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a b s t r a c t

A classical theorem of Erdős, Lovász and Spencer asserts that the
densities of connected subgraphs in large graphs are independent.
We prove an analogue of this theorem for permutations and we
then apply the methods used in the proof to give an example of
a finitely approximable permutation parameter that is not finitely
forcible. The latter answers a question posed by two of the authors
and Moreira and Sampaio.

© 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Computer science applications that involve large networks form one of the main motivations to
develop methods for the analysis of large graphs. The theory of graph limits, which emerged in a
series of papers by Borgs, Chayes, Lovász, Sós, Szegedy and Vesztergombi [4,6,5,18], gives analytic
tools to copewith problems related to large graphs. It also provides an analytic view ofmany standard
concepts, e.g. the regularitymethod [19] or property testing algorithms [14,20]. In this paper, we focus
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on another type of discrete objects, permutations, and we give permutation counterparts of some of
classical results on large graphs. It isworth noting that not all results on large graphs have permutation
analogues and vice versa as demonstrated, for example, by the finite forcibility of graphons and
permutons [9] (vaguely speaking, finite forcibility means that a global structure is determined by
finitely many substructure densities).

Both our main results are related to the dependence of possible densities of (small) substructures.
In the case of graphs, Erdős, Lovász and Spencer [8] considered three notions of substructure densities:
the subgraph density, the induced subgraph density and the homomorphism density. They showed
that these types of densities in a large graph are strongly related and that the densities of connected
graphs are independent in the sense that none of the densities can be expressed as a function of the
others. The result has a natural formulation in the language of graph limits, which are called graphons:
the body of possible densities of any k connected graphs in graphons, which is a subset of [0, 1]k, has
a non-empty interior (in particular, it is full dimensional).

Our first result asserts that the analogous statement is also true for permutations. As in the case
of graphs, it is natural to cast our result in terms of permutation limits, called permutons. The theory
of permutation limits was initiated in [12,15] (also see [21]) and successfully applied e.g. in [14,17].
To state our first result, we use the notion of a indecomposable permutation, which is an analogue of
graph connectivity in the sense that an indecomposable permutation cannot be split into independent
parts. Let T q be the body of possible densities of indecomposable permutations of order at most q in
a permuton (a precise definition and further details can be found in Section 2.1). Our first result says
that T q has a non-empty interior for every q. In particular, it contains B(w, ε), for some vector w and
some ε > 0, where B(w, ε) denotes the ball of radius ε aroundw.

Theorem 1. For every integer q ≥ 2, there exist a vector w ∈ T q and ε > 0 such that B(w, ε) ⊆ T q.

Our second result is related to algorithms for large permutations. Such algorithms are counterparts
of extensively studied graph property testing, see e.g. [2,3,10,11,22]. In the case of permutations,
two of the authors and Moreira and Sampaio [13,14] established that every hereditary permutation
property is testable with respect to the rectangular distance and two of the other authors [16]
strengthened the result to testing with respect to Kendall’s tau distance. In addition to property
testing, a related notion of parameter testing was also considered in [14] where testable bounded
permutation parameters were characterized.

However, the interplay between testing and the finite forcibility of permutation parameters was
not fully understood in [14]. In particular, the authors asked [14, Question 5.5] whether there exists a
testable bounded permutation parameter that is not finitely forcible. Our second result gives a positive
answer to this question.

Theorem 2. There exists a bounded permutation parameter f that is finitely approximable but not finitely
forcible.

Informally speaking, we utilize the methods used in the proof of Theorem 1 to construct a
permutation parameter that oscillates on indecomposable permutations, with bounded amplitude,
so that the parameter is testable though it fails to be finitely forcible.

2. Preliminaries

In this section, we introduce the notions used throughout the paper. Most of our notions are
standard but we include all of them for the convenience of the reader.

2.1. Permutations

A permutation of order n is a bijectivemapping from [n] to [n], where [n] denotes the set {1, . . . , n}.
The order of a permutation σ is denoted by |σ |. We say a permutation is non-trivial if it has order
greater than 1.Wedenote by Sn the set of all permutations of order n and letS =


n∈N Sn. An inversion

of a permutation σ is a pair (i, j), i, j ∈ [|σ |], such that i < j and σ(i) > σ(j). An interval I in [m] is a
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set of integers of the form {k | a ≤ k ≤ b} for some a, b ∈ [m]. An interval I is proper if a < b and
I ≠ [m].

We say that a permutation σ of order n is indecomposable if there is no 1 ≤ m < n such that
σ([m]) = [m]. Note that

Pr
σ∈Sn

(σ is not indecomposable) ≤

n−1
m=1

m!(n − m)!

n!
=

n−1
m=1


n
m

−1

≤
2
n

+

n−2
m=2


n
m

−1

≤
2
n

+ (n − 3)
2

n(n − 1)
. (1)

Thus, limn→∞ Prσ∈Sn(σ is indecomposable) = 1.
We say that a permutation σ is simple if it does not map any proper interval onto an interval. For

example the permutation (σ (1), . . . , σ (4)) = (2, 4, 1, 3) is simple.
Albert, Atkinson and Klazar [1] showed that a random permutation is simple with a probability

bounded away from zero. Specifically, they proved the following.

lim
n→∞

Pσ∈Sn(σ is simple) = e−2. (2)

Letπ be a permutation of order k andσ a permutation of order n.We introduce threeways inwhich
π can appear in σ : as a subpermutation, through a monomorphism and through a homomorphism.
We say that π is a subpermutation of σ if there exists a strictly increasing function f : [k] → [n],
such that π(i) > π(j) if and only if σ(f (i)) > σ(f (j)) for every i, j ∈ [k]. We then say that f ([k])
induces a subpermutation π in σ . Let Occ(π, σ ) be the set of all such functions f from [k] into [n] and
letΛ(π, σ ) = |Occ(π, σ )|. The density of π in σ is defined as

t(π, σ ) =

Λ(π, σ )

n
k

−1

if k ≤ n and

0 otherwise.

A non-decreasing function f : [k] → [n] is a homomorphism of π to σ if σ(f (i)) > σ(f (j)) for every
i, j ∈ [k] such that i < j and π(i) > π(j), that is, f preserves inversions. A monomorphism is a
homomorphism that is injective.

Let Hom(π, σ ) and Mon(π, σ ) be the sets of homomorphisms and monomorphisms of π to σ ,
respectively, and let Λhom(π, σ ) and Λmon(π, σ ) denote the sizes of the respective sets. Note that
Occ(π, σ ) ⊆ Mon(π, σ ) ⊆ Hom(π, σ ). The homomorphism density thom and monomorphism density
tmon are defined as follows:

tmon(π, σ ) =

Λmon(π, σ )


n
k

−1

if k ≤ n and

0 otherwise,

thom(π, σ ) = Λhom(π, σ )


n + k − 1

k

−1

.

The three densities that we have just introduced are analogues of the induced subgraph density,
homomorphism density and subgraph density for graphs studied in [8].

Let q be an integer and let {τ1, . . . , τr} be the set of all non-trivial indecomposable permutations
of order at most q. We consider the following three vectors

tq(σ ) = (t(τ1, σ ), . . . , t(τr , σ )),
tqmon(σ ) = (tmon(τ1, σ ), . . . , tmon(τr , σ )), and

tqhom(σ ) = (thom(τ1, σ ), . . . , thom(τr , σ )).
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Our aim is to understand possible densities of subpermutations in large permutations. This leads
to the following definitions, which reflect the possible asymptotic densities of the indecomposable
permutations of order at most q in permutations:

T q
= {v ∈ Rr

| ∃(σn)
∞

n=1 such that tq(σn) → v and |σn| → ∞},

T q
mon = {v ∈ Rr

| ∃(σn)
∞

n=1 such that tqmon(σn) → v and |σn| → ∞}, and

T q
hom = {v ∈ Rr

| ∃(σn)
∞

n=1 such that tqhom(σn) → v and |σn| → ∞}.

In Section 2.2, we will see that T q and T q
mon have another, simpler definition in language of

permutons. Now we give three observations on how the sets T q, T q
mon and T q

hom relate to each other.

Observation 3. The sets T q
mon and T q

hom are equal for every q ∈ N.

Proof. Observe that for every fixed integer k,

Λhom(τ , σ )−Λmon(τ , σ ) ≤


k
2


nk−1

= O(nk−1),

for every σ of order n and τ of order k.
Hence, for every permutation τ and every real ε > 0 there exists n0 such that |tmon(τ , σ ) −

thom(τ , σ )| < ε for every permutation σ with |σ | > n0. The statement now follows. �

In view of Observation 3, we will discuss only T q
mon in the rest of the paper.

Observation 4. For every q ∈ N, the set T q
mon is closed.

Proof. Consider a convergent sequence (wn)n∈N ⊆ T q
mon and let w = limn→∞ wn. For each n, choose

σn such that ∥tqmon(σn)− wn∥ ≤ 1/n. Observe that tqmon(σn) converges tow. �

Observation 5. The set T q is a non-singular linear transformation of T q
mon for every q ∈ N.

Proof. Note that Λmon(π, σ ) =


π ′∈P Λ(π
′, σ ), where P is a set of permutations π ′ of the

same order as π such that the identity mapping is a monomorphism from π to π ′. Consequently,
tmon(π, σ ) =


π ′∈P t(π ′, σ ). This gives that T q

mon is a linear transformation of T q. Observe that if we
order τ1, . . . , τr by the number of inversions, the coefficient matrix of the induced linear mapping is
upper triangular with diagonal entries equal to 1. We conclude that the linear transformation of T q is
non-singular. �

2.2. Permutation limits

In this subsection, we survey the theory of permutation limits, which was introduced in [12,15] (a
similar representationwas used in [21]).We follow the terminology used in [17]. An infinite sequence
(σi)i∈N of permutations with |σi| → ∞ is convergent if t(τ , σi) converges for every permutation
τ ∈ S. Observe that every sequence of permutations has a convergent subsequence. A convergent
sequence can be associated with an analytic limit object, a permuton. A permuton is a probability
measureΦ on the σ -algebra of Borel sets of the unit square [0, 1]2 such thatΦ has uniformmarginals,
i.e., Φ ([α, β] × [0, 1]) = Φ ([0, 1] × [α, β]) = β − α for every 0 ≤ α ≤ β ≤ 1. We denote the set
of all permutons by P.

Given a permuton Φ , a Φ-random permutation of order n is a permutation σΦ,n obtained in the
following way. Sample n points (x1, y1), . . . , (xn, yn) in [0, 1]2 at random with the distribution given
by Φ . Note that the values of xi are pairwise distinct with probability one and the same holds for the
values of yi. Let i1, . . . , in ∈ [n] be such that xi1 < xi2 < · · · < xin . Then the permutation σΦ,n is
the unique bijective mapping from [n] to [n] satisfying that σΦ,n(j) < σΦ,n(j′) if and only if yij < yij′
for every j, j′ ∈ [n]. Informally speaking, the values xi determine the ordering of the points and the
relative order of the values yi determines the relative order of the elements of the permutation.
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Fig. 1. The limits of sequences

π1
i


i∈N ,


π2
i


i∈N ,


π3
i


i∈N .

If Φ is a permuton and σ is a permutation of order n, then t(σ ,Φ) is the probability that a Φ-
random permutation of order n is σ . We say that a permutonΦ is a limit of a convergent sequence of
permutations (σi)i∈N if

lim
i→∞

t(τ , σi) = t(τ ,Φ)

for every τ ∈ S. Every convergent sequence of permutations has a limit and the permuton
representing the limit of a convergent sequence of permutations is unique.

We now give some examples of the notions we have just defined (the corresponding permutons
are depicted in Fig. 1). Let us consider a sequence


π1
i


i∈N such that π1

i is the identity permutation
of order i, i.e., π1

i (k) = k for k ∈ [i]. This sequence is convergent and its limit is the permuton I
with support {(x, x), x ∈ [0, 1]} andmeasure uniformly distributed on its support. Similarly, the limit
of a sequence


π2
i


i∈N, where π2

i is the permutation of order i defined as π2
i (k) = i + 1 − k for

k ∈ [i], is the permutonwith support {(x, 1 − x), x ∈ [0, 1]} andmeasure uniformly distributed on its
support.

Next, consider a sequence (π3
i )i∈N such that π3

i is a uniformly random permutation of order i. This
sequence is convergentwith probability one and its limit is the uniformprobabilitymeasure on [0, 1]2
with probability one.

Similarly to the subpermutation density, we can define the monomorphism density of a
permutation τ in a permuton Φ as the probability that the identity mapping to a random Φ-
permutation is a monomorphism of τ . Since we view permutons as representing large permutations,
if we defined homomorphism densities in a natural way, they would coincide with monomorphism
densities. So, we restrict our study to subpermutation densities and monomorphism densities in
permutons. By analogy to the finite case, we define the vectors

tq(Φ) = (t(τ1,Φ), . . . , t(τr ,Φ)) and
tqmon(Φ) = (tmon(τ1,Φ), . . . , tmon(τr ,Φ)),

where q ∈ N and {τ1, . . . , τr} is the set of all non-trivial indecomposable permutations of order at
most q.

If Φ is a permuton and σi is a Φ-random permutation of order i, then the sequence (σi)i∈N is
convergent with probability one and Φ is its limit. In particular, this means that for every finite set
of permutations P and every ε > 0, there exists a permutation ϕ such that |t(π,Φ)− t(π, ϕ)| < ε
for every π ∈ P . This yields an alternative description of T q as the set {tq(Φ) | Φ ∈ P}. Similarly,
T q
mon = {tqmon(Φ) | Φ ∈ P}.

2.3. Permuton constructions

In this section we introduce constructions of step-up permutons and a direct sum of permutons,
which we use in Section 3, and we derive formulae for densities of indecomposable subpermutations
in the constructed permutons.

The step-up permutons are permutons with simple structure corresponding to a weighted
permutation. They are defined as follows. Let σ be a permutation of order n and let v = (v1, . . . , vn) ∈

Rn
+
be such that


i∈[n] vi ≤ 1, where R+ is the set of positive reals. The step-up permuton of σ and

v is the permuton Φv
σ such that the support of the measure Φv

σ is formed by the segments between
the points (


j<i vj,


σ(j)<σ(i) vj) and (


j≤i vj,


σ(j)≤σ(i) vj) for i ∈ [n] and the segment between the
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Fig. 2. The permutonΦv
σ for σ = (2, 4, 3, 1) and v = (1/6, 1/4, 1/12, 1/4).

Fig. 3. The permuton (1/3,Φ1)⊕ (1/6,Φ2)⊕ (1/4,Φ3).

points (
n

j=1 vj,
n

j=1 vj) and (1, 1). Note that this uniquely determines the permutonΦv
σ because it

must have uniform marginals. See Fig. 2 for an example.
We now define the direct sum of permutons with weights. For k ∈ N, a sequence of permutons

(Φi)i∈[k] and (pi)i∈[k] ∈ Rk
+
such that


i∈[k] pi ≤ 1, the direct sum of permutons Φi with weights pi is

denoted byΦ =


i∈[k](pi,Φi) and is defined as follows:

Φ(S) =

k+1
i=1

piΦi(θi(S ∩ Ci))

for every Borel set S, whereΦk+1 = I (the first permuton in Fig. 1), pk+1 = 1 −
k

i=1 pi,

Ci =


i−1
j=1

pj,
i

j=1

pj

2

(3)

and θi is a map from Ci to [0, 1]2 defined as

θi((x, y)) =


x −

i−1
j=1

pj

pi
,

y −

i−1
j=1

pj

pi


for every i ∈ [k + 1]. See Fig. 3 for an example.

For a permutation τ of order k, we call an ordered partitionP = (P1, . . . , Pℓ) of [k] a τ -compressive
partition if

• Pi is an interval for every i ∈ [ℓ],
• a < b for every a ∈ Pi and b ∈ Pj with i < j, and
• for every i ∈ [ℓ], there exists an integer ci, such that τ(a) = a + ci for every a ∈ Pi. (In particular,
τ(Pi) is an interval for every i ∈ [ℓ].)
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Wedenote the set of all τ -compressive partitions byR(τ ). Note that for every permutation τ , there
exists at least one τ -compressive partition: the partition into singletons.

For a permutation τ of order k and a τ -compressive partition P = (P1, . . . , Pℓ), let τ/P be a
subpermutation of τ of order ℓ induced by {a1, . . . , aℓ} where ai ∈ Pi for every i ∈ [ℓ]. Note that τ/P
is unique, in particular, it is independent of the choice of the elements ai.

In other words, the permutation τ/P is a permutation that can be obtained from τ by shrinking
each interval Pi and its image into single points, without changing the relative order of the elements
of the permutation. For instance, P = ({1, 2}, {3}, {4, 5}) is a (4, 5, 1, 2, 3)-compressive partition,
with (4, 5, 1, 2, 3)/P = (3, 1, 2).

Observation 6. Let τ be a non-trivial indecomposable permutation of order k, σ a permutation of order
n ≥ k and let p = (p1, . . . , pn) ∈ Rn

+
be such that


i∈[n] pi ≤ 1. It follows that

t(τ ,Φp
σ ) = k!


P∈R(τ )


ψ∈Occ(τ/P ,σ )

|P |
i=1

p|Pi|
ψ(i)

|Pi|!
.

Proof. Consider k distinct points in the support of Φp
σ and label them (xi, yi), i ∈ [k], in such a way

that xi < xj if i < j for every i, j ∈ [k]. Let i1 < i2 < · · · < ik′ be the indices of the segments of the
support (numbered from left to right) that contain at least one of the points and let P = {P1, . . . , Pk′}
be a partition of [k] such that i ∈ Pj if the point (xi, yi) lies on the ijth segment.

Assume that the points yield the permutation τ . Then, P is a τ -compressive partition and the
subpermutation σ ′ of σ induced by {i1, . . . , ik′} is τ/P . (Note that since τ is irreducible, none of the
points lies on the (k + 1)st segment of the support of Φp

σ .) The converse is also true; fix k′ segments
with indices 1 ≤ i1 < · · · < ik′ ≤ n and a τ -compressive partition P = {P1, . . . , Pk′} such that the
subpermutation σ ′ of σ induced by {i1, . . . , ik′} is τ/P . Then any choice of points (x1, y1), . . . , (xk, yk)
where each (xt , yt) lies on the segment ij such that t ∈ Pij yields the permutation τ .

Note that k random points chosen based on the distribution Φp
σ are distinct and lie in the support

of Φp
σ with probability one. The probability that they correspond to a given τ -compressive partition

P and ψ ∈ Occ(τ/P , σ ) is k!
|P |

i=1


p|Pi|
ψ(i)/|Pi|!


. Since these events are disjoint for different pairs

(P , ψ), the result follows. �

Observation 7. Let τ be a non-trivial indecomposable permutation of order k and let m be a positive
integer. Let Φ1, . . . ,Φm be permutons and let x = (x1, . . . , xm) ∈ Rm

+
be such that


i∈[m]

xi ≤ 1. The
permutonΦx

=


i∈[m]
(xi,Φi) satisfies

t(τ ,Φx) =

m
i=1

xki t(τ ,Φi).

Proof. Observe that, if k random points chosen based on the distributionΦx yield an indecomposable
permutation, then all the points lie in the same Ci, for some i ∈ [m] (where Ci is given by (3) in the
definition of the direct sum of permutons). The probability that all the points are in Ci is xki since
Φx(Ci) = xi. Conditioned on this event, the probability that the points yield τ is t(τ ,Φi). The result
follows. �

Analogues of Observations 6 and 7 for densities of monomorphisms also hold.

2.4. Testing permutation parameters

A permutation parameter f is a function from S to R. A parameter f is finitely forcible if there exists
a finite family of permutations A such that for every ε > 0 there exist an integer n0 and a real δ > 0
such that if σ and π are permutations of order at least n0 satisfying |t(τ , σ )− t(τ , π)| < δ for every
τ ∈ A, then |f (σ )− f (π)| < ε. The set A is referred to as a forcing family for f .
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A permutation parameter f is finitely approximable if for every ε > 0 there exist δ > 0, an integer
n0 and a finite family of permutations Aε such that if σ and π are permutations of order at least n0
satisfying |t(τ , σ )− t(τ , π)| < δ for every τ ∈ Aε , then |f (σ )− f (π)| < ε.

A permutation parameter f is testable if for every ε > 0 there exist an integer n0 and f̃ : Sn0 → R
such that for every permutation σ of order at least n0, a randomly chosen subpermutation π of σ of
size n0 satisfies |f (σ )− f̃ (π)| < ε with probability at least 1 − ε. The following was given in [14].

Lemma 8. A bounded permutation parameter f is testable if and only if it is finitely approximable.

3. Properties of the sets T q and T q
mon

In this section, we show that densities of non-trivial indecomposable permutations are mutually
independent and,more generally, that T q contains a ball.We start by considering the linear span of T q.

Lemma 9. For every q ∈ N, span(T q) = Rr , where r is the number of non-trivial indecomposable
permutations of order at most q.

Proof. Let {τ1, . . . , τr} be the set of all non-trivial indecomposable permutations of order at most q.
For a contradiction, suppose that span(T q) has dimension less than r , i.e., there exist reals c1, . . . , cr ,
not all of which are zero, such that

r
i=1

civi = 0

for every (v1, . . . , vr) ∈ span(T q). Therefore,
r

i=1

cit(τi,Φ) = 0

for every permutonΦ ∈ P.
Consider the permutations τi such that ci ≠ 0. Among these pick a τk of maximum order. Ob-

servation 6 yields that the following holds for s = |τk| and every x = (x1, . . . , xs) ∈ Rs
+

such thats
i=1 xi ≤ 1:

r
i=1

cit(τi,Φx
τk
) =

r
i=1

ci|τi|!


P∈R(τi)


ψ∈Occ(τi/P ,τk)

|P |
j=1

x
|Pj|
ψ(j)

|Pj|!
= p(x1, . . . , xs),

where p is a polynomial.We nowargue that p is a polynomial of degree s (and therefore it is a non-zero
polynomial). Clearly, the polynomial phas degree atmost s. SinceOcc(τ ′, τk) = ∅ for every τ ′ of order s
such that τ ′

≠ τk, cks!x1x2 . . . xs is the only term of p containing themonomial x1x2 . . . xs with nonzero
coefficient. Therefore, there exists x such that

r
i=1 cit(τi,Φ

x
τk
) ≠ 0, which is a contradiction. �

Now, we will prove the main result of this section, Theorem 1. It shows that the interior of T q is
non-empty. Observation 5 yields the same conclusion for T q

mon.

Proof of Theorem 1. Let {τ1, . . . , τr} be the set of all non-trivial indecomposable permutations of
order at most q and letΦ1, . . . ,Φr be permutons such that {tq(Φi) | i = 1, . . . , r} spans Rr . Consider
the matrix V = (vi,j)

r
i,j=1, where vi,j = t(τj,Φi). Observe that the matrix V is non-singular.

Consider a vector x = (x1, . . . , xr) ∈ (0, r−1)r and let Φx
=


i∈[r](xi,Φi). By Observation 7, we
have

t(τj,Φx) =

r
i=1

x
|τj|

i t(τj,Φi) =

t
i=1

x
|τj|

i vi,j.
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Let Ψ be a map from Rr to Rr such that

Ψj(x) =

r
i=1

x
|τj|

i vi,j for all j ∈ [r].

Since we have Ψ (x) = tq(Φx), we get that

Ψ ((0, r−1)r) = {Ψ (x) | x ∈ (0, r−1)r} ⊆ T q.

The Jacobian Jac(Ψ )(x) is a polynomial in x1, . . . , xr . Since for x1 = · · · = xr = 1 we have

Jac(Ψ ) = det(vi,j · |τj|)
r
i,j=1 =


r

j=1

|τj|


det V ≠ 0,

Jac(Ψ ) is a non-zero polynomial.
Hence, there exists x ∈ (0, r−1)r for which Jac(Ψ )(x) ≠ 0. Consequently, T q contains a ball around

w for w = Ψ (x). �

Theorem 1 implies that for every finite family A of indecomposable permutations, there exist
permutons Φ and Φ ′ and an indecomposable permutation τ such that t(π,Φ) = t(π,Φ ′) for every
π ∈ A and t(τ ,Φ) ≠ t(τ ,Φ ′). The following lemma shows that an analogous statement holds for
any finite family of permutations, not only for indecomposable permutations.

Lemma 10. For every finite set of permutations A = {τ1, . . . , τk}, there exist a permutation τ and
permutonsΦ andΦ ′ such that t(τi,Φ) = t(τi,Φ ′) for every i ∈ [k] and t(τ ,Φ) ≠ t(τ ,Φ ′).

Proof. Let B = {π1, . . . , πk+1} be a family of indecomposable permutations each of order n with
n > |τi| for every i ∈ [k], such that for everyπj ∈ B, there is no ℓ < n satisfyingπj(ℓ+1) = πj(ℓ)+1.
We call permutations with this property thorough. By (1) in Section 2.1 a random permutation of
order n is indecomposable with probability tending to one as n tends to infinity. Moreover, by (2)
in Section 2.1 such permutations are thorough with probability bounded away from zero, because
every simple permutation is thorough. Therefore, a family B of k + 1 indecomposable thorough
permutations exists for n sufficiently large.

LetΦu
=


i∈[k+1](ui,Φ
n
πi
) for u = (u1, . . . , uk+1) ∈ (0, 1

k+1 ]
k+1 where n = (1/n, . . . , 1/n  

n×

).

Observe that for a thorough permutationπ , the partition into singletons is the onlyπ-compressive
partition. Hence, by Observations 6 and 7, t(πi,Φ

u) = n!(ui/n)n for every i ∈ [k+1]. For every j ∈ [k],
the function u → t(τj,Φu) is continuous for every j ∈ [k]. We consider the continuous map Γ from
(0, 1/(k + 1)]k+1 to Rk such that

Γ (u) = (t(τ1,Φu), . . . , t(τk,Φu)).

Now, consider any k-dimensional sphere in (0, 1/(k+1)]k+1. The Borsuk–Ulam Theorem [7] yields
the existence of two distinct points on its surface that are mapped by Γ to the same point in [0, 1]k.
Hence, there exist distinct v = (v1, . . . , vk+1) and v′

= (v′

1, . . . , v
′

k+1) such that t(τj,Φv) = t(τj,Φv′

)

for every j ∈ [k]. However, if, say vi ≠ v′

i , then t(πi,Φ
v) = n!(vi/n)n ≠ n!(v′

i/n)
n

= t(πi,Φ
v′

).
Therefore, we may take τ = πi,Φ = Φv, andΦ ′

= Φv′

. �

4. Non-forcible approximable parameter

For this section, we fix a sequence (τi)i∈N of permutations of strictly increasing orders that satisfies
the following: For every k > 1, there exist permutons Φk and Φ ′

k such that t(σ ,Φk) = t(σ ,Φ ′

k)
for every permutation σ of order at most |τk−1|, and t(τk,Φk) > t(τk,Φ ′

k). Such a sequence (τi)i∈N
exists by Lemma 10. We fix such Φk and Φ ′

k for all k ∈ N for the rest of this section. Let γk =

t(τk,Φk)− t(τk,Φ ′

k) for every k ∈ N.
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Let (αi)i∈N be a sequence of positive reals satisfying


i∈N αi < 1/2 and


i>k αi < αkγk/4 for
every k. The main result of this section is that the permutation parameter

f•(σ ) =


i∈N

αit(τi, σ )

is finitely approximable but not finitely forcible.

Lemma 11. The permutation parameter f• is finitely approximable.
Proof. Let ε > 0 be given. Since the sum


i∈N αi converges, there exists k such that


i>k αi < ε/2.

SetA = {τ1, . . . , τk} and δ = ε. Consider two permutations σ andπ that satisfy |t(τ , σ )− t(τ , π)| <
δ for every τ ∈ A. We obtain that

|f•(σ )− f•(π)| =


i∈N

αi(t(τi, σ )− t(τi, π))


≤


i∈N

αi |t(τi, σ )− t(τi, π)|

<

i≤k

αiδ +


i>k

αi|t(τi, σ )− t(τi, π)|

< δ/2 +


i>k

αi · 1 < ε.

It follows that the parameter f• is finitely approximable. �

In the following lemma, we show that f• is not finitely forcible.

Lemma 12. The permutation parameter f• is not finitely forcible.
Proof. Suppose that f• is finitely forcible and that A is a forcing family for f•. Let τi, γi,Φi and Φ ′

i
be as in the definition of f• and let k be such that maximum order of a permutation in A is at most
|τk−1|. We have t(ρ,Φk) = t(ρ,Φ ′

k) for every ρ ∈ A, t(τi,Φk) = t(τi,Φ ′

k) for every i < k, and
t(τk,Φk)− t(τk,Φ ′

k) = γk.
Let ε = αkγk/4. Let δ > 0 be as in the definition of finite forcibility of f•. Without loss of generality

we may assume that δ < ε.
There exist a Φk-random permutation σ and a Φ ′

k-random permutation σ ′ such that |t(ρ, σ ) −

t(ρ, σ ′)| < δ for every ρ ∈ A, |t(τi, σ ) − t(τi, σ ′)| < δ for every i < k and t(τk, σ ) − t(τk, σ ′) >
γk − δ > 3γk/4. Let us estimate the sum in the definition of f• with the kth term missing. 

i∈N,i≠k

αi(t(τi, σ )− t(τi, σ ′))


=


i<k

αi

t(τi, σ )− t(τi, σ ′)


+


i>k

αi

t(τi, σ )− t(τi, σ ′)


<

i<k

αiδ +


i>k

αi <
αkγk

8
+
αkγk

4
<
αkγk

2
.

This leads to the following

|f•(σ )− f•(σ ′)| =


i∈N

αi

t(τi, σ )− t(τi, σ ′)


≥ αk


t(τk, σ )− t(τk, σ ′)


−

 
i∈N,i≠k

αi

t(τi, σ )− t(τi, σ ′)


>

3
4
αkγk −

αkγk

2
=
αkγk

4
= ε.

This contradicts our assumption that f• is finitely forcible. �
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Lemmas 11 and 12 imply Theorem 2. Recall that, by Lemma 8 the testable bounded permutation
parameters are precisely the finitely approximable ones.
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