
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

PEDRO GABRIEL DE SOUZA VEREZA MEDEIROS

Solving the Dial-a-Ride Problem Using
Iterated Local Search

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Luciana Salete Buriol

Porto Alegre
December 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ABSTRACT

The Dial-a-Ride Problem (DARP) is an NP-hard combinatorial problem. The DARP

is a variant of the Vehicle Routing Problem (VRP), focusing in the transportation of

passengers. It consists in, given a set of requests for pick-up and delivery requested by

users and a set of homogeneous vehicle, optimize the assignment of requests to vehicles

in order to serve all requests, providing optimal routes and respecting problem constraints

such as route duration, vehicle capacity, passenger ride time, departure and arrival time

windows. This work presents an approach to DARP using the Iterated Local Search

(ILS) metaheuristic, which has been successfully applied in solving other variants of the

VRP. The goal of this work was to evaluate the suitability of ILS in the context of DARP.

For that, a comparison between obtained results and the ones found in the literature was

presented and indicated promising results.

Keywords: Dial-a-ride problem. Iterated Local Search. Metaheuristic. Vehicle routing.

RESUMO

O Dial-a-Ride Problem (DARP) é um problema combinacional NP-difícil. O DARP é

uma variante do Vehicle Routing Problem (VRP), focando no transporte de passageiros.

O problema consiste em, dado um conjunto de requisições de coleta e entrega feitas por

usuários e um conjunto de veículos idênticos, otimizar a atribuição de requisições a veí-

culos com objetivo de atender todas as requisições, produzindo rotas ótimas e respeitando

limitações impostas pelo problema, como capacidade máxima dos veículos, tempo má-

ximo de rota de um passageiro e janelas de tempo no embarque e desembarque. Este

trabalho apresenta uma abordagem para o DARP utilizando a metaheurística Iterated Lo-

cal Search (ILS), que tem sido aplicada com sucesso na resolução de outras variantes do

VRP. O objetivo desse trabalho foi avaliar a adequação do ILS ao contexto do DARP. Para

isso, comparações entre resultados obtidos e resultados disponíveis na literatura foram re-

alizadas e indicaram resultados promissores.

Palavras-chave: Dial-a-ride problem. Iterated Local Search. Metaheuristica. Rotea-

mento de veículos.

LIST OF TABLES

Table 5.1 Instance Set ...29
Table 5.2 Results of initial solution generation...30
Table 5.3 Cost comparison between local search implementations.31
Table 5.4 Time comparison between local search implementations.31
Table 5.5 Algorithm progress and results quality..33
Table 5.6 CPU comparison. ..34

LIST OF ABBREVIATIONS AND ACRONYMS

BKS Best Known Solution

CPU Central Processing Unit

CVRP Capacitated Vehicle Routing Problem

DARP Dial-A-Ride Problem

HFVRP Heterogeneous Fleet Vehicle Routing Problem

ILS Iterated Local Search

PDVRP Pickup and Delivery Vehicle Routing Problem

RVND Random Variable Neighborhood Decent

SD Standard Deviation

TSP Travelling Salesman Problem

VRP Vehicle Routing Problem

VRPSD Vehicle Routing Problem with Stochastic Demands

VRPTW Vehicle Routing Problem with Time Windows

CONTENTS

1 INTRODUCTION...8
2 LITERATURE REVIEW...10
2.1 Search Algorithms ..11
2.1.1 Iterated Local Search ...11
2.1.2 Local search 2-opt..12
3 THE DIAL-A-RIDE PROBLEM ..14
3.1 Mathematical formulation ...14
4 PROPOSED APPROACH..17
4.1 Solution Representation ...17
4.2 Solution Evaluation...18
4.2.1 Forward time slack...18
4.3 Preprocessing...20
4.4 Iterated Local Search Applied to DARP...20
4.4.1 Initial Solution Generation...21
4.4.2 Local Search...21
4.4.2.1 Intra Route Search: 2-opt..22
4.4.2.2 Intra and Inter Route Search ...23
4.4.3 Perturbation..25
4.4.4 Acceptance Criterion ...26
4.4.5 Stop condition ..27
5 EXPERIMENTAL RESULTS ...28
5.1 Environment ..28
5.2 Instances...28
5.3 Initial Solution Evaluation ...29
5.4 Local Search Comparison ..30
5.5 Algorithm Progress and Results Quality ..32
5.6 Running Times ..34
6 CONCLUSION ...36
REFERENCES...38

8

1 INTRODUCTION

Modern urban areas face several kinds of mobility problems. With an ever increas-

ing demand for transportation, not only of goods, but also people, many studies have been

conducted by the scientific community in order to optimize logistic transportation.

The problem addressed in this work is known as the Dial-a-Ride Problem (DARP).

Briefly, the problem consists in a set of requests for pick-up and delivery from passengers

that need to be served by a limited set of vehicles available. The main goal is to create a set

of optimal vehicle routes that serve all requests, complying with a set of constraints. Most

common constraints are similar to other vehicle routing problems and include vehicle

capacity, route duration and route time. However, as the DARP considers the transport

of people, not goods, several quality of service constraints exist, such as passenger ride

time, time limit for pick-up and delivering, and type of vehicle used to serve a specific

passenger.

Dial-a-ride problems arise, for instance, in the context of patient transportation

from and to hospitals, in the transportation of people that live in rural areas and constantly

need to travel to neighbor cities for work and health matters, and in the context of pro-

viding public service for the disabled and elderly people who cannot use regular public

transportation systems easily.

An instance of DARP consists in information about the vehicle, restrictions about

the route and details about requests. Considering the case where all vehicles are of the

same kind, the following properties apply:

• Number of vehicles available;

• Maximum capacity of a vehicle;

• Maximum route duration;

• Maximum ride duration, i.e the maximum time a passenger can be in route;

Each request in the instance is described with properties:

• Pick-up location;

• Drop-off location;

• Time window for picking-up, i.e. a time window defining when the service must
begin;

• Time window for dropping-off, i.e. a time window defining when the service must
end;

9

• Service time, e.g. time needed for boarding or alighting;

• Number of passengers, either boarding or leaving the vehicle;

All vehicles can travel from every location to any other location. The time and

cost related to each travel is computed as the euclidean distance between the locations.

Real-world applications of DARP must consider actual road distance and traffic, which

are not considered in the model at hand.

Due to the application oriented characteristic of DARP, no standardized definition

of optimal route exists. Definitions include maximization of number of passengers served,

minimization of user waiting time, minimization of total route time, among many others.

In this work, an optimal vehicle route is defined as a route that comply with all constraints

and minimizes travel costs.

It was proved by Jr, Kakivaya and Stone (1998) that the DARP belongs to the

NP-Hard class of problems, which brings several challenges when trying to model and

solve the problem. Large instances of the problem come with high complexity due to the

size of the search space to be considered, making exact approaches non-suitable due to

high time consumption.

In this context, we propose to apply a metaheuristic known as Iterated Local

Search (ILS) to the DARP. Several Vehicle Routing Problem (VRP) variations were solved

using ILS. However, no ILS implementation was found for the DARP variation consid-

ered in this work.

It is expected that the results of this work may bring contributions to solving the

presented problem and insights on the use of ILS to solve DARP and possibly other prob-

lems. By comparing the ILS with other metaheuristics used in the literature, strengths and

weakness of ILS are highlighted, as well as its suitability on solving the DARP.

10

2 LITERATURE REVIEW

According to Cordeau et al. (2007), the DARP is a generalization of the Vehicle

Routing Problem with Pickup and Delivery (VRPPD). Cordeau and Laporte (2007) state

that, from a modelling point of view, the DARP is a generalization of various vehicle

routing problems such as the The Pickup and Delivery Vehicle Routing Problem (PDVRP)

and the Vehicle Routing Problem With Time Windows (VRPTW). The difference between

DARP and most of other related problems is the fact that people, not goods, are trans-

ported. When transporting passengers, concerns about quality of service are introduced

in the form of constraints, such as route duration, route length, customer waiting time,

customer ride time and difference between actual and desired delivery times.

The DARP is presented in several variants. In the static version of DARP, requests

are known before vehicles start their route. In the dynamic version, requests can be

requested after routes have started. Examples of works that solved the dynamic version

are described in the survey by Cordeau and Laporte (2007).

Some variants of DARP also consider the number of vehicles available. A vari-

ation with single vehicle was formulated and solved by Psaraftis (1980) using dynamic

programming, whose objective function was the minimization of weighted sum of route

completion time and customer dissatisfaction (i.e., the weighted combination of waiting

time before pickup and ride time). According to Cordeau and Laporte (2007), one of the

first heuristics for the multiple-vehicle DARP was proposed by Jaw et al. (1986).

Another variant is with regard on the type of vehicles available. In the homoge-

neous variation, all vehicles available are equal. In the heterogeneous variation, vehicles

can have different passenger capacity or be adapted to transport a specific kind of pas-

sengers, e.g. disabled people that need to be transported with wheelchairs (PARRAGH,

2011, p. 912).

The variation considered in this work is the static homogeneous multi-vehicle

DARP. Cordeau and Laporte (2003) described a tabu search heuristic for this variant. As

part of the search algorithm, an eight-steps solution evaluation was developed. Cordeau

(2006) used a branch-and-cut approach. Parragh, Doerner and Hartl (2010) applied the

same preprocessing steps and adapted the eight-steps solution evaluation algorithm pro-

posed by Cordeau and Laporte (2003) for their variable neighborhood search. Jorgensen,

Larsen and Bergvinsdottir (2007) formulated and solved DARP using a genetic algorithm

to construct clusters of users and a modified nearest neighbor procedure to create the

11

routes.

In this work, iterated local search (ILS) is used, which, according to Lourenço,

Martin and Stützle (2003), contains several of the desirable features of a metaheuristic,

such as simplicity, effectiveness, robustness, and ease of implementation. The authors

also described successful usage of ILS in the Travelling Salesman Problem (TSP). ILS

implementations for variations of the Vehicle Routing Problem (VRP) include Bianchi et

al. (2006) for the Vehicle Routing Problem with Stochastic Demands (VRPSD), Subrama-

nian et al. (2010) for the Vehicle Routing Problem with Simultaneous Pickup and Delivery

(VRPSPD), Chen, Huang and Dong (2010) for the Capacitated Vehicle Routing Problem

(CVRP), and Penna, Subramanian and Ochi (2013) for the Heterogeneous Fleet Vehicle

Routing Problem (HFVRP).

2.1 Search Algorithms

This section introduces and describes generic implementations of the Iterated Lo-

cal Search Algorithm and the 2-Opt Algorithm.

2.1.1 Iterated Local Search

The Iterated Local Search algorithm was described by Lourenço, Martin and Stüt-

zle (2003), and consists in, given a local optimum solution found by a local search algo-

rithm, use this local optimum to obtain a set of solutions from where the search should

continue. Obtaining the set of solutions is achieved through perturbation of the local

optimum, which generates a more focused set of solutions to be considered, instead of

restarting the search from a completely new solution. ILS is summarized as

The essence of iterated local search can be given in a nut-shell: one iteratively
builds a sequence of solutions generated by the embedded heuristic, leading
to far better solutions than if one were to use repeated random trials of that
heuristic. (LOURENÇO; MARTIN; STÜTZLE, 2003, p. 322)

The algorithm has four procedures: (i) GenerateInitialSolution, where an initial

solution is constructed; (ii) LocalSearch, used to improve a solution; (iii) Perturb, which

generates a new starting point by perturbing the solution produced by the LocalSearch

procedure; (iv) AcceptanceCriterion, used to determine from which solution the search

should continue. Algorithm 1 describes a generic implementation of ILS.

12

Algorithm 1 Iterated Local Search
1: procedure ITERATED LOCAL SEARCH

2: s0 ← GenerateInitialSolution
3: s∗ ← LocalSearch(s0)
4: while Stopping criterion is not met do
5: s← Perturb(s∗)
6: s′ ← LocalSearch(s)
7: s∗ ← AcceptanceCriterion(s∗, s′, history)
8: end while
9: end procedure

The perturbation step is used to escape from a current locally optimal solution.

Such move is frequently done on a larger neighborhood than the one used in the local

search step, or in a way that the local search procedure cannot undo in a single step. The

acceptance criterion defines the next solution to be perturbed. It’s a crucial step for ILS, as

it defines the balance between intensification and diversification of the search. This step

can optionally have some kind of history mechanism, so that previous known solutions

can be used when choosing the next solution instead of a fixed set of rules. Even though

the history mechanism normally leads to better results and performance, most of the usage

of ILS does not implement it (LOURENÇO; MARTIN; STÜTZLE, 2003).

According to Lourenço, Martin and Stützle (2003), the effectiveness of ILS de-

pends mainly on the local search algorithm, the perturbation and the acceptance criteria.

The authors also point out that even the most naive implementations of these procedures

tend to yield better results than restarting the search at a random point in the solution

space.

2.1.2 Local search 2-opt

The 2-opt algorithm is a local search proposed by Croes (1958) for solving the

Travelling Salesman Problem (TSP). The main concept of the algorithm is, given a path

in graph, remove a pair of arcs and reconnect the vertexes using different arcs: if the

modified route is better, according to a criteria, the best route is updated. This procedure

is repeated until no further optimization is obtained. Algorithm 2 describes a generic

implementation of 2-opt.

13

Algorithm 2 2-Opt Algorithm
1: function 2-OPT(route)
2: best← route
3: improved← false
4: do
5: improved← false
6: for all vertex vi ∈ route do
7: for all vertex vj ∈ route(j 6= i − 1 , j 6= i + 1) do
8: newRoute← best
9: Replace arcs (vi → vi+1) and (vj → vj+1) by arcs (vi → vj)

10: and (vi+1 → vj+1) in newRoute
11:
12: if newRoute is better than best then
13: best← newRoute
14: improved← true
15: end if
16: end for
17: end for
18: while improved 6= false
19: return best
20: end function

In Algorithm 2, the loop that checks if improvements are still happening is de-

scribed from lines 4-18. At each iteration of this loop, all pairs of non-consecutive arcs

are replaced by a different pair of arcs, described in lines 6-17. The algorithm stops if no

replacement of arcs generate a better solution, meaning that the current best is the local

optimal solution.

14

3 THE DIAL-A-RIDE PROBLEM

The DARP is modelled on a directed graph G = (V ,A) where V is the set of

vertices and A is the set of arcs. For each arc (i , j) a non-negative travel cost cij and

a non-negative travel time tij are considered (PARRAGH; DOERNER; HARTL, 2010).

A total of n customer requests need to be served by m vehicles. Each request consists

of a pair of vertexes (i , i + n) where i denotes an origin location and i + n denotes the

corresponding destination location. At the origin of each request is assigned a demand

of passengers qi > 0 waiting to be transported and a corresponding negative demand

qi+n = −qi at the destination denotes alighting. A time window [ei , li] representing the

earliest and the latest time that the service must begin is assigned to each request, either

on the origin or the destination. In case of an outbound request, the time window is set on

the destination vertex. An inbound request has a time window in the origin vertex. Each

vertex has a service time, associated with loading and unloading operations, denoted by

di . All vehicles have capacity Q and maximum route time T and leave the origin i = 0

(depot) and must finish its route in i = 2n + 1 (end depot). In order to guarantee quality

of service, the ride time of a customer must not exceed L. Departure from vertex i at

time Di results in arriving at vertex j at Ai = Di + tij . Beginning of service at vertex

i cannot start before ei , therefore, beginning of service is defined as Bi = max (Ai , ei).

Waiting time, i.e. the time the vehicle had to wait at vertex i , is defined as Wi = Bi − Ai .

Departure time is calculated as Di = Bi + di . The ride time of each customer is de-

fined as Li = Bn+i − Di . The duration of a route performed by vehicle k is denoted by

B k
2n+1 − B k

0 . The goal is to minimize cost c(s) defined by
∑

(i ,j)∈s cij , that are defined

by arcs (i , j) present in solution s .

3.1 Mathematical formulation

Although the proposed solution doesn’t make use of the mathematical formulation,

it is a clear description of all constraints present in DARP. The formulation by Cordeau

(2006) is described as follows.

Let P be the set of origins, P = {1 , . . . , n}, D the set of desti-

nations D = {n + 1 , . . . , 2n} and N the set of all requests plus the depot

N = P ∪ D ∪ {0 , 2n + 1}. Let K be the set of m vehicles.

For each arc (i , j) and each vehicle k ∈ K , let x k
ij = 1 if vehicle k travels from

15

node i to j . For each node i ∈ N and each vehicle k ∈ K , B k
i is the time at which vehicle

k begins service at i , Qk
i is the load of vehicle k after visiting i and Lk

i be the ride time of

user i on vehicle k .

minimize
∑
k∈K

∑
i∈N

∑
j∈N

ckijx
k
ij (1)

subject to
∑
k∈K

∑
j∈N

xkij = 1 ∀i ∈ P (2)

∑
j∈N

xkij −
∑
j∈N

xkn+i,j = 0 ∀i ∈ P, k ∈ K (3)

∑
j∈N

xk0j = 1 ∀k ∈ K (4)

∑
j∈N

xkji −
∑
j∈N

xkij = 0 ∀i ∈ P ∪D, k ∈ K (5)

∑
i∈N

xki,2n+1 = 1 ∀k ∈ K (6)

Bk
j ≥ (Bk

i + di + tij)x
k
ij ∀i, j ∈ N, k ∈ K (7)

Qk
j ≥ (Qk

i + qj)x
k
ij ∀i, j ∈ N, k ∈ K (8)

Lki = Bk
n+i − (Bk

i + di) ∀i ∈ P, k ∈ K (9)

Bk
2n+1 −Bk

0 ≤ T ∀k ∈ K (10)

ei ≤ Bk
i ≤ li ∀i ∈ N, k ∈ K (11)

ti,n+i ≤ Lki ≤ L ∀i ∈ P, k ∈ K (12)

max{0, qi} ≤ Qk
i ≤ min{Q,Q+ qi} ∀i ∈ N, k ∈ K (13)

xkij ∈ {0, 1} ∀i, j ∈ N, k ∈ K (14)

Total routing cost is minimized in objective function (1). Constraints (2) and (3)

ensure that each request is served once by the same vehicle. Routes must start and end

in the depot, which is ensured by constraints (4), (5) and (6). Constraint (7) ensures that

the beginning of service depends on the beginning of service of the previously visited

node, plus the service time in that node, plus the time cost of travelling between nodes.

The consistency of the vehicle load is ensured by constraint (8). In (9), the ride time of

each user is bounded by constraint (12). Constraint (10) limits the duration of each route.

Each request must be served within its time windows, which is ensured by constraint (11).

The number of passengers on board must not exceed the maximum capacity of a vehicle,

16

ensured by constraint (13).

The objective function used in this work also considers not only route cost, but

penalty values representing constraint violations, as described in Section 4.2.

17

4 PROPOSED APPROACH

This chapter presents details about the proposed solution. Solution representation

and evaluation are described, as well as preprocessing procedures, route and ride time

optimization and an ILS approach adapted to DARP.

4.1 Solution Representation

A solution s is defined as a set of m routes s = {r1 , ..., rm}. Each route is repre-

sented as a vector of size 2n + 1 used to indicate succession of nodes. Value i at posi-

tion 0 indicates that i is the first node visited after the depot, i.e the first arc is (0 , i). Next

arc in the route is from i to the value j at position i . As an example, consider requests

represented as (origin, destination) pairs (1 , 4), (2 , 5), (3 , 6). Figure 4.1 describes a

route r = {0 , 2 , 1 , 4 , 3 , 6 , 5 , 0}.

Figure 4.1: Route representation as an array of succession.

Figure 4.1 shows an indexed succession array. Value j at index i indicates that

there is an arc from i to j . In the example, first arc in route is from 0 to 2; second arc is

from 2 to 1; third arc is from 1 to 4; and so on until an arc returns to depot, i.e. j = 0 .

Each route also contains an array for arrival time, beginning of service, departure

time, waiting time and load. The value at index i in the arrival times array represents Ai ,

for the beginning of service array it denotes Bi , for the departure time represents Di , for

the waiting time array it denotes Wi and for load it represents the vehicle load Li .

Initial expectation was that storing intermediate costs would avoid full cost re-

calculation every time a route changed, i.e. recalculation would only be done after the

changed point, as earlier values wouldn’t be affected. But due to the nature of the 8-steps

evaluation scheme described in 4.2.1, all vertex in the array must be considered during

the cost evaluation of a route.

18

4.2 Solution Evaluation

Following the work by Cordeau and Laporte (2003), load violation q(s), dura-

tion violation d(s), time window w(s) and ride time violation t(s) were penalized in the

evaluation function f (s). Load violation is computed as q(s) =
∑2n

i=1 (yi −Q)+, dura-

tion violation is calculated as d(s) =
∑m

k=1 (B
k
2n+1 − B k

0 − T)+, time window violation

as w(s) =
∑2n

i=1 (Bi − li)
+ and ride time violation as t(s) =

∑n
i=1 (Li − L)+. Where

x+ = max {0 , x}. As an extension, order violation is also penalized. Order violation

happens when the destination of a request is visited before its origin and is computed as

o(s) =
n∑
i=1

0 if Bi+n > Bi

1000 otherwise

Let c(s) denote the sum of distances travelled by each vehicle, which is the sum

of costs cij associated with arcs(i , j) in each route, the evaluation function is given as

f(s) = c(s) + αq(s) + βd(s) + γw(s) + τt(s) + ωo(s)

where α, β, γ, τ and ω are penalty terms for load violation, duration violation, time win-

dow violation, ride time violation and order violation, respectively. In the beginning of

the search, all values are set to α = β = γ = τ = ω = 1 . Every time a new current best

solution s∗ is found, all penalty terms are either decreased or increased. If a constraint is

violated, the corresponding penalty term is increased. On the other hand, if the constraint

is satisfied, the penalty term is decreased. If, for example, s∗ violates capacity constraint,

then α = α(1 + δ). Similarly if the constraint is satisfied, then α = α/(1 + δ). The value

of δ is randomly chosen in interval [0 .05 , 0 .10]. According to Parragh, Doerner and Hartl

(2010), using different values of δ works as a diversification mechanism.

4.2.1 Forward time slack

In order to optimize route duration and comply with ride time constraint, the be-

ginning of service in each vertex is set according to the route evaluation scheme presented

by Cordeau and Laporte (2003). It’s an adaptation to DARP of the forward time slack de-

19

fined by Savelsbergh (1992). Forward slack time at vertex i is computed as

Fi = min
i≤j≤q

{ ∑
i<p≤j

Wp + (min {lj −Bj, L− Pj})+
}

where Wp is the waiting time at vertex p, the last vertex on the route is denoted by q

and Pj is the ride time of user whose destination is j ∈ {n + 1 , . . . , 2n}, Pj = 0 for all

other j . The cumulative waiting time until j , plus the minimum of the difference between

the end of the time window and the beginning of service at j and the difference between

the maximum ride time and Pj , represents the slack time at j . The forward slack time Fi

is the minimum of all slack times between i and q .

It was also noted by Cordeau and Laporte (2003) that delaying the departure from

the depot by
∑

0<p<q Wp does not affect the arrival time at vertex q . Delaying the depar-

ture by more will increase the arrival time at q by the same amount. As a consequence,

departure time from the depot should be delayed by at most min
{
F0 ,

∑
0<p<q Wp

}
.

Forward slack time can also be used to reduce the ride time of a user by delaying

Bi at each origin vertex. This led Cordeau and Laporte (2003) to develop an eight-steps

evaluation scheme that is also used in the proposed approach. The eight-steps evaluation

scheme is described as:

1. Set D0 = eo .
2. Compute Ai , Wi , Bi and Di for each vertex i in the route.

3. Compute F0 .

4. Set D0 = eo +min
{
F0 ,

∑
0<p<q Wp

}
.

5. Update Ai , Wi , Bi and Di for each vertex i in the route.

6. Compute Li for each request assigned to the route.

7. For every vertex j that is an origin.

(a) Compute Fj .

(b) Set Wj = Wj +min
{
Fj ,

∑
j<p<q Wp

}
; Bj = Aj +Wj ;

Dj = Bj + dj .
(c) Update Ai , Wi , Bi and Di for each vertex i that comes after

j in the route.
(d) Update ride time Li for each request i whose destination ver-

tex is after j .

8. Compute changes in violations of vehicle load, duration, time win-
dow and ride time constraints.

(CORDEAU; LAPORTE, 2003, p. 587)

The procedure first minimizes time window violations in steps (1) and (2). Route

duration is minimized without increasing time window violations in steps (3) until (6)

(CORDEAU; LAPORTE, 2003). Step (7) sequentially minimizes ride time by delaying

20

the beginning of service in vertexes that are origin of a request, without increasing route

duration, time window or ride time violations.

4.3 Preprocessing

Before applying the ILS algorithm, the instance is preprocessed to tighten

time windows when possible. Following the work by Cordeau (2006), time win-

dows in inbound requests can be tightened by setting ei = max{0 , ei+n − L− di}

and li = min{li , ln+i − ti ,n+i − di}. Similarly, outbound requests can be tightened by

setting en+i = max{0 , ei + di + ti ,n+i} and ln+i = min{ln+1 , li + di + L}.

4.4 Iterated Local Search Applied to DARP

Proposed approach uses ILS with some adaptations to include a stop criterion and

the mechanism needed to update penalty terms as described in 4.2. Algorithm 3 describes

these adaptations.

Algorithm 3 Iterated Local Search - DARP
1: procedure DARP ITERATED LOCAL SEARCH

2: s0 ← GenerateInitialSolution
3: s∗ ← LocalSearch(s0)
4: noImprovement← 0
5: while noImprovement < 2000 do
6: s← Perturb(s∗)
7: s′ ← LocalSearch(s)
8: s∗ ← AcceptanceCriterion(s∗, s′)
9: if s∗ did improve then

10: update penalty terms
11: noImprovement← 0
12: else
13: noImprovement← noImprovement+ 1
14: end if
15: end while
16: end procedure

Algorithm 3 is an adaptation from the generic form of ILS presented in Section

2.1.1. Main difference in the algorithm is the update of penalty terms every time a new

best solution is found, described in lines 9-11. A counter variable is used to keep track

21

of iterations in which no better solution was found (line 13), and is reset when the best

solution is updated (line 11). This counter is used as the stop criterion of ILS, according

to the test made in line 5.

A detailed explanation of each component of the proposed ILS approach is given

in the following Subsections.

4.4.1 Initial Solution Generation

The initial solution generation algorithm is based on the work from Parragh, Do-

erner and Hartl (2010). On their work, all requests were sorted by some artificial be-

ginning of service randomly chosen in the interval [ei , li]. All routes are then initialized

using the first m requests on the list. Remaining requests are inserted sequentially, i.e ori-

gin followed by destination, at the end of a route. The route in which a request is inserted

is selected using a randomly chosen minimum distance criteria. Criterion one compares

the distance between the origin of the last request in the route and the origin of the request

being inserted. Criterion two compares the distance between the origin of the last request

in the route and the destination of the request being inserted. Criterion three compares

the distance between the destination of the last request and the origin of the request being

inserted. Criterion four compares the distance between the destination of the last request

and the destination of the one being inserted.

In this work, instead of sorting requests by an artificial Bi randomly chosen be-

tween ei and li , the median of interval [ei , li] is used. Using the median causes requests

with a tighter time window to be served before requests with a wider time window.

Consider two inbound requests with time window R = [er , lr] and S = [es , ls], and that

lr > ls > es > er . Randomly choosing Br and Bs may result in Br < Bs , meaning that a

request that could be served later is being given preference over a request with a less wide

time window. Using the median value, the request with smaller time window is always

served first, i.e Bs < Br .

4.4.2 Local Search

Three different implementations of local search were experimented in this work.

First implementation uses only intra-route local search. Second implementation uses both

22

intra-route and inter-route local search for every iteration of ILS. The third implementa-

tion uses intra-route search for most iterations, applying inter-route search every 5 iter-

ations. All implementations are described in following subsections and results are dis-

cussed in Section 5.4.

4.4.2.1 Intra Route Search: 2-opt

Local search performed on a solution consists in applying a local search for each

of its routes. The local search step is an intra-route optimization procedure, as it operates

on a single route at a time.

For this implementation the 2-opt Algorithm described in Section 2.1.2 is used.

Algorithm 4 describes how 2-opt was adapted to DARP.

Algorithm 4 2-opt-DARP Algorithm
1: function 2-OPT(route)
2: best← route
3: improved← false
4: do
5: improved← false
6: for all vertex vi ∈ route do
7: for all vertex vj ∈ route(j 6= i − 1 , j 6= i + 1) do
8: newRoute← best
9: Replace arcs (vi → vi+1) and (vj → vj+1) by arcs (vi → vj)

10: and (vi+1 → vj+1) in newRoute
11:
12: if didImprove(best, newRoute) then
13: best← newRoute
14: end if
15: end for
16: end for
17: while improved 6= false
18: return best
19: end function

The difference between Algorithm 4 and the generic 2-opt described in Section

2.1.2 is the comparison used. The local search step uses an adaptation of the Acceptance

Criterion described in Subsection 4.4.4, operating on routes instead of solutions. The

motivation is the same: always prefer feasible routes over infeasible ones, i.e. ensure

that if the current best route is feasible, no infeasible route is taken as best. Algorithm 5

describes such comparison.

23

Algorithm 5 didImprove
1: function DIDIMPROVE(best, newRoute)
2: if best is feasible then
3: if newRoute is feasible and f(newRoute) < f(best) then
4: return newRoute
5: end if
6: else
7: if newRoute is feasible or f(newRoute) < f(best) then
8: return newRoute
9: end if

10: end if
11: return best
12: end function

In the context of ILS, 2-opt is applied to all routes only in its first execution. Fol-

lowing executions of intra-route local search are performed only in routes that changed

in the perturbation steps. Intra-route search to routes that remain unchanged is not per-

formed, as it would yield the same results found previously.

4.4.2.2 Intra and Inter Route Search

In this implementation, the intra route search described in 4.4.2.1 is combined with

a Random Variable Neighborhood Descent (RVND) based on the work by Penna, Subra-

manian and Ochi (2013). Inter-route operations are used to generate sets of neighborhoods

of a given solution. Each inter-route operation is exhaustively applied to a solution s , gen-

erating a set of solutions that form a neighborhood of s . The best neighbor of a randomly

chosen neighborhood is compared to s . If the neighbor is better than s , then s is updated

and the search restarts. If no improvement happens, the neighborhood is removed from

the set. Procedure ends when there are no neighborhoods to use. Algorithm 6 describes

the RVND function.

24

Algorithm 6 RVND
1: function RVND(s)
2: s∗ ←s
3: Initialize set of neighborhoods (NL)
4: while NL 6= ∅ do
5: N (η) ← randomly chosen neighborhood ∈ NL
6: Find the best neighbor s′ of s∗ ∈ N (η)

7: if didImprove(s∗, s′) then
8: s∗ ←2-opt(s’)
9: Update NL

10: else
11: Remove N (η) from NL
12: end if
13: end while
14: return s∗
15: end function

In Algorithm 6, line 3 initializes NL with all neighborhood structures. Search is

described in lines 4-13, which is performed until there are no more neighborhood struc-

tures to use. In line 5 a random neighborhood structure is selected from NL, line 6 finds

the best neighbor, inside the chosen neighborhood. Line 7 uses the function described

in Algorithm 5 to determine if one solution is better than the other. When a better so-

lution is found, an intra-route search is performed using the 2-opt Algorithm, presented

in Algorithm 4, and the set NL is updated to include all neighborhood structures. If no

improvement happens, line 11 removes the current neighborhood structure from NL.

The set NL is composed of three neighborhood structures based on the work from

Penna, Subramanian and Ochi (2013):

• Swap(1, 1): One request from route r1 is swapped with a request from route

r2. As each request is made of two stops (i.e, origin and destination), both

stops need to be swapped. Each request is removed from the original route

and inserted into the other, at the same position as the removed one. For ex-

ample, consider a set of requests {(1,7), (2,8), (3,9), (4,10), (5,11), (6,12)}

and routes r1 = {0,1,2,3,7,9,8,0} and r2 = {0,4,6,5,10,11,12,0}, swap-

ping requests (2,8) and (5,11) would result in r1 = {0,1,5,3,7,9,11,0} and

r2 = {0,4,6,2,10,8,12,0}. Swapping request between two routes is a opera-

tion with constant cost O(1). However, generating the neighborhood of a solution

is done by exhaustively swapping all pairs of requests assigned to different routes.

Each swap made generates a neighbor solution. The neighborhood construction has

25

cost O(n2).

• Swap(2, 2): Similar to Swap(1,1), but swaps two consecutive requests from each

route instead of only one.

• Shift: A request is removed from route r1 and inserted in route r2. The insertion

step adds the new request in the best position in r2, i.e, the position that results

in the smallest cost according to the evaluation algorithm described in Section 4.2.

This operation also generates the neighborhood by exhaustively shifting each re-

quests to all possible routes. Each shift made generates a neighbor solution. The

neighborhood construction has cost O(n2).

Two implementations were tested for the combined intra and inter-route search.

First implementation performs the RVND search every iteration. Second implementation

performs RVND every k iterations without improvement, using the 2-opt local search in

most iterations. The motivation for not performing RVND every iteration comes from the

high computing time needed by RVND. Considering time growth and cost minimization,

second approach was chosen. Details on the tests performed are presented in Section 5.4.

The final implementation of local search is described in Algorithm 7.

Algorithm 7 LocalSearch-DARP
1: function LOCALSEARCH(s, iterationsWithoutImprovement)
2: s∗ ←s
3: if iterationsWithoutImprovement is multiple of k then
4: s∗ ← RVND(s)
5: else
6: s∗ ← 2-opt(s)
7: end if
8: return s∗
9: end function

After preliminary tests, the value of k was defined to k = 5 .

4.4.3 Perturbation

Perturbation is used in ILS to generate a new starting point for the local search

step. This mechanism is used to prevent the search to get stuck in locally optimal solu-

tions. Operators Swap(1,1) and Shift(1,1) described in Subsection 4.4.2.2 are used in the

26

perturbation step. The operator to be used in the perturbation phase is randomly chosen.

Perturb procedure is described in Algorithm 8.

Algorithm 8 Perturbation Algorithm
1: procedure PERTURB(solution)
2: r1← random route from solution
3: r2← random route from solution, different from r1
4: randomV alue← random value in interval [0, 1]
5: if randomV alue > 0.50 then
6: r1Request← random request from r1
7: r2Request← random request from r2
8: swap r1Request and r2Request in r1 and r2
9: else

10: request← random request from r1
11: remove request from r1
12: insert request in the end of r2
13: end if
14: end procedure

Lines 7-9 perform the swap operator, while lines 11-13 perform the shift operator.

Note that only one operator is chosen on each execution.

4.4.4 Acceptance Criterion

The acceptance criterion step is used to define from which solution the ILS should

continue. This step considers the current best solution and a local-searched solution found

after the perturbation step.

The search performed by ILS allows the existence of infeasible solutions in the

intra-route search. In some scenarios, the total penalty of an infeasible solution s ′ may

result in f (s ′) being less than f (s∗), even if s∗ is feasible. In order to give preference to

feasible solutions, feasibility check is also considered in the acceptance criterion. If the

current best solution s∗ is feasible, solution s ′ becomes the best one only if s ′ is feasible

and f (s ′) < f (s∗). On the other hand, if s∗ is infeasible, s ′ becomes best if it’s feasible or

f (s ′) < f (s∗). Algorithm 9 describes how the next solution to be perturbed is chosen by

the acceptance criterion procedure.

27

Algorithm 9 Acceptance Criterion Algorithm
1: function ACCEPTANCE CRITERION(s∗, s′)
2: if s∗ is feasible then
3: if s′ is feasible and f(s′) < f(s∗) then
4: return s′
5: end if
6: else
7: if s′ is feasible or f(s′) < f(s∗) then
8: return s′
9: end if

10: end if
11: return s∗
12: end function

4.4.5 Stop condition

Stop condition is based on the number of iterations without improvement in the

best solution. Arbitrary values between 1000 and 10,000 were tested. After preliminary

tests, the maximum number of iterations without improvement was set to 2000.

28

5 EXPERIMENTAL RESULTS

This chapter presents the evaluation of the proposed approach implementation,

solving several problem instances. The evaluation considers the quality of the results, i.e.

how close to known best values the final solution is; algorithm progression, i.e. how much

the final solution is better than the initial solution; and running times.

The choices taken regarding initial solution generation and the local search proce-

dure are also justified by results comparison.

5.1 Environment

The approach was implemented in Java version 1.8.0.77. Tests were executed in

a Macbook Pro, with a 64-bits Intel Core i5 processor at 2.7 GHz and 8 GB memory.

5.2 Instances

A set of instances was generated by Cordeau and Laporte (2003), which has been

widely used in the literature of DARP. In their work, 20 instances were randomly gener-

ated, with requests count varying between 24 and 144. Half of the requests in the instance

are inbound requests and half are outbound. Every request consists of a single passenger.

Service time is 10 for all origins and destinations. Locations were generated in the square

[−10 , 10]2 . The location of the depot is equal to average location of the seed points used

to generated locations. The time windows values are in the interval [0 , 1440], and two

procedures were used to define earliest and latest times. First procedure chooses an uni-

form random number ei in the interval [60 , 480] and then an uniform random number li

in the interval [ei + 15 , ei + 45]. The second procedure chooses random numbers ei in

[60 , 480] and li in [ei + 30 , ei + 90]. All instances have maximum route duration set to

480, vehicle capacity to 6, and maximum ride time to 90. Table 5.1 describes the instances

generated by Cordeau and Laporte (2003).

29

Table 5.1: Instance Set

Instance Requests Vehicles BKS
R01a 24 3 190.02
R02a 48 5 301.34
R03a 72 7 532.00
R04a 96 9 570.25
R05a 120 11 626.93
R06a 144 13 785.26
R07a 36 4 291.71
R08a 72 6 487.84
R09a 108 8 658.31
R10a 144 10 851.82
R01b 24 3 164.46
R02b 48 5 295.66
R03b 72 7 484.83
R04b 96 9 529.33
R05b 120 11 577.29
R06b 144 13 730.67
R07b 36 4 248.21
R08b 72 6 458.73
R09b 108 8 593.49
R10b 144 10 785.68

5.3 Initial Solution Evaluation

A comparison between an implementation using a randomly chosen Bi in

the interval [ei , li] used by Parragh, Doerner and Hartl (2010) and another using

Bi = median(ei , li) described in Subsection 4.4.1 is presented in Table 5.2. Column

Cost1 presents the value of total costs of solutions generated by randomly choos-

ing Bi in the interval [ei , li]. Column Penalties1 describes only penalty values com-

puted due to constraint violations (see Section 4.2). Column Cost2 presents the

value of total costs of solutions generated by using Bi = median(ei , li). In col-

umn gapc, the gap between the average cost of the two approaches is presented,

calculated as gapc = (Cost2 − Cost1)/Cost1 . Column Penalties2 describes only

penalty values computed due to constraint violations. Column gapp, the gap be-

tween the average penalty values of the two approaches is presented, calculated as

gapp = (Penalties2 − Penalties1)/Penalties1 . Values are an average of 20 runs. Values

highlighted in bold indicate better results.

30

Table 5.2: Results of initial solution generation.

Instance Random Median
Cost1 Penalties1 Cost2 gapc Penalties2 gapp

R1a 665.41 355.94 599.20 -9.95% 290.43 -18.40%
R2a 2484.17 1945.17 2194.13 -11.68% 1666.73 -14.31%
R3a 5632.91 4523.91 4724.66 -16.12% 3612.50 -20.15%
R4a 6211.41 4963.00 4752.85 -23.48% 3489.58 -29.69%
R5a 8256.00 6884.64 7615.26 -7.76% 6252.51 -9.18%
R6a 9460.31 7639.20 8348.76 -11.75% 6530.55 -14.51%
R7a 1804.96 1304.69 1604.00 -11.13% 1111.92 -14.78%
R8a 7338.79 6315.29 6254.42 -14.78% 5229.92 -17.19%
R9a 13948.57 12479.15 13138.00 -5.81% 11672.10 -6.47%
R10b 17384.07 15455.29 14617.43 -15.91% 12705.57 -17.79%
R1b 496.47 198.24 381.93 -23.07% 79.40 -59.95%
R2b 1469.05 925.60 1358.20 -7.55% 820.74 -11.33%
R3b 3580.07 2487.65 3030.65 -15.35% 1935.25 -22.21%
R4b 5354.97 4105.08 4380.52 -18.20% 3146.00 -23.36%
R5b 5115.33 3741.23 3284.75 -35.79% 1927.92 -48.47%
R6b 7558.81 5751.58 5757.57 -23.83% 3951.95 -31.29%
R7b 1390.31 908.52 1064.54 -23.43% 575.75 -36.63%
R8b 4057.28 3025.63 3573.97 -11.91% 2548.04 -15.78%
R9b 8304.44 6833.12 7482.72 -9.89% 6010.21 -12.04%
R10b 14473.70 12537.77 13561.91 -6.30% 11616.25 -7.35%
Average -15.18% -21.54%
1: Random Bi implementation.
2: Bi as median implementation.

For all instances used, the median value resulted in better cost and penalties com-

pared to a random value, with average improvement in total cost equal to 15.18% and to

penalties by 21.54%. This confirms the expectation that choosing the median value would

generate better solutions.

5.4 Local Search Comparison

As described in Section 4.4.2, three implementations for local search were con-

sidered. One using only intra-route operations, another using both inter and intra-route

operations on every iteration of ILS, and a third one using inter-route operations every

k = 5 iterations. A comparison between the implementations was performed by using a

few instances from the instance set and the final solution cost comparison is presented in

Tables 5.3 and computing time comparison in Table 5.4. Values are average of 10 runs.

31

Table 5.3: Cost comparison between local search implementations.

Instance Gap1 Gap2 Gap3

R01a +12.33% +2.97% +3.57%
R02a +22.80% +12.65% +21.40%
R03a +27.48% +27.89% +36.91%
R07a +15.58% +10.94% +14.25%
R01b +17.28% +14.61% +12.00%
R02b +18.63% +17.29% +12.02%
R07b +21.49% +21.60% +14.83%
Average +19.37% +15.42% +16.43%
1: Intra-route only.
2: Intra and inter-route every iteration.
3: Inter-route every 5 iterations.
Values are average of 10 runs.

Table 5.4: Time comparison between local search implementations.

Instance CPU1 CPU2 CPU3

R01a 0.89 3.15 0.95
R02a 3.94 79.54 10.04
R03a 9.59 188.48 33.05
R07a 2.04 17.26 4.18
R01b 1.08 2.33 0.66
R02b 11.30 32.70 10.61
R07b 3.10 7.10 3.67
1: Intra-route only.
2: Intra and inter-route every iteration.
3: Inter-route every 5 iterations.
All CPU values are in minutes.

As expected, introducing inter-route operations as part of the local search step

produces better results, as shown in Table 5.3. Intra-route operations optimize a route in

an isolated way. In order to perform a better optimization in a solution, which is a set of

routes, inter-route operations have to be performed before optimizing routes individually.

These operations, however, come with a considerable growth in time consumed.

It is clear in Table 5.4 that the intra-route only implementation performs better than the

combination of inter and intra-route. The difference is mainly due to the large number of

times a route cost has to be recalculated as part of the Shift(1,1) operation described in

Section 4.4.2.2, as the operator inserts a request in the best position in a route, i.e. the one

that minimizes total cost.

Due to the massive time consumption from running the inter-route local search for

32

every iteration, and intermediate approach was taken. Running the inter-route search ev-

ery 5 iterations and using intra-route search for all other iterations delivered better results

considering final solution cost and CPU time.

It was expected, however, that using inter-route search more often wold gener-

ate better final solutions for all instances, as it performs a more complete search than

intra-route operations. The actual cause needs further investigation, but one possible ex-

planation is that the perturbed solution used in RVND described in Section 4.4.2.2 is not

submitted to an intra-route local search before the neighborhoods generation, meaning

that even the best neighbor of a perturbed solution may have higher cost than the solution

found by performing an intra-route search in the perturbed solution.

5.5 Algorithm Progress and Results Quality

This experiment considers the progress of the algorithm, i.e. how better the final

solution is when compared to the initial solution, and the gap between the average cost

of final solutions and the best known values from the literature. Table 5.5 presents the re-

sults. The first two columns contain information about the instance tested, column Initial

presents the cost of the solution initially generated (as described in Section 4.4.1) and its

gap to the best known values. Column Final presents the final solution cost reported by

the ILS approach proposed in this work followed by a column containing its gap to the

best known values. Column Dev from Initial reports the deviation of the final solutions

to the Initial solution, calculated as Dev to Initial = (Initial − Final)/Initial . Finally,

column Iterations presents how many iterations of the ILS algorithm were needed on av-

erage to find the final solution. Values are average of 10 runs, except when marked with +,

which are average of 3 runs.

33

Table 5.5: Algorithm progress and results quality.

Instance BKS Initial Gap1 Final Gap2 Dev to Initial Iterations
R01a 190.02 622.75 +227.73% 196.81 +3.57% 68.39% 4860
R02a 301.34 2135.50 +608.67% 365.82 +21.40% 82.87% 4533
R03a 532.00 4928.10 +826.33% 728.37 +36.91% 85.22% 4773
R04a+ 570.25 5817.19 +920.11% 751.06 +31.71% 87.08% 4223
R05a 626.93 6018.17 +859.94% 832.10 +32.73% 86.17% 2956
R07a 291.71 1494.90 +412.46% 333.28 +14.25% 77.70% 5836
R08a 487.84 5113.38 +948.17% 611.21 +25.29% 88.04% 5364
R09a+ 658.31 4963.64 +653.99% 811.37 +23.25% 86.65% 5541
R01b 164.46 538.37 +227.36% 184.19 +12.00% 65.78% 3613
R02b 295.66 1353.89 +357.92% 331.21 +12.02% 75.53% 5269
R03b 484.83 3432.30 +607.94% 582.65 +20.18% 83.02% 7183
R04b+ 529.33 4365.83 +724.78% 631.51 +19.30% 85.53% 6623
R05b+ 577.29 2733.30 +373.47% 664.62 +15.13% 75.68% 9151
R07b 248.21 1319.74 +431.70% 285.03 +14.83% 78.40% 4815
R08b 458.73 3981.04 +767.84% 538.92 +17.48% 86.46% 5451
R09b+ 593.49 12118.47 +1941.90% 716.44 +20.72% 94.08% 5639
Average +680.64% +20.05% 81.66% 5364

Gap1: Gap from initial solution to BKS.
Gap2: Gap from final solution to BKS.
Values are average of 10 runs.
+: average of 3 runs.

From the set of 20 instances, 16 were solved. Considering the gaps from final

solution to the best known values, good solutions were found for smaller instances, for

example instance R01a, R01b, and R02b. It is also notable that the gap value increases as

instances include more requests and vehicles, since the search spaces become dramatically

bigger. Exploring larger search spaces require a better balance between exploration (how

much of the search space is visited) and exploitation (how deep the search goes to find the

local optimal value). The balance on ILS is given by the strength of the perturbation step.

By making weak perturbations to current best solutions, exploration becomes difficult,

causing considerable time being spent in a region of the solution space that does not

contain the global optimal solution. On the other hand, too strong perturbations lead to

high exploration and low exploitation, meaning that the depth of the search in a promising

region of the solution space may be too superficial and better solutions are skipped.

Considering the progress from an initial solution to a final solution, deviation from

final to initial varied from 65.78% to 94.08%. This is mostly due to the fact that infeasible

solutions are very likely to be created by the initial solution generation step. Solution

costs becomes higher due to penalties added to the cost, which did not happen for final

34

solutions, meaning that all final solutions found in the evaluation were feasible.

5.6 Running Times

Table 5.6 presents a comparison between computing time taken by the proposed

approach and the computing time from two solvers from the literature. Column Gap1

presents the gap between the results found and the best known values, while CPU1

contains computing time, both values reported in the work by Cordeau and Laporte

(2003)(measured on a Pentium 4, 2 GHz computer). Column Gap1 presents the gap be-

tween the results found and the best known values, while column CPU2 has the computing

time, both values reported in the work by Parragh, Doerner and Hartl (2010) (executed on

a Pentium D computer with 3.2 GHz). Last two columns present the gap and computing

time from the proposed solution. Values are average of 10 runs, except for values noted

with +, which are average of 3 runs.

Table 5.6: CPU comparison.

Instance Gap1 CPU1 Gap2 CPU2 GAP-ILS CPU-ILS
R01a 0.41% 1.90 0.00% 8.98 3.57% 0.95
R02a 0.75% 8.06 0.15% 20.02 21.40% 10.04
R03a 1.74% 17.18 0.77% 33.21 36.91% 33.05
R04a 4.68% 28.77 1.40% 63.73 31.71% 136.52+

R05a 5.77% 46.24 1.72% 154.47 32.73% 164.40
R07a 1.05% 4.39 0.87% 9.62 14.25% 4.18
R08a 1.61% 20.44 1.61% 52.54 25.29% 46.09
R09a 3.77% 50.51 2.26% 143.08 23.25% 147.49+

R01b 0.32% 1.93 0.00% 12.87 12.00% 0.66
R02b 2.45% 8.29 1.19% 25.89 12.02% 10.61
R03b 3.37% 18.54 1.94% 44.32 20.18% 71.90
R04b 5.40% 31.18 2.11% 127.43 19.30% 189.60+

R05b 2.48% 54.33 1.94% 273.99 15.13% 419.11+

R07b 1.08% 4.23 0.00% 16.81 14.83% 3.67
R08b 3.04% 22.86 2.23% 56.96 17.48% 44.76
R09b 2.42% 51.28 2.43% 152.58 20.72% 288.59+

Average 2.52% 1.29% 20.05%
1: (CORDEAU; LAPORTE, 2003).
2: (PARRAGH; DOERNER; HARTL, 2010).
Values reported in minutes.
Values are average of 10 runs.
+: average of 3 runs.

35

Considering running times, the proposed solution performed better than the work

by Parragh, Doerner and Hartl (2010). However, the running time from the work by

Cordeau and Laporte (2003) is considerably smaller for larger instances. This is possibly

explained by the nature of the inter-route search performed in the proposed approach,

specially the usage of the Shift(1,1) neighborhood structure. By inserting a request in a

route in its best possible position, several cost recalculations must be performed to find

which position yields the smaller cost. The 8-steps evaluation is not a trivial operation,

as it iterates over the route multiple times, making it a bottleneck when executed too

often. A possible second cause relates to the result quality described in Section 5.5, poor

balancing between exploration and exploitation may result in considerable time spent in

non promising regions of the search space.

Although in some instances the ILS approach was faster than the work by Parragh,

Doerner and Hartl (2010), all gap values from ILS are greater than the ones achieved by

Cordeau and Laporte (2003) and by Parragh, Doerner and Hartl (2010). This is a possible

indication that the ILS was stopping prematurely, which indicates that the stop criterion

used needs to be reviewed. Best gap results were found on smaller instances, namely

R01a, R07a, R01b, R02b, R05b, R07b, and R08b, meaning that 2000 iterations without

improvement is a reasonable value for small instances. Instance with more requests and

vehicles seem to need a greater number of iterations without improvement. Perhaps an

ideal solution would be to calculate the number of iterations without improvements con-

sidering the instance size.

36

6 CONCLUSION

In this work, several variants and approaches proposed in the literature for the

Dial-a-Ride Problem (DARP) were initially presented. The metaheuristic known as Iter-

ated Local Search (ILS) was presented and proposed as a way to solve the DARP, with

the assumption that, due to the good results found in applying ILS to other VRP variants,

the ILS would be a suitable choice to solve DARP. Finally, an implementation of ILS for

DARP was described, evaluated and compared to other approaches from the literature.

Combined with ILS, several techniques and approaches were used based on works

that provided good results to DARP or VRP variants. By using and adapting the same

techniques and combining them with ILS, it was expected that equally good results would

be found. The evaluations presented show that the objective was reached. The proposed

solution delivered results with reasonable optimality, which evidences its suitability to the

problem at hand.

One notable contribution from this work is the improvement made in the initial

solution generation algorithm proposed byParragh, Doerner and Hartl (2010), which gen-

erated better results for all instances used in the evaluation.

It was noted, however, that some improvements could still be made to the pro-

posed approach. The usage of a Random Variable Neighborhood Descent delivered better

results than the usage of intra-route 2-opt only, but also caused a great increase in average

time needed to solve instances of the problem. The growth is expected due to the nature of

the procedure, but bottlenecks were noticed. One of the bottlenecks was in the Shift(1,1)

neighborhood structure: because it adds requests in the best position in a route, several

cost recalculations must be performed. The solution representation was designed to keep

record of intermediate values in order to speed up cost calculation. However, due to the

nature of the 8-steps evaluation, which need to iterate over the whole route to perform

optimization, such improvement was not achieved. In order to improve performance, the

8-step evaluation scheme needs to be optimized, or some other alternative to solution eval-

uation must be created. Other neighborhood structures also need to be tested, specially

the ones specific to DARP, as the ones used in this work were fairly generic and could be

used in most VRP variants.

Another possible improvement is to investigate how dynamically setting the per-

turbation strength could lead to better results. Perhaps a stronger, or even multiple, oper-

ations could be used in the perturbation step when the ILS has been on the same optimal

37

solution for several iterations.

To sum up, an ILS solution for the Dial-a-Ride problem was described and imple-

mented. The proposed solution showed good results to most instances used for testing.

The knowledge generated from this research indicates that ILS is a promising metaheuris-

tic to be used for DARP and possibly for its variants.

38

REFERENCES

BIANCHI, L. et al. Hybrid metaheuristics for the vehicle routing problem with stochastic
demands. Journal of Mathematical Modelling and Algorithms, Springer, v. 5, n. 1, p.
91–110, 2006.

CHEN, P.; HUANG, H.-k.; DONG, X.-Y. Iterated variable neighborhood descent
algorithm for the capacitated vehicle routing problem. Expert Systems with
Applications, Elsevier, v. 37, n. 2, p. 1620–1627, 2010.

CORDEAU, J.-F. A branch-and-cut algorithm for the dial-a-ride problem. Operations
Research, INFORMS, v. 54, n. 3, p. 573–586, 2006.

CORDEAU, J.-F.; LAPORTE, G. A tabu search heuristic for the static multi-vehicle
dial-a-ride problem. Transportation Research Part B: Methodological, Elsevier, v. 37,
n. 6, p. 579–594, 2003.

CORDEAU, J.-F.; LAPORTE, G. The dial-a-ride problem: models and algorithms.
Annals of Operations Research, Springer, v. 153, n. 1, p. 29–46, 2007.

CORDEAU, J.-F. et al. Transportation on demand. Handbooks in operations research
and management science, Elsevier, v. 14, p. 429–466, 2007.

CROES, G. A. A method for solving traveling-salesman problems. Operations research,
INFORMS, v. 6, n. 6, p. 791–812, 1958.

JAW, J.-J. et al. A heuristic algorithm for the multi-vehicle advance request dial-a-ride
problem with time windows. Transportation Research Part B: Methodological,
Elsevier, v. 20, n. 3, p. 243–257, 1986.

JORGENSEN, R. M.; LARSEN, J.; BERGVINSDOTTIR, K. B. Solving the dial-a-ride
problem using genetic algorithms. Journal of the operational research society, Nature
Publishing Group, v. 58, n. 10, p. 1321–1331, 2007.

JR, J. W. B.; KAKIVAYA, G. K. R.; STONE, J. R. Intractability of the dial-a-ride problem
and a multiobjective solution using simulated annealing. Engineering Optimization,
Taylor & Francis, v. 30, n. 2, p. 91–123, 1998.

LOURENÇO, H. R.; MARTIN, O. C.; STÜTZLE, T. Iterated local search. In:
Handbook of metaheuristics. [S.l.]: Springer, 2003. p. 320–353.

PARRAGH, S. N. Introducing heterogeneous users and vehicles into models and
algorithms for the dial-a-ride problem. Transportation Research Part C: Emerging
Technologies, Elsevier, v. 19, n. 5, p. 912–930, 2011.

PARRAGH, S. N.; DOERNER, K. F.; HARTL, R. F. Variable neighborhood search for
the dial-a-ride problem. Computers & Operations Research, Elsevier, v. 37, n. 6, p.
1129–1138, 2010.

PENNA, P. H. V.; SUBRAMANIAN, A.; OCHI, L. S. An iterated local search heuristic
for the heterogeneous fleet vehicle routing problem. Journal of Heuristics, Springer,
v. 19, n. 2, p. 201–232, 2013.

39

PSARAFTIS, H. N. A dynamic programming solution to the single vehicle many-to-
many immediate request dial-a-ride problem. Transportation Science, INFORMS,
v. 14, n. 2, p. 130–154, 1980.

ROPKE, S.; CORDEAU, J.-F.; LAPORTE, G. Models and branch-and-cut algorithms
for pickup and delivery problems with time windows. Networks, Wiley Online Library,
v. 49, n. 4, p. 258–272, 2007.

SAVELSBERGH, M. W. The vehicle routing problem with time windows: Minimizing
route duration. ORSA journal on computing, INFORMS, v. 4, n. 2, p. 146–154, 1992.

SUBRAMANIAN, A. et al. A parallel heuristic for the vehicle routing problem with
simultaneous pickup and delivery. Computers & Operations Research, Elsevier, v. 37,
n. 11, p. 1899–1911, 2010.

	Abstract
	Resumo
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Literature Review
	2.1 Search Algorithms
	2.1.1 Iterated Local Search
	2.1.2 Local search 2-opt

	3 The Dial-a-Ride Problem
	3.1 Mathematical formulation

	4 Proposed Approach
	4.1 Solution Representation
	4.2 Solution Evaluation
	4.2.1 Forward time slack

	4.3 Preprocessing
	4.4 Iterated Local Search Applied to DARP
	4.4.1 Initial Solution Generation
	4.4.2 Local Search
	4.4.2.1 Intra Route Search: 2-opt
	4.4.2.2 Intra and Inter Route Search

	4.4.3 Perturbation
	4.4.4 Acceptance Criterion
	4.4.5 Stop condition

	5 Experimental Results
	5.1 Environment
	5.2 Instances
	5.3 Initial Solution Evaluation
	5.4 Local Search Comparison
	5.5 Algorithm Progress and Results Quality
	5.6 Running Times

	6 Conclusion
	References

