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ABSTRACT

We study a variant of the vehicle routing problem that allows vehicles with multiple com-

partments. The need for multiple compartments frequently arises in practical applications

when there are several products of different quality or type, that must be kept or handled

separately. The resulting problem is called the multi-compartment vehicle routing prob-

lem (MCVRP). We propose a tabu search heuristic and embed it into an iterated local

search to solve the MCVRP. In several experiments we analyze the performance of the

iterated tabu search and compare it with results from the literature. We find that it consis-

tently produces solutions that are better than existing heuristic algorithms.

Keywords: Vehicle routing problem. Multi-compartment. Algorithm. Heuristic. Tabu

Search.



Uma heurística eficiente para o problema de roteamento de veículos com múltiplos

compartimentos

RESUMO

Este trabalho apresenta uma variação do problema de roteamento de veículos que permite

o uso de veículos com múltiplos compartimentos. A necessidade de veículos com múlti-

plos compartimentos surge com frequência em aplicações práticas quando uma série de

produtos, que possuem diferentes qualidades ou tipo, precisam ser transportados mas não

podem ser misturados. Este problema é chamado na literatura de roteamento de veícu-

los com múltiplos compartimentos (PRVMC). Nós propomos uma heurística busca tabu

implementada em uma busca local iterada para resolver este problema. Experimentos fo-

ram feitos para avaliar a performance da busca tabu iterada e os resultados obtidos foram

comparados com os resultados disponíveis na literatura. O algoritimo proposto é capaz

de encontrar soluções melhores e em menos tempo de processamento que as heurísticas

existentes.

Palavras-chave: Roteamento de veículos, Múltiplos compartimentos, Heurística, Busca

tabu.
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1 INTRODUCTION

Operations research (OR) is a discipline that aims to find optimal or near-optimal

solutions to complex decision-making problems with a focus on practical applications.

For this reason, operations research deals with demands that come directly from problems

that arise in the industry. Transportation related problems are among the main subjects of

research due to their great impact on costs and efficiency in a variety of industries. The

fundamental problem studied in OR that deals with transportation is the vehicle routing

problem (VRP).

The VRP consists in finding the optimal set of routes where there is a set of cus-

tomers with a certain demand that must be attended by a visit of a vehicle that departs

from a depot. The VRP is a difficult combinatorial optimization problem where the first

algorithm proposed dates from the end of 1950’s and we still have real-world instances

that the state-of-the-art algorithms cannot solve.

For the different kinds of industry the transportation problems may differ in terms

of vehicle characteristics, special handling of the product and specific requirements from

customers. This work focuses on the case where the customer demand for different types

of products that must be kept separated for some particular reason. Thus, the vehicle

capacity is divided in multiple compartments to be able to attend the demands for more

than one product in a single visit. This problem is called in the literature the multi-

compartment vehicle routing problem (MCVRP). In this work we also consider a variant

of this problem where the customer demand for all product types must be attended in one

single visit, called the MCVRP without splitting (MCVRP-WS).

1.1 Research Objectives and Contributions

This work focuses on researching the state-of-the-art and proposing new heuris-

tics for the MCVRP and the MCVRP-WS. It also involves studing the best heuristic tech-

niques available for the VRP.

The major contribution of this work is the proposal of a new heuristic for the

MCVRP which is an adaptation of a successful algorithm for the VRP. Our algorithm

performs better in terms of accuracy and speed compared to the available ones.
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1.2 Overview of the Dissertation

This dissertation is organized as follows. In the next chapter we present a study of

heuristics for the VRP. Chapter 3 is a study of the MCVRP and the MCVRP-WS concern-

ing real-world applications, mathematical formulation and the state-of-the-art algorithms.

In Chapter 4 we propose an efficient tabu search for the MCVRP-WS. In Chapter 5 we

present an iterated tabu search for the MCVRP that outperforms the state-of-the-art algo-

rithms. We conclude and discuss future work in Chapter 6.
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2 THE VEHICLE ROUTING PROBLEM

The vehicle routing problem (VRP) consists in, given a set of customers with

demands and a depot with a limited amount of vehicles, finding the shortest path routes

that attend all the customers demands. This problem was proposed in the end of the

1950s by (DANTZIG; RAMSER, 1959) and since then it has been intensively studied by

the scientific community due to its strong practical importance in many application fields,

as well as interest as a difficult combinatorial optimization problem.

The VRP generalizes the NP-hard traveling salesman problem (TSP), thus is

NP-hard as well, which means that no polynomial algorithm can solve it unless P =

NP . Although a lot of scientific effort have been applied and great advances were

reached, state-of-the-art exact algorithms barely solve VRP instances with more than 150

customers and their computational time is often not viable for practical proposes (SUB-

RAMANIAN; UCHOA; OCHI, 2013). Thus, most of the last 10 years of studies for the

VRP rely on heuristic algorithms to find good solutions for real-world problems in a small

amount of time (LAPORTE; ROPKE; VIDAL, 2014). State-of-the-art heuristics can find

solutions of instances with 200 up to 400 customers with an average gap from the optimal

solution of less than 1% in less than 10 minutes (VIDAL et al., 2013).

Practical applications of the VRP are cases where a set of places must be visited

and the necessary routes are a decision variable. The decision for the optimal routes

can consider minimal use of fuel, least amount of vehicles possible, save of resources

as time and money or the routes that result in less environmental impact. This kind of

problem arises in different industries such as transportation, logistics, communication,

manufacturing military, and so on. To attend the necessities of different industries the

VRP was extended adding some constraints and attributes, which results in variants of the

VRP such as (a complete survey about the VRP variants can be found in (VIDAL et al.,

2013)):

• Capacitated VRP (CVRP): this is the classical variation and the most studied one.

Here the a set of customers have demands that must be attended in one single visit

by a fleet of identical vehicles with a fixed capacity. All vehicle routes start and end

in one depot.

• VRP with Time Windows (VRPTW): The customer demand must be attended within

a defined time interval.

• VRP with Pickup and Delivery (VRPPD): A number of goods must be moved from
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pickup locations to delivery locations.

• Heterogeneous VRP (HVRP): In this variant the fleet of vehicles is heterogeneous,

so the vehicles may have different capacities from each other.

• Periodic VRP (PVRP): In this case customers have repetitive demands over multiple

days. Given a planning period of D days one must determine which customers will

be visited and the shortest routes for each day.

• Multi-depot VRP (MDVRP): The vehicles can depart from more than one depot.

In the main definition the vehicle destination must be at the origin depot, but in

variants called non-fixed problems the route can finish in any depot.

• Multi-compartment VRP (MCVRP): in this variation the vehicles capacity is divided

in more than one compartment and the customers have demands for different types

of products where each product type has a dedicated compartment.

Each of these VRP variants are challenging fields of research. In this chapter we

will focus on the CVRP that is the most studied variant of the VRP.

In the next section we present the formal definition of the CVRP. In Section 2.2

we describe the most used sets of instances. Section 2.3 is an overview of the most used

metaheuristics and a brief description of successful work using them. We conclude this

chapter in Section 2.4.

2.1 Problem Definition

The CVRP consists in a fleet of identical vehicles with fixed loading capacity C

and customers that have a defined amount of demand ci. We are given a set of locations

V = {V0} ∪ V+, where V0 is the depot, and V+ = {V1, . . . , Vn} is the set of customers.

Each pair of locations i, j ∈ V has a travel time dij . Each customer may have additionally

a drop time ti, i.e. the time needed to load or unload the demand. All the customer demand

must be attended in one visit.

The objective is to find the shortest possible set of routes that satisfy all customers

demands and respect the vehicle capacity. The CVRP can be formulated as follows:
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minimize
∑
i,j∈V

∑
k∈[r]

(dij + tj)xijk, (2.1)

subject to
∑
i∈V

∑
k∈[r]

xijk = 1, ∀j ∈ V \ {V0}, (2.2)

∑
i∈V

xijk =
∑
i∈V

xjik, ∀j ∈ V, k ∈ [r], (2.3)

∑
i,j∈S

xijk ≤ |S| − 1, ∀S ⊆ V \ {V0}, |S| ≥ 2, k ∈ [r], (2.4)

∑
i,j∈V

cjxijk ≤ C, ∀k ∈ [r], (2.5)

xijk ∈ {0, 1}, ∀i, j ∈ V, k ∈ [r]. (2.6)

In this formulation we minimize the total travel time (2.1). By constraint (2.2)

every customer has to be attended exactly once in some route. Constraint (2.3) establishes

flow conservation, and constraint (2.4) eliminates subroutes that do not include the depot.

The capacity are guaranteed by (2.5).

2.2 Instances

An instance for the CVRP contains a set of customers and a depot that is the start-

ing point of each route. Every customer, including the depot, have a well-defined distance

from each other. Usually they have coordinates in a 2D space, then the Euclidean distance

is used. The instance also determines the maximum fleet size and vehicle capacity, the

maximum route length and the drop time.

A lot of different instances can be found in the literature. The instances have from

10 to 1200 customers (in the most recent ones). They also vary in depot positioning (cen-

tered, corner or random) and customer positioning (clustered, symmetric or real case). In

this work we focus on the instances proposed by (CHRISTOFIDES; MINGOZZI; TOTH,

1979) and (GOLDEN et al., 1998), which are two of the most common data sets for the

VRP (LAPORTE; ROPKE; VIDAL, 2014).

The instance set CMT from (CHRISTOFIDES; MINGOZZI; TOTH, 1979) con-

tains 14 instances with 50 to 200 customers. The instance set GWKC from (GOLDEN et

al., 1998) contains 20 instances with 240 to 483 customers distributed spatially in sym-
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metric patterns (see Figure 2.1 for an example). Table 2.1 shows the size of the instances

(n), the limit number of routes or fleet size (K), the maximum route length constraint (d),

the drop time value (T ), the vehicle capacity (Q) and the shortest known total route length

(best known value, BKV ).

Table 2.1: Details of the CMT and GWKC instances.
inst n K d T Q BKV
CMT1 50 5 ∞ 0 160 524.61
CMT2 75 10 ∞ 0 140 835.26
CMT3 100 8 ∞ 0 200 826.14
CMT4 150 12 ∞ 0 200 1028.42
CMT5 199 17 ∞ 0 200 1291.29
CMT6 50 6 6200 10 160 555.43
CMT7 75 11 160 10 140 909.67
CMT8 100 9 230 10 200 865.95
CMT9 150 14 200 10 200 1162.55
CMT10 199 18 200 10 200 1395.85
CMT11 120 7 ∞ 0 200 1042.11
CMT12 100 10 ∞ 0 200 819.56
CMT13 120 11 720 50 200 1541.14
CMT14 100 11 1040 90 200 866.37
GWKC1 240 9 650 0 550 5623.47
GWKC2 320 10 900 0 700 8404.61
GWKC3 400 9 1200 0 900 11036.20
GWKC4 480 10 1600 0 1000 13590.00
GWKC5 200 5 1800 0 900 6460.98
GWKC6 280 7 1500 0 900 8412.90
GWKC7 360 8 1300 0 900 10102.70
GWKC8 440 10 1200 0 900 11635.30
GWKC9 255 14 ∞ 0 1000 579.71
GWKC10 323 16 ∞ 0 1000 735.66
GWKC11 399 17 ∞ 0 1000 912.03
GWKC12 483 19 ∞ 0 1000 1101.50
GWKC13 252 26 ∞ 0 1000 857.19
GWKC14 320 29 ∞ 0 1000 1080.55
GWKC15 396 33 ∞ 0 1000 1337.87
GWKC16 480 36 ∞ 0 1000 1611.56
GWKC17 240 22 ∞ 0 200 707.76
GWKC18 300 27 ∞ 0 200 995.13
GWKC19 360 33 ∞ 0 200 1365.60
GWKC20 420 38 ∞ 0 200 1817.59
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Figure 2.1: This figure shows the distribution of clientes in CMT and GWKC instances.
On the left is the CMT1 instance, on the right is the GWKC1. The red dots are the clients
and the blue dot is the depot. The images are from (CVRPLIB, 2016).

2.3 Heuristic algorithms

The VRP is a hard combinatorial optimization problem and exact algorithms are

able to solve only relatively small instances. Thus, search heuristics methods are used to

reach high quality solutions on instances with a large amount of customers. The heuris-

tics methods for the VRP can be classified in constructive heuristics and improvement

heuristics, the latter is divided in local search and population based heuristics.

2.3.1 Constructive Heuristics

The constructive heuristics for the VRP are used to generate a solution for a given

instance usually in a short computational time. It starts from an empty solution and in each

iteration keeps adding new costumers to the routes until all the customers are visited. It is

often used to generate a start solution to improvement heuristics.

2.3.1.1 Sweep Algorithm

This heuristic can be classified as a insertion heuristic because customers are in-

serted in the solution one by one always keeping the solution feasible. The algorithm is

called sweep because the insertion order is defined by the angle that the customer makes

with an arbitrary axis centred at the depot. Feasible routes are created by rotating an imag-

inary line, with one end tied at the depot, and when a customer is touched it is inserted in

the current route. If the maximum route length or vehicle capacity constraints are violated
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a new route is created. Different start positions can result in different solutions, then an

improvement in this heuristic is to run the sweep algorithm once for each customer as the

reference point and use the best solution found. This heuristic is very simple and can find

solutions for the CMT instances with an average deviation of 7.01% from the best known

values.

2.3.1.2 Savings Heuristic

This heuristic is widely used in VRP problems because of its simplicity, speed

and it often obtains good results, in average 6.71% above the optimal solution in CMT

instances (see (CORDEAU et al., 2002)). Consider a route which visits customer Vi last,

and another route which visits customer Vj first. We can join these routes by going directly

from Vi to Vj . This results in savings of sij = dVi,V0 + dV0,Vj
− dVi,Vj

. The Figure 2.2

exemplify the join of two routes. The heuristic proposed by (CLARKE; WRIGHT, 1964)

determines the savings sij for each pair of customers Vi and Vj , and sorts them in a non-

increasing order. Then, the algorithm creates one route for each customer, starting at the

depot, visiting only this customer, and then returning to the depot. Finally, it visits the

savings list in the sorted order cyclically, and repeatedly applies feasible joins, until no

such join is possible. A join is feasible for a saving sij if two routes with endpoints Vi and

Vj exist and the resulting route respect the vehicle capacity and route length constraints.

Figure 2.2: Savings heuristics route join example.

depot

vi vj

depot

vi vj

2.3.2 Improvement Heuristics

Improvement heuristics are algorithms that receive a solution as input, which is

modified by performing a series of operations to obtain a new one. The objective is to

find improved solutions by modifications and evaluations that are made in a systematic

way. Improvement heuristics for the VRP perform intra-route and inter-route moves to

modify the current solution. These moves generate a pool of neighbour solutions that is

called search space. We will present the main moves in the next section. Explore all the

neighbourhood often requires too much operations, thus some techniques that considers
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geographical restrictions to avoid moves between distant customers are used to reduce the

search space. One of them is the generalized insertion procedure GENI that is a kind of

intra-route move, which is presented in more details in the Subsection 2.3.2.2.

Usually, improvement heuristics allow worse solutions and even unfeasible so-

lutions during the search to escape from local minimum with the aim of finding better

solutions after a few more moves. Therefore, metaheuristics must be used to find high

quality solutions. We present the most common metaheuristics for the VRP in Sections

2.3.2.3, 2.3.2.4, 2.3.2.5 and 2.3.2.6.

2.3.2.1 Neighborhoods

The neighborhoods in VRP are called moves which are operations that transform

a solution s in another solution s′ that shares some characteristics of s. The moves can

be separated into two major categories intra-route moves and inter-route moves. The

intra-route moves, also known as single-route neighborhood, affect only one route of the

current solution at a time. They permute the customers within the route with the objective

of optimize the route length. Thus, traveling salesman problem (TSP) neighborhoods can

be used as intra-route moves for the VRP.

The most used intra-route move in modern heuristics is the 2-OPT proposed by

(LIN, 1965), where two edges are removed and two new edges are created to complete

the route.

The inter-route moves, also known as multiroute neighborhood, move customers

from one route to another involving two or more routes. The most common moves are

exchange, relocate, and 2-OPT∗.

The exchange move, also known as swap, consists in choosing one or more

consecutive customers in two different routes and then exchange their positions. In the

relocate neighborhood one or more customers are moved from one route to another route.

The 2-OPT∗ is similar to the 2-OPT, two edges from two different routes are removed

and new ones are inserted. The Figure 2.3 shows an example of each inter-route move

described above.

It is important to notice that, in order to have an efficient algorithm, the evaluation

of the resulting cost of a move must be made in a few operations. The move must be

applied to the solution only after the neighborhood evaluation.
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Figure 2.3: The exchange, relocate and 2-OPT∗ moves.

Depot

(a) Original routes

Depot

(b) Exchange

Depot

(c) Relocate

Depot

(d) 2-OPT∗

2.3.2.2 GENI

The generalized insertion procedure, known in the literature as GENI, was pro-

posed by (Gendreau, Michel and Hertz, Alain and Laporte, 1992) for the traveling sales-

man problem. The GENI algorithm is widely used in VRP heuristics to insert customers

to routes or to remove customers from routes. Together with the insertion or removal of a

vertex GENI applies a subset of 3-opt and 4-opt moves to the route. Since the complete

exploration of the neighborhood would be too expensive, O(n4) operations for the 4-opt

moves, only the q-nearest vertices. Considering the fact that the q-nearest list must be

updated after a insertion or removal, the GENI has time complexity O(nq4 + n2).

Given that the Nq(v) are the q-nearest vertices of v the vi, vj ∈ Nq(v), vk ∈

Nq(vi+1) and vl ∈ Np(vj+1). The GENI 3-opt moves are called Type I. In Type I insertion,

Figure 2.4, the vertex v is inserted between vi and vj; the edges (vi, vi+1), (vj, vj+1) and

(vk, vk+1) are deleted and the new edges (v, vi), (v, vj), (vi + 1, vk) and (vj+1, vk+1 are

created.

Figure 2.4: GENI Type I insertion.
vi v

vi+1

vj

vk

vj+1

vk+1

vi v

vi+1

vj

vk

vj+1

vk+1

reversed

reversed

In Type I removal, Figure 2.5, the vertex vi together with the edges (vi−1, vi) and

(vi, vi+1) are removed. The other edges removed are (vk, vk+1) and (vj, vj+1). Then, the

edges (vi−1, vk), (vi+1, vj) and (vk+1, vj+1) are created.

The GENI 4-opt moves are called Type II. The Type II insertion, Figure 2.6, con-
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Figure 2.5: GENI Type I removal.
vi−1 vi

vk

vi+1

vk+1

vj

vj+1

vi−1 vi

vk

vi+1

vk+1

vj

vj+1

reversed

reversed

sists in inserting the vertex v between the vertices vi and vj where the edges removed

are (vi, vi+1), (vl−1, vl), (vj, vj+1) and (vk−1, vk), then the new edges are (vi, v), (v, vj),

(vl, vj−1), (vk−1, vl−1) and (vi+1, vk).

Figure 2.6: GENI Type II insertion.
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For the Type II removal, Figure 2.7, the edges removed are (vi−1, vi), (vi, vi+1),

(vj−1, vj), (vl, vl+1) and (vk, vk+1). The new edges are (vi−1, vk), (vl+1, vj−1), (vi+1, vj)

and (vl, vk+1).

Figure 2.7: GENI Type II removal.
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2.3.2.3 Simulated Annealing

The simulated annealing is a simple heuristic that has two main components: a

neighborhood generator and an acceptor. The neighborhood generator must generate a

random neighbor solution s′ of a given solution s. The acceptor defines if the next solution

used in the neighborhood generator will be s′ or s. The solution s′ is always accepted if s′

is better s, f(s′) < f(s), otherwise s′ is accepted with probability e−(f(s′)−f(s))/T . Here,

T is the so-called temperature which decreases in each iteration to intensify the search

around a promising solution. See (OSMAN, 1993) for an application of the simulated
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annealing in the VRP.

The Record-to-record travel is a variation of the simulated annealing that is also

called deterministic annealing. In this algorithm the solution s′ is only accepted if its cost

does not exceed the best solution found so far by a factor σ. Usually σ is a little more than

1 (e.g. σ = 1.05) (LAPORTE; ROPKE; VIDAL, 2014).

2.3.2.4 Variable neighborhood search

The variable neighborhood search (VNS), as the name suggests, is based on the

fact that different neighborhood operators applied to the same solution can result in dif-

ferent local optimal solutions. Thus, the VNS needs a set of different neighborhoods that

usually is ordered in increasing size of search space. The first neighborhood is applied to

the initial solution until reach the local minimum, then the next neighborhood operator is

applied to the resulting solution. When the last neighborhood was applied the first one

is tried again and it goes until no of the neighborhood operators can find a better solu-

tion. The use of multiple neighborhoods diversify the search because each one explores

different regions in the search space.

The paper (KYTÖJOKI et al., 2007) proposes an efficient VNS implementation for

the VRP that is able to find results near to the best known value in a few seconds. Their al-

gorithm use the inter-route neighborhoods relocate, 2-OPT∗ and exchange, in this order.

Also, after each inter-route neighborhood, the intra-route neighborhoods 2-OPT,Or-OPT

and 3-OPT are applied to the modified routes.

2.3.2.5 Tabu Search

Tabu search (TS) is one of the most used meta-heuristic for the VRP with a variety

of implementations proposed in the pasts years (LAPORTE; ROPKE; VIDAL, 2014). It

is a meta-heuristic which guides a local search through the search space and it is one

of the most successful heuristics for vehicle routing problems (CORDEAU et al., 2002).

TS is a local search that starts with an initial solution and moves to the next solution

after visiting a given neighborhood, the algorithm goes until a stop criterion is reached.

The main feature of the TS is that it allows non-improving moves and avoids cycling by

storing recent moves in a short-term memory and declaring moves that return to previous

solutions as tabu (GLOVER; LAGUNA, 1997). A common tabu criteria for the VRP is

that a customer is not allowed to go back to its previous route for θ iterations when moved
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from one route to another.

A classical TS implementation for the VRP was proposed by (GENDREAU; HERTZ;

LAPORTE, 1994), they use the GENI heuristic for insertions and removals in the relocate

neighbourhood. The main feature of their algorithm is consider infeasible solutions dur-

ing the search, it means that solutions that violate the vehicle capacity or route length are

also visited, but the excess amount is penalized in the objective function by a factor that

increases in each iteration.

Other good implementation of TS for the VRP is the granular tabu search from

(TOTH; VIGO, 2003). The idea is to remove unpromising edges whose cost exceeds a

threshold. This threshold in based in a good solution determined by a fast heuristic.

2.3.2.6 Iterated Local Search

The iterated local search (ILS) metaheuristic can be seen as a framework where

any local search procedure can be embedded in it. (CORDEAU; MAISCHBERGER,

2012) and (CHEN; HUANG; DONG, 2010) are two successful examples of ILS for the

VRP, the first has used a tabu search as local search procedure and the last has used a

variable neighborhood descent.

The ILS consists in three components: a perturbation procedure, a local search

heuristic and an acceptance criterion. The perturbation procedure modifies the solution

with the aim of jumping the search to different places in the search space. The perturbation

must be done with care, if it is to strong the algorithm is reduced to a random start. In

the acceptance criterion is selected the solution that will be used in the next iteration.

The algorithm, as shown in Algorithm 1, starts from some local minimum and repeatedly

applies a perturbation to escape from it followed by a tabu search to find another local

minimum, until some stopping criterion is satisfied.

The iterated variable neighborhood search algorithm proposed by (CHEN; HUANG;

DONG, 2010) the perturbation procedure is a exchange move where two route are ran-

domly chosen as well the amount of customers exchanged in each route. The acceptance

criterion selects the best known solution so far if it was not improved in 50 consecutive

iterations, otherwise it uses a technique similar to simulated annealing to select between

the last used solution or the solution returned by the VND.
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Algorithm 1 Iterated tabu search
1: function ITS( )
2: s0 ← GenerateInitialSolution
3: s∗ ← localSearch(s0)
4: s∗∗ ← s∗

5: for termination condition do
6: s′ ← perturb(s∗)
7: s′∗ ← localSearch(s′)
8: if f(s′∗) < f(s∗∗) then
9: s∗∗ ← s′∗

10: end if
11: s∗ ← acceptanceCriterion(s′∗, s∗, s∗∗)
12: end for
13: return the best solution s∗ found during search
14: end function

2.3.3 Population Based Heuristics

Population based heuristics, also known as evolutionary algorithms, use methods

that are inspired by evolution of species, such as reproduction, mutation, recombination

and selection. The algorithm starts with a population, which is a pool of solutions, then

in each iteration a series of strategies are applied so that the individuals, or solutions, are

combined or modified with the aim of finding better solutions.

The two most successful population based metaheuristic are genetic algorithm

and ant colony optimization that we describe in the next sections. Even though, pop-

ulation based heuristics are widely studied, all known successful VRP heuristic of this

type use some kind of local search to intensify the search in promising solutions (LA-

PORTE; ROPKE; VIDAL, 2014). The resulting algorithms are so-called memetic algo-

rithm (MOSCATO; COTTA, 2010) and hybridized ant colony algorithm (ABDULKA-

DER; GAJPAL; ELMEKKAWY, 2015).

2.3.3.1 Genetic Algorithm

The genetic algorithm (GA) starts by a population of solutions, these solutions are

referred in GA as chromosomes. Then, new solutions, or individuals, are created using

two operators called crossover and mutation applied to the chosen solutions in order to

improve then or diversify the population. After a sufficient amount of new solutions a new

population is selected and the algorithm starts again. It goes until a termination condition

is satisfied.
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The first competitive GA that could outperforms the existing powerful tabu search

methods was proposed by (PRINS, 2004). In the proposed GA, the chromosome repre-

sentation is a simple sequence of clients without route delimiters. This representation is

also called giant-tours because it can be seen as the order in which a vehicle must visit

all customers. Then a optimal split procedure is applied to divide the giant-tour in routes

following the tour order and respecting the vehicle capacity and route length constraints.

This technique is still used in state-of-the-art algorithms as (VIDAL et al., 2012).

The GA proposed by (NAGATA; BRÄYSY, 2009) is one of the best heuristics

for the VRP. They use as initial population an amount of 100 solutions. The solutions

are generated by a procedure similar to the savings heuristic where routes are joined in

a random order together with a local search procedure to improve the solution quality.

They use a crossover technique called edge assembly crossover (EAX) that was proposed

by the same author for the traveling salesman problem and adapted to the VRP. The EAX

is a five step procedure that receives two parent solution and creates only one child solu-

tion based on the parent characteristics. The EAX can generate infeasible solutions that

violates the vehicle capacity constraint, when it happens a repairing procedure is applied.

The repairing procedure is a best improvement local search that considers only moves

that reduce the overcapacity violation. Finally, a first improvement local search using the

2-OPT, Relocate and Exchange neighborhoods is applied to improve the resulting solu-

tion. The modification and the local search procedures are the mutation components of

the GA.

2.3.3.2 Ant Colony Optimization

The inspiring source of this metaheuristic proposed by (DORIGO; CARO; GAM-

BARDELLA, 1999) is the pheromone used by ants as trail marker and as communication

medium. This algorithm explores a technique of learning based on the history of previ-

ous visited solutions. The ant colony optimization (ACO) algorithms consist in iterations

over three main step: generation of a pool of solutions (ants) considering the pheromone

information, update the pheromone information also called pheromone evaporation and

daemon actions that is a local search or adjusts to the pheromone to intensify the search

in promising solutions.

(DOERNER et al., 2004) is a successful implementation of this metaheuristic for

the VRP. They propose a ACO that uses the savings heuristic (see Section 2.3.1.2) to

construct the solutions. Instead of always join the routes with biggest saving, they use
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the pheromones to increase the probability of join more promising routes. They com-

pare three different approaches to handle with pheromones: rank based ant system where

only the best E ants leave pheromone, min-max ant system where only the best ant leave

pheromone but there is a upper and lower bounds on the pheromone values and finally

and colony system where also the best ant leaves pheromone but the global evaporation

is also restricted to arcs in the best solution found. For all solutions found a local search

using exchange and 2-OPT neighborhood is applied to guarantee that they are a local

minimum.

2.4 Conclusion

The vehicle routing problem has been subject of studies for more than 50 years,

but great advances were reached in the past 10 years. The new algorithms are able to

solve bigger instances in less and less computational time. The industry together with the

academy continue to bring new instances and challenging constraints and variations that

turns the VRP an always interesting and important topic of research. An open challenge

is design heuristic algorithms for the VRP that have a good score in four characteristics:

speed, accuracy, flexibility and simplicity. Such an algorithm is hard to design because

usually speed and accuracy came in detriment of flexibility and simplicity.
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3 THE MULTI-COMPARTMENT VEHICLE ROUTING PROBLEM

The problem called the multi-compartment vehicle routing problem (MCVRP),

also found as VRP with compartments (VRPC) and multi-compartment delivery prob-

lem (MCDP) in the literature, extends the well-known vehicle routing problem (VRP) by

allowing the co-delivery (or co-collection) of different products that must be kept in sep-

arate compartments. The MCVRP is a single depot vehicle routing problem for multiple

product types given a homogeneous fleet. Each customer may have different demand for

each product type, and the vehicles have multiple compartments of different sizes ded-

icated for each product type. As in the standard vehicle routing problem, the aim is to

satisfy the demands of every customer such that the total travel time of all vehicles is

minimized. The MCVRP generalizes the NP-hard Capacitated VRP, and thus is also

NP-hard. The largest instances that state-of-the-art exact approaches for MCVRP could

solve contain about 50 customers (COELHO; LAPORTE, 2015). Thus larger problems,

or problems with additional constraints are usually solved by heuristic algorithms.

The MCVRP has an important feature that is the split demand which allows cus-

tomers to be visited multiple times, but the demand for each product must be attended

in a single visit. It is important to notice that the split demands feature is different from

split delivery (SDVRP) ((ARCHETTI N. BIANCHESSI, 2014)) where a demand can be

attended for multiple vehicles and may be greater than the compartment capacity.

We present in Figure 3.1 an example, proposed in (El Fallahi; PRINS; Wolfler

Calvo, 2008), to better understand the difference between the VRP, the SDVRP and the

MCVRP. The customers a, b, c, d have demands for two different products and the depot

is the square in the center. The vehicles have capacity 18 in two compartments of capacity

9. For the VRP and the SDVRP suppose that the products can be mixed together then the

customers demands is the sum of the two products demand. The shortest length to attend

all demands for the VRP is 22 in three routes: (a[7], b[10]), (c[6]), (d[13]); for the SDVRP

the length is 19 in two routes: (a[2], b[10], c[6]), (a[5], d[13]); and for the MCVRP the

length is 20 in two routes: (a[6, 0], b[3, 7], c[0, 2]), (a[0, 1], d[5, 8], c[4, 0]).

In summary, the MCVRP has the following characteristics:

• Single Depot: all vehicles must depart and arrive at the same place;

• Homogeneous Fleet: all vehicles are identical (equal amount of compartments and

capacity);

• Multiple product types: each product type has a dedicated compartment;
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Figure 3.1: Example to explain the difference between the VRP, the SDVRP and the
MCVRP.
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• Split demands: customer demands for different product types may be attended by

different vehicles;

• Route duration limit: usually these problems have maximum route duration con-

straint, it means that the time from the depot, visiting the customers (including the

drop time), and return to the depot must not exceeds a maximum time.

This chapter is organized as follows. The next section address real-world ap-

plication, we formally define the problem and present the mathematical formulation in

Section 3.2. The instances available in literature are described in Section 3.4. In the

Section 3.5 we present the main heuristic algorithms found in literature. We conclude in

Section 3.6.

3.1 Real-world Applications

Real-world applications for this problem are cases where products must be trans-

ported in different compartments for some particular reason. In this section we present

MCVRP applications in real-world cases found in the literature. In these applications

usually other constraints are added to attend the reality of each problem.

In the diary factory the raw milk collection use temperature-controlled vehicles

that have many compartments and consume more fuel than regular vehicles. Raw milk

is a very perishable product so the delivery time is not only a cost factor but also an im-

portant factor for the quality of the final product. Milks from different collection center

cannot mixed in the same compartment as well milks of different types. (SETHANAN;

PITAKASO, 2016) proposes a differential evolution algorithm for this problem that, be-

sides the traveling cost, also considers the vehicle cleaning cost in the objective function.

(MENDOZA et al., 2010) studied a memetic algorithm for the MCVRP with stochastic



29

demands that was motivated by this real-world problem.

The delivery of groceries to convenience stores often use vehicles with multi-

compartments. Unlike a supermarket, convenience stores carry most of their inventory

in the front of the store. These space limitations impose the need to a very tight control of

inventories which requires small orders of different product types. These orders must be

attended by a single distributor that can deliver dry, refrigerates and frozen items together

in the same vehicle. A compartment can often be a box filled with dry ice or in large trucks

spaces separated by bulkheads. This problem was studied in (CHAJAKIS; GUIGNARD,

2003) where optimization models were proposed for two possible cargo space layouts.

The MCVRP is also applied to transportation of live animals to slaughterhouses,

this problem is known as Livestock collection problem (OPPEN; KKETANGEN, 2008).

It consists in transportation of living animals from farmers to one slaughterhouse. Some

interesting constraints arise in this problem: animals cannot be transported continuously

for more than 8 hours; mixing animals with and without horns or animals of substantially

different size are not allowed; and the visit order must follow a health status of the animals.

(OPPEN; KKETANGEN, 2008) proposes a tabu search for this specific problem.

In (LAHYANI et al., 2015) the authors propose a model and an exact approach to

solve a rich MCVRP that arises in olive oil collection process in Tunisia. Olive oil have

three different grades known as extra, virgin and lampante. The different grades must be

kept separated during the transportation, then vehicles with compartments are necessary.

Other important constraint in this problem is that it is forbidden to load extra and virgin

oil immediately after lampante oil in the same compartment, unless it has been cleaned.

Next we present the two main applications of the MCVRP that is the fuel delivery

and waste collection.

3.1.1 Fuel delivery

The fuel delivery problem is the most studied application of the MCVRP. The fuel

distribution consists in several different product types that must be delivered by compart-

mentalized vehicles to customers with several tanks. The vehicles often are not equipped

with debit meters, which implies that whenever a deliver is made the full contempt of the

compartment must be emptied. The vehicles have compartments with fixed sizes and the

products are incompatible with each other, then they must be delivered in different com-

partments. There are no incompatibilities between product and compartment, it means
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that each product can be allocated any compartment where the packing arise as a sub-

problem. Often customers order large demands and one compartment receives only one

product for one customer so the main problem is assign orders to vehicle compartments.

Once it is done the routing part is rather easy, one TSP with few stops must be solved for

each truck.

A study about different problems that arise in petroleum companies can be found

in (COELHO; LAPORTE, 2015). They propose a classification where compartments and

tanks can be split or unsplit, where a split tank may receive deliveries from different ve-

hicles, likewise, a split compartment can deliver the load to different compartments. In

(COELHO; LAPORTE, 2015) also present the mathematical model and an exact algo-

rithm for these variants of the MCVRP including multi-period.

In (DERIGS et al., 2010) the MCVRP is called VRP with compartments (VRPC)

and define it as an abstract problem covering different applications that can occur in retail

and petrol industries. They consider that certain products pair must not be loaded in the

same compartment and certain products cannot be transported in certain compartments.

That work also provide a study of several heuristics to solve VRPC.

(CORNILLIER et al., 2008) propose a multi-phase heuristic for a variant of the

VRPC where one must determine, for each day of the planning horizon, how much of

each product should be delivered to each station, how to load these products into vehicle

compartments and how to plan vehicle routes. The station do not specify fixed visit dates

and delivery amounts, these decisions are optimized by the distributor.

The paper (POPOVIC; VIDOVIC; RADIVOJEVIC, 2012) treat the problem fuel

delivery problem as Inventory Routing Problem (IRP) where the distributor has the re-

sponsibility of clients inventory management, given the clients (or stations) order quantity

and time of delivery. Then the distributor can better utilize the vehicles.

A real case of the fuel delivery problem is related in (AVELLA; BOCCIA; SFORZA,

2004). Each customer has an order and a frequency of one or more days. One must deter-

mine the routes and delivery plan for each truck where each order must be satisfied by the

following day and the total cost is minimum. The paper presents a heuristic and an exact

algorithm to solve this problem.

In petrol station replenishment often is found problems with multiple depot and

time windows as presented in (CORNILLIER; BOCTOR; RENAUD, 2012; BENAN-

TAR; OUAFI, 2012). In (MENDOZA et al., 2010) stochastic demands has been intro-

duced to the MCVRP, i.e. the exact value of demands is not known at the moment when
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the routes are planned, to obtain the MCVRPSD.

3.1.2 Waste collection systems

The MCVRP arises in the waste collection systems by the necessity of collecting

different types of waste that can not be mixed. The total cost of recycling can be reduced

if the waste separation process is eliminated and this can be done in collection site with

disposal bins for each kind of waste. Then, for transportation, vehicles with compartments

are required to keep the types of waste separated.

(ELBEK; WØHLK, 2016) describes a real case of glass and paper waste collec-

tion in Denmark. They use vehicles with two compartments and variable capacities. The

objective is ensure that the cubes were the waste is placed are emptied before being over-

filled. (REED; YIANNAKOU; EVERING, 2014) also studied the waste collection in the

UK. They propose an ant colony algorithm that we will see in details in this work.

The glass waste collection is also the context of study in (HENKE; SPERANZA;

WÄSCHER, 2015), they study a special case that occurs in Germany where glass of dif-

ferent colors must be kept separated. In this context the trucks allow the use of bulkheads

in predefined positions, it will split the loading space in compartments of variable size.

Then, the number of compartments can be identical to the number of products types but

can also be smaller. They propose a variable neighborhood search that determines not

only the vehicle routes, but also for each route how many compartments and what the

size of each compartment the vehicle capacity should be divided. Results for random

generated and real case instances are presented in the paper.

A complete study about the urban solid waste collection system is found in (LU

et al., ). The paper highlight the deficiencies of the state-of-the-art studies on algorithms

for this problem, they focus on U.S. and Europe waste collection system. In densely

populated cities, like in China, the waste collection needs to be done daily. (LU et al.,

) propose a heuristic for multi-constrained and multi-compartment roll-on and roll-off

waste collection and use it to solve a real case in a city in China.

The Table 3.1 summarizes some of the papers cited in this chapter. The columns

represent the main features, the mark •means that the paper implements the feature in the

respective column.
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Table 3.1: Summary of the main features implemented by the papers.

Sp
lit

de
m

an
ds

Sp
lit

co
m

pa
rt

m
en

ts

Sp
lit

ta
nk

H
om

og
en

eo
us

fle
et

Fi
xe

d
nu

m
be

ro
fc

om
pa

rt
m

en
ts

Fi
xe

d
co

m
pa

rt
m

en
tc

ap
ac

ity

D
ed

ic
at

ed
co

m
pa

rt
m

en
ts

A
ss

ig
n

de
m

an
ds

to
co

m
pa

rt
m

en
ts

St
oc

ha
st

ic
de

m
an

ds
Ti

m
e

w
in

do
w

s

M
ul

ti-
pe

ri
od

R
ou

te
du

ra
tio

n
lim

ite
d

L
im

ite
d

nu
m

be
ro

fv
eh

ic
le

s
Te

st
w

ith
re

al
-w

or
ld

in
st

an
ce

s

Solution method

This work Chap. 4 • • • • • • • Tabu search
This work Chap. 5 • • • • • • • Iterated tabu search
This work Chap. 5 • • • • • • • • Iterated tabu search
(El Fallahi; PRINS; Wolfler Calvo, 2008) • • • • • • Memetic and Tabu search
(El Fallahi; PRINS; Wolfler Calvo, 2008) • • • • • • • Memetic and Tabu search
(MUYLDERMANS; PANG, 2010) • • • • • • Metaheuristic
(DERIGS et al., 2010) • • • • • • • General heuristic
(REED; YIANNAKOU; EVERING, 2014) • • • • • Ant colony algorithm
(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) • • • • • • • Hybrizided ant colony algorithm
(SETHANAN; PITAKASO, 2016) • • • • • • • Exact algorithm and metaheuristic
(MENDOZA et al., 2010) • • • • • • • • Memetic algorithm
(OPPEN; KKETANGEN, 2008) • • • • Tabu Search
(LAHYANI et al., 2015) • • • • • • • Branch-and-cut algorithm
(COELHO; LAPORTE, 2015) • • • • • • • • • Exact algorithms
(COELHO; LAPORTE, 2015) • • • • • • • • Exact algorithms
(COELHO; LAPORTE, 2015) • • • • • • • • Exact algorithms
(COELHO; LAPORTE, 2015) • • • • • • • Exact algorithms
(DERIGS et al., 2010) • • • • • General heuristic
(CORNILLIER et al., 2008) • • • • • • • • Exact algorithm
(AVELLA; BOCCIA; SFORZA, 2004) • • • • • • • • Heuristic and exact approach
(ELBEK; WØHLK, 2016) • • • • • • • • Variable neighborhood search
(HENKE; SPERANZA; WÄSCHER, 2015) • • • • Variable neighborhood search

3.2 Problem Definition

The MCVRP is a variation of the VRP where the fleet consists of identical vehicles

with multiple compartments and the customers have demands for different products. We

are given a set of locations V = {V0}∪V+, where V0 is the depot, and V+ = {V1, . . . , Vn}

is the set of customers. Each pair of locations i, j ∈ V has a travel time dij . We assume

symmetric travel times (dij = dji). Each customer may have additionally a drop time

ti, i.e. the time needed to load or unload the demand. There are m different types of

products P = [m]1 , and a fleet of identical vehicles with m compartments, dedicated

to the different products, with capacity C ∈ Rm. Each customer i ∈ V+ has a demand

ci ∈ Rm, and we assume ci ≤ C. A valid route of a vehicle starts and ends at the depot and

visits a number of customers. There is no constraint on the number of visited customers

per route, but a customer may be visited several times in different routes. Formally, a visit

is a pair v = (V (v), P (v)) ∈ V+ × 2P of a customer V (v) and a set of product types

P (v), and a route is represented by an ordered subset R = {v1, . . . , vl(R)} of visits of

length l(R). The set of visited customers of a route is V (R) = {V (v) | v ∈ R}, the set of

attended client-demand pairs P (R) = {(Vi, p) | Vi ∈ V, p ∈ P, (Vi, P ) ∈ R}. The total

1We use the notation [n] = {1, 2, . . . , n}.
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time of a route is

d(R) = dV0,V (v1) +
∑

1≤i<l(R)

dV (vi),V (vi+1) + dV (vl(R)),V0 +
∑

i∈V (R)

ti,

and its demand is c(R), where c(R)p =
∑

i∈l(R)|P (ri)=p cri,p.

We want to find a set of valid routes s = {R1, . . . , Rr} that partition the set of

client-demand pairs (P (Ri) ∩ P (Rj) = ∅ for all i, j ∈ [r], and ∪i∈[r]P (Ri) = V+ ×

P ) satisfying the capacity constraints c(Ri) ≤ C, and such that the total time d(S) =∑
i∈[r] d(Ri) is minimized. The total time travelled by each vehicle must not exceed a

maximum time D. There is no limit on the number of routes. For m = 1 the problem

reduces to the standard CVRP.

In the MCVRP a customer may be visited up to m times, one for each product

type, but the demand of a product must be attended in one visit. Different from the classi-

cal VRP, the fleet size is not upper bounded. In the taxonomoy of (COELHO; LAPORTE,

2015) for fuel delivery problems, the MCVRP would be classified as as split compart-

ments and unsplit tanks (i.e. product demands).

This is the same problem definition as used in (El Fallahi; PRINS; Wolfler Calvo,

2008). (MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) have only one

difference which is that they do not consider the total travel time constraint (D), but this

is not a significant difference because most of the instances do not have this restriction.

In (DERIGS et al., 2010) the authors consider also with other variants where the vehicle

compartments are not dedicated to a single product, thus they define incompatibilities

between products (products that must not be transported together) and between products

and compartments (products that must not be transported in some specific compartment).

3.3 Mathematical Model

The MCVRP can be modeled as an integer linear program as follows. The deci-

sion variable xijk indicates that vehicle k visits arc (i, j), and the decision variable yjkp
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indicates that the demand for product p of client j is attended by vehicle k.

minimize
∑
i,j∈V

∑
k∈[r]

dijxijk, (3.1)

subject to
∑
i∈V

xijk ≤ 1, ∀j ∈ V+,∀k ∈ [r], (3.2)

∑
i∈V

xijk =
∑
i∈V

xjik, ∀j ∈ V, k ∈ [r], (3.3)

∑
i,j∈S

xijk ≤ |S| − 1, ∀S ⊆ V+, |S| ≥ 2, k ∈ [r], (3.4)

yjkp ≤
∑
i∈V

xjik, ∀j ∈ V+, k ∈ [r], p ∈ P, (3.5)

∑
k∈[r]

yjkp = 1, ∀j ∈ V+, p ∈ P, (3.6)

∑
j∈V+

cjpyjkp ≤ Cp, ∀k ∈ [r],∀p ∈ P, (3.7)

∑
i,j∈V

(dij + tj)xijk ≤ D, ∀k ∈ [r], (3.8)

xijk ∈ {0, 1}, ∀i, j ∈ V, k ∈ [r], (3.9)

yjkp ∈ {0, 1}, ∀j ∈ V+, k ∈ [r], p ∈ P . (3.10)

In this formulation we minimize the total travel time (3.11). By constraint (3.12)

every customer can be visited at most once per route. Constraint (3.13) establishes route

flow conservation, and constraint (3.14) eliminates sub-routes that do not include the de-

pot. Constraint (3.5) couples routing variables x to demand variables y. Constraints (3.6)

guarantee that client’s demand for a product is attended by a single visit. The capacity and

total length constraints are guaranteed by (3.15) and (3.16). Solving this model directly

is unpractical due to the exponential number of constraints (3.14), but it can be solved by

branch-and-cut methods.

3.3.1 Problem definition for the MCVRP-WS

In this work we also study a less general variant of the MCVRP that is the single

visit MCVRP, also called as the MCVRP without splitting (MCVRP-WS) by (El Fallahi;

PRINS; Wolfler Calvo, 2008). The MCVRP-WS is a variation of the MCVRP where the

client demand for all product types must be attended in one single visit. The MCVRP-WS
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can be formulated as follows. Let xijk indicate that vehicle k travels from i ∈ V to j ∈ V .

Then we want to

minimize
∑
i,j∈V

∑
k∈[r]

(dij + tj)xijk, (3.11)

subject to
∑
i∈V

∑
k∈[r]

xijk = 1, ∀j ∈ V \ {V0}, (3.12)

∑
i∈V

xijk =
∑
i∈V

xjik, ∀j ∈ V, k ∈ [r], (3.13)

∑
i,j∈S

xijk ≤ |S| − 1, ∀S ⊆ V \ {V0}, |S| ≥ 2, k ∈ [r], (3.14)

∑
i,j∈V

cjxijk ≤ C, ∀k ∈ [r], (3.15)

∑
i,j∈V

dijxijk ≤ D, ∀k ∈ [r], (3.16)

xijk ∈ {0, 1}, ∀i, j ∈ V, k ∈ [r]. (3.17)

In this formulation we minimize the total travel time (3.11). By constraint (3.12)

every customer has to be attended exactly once in some route. Constraint (3.13) estab-

lishes flow conservation, and constraint (3.14) eliminates subroutes that do not include

the depot. The capacity and total length constraints are guaranteed by (3.15) and (3.16).

Note that constraint (3.15) is vector-valued and will be expanded into m separate con-

straints, one for each product type. Solving this model directly is unpractical due to the

exponential number of contraints (3.14).

This problem was studied in the literature by three papers (El Fallahi; PRINS;

Wolfler Calvo, 2008), (REED; YIANNAKOU; EVERING, 2014) and (ABDULKADER;

GAJPAL; ELMEKKAWY, 2015) that we will explain in the following sections.

3.4 Instances

The test instances are based on instances proposed by (CHRISTOFIDES; MIN-

GOZZI; TOTH, 1979) and (GOLDEN et al., 1998), which are two of the most common

data sets for the VRP (LAPORTE; ROPKE; VIDAL, 2014). For further details about the

CVRP instances see section 2.2.

An instance for the CVRP is transformed into an instance for the MCVRP by a

strategy that divides the vehicle’s capacity into compartments, and the demand of the
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customers into demands for different products. We use four division strategies S1–S4 in

our tests. Strategies S1 and S2 have been proposed by (El Fallahi; PRINS; Wolfler Calvo,

2008). Strategies S3 and S4 apply only to the CMT instances, and have been proposed

by (REED; YIANNAKOU; EVERING, 2014). Strategy S1 divides the capacity of the

vehicle and the demand of each customer into m equal parts where m is the number of

compartments. For these instances a solution of the corresponding VRP is also a solution

for the MCVRP instance. If we do not allow split demands, the optimal solutions are

the same. Therefore, these instances are mainly useful for evaluating the advantage of

allowing to visit a customer multiple times, and for testing the scalability of the algorithms

with respect to the number of compartments.

Strategy S2 divides the demands of CVRP instances unevenly. For each customer

i ∈ V+ with a demand of ci in the corresponding VRP, the demand for the first product

is ci1 = ci/k, for a random k ∈ {3, 4, 5}, and the demand for the second product is the

remainder ci2 = ci − ci1. To define the capacity of the compartments of the vehicles, let

D1 be the average demand for the first product, andD2 the average demand for the second

product. Then the capacity of compartment p ∈ {1, 2} is set to

Cp = CDp/(D1 +D2).

Strategy S3 divides the vehicle’s capacity into two compartments in a ratio of

3:1. The customer demands are divided using a 3:1 ratio, except the demands of the

sub-region 0 < x, y < 35, which are divided using a 2:1 ratio. Strategy S4 is similar,

but divides vehicle compartments and customer demands using a 4:1 ratio, except for

region mentioned above, which maintains a 2:1 ratio. Strategies S3 and S4 apply only to

the CMT instances, since they assume that the client’s coordinates lie within the square

[0, 100]2.

(MUYLDERMANS; PANG, 2010) have proposed another set of instances to ex-

plore the benefits of co-collection. The instances are randomly generated varying the

number of customers (n=30, 100 and 300), number of product types (k=2, 3, and 4), the

compartments capacity and the customers demands. The instances are Euclidean 100x100

square. The location of the depot can be in the lower left corner or in the middle of the

square, while the customers can be uniformly distributed or concentrated in the upper

right 50x50 area.
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3.5 State-of-the-art Heuristics

Although the MCVRP is practically relevant, the problem variant defined above

is not widely studied. The previous examples are all motivated by multiple compart-

ments, but, as shown in Table 3.1, have varying characteristics, such as free assignment

of products to compartments (OPPEN; KKETANGEN, 2008; CORNILLIER et al., 2008;

COELHO; LAPORTE, 2015), time windows (CORNILLIER et al., 2008), stochastic de-

mands (MENDOZA et al., 2010; ELBEK; WØHLK, 2016), or multiple planning pe-

riods (AVELLA; BOCCIA; SFORZA, 2004; LAHYANI et al., 2015; COELHO; LA-

PORTE, 2015). To the best of our knowledge, only (El Fallahi; PRINS; Wolfler Calvo,

2008), (DERIGS et al., 2010), (MUYLDERMANS; PANG, 2010), (REED; YIANNAKOU;

EVERING, 2014), and (ABDULKADER; GAJPAL; ELMEKKAWY, 2015) study the

MCVRP.

(El Fallahi; PRINS; Wolfler Calvo, 2008) is the first study in the literature about

the MCVRP. They were motivated by the distribution of cattle food to farms, where the

different feeds are kept separate to avoid contamination. They have proposed a Memetic

algorithm, a Tabu search and a set of instances that will be used in further studies. In

(MUYLDERMANS; PANG, 2010) the authors have studied the MCVRP and benefits of

co-collection presenting several cases where it saves costs compared to separate collec-

tion. They have proposed a guided local search that present very good results in instances

with only one product type, but for instances with two or more products the solution qual-

ity decrease quickly. For this reason, they conclude that or the MCVRP is more difficult or

there is good room for improvements in their algorithm. This question is other motivation

for our work. (DERIGS et al., 2010) present a set of generic heuristics for the MCVRP

and variants and they compare their results against the other two papers. (REED; YIAN-

NAKOU; EVERING, 2014), and (ABDULKADER; GAJPAL; ELMEKKAWY, 2015)

are two complementary work about a ant colony algorithm for the MCVRP-WS.

In this section we present in more details these heuristics that are the state-of-the-

art for the MCVRP.

3.5.1 Memetic Algorithm

The memetic algorithm (MA) for the MCVRP described here was proposed by (El

Fallahi; PRINS; Wolfler Calvo, 2008). The MA is a genetic algorithm hybridized with a
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local search procedure used to intensify the search. They use a population of constant size

so each offspring obtained by crossover immediately replaces one existing solution. The

GA use the elitism property it means that the best solution is either preserved or improved.

The chromosome is represented as a string of demands, then for a instance of n

customers and m products the chromosome will have nm genes. In this representation

the chromosome can be seen as giant tours (BEASLEY, 1983) performed by a vehicle of

infinite capacity. To obtain a complete solution this representation is split into tours and

product demands are aggregated such that each client is visited only once.

The initial population is generated by two techniques. The first half is generated

by the random permutation of customers. The other half is generated by a constructive

heuristic that generates a VRP solution for each product using the savings algorithm of

(CLARKE; WRIGHT, 1964), randomizes these solutions and combines them to solutions

for the MCVRP.

They use a classical TSP crossover, where two chromosomes P1 P2 and two cut-

ting points i and j are chosen by random. The new solution is formed by customers

from index i to j from solution P1 and the remain customers are from solution P2 swept

circularly from index j + 1.

The local search is applied with a fixed probability to improve the new solution. It

operates in a complete solution with delimiters obtained by the splitting procedure. Adja-

cent demands from the same customer in a route are called aggregate. In the local search

is not allowed to split aggregates, it only happens in the crossover. The neighborhood

combines 2-opt moves and the relocation of a single demand or all demands of a client

to another tour. The first-improvement strategy is used. The resulting solution replaces a

random solution of the worse half of the population, if it is fitter than the worst individual.

3.5.2 Tabu Search

In (El Fallahi; PRINS; Wolfler Calvo, 2008) the authors also have proposed a tabu

search for the MCVRP. The tabu search starts from a initial solution using the same con-

structive algorithm used in the MA, as well the same local search to improve the solution.

Different from the MA, it relaxes the capacity and length constraints during the search

allowing infeasible solutions. Those infeasible solutions are penalized in the objective

function using a classical criteria for the VRP proposed by (GENDREAU; HERTZ; LA-

PORTE, 1994).
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To avoid loop back to already visited solutions they use the short-term memory

strategy as tabu list. A move is tabu, if it inserts an arc back into the solution that has

been removed less than the tabu tenure Θ iterations ago. The tabu tenure is decreased

or increased dynamically according to the solution quality to intensify or diversify the

search. For diversification their algorithm uses also dynamic restarts, and splits the route

of maximum capacity and length excess if no progress to feasibility is made. The latter

mechanism is also the only way to split demands of a customer, which were not allocated

to different routes in the initial solution. In average the tabu search performs better then

the MA.

3.5.3 Guided Local Search

(MUYLDERMANS; PANG, 2010) propose a guided local search for the MCVRP

and demonstrate the cost savings of co-collection and -delivery compared to single-product

vehicles in several applications.

The algorithm starts with an initial feasible solution obtained by applying the sav-

ings algorithm of (CLARKE; WRIGHT, 1964), this solution in subsequently improved

with a local search phase combined with a guided local search (GLS) to improve the

solution quality. The GLS is a penalty based heuristic, the distance matrix is modi-

fied by penalising long distances between two consecutive stops in the current solution

(VOUDORIS, 1997). Each combination of customer-product is defined as stop in the so-

lution representation. Thus, a route is composed by stops and in a valid solution all stops

must be visited.

The local search use the first improvement strategy and explores four well-known

neighborhood moves: 2-opt, relocate, exchange and cross.

To speed up the search procedure their algorithm do not examine the full neigh-

bourhood. For each stop si a list of the nearest other stops is created in a non-decreasing

order. Then, only moves containing these stops are evaluated. The local search also allow

the search in infeasible solutions with a penalization procedure.

They find very good results (0.79% above best known values) using classical VRP

set of instances with only one product type and single compartment. But for instances

with 2 compartments their results are 3 times worse (2.7% above best known values). The

authors conclude that MCVRP is more difficult or their algorithm still has some room for

improvements.
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To demonstrate the benefits of the co-collection they compute the routing cost for

co-collection and for separate collection using the last set of instances described in section

3.4. To evaluate the separate collection a CVRP is solved for each commodity using the

vehicle total capacity. Their results show that the co-collection take advantages over the

separate collection specially in cases when the number of commodities is higher and in

large vehicle capacity.

3.5.4 General Heuristic for the MCVRP

(DERIGS et al., 2010) study the vehicle routing problem with compartments (VRPC),

which generalizes the MCVRP to flexible compartments, and the allocation of several

products to a compartment, subject to product-product and product-compartment incom-

patibilities. They present a suite of heuristic algorithms including constructive meth-

ods, local searches, solution modification by destruction and reconstruction, and meta-

heuristics. Individual components and seven global configurations were tested on 200

instances. The best combination uses the savings method of (CLARKE; WRIGHT, 1964)

to create an initial solution, and several neighborhoods based on k-opt and the removal

and re-insertion of product demands. The best performing metaheuristic was record-to-

record-travel accepting solutions with a relative deviation from the incumbent of up to

3%.

3.5.5 Ant Colony Algorithm

(REED; YIANNAKOU; EVERING, 2014) present an ant colony system (ACS)

for the MCVRP-WS. In each phase a number of ants equal to the number of clients con-

struct feasible tours. Each time no client can be added to the current tour, a new tour

starts from a random unvisited client. At the end of each phase the dynamic preferences

for a transition from a client to a successor are updated according to standard ACS rules.

The tours are improved a a 2-opt local search. The algorithm preprocesses instances by

clustering them using a modified k-means algorithm, that maintains the clusters balanced

with respect to the capacity of the vehicles. The ACS then is applied to each cluster

independently. The authors evaluate the algorithm on five exemplary instances.
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3.5.6 Hybridized ant colony algorithm

(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) build on the work of (REED;

YIANNAKOU; EVERING, 2014) to create a hybridized ant colony algorithm (HAC).

The authors adds a different initialization that sets the dynamic preferences toD−1 for the

total lengthD of a random initial solution, and add two neighborhoods to the improvement

by local search after the construction via the ACS. The first inserts a customer into a

different position in the same or another route, the second swaps to customers from the

same or different routes. Experiments suggest that these changes improve the solutions

of (REED; YIANNAKOU; EVERING, 2014) by about 5 %, in average.

3.6 Conclusion

In this chapter we have presented the multi-compartment vehicle routing problem

(MCVRP) that introduces the co-collection or co-delivery of different types of products

to the classical CVRP. This problem have a large range of applications for logistics in

different industries. The petrol distribution and waste collection systems are the appli-

cations with more studies in the literature, but these problems have specific constraints.

The MCVRP that we presented here with the mathematical model still is not well stud-

ied in the literature. We have given an overview of the state-of-the-art heuristics and we

conclude that this problem have space for improvements.
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4 A TABU SEARCH FOR THE MCVRP-WS

In this chapter we propose a tabu search for the MCVRP-WS. The following sub-

section presents our constructive heuristic used to generate de initial solution and in sec-

tion 4.2 we present the tabu search in detail.

4.1 A savings method for the MCVRP-WS

To generate an initial solution we modified the savings heuristic proposed by

(CLARKE; WRIGHT, 1964).

The generalization to the multi-compartment and time-restricted case is straight-

forward. We consider a join only feasible if the combined route still satisfies the time

and each compartment capacity constraints. A initial solution of good quality has shown

experimentally to be important to get better final results for the problem.

4.2 Tabu search

The Tabu search meta-heuristic has been proposed by Glover and is a heuristic

based on modification of a solution (see (GLOVER; LAGUNA, 1997)). For a search

space S and a neighborhood function N : S → 2S it starts from some initial solution,

repeatedly passes from the current solution s ∈ S to a neighboring solution s′ ∈ N(s)

until some stopping criterion is satisfied. Similar to local search, Tabu search chooses a

neighbor of better objective function value, until no such neighbor exists. In standard Tabu

search, one of the best such neighbors is chosen. Otherwise, the best neighbor which has

not been declared tabu is chosen. The tabu mechanism is a short-term memory designed

to avoid cycling in local minima and to diversify the search. Commonly, some attributes

of recently visited solutions are declared tabu for a number of steps, called the tabu tenure,

and a solution is considered tabu if it has some tabu attribute. Attributes may be elements

of solutions, e.g. an arc visited by some vehicle in a solution of a VRP, or complete

solutions. Tabu search also frequently includes so-called aspiration criteria, i.e. rules

that allow neighboring solutions to be chosen even if they are tabu. After stopping, Tabu

search returns the best found solution during the search.
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4.2.1 Neighborhoods and tabu mechanism

We use four different neighborhoods in our Tabu search. They are defined in

terms of moves types, i.e. modifications of the current solution to obtain some neighboring

solution. A shift move removes some customer from his current route, and inserts him into

an arbitrary position in some other route; a swap move selects two customers in different

routes, and exchanges their positions, i.e. the first customer is inserted into the second

route in place of the second customer and vice versa. A crossover move selects two

customers in two different routes, and combines the initial and final parts of the routes

to obtain two new routes. For routes R = {r1, r2, . . . , rl(R)} and S = {s1, s2, . . . , sl(S)}

selecting customers ri and sj produces new routes R′ = {r1, . . . , ri−1, sj, . . . , sl(S)} and

S ′ = {s1, . . . , sj−1, ri, . . . , rl(R)}. Finally a route swap move selects two customers in a

route and swaps their positions.

The Tabu search examines all moves in the presented order (shift, swap, crossover,

and route swap). Within a move category, routes are always visited in a random order, and

customers always in order of the route. We consider only feasible solutions that respect

the capacity and length constraints. The number of examined route swap moves has been

limited to min{n2/4, 250}. The search adopts a first improvement strategy, accepting

the first non-tabu neighbor which is better than the current solution, or the best non-tabu

neighbor, if no better one exists. Ties among several best neighbors are broken in favour

of the first best neighbor. The only aspiration criterion is to accept tabu solutions that

improve the incumbent.

To define the tabu rules, we consider a given customer being part of some route

as a solution attribute. For any of the move types, a client that has been moved from

some source route is prohibited to return to that route during the tabu tenure. In some

preliminary experiments we have fixed the tabu tenure at 15 steps.

Algorithm 2 shows a pseudo code of the proposed Tabu search.

4.3 Computational Results

The Tabu search has been implemented in C++ and tested on a PC with an AMD

FX-8150 Eight-Core processor running at 3.4 GHz, and with 32 GB of main memory.

For the tests only one core has been used. The algorithms were tested with classical

VRP instances and multiple compartments generated from existing VRP instances since
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Algorithm 2 Tabu search pseudocode
Input: Current solution s.
Output: A local minium s∗.

1: s∗ ← s . initialize the best solution with current
2: while timeout do
3: N ′ ← worstpossiblesolution . initialize best neighbor as worst possible

solution
4: improved← false . flag to stop neighbor search when a neighbor better then s

is found
5: if !improved then
6: improved← try All ShiftMoves(s∗, s, N ′)
7: end if
8: if !improved then
9: improved← try All SwapMoves(s∗, s, N ′)

10: end if
11: if !improved then
12: improved← try All CrossOverMoves(s∗, s, N ′)
13: end if
14: if !improved then
15: maxMoves← min(n2/4, 250)
16: while !maxMoves & !improved do
17: improved = RouteSwapMove(s∗, s, N ′)
18: end while
19: end if
20: update TabuList with most recent move
21: if N ′ < s∗ then
22: s∗ ← N ′

23: end if
24: s← N ′

25: end while
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we were not able to find publicly available MC-VRP instances. This section shows the

obtained results and compares them against (El Fallahi; PRINS; Wolfler Calvo, 2008)

and (REED; YIANNAKOU; EVERING, 2014), which are, to our knowledge, the only

publications which address the same problem.

4.3.1 Analysis of the results

The results obtained in our tests are reported in Tables 4.1 and 4.2. Table 4.1 shows

the results obtained on instances sets S1 (one comparment), S3, and S4. Each instance

of the set was executed ten times with the same parameters and a different random seed.

We present for each instance the best known value of the VRP case (column “BKV”) and

the solution obtained by the constructive method of Clarke and Wright (column “C/W”).

For the Tabu search we report the average relative deviation from the best known value

(column “TS”), the average time in seconds to find the best solution (column “T (s)”) and

the relative deviation of the best solution in all ten replications from the best known value

(column “Best”). The results have been obtained with a time limit of n2/100 seconds,

where n is the number of customers of the instance.

Table 4.1: Results of the constructive heuristic and the Tabu search on instance sets S1,
S3, and S4 compared to best known values of the VRP.

S1 S3 S4
Name BKV CW TS T (s) Best C/W TS T (s) Best C/W TS T (s) Best
CMT1 524.6 11.4 2.1 10.0 0.6 18.8 5.6 9.7 5.0 17.8 6.2 13.3 4.8
CMT2 835.3 8.6 6.8 24.4 5.4 10.2 7.6 27.7 5.7 13.2 8.8 25.8 8.0
CMT3 826.1 7.6 4.0 68.6 2.0 10.8 8.8 58.5 6.9 13.0 7.1 71.4 6.6
CMT4 1028.4 10.9 6.1 144.9 4.8 17.4 12.9 169.5 10.9 18.6 13.5 182.9 11.6
CMT5 1291.4 8.1 6.8 265.8 6.2 13.2 12.4 300.1 12.1 16.2 14.0 325.9 13.6
CMT6 555.4 11.3 1.3 14.6 0.6 10.9 5.5 14.6 4.0 10.9 4.1 10.5 1.2
CMT7 909.7 7.2 4.4 35.1 3.4 7.0 4.8 33.2 3.0 7.4 5.7 21.8 4.5
CMT8 865.9 12.5 5.2 75.8 3.6 15.0 8.8 70.1 6.0 15.0 8.0 70.6 5.2
CMT9 1162.5 10.8 7.0 191.0 5.6 14.0 10.9 121.7 9.3 12.7 8.9 167.1 6.6
CMT10 1395.8 10.2 7.8 266.4 6.7 13.9 10.6 280.4 9.0 13.9 11.3 318.2 10.5
CMT11 1042.1 2.5 2.5 0.0 2.5 7.0 6.4 72.8 6.0 23.0 20.3 108.3 16.0
CMT12 819.6 1.7 0.9 2.2 0.9 12.2 8.4 70.2 6.7 19.7 17.2 62.7 16.6
CMT13 1541.1 3.3 1.5 75.7 1.0 3.3 1.4 84.6 1.1 3.3 1.5 68.6 1.4
CMT14 866.4 1.1 0.9 10.7 0.8 6.4 4.7 30.7 4.5 16.6 12.8 52.2 12.4
E072-04f 241.9 5.9 4.2 15.6 2.2 11.5 9.4 40.4 8.5 9.6 9.6 2.6 9.2
E076-07u 690.8 6.9 2.9 20.4 2.2 6.3 4.0 34.3 2.9 11.0 5.7 36.5 4.6
E076-08s 742.6 7.0 2.9 28.6 1.8 9.6 7.1 20.9 5.5 12.3 8.4 36.6 5.6
E135-07f 1162.9 4.8 2.7 101.6 2.5 6.0 5.0 82.9 5.0 14.7 13.8 100.3 13.8
E241-22k 666.8 14.8 13.4 421.0 12.9 23.1 22.0 449.7 21.5 26.7 24.4 485.8 23.7
E484-19k 1137.2 11.8 8.9 2056.6 8.6 17.6 16.1 2117.0 15.9 17.4 13.8 2023.4 13.3
Average 915.3 7.9 4.6 191.5 3.7 11.7 8.6 204.5 7.5 14.7 10.8 209.2 9.5
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In the results of set S1 we can see that our algorithm is not far from the classical

VRP solutions with results 4.6% worse in average, although it has not been designed for

this problem. The results obtained for set S3 show that splitting the vehicle capacity and

the customers demands in different ratios makes different routes necessary to attend all

customers. This happens since one of the compartments can get full and forces the vehicle

go back to depot even when other compartment still has a residual capacity. The solution

of set S3 are in average 8.6% above the best-known values for the VRP. (Note that the

optimal values in this case are probably higher than the best known values for the VRP.)

Looking at the results of instance set S4 we can see that when splitting the com-

partments in a more unbalanced way cause the total time of the routes tends to increase,

which results in solutions with more routes. In this instance set, the solutions are on av-

erage 10.7% worse than the best-known values for the VRP. We can also notice a slight

increase in the average time to find the best value from 204.45 to 209.23 seconds.

(REED; YIANNAKOU; EVERING, 2014) present results only for the instance

CMT1 with vehicle capacity and customers demands split in the same way as instance

sets S3 and S4. They have obtained a total route length of 560.74 and 564.04 for split-

ting methods S3 and S4, respectively. For these instances we were able to improve their

results. We obtain a total length of 553.76 in average for splitting method S3, and a total

length of 556.91 in average for splitting method S4. The best found solutions were with

total length of 550.62 for splitting method S3 and 549.51 for splitting method S4.

In Table 4.2 we report the results for instance set S2 and compare them with the

results of (El Fallahi; PRINS; Wolfler Calvo, 2008). For each instance the table reports the

best known value obtained by (El Fallahi; PRINS; Wolfler Calvo, 2008), and the relative

deviations from this best known values in percent (columns “Cost”) and the time to find

them (columns “Time”) for their Memetic Algorithm (MA) as well as their Tabu search

Algorithm (TS). These are the only known results for this set of MC-VRP instances. The

last two columns give the same results obtained by running our Tabu search algorithm

ten times for each VRP instance with demands and capacities randomly generated as

described above for instance set S2. The times reported are total execution times. In

our case the execution time has been limited to n2/300 seconds, for an instance with n

customers. This time has been chosen to provide a fair comparison, considering that the

results of (El Fallahi; PRINS; Wolfler Calvo, 2008) have been obtained on a Pentium

4 processor running at 2.4GHz. This processor is about a factor two slower than the

processor of our machine. The comparison is further complicated by the fact that (El
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Fallahi; PRINS; Wolfler Calvo, 2008) report the result of only a single random instance.

In our experiments we have found a considerable variation of the results for different

demand splittings of the same instance.

Table 4.2: Results of Tabu search on instances S2 compared to (El Fallahi; PRINS;
Wolfler Calvo, 2008).

(El Fallahi; PRINS; Wolfler Calvo, 2008) This work
MA TS

Name BKV Cost Time(s) Cost Time(s) Cost Time(s)
CMT1 556.1 0.5 17.4 0.0 15.3 -1.8 8.3
CMT2 863.6 2.9 25.5 0.0 13.9 0.9 18.5
CMT3 837.6 4.9 21.8 0.0 39.8 1.4 33.0
CMT4 1070.7 1.7 93.9 0.0 109.7 2.0 74.3
CMT5 1361.4 3.5 115.9 0.0 208.4 2.3 130.7
CMT6 563.4 1.1 16.5 0.0 10.2 -0.8 8.3
CMT7 949.0 0.6 39.2 0.0 22.0 -0.5 18.5
CMT8 916.2 4.7 18.7 0.0 18.3 -1.6 33.0
CMT9 1262.7 0.0 98.7 2.2 8.6 -4.2 74.3
CMT10 1490.2 1.3 140.2 0.0 190.3 0.2 130.8
CMT11 1122.9 0.0 47.8 7.0 27.9 1.8 47.5
CMT12 926.5 0.0 18.2 0.8 15.8 -4.4 33.0
CMT13 1542.4 0.0 76.4 2.6 21.9 1.1 47.5
CMT14 966.5 0.0 23.3 18.1 35.7 -3.5 33.0
E072-04f 262.3 0.5 11.7 0.0 5.6 -1.2 17.0
E076-07u 697.8 0.6 15.1 0.0 16.5 0.0 19.1
E076-08s 772.2 2.8 15.4 0.0 13.9 1.6 19.1
E135-07f 1233.2 0.0 47.3 0.2 51.9 1.6 59.1
E241-22k 787.8 1.1 504.5 0.0 202.9 -1.5 190.2
E484-19k 1177.3 5.4 1643.6 0.0 2122.5 5.6 770.6
Average 968.0 1.6 149.6 1.5 157.6 -0.05 88.3

On average, our tabu search is able to find results that are about 1.5% better than

those of (El Fallahi; PRINS; Wolfler Calvo, 2008) in a comparable time. The actual

differences in solution quality may vary for the instances used in the experiments of (El

Fallahi; PRINS; Wolfler Calvo, 2008), but we observe that in 10 of the 20 instances our

method consistently obtains equal or better solution values, so we expect this result to

be robust. Our results show that a much simpler Tabu search can obtain comparable

results, but also show that there is still a potential for an improvement. Another interesting

observation is that the overall gain of about 1.5% is of the same order of the improvement

that (El Fallahi; PRINS; Wolfler Calvo, 2008) obtain by allowing the splitting of routes,

i.e. the demand of a customer for different product types can be satisfied by multiple

vehicles.
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4.4 Conclusion

We have proposed a constructive heuristic based on the savings method of (CLARKE;

WRIGHT, 1964) and a Tabu search to the MCVRP-WS. We have presented results for

twenty different VRP instances on four different sets of MC-VRP with instances of two

compartments. Our algorithm has generated good results compared to existing algo-

rithms, but still has potential for improvement in performance and neighborhood ex-

ploration. It would be interesting, in particular, to find a heuristic which combines the

advantages of our approach and that of (El Fallahi; PRINS; Wolfler Calvo, 2008) and to

study the potential gain of our method by allowing the satisfaction of customer demand

for different product types in separate routes.



49

5 AN ITERATED TABU SEARCH FOR THE MCVRP

The heuristic we propose to solve the MCVRP is inspired by the iterated tabu

search (ITS) algorithm for vehicle routing problems of (CORDEAU; MAISCHBERGER,

2012), which is considered one of the best performing metaheuristics for the CVRP (VI-

DAL et al., 2013). (CORDEAU; MAISCHBERGER, 2012) introduce a general heuristic

that is applicable to periodic, multi-depot, or side-dependent VRPs and their variants with

time windows.

An iterated tabu search (ITS) starts from some local minimum and repeatedly

applies a perturbation to escape from it followed by a tabu search to find another local

minimum, until some stopping criterion is satisfied. An acceptance criterion decides if

the new local minimum is accepted, or the search continues from some previously visited

solution. The initial local minimum can be obtained by applying any local search to

an initial solution. An ITS can be seen as a generalization of an iterated local search,

replacing the local search by a tabu search.

Our ITS is detailed in Algorithm 3. It constructs an initial solution, and applies the

tabu search to it. Then, for I iterations, the ITS perturbs the current solution and applies

the tabu search. At the end of iteration i the new solution is accepted with probability

1 − (i/I)2. Otherwise the search continues from the incumbent s∗, which is updated

during the search (not shown in the algorithm), and returned at the end. The acceptance

criterion was chosen to diversify the search at the beginning and intensify it around the

best solution towards the end.

We represent a route by a sequence of visits, where in each visit a vehicle attends

the demand of one or more products of a client. A client can be visited several times in

different routes, but at most once per route.

The initial solution is the better of two constructions. The first is the angular sweep

algorithm of (WREN, 1971; GILLETT; MILLER, 1974). We use a backward-sweep and

insert single demands into the current route. If an insertion violates the length or capacity

constraints a new route is created, unless the limit of the number of routes is reached.

In this case all the remaining customers are inserted into the last route. The second is

the savings method of (CLARKE; WRIGHT, 1964) which has been extended to handle

multiple compartments. For the case of split demands, Clarke and Wright’s algorithm

works on each demand separately.

To perturb a solution a random client is chosen and removed from its route, to-
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Algorithm 3 Iterated tabu search
1: function ITS( )
2: s← better of sweepConstruction(), ClarkeWrightConstruction()
3: s← tabuSearch(s)
4: for i = 1, . . . , I iterations do
5: s′ ← perturb(s)
6: s← tabuSearch(s′)
7: with probability (i/I)2: s← s∗

8: end for
9: return the best solution s∗ found during search

10: end function

gether with its π nearest neighbors, where for each perturbation π is randomly chosen in

[0, d
√
ne]. The removed clients are reinserted in a random order into the solution. Each

client is inserted into the route and position within the route which minimizes the increase

in the total routing cost.

We use the generalized insertion procedure (GENI) proposed by (GENDREAU;

HERTZ; LAPORTE, 1992) for the traveling salesman problem and widely used in VRP

heuristics to insert visits into routes or remove visits from routes. Together with the

insertion or removal of a vertex, GENI applies a subset of 3-opt and 4-opt moves to the

route. The selection of the edges in these moves is limited to contain one of the q-nearest

vertices of the vertex to be inserted, and has time complexity O(nq4 + n2). We apply

GENI only when a complete visit is inserted or removed from a route. If a single product

demand is added to an existing visit or removed from a visit which attends other demands

GENI is not applied, since the route does not change.

We explain the tabu search algorithm next.

5.1 Tabu search algorithm

Tabu search is a meta-heuristic which guides a local search through the search

space. It allows non-improving moves and avoids cycling by storing recent moves in a

short-term memory and declaring moves that return to previous solutions tabu (GLOVER;

LAGUNA, 1997). It is one of the most successful heuristics for vehicle routing prob-

lems (CORDEAU et al., 2002). The performance of a tabu search depends on the neigh-

borhood structure, the handling of unfeasible solutions, and the design of the short-term

memory.

The proposed tabu search starts from some initial solution and repeatedly moves
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Algorithm 4 Tabu search.
Input: A solution s.
Output: A local minimum s∗.

1: α← 1; β ← 1
2: while the incumbent improved in the last

√
(I − i)π iterations do

3: s← bestShiftMove(s)
4: Every nr iterations: s← refinement(s)
5: updatePenalties(α, β)
6: updateTabuList()
7: end while
8: return s∗

to the best non-tabu neighbor. Every nr iterations a refinement procedure is applied to

the current solution. The current solution may exceed the capacity or length constraints.

For a set of routes s = {R1, . . . , Rr} we define its time (or distance) excess D+(s) =∑
R∈s max{d(R) − D, 0}, and its capacity excess C+ =

∑
R∈s max{maxi∈[m] ∆ci, 0},

for ∆c = c(R)− C. The objective value of solution s then is

F (s) = d(s) + αC+(s) + βD+(s)

where α and β are penalties for each unit of capacity and time excess. Initially, α =

β = 1. Every time the current solution exceeds the capacity or time constraints, the

corresponding penalty is increased by a factor 1 + γ; otherwise it is decreased by a factor

1−γ. The value of γ is chosen uniformly randomly in [0, 1] at the start of the tabu search.

If the value of the incumbent s∗ does not improve for
√

(I − i)π iterations the search

stops. Algorithm 4 summarizes the main steps of the tabu search.

In the following sections we present the neighbourhood and the tabu list, the di-

versification strategy, and the intra-route refinement procedure.

5.1.1 Neighbourhood and tabu list

The neighborhood consists of a single kind of move: relocating a non-empty sub-

set of the demands of a visit to another route. A move is defined by a tuple (s, d, v, p),

where s is the source route, d is the destination route, v ∈ s is a visit in the source route,

and p ⊆ P (v) is a subset of the demands attended by visit v.

If the subset p contains all demands, visit v is removed entirely from the source

route s, and the GENI procedure is applied to optimize the source route. Otherwise,
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Figure 5.1: Example of a move which creates a new visit in the destination route (left)
and a move where the visits already exists in the destination route.

the visit is split into two demands. Demands P (v) \ p remain in visit v in the source

route s, which does not need to be optimized. The selected demands p are inserted into

the destination route d. If client V (v) does exist in the destination route, demands p(v)

are simply added to the existing visits, and the route does not need to be optimized.

Otherwise, a new visit (v(V ), p) is created and inserted into the destination route. In this

case the GENI procedure is applied to optimize the destination route. Figure 5.1 illustrates

a move of all demands of a visit, and a move of a proper subset. GENI insertion procedure

is applied in the moves a, b, c of the example in the left side. GENI removal procedure is

applied in the move a of the example on the left side and in the move c in the example on

the right.

A move is limited to insert the demands into a few nearest routes. A list of nearest

routes is maintained for each client i. Let v be the total number of visits of the current

solution, and d = d(s)/v the average distance between visits. Demands of client i are

relocated only to routes which have a visit at a distance at most 2d from i. If the list of

nearest routes empty, then the distance is increased by 20% until it contains at least one

destination route.

When at move is applied to the current solution all solutions that have one of the

demands p of customer V (v) in source route s are tabu for τ iterations. The tabu tenure

τ is chosen randomly in [1,
√
n I] at the beginning of each tabu search. If a move is able

to improve the incumbent it satisfies the aspiration criterion and is performed even when

tabu.
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Diversification

To diversify the search, we penalize frequent moves each time a local minimum

is reached. If the current solution is a local minimum for F , we choose the best move

according to the modified objective function

F ′(s,M) = F (s)(1 + ζ
∑
p′∈p

f(V (v), p′)/i) (5.1)

for a move M = (s, d, v, p) of demands p of visit v into destination route d, and current

iteration i. Here f(V (v), p′) is the number of times demand p′ ∈ P of client V (v) entered

route d before, and ζ is randomly chosen from [0, 1] at the beginning of each tabu search.

5.1.2 Route refinement

The tabu search algorithm also has a route refinement that is applied to each route

every nr iterations. The procedure is based on the US algorithm proposed by (GEN-

DREAU; HERTZ; LAPORTE, 1994) for the traveling salesman problem. For each route

the algorithm removes and reinserts the visit which leads to the largest reduction in route

length, if any. For removals and insertions the GENI procedure with a larger neighbor-

hood size of q′ = 2q is used.

5.2 Computational Experiments

In this section we report the results of computational experiments with the ITS.

We first test our code without compartments on well-known instances of the VRP prob-

lem to establish a baseline compared to state-of-the-art heuristics. We next analyze the

performance of ITS on instances with 2 to 5 compartments, and compare them to the

results of (El Fallahi; PRINS; Wolfler Calvo, 2008), (MUYLDERMANS; PANG, 2010)

and (DERIGS et al., 2010). We finally study the impact of split demands.
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Table 5.1: Computational environments.
Reference Instances Strat. Environment

(El Fallahi; PRINS; Wolfler Calvo, 2008) CMT S1,S2 Pentium 4, 2.4GHz
(DERIGS et al., 2010) CMTu, GWKCu S1 Pentium D 3.0GHz processor
(MUYLDERMANS; PANG, 2010) CMTu, GWKCu S1 Pentium M740, 1.73GHz
(LAPORTE; ROPKE; VIDAL, 2014) - - Core i7 2.93GHz
(ABDULKADER; GAJPAL; ELMEKKAWY, 2015) CMT S3,S4 2.1GHz processor
This work CMT, GWKC S1–S4 AMD FX 8150, 3.6 GHz

5.2.1 Experimental methodology

The ITS has been implemented in C++ and tested on a PC with an AMD FX-8150

processor with 8 cores running at 3.4 GHz, and with 32 GB of main memory. For the tests

only one core has been used. The instances and detailed results reported in this work can

be found at <www.inf.ufrgs.br/algopt/MCVRP>.

Table 5.1 summarizes the instances and division strategies used in the literature

and the computing environment in which the corresponding results have been obtained.

Instance set CMTu and GWKCu are the subsets of instances without route length con-

straints, which are used by (DERIGS et al., 2010) and (MUYLDERMANS; PANG, 2010).

For comparing running times, we consider the environment of (El Fallahi; PRINS; Wolfler

Calvo, 2008) four times slower, that of (DERIGS et al., 2010) three times slower, and that

of (MUYLDERMANS; PANG, 2010) two times slower, and that of (ABDULKADER;

GAJPAL; ELMEKKAWY, 2015) about the same. These are conservative estimates, based

on the PassMark benchmark.

The quality of a solution of value v is measured by its relative deviation 100(v −

v∗)/v∗ in percent from the best known value v∗. Since our algorithm is stochastic, all

experiments have been replicated 10 times with different random seeds, and in the tables

below we report average relative deviations over the 10 replications (“Avg.”) and the rela-

tive deviation of the best solution found (“Best”), if not stated otherwise. The refinement

period nr has been set to 200. For the neighborhood size GENI values q ∈ {3, 4, 5} have

been tested, and we have found q = 4 to perform best.

5.2.2 Experiment 1: Performance on VRP instances

In our first experiment we evaluate the performance of our algorithm on standard

VRP instances, and its scaling behaviour by applying division strategy S1 with m ∈

www.inf.ufrgs.br/algopt/MCVRP
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Table 5.2: Computational results of the best metaheuristics for the VRP according to
(LAPORTE; ROPKE; VIDAL, 2014).

CMT GWKC

Reference Configuration Avg. t(s) Avg. t(s)

(NAGATA; BRÄYSY, 2009) Best of 10 runs 0.0 361 0.2 9290
(SUBRAMANIAN; UCHOA; OCHI, 2013) Best of 10 runs 0.0 720 0.4 28130
(GROËR; GOLDEN; WASIL, 2011) 129 threads, best of 5 runs 0.0 99214 0.1 99214
(VIDAL et al., 2012) Average of 10 runs, 50K it. 0.0 254 0.2 2419
(NAGATA; BRÄYSY, 2009) Average of 10 runs 0.0 36 0.3 929
(MESTER; BRÄYSY, 2007) Best configuration 0.0 62 0.3 559
(GROËR; GOLDEN; WASIL, 2011) 8 threads, best of 5 runs 0.0 2930 0.3 6050
(VIDAL et al., 2012) Average of 10 runs, 10K it. 0.1 58 0.3 744
(GROËR; GOLDEN; WASIL, 2011) 4 threads, best of 5 runs 0.1 1465 0.4 3025
(PRINS, 2009) - 0.1 6 0.6 166
(MESTER; BRÄYSY, 2007) Fast configuration 0.1 1 1.2 5
(SUBRAMANIAN; UCHOA; OCHI, 2013) Average of 10 runs 0.1 72 0.4 2813
(PISINGER; ROPKE, 2007) Best of 10 runs, 50K it. 0.1 424 0.8 2616
(TARANTILIS, 2005) Standard configuration 0.2 15 0.9 121
(GROËR; GOLDEN; WASIL, 2010) Set partitioning 0.3 5 1.3 31
(GROËR; GOLDEN; WASIL, 2010) Ejection – random 0.3 12 1.2 7
(PISINGER; ROPKE, 2007) Average of 10 runs, 50K it. 0.3 42 1.4 261
(CORDEAU et al., 2001) - 0.6 378 1.8 862
(TOTH; VIGO, 2003) - 0.6 4 3.2 15

Table 5.3: Results of the ITS with 103, 104 , 105 and 106 iterations on instances with one
compartment.

103 104 105 106

Inst. Avg. Best t(s) Avg. Best t(s) Avg. Best t(s) Avg. Best t(s)

CMT 1.9 1.1 0.2 0.9 0.4 6.8 0.4 0.2 70.1 0.2 0.1 698.9
GWKC 5.0 4.3 3.1 3.2 2.5 32.1 1.9 1.2 306.7 1.2 0.7 3035.9
Avg. 3.7 3.0 1.9 2.3 1.6 21.7 1.3 0.8 209.3 0.8 0.4 2073.6

{2, 3, 4, 5} compartments. Table 5.2 gives an overview over the most successful heuristics

for the VRP. The table comes from the recent survey of (LAPORTE; ROPKE; VIDAL,

2014) that compares more than 18 metaheuristics in terms of solution quality, speed,

simplicity, flexibility and parameter sensitivity. (LAPORTE; ROPKE; VIDAL, 2014)

have normalized the running times to an Intel Core i7 CPU running at 2.93 GHz. The

times in our table are normalized to be comparable to our computational environment

(see Table 5.1).

Table 5.3 shows the results of running our algorithm for 103, 104, 105, 106 itera-

tions, and with only one compartment on instances CMT and GWKC. We can see that the

solution quality improves with an increasing number of iterations and the running time is,

as expected, proportional to the number of iterations. The solution quality obtained with

105 to 106 iterations is comparable to that of the lower third of the best heuristics for the

VRP, but our implementation is somewhat slower than most of them. This may be due
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Table 5.4: Results of the ITS with 103, 104 , 105 and 106 iterations on instances with two
compartments and division strategy S1. Split demands are allowed.

103 104 105 106

Inst. Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s)

CMT 2.6 1.5 0.2 0.8 1.0 0.5 0.1 11.5 0.5 0.2 0.0 116.7 0.2 0.1 0.0 1195.0
GWKC 5.2 4.2 0.1 5.2 3.5 2.6 0.1 51.7 2.1 1.5 0.0 489.5 1.2 0.8 0.0 4681.1

Avg. 4.1 3.1 0.1 3.4 2.5 1.7 0.1 35.2 1.5 1.0 0.0 336.0 0.8 0.5 0.0 3245.7

Table 5.5: Results of the ITS with 105 iterations and two to five compartments and split-
ting strategy S1. Split demands are allowed.

m = 2 m = 3 m = 4 m = 5

Inst. Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s) Avg. Best Vis. t(s)

CMT 0.6 0.2 0.0 137.7 0.6 0.2 0.0 253.2 0.9 0.3 0.1 497.6 0.9 0.3 0.1 999.8
GWKC 1.7 1.1 0.1 538.2 2.0 1.2 0.4 940.3 2.0 1.3 0.5 1777.8 2.2 1.4 0.8 3475.9

Avg. 1.2 0.8 0.0 373.3 1.4 0.8 0.2 657.4 1.5 0.9 0.3 1250.7 1.7 1.0 0.5 2456.3

to some missing optimizations, and is partly due to the overhead for considering multiple

compartments. Since our algorithm was not designed for the standard VRP, and must

handle multiple compartments and multiple visits, we consider these results demonstrate

a reasonable baseline performance.

5.2.3 Experiment 2: Performance on MCVRP instances

In our second experiment, we evaluate the performance our algorithm and its scal-

ing behaviour on the MCVRP instances generated from instances CMT and GWKC using

strategy S1, with two to five compartments. For the most common case of two compart-

ments, we have run experiments with 103, 104, 105, and 106 iterations. For the remaining

cases we have fixed the number of iterations at 105. The results are shown in Tables 5.4

and 5.5. Since split demands are allowed, we additionally present the average relative

deviation of the number visits from the number of customers.

Comparing the results for one compartment in Table 5.3 to those with two com-

partments we find that the performance of the algorithm is about the same for the same

number of iterations. The running time however, increases by about 70%. This comes

from the additional handling of the multiple compartments. We can also see that allowing

multiple visits seems to have no or little advantage for instances generated by strategy

S1, since the average percentage of additional visits is small and tends to zero, for an

increasing number of iterations.
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These observations continue to hold for the results with more than two compart-

ments in Table 5.5. For each additional compartment, the average and best solution quality

increases slightly, and the running approximately doubles. The increase in running can

be explained by the additional combinations of subsets of demands that must be consid-

ered. For a practical number of compartments, the running times still remain acceptable.

However, for a large number of compartments, or a tight time budget, heuristic methods

for selecting demands of compartments when splitting would be necessary. As in the case

of two compartments, the results show that for the instances generated with strategy S1

there seems to be very little advantage of split demands.

5.2.3.1 Comparison to the results from the literature

In Table 5.6 we compare our results to those of (El Fallahi; PRINS; Wolfler Calvo,

2008), (MUYLDERMANS; PANG, 2010), and (DERIGS et al., 2010) for the instances

with two products obtained by division strategy S1. The table shows the average rel-

ative deviation and the average time for each instance, which was solved by at least

one approach. For the missing entries (“–”) no results were reported. In the case of

(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) the missing entries are

the instances with route length restrictions. The table also provides averages for different

groups. Group 1 contains the instances for which all authors report results, Group 2 the

instances used by (El Fallahi; PRINS; Wolfler Calvo, 2008), and Group 3 those used by

(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010). All approaches, except

that of (El Fallahi; PRINS; Wolfler Calvo, 2008) respect the fleet size, so we do not re-

port the number of vehicles in the solution. For completeness we also provide overall

averages.

We find that ITS with 104 iterations performs better than both the tabu search and

the memetic algorithm of (El Fallahi; PRINS; Wolfler Calvo, 2008) and is about a factor

4 faster. This holds overall and for all 16 instances individually. Exceptions are CMT5,

GWKC12, which take more iterations, but are still faster with a mean time of 69 s and

185 s, respectively, to reach the same relative deviation, and CMT13, where ITS produces

solution with a relative deviation of 0.2% higher in the same time.

Algorithm GLS of (MUYLDERMANS; PANG, 2010) quickly finds good solu-

tions, but improves little over time: the mean relative deviation of 3.6% for 300K iter-

ations improves with 1200K iterations only to 3.0%. We can also see that the time per

iteration increases only slightly with the number of clients, which leads to higher relative
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deviations in larger instances. ITS with 104 iterations has a smaller average relative devi-

ation compared to GLS with 300K iterations, in about half the time, and finds solutions

of comparable quality to GLS with 600K iterations, a factor four faster. GLS with 1200K

and ITS with 105 iterations run in a comparable time, but ITS finds solutions with an av-

erage relative deviation of 1.8% compared to 3.0% of GLS. These observations hold also

for most the of individual instances. Exceptions are instances CMT4,5, and GWCK19,20,

where ITS takes in some of the time scales a factor of two to five longer to reach the same

solution quality. Since (MUYLDERMANS; PANG, 2010) find solutions of average rela-

tive deviation of 0.79% for standard CVRP instances, the performance of their approach

seems not to transfer well to multiple compartments.

(DERIGS et al., 2010) present results for 5, 10, 20, and 60 minutes, which corre-

spond to 100, 200, 400 and 1200 seconds, respectively, in our environment. Looking at

the runs with 5 and 20 minutes, which can be safely compared to the runs of ITS with 104

and 105 iterations, we see that ITS finds for the majority of the instances better solutions

in less time, especially on the large instances. The average time for ITS to reach the same

solution quality as the runs with 5, 10, 20, and 60 minutes, is 60, 137, 171, and 302 sec-

onds, respectively. Exceptions to the average are instances CMT4,5,11 and GWKC18,19,

which need in some of the time scales up to a factor five more time. Also, even after 106

iterations ILS does not reach the solution quality of 1.3% for GWKC18 that the algorithm

of (DERIGS et al., 2010) obtains after 60 minutes.

In summary, for each time scale and algorithm considered, ITS finds better values

in less time in average, and also for the majority of the individual instances. Excep-

tions are some of the results of (MUYLDERMANS; PANG, 2010) for 300K iterations,

where GLS finds solutions faster, and particularly instances CMT4,5 and GWKC17-19,

for which other algorithms are frequently faster.

Finally, we offer a summarized view of the results using performance profiles (DOLAN;

MORE, 2002) in Figure 5.2. The plots show the probability P (r ≤ τ) of reaching a fixed

quality in a time at most a factor τ slower than the fastest algorithm. In particular, for

τ = 1 we obtain the probability that the algorithm is the fastest, and for τ →∞ the prob-

ability of reaching the target quality at all. We have excluded the algorithm of (El Fallahi;

PRINS; Wolfler Calvo, 2008), since they report only one time scale, and the shorter runs

of ITS with 103 and 104 iterations, since we have no data for the other algorithms on these

short time scales. Consistent with our observations, we can see that ITS, for each τ has a

higher probability of finding a solution of a given quality, except for a relative deviation
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Figure 5.2: Performance profiles for GLS of (MUYLDERMANS; PANG, 2010), the al-
gorithm of (DERIGS et al., 2010), and ITS, for reaching a relative deviation of 1% (left)
and 3% (right).
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of 1 % and a short time scale, where GLS has a slightly higher probability.

5.2.4 Experiment 3: The single-visit MCVRP

In this section we focus on the single-visit MCVRP (or MCVRP without splitting,

MCVRP-WS), a variant of the MCVRP where the demand of the clients for all product

types must be attended in a single visit. We compare our algorithm in this setting to the

two current best approaches from the literature: the MA and TS of (El Fallahi; PRINS;

Wolfler Calvo, 2008), and the hybridized ant colony algorithm HCA of (ABDULKADER;

GAJPAL; ELMEKKAWY, 2015). Following the literature, in this section limit on the

fleet size have been ignored.

The comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008) on

instances with division strategy S2 is shown in Table 5.7. For their MA and TS it reports

the relative deviation from the best known values (“R.d.”) of the single run provided by

the authors and the run time in seconds (“t(s)”). The best known values are those reported

by (El Fallahi; PRINS; Wolfler Calvo, 2008). Thus, negative relative deviations indicate

new best solutions.

(El Fallahi; PRINS; Wolfler Calvo, 2008) find significant gains for multiple visits

compared to single ones. For ITS such differences exist, but are much smaller. Gains

are strongly correlated with more visits, and for a subset of instances, e.g. CMT11, gains

remain significant. It is evident from the negative relative deviations that ITS for both sin-

gle and multiple visits, finds almost always better solutions, in comparable, often shorter

running time. (El Fallahi; PRINS; Wolfler Calvo, 2008) report the value of a single run

only, however even the worst of our 10 replications is better than the best known value
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Table 5.7: Comparison to the results of (El Fallahi; PRINS; Wolfler Calvo, 2008) on
instances with division strategy S2.

MA TS ITS

Single Mult. Single Mult. Single Mult.

Inst. BKV R.d. t(s) R.d. t(s) Vis. Avg. t(s) Avg. t(s) Vis. Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 548.4 1.9 4.3 0.0 5.6 2.0 1.4 3.8 0.4 3.2 0.0 -2.5 -4.1 5.0 -2.3 -4.1 2.6 6.0
CMT2 863.6 2.9 6.4 1.3 11.3 0.0 0.0 3.5 1.2 14.0 0.0 -0.6 -1.4 6.8 -0.5 -1.9 4.8 9.8
CMT3 832.9 5.5 5.5 1.3 23.0 0.0 0.6 9.9 0.0 39.7 0.0 -0.0 -0.4 11.2 0.2 -0.4 1.1 15.3
CMT4 1070.7 1.7 23.5 0.7 39.7 0.0 0.0 27.4 0.5 86.7 0.7 -0.8 -2.0 16.0 -0.6 -1.8 2.3 23.3
CMT5 1361.4 3.5 29.0 0.5 121.8 0.0 0.0 52.1 0.1 97.7 0.0 -0.6 -1.4 22.8 -0.3 -1.2 3.3 32.9
CMT6 558.6 1.9 4.1 0.0 6.8 0.0 0.9 2.5 0.0 7.5 0.0 -0.5 -0.6 5.8 -0.5 -0.6 0.0 5.0
CMT7 949.0 0.6 9.8 1.1 4.5 0.0 0.0 5.5 0.4 8.4 2.7 -2.7 -3.7 7.0 -2.8 -3.6 1.1 10.5
CMT8 890.1 7.7 4.7 0.0 25.3 1.0 2.9 4.6 0.5 28.3 0.0 -1.5 -2.7 9.7 -1.8 -2.7 0.2 10.3
CMT9 1186.2 6.5 24.7 3.3 38.5 0.0 8.8 2.1 0.0 77.6 0.7 -0.2 -1.0 12.5 -0.2 -1.1 0.1 18.9
CMT10 1475.8 2.3 35.0 0.0 103.1 0.0 1.0 47.6 1.7 92.0 1.0 -2.4 -3.3 16.6 -2.5 -3.4 0.3 26.2
CMT11 1113.4 0.9 11.9 0.0 23.7 1.7 7.9 7.0 3.8 19.9 0.8 -0.2 -5.4 11.0 -2.0 -5.8 3.8 13.6
CMT12 906.9 2.2 4.5 0.0 8.4 1.0 3.0 4.0 0.0 22.8 0.0 -1.9 -4.4 12.1 -2.1 -4.4 2.4 16.2
CMT13 1541.2 0.1 19.1 0.0 35.3 0.8 2.7 5.5 0.1 41.1 1.7 0.3 0.1 7.8 1.8 0.1 0.0 12.6
CMT14 934.7 3.4 5.8 0.0 15.4 1.0 22.1 8.9 0.7 13.3 0.0 -0.6 -2.2 13.0 -0.3 -2.1 0.3 9.1
GWKC12 1175.5 5.6 410.9 4.1 386.5 0.4 0.2 530.6 0.0 969.6 0.2 -0.4 -1.1 49.8 1.0 -0.2 2.8 77.9
GWKC17 771.2 3.3 126.1 2.8 147.1 0.4 2.2 50.7 0.0 229.8 0.4 -2.5 -3.6 23.0 -3.2 -4.3 4.9 33.2
E072-04f 262.3 0.5 2.9 0.1 3.1 0.0 0.0 1.4 0.2 3.4 0.0 -3.5 -5.1 7.2 -5.0 -6.8 3.2 7.3
E076-07u 697.8 0.6 3.8 1.1 12.7 0.0 0.0 4.1 0.2 5.3 0.0 -0.3 -0.6 7.3 -0.2 -0.7 0.4 10.1
E076-08s 748.4 6.0 3.9 1.1 10.7 1.3 3.2 3.5 0.0 13.1 0.0 0.7 -0.1 7.2 0.2 -0.4 2.3 9.4
E135-07f 1233.2 0.0 11.8 1.9 17.9 1.5 0.2 13.0 1.2 65.1 0.0 -0.1 -2.2 18.5 -1.0 -2.6 3.3 22.7

Avg. 956.1 2.8 37.4 1.0 52.0 0.6 2.8 39.4 0.5 91.9 0.4 -1.0 -2.3 13.5 -1.1 -2.4 2.0 18.5

in 25 of the 38 instances, so it is unlikely that the better performance of ITS is due to a

particularly bad run of the MA or the TS.

The comparison to the results of (ABDULKADER; GAJPAL; ELMEKKAWY,

2015) on instances with division strategies S3 and S4 is shown in Tables 5.8 and 5.9,

which report the same values as the previous table. (ABDULKADER; GAJPAL; ELMEKKAWY,

2015) also report only the value of a single run.

The relative deviations of HAC for both strategies are 0%, since they represent the

current best known values, except instance CMT12 with division strategy S3, where the

best known value has been found by (REED; YIANNAKOU; EVERING, 2014). In both

cases ITS finds in nine instances better solutions. For some instances, e.g. CMT7,8,14

the relative deviations are slightly higher, and CMT12 for strategy S4 has the highest

deviation of 1.5%. ITS reaches optimal values for these instances with a factor of at most

3 more time, and often faster. For example, the average time to find the best known value

for CMT12 and strategy S4 is 74s. In the remaining instances, the running times of ITS

are always shorter, some markedly, e.g. for instances CMT9,10, and in particular on the

larger instances. This suggests that ITS scales better. The results for ITS with multiple
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Table 5.8: Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S3 to ITS with single and multiple visits and
104 iterations.

HAC ITS

Single Multiple

Inst. BKV R.d. t(s) Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 550.7 0.0 5 0.1 0.0 4.7 0.0 0.0 0.0 6.4
CMT2 890.7 0.0 15 -1.8 -2.1 6.5 -1.0 -2.1 1.2 9.2
CMT3 874.1 0.0 40 -0.5 -0.8 9.9 -0.1 -0.6 0.3 15.0
CMT4 1126.1 0.0 146 -2.2 -3.0 15.5 -1.7 -2.4 0.7 22.8
CMT5 1444.3 0.0 257 -3.3 -3.9 23.0 -2.9 -3.5 1.4 32.6
CMT6 557.5 0.0 11 0.0 0.0 3.8 0.0 0.0 0.0 4.8
CMT7 928.2 0.0 28 0.5 -0.2 6.8 0.0 -0.2 0.0 9.9
CMT8 883.0 0.0 93 0.1 -0.7 7.9 1.4 -0.7 0.4 10.8
CMT9 1228.9 0.0 326 -1.7 -3.0 14.6 -1.2 -2.1 0.5 17.0
CMT10 1511.7 0.0 624 -2.1 -3.1 15.8 -2.5 -3.8 0.9 25.0
CMT11 1110.5 0.0 75 -0.2 -0.4 11.8 -0.1 -0.4 1.1 14.7
CMT12 911.9 0.1 15 -0.5 -0.7 12.0 -0.2 -0.6 0.7 15.4
CMT13 1556.5 0.0 117 -0.5 -0.8 7.6 1.5 -0.7 0.0 11.4
CMT14 911.4 0.0 34 0.1 -0.0 11.9 0.1 0.0 0.7 8.4

Avg. 1034.7 0.0 128 -0.9 -1.3 10.8 -0.5 -1.2 0.6 14.5

visits are about the same. Instances with division strategy S3 seem to gain nothing from

multiple visits, while the average for instances with division strategy S4 is slightly better

when multiple visits are allowed. Indeed, for runs with 104 the improvement with multiple

runs reaches 0.5% for strategy S4.

5.3 Conclusion

Vehicle routing problems with multiple compartments have important practical

applications but have been little studied in the literature. In this work we have proposed

an iterated tabu search to solve this problem with single and multiple visits and have com-

pared it to existing heuristic algorithms. Different from previous approaches, demands

for different product types are can be attended in multiple visits without the overhead of

representing each demand separately.

We have shown that the ITS has a reasonable baseline performance on the VRP,

and dominates the existing approaches in average and in the majority of the instances

in solution quality and time on different sets of instances. Although the approaches of

(MUYLDERMANS; PANG, 2010) and (DERIGS et al., 2010) may have some overhead

for being general frameworks for different variants of the VRP, additional time does not

help to improve the results significantly, while ITS makes a good progress over time. The
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Table 5.9: Comparison of the results of (ABDULKADER; GAJPAL; ELMEKKAWY,
2015) on instances with division strategy S4 to ITS with single and multiple visits and
104 iterations.

HAC ITS

Single Multiple

Inst. BKV R.d. t(s) Avg. Best t(s) Avg. Best Vis. t(s)

CMT1 551.9 0.0 5 -0.7 -0.7 4.8 -0.7 -0.7 0.8 5.9
CMT2 919.0 0.0 14 -3.4 -4.2 6.6 -4.5 -5.2 7.5 8.4
CMT3 895.3 0.0 44 -2.7 -3.3 9.5 -4.2 -5.4 5.6 10.1
CMT4 1159.5 0.0 151 -3.7 -5.0 16.0 -3.3 -4.5 7.7 17.6
CMT5 1525.9 0.0 236 -6.6 -7.5 19.1 -7.6 -8.5 6.3 22.0
CMT6 559.4 0.0 10 -0.7 -0.7 4.8 -0.7 -0.7 0.0 4.6
CMT7 932.7 0.0 26 0.3 -0.0 6.7 0.1 -0.1 1.5 10.3
CMT8 884.9 0.0 95 0.8 -1.1 8.4 0.3 -1.1 1.0 10.7
CMT9 1226.6 0.0 333 -1.5 -2.9 15.2 -1.3 -2.2 0.5 17.0
CMT10 1526.0 0.0 620 -2.7 -3.3 15.9 -2.6 -3.4 1.2 25.4
CMT11 1221.7 0.0 87 0.8 -1.5 11.8 -0.9 -2.0 14.9 14.6
CMT12 950.8 0.0 30 1.5 1.3 13.3 1.1 0.2 5.1 15.1
CMT13 1550.1 0.0 123 -0.1 -0.4 7.8 3.7 -0.3 0.0 11.6
CMT14 965.8 0.0 38 0.4 0.1 13.4 0.6 0.2 0.6 10.3

Avg. 1062.1 0.0 129 -1.3 -2.1 10.9 -1.4 -2.4 3.8 13.1

results of the ITS also suggest that the value of multiple visits is rather limited, especially

when considering the additional algorithmic effort needed to permit them. It is open what

kind of instance structure makes multiple visits attractive.
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6 CONCLUSION

In this dissertation we have studied the multi-compartment vehicle routing prob-

lem (MCVRP), that is a variant of the classical vehicle routing problem (VRP), where the

customers have demands for different product types that must be kept separated during

the transportation. The VRP is a well studied problem due to its strong practical applica-

tion and many variants of this problem has been proposed in over 50 years of research.

We have presented a study of the best performing metaheuristics for the VRP. Based on

this existing methods for the VRP we were able to design an algorithm for the MCVRP.

The MCVRP introduces the co-collection or co-delivery of different types of prod-

ucts to the classical VRP. This problem has a large applicability in different industries

such as: petrol distribution, waste collection, livestock collection and groceries delivery.

In our study of the heuristics available in the literature, we have concluded that they do

not explore well the multiple visit attribute of this problem which motivates this work.

We have proposed an iterated tabu search for the MCVRP with single and multiple

visits and we have tested it against instances from 50 to 483 customers with demands for

up to 5 different product types. The results show that our algorithm is able find better

solutions in less computational time compared with the existing approaches. The principal

contribution of the proposed heuristic is that different product types can be attended in

multiple visits without the overhead of representing each demand separately.

6.1 Future work

A question that remain open after this work is what kind of instance structure

makes multiple visits attractive compared to single visit. This is interesting for real appli-

cations purposes because if we know such instances we do not need to spend computa-

tional effort searching for multiple visits solutions and instead focus in find better single

visit solutions.

Current studies on the MCVRP cannot be immediately applied to waste collection

system because of the lack of realistic constraints (LU et al., 2015). Then, a future work

is to understand these constraints and implement in the algorithm proposed to contribute

to this real world problem.

In this study we consider the vehicles where each compartment is dedicated for

one product type. A suggestion of work is to extend the proposed algorithm to allow



65

the products to be loaded in any compartment respecting some loading constraint. Other

possible extensions are allow compartments with variable sizes (DERIGS et al., 2010)

and stochastic customer demands (MENDOZA et al., 2010).
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APPENDIX: RESUMO EM PORTUGUÊS

O problema de roteamento de veículos com múltiplos compartimentos (MCVRP)

estende o problema de roteamento de veículos (VRP) clássico permitindo a entrega ou

coleta de produtos que devem ser mantidos separados em diferentes compartimentos. Os

clientes tem demandas diferentes por cada tipo de produto, e os veículos possuem com-

partimentos dedicados a um tipo de produto. Os clientes podem ser visitados mais de uma

vez, porém toda a demanda por um tipo de produto deve ser atendida em uma única visita.

Como no VRP classico, no MCVRP temos um único depósito de onde parte uma frota

de veículos idênticos. O objetivo é atender a demanda de todos os clientes minimizando

o tempo total das rotas necessárias. O MCVRP é NP-difícil já que é uma generalização

do VRP. Métodos exatos conseguem resolver instâncias com até 50 clientes. Portanto, in-

stâncias maiores ou com mais restrições normalmente são resolvidas com métodos heuris-

ticos.

O uso de veículos com múltiplos compartimentos se da em casos onde produtos

precisam ser mantidos separados. Alguns exemplos de uso de veículos com múltiplos

compartimentos são: coleta de leite de tipo, qualidade ou data de ordenha (MENDOZA

et al., 2010); coleta seletiva de lixo (REED; YIANNAKOU; EVERING, 2014), (MUYL-

DERMANS; PANG, 2010), (ELBEK; WØHLK, 2016); distribuição de mercadorias que

necessitam níveis de refrigeramento diferentes (CHAJAKIS; GUIGNARD, 2003); trans-

porte de animais vivos (OPPEN; KKETANGEN, 2008).

Apesar de ter uma grande aplicabilidade na indústria o MCVRP não foi ampla-

mente estudado pela literatura. Em nossa busca encontramos penas 5 trabalhos que tratam

deste problema. (El Fallahi; PRINS; Wolfler Calvo, 2008) foi o primeiro trabalho estu-

dar o MCVRP. Eles propuseram um conjunto de instâncias e duas heurísticas: algoritmo

memético e uma busca tabu. (MUYLDERMANS; PANG, 2010) propos uma busca local

guiada para o MCVRP e demonstrou os benefícios do uso de veículos com compartimen-

tos para fazer a co-coleta comparado com o uso de veículos com apenas um comparti-

mento. (DERIGS et al., 2010) estudou o MCVRP e algumas variações como comparti-

mentos flexíveis e alocação de produtos a compartimentos sujeito a restrições. (REED;

YIANNAKOU; EVERING, 2014) e (ABDULKADER; GAJPAL; ELMEKKAWY, 2015)

estudaram outra variação do MCVRP que exige que todas as demandas do cliente sejam

atendidas em uma única visita. Esta variação é conhecida como MCVRP-WS e também

é abordada neste trabalho.
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A heuristica que nós propomos para resolver o MCVRP foi inspirada na busca

tabu iterada (ITS) para VRP proposta por (CORDEAU; MAISCHBERGER, 2012), que

é considerada uma das melhores heurísticas para VRP. Uma busca local iterada começa

num mínimo local e repetidamente aplica uma perturbação seguida de uma busca tabu

para encontrar outro mínimo local. Um critério de aceite é utilizado para decidir se a

busca continua com a melhor solução encontrada ou da última solução retornada pela

busca tabu. O algoritmo inicia construindo uma solução inicial e aplica a busca tabu nesta

solução. Depois por I iterações o ITS perturba a solução atual e aplica a busca tabu. A

probabilidade de uma nova solução ser aceite para a próxima iteração é 1 − (i/I)2, caso

contrário a melhor solução já encontrada é utilizada. Este critério de aceite é importante

para diversificar a busca no início e intensificar a busca no final do algoritmo.

Como solução inicial selecionamos a melhor entre dois algoritmos construtivos

bem conhecidos do VRP que são: varredura angular proposto por (WREN, 1971) e

(GILLETT; MILLER, 1974); método das economias proposto em (CLARKE; WRIGHT,

1964). A perturbação da solução é feita removendo uma quantidade de clientes e rein-

serindo na solução de tal forma que minimize o custo. Nós utilizamos para remoção e

inserção de clientes um heurística conhecida como GENI proposta em (Gendreau, Michel

and Hertz, Alain and Laporte, 1992).

A busca tabu é uma metaheurística que guia uma busca local através do espaço

de busca. Ela permite movimentos para soluções piores e evita ciclos através de uma

memória de curta duração e declarando movimentos que retornam a soluções já visitadas

como tabu. A busca tabu proposta inicia em uma solução inicial e move para a melhor

solução não tabu. Durante essa busca soluções não factíveis também são visitadas. A

violação das restrições de capacidade dos compartimentos e distância máxima da rota são

penalizadas na função objetivo. A busca tabu para depois de
√

(I − i)π iterações sem

melhorar a solução incumbente. A vizinhança consiste em apenas um tipo de movimento:

realocar um subconjunto de demandas de uma rota para outra. O tabu tenure é definido

randomicamente no inicia da busca tabu entre [1,
√
nm] onde n é o número de clientes e

m é a quantidade máxima de rotas.

Os experimentos computacionais foram feitos usando instâncias com quantidade

de clientes entre 50 e 483. As instâncias para MCVRP são geradas a partir de instâncias

bem conhecidas do VRP. O algoritmo implementado foi avaliado usando 3 diferentes ex-

perimentos. No primeiro experimento comparamos nossos resultados com as melhores

heurísticas para o VRP afim de verificar o quão longe estamos do estado da arte para
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este problema. O resultado é que nosso algoritmo encontra soluções com qualidade com-

parável ao estado da arte do VRP, porém necessita de mais tempo para isso devido a falta

de alguma otimização ou a quantidade extra de processamento que temos por considerar

multiplos compartimentos.

Nosso experimento dois avalia o algoritmo em comparação com o estado da arte

do MCVRP. Nós apresentamos resultados para todas as instâncias com 2 até 5 compar-

timentos. Os resultados mostram que nosso algoritmo supera os resultados existentes na

literatura tanto em termos de qualidade da solução quanto em termos de tempo computa-

cional de processamento. No experimento três avaliamos nosso algoritmo para a variação

do MCVRP que exige que toda demanda de um cliente seja atendida em uma única visita.

Para esta variação nosso algoritmo também supera os resultados existentes na literatura

conseguindo soluções melhores com até 4 vezes menos tempo de processamento.

Este trabalho propôs uma busca tabu iterada para o problema de roteamento de

veiculos com multiplos compartimentos que supera todas as heuristicas encontradas na

literatura para este problema. O diferencial do algoritmo proposto é principalmente a

maneira como a vizinhança é explorada. O resultados apresentados também mostram que

permitir múltiplas visitas não oferece uma economia muito significativa no custo total da

rota.
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