, read_table[linha][(coluna  * 2) + 1]), 
     resource_table_function[linha][coluna] 
    ); 
 
  } 
 
  #ifdef DEBUG_RECONFIGURABLE_ARRAY_ON 
   printf("Entradas\n"); 
   for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++) { 
  
    printf("%8x %8x --",  
     mux(resultado_contexto_atual, read_table[linha][coluna * 2]), 
     mux(resultado_contexto_atual, read_table[linha][(coluna * 2) + 1]) 
    ); 
   } 
   printf("\n"); 
   printf("-------------------------------------------------\n"); 
  
   printf("Saidas\n"); 
   for (coluna = 0; coluna < REC_ARRAY_RESOURCE_TOTAL; coluna++) 
    printf("    %8x      --", saida_unidade_funcional[coluna] ); 
  
  
   printf("\n"); 
   printf("-------------------------------------------------\n"); 
  #endif 
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  // Todos menos o campo dos imediatos 
  for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) { 
   if (write_table[linha][contexto] > 0) 
    resultado_contexto_atual[contexto] = 
mux(saida_unidade_funcional,write_table[linha][contexto] - 1); 
  } 
 } 
  
 // write back dos resultados 
  
 for (contexto = 0; contexto < REC_ARRAY_CONTEXT; contexto ++) { 
  if ( (context_table[contexto] != -1) && (context_table_flag[contexto] == 
CONTEXT_FLAG_WRITE) ) 
   regs.regs_R[context_table[contexto]] = resultado_contexto_atual[contexto]; 
 } 
 
 // retorna o novo pc  
 return rec_cache[slot].end_pc; 
} 
 
 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
// DTM 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
 
//////////////////////////////////////////////////////////////////////// 
// Warning 
 
void BUM (int error) { 
  
 printf("BUUUUUUUUUUUUUUUUUM\n\n"); 
  
 switch (error) { 
  case 0: printf("Number of lines\n"); break; 
 } 
  
 exit(0); 
} 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
//////////////////////////////////////////////////////////////////////// 
// 5th stage 
 
void DTM_fill_tables_2st_step ( 
  int op_r1, int op_r2, int op_w, int resource_line, int resource_columm, 
  int context_table_pointer_r1,int context_table_pointer_r2,int 
context_table_pointer_w, 
  int context_table_regpointer_r1_write,int context_table_regpointer_r2_write,int 
context_table_regpointer_w_write, 
  int immed, int immed_use) { 
 
 
 int pointer_r1, pointer_r2, pointer_w; 
 
 if (context_table_regpointer_r1_write == 1) {  
  pointer_r1 = context_table_next_free++; 
  context_table[pointer_r1] = op_r1; 
 } 
 else   
  pointer_r1 = context_table_pointer_r1; 
 
 if (context_table_regpointer_r2_write == 1) {  
  if (immed_use) { 
   pointer_r2 = context_table_next_immed_free++; 
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   context_table[pointer_r2] = immed; 
  } 
  else{ 
   pointer_r2 = context_table_next_free++; 
   context_table[pointer_r2] = op_r2; 
  } 
 } 
 else  
 
 if (context_table_regpointer_w_write == 1) {  
  pointer_w = context_table_next_free++; 
  context_table[pointer_w] = op_w; 
  context_table_flag[pointer_w] = CONTEXT_FLAG_WRITE; 
 } 
 else 
  pointer_w = context_table_pointer_w; 
 
 
 if (context_table_regpointer_r1_write == 1)  
  context_table_start[pointer_r1] = op_r1; 
 
 if (context_table_regpointer_r2_write == 1) { 
  if (immed_use) 
   context_table_start[pointer_r2] = immed; 
  else 
   context_table_start[pointer_r2] = op_r2; 
 } 
 
 
 read_table[resource_line][ resource_columm * 2     ] = pointer_r1; 
 read_table[resource_line][(resource_columm * 2) + 1] = pointer_r2; 
 
 write_table[resource_line][pointer_w] = resource_columm + 1; 
 
} 
 
//////////////////////////////////////////////////////////////////////// 
// 4th stage 
void DTM_fill_tables_1st_step (int op_r1, int op_r2, int op_w, int resource_line, int 
resource_columm, int immed, int immed_use, int function, int type) { 
 
 int i; 
 int context_table_pointer_temp_r1 = 0; 
 int context_table_pointer_temp_r2 = 0; 
 int context_table_pointer_temp_w  = 0; 
  
 int op_w_bits; 
 op_w_bits = 1 << op_w; 
 bitmap_writes[resource_line] |= op_w_bits; 
 
 resource_table_bitmap[resource_line][resource_columm] = 1; 
 
bits 
 resource_table_function[resource_line][resource_columm] = (function << 4) | (type & 
0xf); 
  
 context_table_regpointer_r1_write = context_table_regpointer_r2_write = 
context_table_regpointer_w_write = 1; 
 
 for (i=0;i<REC_ARRAY_CONTEXT;i++) { 
  if (context_table[i] == op_r1) { 
   context_table_pointer_temp_r1 = i; 
   context_table_regpointer_r1_write = 0; 
  } 
   
  if (context_table[i] == op_w) { 
   context_table_flag[i] = CONTEXT_FLAG_FREE; 
  } 
 
 } 
 
 if (!immed_use) { 
  for (i=0;i<REC_ARRAY_CONTEXT;i++) { 
   if (context_table[i] == op_r2) { 
    context_table_pointer_temp_r2 = i; 
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    context_table_regpointer_r2_write = 0; 
   } 
  } 
 } 
 
 
 #ifdef DEBUG_ON 
  printf("********************************************************\n"); 
  printf("** FOURTH STAGE\n"); 
  printf("********************************************************\n"); 
  printf("Context pointers\n"); 
  printf("op_r1 = %i  w = 
%i\n",context_table_pointer_temp_r1,context_table_regpointer_r1_write); 
  printf("op_r2 = %i  w = 
%i\n",context_table_pointer_temp_r2,context_table_regpointer_r2_write); 
  printf("op_w  = %i  w = %i\n",context_table_pointer_temp_w 
,context_table_regpointer_w_write); 
 #endif 
 
 DTM_fill_tables_2st_step ( 
  op_r1, op_r2, op_w, resource_line, resource_columm, 
 
 context_table_pointer_temp_r1,context_table_pointer_temp_r2,context_table_pointer_tem
p_w, 
 
 context_table_regpointer_r1_write,context_table_regpointer_r2_write,context_table_reg
pointer_w_write, 
  immed, immed_use 
 ); 
  
} 
 
//////////////////////////////////////////////////////////////////////// 
// 3rd stage 
 
void DTM_check_resource_table (int group, int op_r1, int op_r2, int op_w, int 
dependence_line, int immed, int immed_use, int function, int type) { 
 int resource_line, resource_columm = 0; 
 int found = 0; 
  
   
 for (resource_line = dependence_line;resource_line < REC_ARRAY_LINES;resource_line++) 
{ 
  for (resource_columm = context_group[group].start; 
   resource_columm < (context_group[group].start + context_group[group].length); 
   resource_columm++) { 
   if (resource_table_bitmap[resource_line][resource_columm] == 0) { 
    found = 1; 
    break; 
   } 
  } 
  if (found) break; 
 } 
  
 if (!found) BUM(0); 
 
 DTM_fill_tables_1st_step (op_r1, op_r2, op_w, resource_line, resource_columm, immed, 
immed_use, function, type); 
 
} 
 
//////////////////////////////////////////////////////////////////////// 
// 2nd stage 
 
void DTM_check_dependences (int group, int op_r1, int op_r2, int op_w, int immed, int 
immed_use, int function, int type) { 
 int dependence_line = 0; 
 int i; 
  
 int op_r1_bits = 0, op_r2_bits = 0, op_bits; 
 if (op_r1 != -1) op_r1_bits = 1 << op_r1; 
 if (op_r2 != -1) op_r2_bits = 1 << op_r2; 
  
 op_bits = op_r1_bits | op_r2_bits; 
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 for (i=0;i<REC_ARRAY_LINES;i++) 
  if ((bitmap_writes[i] & op_bits) != 0) dependence_line = i + 1; 
 
 #ifdef DEBUG_ON 
 printf("********************************************************\n"); 
 printf("** SECOND STAGE\n"); 
 printf("********************************************************\n"); 
 
 printf("dependence line = %i\n", dependence_line); 
 printf("group = %2i  op_r1 = %2i  op_r2 = %2i  op_w = %2i  immed = 
%i\n",group,op_r1,op_r2,op_w,immed); 
 #endif 
 
 if (dependence_line >= REC_ARRAY_LINES) BUM(0); 
 
 DTM_check_resource_table(group, op_r1, op_r2, op_w, dependence_line, immed, 
immed_use, function, type); 
 
} 
 
//////////////////////////////////////////////////////////////////////// 
// Primeiro Estagio 
int DTM_instrution_decoder (md_inst_t inst, int verifica_existe) { 
 
 // Separa operadores de read e write 
 int op_r1, op_r2, op_w, immed, immed_use; 
 
 int group; 
 int function = 0, type = 0; 
 
 int rs,rt,rd; 
 
 rs = (inst.b >> 24) & 0xff; 
 rt = (inst.b >> 16) & 0xff; 
 rd = (inst.b >> 8) & 0xff; 
 immed = inst.b & 0xffff; 
  
 immed_use = 0; 
 
 
 switch(inst.a) { 
 
  ///////////////////////////////////////////////////////////////////////////////// 
  // Loads/Stores 
  ///////////////////////////////////////////////////////////////////////////////// 
   
  // A extensao de sinal do IMMED pode ser feita na propria unidade funcional! 
  // Pensar em hardware. Da pra dar um merge em tudo e apenas mudar o type. IF 
dentro de IF 
  // Load - type = 0 
 
  case LB:  // 0x20: 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; type = 0; 
   break; 
  case LBU: // 0x22: 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; type = 3; 
   break; 
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  case LH:  // 0x24: 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; type = 1; 
   break; 
 
  case LHU: // 0x26: 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; type = 5; 
   break; 
 
  case LW:  // 0x28: 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; type = 2; 
   break; 
 
  case LUI: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 1; type = 0; 
   break; 
 
  // Store - function = 2 
/* 
  case SW:  // 0x28: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_LD; 
   function = 0; 
   type = 1; 
   break; 
*/ 
  ///////////////////////////////////////////////////////////////////////////////// 
  // arithmetic and logic 
  ///////////////////////////////////////////////////////////////////////////////// 
 
  // function 
  
  // 0 - add 
  // 1 - sub 
  // 2 - and 
  // 3 - or 
  // 4 - xor 
  // 5 - nor 
  // 
  //  type até aqui 
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  //   0 - signed 
  //   1 - unsigned 
  // 
  // 6 - shift 
  // 7 - set 
 
 
  case  ADD:  // 0x40: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 0; 
   type = 0; 
 
   break; 
    
  case  ADDU: // 0x42: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 0; 
   type = 1; 
 
   break; 
 
  // Imediato 
 
  case ADDI:  // 0x41: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
   function = 0; 
   type = 0; 
 
   break;     
 
  case ADDIU: // 0x43: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
 
   function = 0; 
   type = 1; 
 
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000;  
 
   break;     
    
  //////////////////////////////////////////////////////////////////////// 
 
  case  SUB:  // 0x44: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 1; 
 
   break; 
 
  case  SUBU: // 0x45: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
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   function = 1; 
   type = 1; 
 
   break; 
 
  //////////////////////////////////////////////////////////////////////// 
    
  case  AND_:  // 0x4e: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 2; 
 
   break; 
 
  // Imediato 
 
  case ANDI:  // 0x4f: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 2; 
 
   break;     
 
  //////////////////////////////////////////////////////////////////////// 
    
  case  OR:   // 0x50: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 3; 
 
   break; 
 
  // Imediato 
 
  case ORI:   // 0x51: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
 
   function = 3; 
 
   break;     
 
  //////////////////////////////////////////////////////////////////////// 
    
  case  XOR:  // 0x52: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 4; 
 
   break; 
 
  // Imediato 
 
  case XORI:  // 0x53: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
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   function = 4; 
 
   break;     
  //////////////////////////////////////////////////////////////////////// 
    
  case  NOR:  // 0x54: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 5; 
 
   break; 
 
  //////////////////////////////////////////////////////////////////////// 
  //shifts 
 
  case  SLLV: // 0x56: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = rs; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 6; 
   type = 1; 
 
   break; 
 
  case  SRLV: // 0x58: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = rs; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 6; 
   type = 3; 
 
   break; 
 
  case  SRAV: // 0x5a: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = rs; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 6; 
   type = 5; 
 
   break; 
 
  // SHAMT (= immed & 0ff) 
   
  case SLL: // 0x55: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = -1; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   immed_use = 1; 
   function = 6; 
   type = 0; 
 
   break; 
 
  case SRL: // 0x57: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = -1; 
   group = REC_ARRAY_RESOURCE_ALU; 
 
   immed_use = 1; 
   function = 6; 
   type = 2; 
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   break; 
 
  case SRA: // 0x59: 
   op_w  = rd; 
   op_r1 = rt; 
   op_r2 = -1; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   immed_use = 1; 
   function = 6; 
   type = 4; 
 
   break; 
 
  //////////////////////////////////////////////////////////////////////// 
  // set less than 
  case  SLT:  // 0x5b: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
 
   function = 7; type = 0; 
 
   break; 
    
  case  SLTU: // 0x5d: 
   op_w  = rd; 
   op_r1 = rs; 
   op_r2 = rt; 
   group = REC_ARRAY_RESOURCE_ALU; 
    
   function = 7; type = 1; 
 
   break; 
    
  // Imediato 
 
  case SLTI:  // 0x5c: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
   function = 7; type = 2; 
    
   // extensao de sinal    
   if (immed & 0x8000) immed |= 0xffff0000; 
 
   break; 
 
  case SLTIU: // 0x5e: 
   op_w  = rt; 
   op_r1 = rs; 
   op_r2 = -1; 
   immed_use = 1; 
   group = REC_ARRAY_RESOURCE_ALU; 
 
   function = 7; type = 3; 
 
   break;     
 
  default: 
   #ifdef DEBUG_ON 
   printf("************** \n\nNao achei %x\n", inst.a); 
   #endif 
   if (verifica_existe) return 0; 
 
 } 
 
 if (verifica_existe) return 1; 
   
 // Chama o segundo estagio 
 DTM_check_dependences(group, op_r1, op_r2, op_w, immed, immed_use, function, type); 
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} 
 
 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
 
 
//////////////////////////////////////////////////////////////////////// 
// DTM 
 
int DTM (md_inst_t inst, md_addr_t pc) { 
 
 DTM_instrution_decoder(inst, 0); 
 
 return 0; 
 
} 
 
 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
// DEBUG 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
//////////////////////////////////////////////////////////////////////// 
 
int debug_confere_resultado (int GPR_regs[]) { 
 int j; 
 
 for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
  if (context_table_flag[j] == CONTEXT_FLAG_WRITE) { 
   if (resultado_contexto_atual[j] != GPR_regs[context_table[j]] )  { 
    printf("\n\n"); 
    printf("r%i \t array = %x   registrador = %x  \n",context_table[j], 
resultado_contexto_atual[j], GPR_regs[context_table[j]]); 
    return context_table[j]; 
   } 
  } 
 } 
 
 return -1; 
  
} 
 
void debug_DTM () { 
 int i,j; 
  
 printf("\n***************************************************************************
***\n"); 
 printf("Tabela de contexto inicial de reads\n\n"); 
 
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) 
  printf("%3i ",context_table_start[j]); 
 
 printf("\n\nTabela de contexto atual\n\n"); 
 
 for (j=0;j<REC_ARRAY_CONTEXT_TOTAL;j++) { 
  printf("%3i ",context_table[j]); 
 } 
 
 printf("\n"); 
 
 for (j=0;j<REC_ARRAY_CONTEXT;j++) { 
  printf("%3i ",context_table_flag[j]); 
 } 
 
 printf("\n"); 
 printf("*****************************************************************************
*\n"); 
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 printf("Bitmap *    Tabela de    *        Tabela de Reads         *    Tabela de  
\n"); 
 printf("Writes *     Recursos    *                                *      Writes   
\n"); 
 printf("*****************************************************************************
*\n"); 
 
 for (i=0;i<REC_ARRAY_LINES;i++) { 
 
  printf("%4x ", bitmap_writes[i]); 
  printf("  * "); 
 
/*  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) 
   printf("%2i ", resource_table_bitmap[i][j]); 
*/ 
 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL;j++) 
   //if (resource_table_bitmap[i][j]) 
    printf("%2x ", resource_table_function[i][j]); 
 
  printf(" * "); 
 
  for (j=0;j<REC_ARRAY_RESOURCE_TOTAL_READ;j++) 
   printf("%2i ", read_table[i][j]); 
 
  printf(" * "); 
 
  for (j=0;j<REC_ARRAY_CONTEXT;j++) 
   printf("%2i ", write_table[i][j]); 
 
  printf("\n"); 
 
 } 
 
 printf("\n\n\n"); 
 
 return;  
} 
 
#ifdef DEBUG_ON 
 
int main_DTM() { 
 
 md_inst_t inst[50]; 
 int i = 0, j = 0; 
 
 // rs, rt, rd 
 
 //ADD 
 //0x  op_r1 op_r2 op_w  xx 
 //LB 
 //0x  op_r1 op_w  xx  xx 
 
 // add r7,r5,r6 
 inst[j  ].a = ADD; 
 inst[j++].b = 0x050607ff; 
 // add r7,r7,r6 
 inst[j  ].a = ADD; 
 inst[j++].b = 0x070608ff; 
 // add r2,r8,r6 
 inst[j  ].a = ADD; 
 inst[j++].b = 0x080609ff; 
 // add r1,r2,r7 
 inst[j  ].a = ADD; 
 inst[j++].b = 0x020701ff; 
 // lb r7,r2 
 inst[j  ].a = ADD; 
 inst[j++].b = 0x020704ff; 
 
 inst[j  ].a = -1; 
 
 DTM_start_tables (); 
 
 do { 
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  printf("\n\n\n"); 
  md_print_insn(inst[i], 0, stdout); printf("\n"); 
  printf("%s %s\n", MD_OP_NAME(inst[i].a), MD_OP_FORMAT(inst[i].a) ); 
  printf("----------------------------------\n"); 
 
  DTM (inst[i],0); 
 
  debug_DTM(); 
     } while (inst[++i].a != -1); 
 
 //reconfigurable_array(); 
 
 return 0; 
} 
 
#endif 
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APPENDIX C UMA ARQUITETURA RECONFIGURÁVEL 
TRANSPARENTE PARA APLICAÇÕES 

HETEROGÊNEAS 

A possibilidade se adicionar cada vez mais e mais transistores dentro de um 
circuito integrado, de acordo com a lei de Moore, faz com que o aumento de 
desempenho atinja o mesmo patamar de crescimento. Entretanto, esta lei poderá mudar 
em um futuro não muito distante, por uma simples razão: os limites físicos do silício 
estão sendo alcançados. Outro aspecto visível do limite tecnológico atual é o aumento 
da potência dissipada pelos circuitos integrados (CI), graças às correntes de fuga e ao 
chaveamento natural de bilhões de transistores. Este fato tem um impacto diferente em 
computadores de propósito geral, onde sistemas de refrigeração cada vez mais robustos 
têm de ser usados; ou em sistemas embarcados móveis, onde a energia gasta é o fator 
principal para aumentar o tempo de utilização do aparelho sem a necessidade de 
recarga. Além do mais, novas tecnologias que irão substituir completa ou parcialmente 
o silício estão surgindo. De acordo com o ITRS Roadmap (SEMICONDUCTOR, 2008), 
estas tecnologias possuem um alto grau de densidade e são lentas comparadas à CMOS, 
ou o oposto: novos dispositivos podem atingir altas velocidades, mas com uma grande 
ocupação de área e consumo de potência, mesmo quando levadas em conta tecnologias 
CMOS futuras. 

Em paralelo com a questão tecnológica, arquiteturas tradicionais de alto 
desempenho, como os difundidos processadores superescalares, estão atingindo seus 
limites. Como demonstrado em (FLYNN; HUNG, 2005) e (SIMA; FALK, 2004), não 
há nenhuma novidade arquitetural em tais sistemas nos últimos anos. Ademais, recentes 
incrementos de desempenho foram ocasionados apenas pelo aumento na freqüência de 
operação. Entretanto, este recurso também está chegando a um ponto de estagnação. Por 
exemplo, a freqüência de operação do processador Pentium IV da Intel aumentou 
apenas de 3,06 para 3,8GHz entre 2002 e 2006 (INTEL, 2008).  

Em (OR-BACH, 2001), é discutido o futuro dos processos de fabricação 
usando novas tecnologias. De acordo com este trabalho, células padrão (standard cells), 
como são utilizadas atualmente, não existirão mais. Como os métodos de fabricação 
estão mudando, circuitos regulares logo se tornarão uma necessidade. Entenda-se por 
circuitos regulares aqueles que apresentam uma grande repetição de uma mesma e 
simples estrutura, seja no nível das portas, células, blocos etc. É também um consenso 
que a liberdade hoje oferecida para os projetistas, representada pela irregularidade do 
projeto, será mais cara no futuro. Desta maneira, utilizando lógica regular, as 
companhias irão reduzir custos, como também a possibilidade da diminuição do número 
de falhas do circuito, já que a confiabilidade da impressão de geometrias utilizadas hoje 
em 65 nanômetros já é considerada um grande problema. 
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Desta maneira, por diferentes razões anteriormente discutidas, tanto no âmbito 
de sistemas embarcados quanto no de computação de propósito geral, a redução no 
aumento constante de freqüência junto com os novos limites impostos pelas recentes 
tecnologias são novos desafios arquiteturais que precisam ser tratados. 

Alternativas Arquiteturais 

Sistemas Reconfiguráveis 

As várias abordagens de exploração do paralelismo utilizadas atualmente 
recaem no mesmo problema: o paradigma de programação. O modelo Von Neumann 
traz consigo uma limitação nesta exploração, causada pelo seu modelo orientado a 
controle (control-driven), que tem a sua execução conduzida pelo contador de 
programa. Máquinas dataflow, entretanto, exploram o máximo paralelismo da aplicação 
utilizando um modelo orientado a dados (data-driven). Basicamente, a execução de 
certa operação se dá quando os dados requisitados para tal estiverem disponíveis. Neste 
cenário, arquiteturas reconfiguráveis aparecem como uma solução muito atrativa. O fato 
que motiva a utilização deste tipo de arquitetura é que estas se localizam entre os dois 
modelos citados anteriormente. Assim, consegue-se obter uma arquitetura 
implementável atualmente, que explora um alto grau de paralelismo, ainda utilizando 
compiladores, ferramentas e métodos baseados em Von Neumann já existentes.  

Ao mesmo tempo que a computação baseada em reconfiguração pode explorar 
o paralelismo entre as instruções, ela também pode diminuir o tempo de processamento 
de instruções dependentes entre si. Esta é a sua maior vantagem em relação às 
arquiteturas tradicionais utilizadas atualmente. Usando a mesma idéia de reutilização de 
instruções, transforma-se uma seqüência de operações (parte do código de programa) 
em um equivalente implementado em circuito combinacional, que executa exatamente 
as mesmas funções. Assim, aumenta-se o desempenho do sistema  (HENKEL, ERNST, 
1997) (VENKATARAMANI et al., 2001), reduzindo drasticamente o seu consumo de 
energia (STITT; VAHID, 2002) – pelo preço do incremento de área ocupada.  

A Figura 1 ilustra este processo de forma simplificada. Geralmente, uma 
arquitetura reconfigurável é formada por uma Unidade Funcional Reconfigurável 
(Reconfigurable Function Unit - RFU); uma unidade capaz de realizar a reconfiguração 
da RFU; e um processador de propósito geral (General Purpose Processor - GPP). 
Outra vantagem na utilização de sistemas reconfiguráveis é que estes são altamente 
regulares, formados por replicações de estruturas idênticas, enquadrando-se exatamente 
como uma arquitetura a ser utilizada para solucionar os problemas de fabricação e 
produção, citados anteriormente. 

 

 
 
 
 
 
 
 

Figura 1 – O funcionamento básico de um sistema reconfigurável 
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Como exemplo de sistemas reconfiguráveis, podem ser citados os sistemas 
Chimaera (HAUCK, 1997) e ConCISe (RAZDAN; SMITH, 1994), que possuem uma 
unidade reconfigurável fortemente acoplada ao núcleo do processador, formada 
totalmente por lógica combinacional. Esta unidade é, de fato, uma unidade funcional 
adicional no pipeline do processador, compartilhando os mesmos recursos das outras 
unidades. Esta técnica faz com que o controle da unidade seja simples, diminuindo o 
gasto adicional (tanto em desempenho quanto potência) requerido na comunicação entre 
a unidade reconfigurável e o resto do sistema. 

Por sua vez, o processador GARP (HAUSE; WAWRYNEK, 1997) é baseado 
na arquitetura MIPS, e possui uma unidade fracamente acoplada ao processador. Assim, 
a comunicação com esta unidade é feita através de instruções move dedicadas. Outro 
exemplo é a arquitetura Molen (VASSILIADIS et al., 2001), que possui uma unidade 
reconfigurável externa, utilizada para fazer otimizações nos núcleos principais do 
programa. 

A técnica de reconfiguração também foi aplicada em outros níveis 
arquiteturais, impondo mudanças radicais no paradigma de programação, envolvendo o 
desenvolvimento de novos compiladores e ferramentas. Como um exemplo 
significativo, o processador TRIPS (SANKARALINGAM et al., 2003) é baseado na 
execução de blocos (ou conjuntos) de instruções em lógica combinacional. São 
utilizados pequenos núcleos de granularidade grossa (compostos por nodos, que por sua 
vez são formados  por uma pequena memória com os operandos, uma unidade lógica e 
aritmética e um roteador). Da maneira pelo qual foram projetados, estes núcleos podem 
ser agrupados para explorar um vasto conjunto de diferentes tipos de paralelismo, que 
vão desde o no nível de dados até threads. Todavia, toda a análise e alocação destas 
partes do software nos pequenos núcleos são feitas totalmente pelo compilador. 
Colocando este conceito ao extremo, pode-se também citar como exemplo 
representativo o processador Wavescalar (SWANSON et al., 2003), uma arquitetura 
totalmente dataflow. 

 Tradução Binária 

Outra técnica para aumentar o desempenho do sistema e que também pode 
trazer um baixo consumo de energia é o uso de Tradução Binária (Binary Translation) 
(ALTMAN; SHEFFER, 2000). Nesta técnica, o sistema por si próprio monitora o 
código binário do programa que está sendo executado e detecta os núcleos mais 
executados do software, com o intuito de otimizá-los. Dentre as otimizações existentes 
relacionadas a esta técnica, estão a recompilação dinâmica e a gravação do resultado de 
traduções anteriores em uma cache especial. Como exemplo, o processador Crusoe da 
Transmeta (KLAIBER, 2000) é baseado em um processador VLIW (Very Long 
Instruction Word) onde a aplicação é analisada em tempo de execução, com o objetivo 
de achar as melhores partes de software para melhor explorar o paralelismo disponível 
entre as instruções. Uma das grandes vantagens no uso desta técnica é que o processo é 
transparente, o que significa que não é necessária mudança alguma no código fonte ou 
binário da aplicação (envolvendo, por exemplo, recompilação), o que consequentemente 
não causa rompimento algum no fluxo padrão de desenvolvimento de software. 
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Reutilização de Seqüências de Instruções 

O primeiro estudo sobre a reutilização de seqüências de instruções foi feito em 
(GONZALEZ et al., 1999). A idéia básica é, após a primeira vez que uma seqüência de 
instruções for executada, guardar o seu contexto (valores de entrada e saída de 
registradores, endereços de memória, contador de programa etc.) em uma memória 
especial e, da próxima vez que esta mesma seqüência for encontrada, reutilizá-la através 
de seu contexto salvo, ao invés de executá-la novamente.  

Contudo, o tamanho deste contexto e da seqüência de instruções (chamada de 
trace) pode se tomar enorme, limitando o campo de ação de tal técnica, e incrementando 
a complexidade do algoritmo responsável pela detecção das instruções e pela sua 
reutilização. Bons resultados apenas são alcançados quando suposições muito otimistas 
são feitas, como a reutilização de uma seqüência levar apenas um ciclo de relógio. 

Motivações 

Como discutido anteriormente, arquiteturas reconfiguráveis aparecem como 
sérias candidatas para se tornarem uma destas soluções. Entretanto, é necessário ter 
muito cuidado quando se propõe novas possibilidades arquiteturais, já que há um claro 
requisito de se manter a compatibilidade de software e paradigmas tradicionais de 
programação. Estes são fatores chave para reduzir o ciclo de desenvolvimento de um 
produto, permitindo que ele possa ser lançado o mais rápido possível no mercado. E é 
este exatamente o maior problema de arquiteturas reconfiguráveis atualmente: são 
necessários compiladores ou ferramentas especiais, que claramente não sustentam o 
conceito de portabilidade de software, principalmente no campo de computação de 
propósito geral. Além do mais, outra restrição faz com que estas arquiteturas não sejam 
ainda amplamente utilizadas: somente partes específicas de um programa são 
otimizadas. Assim, apenas programas bem específicos, como aqueles que fazem 
processamento digital de sinais, são beneficiados por esta técnica – o que não reflete a 
realidade dos sistemas de propósito geral nem da nova geração de sistemas embarcados. 

Solução Proposta 

Unificando todas as idéias citadas na seção anterior, em (STITT; VAHID, 
2002) (LYSECKY; VAHID, 2004) foram apresentados primeiros estudos sobre os 
benefícios e a possibilidade de implementação do particionamento dinâmico usando 
lógica reconfigurável, movendo dinamicamente, em tempo de execução, núcleos do 
software para a unidade reconfigurável – técnica esta chamada de Warp Processing. 
Entretanto, esta técnica ainda é limitada apenas às partes mais criticas do software, 
como os laços mais executados, já que sua unidade reconfigurável é implementada em 
FPGA: há um alto grau de complexidade no algoritmo de detecção e reconfiguração, já 
que há um enorme número de configurações possíveis que pode ser feita em tal 
estrutura. Desta maneira, altos ganhos são apenas atingidos em algoritmos que possuem 
poucas instruções de controle, onde seus núcleos são bastante distintos do resto do 
programa, como filtros. Algoritmos que possuem mais estruturas de controle ou que 
possuem um comportamento misto não conseguem tirar proveito de tal técnica. 
Ademais, o fato da obrigatoriedade do uso de FPGA faz com que a migração do Warp 
Processing para processadores convencionais utilizados atualmente seja mais 
complicada. 
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Este trabalho, entretanto, propõe o uso de uma unidade reconfigurável de 
granularidade grossa, fortemente acoplada ao processador, composta por unidades 
funcionais simples e multiplexadores que, por ser independente de qualquer tecnologia, 
não  está limitada à alta complexidade de configurações de granularidade fina. Esta 
unidade reconfigurável é usada em conjunto com uma técnica de Tradução Binária 
chamada Dynamic Instruction Merging, que é usada para detectar seqüências de 
instruções em tempo de execução para serem enviadas para a unidade reconfigurável. 
Transformando em lógica combinacional qualquer seqüência de instruções, não ficando 
limitado às partes críticas do programa, aumentos no desempenho são obtidos mesmo 
em programas que possuem muito controle ou em programas que não apresentam um 
alto nível de paralelismo entre suas instruções. É exatamente a natureza de 
granularidade grossa que faz com que isso seja possível: o algoritmo de detecção 
dinâmica e de configuração da unidade reconfigurável torna-se mais simples, e uma 
quantidade menor de memória para guardar estas configurações é necessária. Desta 
maneira, a principal novidade de tal arquitetura é seu caráter dinâmico: além da unidade 
reconfigurável ser dinamicamente configurada, as seqüências de instruções a serem 
executadas nela também são detectadas e transformadas em uma configuração do array 
em tempo de execução. 

Contribuições 

Além da unidade reconfigurável, o hardware especial foi desenvolvido com o 
objetivo de fazer a transformação. Quando esta unidade percebe que há um certo 
número de instruções que podem ser executadas na unidade, uma tradução binária é 
aplicada a esta seqüência. Esta tradução transforma a seqüência original de instruções 
em uma configuração da unidade reconfigurável, que por sua vez desempenha 
exatamente a mesma função desta seqüência. Após isto ocorrer, esta configuração é 
gravada em uma memória especial, chamada cache de reconfiguração. Na próxima vez 
que esta seqüência for achada, a unidade irá executar esta configuração na unidade 
reconfigurável ao invés da seqüência normal de instruções do processador. Desta vez, a 
análise de dependência não é mais necessária: o processador simplesmente necessita 
recuperar as informações de configuração da memória especial. Desta forma, 
dependendo do tamanho desta cache especial, o aumento de desempenho pode ser 
estendido para qualquer parte do programa, não apenas nos laços mais executados do 
mesmo. 

Na primeira parte do trabalho desenvolvido, a técnica foi acoplada ao Femtojava 
(BECK; CARRO, 2003), um processador para sistemas embarcados que executa 
nativamente bytecodes da linguagem Java (BECK; CARRO, 2005) (BECK; CARRO, 
2005B). Foi mostrado um grande aumento de desempenho e redução no consumo de 
energia, mesmo quando comparada a versões VLIW da mesma arquitetura (BECK; 
CARRO, 2004). Os dados de desempenho e potência foram obtidos através de 
simulação, utilizando uma ferramenta configurável ciclo-a-ciclo (BECK; CARRO, 
2003B). Somando-se a isso, foi mostrado também que a técnica de Dynamic Instruction 
Merging pode ser beneficiada do método particular de computação de máquinas de 
pilha, podendo assim detectar e transformar as instruções com um baixo nível de 
complexidade (BECK; CARRO, 2005B). Esta também foi comparada com métodos 
tradicionais de detecção de máquinas RISC (GOMES et al., 2005) (GOMES et al., 
2005B).  
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Após, o trabalho foi focado na implementação da mesma técnica em 
arquiteturas RISC. Como poderia ser esperado, há diferenças tanto na estrutura da 
unidade reconfigurável como no algoritmo de detecção, já que anteriormente uma 
máquina de pilha foi utilizada. Primeiramente, a técnica foi implementada usando a 
ferramenta Simplescalar (BURGER; AUSTIN, 1997) junto com o conjunto de 
benchmarks MIBench (GUTHAUS et al., 2001). Desta forma, foi possível comparar a 
técnica proposta com processadores superescalares (BECK et al., 2007) (BECK et al., 
2006) (BECK et al., 2006b). Foi demonstrado que houve aumento de desempenho em 
relação a estes, resolvendo alguns problemas conhecidos de limitação de paralelismo. O 
terceiro estudo de caso foi a implementação da técnica em um processador MIPS 
R3000, amplamente utilizado em sistemas embarcados (BECK et al., 2008). 
Novamente, ótimos resultados foram alcançados. Outros trabalhos periféricos também 
foram desenvolvidos: uma ferramenta que automaticamente, dependendo do 
paralelismo disponível na aplicação, constrói a unidade reconfigurável composta por um 
número mínimo de unidades funcionais que explora tal paralelismo, resultando em uma 
grande diminuição na área e na potência do circuito reconfigurável (RUTZIG et al., 
2008). 
 




