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ABSTRACT 

 

The complexity of integrated system on-chips as well as commercial processor’s architecture 

has increased dramatically in recent years. Thus, the effort for assessing the susceptibility to 

faults due to the incidence of spatial charged particles in these devices has growth at the same 

rate. This work presents a comparative analysis of soft errors susceptibility in the commercial 

large-scale embedded microprocessor ARM Cortex-A9 single core, widely used in critical 

applications, performing a set of 11 applications developed for a bare metal environment and 

the Linux operating system. The soft errors analysis is performed by fault injection in 

OVPSim simulation platform along with the OVPSim-FIM fault injector, able to randomly 

select the time and place to inject the fault. The fault injection campaign reproduces 

thousands of bit-flips in the microprocessor register file during the execution of the 

benchmarks set, with a diverse code behavior ranging from control flow dependency to data 

intensive applications. The analysis method is based on comparing applications executions 

where faults were injected with a fault-free implementation. The results show the error rate 

classified by their effect as: masked (UNACE), crash or loss of control flow (HANG) and 

silent data corruption (SDC); and by register locations. By separating latent errors by its 

location in the results and exceptions detected by the operating system, one can provide new 

better observability for a large-scale processor. The proposed method and the results can 

guide software developers in choosing different code architectures in order to improve the 

fault tolerance of the embedded system as a whole. 

 

Keywords: Open Virtual Platform (OVP). Soft error. ARM Cortex-A9. Bare metal. Linux 

operating system. Embedded processor. 

  



 

 

RESUMO 

 

A complexidade dos sistemas integrados em chips bem como a arquitetura de processadores 

comerciais vem crescendo dramaticamente nos últimos anos. Com isto, a dificuldade de 

avaliarmos a suscetibilidade às falhas em decorrência da incidência de partículas espaciais 

carregadas nestes dispositivos cresce com a mesma taxa. Este trabalho apresenta uma análise 

comparativa da susceptibilidade à erros de software em um microprocessador embarcado 

ARM Cortex-A9 single core de larga escala comercial, amplamente utilizado em aplicações 

críticas, executando um conjunto de 11 aplicações desenvolvidas para um ambiente bare 

metal e para o sistema operacional Linux. A análise de soft errors é executada por injeção de 

falhas na plataforma de simulação OVPSim juntamente com o injetor OVPSim-FIM, capaz de 

sortear o momento e local de injeção de uma falha. A campanha de injeção de falhas reproduz 

milhares de bit-flips no banco de registradores do microprocessador durante a execução do 

conjunto de benchmarks que possuem um comportamento de código diverso, desde 

dependência de fluxo de controle até aplicações intensivas em dados. O método de análise 

consiste em comparar execuções da aplicação onde falhas foram injetadas com uma execução 

livre de falhas. Os resultados apresentam a taxa de falhas que são classificadas em: 

mascaradas (UNACE), travamento ou perda de controle de fluxo (HANG) e erro nos 

resultados (SDC). Adicionalmente, os erros são classificados por registradores, separando 

erros latentes por sua localização nos resultados e por exceções detectadas pelo sistema 

operacional, provendo novas possibilidades de análise para um processador desta escala. O 

método proposto e os resultados obtidos podem ajudar a orientar desenvolvedores de software 

na escolha de diferentes arquiteturas de código, a fim de aprimorar a tolerância à falhas do 

sistema embarcado como um todo. 

 

Palavras-chave: Plataforma virtual (OVP). Soft error; ARM Cortex-A9. Bare metal. Sistema 

operacional Linux. Processador embarcado.  
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1 INTRODUCTION 

 

Failures in integrated circuits (ICs) such as complex embedded systems can be 

responsible for endangering human life. Because of this, the demand for secure systems has 

grown considerably in recent years, a phenomenon that can be observed by the continuous 

research activity in the area. A secure system is characterized by several attributes, including 

reliability, availability and debugging capabilities [1], [2]. Among these systems, 

microprocessors are present in most digital systems due to its reprogramming flexibility, 

performance and especially cost, which is still not comparable with other devices such as 

FPGAs. These reasons led microprocessors to various application areas such as medical, 

automotive and aerospace, where the safety factor should be considered the most important. 

Safe-critical applications seek high reliability. They are usually composed of single or 

multi-core processors that may run embedded software developed with or without operating 

systems. Bare metal software is a term used in embedded systems when the program code is 

directly hosted on the target microprocessor and is self-managed. They allow high 

controllability of hardware and software flow. Additionally, maintenance, debugging and 

troubleshooting of code is easier and less time consuming. Operating systems can provide the 

availability of hardware resources for applications with a high level of complexity. The 

increasing need of this complex operations and resource sharing demands better using of the 

available capabilities as well as better programmability.  

However, erroneous behaviors in this type of systems have been observed since the 

early 70s. Phenomena such as soft errors can result in serious failures, and their incidence is 

worsened due to the significant decrease in the ICs’ transistor size [3]. Soft errors occurs due 

to transient faults and are mainly observed as bit-flips in memory elements operating under a 

radiation environment [4], also called single event upsets (SEU). The radiation environment 

can be space or on Earth, where neutrons interact with the material provoking secondary 

particles such as alpha to provoke transient faults [5].  Soft errors becomes as a representative 

issue while projecting a microprocessor, since the effects of SEUs can be noticed by failures 

in data results or deviations in the application flow. Not only the physical architecture, but the 

code architecture itself influences directly its performance in front of soft errors, which are the 

main aspects to be considered in a reliable efficient design. 

In this way, it is mandatory a preliminary analysis of the embedded systems 

microprocessor behavior in critical applications without and with operating system [6][7], and 
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fault injection experiments have shown to be one of the most effective techniques for 

reliability evaluation of an IC [7][8]. However, a fault injection environment is costly and 

complex, as it requires compliance of numerous parameters, such as injection model, list of 

failures, workload, data acquisition mechanism and data analysis methodology, which directly 

influence coherence and results interpretation [9]. 

Therefore, in this work we adopt the use of a virtual platform capable of simulating 

embedded systems running real application code with performance comparable to a 

traditional system, in the order of hundreds of MIPS. Originally developed to accelerate the 

development of software, such simulators typically offer a range of CPU models and memory 

systems for exploitation of resources during development stage [10], allowing the analysis 

and implementation of different applications or operating systems for several architectures, 

including multiprocessor systems. Currently UFRGS conducts research using the Open 

Virtual Platform (OVP) OVPsim, which has shown great applicability for environments 

development for fault simulation. Compared to the others, which reach rates of around 200 

KIPS [11], the OVPsim can achieve simulation speeds up to 100 MIPS. This factor was 

decisive in choosing this platform to model the embedded system used in this work. 

In view of these considerations and along with OVPSim virtual platform, this work 

aims to compare soft error susceptibility in embedded software that was developed for a bare 

metal environment and under an operating system. It also analyses the architectural 

vulnerability factor (AVF) of the register file in the well-known embedded microprocessor 

ARM Cortex-A9, widely used commercially in low power or thermally constrained 

applications. The soft error analysis is performed by fault injection with the OVPSim-FIM 

module that was proposed by [12], capable of simulating SEU type faults on the processor 

registers bank, producing bit-flips with controlled locality and temporality, allowing 

investigation of the failures detected and treated by both the platforms. Another contribution 

of this work, besides the comparative analysis of application environments, is the 

improvement of the mentioned fault injector, allowing Operating System analysis from 

processor architectural perspective to software masking level. 

A set of 11 applications was used as benchmarks that diversify control and data flow 

behavior. Those applications were compiled for the target architecture and run directly on the 

processor for the bare metal tests. The chosen operating system for the comparative tests was 

Linux, mainly because it has open code, which significantly facilitates the controllability and 

observability required by the experiments. Beyond that, it is worth mentioning that Linux is 
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already considered as an option of a commercial purpose operating system, which is being 

included in a wide range of applications, including those with reliability requirements [13]. 

During the fault injection campaign, it was injected 100,000 faults in the register file 

to evaluate each benchmarks. Results were classified into masked faults (UNACE), silent data 

corruption (SDC) and hang. Results show that applications running in Linux environment are 

usually less prone to failures due to bit-flips in the register file, while bare metal applications 

have shown to be more susceptible to this faults, specially silent data corruption (SDC) 

failures. 

This work is divided as follows: Chapter 2 evaluates faults in embedded systems, 

going through fault injection techniques commonly used in these environments, failure 

classification and presenting the OVPSim platform, discussing its operation and organizat ion. 

Chapter 3 describes the proposed embedded system architecture, including the ARM Cortex-

A9 CPU and its modeled functionalities, the Linux operating system and the fault injector 

structure, with failure classification and special features. Chapter 4 introduces the test 

platform and used benchmarks, explaining the fault distribution methodology and system 

observability. Chapter 5 exposes the results in many forms, such as environment comparisons, 

detailed classification, Linux error mechanism observation and overall error rate analysis. 

Finally, Chapter 6 presents the conclusions. 
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2 FAULT EVALUATION IN EMBEDDED SYSTEMS 

 

The radiation effects in embedded systems have become a concern for safe critical 

software developing, which includes land level applications like medical, military and 

aerospace applications. Soft errors arise because of these radiation interactions, causing 

undesirable changes in memory elements that may lead to catastrophic failures. In most cases 

radiation tolerant COTS processors are not financially viable, so even devices used in such 

applications are the same we can find in regular cellphones or computers. It is therefore 

essential that embedded systems can be evaluated with respect to their susceptibility to faults 

in order to determine its limitations and, based on this, develop outline methods such as 

tolerant software techniques. 

 

2.1 Defining an Embedded System 

 

An embedded system comprises a broad field of study and therefore there are many 

definitions of what it is. Depending on what’s the study aims to emphasize the definition can 

vary, but in Noergaard [14] we found a short and objective designation that is aligned with the 

work proposes, defining an embedded system as an applied computer system. 

An embedded system can be seen as a resource manager, which provides an orderly 

allocation of processors, memory, input devices and output data. It is found in a wide range of 

devices and combines software and hardware. However, different than an operating system, it 

is a physically limited computer system, usually with size, power and memory constraints, 

which has limited and specific, functions [16]. A notable example of embedded systems was 

the Apollo Guidance Computer, a redundant hardware used in the spacecraft control, with 

error recovery routines, meaning that that it one of the first embedded systems was fault 

tolerant [17]. 

An embedded system is depicted in Figure 2.1 with its main divisions: CPU, memory 

and peripherals. Additionally, a communication layer and the embedded code can be listed, 

since the system must interact with external elements and its tasks shall be defined [18].  
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Figure 2.1 – Embedded system with CPU, memory and peripherals 

 

Source: Author 

An embedded system has one or more CPUs, which are responsible for fetching and 

executing instructions from memory. It can be considered the main system component, and 

has a well defined execution cycle, that includes searching instructions from memory, decode 

them to determine the operation and operands, execution, external memory accesses and 

writing back to updated values. Each CPU has a specific set of instructions and all application 

code shall be translated to this specific set before loaded into the embedded system. 

Furthermore, as the access time to memory to fetch instructions or operands is bigger than the 

time to perform them, the CPUs have internal registers to store key variables and temporary 

results [16]. Embedded systems CPUs, as commented, are intended to specific tasks, thus it is 

common to found several devices models, which should be considered depending on the 

application, such an Application Specific Instruction-set Processor (ASIP), a RISC or CISC 

architecture, a Digital Signal Processing (DSP) [19] or intended for low power applications 

[17]. 

Another major component in an embedded system is the memory. Ideally, the memory 

should be non-volatile, inexpensive and faster than the processor, so that the CPU was not 

delayed, but today technology does not meets these requirements. Therefore, the system 

memory is organized in layers, where the faster, smaller, and proportionally more expensive 
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memory, are closer of the CPU in terms of access, while memories with greater storage 

capacity are more distant. The memories order, from the slower to the faster, and technologies 

typically are internal registers, cache memory, external RAM and Flash memories or hard 

drives [14] [16]. From the application execution point of view, memory can be organized as 

instruction and data memories, which represents only a logical separation to determine how 

the CPU will organize the instructions under execution (internal registers, cache and RAM), 

the application code (Flash or hard drive) and the operations results (all layers). 

Peripherals or I/O devices may consist of two parts: a controller and the device itself. 

The controller tend to have standard interfaces with the CPU, which helps to share 

communication resources between them, but as each peripheral has its own purpose, typically 

a driver should be used. The devices are commonly used as auxiliary communication, I/O 

driving, sensing, status or additional storage, adding more functionality to the embedded 

system [17]. 

Finally, the non-physical part of an embedded system is the embedded application, 

which uses all the described parts of the system. The code developed by the programmer must 

be compiled to the intended architecture, being converted into machine code, which will 

reside in the physical platform. The CPU has a initial state and starts to fetch instructions 

from a known place that depends on the processor model. Thereafter, the sequence of 

instructions performed by the CPU coordinate the operation of the embedded system, 

including communication with peripherals[17]. 

 

2.2 Fault Injection in Embedded Processors 

 

To understand the implications and assumptions around fault injection in embedded 

processors, definitions regarding terminology must be defined, as well as the nature of a fault, 

like what provoke them and how faults react in a system and become an error. As well, 

concepts concerning how it interacts with operating systems and measurement metrics are 

discussed in this section.  
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2.2.1 Faults, Errors and Failures 

 

The literature define the terms that surround this work in different ways, trying to 

explain a common phenomena. To avoid misunderstandings, we use as reference the article 

developed by [71].  

As the author suggests, a failure is defined as an unexpected behavior or unwanted 

operation of the target system that is perceived by the user. The error concept is understand as 

an state of the system that may lead to a failure, i.e., the error create a condition in which the 

subsequent computing operations may fail. Finally, the error state is achieved by the effect of 

a fault, that is defined as the error physical reason. 

 

2.2.2 Faults in Embedded Systems 

 

A system is said to be fault-tolerant when it has the ability to perform properly their 

duties regardless of the occurrence of faults [21]. Even a system that has apparently been 

developed properly is subject to failures due to wear of the devices or design errors that result 

in a logic failure. Two types of failures may occur in a system: the first is the natural failures 

caused by wear, internal or external sources or a component; second, the failures resulting 

from an accidental or intentional human action [22]. A situation in which these two types of 

failure can occur is, for example, an operator setting the parameters of an installation to 

perform an overloaded task. This systematic operation will cause the installation, inevitably, 

to malfunction due to wear of its parts. In this particular example, an error caused by human 

action generated a natural lack. The occurrence of these faults does not imply that other type 

of failure may not happen. 

However, fault-tolerant systems should be able to drive the system to a safe state when 

the error is detected, or allowing the system to operate in degraded form, but meeting the 

minimum requirements of the same. Given this context, there are some techniques to give 

proper treatment to this events: (a) redundant structures to mask components that suffered an 

error; (b) error control codes and double or triple voting mechanism to discover or correct 

erroneous information; (c) diagnostic techniques to locate defective components; (d) and 

techniques for automatic conversions to replace a subsystem that has crashed [22]. In 1984, 

Johnson defined the three main techniques to try to improve or maintain the normal operation 

of a system: fault avoidance, fault masking and fault tolerance [21]. 
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Fault avoidance aims to block the fault occurrence or even its effect that is the error. It 

can be achieved through good project management practices and system testing for design 

mistakes not observed in the detailing phase. The idea is to prevent the system to be released 

to the market with a “bug”, which in safe critical applications can be catastrophic. In this 

regard, extensive testing of the application is used. However, the time spent in the testing 

phase will increase the "time to market" (amount of time from conception to launch the 

product on the market). 

The fault masking is applied in real-time system and aims to prevent the error from 

spreading to other system components or leading to an error state causing a failure. One way 

to implement this technique is through the implementation of voters. 

The fault tolerance, unlike the others, is not intended to eliminate the presence of the 

fault or its propagation, but drive the system to a state that is acceptable in terms of execution 

and security. There are four principles on which is based the use of the fault tolerance: 

detection, location, containment and recovery. 

Figure 2.2 shows a flowchart where the techniques described by Johnson can be used 

to increase the guarantee proper functioning of the system [21]. 

 

Figure 2.2 – Johnson’s Fault Tolerant System Flow 

 

Source: Adapted from [21] 

In this work, our attention is around the path marked in red, except that we are not 

proposing any mitigation technique, but in fact, exposing an embedded system weakness to 

soft errors by injecting external disturbances, analyzing if it manifests in hardware or software 

and classifying the arising failures. 
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2.2.3 Radiation Effects in Embedded Processors 

 

One of the main concerns around failures in embedded processors relies on external 

sources, especially the radiation effects that may cause soft errors. They can be divided in 

effects due to Total Ionizing Dose (TID) and SEEs (Single Event Effects). As discussed by 

[36], this phenomena occurs due to the impact of atmospheric particles, like neutrons, that 

collides with silicon atoms of the device, causing nuclear reactions that generates an internal 

ionization. These phenomena and its impact in embedded systems is the central theme of this 

work, but it is necessary to understand the type of fault in which the device is exposed. 

The TID effect is cumulative, resulting in degradation of characteristics of the 

electrical parameters of the electronic device over time due to the deposit of charges. They are 

long-term effects that depends on the intensity of radiation and the time that the circuit is 

exposed to this radiation. In a transistor gate, for example, the TID may cause an increase of 

the skew and leakage current due to changes in the voltage thresholds. A big exposition to this 

particles can result in error of the electronic device [20], as shown in Figure 2.3 below. 

 

Figure 2.3 – Induced Charge by Radiation in the Gate Oxide of a N channel MOSFET: (a) normal 

operation, (b) after irradiation 

 

Source: [24] 

 

The total ionizing dose is measured in rad (radiation absorbed dose). The rad 

represents 100 ergs of energy deposited per gram of material, which can be correlated with 
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Joule, such that 1 = erg 0,1μJ [25]. Since the energy depends on the material, the units need to 

be expressed in this terms, such as the silicon: 100 rad (Si) [20]. 

The TID is specified in units of rads in silicon (rad(Si)), where one rad is defined as 

the absorbed radiation dose. A rad is a measure of the amount of energy deposited into the 

material and is equal to 100 ergs (6.24E4 10 eV or NJ) of energy deposited per gram of 

material [25]. The energy deposited in a device must be specified for the material of interest. 

Thus, for a transistor of a metal oxide semiconductor (MOS), the total dose is measured in 

units of rad (Si) or rad (SiO2). The ability to resist to TID in reinforced components against 

radiation is also defined in rads or krads [28]. 

The effect can be reduced by shielding or by changing the default device fabrication 

process. When using shielding the idea is to include a layer of a material, like aluminum, to 

absorb a range of charged particles, specially low energy ones. Depending on the environment 

profile, this technique may not be effective, since high energy particles can still cross the 

shield layer. Another solution, as mentioned, is to modify the fabrication process by 

including, for example, an epitaxial layer in the high-doping regions of the transistors or an 

oxide layer in the substrate [20]. 

The category that is analysed in this work and that may result in undesirable effects in 

the system functionality are the Single Event Effects (SEE), described by [20] also as 

electrical disturbances due to colliding particles, but now the high energetic particle does not 

need to accumulate to generate an observable effect, it has such energy that it can change the 

state of a given device. Figure 2.4 depicts the effect of a single charged particle passing 

through the structure of a PMOS transistor. 

Figure 2.4 – Particle Crossing the Substrate of a Transistor 
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Source: [20] 

As mentioned, the particle must have enough energy to transfer the charge necessary 

in the transistor gate to make state changes in its outputs. This charge is represented in the 

following equation by Qcrit. 

                   (2.1) 

According to [20], in equation (2.1), Cnode denotes the capacitance between the nodes 

of transistors and Vnode is the transistor operating voltage. Today, reducing the size of 

transistors and the significant increase in transistor density on a single chip increases sensitive 

to SEE, in part since the chances of collision are bigger, in the other side the capacitance and 

stored charges of the devices decreases, which results in a lower Qcrit [27] and for 

consequence the range of potential charged particles necessary for generating an upset 

increases.  

The SEE can occur in different ways such as a transient effect (SET), upset (SEU), 

latch up (SEL), door break (SEGR), among others. A typical case is in a circuit with memory 

elements, for example, where a single event may provoke that an incorrect value is stored and 

may produce an error that will persist until the value is overwritten. Also, the SEE may flip a 

signal in a combinational logic, generating incorrect values in arithmetic operations or even 

producing a wrong output, such an interruption [20]. In this work, we will analyze the Single 

Event Upset effects, since it is one of the most common persistent and latent errors. 

 

2.2.3.1 Single Event Upset 

 

The term Single Event Upset and the correlation with charged particles appeared in 

[26] for the first time as it is known today. The acronym has been used to describe disorders 

in digital circuits of memory devices, caused by radiation or cosmic rays and they are the 

focus of this work 

They differ from the SETs, since they are not transient, associated with the inversion 

bit memory elements. They are also referred to in the literature as soft errors and can have an 

indefinite duration or may be fixed after one or more clock cycles. The SEU is called single 

bit upset (SBU) if only one memory element inverts its state and multi-bit upset (MBU) if 

more than one element changes [20]. 

A characteristic of SEUs is that they are random events and, therefore, they may occur 

at unpredictable times. For example, they can damage the contents of a processor register 
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during the execution of an instruction, which in case of a pipelined processor may result in an 

instruction being correctly executed in the first pipeline stages and then corrupted in the 

middle of operation, avoiding any pre decoding correction mechanism and causing 

unpredictable effects in the data flow. 

 

2.2.4 Failure Classification, Metrics and Operating System Impact 

 

As mentioned, radiation effects can lead to soft errors in electronic devices according 

to ionization characteristics. In the firsts occurrences it is not permanent since only repeated 

events in the same point can damage the silicon structure, and so the error is called “soft”. 

Not all soft error occurrences generate a manifested failure. They are the originating 

factor that results in the appearance of an error. When a soft error occurs, the system can or 

cannot be driven to an inconsistent/incoherent state, which characterizes the existence of an 

failure. In a given system, [30] defines the probability that the soft error has to generate a 

failure, as shown in equation (2.2). 

 

        
 

    
(2.2) 

The author introduces new terminologies to define the probability. The cross-section is 

represented by σ [cm
2
]. It defines the radiation susceptible area in which an error happens if a 

particle collides. Depending on the technology, the radiation sensitivity varies and it is 

expressed by the constant σraw. Finally, the probability to generate an error is represented by 

V, which means de vulnerability factor. 

The vulnerability factor is often estimated using radiation test campaigns with 

accelerated particles as a reason of the number of errors observed and the particles flux, which 

is the amount of particles per unit area. In some cases, it is possible to estimate the 

vulnerability using simulation if a detailed description of the design is available to the tester. 

During the test campaigns, either radiation tests or simulation, the most usual metric is 

the soft error rate (SER), which indicates the number of errors manifested in the functionality 

of the system during a defined time, commonly represented by the terminology Failure in 

Time (FIT) and expressed by [31] in the following equation. 
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(2.3) 

The equation shows that under a fluency of particles, expressed by N, the number of 

errors observed, indicated by ɳ, and the total particle flux, the φ in the equation, is possible to 

determine the soft error rate in terms of FIT. Since the Failure in Time express one failure per 

10
9
 hours, the scale is also included in the equation. 

The SER is the main parameter to evaluate in a device as it indicates how tolerant it is 

to radiation. A well-controlled environment is required to determine this metric, since the flux 

shall be constant and the error properly detected. That is why simulation techniques has had 

so much visibility, allowing practical and precise measures as long the device model is 

correctly represented. 

To guaranty a good evaluation, in an embedded system context the failures can be 

divided in two types: functional interrupts (FI) and silent data corruption (SDC). The 

functional interrupts means that the system or application running in the processor hanged or 

crashed and may lead the system to an unresponsive state, eventually requiring the reboot or a 

power cycle to recover. Silent data corruption means that application has finished but its 

result differs from the expected one. Note that not only the produced results of an algorithm, 

for example, is important but the entire memory space, since latent errors may occur due to 

data corrupted that not necessarily was used after soft error event, remaining undetected for a 

long period. 

According to [32] the vulnerability factor can take into account the SDC and FI 

classification, as they represent different criticality depending on the system. In this manner, it 

is possible to classify the vulnerability into FI factor and SDC factor that indicates the 

probability of a soft error in a defined element to generate a functional interrupt or a silent 

data corruption, respectively. 

This classification became even more important when an Operating System (OS) is 

involved. The work presented in [33] has shown that errors in the presence of an OS tend to 

cause FIs, and SDC rate is not significantly influenced as its occurrences has the application 

as the major contributor. 

 

2.2.5 Fault Tolerance Evaluation Techniques 

 

Fault injection is the most common and widely accepted approach for analysis of safe 

critical systems in the presence of faults [34]. The fault injection techniques try to provide 
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information about the reliability of the design under test (DUT). This information can be 

about: a) compliance validation with reliability requirements; b) detection of weaknesses in 

the adopted fault tolerance techniques and; c) DUT behavior forecast in the presence of faults.  

Fault injection is related to all techniques that simulate or emulate the device behavior 

in the presence of a fault. Among these techniques are those applied mainly to processor 

systems in which software changes are made to simulate the occurrence of a fault in the 

hardware device. Thus, it is important to have a distinction between fault injection in 

hardware and software, the latter is outside the scope of this work. 

The fault injection techniques are not limited on the injection approaches. The 

techniques involve the complete process that comprises the entire environment required for 

startup of the DUT, selecting the appropriate workload, the capture of relevant data, 

comparison with the fault-free DUT data, classification of the effects and monitoring of the 

whole process. As will be discussed later, the approach of this works involves these steps, 

where the analysis is made according to a comparison between a fault-free run of the system 

and a faulty run, which is a run under the effects of the fault injections. 

The fault injection method depends on the type of DUT being tested. In the case of 

memories, for example, the effect being examined by injecting faults will be predominantly 

SEUs. Another factor to consider is the possibility to cause real faults on the device, i.e., 

physical faults in the real device or if only fault models (logical) will be applied. The 

abstraction level of the fault type is directly related to the DUT that can be a COTS, a 

prototype or a design model. Observability is another important parameter, since it interferes 

directly on the quality of the extracted results. Finally, the results will be direct influenced by 

the chosen injection technique, since more realistic techniques like tests under radiation has 

less observability than simulation methods that, on the other hand, are less precise in terms of 

device behavior. 

The fault injection campaign according to [35] can be divided in four basic elements 

that are applicable to all techniques: 

 Fault Model: Injected faults are used to model the SEEs at different abstraction 

levels. At least the level of the system behavioral model shall be used. When a 

COTS is being evaluated, different fault models can be applied, depending on 

the test needs and device observability. 

 Workload: Used to emulate the typical operation of the system under test. 
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 Observation Elements: Those are applied in the system to classify the effects of 

the injected faults. Once a failure is identified, it may be classified as any of 

the many types of failures definable. It is also common to classify the fault 

itself. 

 Measurements: States the degree of dependability of the evaluated system and 

can be connected with the metric employed (commonly the SER). 

This section provides an overview of all existing fault injection techniques. 

Techniques are presented in two groups, namely those working with physical fault injection 

and injection techniques that address at the logical level.  

 

2.2.5.1 Physical Fault Injection 

 

Physical fault injection methods use external sources to allow tests with radiation, 

electromagnetic noise and aging of ICs. The purpose of these tests was to analyze the strength 

of a COTS or qualify a prototype as hardened against the effects caused by radiation. 

The cosmic radiation is the main source of SEE in ICs. Therefore, performing tests 

with the device at high altitude or even in space is the most realistic way to assess the 

sensitivity of the ICs to SEE. However, considering the low probability of error, it would 

require hundreds of thousands of samples of the DUT to obtain a valid measurement, making 

the time and cost of this approach unfeasible. The particle accelerators are used to classify 

these products, performing tests that last for hours or days [34]. In these tests, various types of 

particles are used with different energy values in order to cause different effects. The types of 

particles and typical energy values used to generate a SEE are detailed in [36]. These 

parameters are standardized according to the final application of the device. Spatial intended 

devices are exposed to a different radiation environment than medical equipment, for 

example, and are defined by space agencies or committees as the JEDEC who created the 

standard JESD89 [37], which defines the requirements and procedures for testing of SERs for 

ICs. 

Fault injection using laser rays is similar to the method that uses heavy ions in the 

sense of the beam is applied directly on the silicon surface. However, the laser beam is much 

more accurate, and thus it is possible to inject faults in specific places in a more controlled 

way. The incidence of the laser beam in silicon can cause effects similar to those caused by 

particles of cosmic rays and this method is usually associated with the state change of circuit 

elements and is used to test the effect of SEU events. With the help of a special microscope, 
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the use of laser to fault injection provides high accessibility as you can select the region to 

execute the campaign in the circuit. Thus, the fault injection is cheaper than systems who 

employ radiation tests. Furthermore, the laser needs a simpler fault injection environment 

since it is not necessary to isolate the DUT or the components in the periphery of the DUT 

that are not being tested and they didn’t suffer disturbances caused by radiation, which would 

compromise the results of the analysis. 

Unlike other physical techniques of fault injection presented, the method by induction 

values at the DUT pins requires physical contact between the test platform and the DUT. The 

method seeks to replicate the effect of a natural fault by forcing changes of the logical value 

of an IC pins. Considering the complexity of modern systems, fault injection in the pins is 

very limited due to accessibility limitation of the method. This technique is often employed 

for testing tools in combination with other techniques in order to extend the results. Solutions 

as Messaline, MARS, FIST, RIFLE described in [38] employ features of fault injection 

method in circuit pins.  

 

2.2.5.2 Logical Fault Injection 

 

The results of physical injection methods provide realistic values of SER. It is widely 

used for hardening qualification of critical applications in harsh environments, like space. 

However, installations with neutron accelerators, for example, charge in the range of hundred 

to a thousand dollars per hour of exposure [39], i.e., physical fault injection is extremely 

expensive and thus it is necessary analysis solutions that can be applied earlier in the circuit 

design. The fault injection methods in logical level exploit resources available in order to 

insert the effect that a fault in hardware may provoke. 

Between logic fault injection, software implemented (SWI) method is directly linked 

to the execution of specific pieces of software that modify internal elements (accessible by the 

user) causing the effect of a fault occurred in the hardware. The SWI method is related mainly 

to embedded processors systems where the normal application software is stopped for the 

execution of a fault injection code that changes an element such a register, a memory data, or 

even an application instruction. SWI also appears in the DUT behavior analysis to evaluate 

communication problems or interaction with other systems, for example, repeated/missing 

messages or inaccurate information, failure to read from memory, among others. This type of 

fault injection can be applied in different moments, which can be at compile time or at 
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runtime. At compile time, changes in the software image are made and, when executed, it 

enables the simulation of an error in hardware. This type of fault does not need additional 

code to be executed and is generally used to emulate permanent errors. In the case of runtime 

fault injection, trigger mechanisms are used to notify the time of the fault injection. Timers or 

specific instructions in the code are used for stopping the implementation and starting the 

fault injection task. In [40] two processors PowerPC 750 running LynxOS were used along 

with Xception tool to emulate the effect of SEUs in the system. The Xception tool exploits the 

advanced features for monitoring performance and errors present in the processors and uses 

the exception mechanisms of the processor itself to identify the failures. Another tools in [38] 

like FERRARI, use timers to trigger a fault injection routine. The FIAT tool may delay tasks, 

corrupt messages or complete them abruptly. Finally, FTAPE tool can add fault injection 

drivers in the operating system. 

The injection of simulation-based faults uses a model of the system being analyzed. 

Simulation models can use hardware description languages like VHDL and Verilog or a 

higher abstraction level like SystemC. In the simulation method, faults can be injected by the 

simulation tool or by changing the description of the hardware model. In the latter case, 

dedicated modules can be added in the model with the unique purpose of injecting faults or 

the use of components with the presence of a known error. In the higher abstraction level, is 

possible to adapt the simulation tools in order to use commands to control internal signals of 

the system model. This method is dependent on the simulator functionalities and available 

commands. However, there is no need to change the hardware model. In [41], a model of 

LEON3 Gaisler processor used by the European Space Agency (ESA) described in SystemC 

is used for fault simulation. This model described in SystemC is implemented at transaction 

level (TLM) and employ dedicated modules that are used to simulate the effect of faults in the 

memory sections (buffers, instructions and data memory, etc.) of the processor. The 

MEFISTO tool presented in [42] uses saboteurs and simulation commands to execute a more 

detailed analysis of the error behavior in the VHDL model. Tools like VERIFY propose an 

extension of VHDL description to add features for fault injection in [38]. 

Current processors have specific resources to support testing and debugging. These 

features, known as on-chip debug (OCD), also enable the fault injection and observation of 

the effects externally to processor. The FIMBUL tool developed in [43] uses the test access 

port (TAP) of the Thor processor for fault injection. The TAP allows access to internal scan 

chains and the periphery of Thor processor, thus transient faults are injected throughout where 
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the chain have access. As a comparison, the MEFISTO tool that uses the simulation technique 

has a slightly higher error coverage than FIMBUL tool that uses the TAP technique, but in the 

other hand, it proved to be a hundred times faster. The work presented in [44] proposes 

changes in the debug infrastructure (OCD) in order to enable fault injection to support the 

verification of fault tolerant mechanisms. The OCD oriented to fault injection is based on the 

NEXUS standard and it is an additional hardware that automatically triggers in the occurrence 

of predefined conditions. The instruction address that will trigger the fault injection is 

generated at random from one of the values present in the address space of instruction 

memory. The same applies to the address of the data memory that will have its value changed 

when the mechanism has been triggered. After the faults have been injected, the results are 

recovered after the completion of all experiments. 

The last logical fault injection method is the emulation FPGAs based hardware. It 

became popular in ASIC verification, and more recently has been exploited for rapid injection 

campaigns. The term emulation in this context is related to prototyping the circuit to be 

analyzed in FPGAs. Many techniques that employ these devices use it only as a mean to 

perform fault injection and quickly identify if the method can be implemented in other 

technologies. The controllability in most cases is achieved accessing the configuration 

memory, causing virtual bit-flips. Another approach consists in adding hardware blocks to 

support the fault injection. An early work using FPGA for fault emulation is shown in [45], 

which implements permanent errors (stuck-at) connecting signals at constant values. For each 

injected fault, the circuit was synthesized again and thus the bit-stream had to be reloaded in 

the FPGA to a new emulation. Among the newer methods that use FPGAs for fault emulation 

two types of approaches can be perceived. The first method is called instrumentation; it 

inserts logic in some way in the circuit in order to increase the control and observability of the 

DUT during its execution [46]. The second uses existing partial reconfiguration capabilities 

available in newer devices to identify and recover part of the internal circuit [47]. 

This work uses the simulation-based method and employs OVPSim tool, as shown in 

the following section. 
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2.3 Open Virtual Platform (OVP) 

 

A virtual platform is a complete simulation of a computer system. All hardware is 

abstracted into a model, in which a regular software is able to run, i.e., the platform should be 

modeled in a way that compiled application is no different from the actual physical hardware. 

The virtual platform can be seen as an Instruction Set Simulator (ISS), which 

simulates not only the CPU, but also the complete system, including memory, cache and 

buses. The modeling of virtual platforms is defined as modeling in electric system level [48]. 

This environment can be placed between a RTL level and the functional level description, and 

is mostly used when the cycle accurate RTL is considered to be too detailed, but still requires 

a truthful simulation of at least instruction level. 

Thus, a virtual platform is designed to: a) enable the development of software more 

effectively and with better prediction; b) minimize dependence on hardware and; c) increase 

the test efficiency. 

Open Virtual Platform (OVP) is the tool that is used for the implementation of the 

virtual platform in this work. The Imperas™ Software Limited announced the formation of 

the alliance OVP to service the needs of the market. This alliance has created models of 

CPUs, scan tools, debugging and analysis, in addition to simulation platforms. According to 

the company, the platform allows the development of virtual prototypes with instruction 

accuracy of up to 100 MIPS in conventional computers [49]. 

The OVP has three main components: 

 APIs that allow C models Additional modules are developed; 

 A collection of models of processors and peripherals on open source; 

 The OVPsim simulator, responsible for the implementation of these 

models. 

 

2.3.1 APIs 

 

Modeling an environment requires development of the main parts of a real embedded 

system, such  processors, memory and peripherals, but also the platforms and the integration 

environment. The platform is responsible to promote the integration of the behavioral 

components. Processors execute the compiled code and the peripherals enable a way to 
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represent the environment in which the application will interact. Thus, the OVP is constructed 

of four interfaces: 

 CPU Manager or Innovative CPU Manager (ICM); 

 Virtual Machine Interface; 

 Interface with behavioral model of the hardware; 

 Interface for programming the peripheral model. 

The interaction between these interfaces is shown in Figure 2.5. 

 

Figure 2.5 – OVP Interfaces 

 

Source: Adapted from [50] 

The ICM is an API codded in C used to create the platform interconnection 

environment and netlist with the modeled system to use along with the OVPsim simulator. 

Through, it is possible to instantiate multiple processors, buses, memories and peripherals. 

The ICM interface is also responsible for linking these modules and it allows applications to 

be loaded and executed on instantiated memories [50]. Figure 2.5 locates the ICM in the 

platform environment as described above in which it interfaces between various modules in 

the platform. 

The Virtual Machine Interface (VMI) is interfaced with the C based processor model, 

allowing communication with the simulation kernel and other system components. The VMI 

is the centerpiece for the high performance provided by the OVP, since the processors use a 

morphing code approach that is coupled to a just-in-time (JIT) compiler that maps the model 

instructions to native local machine instructions. Between the processor model and compiler 

there is a set of optimized commands where the processor operations are mapped, being 
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responsible for the OVPsim to provide fast and efficient interpretation of the native machine 

capabilities. Some of the VMI abilities are [51]: 

 Provide virtualization features, such as file I / O, allowing direct execution 

on the host using the standard libraries that are provided with the 

environment; 

 Instruction set templates encapsulation with OVPsim, if they export some 

basic characteristics such as availability of Instruction Set model as a 

shared object; 

 The VMI can be used for both RISC processors and CISC processors, 

supporting any instruction format; 

 Finally, it allows the modeling of L2 caches and other extensions around 

the processor. 

 

2.3.2  Hardware Behavioral Models 

 

The Open Virtual Platform has many processor models like the Altera NIOS, ARC, 

ARM Cortex A, ARM Cortex M and ARM Cortex R, Xilinx MicroBlaze, several MIPS 

models, Power PC, Renesas and NEC, most of them provided by the processor manufacturer. 

In addition, a large number of available devices allow the assembly of a complete platform, 

including various types of memories, bridges, DMAs and UART modules. 

As mentioned, the processor models are instruction level accurate. Behavioral models 

based on instruction set simulators aim to implement the instructions considering the real 

number of cycles to execute and perform the IO operations along with each step of each 

instruction. However, OVP processor models execute each instruction in a functional 

approach, disregarding timing. The precision level of OVP allows internal registers to store 

properly the values at the end of each instruction, generating all expected effect. The platform 

executes an instruction at a time, but abstracts everything regarding the pipeline, for example. 

The main disadvantages of the platform rely on the high abstraction level of the architecture, 

that doesn't permit an clock cycle analysis of the tests, as well deeply architecture 

examination. 

The OVPsim also supports description of multicore platforms. It can simulate multiple 

processors including configurations with shared memory, and heterogeneous multiprocessor 

systems. The model performance depends on variants of the chosen processor and the nature 
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of the application, but it is possible to achieve speeds of hundreds of millions of instructions 

per second. As OVP models can be compiled as common objects, they can also be 

encapsulated in any simulation environment capable of using shared objects. This includes C, 

C ++ and SystemC environments. 
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3 CASE-STUDY, PROCESSOR-BASED SYSTEM AND FAULT INJECTOR 

ARCHITECTURE 

 

An embedded processor can be defined as a processor that is responsible for 

computation and control of devices that are not regular computers. Embedded processors are 

used in several product fields, including automotive, networking, mobile, medical and 

aerospace, and according to [52], they has the following design criterias: (a) performance, 

represented by the maximum of data that they can process per unit of time and can be 

achieved by parallel architectures, multi-level caches, function specific internal modules, 

clock frequency, etc.; (b) power, that depends on the technology process, die area, number of 

transistors, clock frequency, gate sizing and core voltage; and (c) cost, in which the 

manufacturability is the key point, being related with the circuit complexity and area. In this 

way, modern processors needs to balance the use of special architectures, such as multipliers, 

additional caches, memory controllers and branch predictors, depending mainly on the market 

share they want to reach.  

In this chapter, the ARM Cortex-A9 series processors is evaluated, a mobile processor 

constrained for the embedded market. This processor has its own OVPSim model provided by 

ARM itself, making this analysis more reliable in terms of functional equivalence to the 

physical device. This processor was chosen because it is present in many commercial 

platforms such as Zynq™-7000 All Programmable SoC from Xilinx [67] and Cyclone V from 

Altera [66]. These FPGA based platforms allows failure analysis methodologies on the real 

target, and can be used further on to correlate and validate our results. The Linux operating 

system is discussed in terms of how its architecture can contribute to processor dependability. 

Finally, the fault injector organization, embedded system integration characteristics and the 

main injection phases are explained. 

 

3.1 ARM Cortex-A9 Architecture 

 

The ARM Cortex-A9 has a specific set of features and functionality beyond the 

traditional ARMv7 architecture in which it was based, in order to provide a high performance 

and low power consumption. The main features of the architecture are described in this 

section. 
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3.1.1 Main Functionalities and Relevant Features 

 

The processor ARM is based on a RISC architecture, being the most popular 

embedded processor for mobile applications. It happens due to its architecture that can 

provide high performance and operates within the mobile power acceptable range, which is 

under 5W of constant power consumption. With its  high performance ARM macro equipped 

with an L1 cache subsystem, it enables the use of a full virtual memory system, reaching 

around of 98% of mobile devices and 75% of all 32-bit embedded processors [53] [52]. 

All processors of the Cortex-A family are designed for mobile purposes, but is also 

intended for televisions and TV receivers. The Cortex-A9 uses an advanced version of the 

instruction set of the Cortex-A8, based on the ARMv7 ISA, with extended FPU and ability to 

perform data level parallelism, since it has multiple internal processing elements. The 

parallelism allows the core to perform several optimizations. The ones that are considered 

relevant for this work is: 

 Out of order and speculative execution, that may result in a more allocated 

register file; 

 Dynamical renaming of physical registers, promoting autonomy from the code 

and leading to a non obvious register allocation.  

 Hardware based unrolling of loops, that spreads control information among 

available registers .  

Figure 3.1 present the top level diagram of the Cortex-A9. The described functions can 

be located after the decoding stage. 

 

 

 

 

 

 

 

 

 

 

 

 



35 

 

Figure 3.1 – ARM Cortex-A9 Block Diagram 

 

Source: [52] 

The Cortex-A9 MPCore processor is the one modeled for the OVP environment and 

includes an enhanced version of the ARM MPCore technology, which provides the flexibility 

for vendors to implement between one and four CPUs in a cache coherent system architecture 

design, as in the Zynq™-7000 SoC that implements 2 cores.  

The ARM Cortex-A9 embedded in Zynq and Cyclone FPGAs are a dual-core ARM 

that can be configured to work as single or dual core and to access an embedded SRAM 

memory, caches level 1 and level 2 and a flash-based memory located outside the chip. In this 

work, we use the model of the single core Cortex A9. 

 

3.2 OVP Model of the ARM Cortex-A9 Architecture 

 

As described by Imperas© [55], the processor models used along with the OVP 

simulator are shared object files, represented by the .dll files in Windows and by the .so files 

in Linux. The models may include support for SystemC integration.  
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The exclusive purpose of an OVP processor models is code conversion. It  has the 

ability to translate the original application code previously compiled for the target architecture 

into the simulator own abstraction layer and for the just-in-time code mechanism, available in 

its VMI API. This API is used for disassembling and generation of the simulator interface, 

breaking the correlation with the original application, through a specific decoder that knows 

the real processor instruction set. The simulator is responsible for all the other tasks, leaving 

the execution complexity for the part of the environment that do not depends on the models 

being used. It implements the mentioned just-in-time mechanism that converts dynamically 

the original instructions into the simulator ones, memory allocation and other simulation 

dependencies [55].  

 

3.2.1  Modeled Functionalities 

 

The used OVP model is a single core processor modeled by ARM Ltd to be used along 

with OVP simulator, called “Cortex-A9MPx1”. Its instruction model is accurate, and the 

simulation results of a single thread program will correctly match the actual hardware that it 

models. However, not all actual architectures characteristics are modeled, these being 

dependent on the processor used, since the existence of a given function is a developer's 

decision and not necessarily a limitation of the platform. Therefore, it is possible to find 

processors with and without cache implemented, for example, but as mentioned the Cortex-

A9 model is provided by ARM with the purpose to provide means of simulated debugging 

software so that it can later be used in a real processor, a factor that indicates the equivalence 

between the model and the device is reliable. 

 

3.2.1.1 Pipeline e Cache L1  

 

The Cortex-A9 instruction pipeline is not modeled, so that the bus may not be 

accessed in the proper sequence, but it is assumed that all instructions conclude immediately 

when read from memory and in the same reading order, disregarding all of the steps of load, 

fetch and store, for example. This means that the instructions of the type Instruction Barrier 

and Data Barrier, such as ISB and DSB, are treated as NOPs, except for instructions with 

defined behavior at runtime only. The model also does not implement the functionality of a 

speculative fetch. 
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For this reason, typically caches are not modeled, although the platform has the 

resources to create both L1 as the shared L2, L3, etc. The ARM used in this work does not 

have caches or modeled buffers, nor the branch cache shown in real processor architecture. 

Cache handling instructions are implemented as NOPs, but again except for instructions with 

defined behavior at runtime, which are modeled. However, the cache control registers are 

present, allowing applications that normally make use of this resource, to run normally [56]. 

 

3.2.1.2 Performance and Timing 

 

The OVP model approximate the processor performance, but does not model 

accurately the execution time of the real processor, since it would need to be cycle accurate. It 

is given an estimative of MIPS that represents the same parameters of real processors, but in 

the processor model perspective, each instruction is executed in one unit of time, meaning that 

a fair comparison can be done between application running in the same environment, but a 

real hardware can produce very different performance results. The idea of time used in the 

OVP simulator is based on simulation time, that is incremented at the end of each iteration, 

which is global across the simulator and is called simulation quantum [55]. 

 

3.2.1.3 Special Functions 

 

According to the description of the real architecture [56], the special functions that 

were modeled in the ARM Cortex-A9 are: 

 Specific instructions for memory reduction; 

 Java byte code execution for JIT operations; 

 Single Instruction, Multiple Data (SIMD) are supported; 

 Functions for NEON media processing; 

 Vector Floating Point Coprocessor (VFP) is modeled; 

 Extensions for data security modules (TrustZone); 

 Address translation for secured and unsecured virtual memory. 

 

3.2.1.4 Modeled Registers 

 

To support the implementation of a real processor application, whole register file and 

support registers are implemented, enabling a better reproduction of the real behavior.  
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Table 3.1 lists the modeled registers of the ARM Cortex-A9 architecture. 

Table 3.1 – ARM Cortex-A9 Register File 

Source: [56] 

3.3 Linux Operating System 

 

The Linux kernel was selected as a target for our experiments as it provides a 

representative Operating System. The mainly reason for choosing this OS is that it is an open 

source environment, which significantly facilitates the controllability and observability 

required by the internal experiments. Beyond that, it is worth mentioning that Linux is already 

considered as an option of a commercial purpose operating system, which is being included in 

a wide range of applications, including those with reliability requirements [13]. 

The controllability of the OS enables our failure classification, which will be discussed 

later, through the observations made after each experiment. It is correct to say that based on 

the error detection mechanisms of Linux we draw part of our conclusions.  

In this section, the focus is the Linux Kernel analysis and discussion on the OS 

exception handling mechanism.  

 

 

Name # of Bits Initial Value Operation Type Function 

R0 32 0 R/W General Purpose 

R1 32 0 R/W General Purpose 

R2 32 0 R/W General Purpose 

R3 32 0 R/W General Purpose 

R4 32 0 R/W General Purpose 

R5 32 0 R/W General Purpose 

R6 32 0 R/W General Purpose 

R7 32 0 R/W General Purpose 

R8 32 0 R/W General Purpose 

R9 32 0 R/W General Purpose 

R10 32 0 R/W General Purpose 

R11 32 0 R/W Frame Pointer 

R12 32 0 R/W General Purpose 

SP 32 0 R/W Stack Pointer 

PC 32 0 R/W Program Counter 
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3.3.1 Conceptual Architecture 

 

The Linux is a UNIX-like operating system based on the open source concept and, 

according to [57], it is composed of four major subsystems. The first is the user space, which 

includes the user applications in a specific Linux installation, a region where they are 

executed and the Linux libraries, which promote mechanisms for allocation and 

communication of the applications and the kernel . The next subsystem is the O/S services, 

gathering all OS interfaces like command shell, kernel interface for programming. The 

hardware controllers provide interface for physical devices, like communications systems, 

memory architecture, disks and the CPU itself, making this subsystem dependent on the 

hardware architecture. Finally, the Linux kernel, that is the main interest of this work, since it 

provide an abstraction layer for hardware managing, specially the processor, making this 

subsystem independent from the architecture. 

The described topology can be seen in Figure 3.2. 

 

Figure 3.2 – Linux System Major Subsystems 

 

Source: Adapted from [57] 

Each subsystem can only communicate with the subsystem that is immediately 

adjacent to it. In addition, the dependencies between subsystems are from the top to bottom, 

i.e., a subsystem near the top depends on lower subsystems, but subsystems nearer the bottom 

do not depend on those at the top [57]. 

Being our major interest, the Linux kernel can interface with user code through an 

abstraction layer, allowing applications to run without hardware specific concerns, that’s why 

the application running in Linux doesn't need pre cross compilation. 

The Operating System used in this work is provided by Imperas Software Company, 

along with the model of the ARM Cortex-A9 processor and is a reduced Linux v2.6 kernel. 
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The codes are compiled using the standard g++ Gnu Compiler Collection and automatically 

run from the file system that, in the simulation platform, is a directory. 

Linux adopts a monolithic kernel strategy, meaning that it has a single block compiled 

with all services provided by the system. The kernel also is composed by subsystems [57], 

where each one is responsible for implementing operating system functions, as follows: 

 Process Scheduler: manages CPU resource sharing by the kernel and 

running applications. In real time OS versions, it is responsible for 

guaranty that each task is being executed on time; 

 Memory Management: similar to the Process Manager, this subsystem 

manages accesses to the system main memory, supporting virtualization; 

 Virtual File System: provides a common interface for all the data stored in 

hardware devices, supporting different formats of file systems; 

 Network Layer: allows connection to other network devices; 

 Process Communication: implement communication management between 

active processes in the OS; 

Additionally, to support the described subsystems, the kernel also include specific 

libraries to sustain processes dependencies and an initialization subsystem, for setting up user 

dependent configurations.  

The described architecture and how the subsystems interact is shown in Figure 3.3. 

Figure 3.3 – Linux Kernel Architecture 

 

Source: Adapted from [57] 
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3.3.2  Exception Management 

 

One of the advantages of the Linux is the ability to detect natively exceptions by 

implementing dedicated kernel functions that monitors each application operation before 

execution. Kernel calls functions are generated via interrupts and manifest themselves in 4 

ways: (1) an interruption issued to the processor by a hardware device indicating that it 

requires attention, (2) an exception indicated by the processor due an error, (3) a kernel call or 

system call issued by an application, or (4) a kernel thread [58]. The activation of internal 

kernel functions is not defined only by the mentioned events, but also the current kernel state. 

In this work, we focus on the second and third items (kernel calls issued by an error in the 

processor or by an application), since the injected faults can result in both behaviors and are 

reflected similarly in the operating system mechanisms [59]. 

In this scope, a process may result in a hardware exception generation when, for 

example, it attempts to divide by zero or fails translating a virtual address. In a UNIX based 

operating system, this event automatically changes the processor context to start the execution 

of an exception handler in the kernel. In this cases kernel are able to manage the exception, 

like in a 'page fault' that happens when there is a mapped address page which is not loaded in 

fact, but the kernel can pre-identify the problem before an illegal access actually occur. As a 

result, the application exits, but if possible the page will be allocated, remapped and the 

application flow can follow. 

When an exception is detected and cannot be handled by the kernel's internal 

mechanisms, then it is identified and a default trigger mechanism is called in order to handle 

these exceptions. This mechanism is called signals, where the system sends a notification to 

the application with the type of exception that occurred [58][60]. Examples of such 

exceptions that triggers default signals are: 

 Division by zero: a division by zero error exception (SIGFPE) is generated 

by making the kernel sending this signal to the application. 

 Segmentation Fault: access to a memory address out of virtual address 

space, making the kernel notify the application through a SIGSEGV 

signal, since he cannot know the right address. 

By sending a signal back to the application indicating the exception, it may contain a 

handler to treat it. The existence of these handlers depends on the software developer, and if it 

does not exist, the operating system can terminate the application. In this work, all 
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benchmarks were edited by including a default signal handler able to capture any signal 

propagated by the Linux kernel with no corrective action, but only generating an external 

message to the OVPSim platform in order to provide failure classification for further result 

gathering. 

 

3.4 Fault Injection Environment 

 

The embedded systems emulation method for fault injection envisions the reduction of 

limitations when compared to other techniques. Since the architecture model is available in 

software, it is possible to obtain a high degree of control and observability in the experiments 

provided by the source code emulator. Through this, it is possible to emulate soft errors in the 

memory elements of the available processor model. In contrast to several fault injection 

techniques, this approach does not require application modifications that will run in the target 

processor for fault injection, except for diagnosis improvements regarding software masking 

effects. Another relevant aspect is the emphatic run time reduction of the experiments 

compared to hardware description simulation through tools such as ModelSim. The software 

validation for state of the art processors also makes this approach attractive, since the 

manufacturers do not normally provide hardware description for COTS devices. 

As previously defined at Section 3.2.1.4, all the faults in this work are injected into the 

processor’s register bank. The ARM processor embedded at the studied SoC is a single-core 

ARM Cortex-A9. The system is simulated with the OVPSim simulator, defined at Section 

2.3. The fault injector is the OVPSim-FIM and its technique will be introduced at Section 

3.4.2. Each benchmark execution has one random fault injection, as defined at Section 

3.4.2.1. The model used to simulate the ARM Cortex-A9 was the model developed by ARM 

Ltd itself to be specially used at OVPSim, called "Cortex-A9MPx1". This model is validated 

by use, since it is largely used by embedded software developers along with the OVP 

simulator, which means that realistic simulations can be possible with this environment. 

As the fault injections are limited to the ARM's register bank, the only part of the SoC 

simulated is the ARM processor itself and the minimum infrastructure, i.e., memory and bus 

models. Other elements such as I/O, DMA and special interfaces are not of importance for 

this work. 

Figure 3.4 depicts the composition of all this elements that composes the environment. 

 



43 

 

Figure 3.4 – Proposed fault injection framework organization 

 

Source: [12] 

 

This section will define the fault model used in both approaches (bare metal and Linux 

OS) and how it is implemented by the Fault Injector module by discussing its architecture and 

detailing the Figure 3.4. 

 

3.4.1  Fault Model Definition 

 

The fault model used is called bit-flip or upset, which is nothing but a modification of 

the contents of a storage cell during program execution. 

In a processor, the regions likely to be affected by this kind of faults are the internal 

memory cells, logic registers, control registers and registers that cannot be accessed by the 

instruction set. In addition, register files and integrated caches can be included in this list. 

Despite the wide range of memory devices, the models only allow access to the register bank, 

as shown in Table 3.1, therefore the faults are emulated only in these registers. 

Despite its relative simplicity, the bit-flip model is widely used for real faults, since it 

accurately corresponds to the default behavior in a real case [62]. 

 

 

 



44 

 

3.4.2  Fault Injector Module  

 

The simulation platform already described in this work provides an API called ICM, 

briefly described in Section 2.3.1. Through this API is granted read and write access at any 

time in any part of the architecture implemented on the platform, such as the processor, bus, 

memory, or cache. Access is possible during the simulation, exception handling or by calling 

specific platform functions. Thus, it is possible to trigger an access when a certain event 

occurs, which generates a function call by the simulator capable of manage any architecture 

element in accordance depending on the function features. 

The Fault Injection Module (OVPSim-FIM) used in this work was introduced by [12], 

and developed with the support of the microelectronics post-graduation program of UFRGS. 

It uses the ICM resource and is responsible for inserting SEUs, capturing the processor model 

exceptions for results elaboration and reports generation. This module is individually 

connected to an OVP processor model, that in this work is the ARM Cortex-A9 with one core, 

as mentioned, providing independence between simulations, i.e., numerous platform instances 

comprising processor, memories and fault injector can be run concurrently, as each processor 

model includes one fault injection event. 

The fault injector module uses the instruction bus monitoring at runtime and can be 

used in any processor model. The monitoring function has been developed using the Callback 

API of the OVP platform, which is called when any previously configured event occurs. 

Then, after the detection of this event, the simulator calls the data handling function, pointing 

to the fault injector module. 

The callback function triggers the execution sequence of the fault injector by accessing 

the fault information, position, location and mask pattern that will always be a single-bit flip. 

To ensure a better distribution of faults, the module checks if the position to inject the fault is 

the same as the previous one. If it is valid, another ICM function is used to read the selected 

register value and store its value in a temporary variable. By using a masking operation, it is 

possible to invert the target bit, emulating an SEU. After that, the resulting value is written 

back in the selected register and simulation returns where it left off. 

Depending on the target register, the erroneous value can lead to an exception in the 

processor, such as a shift in the program counter register that may cause a simulation crash, 

and is an intrinsic behavior of the OVP processor model to be interrupted until this exception 

be handled. Several situations may occur due to the random fault injection, like the processor 
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fault manager activation or read/write events beyond the extent of memory accepted by the 

platform, which is limited to 500 MB for any application. Each one of these errors generates a 

specific exception in the model. The fault injector module allows you to separate the different 

exceptions individually and to continue running from the stop point, as long the OVP 

scheduler are returned to the processor´s model when an exception is captured. 

It is worth emphasis that the objective is to identify possible failures arising from the 

impact of a SEU and not to treat or mitigate them. To do this, as many environments run 

simultaneously, we must remove the processor that has failed without affecting others. The 

icmFreeze function is responsible for remove a specific processor, allowing the simulation to 

be resumed for all pending models. This process is repeated until all of the processors 

complete their operation or generate an exception. Eventually the generated error might lead 

the application to fall into an infinite loop, generating an excessive memory consumption and 

simulation time; to avoid such a situation the application, every time the current simulation 

run 10% more instructions than the expected number, it is considered incorrect, the processor 

is removed and the simulator generates an exception. 

If no exception is identified during the execution, the memory still needs to be 

compared. Thus, the model recovers the memory map attached to the processor model and 

compares with a known map without errors and this process is repeated for all running 

simulation instances. The collection of exceptions and differences between memories in the 

simulations are compiled in a final report. 

Figure 3.5 shows the described structure of the fault injector module. 
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Figure 3.5 – Fault injector module architecture 

 

Source: Author 

 

However, the presence of an operating system may cause that some errors are masked. 

As described in the exception handling Linux mechanisms, an exception indicated by the 

processor because of an error can generates a kernel call and the OS are able to manage the 

issue and resume the application without crashing or hanging the system. In the eyes of the 

processor, no error was reported and consequently the platform or the presented fault injector 

can identify no failures.  

To work around this phenomenon, a different fault injector was proposed when the 

Linux OS is on top of the embedded system. Each application needs to be edited by including 

a default signal handler able to capture any signal propagated by the Linux kernel. The signal 

handler should have no corrective action; it only generates an external message to the 

OVPSim platform in order to provide an failure classification for further result gathering. The 

message is able to write and classify each Linux signal in a reserved memory area with no 
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code or application data. During results collection phase, the fault injector can access this 

memory and classify the items together with default platform reports.  

Figure 3.6 shows the proposed fault injector structure to support Linux exception 

signals. 

 

Figure 3.6 – Fault injector module architecture for embedded system with Linux 

 

Source: Author 

 

3.4.2.1Fault Injection Phases 

 

For evaluation, fault injection comprises five steps: executing a simulation without 

injecting faults, fault creation, fault injection, failure checking and result collection. 

Figure 3.7 present all the steps and its subdivisions. 
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Figure 3.7 – Fault Injector Operation Flow 

 

Source: Author 

 

The execution of the environment without fault injection, also called gold model, is 

performed with the target platform and code without any intervention, so that from this 

simulation the essential information such as instruction count and memory map are collected. 

The same application that is compiled using the proper cross-compiler, is executed in the gold 

model and in the fault campaign platforms. The instruction count is used in the next step as a 

reference for pseudorandom register selection where the fault is injected. The memory map 

file contains a copy of the memory content, containing all addresses that have changed in 

comparison to the initial memory, avoiding that the full memory space is copied, that is, even 

if the memory model used on the platform have 10 MB, if an application uses a smaller 

quantity of data, the copied memory map will contain exactly what the application uses, not 

all 10 MB. 
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The second phase comprises the fault creation where the SEU that will be injected is 

implemented in pseudo-random manner. This stage selects the timing, location and fault 

mask. As mentioned above, the OVP platform has granularity of an instruction (instruction 

accurate) and consequently the smallest element where a fault can be injected is during 

execution of an instruction, ignoring at which clock cycle the fault happen. The fault injector 

in this work selects a pseudorandom position that is, in practice, the execution time of the 

application. This position is nothing more than a number between 0 (zero) and the last 

instruction that were extracted during the previous step for the bare metal environment. For 

the Linux environment, the position starts where the application starts in memory. Once the 

insertion time has been selected, it is necessary to select a location, i.e., a flip-flop in the 

register file to introduce a single fault. The process for choosing the register is also 

pseudorandom and follows a similar concept as the timing selection, but now from a list 

containing all registers. 

As previously discussed, the processor model provides only registers that can be 

observed from the application standpoint, not including therefore registers that exist in the 

physical architecture, as those present in the pipeline. In this work, faults are injected into the 

entire register file as listed in Table 3.1  and are implemented as a single bit flip. To do this, a 

bit mask to "1" is used to inject this event, and only one bit is selected for masking to "0" 

(zero), exchanging its value by doing an XNOR operation between the mask value and the 

actual register value. For example, to change the third bit in a 32-bit register, the mask value 

would be 0xFFFFFFFB. As in the other steps, the generation of these masks is also pseudo-

random. After mask value definition, the selected position receives its opposite value, 

ensuring that the fault will produce an error, since the value in a real situation caused by SEU 

can be the same as the bit already has, and does not represent an actual error. In this third 

stage, beyond the fault injection, any exceptions that the simulator accuse due to error caused 

by unexpected behavior of the processor model is captured. As multiple instances of the 

simulation environment can be triggered independently, each one can simulate a fault 

injection and executes the described process. 

In the fourth stage, the simulation results are compared to the results obtained from the 

gold model. In this work, a fault is counted as a failure when there is a change in the 

application behavior or when data stored in memory is different from the expected. 

The last step comprises the information collection where results are gathered from all 

simulations platforms and compiled in a final report. 
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3.4.3 Failure Classification 

 

In the last OVPSim-FIM step, the final report is generated and the simulation 

campaign shall then be interpreted. The most important information for this work’s analysis is 

the number of failures and their classifications. In order to establish a relationship between 

both environments, bare metal and Linux failure classification are equivalent. The failure 

types are defined, alongside with their categorization, which helps to understand better the 

effect of the errors on the application run, as follows [12]: 

 Masked_Fault: The fault produce an error that was masked, meaning that 

simulation finishes normally, without processor signaling or memory 

incoherencies with gold model; 

 Control_Flow_Data_OK: Divergence between executed instructions 

during test and gold phase, but memory is correct; 

 Control_Flow_Data_ERROR: Divergence between executed instructions 

during test and gold phase, and also between memories; 

 REG_STATE_Data_OK: Internal state is incorrect, but memory is correct; 

 REG_STATE__ERROR: Both internal state and memory incorrect; 

 SDC: Silent data corruption failure, meaning that simulation ended with 

no noticeable events, but memory ended different than gold model; 

 RD_PRIV: Read privilege exception; 

 WR_PRIV:Write privilege exception; 

 RD_ALIGN: Read align exception; 

 WR_ALIGN: Write align exception; 

 FE_PRIV: Fetch privilege exception; 

 FE_ABORT: Fetch an inconsistent instruction; 

 ARITH: Arithmetic exception in an instruction; 

 Hang: Application presumably in an infinite loop; 

The above classification does not take into account the OS failures. As mentioned in 

Section 3.4.2.1, the Fault Injector was modified to handle Linux signals. The fault injection 

campaigns have shown that between operating system available signals, Linux was able to 

detect only segmentation fault, illegal access and floating point exception violations, and so, 

only these signals were included in results. 
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 SEG_FAULT: Segmentation fault error (the application tries to address a 

non-allocated memory area); 

 ILLEGAL_INST: Illegal instruction error (the processor attempts to 

execute an illegal, malformed, unknown, or privileged instruction); 

 FLOAT_PT_EXC: Floating Point Exception (code generates an overflow, 

underflow, or divide-by-zero error). 

Nevertheless, for practical reasons those types of failures are re-classified on three 

different groups, based on their behavior and consequences to the application execution: 

HANG, SDC and UNACE. Those groups are defined below. 

 SDC: Those failures are detected due to a difference in the final memory 

from the golden phase execution and the fault-injected test executions. 

 HANG: Failures that cause the application to be stuck in a certain point. 

Not necessarily in a given instruction, but also in an infinite loop. 

 UNACE: Any error that had no influence at all at the final memory state, 

i.e., memory is just as if it was predicted to be by the golden phase 

execution. 

Table 3.2 classifies the previously defined Failures into those new classifications. 

 

Table 3.2 – Failure Group Classification 

Failure Group Failure Types 

HANG 

Hang, RD_PRIV, WR_PRIV, RD_ALIGN, WR_ALIGN, FE_PRIV, 

FE_ABORT, ARITH, SEG_FAULT, ILLEGAL_INST and 

FLOAT_PT_EXC 

SDC SDC, Control_Flow_Data_ERROR and REG_STATE_Data_ERROR 

UNACE Masked_Fault, Control_Flow_Data_OK and REG_STATE_Data_OK 

Source: Author 

 

This classification helps to better identify the type of failure and what may have 

caused it. Note that not all of the nineteen types of failures are defined at Table 3.2. That is 

because this failure grouping definition does not take into account the errors that were caught 

by Linux. 



52 

 

4 APPLICATIONS ENVIRONMENT 

 

In this section, it is defined the environments in which the tests were proceeded. For 

both platforms, bare metal and Linux, a brief description of compilation methodology and 

fault timing selectivity is presented, since the presence of an Operating System requires 

particular techniques to provide fair comparisons. These different environments are intended 

to define the level of implementation complexity, which for bare metal application is 

considered lower, providing means to evaluate the impact these approaches. In total, eleven 

benchmarks are presented and discussed in terms of functionality but particularly its data 

behavior diversity. The simulation report structure is also presented, providing an overview 

on the platform observability. 

 

4.1 Testing Platform 

 

The structure of each system that is target of faults can be seen in Figure 4.1. In each 

environment, the complete set of benchmarks is run to exercise the registers in the emulated 

processor's register file. The bare metal system, Figure 4.1 (a), is set in two layers, a processor 

initialization and the main function, which is responsible for implementing the applications. 

The Linux system, Figure 4.1 (b), considered the most complex system between the 

environments, has a Kernel v3.7.1 and it is structured in two main levels: user space and 

kernel space. In the user space, a process for benchmark execution is defined, and again the 

purpose is to generate debug messages to indicate the condition of the system that is running 

in the emulator. The user space naturally shares resources with the kernel space, whose 

functions was described above.  

Figure 4.1 – Test Environments Structure 

 
 

Source: Author 
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The system setup on where OVPSim runs is not relevant on the simulation results, but 

it shall influence only the simulation execution time. It also has no influence at all in the 

simulation model execution. The benchmarks execution relies only on the defined target 

architecture being simulated, in this case the ARM Cortex-A9 in an ARMv7 architecture 

version. Figure 4.2 shows the system information given by the simulator itself. 

Figure 4.2 – Emulated CPU Information 

 
Source: Author 

 

The tests were executed on a personal computer with an Intel® Core™ i5-5200U CPU 

@ 2.20GHz processor, 4GB of RAM and running CentOS 7 Linux as OS. The test execution 

time for each benchmark is very variable, as some are more complex and computing 

demanding than others. All tests were automated by script, allowing parallel simulation with 

multiple environment, each one composed of only one embedded processor and memory. 

 

4.2 Benchmarks 

 

In this work, we choose to work along with Worst-Case Execution Time (WCET) 

analysis project [63] that performs research in static WCET. In this research project, the 

application does not run in a conventional way, instead it derives the WCET information by 

analyzing the characteristics of the program code and the target hardware. The focus is on 

methods for deriving safe information on the possible executions of a program, like iteration 
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limits of loops and dependencies between conditional statements. The group maintains a large 

number of WCET benchmark programs, used to evaluate and compare different types of 

analysis tools and methods. The benchmarks are collected from several different research 

groups and tool vendors. Each benchmark is provided as a C source file. 

All benchmark programs are single path programs. While different input data cause 

the code to execute on different execution paths with different execution times, the single-

path approach avoids this uncertainty by ensuring that the code has only a single execution 

path. To do this, the approach uses code with loops with invariable iteration counts and 

branches dependent only on local data, avoiding I/O operation. By using this benchmark, we 

guaranty predictability on execution time making the bit-flip localization equally distributed 

in all simulations during fault injection campaign. 

Ten benchmarks from WCET group were used in the tests. Additionally, an Imperas 

benchmark was included since its intention is to achieve maximum CPU performance. They 

were chosen intentionally in order to exploit the diversity of behavior and to attempt to reach 

failure detection classification variety, as described below: 

 

 binary_search: Binary search relies on a divide and conquer strategy to find a 

value within an already-sorted collection. It divides a range of values into 

halves, and continues to narrow down the field of search until the unknown 

value is found. It can be used to access any sorted collection data quickly; 

o Loop based; 

o Uses arrays and/or matrixes; 

 bitManipulation: To act on data at bit level or set of bits using boolean 

operations is called bit manipulation. In computing, this technique is used for 

low-level operations such as device control, or in some algorithms such as 

detection and error correction and encryption, as well as for optimization. The 

operations used in bit manipulation are boolean operations like AND, OR, 

XOR, NOT, the arithmetic and logic shifts and rotations; 

o Uses arrays and/or matrixes; 

o Bit operations 

 bubble: The bubble sort makes multiple passes through a list, comparing 

adjacent items and exchanging those that are out of order. Each pass through 

the list places the next largest value in its proper place, doing it repeatedly until 
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no swaps are needed, which indicates that the list is sorted. It is a good 

example of an O(n
2
) complexity algorithm; 

o Nested loops; 

o Uses arrays and/or matrixes; 

 compress: The algorithm is based on the common Unix compression utility. 

This version has been modified to its work in memory, rather than reading and 

writing files, to avoid disk IO. Only compression is done from a buffer 

containing random data to another one; 

o Loop based; 

o Uses arrays and/or matrixes; 

 crc: Implements a cyclic redundancy check computation on 40 bytes of data by 

using a 16-bit CRC CCITT standard with polynomial x
16

 + x
12 

+ x
5
 + 1, which 

is now widely used for a CRC checksum; 

o Single path stereotype; 

o Bit operation; 

 factorial: Simple algorithm that repeats 50 times the factorial operation of 25. 

This algorithm was chosen in order to exploit recursion; 

o Nested loops; 

o Recursion; 

o Data interdependence; 

 fdct: The forward discrete cosine transform is a technique for converting a 

signal into elementary frequency components, similar to the discrete Fourier 

transform. It is widely used in image compression; 

o Uses arrays and/or matrixes; 

o Floating point operations; 

 harm: implementation of a harmonic series defined by equation (4.1) 

 

 
 

 

 

 

   
  

(4.1) 

o Loop based; 

o Floating point operations; 

o Data interdependence; 
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 matrixMult: This program multiplies two 20x20 square matrices resulting in a 

3
rd

 matrix. It uses compiler's resources to handle multidimensional arrays and 

simple arithmetic and exploits looping code behavior. 

o Single path stereotype 

o Nested loops; 

o Uses arrays and/or matrixes; 

 mdc: The Euclidean algorithm is a way to find the greatest common divisor 

(the largest positive integer that divides the numbers without a remainder) of 

positive integers; 

o Loop based; 

o Data intensive; 

 peakSpeed: This is the Imperas benchmark to achieve maximum CPU 

performance. It consists of 500 interactions of sequential variables attributions, 

concluding with the sum of all compromised values; 

o Loop based; 

o Data interdependence; 

 

Table 4.1 shows the number of instructions executed in bare metal and in Linux for the 

set of applications. The Linux boot executes 1,176,574,110 instructions. Note that the number 

of instructions of the application executed in bare metal and in Linux is very similar. The 

difference comes from the fact that for bare metal we use a compiler for the ARM Cortex-A9 

architecture, while for Linux we use the default GNU compiler, since the application is on top 

of the OS, what results in a different instruction count. 

Table 4.1 – Number of Instructions Executed in Bare metal and in Linux for the set of Applications 

Applications 
Bare Metal # of Exec. 

Instructions 

Linux 

# of Exec. Instructions 

binary_search 138,293 130,010 

bitManipulation 305,211 293,520 

bubble 236,548 236,164 

compress 196,736 189,141 

crc 201,812 223,448 

factorial 310,343 310,061 

fdct 507,696 537,709 

harm 449,123 448,839 

matrixMult 343,373 343,172 
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mdc 658,172 510,295 

peakSpeed 19,859 19,574 

Source: Author 

 

4.3 Fault Distribution 

 

The fault injection process in 15 registers of the Cortex-A9 architecture was made in a 

random distributed manner, i.e., register bank were injected with 100000 faults that guaranty 

an approximate distribution for each register. Thus, 1.1 million faults were injected during the 

campaign of each environment, since we are working with 11. To ensure a known condition 

for the comparison step of the results in the fault injector, at the end of each benchmark 

running the whole system is returned to the initial value, therefore, no more than one fault is 

injected per application execution. After that procedure, a new run is initiated, in order to 

emulate a new fault. 

As mentioned, due to Linux ability to handle errors, OVPSim-FIM classification was 

extended to include signals triggered by kernel categories. The signal handler added to each 

application code has the ability to write and classify each signal in a reserved memory area 

with no code or application data and after that, resumes the simulation. During results 

collection phase, the fault injector can access this memory and classify the items together with 

default platform reports. 

When executing an application in bare metal mode, all instructions in memory belong 

to the application and the code is compiled directly for the architecture. As a result, it is 

guaranteed that any injected fault will aggress a register with an application content. Figure 

4.3 presents the bare metal fault distribution approach. 

Figure 4.3 – Bare Metal Fault Distribution over Time 

 
Source: Author 
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Applications that run in Linux shall be compiled for the specific operating system and 

the resulting memory occupation is very different from bare metal, as it includes the OS data. 

This works aims to analyze the application behavior under faults in both platforms, but in this 

case much OS Linux architecture runs alone and a fault injected in this moment would check 

only the Operating System. In order to run the benchmark, the Linux shall be booted first, 

resulting in a much higher number of instructions than in bare metal version. This behavior 

generates an unfair comparison between platforms, since random fault injections are most 

likely to happen during Linux boot than in the application itself. Safe critical applications that 

use operating systems are commonly initialized before being exposed to the susceptible 

environment, thus booting should not be taken into account. In addition, when performing the 

OS boot, all the latent errors are cleaned.  

OVPSim-FIM was modified to identify application beginning and guaranty that fault 

injection happens only after it starts, but after that, Linux kernel is also exposed to faults 

along with the application, since it shares the processor resources even running with only one 

application.  

Besides that, the application signal handler is an additional code used as a solution to 

overcome the inability of the platform to capture exceptions since Linux was able to prevent. 

This strategy may lead to an unbalanced analysis if these additional functions are take into 

account during fault injection, as bare metal applications do not include this code. So, in 

addition to finishing the simulation when a Linux exception signal is captured, it also informs 

to fault injector the moment where injecting faults is allowed, that is after signal handling 

functions initialization. Figure 4.4 presents the Linux fault distribution approach. 

Figure 4.4 – Linux Fault Distribution over Time 

 
Source: Author 
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4.3.1 System Observability 

 

Each simulation, independently the environment it is running, results in three tables. 

The first table summarizes all executions of a given benchmark in the following 

characteristics:  

 Fault number; 

 Selected instruction number for fault injection; 

 Selected register; 

 The mask to determine the position in the register that will suffer the bit-flip; 

 The value that the program counter stopped when simulation ends due to 

normal or exceptional reasons; 

 The result of comparison between the golden model memory and the one under 

analysis; 

 The failure detection, and; 

 The simulator flag returned at the end of the simulation. 

The second table summarizes all executions in terms of architecture, i.e., the place 

where the fault was inserted. This analysis is of great importance as it highlights the critical 

points in microprocessor architecture. The table lists in order, the register where the fault is 

injected, the injected total number of faults in that register, the percentage of injected faults, 

the number of failures that occurred due to an inserted fault and the error rate. 

The third table is complementary to the second one, as it depicts the failure 

classification per register, i.e., the failure gamma that arises in each register during the 

campaign. This information is valuable, since along with critical registers highlighted by the 

second table, the know of failure types in a given register can provide means to understand 

how each application allocate processor resources and consequently knows which one to 

protect. 

Second and third result tables will be presented and discussed in Chapter 5. Table 4.2 

presents an excerpt of the first table from an example report. 

Table 4.2 – Result Example with Faults Details 

Fault # Instruction # Register 
Bit-Flip 

Mask 

Final 

PC 

Memory 

Comparison 

Failure 

Detection 

Simulator 

Flag 

0 130,811 R1 0xFFFFFFFF 276,735 0 0 3 

1 160,830 R11 0xDFFFFFFF 160,830 1 1 12 
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2 210,709 R7 0xFFFFFFDF 276,735 1 1 3 

...        

18 28,631 R3 0xFDFFFFFF 276,595 0 1 3 

...        

Source: Author 

 

In Table 4.2, always the first line corresponds to the simulation in which no fault has 

been inserted and which is used as reference for the other simulations, i.e., the golden model. 

It is for this reason that the mask in line 0 (zero) is 0xFFFFFFFF, corresponding to no bit-flip. 

It is also through this implementation reference that can be seen the highest value that the 

program counter takes, indicating that this is the last instruction number of the test 

application. The simulator flag always finishes with number 3 and 12 in all tests, which 

means, respectively, that the simulation has ended normally and the simulation was stopped 

by icmFreeze function previously described. 

Based on this information we can still notice some behaviors resulting from the fault 

injection. In line 1, a failure in the R11 register (frame pointer) is expected, since this record 

helps a function return along with stack pointer. This type of failure is noticed by the 

platform, causing a simulation crash and forcing the environment to kill it. This event 

generates two actions in the report: failure detection and final memory discrepancy, as the 

execution does not come to an end and therefore not finished writing in memory. 

Some errors, as the depicted in line 2, will not cause the simulation interruption and 

will execute completely. However, the comparison between the final memories warns 

discrepancy in the results, indicating that the bit-flip probably happen in a register with data 

stored in it that was written back to the memory or that was used in a result calculation. 

The line with index 18 shows the opposite; a simulation that was not killed by the 

simulator (simulator flag 3) due to the error, ended prematurely, but at the same time executed 

enough code to complete the simulation with correct memory data. This case is known for 

demonstrating the fact that an error may manifest later in the execution (fault injected in the 

first instructions, but which generates locking near the end of the application) and that was not 

detected in terms of data generated erroneously. 
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5 RESULTS AND ANALYSIS 

 

In this chapter, the results of the test campaigns discussed in Section 4 are presented. 

At first, our test environment and methodology is compared to a real hardware setup in order 

to establish a relationship between simulated and physical testing. 

After that, all fault injection procedures were repeated for both environments, bare 

metal and Linux OS, and the results aimed to establish comparison between them. Initially, 

we evaluated the types of failures that take place in each application, classifying them 

according to Section 3.4.3, comparing them with each other and between environments. The 

classification proposal aims to synthesize the behavior under a functional perspective, but the 

complete classification can be seen in Appendix A. At first, both platforms will be analyzed 

equivalently, without concerning the operating system features. Also in this context, will be 

possible to analyze from the perspective of the ARM Cortex-A9 processor architecture the 

location of these errors and recognize the most sensitive points of the register bank to some 

benchmarks. In a second step, we refine the analysis comparing the final memory, separating 

the effects of latent errors from the ones that generate wrong results.  

Finally, an analysis on architectural and application vulnerability factor will be 

presented in order to sustain the work developed in this study, along with the overall error rate 

between environments for all benchmarks.  

 

5.1 Interruption-based Physical Environment Comparison 

 

Before comparing the results between Linux and bare metal environment achieved by 

simulation in our OVP environment, we must establish a correlation between the real 

processor in an equivalent methodology. This comparison is based on the study developed by 

Lins [68], where a Xilinx Zynq-7000 Processing System, that includes an embedded single 

core ARM Cortex-A9, was tested against an interruption-based environment, commonly 

called hardware emulation. This approach exploits an identical strategy used in this work, 

where a bit-flip is forced in an internal memory element triggered by a pseudo random 

interruption. In [68], Lins evaluate the behavior of three applications by injecting faults in the 

processor’s register file, from R0 to R12. 

This method is based on the idea published by Raoul Velazco [69] that is based on 

adding functions to your code that are able to inject upsets in the register file, PC and SP 
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registers. These functions, as implemented by Lins, are triggered by hardware interruptions, 

which randomly select fault location and time. By doing this, the method include instruction 

sequences to inject faults on critical control registers, often not directly accessible by the 

instruction set. As depicted by Velazco, the approach has the same limitations as our 

simulation based method, since not all possible sensitive elements can be reached and the 

effects of SEUs cannot be seen during instruction execution. 

In the referred environment, when the application is completed the output is compared 

with a previously executed application with no faults inserted. The interruption-based 

platform is able to categorize two possible failures: (a) a mismatch between executions are 

identified as a Silent Data Corruption (SDC) and (b), whenever the ARM becomes 

unresponsive or sends garbage through the serial communication used for result collection, a 

Single Event Functional Interruption (SEFI) is detected by a watchdog in the host PC, causing 

a system reboot. Those classifications are equivalent to the SDC and HANG categories 

previously explained in section 3.4.3. The platform also allows logging the register where the 

fault was injected in the cases where it caused corruption of the expected output value. 

The applications under test were a Matrix Multiplication (MxM), Advanced 

Encryption Standard (AES) and Quicksort algorithms. All of them were executed 

approximately 100000 times each in the interrupt-based platform, and exactly 100000 times 

each in OVP platform. For comparison purposes, the same application sources were used, 

compilation optimization was set to level 2 and exposed registers (R0 to R12) are the same in 

both environments. However, the software compilers and assemblers are different, since 

Xilinx provide its own development and integration platform, despite having the same 

processor architecture. 

Figure 5.1 depicts the SDC error comparison between platforms for all mentioned 

applications.  
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Figure 5.1 – SDCs Comparison with Interruption-based Platform 

 

Source: Author 

 

Matrix multiplication, AES and Quicksort applications have failures rates around 35%, 

3% and 2.5%, respectively. As can be noted, there is a correlation between the OVP platform 

and the hardware emulation by interrupt-based fault injection in terms of proportion, i.e., in a 

single application, both environments have no more than 3% of difference from the total 

amount of injected faults. Considering that and the amount of executions performed in both 

environments, it is possible to say that the application has a similar flow and data 

management, which means coherence between real processor's architecture and modeled one. 

Observing the results from this perspective we cannot conclude that the observed difference is 

a result of the environment discrepancies, since both methods use pseudo random fault 

distribution, which can lead to differences even bigger between applications in the same 

environment. However, if we compare the amount of failures, it is possible to have a different 

interpretation, where OVP environment has 2 times more failures for Quicksort and 2.3 times 

more failures for AES algorithm. Despite the applications behave similar in the processor, we 

cannot say that data distribution in the register file are analogous, because the results shows 

that interrupt-based platform is twice times less susceptible to SEU faults. One possible 

reason to this behavior is the compilation process, since we were not able to compile the code 

for both platform in a single compiler. The result can be different optimization strategies, 

register allocation and/or distribution, which reflects on the error rate. 



64 

 

Figure 5.2 shows the comparison between errors that results in a crash or undesirable 

behavior of the same applications.  

 

Figure 5.2 – HANGs Comparison with Interruption-based Platform 

 

Source: Author 

 

Now, a different behavior can be observed, since there is more deviation in the results 

for mostly applications even from the total amount of injected faults perspective. MxM still 

have a coherent result, with 1.2% of difference, but AES and Quicksort algorithms presented 

a significant deviation, ranging from 7.1% and 8.5%, respectively. Again, if we consider the 

amount of failures, we'll see interrupt-based platform with 50% more failures in AES 

application and OVP with approximately 9 times more failures for Quicksort. These 

discrepancies again reflects the fact that the we have different compilers in both scenarios, 

resulting in different behaviors in front of the same fault injection pattern. 

To enforce this assumption, an analysis at register level gives us a better understanding 

of the register susceptibility in each platform. Figure 5.3 bellow presents the error rate for all 

applications in each tested register that produced SDC failures.  
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Figure 5.3 – SDCs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort 

 

 

 

Source: Author 

 

The SDCs results showed to be coherent in the overall error analysis, and this 

correlation can be confirmed again in Figure 5.4. Although at the first sight many differences 

can be noticed from register to register in the same application, the average error rate of all 
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applications gives the results discussed earlier. A closer look shows that for MxM, the 

interrupt-based environment tend to distribute data in R0 to R2 and R8 to R10, while OVP 

compiler prefers to distribute data in R5 to R10. The same phenomena happen in the AES and 

Quicksort application, where OVP platform locate data between R5 to R10. In the other hand, 

interrupt-based platform distributed data along the available registers for AES, while 

concentrate in R0 to R3 for Quicksort. A main conclusion can be drawn from this analysis, 

that is, despite the results noticed for overall rate are similar, register allocation can be very 

different, justifying the relative error previously explained. 

In the same way, the tests produced the fault sensibility result for all applications in 

each tested register that generates HANG failures. Figure 5.4 bellow presents the results. 

 

Figure 5.4 – HANGs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort 
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Source: Author 

 

In the graphs presented in Figure 5.4, a memory element with noticeable error rate 

means that flow control information is allocated in that register. This allocation, as mentioned, 

is intrinsically related with the compiler, who maps this information to the available register 

resources. Depending on the optimization and the compiler algorithm itself, the register 

mapping will differ, and the same application will allocate different resources, despite the 

processor being the same. MxM application has a similar error rate along the register bank, 

and it is noticeable that OVP platform tend to use R11 for control flow operations, while 

interrupt-based platform prefers R10. Therefore, this regular distribution of both 

environments produced a similar error rate, as seen in Figure 5.2. The OVP tendency to 

allocate R11 (frame pointer) is recurrent in AES and Quicksort, while interrupt-based 

platform compiler find different solutions to resolve the application control flow. For example 

in AES, where R0 to R7 doesn’t generate any failure like in OVP environment, which are 

locate mostly in R8 to R11. Quicksort application shows a singular situation, where both 

environments used R0 to R4 to locate the control flow data. However, exceptionally in OVP 

platform, the frame pointer was abused by the OVP compiler, which results in a high error 

rate due to the register AVF, which is expected to be high. 

Based on the presented results we cannot conclude that the environments have any 

kind of equivalency. The approach of using different compilers brought a variable that adds 

uncertainty to the results and unfortunately, it was not possible to perform a new fault 

campaign, meaning that OVP platform results can only be analyzed in the scope of the 

simulation environment. 
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5.2 Environment Comparison 

 

This section will present the comparative results of SEUs injection from the viewpoint 

of the failures classification in a functional perspective. As mentioned, the failure analysis 

compares each application running under fault injection with a gold reference to detect errors. 

A failure would be reported when a mismatch is found in the application control flow or data 

results.  

The platform OVPSim is able to report an UNACE event, when no error is detected 

and the result memory is identical to golden execution, a HANG, meaning the application or 

system hanged or crashed and a SDC, informing that application has finished but the data 

memory mismatch with the golden memory. For SDC failures, note that not only the 

application results stored in memory are compared but the entire memory space. This is 

important to analyze any latent error that may occur in the memory. 

Figure 5.5 shows the number of UNACE events (white columns), HANG (grey 

columns) and SDC (orange columns) failures for each bare metal application. The campaign 

of 100,000 faults in each application reached an average error rate slightly above 50 % of the 

total number of injected faults. The number of HANGs ranges from 10% to 15%, showing 

that regardless of the application behavior, it tends to crash at a relatively constant rate. This 

shows a good performance considering that the injections are done in registers in their active 

storage cycle. The low rate of HANGs is obtained due to the WCET benchmark 

characteristics in the bare metal environment, since they were designed to worst case 

execution time analysis, they are all single data path algorithms, with a few number of control 

code and mostly data intensive, meaning that the SEUs are less prone to cause a loss of flow. 

In the same Figure, SDC failures in most benchmark cases range from 40 % to 47 % 

of total injected faults. A substantial number of failures were detected, and again it is a result 

of the benchmark composition, strongly based on data manipulation, which constantly 

allocates mostly registers for data storing. The variation on fault susceptibility is mainly 

because the application particularities. It is important to remark, for example, that the 

compress application shows to be less susceptible to SDC failures with 16.6 %, due to the 

extensively use of external memory and less necessity of spreading data over registers. The 

matrixMult in the other hand, shows a SDC error rate of 58.8 % because it abuses of nested 

loops, which is highly benefited from the register renaming mechanism that does loop 

unrolling, exposing more the data in the register file. 
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Figure 5.5 – Bare Metal Error Classification 

 

Source: Author 

Figure 5.6 – Linux OS Error Classification 

 

Source: Author 

As mentioned, the Linux kernel has the capacity to manage errors before they manifest 

due to memory virtualization and is able to pre evaluate the execution of an operation. The 

impact of this treatment is presented in Figure 5.6. In Linux environment, the majority of the 

applications have an error rate ranging from 12 % to 25 %. HANGs in this case can also 

happens in OS kernel as it is exposed to faults during application execution, and so they prove 

to have a regular distribution, from 12 % to 18 % of total injected faults. It is important to 

mention that in this category, we also included hangs that the operating system was able to 
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signalize. However, two applications in this group, compress and matrixMult, draws attention 

by having 21 % and 32 % hangs, respectively, this may be due to the fact of the register 

allocation for Linux and the application that exposes more frequently control flow registers 

due to resource sharing.  

In the SDC category, most applications in Figure 5.6 stayed under 6 % of total injected 

faults. It happens because in Linux the application is statistically less likely to have a fault, 

since the application shares the register file resources with operating system, i.e., part of the 

register file is allocated to Linux and part for the application, so the chances to hit a register 

file that causes a SDC in the application is reduced. As expected, matrixMult still has more 

SDC failures than the average due to hardware loop unrolling. 

To better understand the presented results, Figure 5.7 and Figure 5.8 depicts 

comparison graphics with HANG and SDC results, respectively.  

 

Figure 5.7 – HANG Comparisons Between Environments 

 
Source: Author 
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Figure 5.8 – SDC Comparisons Between Environments 

 
Source: Author 

 

Figure 5.7 shows that bare metal and Linux environments present a similar behavior 

considering HANG type of failure. One of the reasons is the fact that this type of failure is 

also manifested due to violations in the execution flow that causes an invalid state of the 

processor, not depending on the characteristics of the application itself. Also, the fact that 

ARM Cortex-A9 has a build in register renaming mechanism makes control variables to be 

equally distributed between registers, causing control variables stored in registers to be spread 

and consequently equally prone to errors. However, Linux OS have shown on average a 

slightly higher rate comparing with bare metal, which make sense, since resource sharing with 

the kernel increase the control flow exposition to SEUs. 

However, in neither case we observed such a significant impact on HANGs rate 

produced by SEUs in registers. This result can be explained by the applications morphology 

and how the registers are allocated during execution. One of the major factors for HANGs 

appearance are the branch instruction, there are always conditional or compulsory jumps in 

the code. Loops in code generate these instructions, but they use few records to allocate its 

controlling while it is operating. As most benchmarks have shown few of these operations 

throughout the execution, it is plausible that HANG error rate is low. However, nested loops 

start loops inside another loop and take up more registers, making the control instructions 
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more susceptible to SEUs, as in matrixMult application. Another factor that causes an 

increase in the number HANGs is the code needed to access external memory, which 

increases the number of control instructions and thus HANGs susceptibility, as we noted in 

the case of the compress algorithm, which also showed a higher HANG rate.  

In Figure 5.8, it is noticed a considerable difference in SDCs detected in bare metal 

environment than in Linux. Note that the graph is in logarithmic scale; otherwise, it would be 

difficult to see the difference. The high rate of errors in the bare metal environment takes 

place due to WCET benchmark characteristics again, which in addition to limiting the 

algorithms to single path, they are data manipulation intensive, such as bit manipulation, 

matrixes and floating points. These characteristics causes that mostly instructions in the 

application manipulate data that will be part of the result. Of course, a large concentration of 

such instructions greatly increases the chances of SEUs, causing SDC failures.  

On the other hand, we can obtain a significant improvement on using Linux OS, since 

SDC rates are much lower, as noted in Figure 5.8. In the operating system case there is still a 

lot of data manipulation, therefore this is not the reason that explains the difference seen in 

the environments. In fact, two types of masking effects can be observed in presence of OS. 

One is the exchange of context by sharing hardware resources with application and Linux 

kernel, making the application less likely to be hit by a fault, since the total run time 

increases. The other is the increasing number of accesses to the external memory, which 

constantly moves data to and from the registers whenever a thread takes precedence, causing 

the data to resides less time inside the processor.  

 

5.2.1  Register Fault Susceptibility Analysis  

 

The Fault Injector module was improved to allow detailed reports on the error 

coverage by register. By doing this, it was possible to identify critical points in the 

applications and to determine how compiler allocates the register bank. The information can 

also be used for programmers to improve software reliability. 

The results presented in Table 5.1 are expressed in terms of failure percentages 

classified between HANGs and SDCs failures per register. Among the benchmark, a set of 4 

applications was subjected to this analysis. 
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Table 5.1 – Manifested Failures by Register 

 

compress fdct harm mxm 

pc  

SDC 
Bare metal  1.27% Bare metal  26.87% Bare metal  3.23% Bare metal  15.00% 

Linux 0.00% Linux 0.00% Linux 2.86% Linux 3.51% 

Hang 
Bare metal  68.35% Bare metal  67.16% Bare metal  79.03% Bare metal  73.33% 

Linux 80.00% Linux 83.87% Linux 82.86% Linux 80.70% 

sp  

SDC 
Bare metal  8.96% Bare metal  0.00% Bare metal  74.29% Bare metal  1.49% 

Linux 7.14% Linux 2.94% Linux 30.56% Linux 4.62% 

Hang 
Bare metal  2.99% Bare metal  4.05% Bare metal  11.43% Bare metal  1.49% 

Linux 3.57% Linux 9.32% Linux 50.00% Linux 1.54% 

r0 

SDC 
Bare metal  0.00% Bare metal  0.00% Bare metal  7.58% Bare metal  56.52% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 47.83% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  10.61% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 3.03% Linux 0.00% 

r1 

SDC 
Bare metal  1.54% Bare metal  12.79% Bare metal  0.00% Bare metal  60.32% 

Linux 0.00% Linux 2.94% Linux 0.00% Linux 33.33% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  1.59% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 33.33% 

r2 

SDC 
Bare metal  1.72% Bare metal  29.03% Bare metal  0.00% Bare metal  37.50% 

Linux 0.00% Linux 35.71% Linux 0.00% Linux 13.04% 

Hang 
Bare metal  1.72% Bare metal  1.61% Bare metal  1.19% Bare metal  0.00% 

Linux 0.00% Linux 10.71% Linux 5.41% Linux 27.54% 

r3 

SDC 
Bare metal  18.57% Bare metal  68.12% Bare metal  1.75% Bare metal  60.87% 

Linux 2.86% Linux 44.12% Linux 0.00% Linux 29.82% 

Hang 
Bare metal  1.43% Bare metal  2.90% Bare metal  3.51% Bare metal  0.00% 

Linux 34.29% Linux 38.24% Linux 7.41% Linux 29.82% 

r4 

SDC 
Bare metal  76.27% Bare metal  0.00% Bare metal  8.20% Bare metal  76.19% 

Linux 17.95% Linux 100.00% Linux 0.00% Linux 25.81% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  15.87% 

Linux 43.59% Linux 0.00% Linux 0.00% Linux 69.35% 

r5 

SDC 
Bare metal  2.99% Bare metal  100.00% Bare metal  100.00% Bare metal  93.75% 

Linux 0.00% Linux 100.00% Linux 0.00% Linux 30.00% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  6.25% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 68.57% 

r6 

SDC 
Bare metal  15.15% Bare metal  100.00% Bare metal  100.00% Bare metal  84.48% 

Linux 14.71% Linux 100.00% Linux 0.00% Linux 43.55% 

Hang 
Bare metal  63.64% Bare metal  0.00% Bare metal  0.00% Bare metal  10.34% 

Linux 64.71% Linux 0.00% Linux 0.00% Linux 51.61% 

r7 

SDC 
Bare metal  3.28% Bare metal  100.00% Bare metal  100.00% Bare metal  100.00% 

Linux 3.70% Linux 100.00% Linux 0.00% Linux 1.45% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00% 

r8 SDC Bare metal  2.74% Bare metal  100.00% Bare metal  100.00% Bare metal  100.00% 
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Linux 4.65% Linux 100.00% Linux 0.00% Linux 5.80% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00% 

r9 

SDC 
Bare metal  100.00% Bare metal  100.00% Bare metal  100.00% Bare metal  100.00% 

Linux 0.00% Linux 100.00% Linux 0.00% Linux 4.17% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00% 

r10 

SDC 
Bare metal  1.49% Bare metal  100.00% Bare metal  100.00% Bare metal  100.00% 

Linux 3.57% Linux 100.00% Linux 0.00% Linux 2.94% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00% 

r11 

SDC 
Bare metal  6.06% Bare metal  0.00% Bare metal  4.41% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 1.37% 

Hang 
Bare metal  93.94% Bare metal  100.00% Bare metal  92.65% Bare metal  100.00% 

Linux 96.88% Linux 100.00% Linux 95.35% Linux 98.63% 

r12 

SDC 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  34.29% 

Linux 0.00% Linux 100.00% Linux 0.00% Linux 25.40% 

Hang 
Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% Bare metal  0.00% 

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00% 

Source: Author 

 

As expected, the registers program counter, stack pointer and r11 (frame pointer) have 

the highest rate of hangs. The first occurs because it keeps the sequence of instructions and 

code jumps and tends to an error rate close to 100%. The second and third pointers are the 

callback functions that compute the locations in memory for both arguments as well as local 

variables, which also tend to have a high error rate. A noticeable amount of SDC failures can 

be seen in these registers, which means that these registers are used to compute data offsets 

that result in result miscalculation. 

It is clearly shown that starting from r0 to r10 and r12, the HANG are near to 0 % in 

all applications. It happens as this registers are almost used exclusively for data storing, which 

result in SDC failures, as depicted in Table 5.1 . The exceptions for this are applications that 

require a more complex code flow, like compress and matrix multiplication, that uses external 

memory accesses and nested loops, respectively. This code behavior causes the compiler to 

allocate more registers, in this case r0 to r6, for control, provoking HANGs. The same 

registers, specially r5 to r10 have a high SDC rate (around 100 %) in both bare metal and 

Linux code, meaning that they are preferable by the compiler to store temporary and result 

data. This finding can drive developers to distribute registers better along the code or 

optimizes code, in order to reduce the vulnerability of this registers. 
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It is also noticeable that Linux has a better performance over bare metal for SDCs 

failures, but in contrast it has a worst HANG error rate in same registers. It is expected that 

Linux change software context from kernel to the application, leading to a higher data 

masking, since it is moved to and from external memory. However, doing this the kernel code 

is also exposed, and since it has high vulnerability for being the operating system core, it 

consequently causes the software to crash. 

From a broader perspective, it is possible to say that in addition to the characteristics 

of Cortex-A9 processor and the system in which it is enclosed, the reliability of an embedded 

processor depends strongly on the application running on it. Otherwise, it would be possible 

to observe regularity in the amount of failures for all applications, which is not true, as they 

tend to vary in a coherent manner to the behavior described in Section 4.2. As already shown 

by [65], it´s perceived that the architecture vulnerability factor (AVF) estimates only the 

processor reliability, but for a system perspective the program vulnerability factors (PVF) is 

equally important, since soft-error susceptibility can be aggravated by this aspect. This 

perspective will be discussed later in this chapter. 

This dependence is expected and has been observed previously in [64], in which a 

uniform set of faults were used, i.e., only Single Event Upset faults were injected into each of 

the studied processor registers in the same quantity, showing that despite the regularity of 

architecture and standard injections, the behavior of the system varies dramatically. Assuming 

this behavior, it is also expected different results being observed in the same application when 

it runs on bare metal or on an operating system. Although the algorithm is the same, the 

compiler is not, since Linux is cross-compiled for the ARM architecture, but the application 

that runs it uses the default parameters of the GCC compiler. In fact, and due to this, the 

instructions running in both environments are not completely identical, allied to this, 

resources sharing that exists in the operating system adds a level of complexity and a degree 

of fault masking. 

5.3 Silent Data Corruption Classification 

 

Silent Data Corruption is a critical failure type that can lead to disastrous events in an 

embedded system. SDC refers to operations returning a wrong result without any indication 

(for all intents and purposes the result is valid, yet is actually not correct).  SDC is especially 

difficult to mitigate in a safety critical system, as to do so requires that every result be 

checked by both repeating the operation and checking that the result matches, or by including 
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some kind of algorithmic check analysis comparing the final memory, separating the effects 

of latent errors from the ones that generates wrong results. This Section proposes to 

implement this separation, identifying the relationship between total number of failures and 

latent errors. 

As mentioned, the OVPSim Fault Injector Module detects SDC failures by comparing 

application final memory with a reference model from an execution without faults. The 

process compares the entire memory that includes instructions (that are not affected by faults 

in this work), software data, temporary data and the result. By doing this, it is not possible to 

identify in which location the SDC happen. In the real world, it means that an error in the 

results will return a wrong data to the system in the current execution, but an error in another 

part of the memory, called latent error, can manifest a failure in a future code execution, 

continuing propagating its error every time the algorithm is executed. However, a latent error 

can be easily mitigated by reloading application content to the main memory, for example 

from a flash device. 

The OVPSim-FIM was modified to identify the memory region where the result was 

placed after execution, being possible to identify the discussed types of SDC failures. 

Figure 5.9 and Figure 5.10 depicts comparison graphics between total number of SDC 

and in results for bare metal and Linux environments, respectively.  

 

Figure 5.9 – Bare Metal Total SDC vs SDC Only in Results 

 
Source: Author 
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Figure 5.10 – Linux Total SDC vs. SDC Only in Results 

 
Source: Author 

 

Only four applications were chosen in this analysis, since each fault injection 

campaign takes about 12 hours in Linux setup. For both environments and all applications, it 

was possible to identify that the number of SDCs present only in results is much smaller than 

total number, meaning that the differences in the final memory are likely to happen outside 

the result region. This phenomenon is a probabilistic matter, since during application 

execution a large number of data is moved in and out the external memory and not necessarily 

is part of results. Another reason is fault injection timing, as during algorithm execution 

information that was already used by the application can still in the register until it is needed 

again, thus a fault that happens in this moment will not lead to a failure, but if the value is 

written back to the memory, the SDC failure will be noticed. 

5.4 Linux OS and Error Mitigation 

 

Error reports triggered by Linux kernel signals comprise a specific set. As detected 

and reported by the operating system they can be handled by functions added in the 

application code, allowing correction, discarding of unreliable results or even restart of the 

application. As mentioned in Section 4.2, each application was modified by including signal 

handling functions with no corrective action, but with communication with the OVPSim-FIM 

to provide feedback from the inside the application, feature that is not supported by the 

simulator itself. 
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The fault injection campaigns have shown that between operating system available 

signals, Linux was able to detect only segmentation fault, illegal access and floating point 

exception violations. 

Exceptions detected by Linux can be considered either HANGs or SDCs. It is a SDC 

because the Operation System does not stop working as it can recover for these occurrences, 

but the application result is wrong or even does not exists in memory. It is also a HANG 

because the application that is running under Linux crashed. This reason justifies the need for 

identifying OS exceptions between results presented.  

The Linux signals was treated as HANGs before, since strictly they are from the 

application perspective. However, the OS provide the ability to treat them by the application, 

even if it is not being done here, and therefore should be counted apart.  

Figure 5.11 depicts Linux Hang detection rate. 

 

Figure 5.11 – Linux Exception Signal Rate Over Total Detected HANGs 

 

Source: Author 

 

Figure 5.11 correlate the rate of identified soft errors by the operating system among 

total number of manifested HANG errors. Surprisingly, Linux shows to have a high rate of 

HANG perception, reaching 100% of detection in the case of the fdct application. As 
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expected, analyzing the reports in details we found that around 90% of detected failures are 

Segmentation Faults, when the application tries to address a non-allocated memory area, 

making this more perceptive in applications that recursively access external data, like bit 

manipulation and matrix multiplication. In a regular distribution between applications, Illegal 

Access signal happened when the processor attempts to execute an illegal, malformed, 

unknown or privileged instruction, what’s is an unsurprising behavior since we are modifying 

randomly internal registers values. Harm, fdct and mdc are the only applications with floating 

point operations in the benchmark, and so Linux triggered Floating Point Exception signal. 

 

5.5 Overall Error Rate 

 

Finally, considering the results presented, it is possible to determine the overall error 

rate comparison between bare metal and Linux applications, which is the sum of SDC and 

HANGs.  

Figure 5.12 depicts the results. 

 

Figure 5.12 – Linux Exception Signal Rate Over Total Detected HANGs 

 

Source: Author 

Results show clearly that all applications running in bare metal environment are more 

prone to failures in general than under Linux OS when faults are injected in the register file. It 
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is known that ARM Cortex-A9 is a complex out-of-order architecture with many more 

internal registers. For a complete evaluation, these registers must be taken into account during 

fault injection, which unfortunately is not supported by the used simulator. However, the 

processor observability allows the architectural vulnerability factor analysis, which makes this 

evaluation meaningful considering the ability to examine in an isolated manner the register 

file of a large-scale commercial processor. 

Taken the bare metal environment result in Figure 5.13 as an example, we can say that 

architectural vulnerability factor ranges from 32% to 74 %. This results show that each tested 

register, individually, should be taken into account to determine AVF, and what is seen is the 

average result. Yet, not only the register itself, but to generate a failure, the register content 

must be relevant in the moment of the fault. This means that depending on the register 

allocation, the error rate can vary and, consequently, architectural vulnerability factor varies 

according to the application. 

This statement articulates the error rate result in a more complex perspective, since it 

is not only the hardware architecture the single factor taking into account, but also software 

architecture. As the software has its own structure and workflow, it is reasonable to talk in 

terms of application vulnerability factor. In fact, the presented error rates are a function of 

both factors, showing that a program has an inherent fault masking. 

As a case study, a simple experiment is conduced to enforce this analysis, as depicted 

in Figure 5.13. 

Figure 5.13 – Error Rate of Three Applications Running on ARM Cortex-A9 and Cortex-M4 

 

Source: Author 
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Figure 5.13 shows that architectural/application vulnerability factor of a register file 

when running three different applications on two processors, the ARM Cortex-A9 and ARM 

Cortex-M4, both available for Imperas simulator and with identical register file structure, but 

different overall architecture. To sustain what was said, Figure 5.13 reveal that the 

vulnerability factor depends on both workload and hardware configuration, since results for 

the same application are different between processors, but also results for the same processor 

are different between applications. 

Figure 5.13 shows clearly that applications running in bare metal environment are 

more prone to failures in general than when running in Linux OS version when faults are 

injected in the register file. Additionally, it depicts the total Linux environment error rate and 

the error rate excluding exceptions detected by the kernel, in black and blue respectively. 

Therefore, according to what was discussed in Section 5.4, in case of the Operating System, 

exceptions are handled, and they not produce HANGs or SDCs, the error rate of a Linux 

environment can be even better. 
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6 CONCLUSIONS 

 

The work analyzed in a comparative approach the susceptibility of several applications 

under SEUs in two environments: bare metal and on the top of the Linux operating system. It 

demonstrates the use of an embedded system simulation platform that uses microprocessors 

models with architectural elements and functionality equivalent to the physical device, the 

OVPSim platform, in order to perform the sensitivity analysis. Starting from the feasibility 

study of the simulated environment, target architecture choice and fault model, the OVPSim-

FIM fault injector was used and adapted to comply with the observability needs in this study. 

The fault injector was able to inject bit-flips in the register file of the ARM Cortex-A9 

processor followed by the failure classification collected by the platform with report features 

that includes Linux exception signals. The methodology promotes statistical results separating 

the main groups of failures between control flow (HANGs), silent data corruption and Linux 

captured errors. 

The studied OVP platform has shown great versatility for creation and system 

integration as it provides numerous validated processors models supported by the 

manufacturers. The main factor that led to the choice of this platform was the availability of 

an API for control of the entire architecture, allowing the fault injector strategy. The 

microprocessor ARM Cortex-A9 was chosen because of its degree of fidelity to the original 

architecture, including specific functions of the physical architecture and access to all the 

registers visible by the application. Furthermore, since it is a large-scale industrial and 

commercial application processor, the same test can be replicated in the FPGA embedded 

version from Altera and Xilinx manufacturers in order to establish a correlation between 

simulated tests and practice. 

The goal was achieved by performing an analysis in terms of failure and not fault 

domain, since location is not the focus, but the variety of failures that can arise in similar 

faults. By doing this, we have shown that application running bare metal increase 

significantly the overall error rate for all 11 benchmarks that comprises a diverse scenario of 

data utilization. Despite this, considering different groups of failures, we found that the 

operating system has considerably less silent data corruption than bare metal environment, 

having the majority of failures located in HANG failure group. By saying this, it is possible 

to conclude that in our experiment the Linux OS environment tend to mask more frequently 

soft errors, while bare metal is more prone to corrupt the data of the application. 
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Additionally, the fault injector was modified in order to separate SDC failures in the results 

from the ones in other regions of the external memory. We observed that mostly of these 

errors are outside the results in both Linux and bare metal environments, which shows an 

opportunity to diminish these errors by restarting the application at each run.  

The comparison with an interrupt-based environment developed by Lins [68], was an 

attempt to correlate the processor model with the real architecture in a fault injection method 

equivalent to the one used with OVP. Unfortunately, we were able to give credit to the results 

in the way they the tests were performed, showing us an important perspective of this work, 

that is the dependency on the compiler. The strategy developed in this work that is also 

presented in [70], was compared with the results in [32], where a correlation with an 

environment under radiation was analyzed. A different behavior was observed, since in [32] 

SDC failures in Linux was almost the same as in bare metal. What happens, and the paper 

itself points out, is that it happens mainly because the neutron flux also injected faults in the 

cache, where the application data is always exposed, leading in data corruption even before 

the content reaches the register file. Another reason is that in [32] the application is restarted 

continuously without restarting the operating system, a process where bit-flips that are not 

expressed in a particular execution may be manifested in the future. 

Given the availability of the processor model, the only conclusion from the 

architectural perspective was the Architectural Vulnerability Factor of the register file. From 

the results, it is possible to identify that the AVF varies by register and not with the register 

file as a single entity. However, tests showed a variability in the AVF for each used 

benchmark, showing that the more correct is to determine the factor taking into consideration 

the application, establishing an Application Vulnerability Factor. Both measures provide a 

better understanding of the soft errors effects in embedded systems, especially a better 

observability of the application behavior, revealing their critical points and giving room for 

improvement. 

An additional category of failure was analyzed by separating signals triggered by 

Linux kernel, and this approach found that the contribution of this group could be up to 100% 

of the total number of HANGs. Since the kernel reports to the application the signal, it is 

possible to implement signals handlers in the code in order to deal with the exception. The 

main contribution of this analysis is that, besides the natural SDC hardening that the 

Operation System promotes by sharing hardware resources with the application, this work 

shows that mitigation of soft error effects can be even better if corrective actions are adopted. 
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As a future work, some analysis limitations can be overcome, such as the impact on 

the results of using different compilers between environments and the running time factor that 

also influence the comparative results. A deeper analysis on the Linux architecture can also 

contribute with a better interpretation of the results concerning OS resource sharing 

mechanisms along with the investigation of the failure classification considering multiple 

applications running together. The failure distribution analysis will then help the elaboration 

of tolerant techniques focused on these aspects. This approach can be greatly supported by the 

failures classified by register, which allows depth analysis on how the application and 

compiler uses the register file, providing means to develop dedicated fault tolerance systems, 

according to each application’s necessities and sensitivity to faults. Another proposal includes 

sharing processor and operating system resources by running multiple applications at the 

same time and evaluating soft errors masking effects with and without multicore platforms. 

Finally, the modeled embedded system can be better detailed to provide more fidelity 

compared with other discussed studies, which also uses the Xilinx Zynq SoC FPGAS, but also 

includes external and cache memories. 
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APPENDIX A – COMPLETE BENCHMARK RESULTS 

 

As the benchmark results are extensive, it was decided to include them in this 

appendix. The results are presented with the error rates in both environments, considering the 

detailed classification presented in Section 3.4.3. 
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Table Appendix A.1 – Bare Metal Benchmark Results with Full Classification (a) 

 

 

  
BARE METAL 

       

 

UNACE 

 

SDC 

APLICATIONS 
MASKED 

FAULT 

Control Flow 

Data OK 

REG 

STATE Data 

OK 

Total Number 

of faults 

Control Flow 

Data ERROR 

REG STATE 

Data ERROR 
SDC 

binary_search 46161 3514 0 50325 212 39215 324 

bitManipulation 39965 4412 0 55623 2345 38141 1472 

bubble 42138 504 0 57358 5614 39001 906 

compress 66096 1908 0 31996 1702 7741 7144 

crc 45573 1932 0 52495 401 37819 255 

factorial 39693 1574 0 58733 1562 40818 3041 

fdct 40706 502 0 58792 1547 45261 608 

fibonacci 43980 2614 0 53406 1206 40172 0 

harm 36648 3116 0 60236 523 41232 5602 

matrixMult 25600 607 0 73793 16020 27314 15472 

mdc 32359 9042 0 58599 2184 40321 1616 

peakSpeed 43118 320 0 56562 2499 42819 310 
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Table Appendix A.2 – Bare Metal Benchmark Results with Full Classification (b) 

 

 

  

BAREMETAL 

          

 

HANG 

APLICATIONS Hang RD PRIV WR PRIV 
RD 

ALIGN 

WR 

ALIGN 
FE PRIV FE ABORT ARITH 

Hard 

Fault 
Lockup 

binary_search 1065 4521 0 421 98 4145 324 0 0 0 

bitManipulation 1421 5547 699 211 108 5214 465 0 0 0 

bubble 925 5468 255 266 0 4625 298 0 0 0 

compress 4820 4214 632 913 107 4617 106 0 0 0 

crc 1431 5934 625 741 112 4923 254 0 0 0 

factorial 8128 241 164 108 119 4416 136 0 0 0 

fdct 204 5237 714 0 142 4238 841 0 0 0 

fibonacci 6621 261 0 312 0 4625 209 0 0 0 

harm 7332 104 116 416 329 4202 380 0 0 0 

matrixMult 3002 4621 1153 564 0 4412 1235 0 0 0 

mdc 7116 915 261 627 206 4139 1214 0 0 0 

peakSpeed 5821 107 104 649 0 3952 301 0 0 0 
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Table Appendix A.3 – Linux OS Benchmark Results with Full Classification (a) 

 

 

  

LINUX 

       

 

UNACE 

 

SDC 

APLICATIONS 
MASKED 

FAULT 

Control Flow 

Data OK 

REG 

STATE Data 

OK 

Total Number 

of faults 

Control Flow 

Data ERROR 

REG STATE 

Data ERROR 
SDC 

binary_search 30479 2205 53796 13520 408 213 0 

bitManipulation 38701 2820 40102 18377 1236 99 515 

bubble 20928 384 59101 19587 2743 114 408 

compress 26063 1617 47255 25065 1723 1516 492 

crc 33863 2056 51648 12433 417 0 219 

factorial 16691 1930 64622 16757 2314 205 197 

fdct 27343 102 51026 21529 1117 5612 109 

fibonacci 20612 0 15421 63967 4837 38920 1913 

harm 22313 3142 54916 19629 2014 399 920 

matrixMult 22339 108 28028 49525 6913 2859 7827 

mdc 20458 8826 51482 19234 2039 537 129 

peakSpeed 9872 325 74907 14896 1321 2154 0 
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Table Appendix A.4 – Linux OS Benchmark Results with Full Classification (b)

LINUX 

             

 

HANG Hang Detected by Linux 

APLICATIONS Hang 
RD 

PRIV 

WR 

PRIV 

RD 

ALIGN 

WR 

ALIGN 

FE 

PRIV 

FE 

ABORT 
ARITH 

Hard 

Fault 
Lockup 

 SEG 

FAULT 

ILLEGAL 

INST 

FLTPNT 

EXC 

binary_search 286 0 0 0 0 0 0 0 0 0 12507 106 0 

bitManipulation 309 0 0 0 0 0 0 0 0 0 15714 504 0 

bubble 98 0 0 0 0 0 0 0 0 0 15623 601 0 

compress 10324 0 0 0 0 0 0 0 0 0 10923 87 0 

crc 0 0 0 0 0 0 0 0 0 0 11768 29 0 

factorial 4008 0 0 0 0 0 0 0 0 0 9327 706 0 

fdct 0 0 0 0 0 0 0 0 0 0 14478 0 213 

fibonacci 6435 0 0 0 0 0 0 0 0 0 11756 106 0 

harm 5431 0 0 0 0 0 0 0 0 0 9111 645 1109 

matrixMult 502 0 0 0 0 0 0 0 0 0 30916 508 0 

mdc 2768 0 0 0 0 0 0 0 0 0 11615 412 1734 

peakSpeed 387 0 0 0 0 0 0 0 0 0 10826 208 0 
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APPENDIX B – LATS 2016 PAPER 

 

A paper related to the topic of this thesis is presented in this appendix. The paper also 

called “Soft Error Analysis in Embedded Software Developed with & without Operating 

System” has been accepted for publication in Latin American Test Symposium (LATS) in 

2016 for oral presentation. 
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Abstract— This work presents a comparative analysis of soft 
error susceptibility in a well-known embedded microprocessor 
ARM Cortex-A9 single core, widely used along with safety critical 
applications, running embedded software developed for a bare 
metal environment and with operating system. The soft error 
analysis is performed by fault injection on OVPSim-FIM 
simulator platform. The faults injection campaign injects 
thousands of bit-flips in the microprocessor register file while 
executing a set of benchmarks with a diverse code behavior from 
control flow dependence to data intensive. Results present the 
percentage of masking faults, the classification of the errors and 
the number of exceptions detected by the operating system. The 
proposed method and the obtained results can help guiding 
software developers in choosing different architectures of the code 
in order to improve fault masking.  

Keywords—bare metal; operating system; Linux; soft errors; 
comparison; ARM Cortex-A9; embedded processor 

I.  INTRODUCTION 

Soft errors are transient faults that are mainly observed as 
bit-flips in memory elements operating under radiation 
environment [1]. The radiation environment can be space or on 
Earth, where neutrons interact with the material provoking 
secondary particles such as alpha that can provoke transient 
faults [2].  Soft errors have emerged as a key challenge in 
microprocessor design. In microprocessors, the effect of Single 
Event Upsets (SEU) can be noticed by errors in the data or errors 
that change the application flow. The architecture of the program 
code is one of the most important and critical parameter in the 
embedded processor and it plays a major role to develop highly 
efficient and robust embedded systems. 

Safe-critical applications seek high reliability. They are 
usually composed of single or multi-core processors that may 
run embedded software developed with or without operating 
systems. Bare metal software is a term used in embedded 
systems when the program code is directly hosted on the target 
microprocessor and is self-managed. It is known to be reliable, 
allowing high controllability of hardware and software flow. 
Additionally, maintenance, debugging and troubleshooting of 
code is easier and less time consuming.  

Operating systems can provide the availability of hardware 
resources for applications with a high level of complexity. The 
increasing need of this complex operations and resource sharing 

demands better using of the available capabilities as well as 
better programmability. In addition, under soft errors bare metal 
software is not necessarily more robust than operating systems. 
For the best of our knowledge there are not many works in the 
literature that compare bare metal and operating systems in 
modern processor under soft errors.  

Consequently, in order to understand the behavior of a 
microprocessor under soft errors, the use of fault injection 
mechanism is needed to emulate soft errors for different 
applications running in the microprocessor without and with 
operating system.  Between the many different ways to inject 
faults, soft errors can be injected by using radiation accelerators, 
where the embedded system is exposed to the beam under a 
certain ion flux for a period of time. Another fault injection 
mechanism is by emulating soft errors by simulation, which was 
the choice of this paper. The embedded system is modeled in C 
language and faults are injected during the simulation by using 
the Imperas OVPSim simulator. 

This paper aims to compare soft error susceptibility in 
embedded software that was developed for a bare metal 
environment and under an operating system. It also analyses the 
architectural vulnerability factor (AVP) of the register file in the 
well-known embedded microprocessor ARM Cortex-A9, 
widely used commercially in low-power or thermally 
constrained applications. The soft error analysis is performed by 
fault injection on OVPSim-FIM simulator, capable of 
simulating failures induced by cosmic particles on the processor 
registers bank, producing bit-flips with controlled locality and 
temporality, allowing a survey of errors detected and treated by 
both the platforms. The OVPSim fault injection environment 
was proposed by [3].  

A set of 11 applications was used as benchmarks that 
diversify control and data flow behavior. Those applications 
were compiled for the target architecture and run directly on the 
processor for the bare metal tests. The chosen operating system 
for the comparative tests was Linux, mainly because it has open 
code, which significantly facilitates the controllability and 
observability required by the internal experiments. Beyond that, 
it is worth mentioning that Linux is already considered as an 
option of a commercial purpose operating system, which is 
being included in a wide range of applications, including those 
with reliability requirements [4]. 



During the fault injection campaign, it was injected 100,000 
faults in the register file to evaluate the benchmark. Results were 
classified into unace or masked faults, silent data corruption 
(SDC) and hang. Results show that applications running in 
Linux environment are less prone to errors due to bit-flips in the 
register file, while bare metal applications have shown more 
susceptible to silent data corruption (SDC) errors. 

The rest of the paper is organized as follows. Section 2 
reports background information about error analysis in bare 
metal approaches and with the presence of an operating system. 
Section 3 describes processor architecture setup, outlining ARM 
Cortex-A9 relevant features and simulation model, as well as the 
Linux environment. In the section 4, the fault injection platform 
is presented, including the error model overview. Experimental 
campaign results and discussion including used benchmark is 
presented along with the error classification in the section 5. 
Finally, section 6 reports some conclusions. 

II. RELATED WORK 

Many studies on error analysis were performed targeting 
embedded systems under soft error injection and most of them 
agree on using bit flip strategy as a representative error model of 
physical faults [5]. However, these studies focus on a single 
perspective and don't explore the system dependence in terms of 
software implementation on a comparative approach. 

The bare metal software implementation in embedded 
processors has been largely investigated under soft. Works from 
Rebaudengo [6] show significantly susceptibility of the register 
file in the SPARC v8 architecture. Results from this work show 
that upsets in register file can provoke errors in the application 
generating up to 7 % of total SDC and hangs errors. The work 
from Reorda [7] also classify the soft errors effect in silent, 
failure and time out categories for a PowerPC 405 processor by 
injecting faults in any available bit of the general and special 
registers, reaching up to 16 % of error detection. 

Some works have investigated embedded processors running 
operational systems. Sterpone et al. [8] evaluate dependability 
of real time applications under OS environment and define an 
error classification of arising faults. They use the microkernel 
scheduler of the µC-Linux in the Xilinx Microblaze® processor, 
injecting faults in the registers values in the configuration 
memory and they classify the results between stall, crash, latent 
and silent errors. In this work, they show more than 35 % of 
injected faults that can be detected by OS exception. Some 
works also investigate Linux operating systems under soft 
errors, like Fabre [9] and [10] which evaluate the Chorus 
ClassiX r3 microkernel reliability under different types of 
failure, including bit-flips, resulting in up to 70 % of error rate 
and a total of 38 % to 56 % of detected exception errors 
depending on the kernel fault location.  

For a direct comparison between bare metal and operating 
systems, we found the recent work from Rech et al [11] that 
investigates the cache conflict effect in ARM-A9 to tolerate 
some soft errors. A set of applications running Linux kernel and 
with bare metal were tested under radiation. Results in terms of 
number of observed errors classified as SDC and hang are 
shown. However, because the experiment is under radiation, it 
is not possible to have a large observability of the errors and a 

more detailed classification as it can be done in a simulation 
environment as shown in this paper.  

III. SOFT ERROR ANALYSIS METHODOLOGY AND 

SETUP 

The proposed methodology includes a simulation platform, 
a microprocessor model, a set of meaningful benchmarks to 
simulate under faults and a dedicated module that allows the 
injection of faults and the collection of the results. 

A. Microprocessor Model 
We choose ARM Cortex-A9 processor in this study mainly 

because it represents an architecture widely used in industry 
primarily combined with operating systems. It is a single core 
processor modeled by ARM Ltd to be used along with OVP 
simulator, called “Cortex-A9MPx1”. Based on the ARMv7-A 
architecture, it supports the 32-bit ARM instruction set with a 
multi issued architecture, dividing its operations into primary 
and secondary data processing, load and store functions and 
floating point operations. Among others, allows registers virtual 
renaming for better resource sharing. 

The ARM Cortex-A9 processor model implemented in 
OVPSim platform is functionally equivalent to the real 
processor, but since its execution is accurate in an instruction 
level, structural characteristics are not modeled in the same way 
as the actual architecture [14]. The ARM A9 model uses an API 
to convert the target processor code into native code: it builds an 
instruction decoder for the target processor instruction set, 
provides the disassembly output and generates native code for 
the simulation without explicit reference to native instruction 
set. The platform strategy is code translation, and is 
responsibility of the simulator to implements the just-in-time 
translation algorithm, memory allocation, back translation of 
modified code and further resources necessary for the 
simulation. In this manner, the main structural element of the 
Cortex-A9 processor architecture modeled accurately is the 
register file, including 12 general purpose registers, plus stack 
and frame pointer. 

Therefore, fault injection campaigns are limited only to the 
register file, which is a small portion of the complexity 
embedded in the A9 processor. However, is highly valuable the 
ability to analyze in an isolated manner the architectural 
vulnerability factor of the register file of a large-scale 
commercial processor. 

B. Linux Operating System 
The Operating systems is a reduced Linux v2.6 kernel. The 

codes are compiled using the standard g++ Gnu Compiler 
Collection and automatically run from the file system directory 
by a script. It is also possible to set application priority in the 
script, allowing behavior analysis under different OS scenarios. 

One of the advantages of the Linux is the ability to natively 
detect exceptions by implementing dedicated kernel functions 
that monitors each application operation before execution. 
Kernel calls functions are generated via interrupts and manifest 
themselves in 4 ways: (1) an interruption issued to the processor 
by a hardware device indicating that it requires attention, (2) an 
exception indicated by the processor because of an error, (3) a 



kernel call or system call issued by an application, or (4) a kernel 
thread [12]. The activation of internal kernel functions is not 
defined only by the mentioned events, but also the current kernel 
state. In this work, we focus on the second and third items 
(kernel calls issued by an error in the processor or by an 
application), since the injected faults can result in both behaviors 
and are reflected similarly in the operating system mechanisms. 

In this scope, a process may result in a hardware exception 
generation when, for example, it attempts to divide by zero or 
fails translating a virtual address. In a UNIX based operating 
system, this event automatically changes the processor context 
to start the execution of an exception handler in the kernel. In 
this cases kernel are able to manage the exception, like in a 'page 
fault' that happens when there is a mapped address page which 
is not loaded in fact, but the kernel can pre-identify the problem 
before an illegal access actually occur. As a result, the 
application exits, but if possible the page will be allocated, 
remapped and the application flow can follows. 

When an exception is detected and cannot be handled by the 
kernel's internal mechanisms, them it is identified and a default 
trigger mechanism is called in order to handle these exceptions. 
This mechanism is called signals, where the system sends a 
notification to the application with the type of exception that 
occurred [13]. Examples of such exceptions that triggers default 
signals are: 

 Division by zero: a division by zero error exception 
(SIGFPE) is generated by making the kernel sending this 
signal to the application. 

 Segmentation Fault: access to a memory address out of 
virtual address space, making the kernel notify the 
application through a SIGSEGV signal, since he cannot 
know the right address. 

By sending a signal back to the application indicating the 
exception, it may contain a handler to treat it. The existence of 
these handlers depends on the software developer, and if it does 
not exist, the operating system can terminate the application. In 
this work all benchmarks was edited by including a default 
signal handler able to capture any signal propagated by the 
Linux kernel with no corrective action, but only generating an 
external message to the OVPSim platform in order to provide 
error classification for further result gathering. 

C. Benchmark Applications 
The chosen applications are binary_search, bitManipulation, 

bubble, compress, crc, factorial, fdct, harm, matrixMult, mdc, 
peakSpeed. These applications comprises diverse data behavior, 
from a highly flow dependence, like crc algorithm, to data 
intensive, like matrixMult and bitManiulation. The applications 
choice was intentional in order to exploit the diversity of 
behavior and attempt to reach error detection classification 
variety. 

Table I shows the number of instructions executed in bare 
metal and in Linux for the set of applications. The Linux boot 
executes 1176574110 instructions. Each application has a Linux 
boot before it starts. And at this time it is not used to inject faults. 
Note that the number of instructions of the application executed 
in bare metal and in Linux is very similar. The difference comes 

from the fact that for bare metal we use a compiler for the ARM 
Cortex-A9 architecture, while for Linux we use the default 
compiler, since the application is on top of the OS. 

D. Fault Injection Platform 
The ARM Cortex-A9 processor model implemented in 

OVPSim platform is functionally equivalent to the real 
processor, but since its execution is accurate in an instruction 
level, structural characteristics are not modeled in the same way 
as the actual architecture [14]. The only structural element of the 
Cortex-A9 processor architecture that is modeled accurately as 
the real architecture is the register file, which includes 12 
general-purpose registers, stack and frame pointer registers.  

 

The OVPSim platform is code translation, and the simulator 
is responsible to implement the just-in-time translation 
algorithm, memory allocation, back translation of modified code 
and further resources needed for the simulation. The ARM A9 
model uses an API to convert the target processor code into 
native code. It builds an instruction decoder for the target 
processor instruction set providing the disassembly output and 
generating native code for the simulation without explicit 
reference to native instruction set. 

The OVPSim platform setup consists of a single core ARM-
cortexA9 processor connected by a bus to a memory model, both 
natives of OVPSim platform. OVPSim-FIM [1] is a module 
based on OVPSim technology to inject faults during the 
simulation in the process model register file. So in the case of 
the ARM-CortexA9, the 12 general-purpose registers, stack and 
frame pointer registers received random bit-flips during the fault 
injection campaign. OVPSim-FIM allows read and write access 
to all environment variables at any time during the simulation. 

The fault injection flow is divided into 5 stages: 

1) Gold execution: each application is executed with no 
fault injection intervention for reference parameters collecting, 
like instruction count and memory map results. 

TABLE  I. NUMBER OF INSTRUCTIONS EXECUTED IN BARE METAL AND 

IN LINUX FOR THE SET OF APPLICATIONS  

Applications 
Bare Metal 

# of 
Instructions 

Linux  
# of 

Instructions 

binary_search 138,293 130,010 

bitManipulation 305,211 293,520 

bubble 236,548 236,164 

compress 196,736 189,141 

crc 201,812 223,448 

factorial 310,343 310,061 

fdct 507,696 537,709 

harm 449,123 448,839 

matrixMult 343,373 343,172 

mdc 658,172 510,295 

peakSpeed 19,859 19,574 

 



2) Fault creation: it randomly chooses a register and one 
of its 32-bit of that target register to flip. Also it determines the 
moment when this fault will be injected. The accuracy of time 
is at instruction level.  

3) Fault injection: The following application executions 
are interrupted by the platform and the raffled bit-flip is applied.  

4) Results collection: Each application under fault is 
compared with the golden run. If the normal control flow 
behavior or final data changes, it is considered an error. 

5) Report creation: The platform collects the status of 
each run and classifies the errors accordingly to its effect. A 
final report is generated summarizing the campaign.  

Due to Linux ability to handle errors, OVPSim-FIM 
classification is extended to include signals triggered by kernel 
categories. The signal handler added to each application code 
has the ability to write and classify in a reserved memory area 
with no code or application data each signal. During results 
collection phase, the fault injector can access this memory and 
classify the items together with default platform reports. The 
fault injection campaigns have shown that between operating 
system available signals, Linux was able to detect only 
segmentation fault, illegal access and floating point exception 
violations, and so, only this signals was included in results. 

When executing an application in bare metal mode, all 
instructions in memory belong to the application and it is 
compiled directly for the architecture. Applications that run in 
Linux shall be compiled for the specific operating system and 
the resulting memory occupation may vary.  

Additionally, in order to run the benchmark, the Linux shall 
be booted first, resulting in a much higher number of instructions 
than in bare metal version. This behavior generates an unfair 
comparison between platforms, since random fault injections are 
most likely to happen during Linux boot than in the application 
itself. Safe critical applications that use operating systems are 
commonly initialized before being exposed to the susceptible 
environment, thus booting should not be taken into account. 
Also, when performing the OS boot, all the latent errors are 
cleaned.  

OVPSim-FIM was modified to identify application 
beginning and guaranty that fault injection happens only after 
application starts, but after that, Linux kernel is also exposed to 
faults, since it shares the processor resources. Fig. 1 presents the 
environment fault injection approach. 

 

IV. EXPERIMENTAL RESULTS 

Each campaign consists on running each benchmark 
application 100,000 times for each software code case, i.e., bare 
metal and Linux OS, injecting one fault per run in a randomly 
sorted register of the register file. 

A. Fault Classification 

As mentioned, the error analysis compares each application 
running under fault injection with a gold reference to detect 
errors. An error would be reported when a mismatch is found in 
the application control flow execution or data results. The 
platform OVPSim along with the fault injector is able to report 
and classify errors, such as: 

1) Unace: No error detected and the result memory is 
identical to golden execution; 

2) Hang: The application or system hanged or crashed; 

3) SDC: Means that application has finished but the data 
memory mismatch with the golden memory. Note that not only 
the application results stored in memory are compared but the 
entire memory space. This is important to analyze any latent 
error in the memory that may occur. 

Fig. 2 shows the number of unace, hang errors and SDC 
errors for each bare metal application. Note that in general the 
error rate is slightly above 50 % of the total number of injected 
faults. The number of hangs ranges from 10% to 15%, showing 
that regardless of the application behavior, it tends to crash at a 
constant rate. This can be explained by the fact that this type of 
error is manifested due to a violation of the execution flow that 
causes an invalid state of the processor, not depending on the 
characteristics of the application itself. Also, the fact that ARM 
Cortex-A9 has a build in register renaming mechanism makes 
control variables to be equally distribute between registers, 
causing control variables stored in registers to be spread and 
consequently equally prone to errors. SDC errors in most 
benchmark cases range from 40 % to 47 % of total injected 
faults. But it is important to remark that the compress application 
shows to be less susceptible to SDC errors with 16.6 %. This 
may be due to the extensively use of external memory. The 
matrixMult shows a SDC error rate of 58.8 % because it abuses 
of ‘for’ functions, which is highly benefited from the register 
renaming mechanism that does loop unrolling, exposing more 
the data in the register file. 

As mentioned, the Linux kernel has the capacity to manage 
failures before they happen due to memory virtualization and is 
able to pre evaluate the execution of an operation. The impact of 
this treatment is presented in Fig. 3. In Linux environment, the 
majority of the applications have an error rate ranging from 12 % 
to 25 %. Hangs in this case can also happens in OS kernel as it 
is exposed to faults during application execution, and so they 
prove to have a regular distribution, from 12 % to 18 % of total 
injected faults. It is important to mention that in this category, 
we also included hangs that the operating system was able to 
signalize. However two applications in this group, compress and 
matrixMult, draws attention by having 21 % and 32 % hangs, 
respectively, this may be due to the fact of the allocation of 
registers in Linux and for the application. In the SDC category, 
most applications stayed under 6 % of total injected errors. It 
happens because in Linux the application is statistically less 

 

Fig. 1.  Fault injection   localization  in Bare Metal and Linux OS Environment.

 



likely to manifest an error, since the application shares the 
register file resources with operating system, i.e., part of the 
register file is allocated to Linux and part for the application, so 
the chances to hit a register file that causes a SDC in the 
application is reduced. As expected, matrixMult still has more 
SDC errors than the average due to hardware loop unrolling. 

 

 
The Linux campaign for all benchmarks was repeated by 

setting a different application priority, from low to high. Results 
showed to have less than 3 % of variation compared with normal 
priority, making them not conclusive, since they can be 
accredited to the randomness of the tests. 

Error reports triggered by Linux kernel signals comprise a 
specific set. As detected and reported by the operating system 
they can be handled by functions added in the application code, 
allowing correction, discarding of unreliable results or even 
restart of the application. Exceptions detected by Linux are 
hangs that can be treated by the application and therefore should 
not be considered as errors.  Fig. 4 depicts Linux Hang detection 
rate. 

Linux error detection graph correlate the rate of identified 
soft errors by the operating system among total number of 
manifested Hang errors. Surprisingly, Linux shows to have a 

high rate of Hang perception, reaching 100% of detection in the 
case of the fdct application. As expected, analyzing the reports 
in details we found that around 90% of detected errors are 
Segmentation Faults, when the application tries to address a non-
allocated memory area, making this more perceptive in 
applications that recursively access external data, like bit 
manipulation and matrix multiplication. In a regular distribution 
between applications, Illegal Access signal happened when the 
processor attempts to execute an illegal, malformed, unknown, 
or privileged instruction, an unsurprising behavior since we are 
modifying randomly internal registers values. Harm, fdct and 
mdc are the only applications with floating point operations in 
the benchmark, and so Linux triggered Floating Point Exception 
signal. 

 

Finally, considering the results presented, it is possible to 
determine the final error rate, which reflects the architectural 
vulnerability factor of the register file. The comparison between 
bare metal and Linux applications reflects the sum of SDC and 
hangs not detected by the operating system on both 
environments.  Fig. 5 depicts the results.  

 
Results show clearly that applications running in bare metal 

environment are more prone to errors in general than when 

Fig. 2.  Bare Metal Error Classification. 
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Fig. 3.  Linux OS Error Classification. 
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Fig. 4.  Linux Error Detection. 
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Fig. 5. Experimental Results Error Rate. 
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running in Linux OS version when faults are injected in the 
register file. 

V. CONCLUSION 

The paper analyzed in a comparative approach the 
susceptibility of several application under soft errors in two 
environments: bare metal and on the top of the Linux operating 
system. The implementation was conducted by simulation with 
OVPSim platform and the OVPSim-FIM fault injector to 
introduce bit-flips in the register file of the ARM Cortex-A9 
processor. We classified the errors reported by the platform and 
extended the report including Linux signal reporting. The 
methodology promotes statistical results separating the main 
groups of errors between control flow, silent data corruption and 
Linux captured errors. 

The goal is achieved by performing an analysis in terms of 
error and not failure domain, since location is not the focus, but 
the variety of errors that can arise in similar failures. By doing 
this, we have shown that application running bare metal increase 
significantly the overall error rate for all 11 benchmarks that 
comprises a diverse scenario of data utilization. Despite this, 
considering different groups of errors, we found that the 
operating system has considerably less silent data corruption 
than bare metal environment, having the majority of failures 
located in Hang errors group. By saying this we can conclude 
that in our experiment the Linux OS environment tend to hide 
more frequently soft errors, while bare metal is more prone to 
corrupt the data of the application. When comparing the results 
with [11] we faced a different behavior where SDC errors in 
Linux was almost the same as in bare metal; we understand and 
the paper itself points out that it happens mainly because in the 
neutron flux the faults were also injected in the cache, where the 
application data is always exposed, leading in data corruption 
even before the content reaches the register file. Another reason 
is that in [11] the application is restarted continuously without 
restarting the operating system, a process where bit-flips that are 
not expressed in a particular execution may be manifested in the 
future in others. 

An additional category of error was analyzed by separating 
signals triggered by Linux kernel, where we found that the 
contribution of this group can be up to 100% of the total number 
of Hangs. Since the kernel reports back to the application the 
signal, it is possible to implement signals handlers in the code in 
order to deal with the exception and effectively mitigate the error 
effect.  

As a future work, we propose to analyze the detailed error 
classification considering multiple applications running with 

Linux OS with the intention of proposing tolerant techniques 
focused on error distribution. Another proposal includes sharing 
processor and operating system resources by running multiple 
applications at the same time and evaluating soft errors masking 
effects with and without multicore platforms. 
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