
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE ENGENHARIA DE COMPUTAÇÃO

BRUNO DE OLIVEIRA SCHMITT

Fast Extract with Cube Hashing

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Engeneering

Advisor: Prof. Dr. André Inácio Reis
Coadvisor: Dr. Alan Mishchenko

Porto Alegre
December 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Rui Vicente Oppermann
Vice-Reitora: Profa. Jane Fraga Tutikian
Pró-Reitor de Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Engenharia de Computação: Prof. Raul Fernando Weber
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“If I have seen farther than others,

it is because I stood on the shoulders of giants.”

— SIR ISAAC NEWTON

ACKNOWLEDGEMENTS

I would like to thank my mother, Gilda, who never gave up on me in the most

difficult times and my father, Francisco, who always made me notice how important is to

have a good education and helped me keep focus. I also thank my brothers, Fernando and

Felipe, who were always there for me. Without my family support, I do not think I would

have made this far.

I am grateful to my adviser, André Inácio Reis, for introducing me to the field of

logic synthesis and EDA, for the invaluable advice he gave me, and for giving me the

opportunity to join his logic synthesis group.

I would like to thank Alan Mishchenko for the valuable time spent with me and in-

sightful discussions, which were not only about logic synthesis but also about life. I must

also acknowledge helpful discussions with Victor Kravets, which improved the results of

this work.

A special thanks to Robert Brayton who, together with Alan, welcomed me in

Berkeley and shared his wisdom with me.

ABSTRACT

The fast-extract algorithm is a well-known algebraic method for factoring and decom-

posing Boolean expressions. Since it uses pairwise comparisons between cubes to find

factors, the run-time is degraded for networks whose primary outputs are expressed in

terms of primary inputs and have Boolean functions with thousands of cubes. This work

describes a new implementation of the fast-extract algorithm, fxch, having complexity lin-

ear in the number of cubes. The reduction in complexity is achieved by hashing sub-cubes

and using the hash table to find good factors to extract. Experimental results on industrial

benchmarks show better run-time and scalability of the proposed algorithm, compared to

the available solutions.

Keywords: Logic synthesis. optimization. extraction. combinational circuits.

FXCH

RESUMO

O algoritmo fast-extract é um método algébrico bem conhecido para a fatoração e de-

composição de expressões booleanas. Entretanto, seu método de busca por divisores, que

utiliza a comparação de pares de cubos, o torna demasiadamente lento para redes cujas

saídas primárias são expressas em termos de entradas primárias e que tenham funções

booleanas com milhares de cubos. Este trabalho descreve uma nova implementação do

algoritmo fast-extract, fxch, com complexidade linear no número de cubos. A redução

na complexidade é atingida com a utilização de uma tabela hash, utilizada para encontrar

bons divisores. Os resultados experimentais em benchmarks industriais mostram tempo

de execução e escalabilidade superiores, em comparação com as soluções disponíveis.

Palavras-chave: Síntese Lógica, otimização, extração, circuitos combinarionais.

LIST OF ABBREVIATIONS AND ACRONYMS

AIG And-Inverter graph

DAG Directed acyclic graph

EDA Electronic design automation

FX Fast extract

FXCH Fast extract with cube hashing

IC Integrated circtuit

PLA Programmable logic array

RTL Register-transfer level

SOP Sum of products

LIST OF FIGURES

Figure 2.1 Example of a Boolean network..16
Figure 2.2 Example of an extraction. ..18

Figure 3.1 Truth table and the respective SOP representation originally used by ABC.24
Figure 3.2 New SOP representation used by FXCH...24
Figure 3.3 Decomposition of a two-cube SOP expression ...25

LIST OF TABLES

Table 2.1 The axiomatic definition of Boolean algebra ...14
Table 2.2 Some properties of Boolean algebra ..15

Table 3.1 Set of possible extractions. ..27

Table 4.1 The impact of using cube grouping ..29
Table 4.2 Logic synthesis results: comparison of fxch, fx and jee30
Table 4.3 Results of the synthesis of the primality testing circuits.31

CONTENTS

1 INTRODUCTION...11
1.1 Motivation..13
1.2 Organization..13
2 BACKGROUND..14
2.1 Boolean Algebra ..14
2.2 Boolean Functions...15
2.3 Boolean Networks ...16
2.4 Optimization of Boolean Networks ...16
2.5 Logic Transformations ...17
2.6 Boolean Division..18
2.7 Algebraic Division...19
2.8 Algebraic Extraction...20
2.8.1 Kernels and Algebraic Divisors ...20
2.8.2 The Extraction Process ..21
2.9 The Original Fast-Extract Algorithm ...21
3 FAST-EXTRACT WITH CUBE HASHING ..23
3.1 Cube Grouping ..23
3.2 Cube Hashing ..24
3.3 Divisors Functions ...26
3.4 Degenerate Divisors ..26
3.5 Extraction ..27
4 EXPERIMENTAL RESULTS ...28
4.1 Experimental Setup ..28
4.2 Impact of Cube Grouping ..29
4.3 Synthesis Results ...29
4.4 Scalability ..30
5 CONCLUSION ...32
REFERENCES...33

11

1 INTRODUCTION

Since its introduction in the early 1960s, integrated circuits (IC) have been at the

center of technology advances in improving human life. The continuous downscaling

of transistor dimensions, predicted by Intel co-founder Gordon E. Moore and known as

Moore’s Law, and the development of a powerful set of electronic design automation

(EDA) tools have enabled a stupendous growth in the complexity, capability, and ubiquity

of digital systems. At this time of 2016, the number of transistor in a single IC can be

as many as several billion. To cope with this ever-increasing complexity, designers use

techniques such as abstraction and hierarchy.

In general, EDA algorithms, techniques, and tools can be partitioned into three

broad categories: logic design automation, verification and test, and physical design au-

tomation. In a typical design flow logic and physical design automation are somewhat

disconnected in that logic design automation is performed before physical design automa-

tion, while the various components and aspects of the verification and test category are

dispersed within both logic and physical design automation processes. (WANG; CHANG;

CHENG, 2009)

The present work focuses on logic design automation, more specifically in the

logic synthesis step on which the principal goal is to translate digital circuit designs

(WAGNER; REIS; RIBAS, 2006) from the behavioral domain to the structural domain.

For example, given a digital design at the register-transfer level (RTL), logic synthesis

transforms it into a gate-level or transistor-level implementation. Furthermore, logic syn-

thesis also explores different ways to implement logic functions optimally with respect to

some desired design constraint.

Logic synthesis can be further divided into two phases: technology independent

optimization and technology dependent optimization. In technology independent logic

synthesis, combinational logic optimization consists of two-level and multilevel logic

minimization. The use of two-level logic, however, is limited because not all Boolean

functions can be efficiently represented as a sum-of-products (SOP), which is a two-level

representation comprised of AND gates in the first logic level and OR gates in the sec-

ond. On the other hand, a multilevel representation is often faster and smaller as it allows

the reuse of sub-circuits which in turn gives more degrees of freedom in implementing a

Boolean expression.

This way, logic synthesis can in many cases start by generating an initial two level

12

logic description. Indeed, one of the first approaches that students learn in computer en-

gineering and computer science courses is to synthesize two level expressions (KLOCK

et al., 2007; KLOCK; RIBAS; REIS, 2010). However, in current EDA tools, algorithms

that are more elaborate and scale better are used in practice (COUDERT, 1994). These

two level expressions have to be transformed into multi-level expressions, through fac-

toring of the initial equations (VASUDEVAMURTHY; RAJSKI, 1990). This produces

a multilevel form of technology independent implementation of the circuit, such as an

AND-Inverter-Graph. The technology independent implementation is then mapped to a

particular technology library (MARTINS et al., 2015), producing a mapped netlist while

considering timing constraints (MACHADO et al., 2013). The mapped netlist is used for

place and route during the physical design of the circuit (PUGET et al., 2015; FLACH et

al., 2016).

In my final dissertation work, I will attack the problem of identifying common

sub-expressions, also known as divisors (or factors), in Boolean functions. The identi-

fication of common sub-expressions has been a key component of logic synthesis tools

since the early days of multilevel synthesis (BRAYTON; HACHTEL; SANGIOVANNI-

VINCENTELLI, 1990). The process is known as decomposition if it creates a new in-

termediate variable; otherwise, it is called factoring. The goal of decomposition is to

identify frequently used sub-expressions, implement them once, and share them across

the entire network. This process produces a multi-level circuit implementation from a

set of two level equations given as input. Factoring/decomposition algorithms, such as

(VASUDEVAMURTHY; RAJSKI, 1990), can be used to reduce the complexity of an

available multilevel network whose nodes are represented by sum-of-products (SOPs), or

it can construct a new multilevel network from the SOP representing a multiple-output

Boolean function. Notice that some factorization approaches have good quality but do

not scale for large circuits (MARTINS et al., 2010), while others are able to scale bet-

ter but are restricted to some classes of Boolean functions (CALLEGARO et al., 2013;

CALLEGARO et al., 2014). In my work presented here, I will be addressing a factoring

algorithm that scales when treating very large sum-of-products as input, as demonstrated

through obtained results. The proposed algorithm is not restricted to any class of Boolean

functions, being able to factorize any given SOP.

13

1.1 Motivation

Almost three decades have passed since the appearance of the fx algorithm. At

that time memory was not as cheap and designs not as large and complex as today; there-

fore the quadratic approach to algebraic decomposition, which trades faster run-time for

lower memory usage, was appropriate. Since then, the transistor count in the designs

has increased by three orders of magnitude (INTEL, 2008) while the price of memory

decreased by four orders of magnitude (MCCALLUM, 2016), thereby rendering the tra-

ditional fx approach unsuitable for today’s designs. In general, due to the pressure to

reduce the run-time of EDA tools, any algorithm whose complexity is greater than linear

must be carefully evaluated while trying to obtain a linear version of the algorithm that is

more scalable for large designs.

This work focuses on presenting the new divisor extraction algorithm. The ap-

proach is called fast-extract with cube hashing, fxch. It uses cube hashing to trade in-

creased memory usage for faster run-time, reducing complexity from quadratic to lin-

ear in the number of cubes. The motivation for this work, a limited early-stage im-

plementation, and incomplete experimental results appeared in a workshop publication

(MISHCHENKO; BRAYTON, 2015).

It is important to notice that the work described herein generated a conference

article to be presented in January 2017 at The 22nd Asia and South Pacific Design Au-

tomation Conference (ASPDAC) in Chiba, Japan. This confirms that the proposed work

is an important contribution to the state of the art for factoring/decomposition.

1.2 Organization

The rest of this work is organized as follows. Chapter 2 gives background on

Boolean functions, Boolean networks, algebraic decomposition and the original fx algo-

rithm. Chapter 3 describes the implementation of fxch with a brief discussion of cube

hashing and why skipping some cubes to reduce the hash table size is a bad idea. Chapter

4 gives the experimental setup and discusses the experimental results. Finally, Chapter 5

concludes the dissertation.

14

2 BACKGROUND

In this chapter we define some necessary background concepts for the understand-

ing of this work. In section 2.1 we revise the axioms of the Boolean algebra. This is

necessary because our work will rely only on a sub-set of these axioms to produce a

factoring method that scales to large circuits, while maintaining good quality. Boolean

functions and networks are described in section 2.2 and 2.3, respectively. Section 2.4 dis-

cusses the concept of optimization of Boolean networks. Section 2.5 presents an overview

of the most common logic transformations used in the optimization of Boolean networs.

Next sections describe some of these transformations in more detail, including Boolean

division (secction 2.6), algebraic division (section 2.7) and algebraic extraction (section

2.8). Finally, the original fast extract algorithm, which is our main reference and that is

improved through our work, is presented in section 2.9.

2.1 Boolean Algebra

An algebraic system defined by the quintuple (B,+, ·, 0, 1), in which B is as set;

+ and · are binary operations on B; and 0 and 1 are distinct member of B, is a Boolean

algebra if the axioms in Table 2.1 adapted from those given by (HUNTINGTON, 1904)

are satisfied.

Table 2.1: The axiomatic definition of Boolean algebra
Axiom OR(+) form AND(·) form

Commutative a+ b = b+ a a · b = b · a
Distributive a+ (b · c) = (a+ b) · (a+ c) a · (b+ c) = (a · b) + (a · c)
Identities a+ 0 = a a · 1 = a

Complements a+ a = 1 a · a = 0

This axiomatic definition of Boolean algebra is sound and complete (HUNTING-

TON, 1904), that is to say, logic arguments or formulas proved by these set of axioms are

valid (soundness), and all true logic arguments are provable (completeness).

Next, Table 2.1 offer the reader a list of properties - valid for arbitrary elements a,

b, c in a Boolean algebra - that are useful for manipulating Boolean expression.

15

Table 2.2: Some properties of Boolean algebra
Property OR(+) form AND(·) form

Associativity (a+ b) + c = a+ (b+ c) (a · b) · c = a · (b · c)
Idempotence a+ a = a a · a = a
Absorption a+ (a · b) = a a · (a+ b) = a

Annihilation a+ 1 = 1 a · 0 = 0

De Morgan’s Laws (a+ b) = a · b (a · b) = a+ b

Involution a = a

2.2 Boolean Functions

A Boolean variable, x, is a variable that takes one of the two values from the

domain B = {false, true}, or {0, 1}. A positive literal is the Boolean variable, x, and

a negative literal is its complement, x. The Boolean AND of k literals is a cube, or

product, i.e. c = l1 · l2 · · · lk. Let symbol “-” denote a don’t care literal value. If a

variable is not represented by a positive literal or a negative literal in a cube, then its

value is said to be a don’t care literal. A minterm is a cube, in which every variable is

represented by either a negative or positive literal. It can be noted that a cube with d don’t

care literal values covers 2d minterms.

Let f(X) : Bn → B be a completely specified Boolean function of n variables

X = {x1, x2, . . . , xn}. The support of f is the subset of variables that influence the

output value of the function f. The set of minterms, for which f evaluates to 1 and to 0,

defines the on-set and the off-set of f , respectively. Unless stated otherwise, we assume

that a Boolean function is completely specified. In a multiple-output Boolean function

f(X) : Bn → Bm, m > 1, each output fi, 1 ≤ i ≤ m is a Boolean function.

Even though fxch is capable of handling multi-outputs functions, for the sake of

simplicity we shall continue defining terms for single-output functions. A cube is an

implicant of f if it covers only minterms present in the on-set of f . A prime implicant,

or prime, of f is an implicant, from which no positive or negative literal can be removed

without intersection with the off-set of the function. A function f is said cube-free if no

cube divides it evenly.

Any Boolean function can be represented as a two-level sum of products (SOP),

which is a Boolean OR of implicants (i.e. S = c1 + c + · · · + cn). A SOP is said to be

irredundant if no implicant can be removed without changing its functionality. A cube

c1 is contained in cube c2 if the set of minterms covered by c1 is a subset of the minterms

contained in c2. A SOP is said to be single-cube containment free if it does not have a

16

Figure 2.1: Example of a Boolean network.
Primary Inputs Primary Outputs

a

b

c

d

e

x

y

z

F = abe+ ace+ d

G = abd+ acd

H = ce

cube pair such that one cube contain the other.

2.3 Boolean Networks

A Boolean network (or circuit) is a directed acyclic graph (DAG) G = (V,E)

with nodes V and edges E. Every node is associated with a Boolean function and a

Boolean variable, called the output variable, representing the node’s output. The existence

of an outgoing edge from node n1 to node node n2 means that the variable representing

the output of n1 is an input to the function represented by n2. In this case, we say that n1

is a fanin of n2, or that n2 is a fan-out of n1.

A node n might have zero or more fan-ins and zero or more fan-outs. Primary

inputs are nodes without fan-ins. Primary outputs are a subset of nodes that connect the

networks to the environment.

2.4 Optimization of Boolean Networks

The goal of combinational logic optimization is to obtain an equivalent repre-

sentation of a Boolean network optimal with respect to some design constraints. Typi-

cally, these design constraints are area and delay. When dealing with SOPs, a two-level

logic representation, the area and delay are proportional to the size of the cover. Hence,

achieving irredundant covers corresponds to optimizing both area and delay. In multilevel

logic, however, minimal-area implementations generally don’t correspond to minimal de-

lay ones and vice versa. (MICHELI, 1994).

Multilevel logic optimization algorithms must take into account the trade-off be-

17

tween area and delay. To that end, it is necessary to extract from the Boolean network

estimatives of both. It is evident that in a multilevel logic circuit the area occupied is

devoted to logic gates and wires. Unfortunately, when doing technology independent

optimization, it is necessary to estimate the logic gates information. A popular way to

estimate area, in this case, is to relate it to the number of literals of a factored form repre-

sentation (MICHELI, 1994).

Delay optimization consists in minimizing the delay in the slowest path, also

known as the critical path. Delay estimation also suffers from the lack of information

when doing technology independent optimization since gate delays as a function of its

fan-out is not known. An unrefined way of estimating delay is to model it as a unit per

level of logic.

2.5 Logic Transformations

Many different methods have been proposed to tackle the multilevel optimization

problem outlined in the last section. This problem, however, is believed to be intractable

due to its inherent complexity. Thus, most of these methods are heuristic, as opposed to

exact methods, which are, generally, impractical even for a medium-size network.

The heuristic methods improve the network through logic transformations that

preserve the input/output network behavior. Fortunately, most logic transformations are

defined so that network equivalence is guaranteed and does not need to be checked. Using

them, however, has two significant drawbacks. First, due to the additional degrees of

freedom associated with the use of multilevel networks, it is hard, if not impossible, to

claim that, given a set of transformations, all equivalent networks can be explored by

applying some sequence of transformations. Thus, achieving an optimal solution, or even

a feasible one - given a set of constraints, may not be possible. Second, since different

sequences of transformations lead to different results, it may be the case that these results

correspond to local optimums, which, in many cases, deliver sub-optimal solutions to the

global problem.

There are five key transformations for manipulating Boolean networks: decom-

positions, extraction, factoring, substitution, and elimination. From these, this works is

almost exclusively concerned about extraction.

Extraction is the process of identifying common sub-expressions and using them

to create new intermediate functions, which are associated with new variables, and re-

18

expressing the original functions in term of the original as well as the new variables.

Figure 2.2 illustrates result of extracting the expression ab+ac from the Boolean network

represented in figure 2.1

Figure 2.2: Example of an extraction.
a

b

c

d

e

x

y

z

W = ab+ ac F = We+ d

G = Wd

H = ce

The extraction process creates and introduces new nodes to the logic network,

but, as a result, it simplifies each of the original logic functions. The optimization prob-

lem associated with this transformation lies within finding a good set of common sub-

expressions such that the resulting network is optimal in an appropriate sense.

An operation analogous to "division" is key for applying extraction to a logic net-

work. In fact, "division" plays a key role in many other transformations and, consequently,

multilevel logic optimization. The next section will present the concept of Boolean divi-

sion.

2.6 Boolean Division

When optimizing logic functions, it is important to define an operation which,

when given functions f and p, finds functions q and r such that f = pq + r. Since

Boolean algebra does not have a multiplicative inverse, in mathematical terms it can not

have a division operation. The described operation, however, is similar to the division

operation of other algebraic systems and so is called a "division" of f by p which generates

a "quotient q" and a "remainder r". The function p is either called a Boolean divisor of f

if r is not null or a Boolean factor of f otherwise. For example, the following function:

F = abe+ ace+ de (2.1)

19

has e as a factor:

qe = ab+ ac+ d

re = 0
(2.2)

and ab+ ac as a divisor:

qab+ac = e

rab+ac = de
(2.3)

The number of Boolean divisors and factors of a given logic function f can be

very large. Indeed, any function containing f is a Boolean factor of f , and with at least

one minterm common with f is a Boolean divisor of f . Moreover, for a given division

operation, the resulting q and r may depend on the specific representation of f and p.

Thus, a problem of choosing the best factor or divisor to extract stems from the large

domain available for search. Next section presents a solution which restricts the domain

to a particular subset of expressions and so making the division operation unique and

much easier to compute.

2.7 Algebraic Division

In (BRAYTON; MCMULLEN, 1982), the authors suggested simplifying the Boolean

model by dropping from consideration some assumptions of Boolean algebra. Namely,

the complements, the AND form of the distributive laws and the use of don’t care sets.

The resulting simplified model enables the optimization of logic networks through the use

of general properties of polynomial algebra. This is known as algebraic manipulation of

Boolean expression.

The successful use of this simplified Boolean model, also known as the algebraic

model, requires representing the Boolean functions by algebraic expressions. An alge-

braic expression is defined as a single cube containment free set of cubes. For example,

given an expression F = a+ab, F is not an algebraic expression because cube a contains

cube ab. Moreover, since the algebraic model does not define complements, negative

and positive literals of the same variable are treated as unrelated. Thus, there is not a

20

distinction between literals and variables.

Under the algebraic model, a function p is a divisor of f if there exist q and r

such that f = pq + r, where p 6= 0, p and q have disjoint support, and the remainder

r is minimal. Under this condition on the remainder, the quotient q is, in fact, unique.

Furthermore, as in other algebraic operations, the disjoint support condition is necessary

to preserve the single-cube containment free property of the results. Indeed, this prevents

the generation of cubes that are covered by other cubes as well as cubes with both polari-

ties of the same variable (WANG; CHANG; CHENG, 2009), i.e. aa and a+ a, which the

algebraic model can not detect. We shall call this operation algebraic division. The set of

primary divisors of f is defined as P (f) = {f/c | c is a cube}.

2.8 Algebraic Extraction

The algebraic extraction process identifies common sub-expression and manipu-

lates the Boolean network accordingly. The identification of sub-expressions relies on

the search of common algebraic divisors (or divisors), which is done by considering an

appropriate subsets of the divisors of each expression in the logic network.

The notions of kernels and co-kernels of expressions, introduced in (BRAYTON;

MCMULLEN, 1982), plays a major role in the extraction process, especially when ex-

traction multiple-cubes expressions. They provide means for finding divisors among two

or more expressions using only algebraic operations.

2.8.1 Kernels and Algebraic Divisors

The kernels of an expression f are the cube-free primary divisors of f . A cube

c used to obtain a kernel k such that k = f/c is called a co-kernel of k. Note that,

single-cube primary divisors are not kernels because they are not cube-free. The following

example shall illustrate all these concepts:

Given the function f = abc+ acd+ de. The division of f by variable a results in

f/a = bc+ cd+ de, where bc+ cd is the quotient and de the remainder. Since bc+ cd is

evenly divisible by c it is not cube-free, therefore it is not a kernel. Similarly, the division

of f by variable e, yields a quotient of d, which is a single-cube and so not cube-free. On

the other hand, the division of f by cube ac yields a quotient of b+ d which is cube-free.

21

Thus, b+ d is a kernel of f and ac its corresponding co-kernel. Since f is cube-free, it is

considered a kernel of itself with the corresponding co-kernel being 1.

The set of kernels of a function is key in for detecting common multiple-cubes

sub-expressions. Their relation is precisely stated in (BRAYTON; MCMULLEN, 1982)

as a theorem which says that given two expressions f and g, and their respective set of

kernels K(f) and K(g), f and g have a multiple-cube common divisor if and only if there

exists kernels kf ∈ K(f) and kg ∈ K(g) such that kf ∩ kg has two or more cubes, i.e

kf ∩ kg is not a single cube.

I refer the reader to (BRAYTON; MCMULLEN, 1982) for the description of a

method that computes the sets of kernels for two or more logic expressions, and then

intersects them to find common sub-expressions. A specialization of this approach that

restricts kernels to double-cube divisors was introduced in (VASUDEVAMURTHY; RA-

JSKI, 1990) and will be described in the next section.

2.8.2 The Extraction Process

Given a set of algebraic expression, the extraction process is performed by repeat-

edly enumerating the divisors of each expression. It begins by applying the distributive

law to enumerate a restricted set of common divisors, followed by selecting a divisor d

and deriving, for each expression that has it as a divisor, a quotient q and a remainder r,

such that f = d · q+ r. This process is iterated, as it is applied to d, q and r recursively as

long as they have non-trivial divisors. The result of the extraction largely depends on the

initial sum-of-products form and on finding “good” candidate divisors.

2.9 The Original Fast-Extract Algorithm

The decomposition algorithm described in (VASUDEVAMURTHY; RAJSKI, 1990)

is widely known as fx. The practical value of this algorithm is in limiting kernels to single-

cube double-literal divisors and double-cube divisors. The algorithm performs concurrent

extraction of the divisors of all types. For an in-depth discussion of fx, we refer the reader

to (VASUDEVAMURTHY; RAJSKI, 1990).

From now on, we limit our discussion to the fx implemented in ABC (ABC: A

system for sequential synthesis and verifiation), which is an efficient implementation of

22

the original fx. Its key characteristics are the following:

• The original functions are given in the SOP form.

• Single- and double-cube divisors are considered concurrently.

• Double-cube divisors are found using a pairwise comparison between cubes of the

same Boolean function. Therefore the total number of double-cube divisors in an

expression with n cubes is bounded by n2.

• The weight of each divisor is a function of the number of saved literals and its logic

level.

• All divisors are stored in a priority queue, which is repeatedly accessed to get the

divisor with the highest weight.

• After each extraction, the SOP and the divisor weights are updated, and new divi-

sors are added to the queue.

23

3 FAST-EXTRACT WITH CUBE HASHING

In this section, key aspects of the proposed fxch algorithm are presented. The

pseudo-code of fxch is shown in Algorithm 1. The algorithm is based on grouping (section

3.1) of identical cubes for different outputs (in the case of the multiple-output SOP) and on

efficient hashing of cubes and sub-cubes (section 3.2) during the extraction of divisors.

The algorithm computes the set of all double-cube divisors up to four literals (section

3.3). The algorithm may create undesirable degenerate divisors, which require special

treatment (section 3.4). Finally, the extraction procedure is described in section 3.5.

Algorithm 1: Fast-Extract with Cube Hashing
Input : the original multiple-output SOP
Output: the network derived by the factoring process

begin
process the SOP by grouping identical cubes;
create the hash table containing sub-cubes;
create the initial set of divisors candidates;
while there are non-trivial divisors do

select the best divisor candidate;
find cubes affected by its extraction;
extract the divisor;
update the affected cubes;
update the sub-cube hash table;
update the set of divisor candidates;

process SOP by ungrouping the cubes;
return the resulting multilevel network

3.1 Cube Grouping

When decomposing Boolean functions, the current implementation in ABC gener-

ates an inefficient SOP representation that considers cubes for each output independently.

This inefficient representation is given as input to fx and fxch. One way to overcome this

inefficiency is by grouping identical single-output cubes, resulting in a multiple-output

SOP representation. The example below illustrates the current short-comings and the pro-

posed mitigation. Consider the truth table and the respective SOP representation shown

in Figure 3.1.

24

Figure 3.1: Truth table and the respective SOP representation originally used by ABC

x1 x2 x3 y1 y2
1 1 - 1 0
- 1 1 1 0
0 0 0 1 1
0 1 1 1 1
1 - 1 0 1
1 1 0 0 1

y1 x1 x2

y1 x2 x3

y1 x1 x2 x3

y1 x1 x2 x3

y2 x1 x2 x3

y2 x1 x2 x3

y2 x1 x3

y2 x1 x2 x3

Notice the existence of two cube pairs with identical inputs, meaning that the

representation shown in Figure 3.1 does not take advantage of the fact that some cubes

differ only in their outputs. It has been demonstrated experimentally that the number of

such cubes can be significant, and therefore processing cubes separately has an adverse

impact on both run-time and memory usage. This work uses a better representation to

mitigate this problem, as illustrated in Figure 3.2, where each cube representation consists

of an input pattern and an output pattern.

Figure 3.2: New SOP representation used by FXCH
y1 x1 x2

y1 x2 x3

y1y2 x1 x2 x3

y1y2 x1 x2 x3

y2 x1 x3

y2 x1 x2 x3

3.2 Cube Hashing

The main technical contribution of this work is the introduction of an algorithm

capable of finding useful algebraic divisors by hashing of sub-cubes, which is called cube

hashing.

To better understand the concept behind this technique, consider the problem of

finding all cubes in a given SOP, which differ only in one literal. A naive approach consists

of comparing all cubes pairwise. The key insight used to develop a smarter approach

systematically examines cubes that differ only in one literal, and removes that literal to

make the cubes equal. The approach first builds a hash table containing all cubes, and

then for each cube removes one literal at a time, while inserting the resulting sub-cube

into the hash table. The hits observed in the hash table enable us to find cubes that differ

25

in only one literal. This approach is linear in the number cubes.

An extension of the presented approach can be used to find divisors. All we have

to do is to hash (1) each cube itself, (2) all of its sub-cubes created by the removal of one

literal and (3) all its sub-cubes created by the deletion of a pair of literals. In this case, a

collision could mean the existence of a divisor that corresponds to the removed literals.

On the other hand, the equal sub-cubes correspond to the base, i.e. the common part of the

original cubes which remains after divisor extraction. Figure 3.3 illustrates these concepts

by factoring a two-cube SOP expression.

Figure 3.3: Decomposition of a two-cube SOP expression
F = (x1x2x3) + (x1x3x4)

Sub-cubes hash table
Lit cube1 cube2
1 x2x3 x3x4

2 x1x3 x1x4

3 x1x2 x1x3

divisor = x2 + x4

base = x1x3

The first column of the presented hash table indicates the position of the removed

literal. The two colored cells indicate a collision. In this case, the removal of the second

literal from the first cube generates the same sub-cube as the deletion of the third literal

from the second cube. A divisor is generated using the removed literals, while the base is

equal to the sub-cube. After extraction, the resulting Boolean function is:

F = x1x3(x2 + x4)

As pointed out in (MISHCHENKO; BRAYTON, 2015), the hash table may be-

come excessively large when working with a large SOP. Indeed, finding double-cube di-

visors for a cube requires hashing

1 + nl +
nl∗(nl−1)

2

sub-cubes, where nl is the number of literals in a given cube. Observing that initially many

sub-cubes do not generate collisions, and thereby are deemed useless for factoring at that

point, one could be misled into thinking that filtering such “useless” sub-cubes would be

a good way to reduce the consumed memory. However, as we found out experimentally,

this leads to a substantial run-time increase. Instead, it is advantageous to have all sub-

cubes in the hash table at all times. Thus, when a divisor is extracted, and the cubes are

updated, it is only necessary to generate sub-cubes for the updated cubes.

26

3.3 Divisors Functions

Unlike the preliminary implementation of fxch in (MISHCHENKO; BRAYTON,

2015), this implementation can potentially use the set of all double-cube divisors with

up to four literals. The algorithm restricts divisors to a small set of functions, and this

facilitates their ranking and logic sharing during decomposition (KRAVETS, 2015).

The complete set of possible double-cube divisors with complements is summa-

rized in Theorem 1 in (VASUDEVAMURTHY; RAJSKI, 1990). The set implies that

using canonical basis NAND, XOR (⊕), and MUX as divisor functions imposes a duality

property in such divisors, meaning that the complement of a divisor is also a divisor. The

constant-1 function is also included in the set in order to eliminate the redundant logic,

since its appearance implies the existence of distant-1 cubes (xi + xi). Thus, the divisor

functions are restricted to the following:

1, NAND, XOR, MUX

This restriction also explains the limit of four literals to divisors. It must be noted,

however, that to handle degenerate divisors, all double-cube divisors with up to four lit-

erals must be checked.

3.4 Degenerate Divisors

There is a set of divisors that can deteriorate the outcome of extraction if not

properly handled. In the previous subsection, we encountered one form of this divisors:

the constant-1 divisor: (xi + xi). In the earlier implementation of fxch, this divisor was

ignored during extraction, meaning it was identified but not properly handled.

Other degenerate divisors appear during the extraction process because the input

SOP is not prime and irredundant. In any case, the problem results in handling xi + xixk,

xixk + xk and xi + xk as three different divisors, while in fact they are the same divisor

xi + xk. If degenerate divisors are not handled properly, they lead to the selection of a

divisor among other candidates based on an inaccurate assessment of divisor costs, and

also the extraction process would not decompose all possible cubes, thereby reducing the

quality of results.

27

Table 3.1: Set of possible extractions.
y1 = y2 (exact) y1 6= y2 (inexact)
c1 ≡ {(x1 ∩ x2) · z, y1} c1 ≡ {x1, y1 & ∼ y2}
c2 ≡ nil c2 ≡ {x2, y2 & ∼ y1}

c3 ≡ {(x1 ∩ x2) · z, y1 & y2}

3.5 Extraction

The extraction changes the input part of a cube. The literals present in the divisor

are removed from the cube, and a properly complemented literal that identifies the divisor

may be added to it, depending on whether or not a new intermediate variable was created.

The extraction may also change the output pattern of a cube and produce a new cube, or

invalidate an existing one. The set of performed extractions is tabulated below according

to the possibility of cube output patterns being equal (i.e. exact extraction) or not equal

but with an intersection (i.e. inexact extraction).

Table 3.1 identifies the input and output patterns of a cube as x and y, respectively.

The input part of a cube is treated as a set of literals. The output pattern is treated as a

bit vector; the syntax of bit-wise operators from the C programming language is used to

describe updating of both parts. If the extraction of a divisor from a pair of cubes is exact,

the operation also invalidates one of them. Inexact extractions create a new cube and may

invalidate one of the original cubes, depending on whether the resulting output pattern is

equal to zero.

28

4 EXPERIMENTAL RESULTS

We describe our experimental setup and compare fxch with other state-of-the-art

methods. We also evaluate the usefulness of the cube grouping proposed in Section 3.1.

4.1 Experimental Setup

This work implemented the algorithm described in Chapter 3 as command fxch

in ABC, an open-source tool for logic synthesis, technology mapping, and formal veri-

fication of logic circuits. ABC is also used to verify the resulting networks using com-

binational equivalence checking (command cec), which compares the AIG derived by

factoring against the original multiple-output function represented by the SOP.

For comparison, This work used a set of multiple-output PLA tables taken from

an instruction decoder (EPFL Benchmarks, MULTI-OUTPUT PLA Behnchmakrs, 2015).

These benchmarks demonstrate that the importance of factoring increases as the circuit

size increases (KRAVETS, 2015). The names of these benchmarks appear in the form

“NPI/NPO”, where NPI and NPO denote the number of primary inputs and primary

outputs, respectively.

The present work compared against jee (KRAVETS, 2015) and ABC’s available

implementation of the original fx algorithm (VASUDEVAMURTHY; RAJSKI, 1990). For

ease of comparison, a new switch was added to command fx in ABC (fx -x), which limits

fx to use the same set of divisors containing up to four literals that are used by fxch and

jee. After being factored, each PLA table is post-processed by ABC to generate an AIG

representation of the optimized logic. The ABC structural hashing command strash is

used to obtain the starting AIG representation that is further processed by ABC command

balance. These normalization steps are applied to the output produced by the different

decomposition algorithms before comparing them. In our experiments, jee was run as a

single-threaded application so that its results are more directly comparable to the other

algorithms.

29

4.2 Impact of Cube Grouping

To evaluate the impact of cube grouping presented in Section 3.1, two versions of

fxch were implemented: one uses cube grouping ("CG") while the other does not. The

experiment uses the decoder PLA tables as input to both versions. Table 4.1 lists the

collected results for both implementations regarding run-time and peak memory usage.

In the last row of the table, we present the arithmetic averages of the reduction ratios

about not using cube grouping.

Table 4.1: The impact of using cube grouping
Run-time (s) Memory (Mb)

w/ CG w/o CG w/ CG w/o CG
37/143 2.95 14.47 113.36 673.14
38/67 1.16 2.75 58.64 265.11

128/43 1.90 4.73 105.48 430.69
128/53 1.63 3.89 102.21 421.89
128/55 2.03 6.44 104.95 523.19
128/69 2.72 14.64 106.84 556.56
128/94 4.56 29.38 120.44 1013.58

128/104 3.98 24.25 120.61 915.76
128/160 8.35 56.71 226.32 1882.85

ratios: 0.19 1 0.16 1

The results show the benefits of using cube grouping when decomposing multiple-

output Boolean functions; its use reduces both run-time and peak memory at the cost of

a slightly more complicated implementation. Both implementations identify and extract

the same divisors, meaning the qualities of the resulting networks are the same.

4.3 Synthesis Results

The results of decomposing for each test case, are given in Table 4.2. The first

column identifies each test case by the number of inputs and outputs. Table 4.2 presents

an evaluation of the results in terms of run-time (column t), peak memory usage (column

m), the number of nodes (column #nodes), and the number of levels (column #lvl) in

the final AIG. At the bottom, reduction ratios about using ABC’s original fx are given;

they were calculated using the arithmetic mean.

Each algorithm pre-processes the initial set of cubes in a different way. For in-

stance, fx uses a technique which favors reduction of the number of cubes to improve

30

Table 4.2: Logic synthesis results: comparison of fxch, fx and jee
fxch in ABC fx in ABC jee factoring

Design t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl
37/143 2.95 113 3835 22 18.18 11 4695 24 4.3 37 3587 24

38/67 1.16 59 3438 19 2.14 7 3727 18 2.0 25 3366 20
128/43 1.90 105 3051 18 2.43 9 3702 18 2.3 22 3191 18
128/53 1.63 102 2708 18 2.09 9 3261 19 2.0 23 2944 19
128/55 2.03 105 3079 18 2.46 10 3905 18 2.1 22 3069 20
128/69 2.72 107 3415 19 4.60 14 4295 20 2.7 28 3326 20
128/94 4.56 120 5140 21 9.50 20 6271 22 6.3 46 5266 24

128/104 3.98 121 4916 20 7.61 17 5853 21 5.7 44 4926 23
128/160 8.35 226 7358 23 21.02 30 8889 24 15.5 76 7268 24

ratios: 0.42 8.33 0.83 0.97 1 1 1 1 0.61 2.54 0.83 1.04

run-time at the expense of the quality of results.

The following conclusions can be made from Table 4.2:

• In run-time, fxch is overall superior, but comes at the cost of using more memory.

As the test-cases get larger, both the run-time advantage and the memory increase

become more pronounced.

• The fxch implementation has on average 3% less logic levels than fx and 7% less

than jee. The ability to handle degenerate divisors explains the node count im-

provement compared to fx, while using level-aware divisor weights explains the

level improvement compared to jee.

4.4 Scalability

This experiment has two objectives. The first is to examine the scalability of fxch

as the problem size increases, while minimizing the effect of pre-processing techniques

used by each algorithm. The experiment consists of synthesizing circuits whose output is

one if and only if a given integer represented as an array of bits is a prime number. We

used command gen in ABC to generate PLA tables of all functions representing prime

numbers up to 18 bits and used them as input to fxch, fx, and jee.

Table 4.3 gives the results for the 8 largest functions. It uses the same metrics as

in the previous experiment in the evaluation. The name in the first column identifies an

instance of the primes function by the number of inputs.

The results demonstrate the great run-time scalability of fxch for large problem

instances. It completes the most complex test case containing 23, 000 cubes in 13 seconds.

31

Table 4.3: Results of the synthesis of the primality testing circuits.
fxch in ABC fx in ABC jee factoring

#inputs t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl t, sec m, Mb #nodes #lvl
11 0.02 7 455 13 0.03 2 471 13 - 3 492 13
12 0.04 13 739 14 0.13 2 771 14 0.1 5 825 14
13 0.10 25 1355 15 0.53 2 1440 15 0.3 9 1419 15
14 0.25 50 2046 16 2.07 3 2401 16 1.4 20 2287 16
15 0.62 100 3670 17 7.99 5 4174 17 8.5 58 3989 17
16 1.55 202 6289 18 30.87 11 7448 18 41.2 151 6491 18
17 3.91 407 11413 19 129 23 11650 19 66.7 157 12096 19
18 12.97 827 17260 20 507 72 22158 20 167.8 169 18144 19

ratios: 0.03 13.6 0.86 1 1 1 1 1 0.42 4.8 0.91 1

Compared to jee, it takes on average 93% less run-time. fxch also provides the best node

count savings. However, as the problem size increases, memory usage grows quickly.

32

5 CONCLUSION

This work presented a new, fully functional and very efficient implementation

of the fxch algorithm for decomposition and factorization of Boolean expressions, which

can handle degenerate divisors, redundant SOPs and, to some extent, single-cube contain-

ment. Improved run-time is the main advantage of the proposed method. Furthermore,

when dealing with large single-output Boolean functions, the quality of results is better

regarding the AIG node count.

It also presented a new way of representing multiple-outputs SOPs in ABC. The

use of cube grouping as described in Section 3.1 has a substantial positive impact on

performance. For now, however, the use of it is restricted to our fxch implementation,

hence the need to ungroup the results before returning it to be processed by other ABC

commands.

It is important to notice that this work generated a conference article that was

accepted for publication in ASPDAC 2017. This confirms that the developed work can be

considered as a contribution to the state of the art for factoring/decomposition.

33

REFERENCES

ABC: A system for sequential synthesis and verifiation. 2005.
Http://www.eecs.berkeley.edu/ alanmi/abc/. Retrieved October 31, 2016.

BRAYTON, R. K.; HACHTEL, G. D.; SANGIOVANNI-VINCENTELLI, A. L.
Multilevel logic synthesis. Proceedings of the IEEE, v. 78, n. 2, p. 264–300, Feb 1990.
ISSN 0018-9219.

BRAYTON, R. K.; MCMULLEN, C. The decomposition and factorization of boolean
expressions. Proceedings of the International Symposium on Circuits and systems,
p. 49–54, May 1982.

CALLEGARO, V. et al. A domain-transformation approach to synthesize read-polarity-
once boolean functions. Journal of Integrated Circuits and Systems, v. 9, p. 60–69,
2014.

CALLEGARO, V. et al. Read-polarity-once boolean functions. In: 2013 26th
Symposium on Integrated Circuits and Systems Design (SBCCI). [S.l.: s.n.], 2013.
p. 1–6.

COUDERT, O. Two-level logic minimization: An overview. Integr. VLSI J., Elsevier
Science Publishers B. V., Amsterdam, The Netherlands, The Netherlands, v. 17, n. 2, p.
97–140, out. 1994. ISSN 0167-9260.

FLACH, G. et al. Drive strength aware cell movement techniques for timing
driven placement. In: Proceedings of the 2016 on International Symposium on
Physical Design. New York, NY, USA: ACM, 2016. (ISPD ’16), p. 73–80. ISBN
978-1-4503-4039-7.

HUNTINGTON, E. V. Sets of independent postulates for the algebra of logic.
Transactions of the American Mathematical Society, American Mathematical Society,
v. 5, n. 3, p. 288–309, 1904.

INTEL. Microprocessor Quick Reference Guide. 2008.
Http://www.intel.com/pressroom/kits/quickreffam.htm. Retrieved October 31,
2016.

KLOCK, C.; RIBAS, R.; REIS, A. Karma: um ambiente para o aprendizado de síntese
de funções booleanas. Brazilian Journal of Computers in Education, v. 18, n. 02,
p. 33, 2010. ISSN 2317-6121.

KLOCK, C. E. et al. Karma: A didactic tool for two-level logic synthesis. In: 2007 IEEE
International Conference on Microelectronic Systems Education (MSE’07). [S.l.:
s.n.], 2007. p. 59–60.

KRAVETS, V. N. Application of a key x2013;value paradigm to logic factoring.
Proceedings of the IEEE, v. 103, n. 11, p. 2076–2092, Nov 2015. ISSN 0018-9219.

MACHADO, L. et al. Iterative remapping respecting timing constraints. In: 2013 IEEE
Computer Society Annual Symposium on VLSI (ISVLSI). [S.l.: s.n.], 2013. p.
236–241. ISSN 2159-3469.

34

MARTINS, M. et al. Open cell library in 15nm freepdk technology. In: Proceedings of
the 2015 Symposium on International Symposium on Physical Design. New York,
NY, USA: ACM, 2015. (ISPD ’15), p. 171–178. ISBN 978-1-4503-3399-3.

MARTINS, M. G. A. et al. Boolean factoring with multi-objective goals. In: 2010 IEEE
International Conference on Computer Design. [S.l.: s.n.], 2010. p. 229–234. ISSN
1063-6404.

MCCALLUM, J. C. Memory Prices (1957—2016). 2016.
Http://www.jcmit.com/memoryprice.htm. Retrieved October 31, 2016.

MICHELI, G. D. Synthesis and optimization of digital circuits. [S.l.]: McGraw-Hill
Higher Education, 1994.

MISHCHENKO, A.; BRAYTON, R. K. A linear divisor extraction algorithm.
Proceedings of the International Workshop on Logic and Synthesis, Jun 2015.

MULTI-OUTPUT PLA benchmarks. 2015. Http://lsi.epfl.ch/benchmarks. Retrieved
October 31, 2016.

PUGET, J. C. et al. Jezz: An effective legalization algorithm for minimum displacement.
In: Proceedings of the 28th Symposium on Integrated Circuits and Systems Design.
New York, NY, USA: ACM, 2015. (SBCCI ’15), p. 19:1–19:5. ISBN 978-1-4503-3763-2.

VASUDEVAMURTHY, J.; RAJSKI, J. A method for concurrent decomposition and
factorization of boolean expressions. In: Computer-Aided Design, 1990. ICCAD-90.
Digest of Technical Papers., 1990 IEEE International Conference on. [S.l.: s.n.],
1990. p. 510–513.

WAGNER, F. R.; REIS, A. I.; RIBAS, R. P. Fundamentos de circuitos digitais. Porto
Alegre: Sagra Luzzatto, 2006.

WANG, L.-T.; CHANG, Y.-W.; CHENG, K.-T. T. (Ed.). Electronic Design
Automation: Synthesis, Verification, and Test. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2009. ISBN 9780080922003.

	Acknowledgements
	Abstract
	Resumo
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	1 Introduction
	1.1 Motivation
	1.2 Organization

	2 Background
	2.1 Boolean Algebra
	2.2 Boolean Functions
	2.3 Boolean Networks
	2.4 Optimization of Boolean Networks
	2.5 Logic Transformations
	2.6 Boolean Division
	2.7 Algebraic Division
	2.8 Algebraic Extraction
	2.8.1 Kernels and Algebraic Divisors
	2.8.2 The Extraction Process

	2.9 The Original Fast-Extract Algorithm

	3 Fast-Extract with Cube Hashing
	3.1 Cube Grouping
	3.2 Cube Hashing
	3.3 Divisors Functions
	3.4 Degenerate Divisors
	3.5 Extraction

	4 Experimental Results
	4.1 Experimental Setup
	4.2 Impact of Cube Grouping
	4.3 Synthesis Results
	4.4 Scalability

	5 Conclusion
	References

