

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM MICROELETRÔNICA

LUIZ GUSTAVO CASAGRANDE

Soft Error Analysis With and Without Operating System

Work presented in partial fulfillment of

the requirements for the degree of

Master in Microelectronics

Advisor: Prof. Dr. Fernanda G. de Lima

Kastensmidt

Porto Alegre

June 2016

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

Casagrande, Luiz Gustavo

Soft Error Analysis With and Without Operating System / Luiz

Gustavo Casagrande. – 2016.

103 f.:il.

Orientador: Fernanda Gusmão de Lima Kastensmidt.

Dissertação (Mestrado) – Universidade Federal do Rio Grande do

Sul. Programa de Pós-Graduação em Microeletrônica. Porto Alegre,

BR – RS, 2016.

1. Efeitos da Radiação em Processadores. 2. Metodologias e

ferramentas de injeção de falhas. 3. Emulação de processadores. I.

Kastensmidt, Fernanda Gusmão de Lima. II. Soft Error Analysis With

and Without Operating System.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Rui Vicente Oppermann

Vice-Reitora: Prof. Jane Fraga Tutikian

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb

Coordenador do PGMICRO: Prof. Fernanda Gusmão de Lima Kastensmidt

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGMENTS

The loneliness of the decision to the responsibility of the gesture. Not even the

intention escapes the judgment. What would be nobler then? Deliver your best days and

steady arms to the social claim or bear in mind the very free and tragic image? To decide

something, whether or not conducted by Opinion, is performing a morbid act. It is an impulse,

a spark who disguises herself as motivation and ideal. This is all anger and hopelessness, the

insoluble existential doubt urging cease.

In this process, the head is an island, but I am thankful to have open the ports to many

people that, even sometimes unknowingly, contributed with words, experiences, actions or

provocations. Among them, I mention Caroline Araujo for her constancy, availability and

beautiful smile. My mother, Maria, for unquestioned support and my Father, Ivo, for the silent

and unconditional love, know that I am very proud of what you represent and that without you

nothing would be possible. Thanks to my supervisor, Fernanda Kastensmidt, for the patience.

To my current and past colleagues for the technical discussions and philosophical clashes. To

my friends (including the previously mentioned), for the comic relief and delight of oblivion.

My professors Delfim Luiz Torok, for the confidence and youthful spirit, Ewerton Cappelatti,

for the fellowship, Paulo Piber, for the placidity and Ronaldo do Espírito Santo, for the

character.

ABSTRACT

The complexity of integrated system on-chips as well as commercial processor’s architecture

has increased dramatically in recent years. Thus, the effort for assessing the susceptibility to

faults due to the incidence of spatial charged particles in these devices has growth at the same

rate. This work presents a comparative analysis of soft errors susceptibility in the commercial

large-scale embedded microprocessor ARM Cortex-A9 single core, widely used in critical

applications, performing a set of 11 applications developed for a bare metal environment and

the Linux operating system. The soft errors analysis is performed by fault injection in

OVPSim simulation platform along with the OVPSim-FIM fault injector, able to randomly

select the time and place to inject the fault. The fault injection campaign reproduces

thousands of bit-flips in the microprocessor register file during the execution of the

benchmarks set, with a diverse code behavior ranging from control flow dependency to data

intensive applications. The analysis method is based on comparing applications executions

where faults were injected with a fault-free implementation. The results show the error rate

classified by their effect as: masked (UNACE), crash or loss of control flow (HANG) and

silent data corruption (SDC); and by register locations. By separating latent errors by its

location in the results and exceptions detected by the operating system, one can provide new

better observability for a large-scale processor. The proposed method and the results can

guide software developers in choosing different code architectures in order to improve the

fault tolerance of the embedded system as a whole.

Keywords: Open Virtual Platform (OVP). Soft error. ARM Cortex-A9. Bare metal. Linux

operating system. Embedded processor.

RESUMO

A complexidade dos sistemas integrados em chips bem como a arquitetura de processadores

comerciais vem crescendo dramaticamente nos últimos anos. Com isto, a dificuldade de

avaliarmos a suscetibilidade às falhas em decorrência da incidência de partículas espaciais

carregadas nestes dispositivos cresce com a mesma taxa. Este trabalho apresenta uma análise

comparativa da susceptibilidade à erros de software em um microprocessador embarcado

ARM Cortex-A9 single core de larga escala comercial, amplamente utilizado em aplicações

críticas, executando um conjunto de 11 aplicações desenvolvidas para um ambiente bare

metal e para o sistema operacional Linux. A análise de soft errors é executada por injeção de

falhas na plataforma de simulação OVPSim juntamente com o injetor OVPSim-FIM, capaz de

sortear o momento e local de injeção de uma falha. A campanha de injeção de falhas reproduz

milhares de bit-flips no banco de registradores do microprocessador durante a execução do

conjunto de benchmarks que possuem um comportamento de código diverso, desde

dependência de fluxo de controle até aplicações intensivas em dados. O método de análise

consiste em comparar execuções da aplicação onde falhas foram injetadas com uma execução

livre de falhas. Os resultados apresentam a taxa de falhas que são classificadas em:

mascaradas (UNACE), travamento ou perda de controle de fluxo (HANG) e erro nos

resultados (SDC). Adicionalmente, os erros são classificados por registradores, separando

erros latentes por sua localização nos resultados e por exceções detectadas pelo sistema

operacional, provendo novas possibilidades de análise para um processador desta escala. O

método proposto e os resultados obtidos podem ajudar a orientar desenvolvedores de software

na escolha de diferentes arquiteturas de código, a fim de aprimorar a tolerância à falhas do

sistema embarcado como um todo.

Palavras-chave: Plataforma virtual (OVP). Soft error; ARM Cortex-A9. Bare metal. Sistema

operacional Linux. Processador embarcado.

LIST OF FIGURES

Figure 2.1 – Embedded system with CPU, memory and peripherals ..15
Figure 2.2 – Johnson’s Fault Tolerant System Flow...18
Figure 2.3 – Induced Charge by Radiation in the Gate Oxide of a N channel MOSFET: (a) normal
operation, (b) after irradiation ...19
Figure 2.4 – Particle Crossing the Substrate of a Transistor ...20
Figure 2.5 – OVP Interfaces ..30
Figure 3.1 – ARM Cortex-A9 Block Diagram ...35
Figure 3.2 – Linux System Major Subsystems ...39
Figure 3.3 – Linux Kernel Architecture ...40
Figure 3.4 – Proposed fault injection framework organization ...43
Figure 3.5 – Fault injector module architecture ..46
Figure 3.6 – Fault injector module architecture for embedded system with Linux47
Figure 3.7 – Fault Injector Operation Flow ..48
Figure 4.1 – Test Environments Structure ..52
Figure 4.2 – Emulated CPU Information ...53
Figure 4.3 – Bare Metal Fault Distribution over Time ...57
Figure 4.4 – Linux Fault Distribution over Time ...58
Figure 5.1 – SDCs Comparison with Interruption-based Platform ..63
Figure 5.2 – HANGs Comparison with Interruption-based Platform ..64
Figure 5.3 – SDCs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort65
Figure 5.4 – HANGs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort66
Figure 5.5 – Bare Metal Error Classification ...69
Figure 5.6 – Linux OS Error Classification ..69
Figure 5.7 – HANG Comparisons Between Environments ...70
Figure 5.8 – SDC Comparisons Between Environments ..71
Figure 5.9 – Bare Metal Total SDC vs SDC Only in Results ..76
Figure 5.10 – Linux Total SDC vs. SDC Only in Results ...77
Figure 5.11 – Linux Exception Signal Rate Over Total Detected HANGs ..78
Figure 5.12 – Linux Exception Signal Rate Over Total Detected HANGs ..79
Figure 5.13 – Error Rate of Three Applications Running on ARM Cortex-A9 and Cortex-M480

LIST OF TABLES

Table 3.1 – ARM Cortex-A9 Register File ..38
Table 3.2 – Failure Group Classification ...51
Table 4.1 – Number of Instructions Executed in Bare metal and in Linux for the set of Applications .56
Table 4.2 – Result Example with Faults Details ...59
Table 5.1 – Manifested Failures by Register ..73
Table Appendix A.1 – Bare Metal Benchmark Results with Full Classification (a)91
Table Appendix A.2 – Bare Metal Benchmark Results with Full Classification (b)92
Table Appendix A.3 – Linux OS Benchmark Results with Full Classification (a)93
Table Appendix A.4 – Linux OS Benchmark Results with Full Classification (b)94

LIST OF ABBREVIATIONS AND ACRONYMS

ACP Accelerator Coherence Port

API Application Programming Interface

ASIC Application Specific Integrated Circuit

AVF Architectural Vulnerability Factor

CAN Controller Area Network

CISC Complex Instruction Set Computer

COTS Commercial of the Shelf

CPU Central Processor Unit

CRC Cyclic Redundancy Check

DMA Direct Memory Access

DSP Digital Signal Processor

DUT Design Under Test

ESA European Space Agency

FI Functional Interrupts

FIM Fault Injector Module

FIT Failure In Time

FPGA Field Programmable Gate Array

FPU Floating Point Unit

GCC GNU Compiler Collection

GP General Purpose

GPP General Purpose Processor

IC Integrated Circuit

ICM Innovative CPU Manager

IDE Integrated Development Environment

IO Input/output

ISA Instruction Set Architecture

ISS Instruction Set Simulator

JEDEC Joint Electron Device Engineering Council

JIT Just in Time Compiler

JTAG Joint Test Action Group

MBU Multi Bit Upset

MIPS Million Instructions per Second

MOS Metal-Oxide Semiconductor

MPE Media Processing Engine

OCD On-Chip Debug

OS Operating System

OVP Open Virtual Platform

PC Personal Computer

PTM Production Test Mode

PVF Program Vulnerability Factor

RAM Random Access Memory

RHBP Radiation Hardening By Design

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

SBU Single Bit Upset

SDC Silent Data Corruption

SEE Single Event Effect

SEGR Single Event Gate Rupture

SEL Single Event Latch Up

SER Soft Error Rate

SET Single Transient Effect

SEU Single Event Upset

SIMD Single Instruction, Multiple Data

SMP Symmetric Multiprocessor

SP Stack Pointer

SPI Serial Peripheral Interface

SWI Software Implemented

TAP Test Access Port

TID Total Ionizing Dose

TLB Translation Lookaside Buffer

TLM Transaction Level Modeling

UART Universal Asynchronous Receiver/Transmitter

VFP Vector Floating Point Unit

VHDL VHSIC Hardware Description Language

VMI Virtual Machine Interface

WCET Worst-Case Execution Time

SUMMARY

1 INTRODUCTION .. 11

2 FAULT EVALUATION IN EMBEDDED SYSTEMS ... 14

2.1 DEFINING AN EMBEDDED SYSTEM .. 14

2.2 FAULT INJECTION IN EMBEDDED PROCESSORS .. 16

2.2.1 Faults, Errors and Failures ... 17

2.2.2 Faults in Embedded Systems ... 17

2.2.3 Radiation Effects in Embedded Processors .. 19

2.2.3.1 Single Event Upset .. 21

2.2.4 Failure Classification, Metrics and Operating System Impact 22

2.2.5 Fault Tolerance Evaluation Techniques .. 23

2.2.5.1 Physical Fault Injection ... 25

2.2.5.2 Logical Fault Injection... 26

2.3 OPEN VIRTUAL PLATFORM (OVP) ... 29

2.3.1 APIs .. 29

2.3.2 Hardware Behavioral Models ... 31

3 CASE-STUDY, PROCESSOR-BASED SYSTEM AND FAULT INJECTOR

ARCHITECTURE ... 33

3.1 ARM CORTEX-A9 ARCHITECTURE .. 33

3.1.1 Main Functionalities and Relevant Features ... 34

3.2 OVP MODEL OF THE ARM CORTEX-A9 ARCHITECTURE 35

3.2.1 Modeled Functionalities .. 36

3.2.1.1 Pipeline e Cache L1 ... 36

3.2.1.2 Performance and Timing ... 37

3.2.1.3 Special Functions .. 37

3.2.1.4 Modeled Registers ... 37

3.3 LINUX OPERATING SYSTEM ... 38

3.3.1 Conceptual Architecture ... 39

3.3.2 Exception Management ... 41

3.4 FAULT INJECTION ENVIRONMENT ... 42

3.4.1 Fault Model Definition .. 43

3.4.2 Fault Injector Module ... 44

3.4.2.1 Fault Injection Phases .. 47

3.4.3 Falure Classification ... 50

4 APPLICATIONS ENVIRONMENT ... 52

4.1 TESTING PLATFORM .. 52

4.2 BENCHMARKS ... 53

4.3 FAULT DISTRIBUTION .. 57

4.3.1 System Observability ... 59

5 RESULTS AND ANALYSIS.. 61

5.1 INTERRUPTION-BASED PHYSICAL ENVIRONMENT COMPARISON 61

5.2 ENVIRONMENT COMPARISON ... 68

5.2.1 Register Fault Susceptibility Analysis .. 72

5.3 SILENT DATA CORRUPTION CLASSIFICATION .. 75

5.4 LINUX OS AND ERROR MITIGATION ... 77

5.5 OVERALL ERROR RATE .. 79

6 CONCLUSIONS... 82

REFERENCES ... 85

APPENDIX A – COMPLETE BENCHMARK RESULTS .. 90

APPENDIX B – LATS 2016 PAPER ... 95

11

1 INTRODUCTION

Failures in integrated circuits (ICs) such as complex embedded systems can be

responsible for endangering human life. Because of this, the demand for secure systems has

grown considerably in recent years, a phenomenon that can be observed by the continuous

research activity in the area. A secure system is characterized by several attributes, including

reliability, availability and debugging capabilities [1], [2]. Among these systems,

microprocessors are present in most digital systems due to its reprogramming flexibility,

performance and especially cost, which is still not comparable with other devices such as

FPGAs. These reasons led microprocessors to various application areas such as medical,

automotive and aerospace, where the safety factor should be considered the most important.

Safe-critical applications seek high reliability. They are usually composed of single or

multi-core processors that may run embedded software developed with or without operating

systems. Bare metal software is a term used in embedded systems when the program code is

directly hosted on the target microprocessor and is self-managed. They allow high

controllability of hardware and software flow. Additionally, maintenance, debugging and

troubleshooting of code is easier and less time consuming. Operating systems can provide the

availability of hardware resources for applications with a high level of complexity. The

increasing need of this complex operations and resource sharing demands better using of the

available capabilities as well as better programmability.

However, erroneous behaviors in this type of systems have been observed since the

early 70s. Phenomena such as soft errors can result in serious failures, and their incidence is

worsened due to the significant decrease in the ICs’ transistor size [3]. Soft errors occurs due

to transient faults and are mainly observed as bit-flips in memory elements operating under a

radiation environment [4], also called single event upsets (SEU). The radiation environment

can be space or on Earth, where neutrons interact with the material provoking secondary

particles such as alpha to provoke transient faults [5]. Soft errors becomes as a representative

issue while projecting a microprocessor, since the effects of SEUs can be noticed by failures

in data results or deviations in the application flow. Not only the physical architecture, but the

code architecture itself influences directly its performance in front of soft errors, which are the

main aspects to be considered in a reliable efficient design.

In this way, it is mandatory a preliminary analysis of the embedded systems

microprocessor behavior in critical applications without and with operating system [6][7], and

12

fault injection experiments have shown to be one of the most effective techniques for

reliability evaluation of an IC [7][8]. However, a fault injection environment is costly and

complex, as it requires compliance of numerous parameters, such as injection model, list of

failures, workload, data acquisition mechanism and data analysis methodology, which directly

influence coherence and results interpretation [9].

Therefore, in this work we adopt the use of a virtual platform capable of simulating

embedded systems running real application code with performance comparable to a

traditional system, in the order of hundreds of MIPS. Originally developed to accelerate the

development of software, such simulators typically offer a range of CPU models and memory

systems for exploitation of resources during development stage [10], allowing the analysis

and implementation of different applications or operating systems for several architectures,

including multiprocessor systems. Currently UFRGS conducts research using the Open

Virtual Platform (OVP) OVPsim, which has shown great applicability for environments

development for fault simulation. Compared to the others, which reach rates of around 200

KIPS [11], the OVPsim can achieve simulation speeds up to 100 MIPS. This factor was

decisive in choosing this platform to model the embedded system used in this work.

In view of these considerations and along with OVPSim virtual platform, this work

aims to compare soft error susceptibility in embedded software that was developed for a bare

metal environment and under an operating system. It also analyses the architectural

vulnerability factor (AVF) of the register file in the well-known embedded microprocessor

ARM Cortex-A9, widely used commercially in low power or thermally constrained

applications. The soft error analysis is performed by fault injection with the OVPSim-FIM

module that was proposed by [12], capable of simulating SEU type faults on the processor

registers bank, producing bit-flips with controlled locality and temporality, allowing

investigation of the failures detected and treated by both the platforms. Another contribution

of this work, besides the comparative analysis of application environments, is the

improvement of the mentioned fault injector, allowing Operating System analysis from

processor architectural perspective to software masking level.

A set of 11 applications was used as benchmarks that diversify control and data flow

behavior. Those applications were compiled for the target architecture and run directly on the

processor for the bare metal tests. The chosen operating system for the comparative tests was

Linux, mainly because it has open code, which significantly facilitates the controllability and

observability required by the experiments. Beyond that, it is worth mentioning that Linux is

13

already considered as an option of a commercial purpose operating system, which is being

included in a wide range of applications, including those with reliability requirements [13].

During the fault injection campaign, it was injected 100,000 faults in the register file

to evaluate each benchmarks. Results were classified into masked faults (UNACE), silent data

corruption (SDC) and hang. Results show that applications running in Linux environment are

usually less prone to failures due to bit-flips in the register file, while bare metal applications

have shown to be more susceptible to this faults, specially silent data corruption (SDC)

failures.

This work is divided as follows: Chapter 2 evaluates faults in embedded systems,

going through fault injection techniques commonly used in these environments, failure

classification and presenting the OVPSim platform, discussing its operation and organizat ion.

Chapter 3 describes the proposed embedded system architecture, including the ARM Cortex-

A9 CPU and its modeled functionalities, the Linux operating system and the fault injector

structure, with failure classification and special features. Chapter 4 introduces the test

platform and used benchmarks, explaining the fault distribution methodology and system

observability. Chapter 5 exposes the results in many forms, such as environment comparisons,

detailed classification, Linux error mechanism observation and overall error rate analysis.

Finally, Chapter 6 presents the conclusions.

14

2 FAULT EVALUATION IN EMBEDDED SYSTEMS

The radiation effects in embedded systems have become a concern for safe critical

software developing, which includes land level applications like medical, military and

aerospace applications. Soft errors arise because of these radiation interactions, causing

undesirable changes in memory elements that may lead to catastrophic failures. In most cases

radiation tolerant COTS processors are not financially viable, so even devices used in such

applications are the same we can find in regular cellphones or computers. It is therefore

essential that embedded systems can be evaluated with respect to their susceptibility to faults

in order to determine its limitations and, based on this, develop outline methods such as

tolerant software techniques.

2.1 Defining an Embedded System

An embedded system comprises a broad field of study and therefore there are many

definitions of what it is. Depending on what’s the study aims to emphasize the definition can

vary, but in Noergaard [14] we found a short and objective designation that is aligned with the

work proposes, defining an embedded system as an applied computer system.

An embedded system can be seen as a resource manager, which provides an orderly

allocation of processors, memory, input devices and output data. It is found in a wide range of

devices and combines software and hardware. However, different than an operating system, it

is a physically limited computer system, usually with size, power and memory constraints,

which has limited and specific, functions [16]. A notable example of embedded systems was

the Apollo Guidance Computer, a redundant hardware used in the spacecraft control, with

error recovery routines, meaning that that it one of the first embedded systems was fault

tolerant [17].

An embedded system is depicted in Figure 2.1 with its main divisions: CPU, memory

and peripherals. Additionally, a communication layer and the embedded code can be listed,

since the system must interact with external elements and its tasks shall be defined [18].

15

Figure 2.1 – Embedded system with CPU, memory and peripherals

Source: Author

An embedded system has one or more CPUs, which are responsible for fetching and

executing instructions from memory. It can be considered the main system component, and

has a well defined execution cycle, that includes searching instructions from memory, decode

them to determine the operation and operands, execution, external memory accesses and

writing back to updated values. Each CPU has a specific set of instructions and all application

code shall be translated to this specific set before loaded into the embedded system.

Furthermore, as the access time to memory to fetch instructions or operands is bigger than the

time to perform them, the CPUs have internal registers to store key variables and temporary

results [16]. Embedded systems CPUs, as commented, are intended to specific tasks, thus it is

common to found several devices models, which should be considered depending on the

application, such an Application Specific Instruction-set Processor (ASIP), a RISC or CISC

architecture, a Digital Signal Processing (DSP) [19] or intended for low power applications

[17].

Another major component in an embedded system is the memory. Ideally, the memory

should be non-volatile, inexpensive and faster than the processor, so that the CPU was not

delayed, but today technology does not meets these requirements. Therefore, the system

memory is organized in layers, where the faster, smaller, and proportionally more expensive

16

memory, are closer of the CPU in terms of access, while memories with greater storage

capacity are more distant. The memories order, from the slower to the faster, and technologies

typically are internal registers, cache memory, external RAM and Flash memories or hard

drives [14] [16]. From the application execution point of view, memory can be organized as

instruction and data memories, which represents only a logical separation to determine how

the CPU will organize the instructions under execution (internal registers, cache and RAM),

the application code (Flash or hard drive) and the operations results (all layers).

Peripherals or I/O devices may consist of two parts: a controller and the device itself.

The controller tend to have standard interfaces with the CPU, which helps to share

communication resources between them, but as each peripheral has its own purpose, typically

a driver should be used. The devices are commonly used as auxiliary communication, I/O

driving, sensing, status or additional storage, adding more functionality to the embedded

system [17].

Finally, the non-physical part of an embedded system is the embedded application,

which uses all the described parts of the system. The code developed by the programmer must

be compiled to the intended architecture, being converted into machine code, which will

reside in the physical platform. The CPU has a initial state and starts to fetch instructions

from a known place that depends on the processor model. Thereafter, the sequence of

instructions performed by the CPU coordinate the operation of the embedded system,

including communication with peripherals[17].

2.2 Fault Injection in Embedded Processors

To understand the implications and assumptions around fault injection in embedded

processors, definitions regarding terminology must be defined, as well as the nature of a fault,

like what provoke them and how faults react in a system and become an error. As well,

concepts concerning how it interacts with operating systems and measurement metrics are

discussed in this section.

17

2.2.1 Faults, Errors and Failures

The literature define the terms that surround this work in different ways, trying to

explain a common phenomena. To avoid misunderstandings, we use as reference the article

developed by [71].

As the author suggests, a failure is defined as an unexpected behavior or unwanted

operation of the target system that is perceived by the user. The error concept is understand as

an state of the system that may lead to a failure, i.e., the error create a condition in which the

subsequent computing operations may fail. Finally, the error state is achieved by the effect of

a fault, that is defined as the error physical reason.

2.2.2 Faults in Embedded Systems

A system is said to be fault-tolerant when it has the ability to perform properly their

duties regardless of the occurrence of faults [21]. Even a system that has apparently been

developed properly is subject to failures due to wear of the devices or design errors that result

in a logic failure. Two types of failures may occur in a system: the first is the natural failures

caused by wear, internal or external sources or a component; second, the failures resulting

from an accidental or intentional human action [22]. A situation in which these two types of

failure can occur is, for example, an operator setting the parameters of an installation to

perform an overloaded task. This systematic operation will cause the installation, inevitably,

to malfunction due to wear of its parts. In this particular example, an error caused by human

action generated a natural lack. The occurrence of these faults does not imply that other type

of failure may not happen.

However, fault-tolerant systems should be able to drive the system to a safe state when

the error is detected, or allowing the system to operate in degraded form, but meeting the

minimum requirements of the same. Given this context, there are some techniques to give

proper treatment to this events: (a) redundant structures to mask components that suffered an

error; (b) error control codes and double or triple voting mechanism to discover or correct

erroneous information; (c) diagnostic techniques to locate defective components; (d) and

techniques for automatic conversions to replace a subsystem that has crashed [22]. In 1984,

Johnson defined the three main techniques to try to improve or maintain the normal operation

of a system: fault avoidance, fault masking and fault tolerance [21].

18

Fault avoidance aims to block the fault occurrence or even its effect that is the error. It

can be achieved through good project management practices and system testing for design

mistakes not observed in the detailing phase. The idea is to prevent the system to be released

to the market with a “bug”, which in safe critical applications can be catastrophic. In this

regard, extensive testing of the application is used. However, the time spent in the testing

phase will increase the "time to market" (amount of time from conception to launch the

product on the market).

The fault masking is applied in real-time system and aims to prevent the error from

spreading to other system components or leading to an error state causing a failure. One way

to implement this technique is through the implementation of voters.

The fault tolerance, unlike the others, is not intended to eliminate the presence of the

fault or its propagation, but drive the system to a state that is acceptable in terms of execution

and security. There are four principles on which is based the use of the fault tolerance:

detection, location, containment and recovery.

Figure 2.2 shows a flowchart where the techniques described by Johnson can be used

to increase the guarantee proper functioning of the system [21].

Figure 2.2 – Johnson’s Fault Tolerant System Flow

Source: Adapted from [21]

In this work, our attention is around the path marked in red, except that we are not

proposing any mitigation technique, but in fact, exposing an embedded system weakness to

soft errors by injecting external disturbances, analyzing if it manifests in hardware or software

and classifying the arising failures.

19

2.2.3 Radiation Effects in Embedded Processors

One of the main concerns around failures in embedded processors relies on external

sources, especially the radiation effects that may cause soft errors. They can be divided in

effects due to Total Ionizing Dose (TID) and SEEs (Single Event Effects). As discussed by

[36], this phenomena occurs due to the impact of atmospheric particles, like neutrons, that

collides with silicon atoms of the device, causing nuclear reactions that generates an internal

ionization. These phenomena and its impact in embedded systems is the central theme of this

work, but it is necessary to understand the type of fault in which the device is exposed.

The TID effect is cumulative, resulting in degradation of characteristics of the

electrical parameters of the electronic device over time due to the deposit of charges. They are

long-term effects that depends on the intensity of radiation and the time that the circuit is

exposed to this radiation. In a transistor gate, for example, the TID may cause an increase of

the skew and leakage current due to changes in the voltage thresholds. A big exposition to this

particles can result in error of the electronic device [20], as shown in Figure 2.3 below.

Figure 2.3 – Induced Charge by Radiation in the Gate Oxide of a N channel MOSFET: (a) normal

operation, (b) after irradiation

Source: [24]

The total ionizing dose is measured in rad (radiation absorbed dose). The rad

represents 100 ergs of energy deposited per gram of material, which can be correlated with

20

Joule, such that 1 = erg 0,1μJ [25]. Since the energy depends on the material, the units need to

be expressed in this terms, such as the silicon: 100 rad (Si) [20].

The TID is specified in units of rads in silicon (rad(Si)), where one rad is defined as

the absorbed radiation dose. A rad is a measure of the amount of energy deposited into the

material and is equal to 100 ergs (6.24E4 10 eV or NJ) of energy deposited per gram of

material [25]. The energy deposited in a device must be specified for the material of interest.

Thus, for a transistor of a metal oxide semiconductor (MOS), the total dose is measured in

units of rad (Si) or rad (SiO2). The ability to resist to TID in reinforced components against

radiation is also defined in rads or krads [28].

The effect can be reduced by shielding or by changing the default device fabrication

process. When using shielding the idea is to include a layer of a material, like aluminum, to

absorb a range of charged particles, specially low energy ones. Depending on the environment

profile, this technique may not be effective, since high energy particles can still cross the

shield layer. Another solution, as mentioned, is to modify the fabrication process by

including, for example, an epitaxial layer in the high-doping regions of the transistors or an

oxide layer in the substrate [20].

The category that is analysed in this work and that may result in undesirable effects in

the system functionality are the Single Event Effects (SEE), described by [20] also as

electrical disturbances due to colliding particles, but now the high energetic particle does not

need to accumulate to generate an observable effect, it has such energy that it can change the

state of a given device. Figure 2.4 depicts the effect of a single charged particle passing

through the structure of a PMOS transistor.

Figure 2.4 – Particle Crossing the Substrate of a Transistor

21

Source: [20]

As mentioned, the particle must have enough energy to transfer the charge necessary

in the transistor gate to make state changes in its outputs. This charge is represented in the

following equation by Qcrit.

 (2.1)

According to [20], in equation (2.1), Cnode denotes the capacitance between the nodes

of transistors and Vnode is the transistor operating voltage. Today, reducing the size of

transistors and the significant increase in transistor density on a single chip increases sensitive

to SEE, in part since the chances of collision are bigger, in the other side the capacitance and

stored charges of the devices decreases, which results in a lower Qcrit [27] and for

consequence the range of potential charged particles necessary for generating an upset

increases.

The SEE can occur in different ways such as a transient effect (SET), upset (SEU),

latch up (SEL), door break (SEGR), among others. A typical case is in a circuit with memory

elements, for example, where a single event may provoke that an incorrect value is stored and

may produce an error that will persist until the value is overwritten. Also, the SEE may flip a

signal in a combinational logic, generating incorrect values in arithmetic operations or even

producing a wrong output, such an interruption [20]. In this work, we will analyze the Single

Event Upset effects, since it is one of the most common persistent and latent errors.

2.2.3.1 Single Event Upset

The term Single Event Upset and the correlation with charged particles appeared in

[26] for the first time as it is known today. The acronym has been used to describe disorders

in digital circuits of memory devices, caused by radiation or cosmic rays and they are the

focus of this work

They differ from the SETs, since they are not transient, associated with the inversion

bit memory elements. They are also referred to in the literature as soft errors and can have an

indefinite duration or may be fixed after one or more clock cycles. The SEU is called single

bit upset (SBU) if only one memory element inverts its state and multi-bit upset (MBU) if

more than one element changes [20].

A characteristic of SEUs is that they are random events and, therefore, they may occur

at unpredictable times. For example, they can damage the contents of a processor register

22

during the execution of an instruction, which in case of a pipelined processor may result in an

instruction being correctly executed in the first pipeline stages and then corrupted in the

middle of operation, avoiding any pre decoding correction mechanism and causing

unpredictable effects in the data flow.

2.2.4 Failure Classification, Metrics and Operating System Impact

As mentioned, radiation effects can lead to soft errors in electronic devices according

to ionization characteristics. In the firsts occurrences it is not permanent since only repeated

events in the same point can damage the silicon structure, and so the error is called “soft”.

Not all soft error occurrences generate a manifested failure. They are the originating

factor that results in the appearance of an error. When a soft error occurs, the system can or

cannot be driven to an inconsistent/incoherent state, which characterizes the existence of an

failure. In a given system, [30] defines the probability that the soft error has to generate a

failure, as shown in equation (2.2).

(2.2)

The author introduces new terminologies to define the probability. The cross-section is

represented by σ [cm
2
]. It defines the radiation susceptible area in which an error happens if a

particle collides. Depending on the technology, the radiation sensitivity varies and it is

expressed by the constant σraw. Finally, the probability to generate an error is represented by

V, which means de vulnerability factor.

The vulnerability factor is often estimated using radiation test campaigns with

accelerated particles as a reason of the number of errors observed and the particles flux, which

is the amount of particles per unit area. In some cases, it is possible to estimate the

vulnerability using simulation if a detailed description of the design is available to the tester.

During the test campaigns, either radiation tests or simulation, the most usual metric is

the soft error rate (SER), which indicates the number of errors manifested in the functionality

of the system during a defined time, commonly represented by the terminology Failure in

Time (FIT) and expressed by [31] in the following equation.

23

(2.3)

The equation shows that under a fluency of particles, expressed by N, the number of

errors observed, indicated by ɳ, and the total particle flux, the φ in the equation, is possible to

determine the soft error rate in terms of FIT. Since the Failure in Time express one failure per

10
9
 hours, the scale is also included in the equation.

The SER is the main parameter to evaluate in a device as it indicates how tolerant it is

to radiation. A well-controlled environment is required to determine this metric, since the flux

shall be constant and the error properly detected. That is why simulation techniques has had

so much visibility, allowing practical and precise measures as long the device model is

correctly represented.

To guaranty a good evaluation, in an embedded system context the failures can be

divided in two types: functional interrupts (FI) and silent data corruption (SDC). The

functional interrupts means that the system or application running in the processor hanged or

crashed and may lead the system to an unresponsive state, eventually requiring the reboot or a

power cycle to recover. Silent data corruption means that application has finished but its

result differs from the expected one. Note that not only the produced results of an algorithm,

for example, is important but the entire memory space, since latent errors may occur due to

data corrupted that not necessarily was used after soft error event, remaining undetected for a

long period.

According to [32] the vulnerability factor can take into account the SDC and FI

classification, as they represent different criticality depending on the system. In this manner, it

is possible to classify the vulnerability into FI factor and SDC factor that indicates the

probability of a soft error in a defined element to generate a functional interrupt or a silent

data corruption, respectively.

This classification became even more important when an Operating System (OS) is

involved. The work presented in [33] has shown that errors in the presence of an OS tend to

cause FIs, and SDC rate is not significantly influenced as its occurrences has the application

as the major contributor.

2.2.5 Fault Tolerance Evaluation Techniques

Fault injection is the most common and widely accepted approach for analysis of safe

critical systems in the presence of faults [34]. The fault injection techniques try to provide

24

information about the reliability of the design under test (DUT). This information can be

about: a) compliance validation with reliability requirements; b) detection of weaknesses in

the adopted fault tolerance techniques and; c) DUT behavior forecast in the presence of faults.

Fault injection is related to all techniques that simulate or emulate the device behavior

in the presence of a fault. Among these techniques are those applied mainly to processor

systems in which software changes are made to simulate the occurrence of a fault in the

hardware device. Thus, it is important to have a distinction between fault injection in

hardware and software, the latter is outside the scope of this work.

The fault injection techniques are not limited on the injection approaches. The

techniques involve the complete process that comprises the entire environment required for

startup of the DUT, selecting the appropriate workload, the capture of relevant data,

comparison with the fault-free DUT data, classification of the effects and monitoring of the

whole process. As will be discussed later, the approach of this works involves these steps,

where the analysis is made according to a comparison between a fault-free run of the system

and a faulty run, which is a run under the effects of the fault injections.

The fault injection method depends on the type of DUT being tested. In the case of

memories, for example, the effect being examined by injecting faults will be predominantly

SEUs. Another factor to consider is the possibility to cause real faults on the device, i.e.,

physical faults in the real device or if only fault models (logical) will be applied. The

abstraction level of the fault type is directly related to the DUT that can be a COTS, a

prototype or a design model. Observability is another important parameter, since it interferes

directly on the quality of the extracted results. Finally, the results will be direct influenced by

the chosen injection technique, since more realistic techniques like tests under radiation has

less observability than simulation methods that, on the other hand, are less precise in terms of

device behavior.

The fault injection campaign according to [35] can be divided in four basic elements

that are applicable to all techniques:

 Fault Model: Injected faults are used to model the SEEs at different abstraction

levels. At least the level of the system behavioral model shall be used. When a

COTS is being evaluated, different fault models can be applied, depending on

the test needs and device observability.

 Workload: Used to emulate the typical operation of the system under test.

25

 Observation Elements: Those are applied in the system to classify the effects of

the injected faults. Once a failure is identified, it may be classified as any of

the many types of failures definable. It is also common to classify the fault

itself.

 Measurements: States the degree of dependability of the evaluated system and

can be connected with the metric employed (commonly the SER).

This section provides an overview of all existing fault injection techniques.

Techniques are presented in two groups, namely those working with physical fault injection

and injection techniques that address at the logical level.

2.2.5.1 Physical Fault Injection

Physical fault injection methods use external sources to allow tests with radiation,

electromagnetic noise and aging of ICs. The purpose of these tests was to analyze the strength

of a COTS or qualify a prototype as hardened against the effects caused by radiation.

The cosmic radiation is the main source of SEE in ICs. Therefore, performing tests

with the device at high altitude or even in space is the most realistic way to assess the

sensitivity of the ICs to SEE. However, considering the low probability of error, it would

require hundreds of thousands of samples of the DUT to obtain a valid measurement, making

the time and cost of this approach unfeasible. The particle accelerators are used to classify

these products, performing tests that last for hours or days [34]. In these tests, various types of

particles are used with different energy values in order to cause different effects. The types of

particles and typical energy values used to generate a SEE are detailed in [36]. These

parameters are standardized according to the final application of the device. Spatial intended

devices are exposed to a different radiation environment than medical equipment, for

example, and are defined by space agencies or committees as the JEDEC who created the

standard JESD89 [37], which defines the requirements and procedures for testing of SERs for

ICs.

Fault injection using laser rays is similar to the method that uses heavy ions in the

sense of the beam is applied directly on the silicon surface. However, the laser beam is much

more accurate, and thus it is possible to inject faults in specific places in a more controlled

way. The incidence of the laser beam in silicon can cause effects similar to those caused by

particles of cosmic rays and this method is usually associated with the state change of circuit

elements and is used to test the effect of SEU events. With the help of a special microscope,

26

the use of laser to fault injection provides high accessibility as you can select the region to

execute the campaign in the circuit. Thus, the fault injection is cheaper than systems who

employ radiation tests. Furthermore, the laser needs a simpler fault injection environment

since it is not necessary to isolate the DUT or the components in the periphery of the DUT

that are not being tested and they didn’t suffer disturbances caused by radiation, which would

compromise the results of the analysis.

Unlike other physical techniques of fault injection presented, the method by induction

values at the DUT pins requires physical contact between the test platform and the DUT. The

method seeks to replicate the effect of a natural fault by forcing changes of the logical value

of an IC pins. Considering the complexity of modern systems, fault injection in the pins is

very limited due to accessibility limitation of the method. This technique is often employed

for testing tools in combination with other techniques in order to extend the results. Solutions

as Messaline, MARS, FIST, RIFLE described in [38] employ features of fault injection

method in circuit pins.

2.2.5.2 Logical Fault Injection

The results of physical injection methods provide realistic values of SER. It is widely

used for hardening qualification of critical applications in harsh environments, like space.

However, installations with neutron accelerators, for example, charge in the range of hundred

to a thousand dollars per hour of exposure [39], i.e., physical fault injection is extremely

expensive and thus it is necessary analysis solutions that can be applied earlier in the circuit

design. The fault injection methods in logical level exploit resources available in order to

insert the effect that a fault in hardware may provoke.

Between logic fault injection, software implemented (SWI) method is directly linked

to the execution of specific pieces of software that modify internal elements (accessible by the

user) causing the effect of a fault occurred in the hardware. The SWI method is related mainly

to embedded processors systems where the normal application software is stopped for the

execution of a fault injection code that changes an element such a register, a memory data, or

even an application instruction. SWI also appears in the DUT behavior analysis to evaluate

communication problems or interaction with other systems, for example, repeated/missing

messages or inaccurate information, failure to read from memory, among others. This type of

fault injection can be applied in different moments, which can be at compile time or at

27

runtime. At compile time, changes in the software image are made and, when executed, it

enables the simulation of an error in hardware. This type of fault does not need additional

code to be executed and is generally used to emulate permanent errors. In the case of runtime

fault injection, trigger mechanisms are used to notify the time of the fault injection. Timers or

specific instructions in the code are used for stopping the implementation and starting the

fault injection task. In [40] two processors PowerPC 750 running LynxOS were used along

with Xception tool to emulate the effect of SEUs in the system. The Xception tool exploits the

advanced features for monitoring performance and errors present in the processors and uses

the exception mechanisms of the processor itself to identify the failures. Another tools in [38]

like FERRARI, use timers to trigger a fault injection routine. The FIAT tool may delay tasks,

corrupt messages or complete them abruptly. Finally, FTAPE tool can add fault injection

drivers in the operating system.

The injection of simulation-based faults uses a model of the system being analyzed.

Simulation models can use hardware description languages like VHDL and Verilog or a

higher abstraction level like SystemC. In the simulation method, faults can be injected by the

simulation tool or by changing the description of the hardware model. In the latter case,

dedicated modules can be added in the model with the unique purpose of injecting faults or

the use of components with the presence of a known error. In the higher abstraction level, is

possible to adapt the simulation tools in order to use commands to control internal signals of

the system model. This method is dependent on the simulator functionalities and available

commands. However, there is no need to change the hardware model. In [41], a model of

LEON3 Gaisler processor used by the European Space Agency (ESA) described in SystemC

is used for fault simulation. This model described in SystemC is implemented at transaction

level (TLM) and employ dedicated modules that are used to simulate the effect of faults in the

memory sections (buffers, instructions and data memory, etc.) of the processor. The

MEFISTO tool presented in [42] uses saboteurs and simulation commands to execute a more

detailed analysis of the error behavior in the VHDL model. Tools like VERIFY propose an

extension of VHDL description to add features for fault injection in [38].

Current processors have specific resources to support testing and debugging. These

features, known as on-chip debug (OCD), also enable the fault injection and observation of

the effects externally to processor. The FIMBUL tool developed in [43] uses the test access

port (TAP) of the Thor processor for fault injection. The TAP allows access to internal scan

chains and the periphery of Thor processor, thus transient faults are injected throughout where

28

the chain have access. As a comparison, the MEFISTO tool that uses the simulation technique

has a slightly higher error coverage than FIMBUL tool that uses the TAP technique, but in the

other hand, it proved to be a hundred times faster. The work presented in [44] proposes

changes in the debug infrastructure (OCD) in order to enable fault injection to support the

verification of fault tolerant mechanisms. The OCD oriented to fault injection is based on the

NEXUS standard and it is an additional hardware that automatically triggers in the occurrence

of predefined conditions. The instruction address that will trigger the fault injection is

generated at random from one of the values present in the address space of instruction

memory. The same applies to the address of the data memory that will have its value changed

when the mechanism has been triggered. After the faults have been injected, the results are

recovered after the completion of all experiments.

The last logical fault injection method is the emulation FPGAs based hardware. It

became popular in ASIC verification, and more recently has been exploited for rapid injection

campaigns. The term emulation in this context is related to prototyping the circuit to be

analyzed in FPGAs. Many techniques that employ these devices use it only as a mean to

perform fault injection and quickly identify if the method can be implemented in other

technologies. The controllability in most cases is achieved accessing the configuration

memory, causing virtual bit-flips. Another approach consists in adding hardware blocks to

support the fault injection. An early work using FPGA for fault emulation is shown in [45],

which implements permanent errors (stuck-at) connecting signals at constant values. For each

injected fault, the circuit was synthesized again and thus the bit-stream had to be reloaded in

the FPGA to a new emulation. Among the newer methods that use FPGAs for fault emulation

two types of approaches can be perceived. The first method is called instrumentation; it

inserts logic in some way in the circuit in order to increase the control and observability of the

DUT during its execution [46]. The second uses existing partial reconfiguration capabilities

available in newer devices to identify and recover part of the internal circuit [47].

This work uses the simulation-based method and employs OVPSim tool, as shown in

the following section.

29

2.3 Open Virtual Platform (OVP)

A virtual platform is a complete simulation of a computer system. All hardware is

abstracted into a model, in which a regular software is able to run, i.e., the platform should be

modeled in a way that compiled application is no different from the actual physical hardware.

The virtual platform can be seen as an Instruction Set Simulator (ISS), which

simulates not only the CPU, but also the complete system, including memory, cache and

buses. The modeling of virtual platforms is defined as modeling in electric system level [48].

This environment can be placed between a RTL level and the functional level description, and

is mostly used when the cycle accurate RTL is considered to be too detailed, but still requires

a truthful simulation of at least instruction level.

Thus, a virtual platform is designed to: a) enable the development of software more

effectively and with better prediction; b) minimize dependence on hardware and; c) increase

the test efficiency.

Open Virtual Platform (OVP) is the tool that is used for the implementation of the

virtual platform in this work. The Imperas™ Software Limited announced the formation of

the alliance OVP to service the needs of the market. This alliance has created models of

CPUs, scan tools, debugging and analysis, in addition to simulation platforms. According to

the company, the platform allows the development of virtual prototypes with instruction

accuracy of up to 100 MIPS in conventional computers [49].

The OVP has three main components:

 APIs that allow C models Additional modules are developed;

 A collection of models of processors and peripherals on open source;

 The OVPsim simulator, responsible for the implementation of these

models.

2.3.1 APIs

Modeling an environment requires development of the main parts of a real embedded

system, such processors, memory and peripherals, but also the platforms and the integration

environment. The platform is responsible to promote the integration of the behavioral

components. Processors execute the compiled code and the peripherals enable a way to

30

represent the environment in which the application will interact. Thus, the OVP is constructed

of four interfaces:

 CPU Manager or Innovative CPU Manager (ICM);

 Virtual Machine Interface;

 Interface with behavioral model of the hardware;

 Interface for programming the peripheral model.

The interaction between these interfaces is shown in Figure 2.5.

Figure 2.5 – OVP Interfaces

Source: Adapted from [50]

The ICM is an API codded in C used to create the platform interconnection

environment and netlist with the modeled system to use along with the OVPsim simulator.

Through, it is possible to instantiate multiple processors, buses, memories and peripherals.

The ICM interface is also responsible for linking these modules and it allows applications to

be loaded and executed on instantiated memories [50]. Figure 2.5 locates the ICM in the

platform environment as described above in which it interfaces between various modules in

the platform.

The Virtual Machine Interface (VMI) is interfaced with the C based processor model,

allowing communication with the simulation kernel and other system components. The VMI

is the centerpiece for the high performance provided by the OVP, since the processors use a

morphing code approach that is coupled to a just-in-time (JIT) compiler that maps the model

instructions to native local machine instructions. Between the processor model and compiler

there is a set of optimized commands where the processor operations are mapped, being

31

responsible for the OVPsim to provide fast and efficient interpretation of the native machine

capabilities. Some of the VMI abilities are [51]:

 Provide virtualization features, such as file I / O, allowing direct execution

on the host using the standard libraries that are provided with the

environment;

 Instruction set templates encapsulation with OVPsim, if they export some

basic characteristics such as availability of Instruction Set model as a

shared object;

 The VMI can be used for both RISC processors and CISC processors,

supporting any instruction format;

 Finally, it allows the modeling of L2 caches and other extensions around

the processor.

2.3.2 Hardware Behavioral Models

The Open Virtual Platform has many processor models like the Altera NIOS, ARC,

ARM Cortex A, ARM Cortex M and ARM Cortex R, Xilinx MicroBlaze, several MIPS

models, Power PC, Renesas and NEC, most of them provided by the processor manufacturer.

In addition, a large number of available devices allow the assembly of a complete platform,

including various types of memories, bridges, DMAs and UART modules.

As mentioned, the processor models are instruction level accurate. Behavioral models

based on instruction set simulators aim to implement the instructions considering the real

number of cycles to execute and perform the IO operations along with each step of each

instruction. However, OVP processor models execute each instruction in a functional

approach, disregarding timing. The precision level of OVP allows internal registers to store

properly the values at the end of each instruction, generating all expected effect. The platform

executes an instruction at a time, but abstracts everything regarding the pipeline, for example.

The main disadvantages of the platform rely on the high abstraction level of the architecture,

that doesn't permit an clock cycle analysis of the tests, as well deeply architecture

examination.

The OVPsim also supports description of multicore platforms. It can simulate multiple

processors including configurations with shared memory, and heterogeneous multiprocessor

systems. The model performance depends on variants of the chosen processor and the nature

32

of the application, but it is possible to achieve speeds of hundreds of millions of instructions

per second. As OVP models can be compiled as common objects, they can also be

encapsulated in any simulation environment capable of using shared objects. This includes C,

C ++ and SystemC environments.

33

3 CASE-STUDY, PROCESSOR-BASED SYSTEM AND FAULT INJECTOR

ARCHITECTURE

An embedded processor can be defined as a processor that is responsible for

computation and control of devices that are not regular computers. Embedded processors are

used in several product fields, including automotive, networking, mobile, medical and

aerospace, and according to [52], they has the following design criterias: (a) performance,

represented by the maximum of data that they can process per unit of time and can be

achieved by parallel architectures, multi-level caches, function specific internal modules,

clock frequency, etc.; (b) power, that depends on the technology process, die area, number of

transistors, clock frequency, gate sizing and core voltage; and (c) cost, in which the

manufacturability is the key point, being related with the circuit complexity and area. In this

way, modern processors needs to balance the use of special architectures, such as multipliers,

additional caches, memory controllers and branch predictors, depending mainly on the market

share they want to reach.

In this chapter, the ARM Cortex-A9 series processors is evaluated, a mobile processor

constrained for the embedded market. This processor has its own OVPSim model provided by

ARM itself, making this analysis more reliable in terms of functional equivalence to the

physical device. This processor was chosen because it is present in many commercial

platforms such as Zynq™-7000 All Programmable SoC from Xilinx [67] and Cyclone V from

Altera [66]. These FPGA based platforms allows failure analysis methodologies on the real

target, and can be used further on to correlate and validate our results. The Linux operating

system is discussed in terms of how its architecture can contribute to processor dependability.

Finally, the fault injector organization, embedded system integration characteristics and the

main injection phases are explained.

3.1 ARM Cortex-A9 Architecture

The ARM Cortex-A9 has a specific set of features and functionality beyond the

traditional ARMv7 architecture in which it was based, in order to provide a high performance

and low power consumption. The main features of the architecture are described in this

section.

34

3.1.1 Main Functionalities and Relevant Features

The processor ARM is based on a RISC architecture, being the most popular

embedded processor for mobile applications. It happens due to its architecture that can

provide high performance and operates within the mobile power acceptable range, which is

under 5W of constant power consumption. With its high performance ARM macro equipped

with an L1 cache subsystem, it enables the use of a full virtual memory system, reaching

around of 98% of mobile devices and 75% of all 32-bit embedded processors [53] [52].

All processors of the Cortex-A family are designed for mobile purposes, but is also

intended for televisions and TV receivers. The Cortex-A9 uses an advanced version of the

instruction set of the Cortex-A8, based on the ARMv7 ISA, with extended FPU and ability to

perform data level parallelism, since it has multiple internal processing elements. The

parallelism allows the core to perform several optimizations. The ones that are considered

relevant for this work is:

 Out of order and speculative execution, that may result in a more allocated

register file;

 Dynamical renaming of physical registers, promoting autonomy from the code

and leading to a non obvious register allocation.

 Hardware based unrolling of loops, that spreads control information among

available registers .

Figure 3.1 present the top level diagram of the Cortex-A9. The described functions can

be located after the decoding stage.

35

Figure 3.1 – ARM Cortex-A9 Block Diagram

Source: [52]

The Cortex-A9 MPCore processor is the one modeled for the OVP environment and

includes an enhanced version of the ARM MPCore technology, which provides the flexibility

for vendors to implement between one and four CPUs in a cache coherent system architecture

design, as in the Zynq™-7000 SoC that implements 2 cores.

The ARM Cortex-A9 embedded in Zynq and Cyclone FPGAs are a dual-core ARM

that can be configured to work as single or dual core and to access an embedded SRAM

memory, caches level 1 and level 2 and a flash-based memory located outside the chip. In this

work, we use the model of the single core Cortex A9.

3.2 OVP Model of the ARM Cortex-A9 Architecture

As described by Imperas© [55], the processor models used along with the OVP

simulator are shared object files, represented by the .dll files in Windows and by the .so files

in Linux. The models may include support for SystemC integration.

36

The exclusive purpose of an OVP processor models is code conversion. It has the

ability to translate the original application code previously compiled for the target architecture

into the simulator own abstraction layer and for the just-in-time code mechanism, available in

its VMI API. This API is used for disassembling and generation of the simulator interface,

breaking the correlation with the original application, through a specific decoder that knows

the real processor instruction set. The simulator is responsible for all the other tasks, leaving

the execution complexity for the part of the environment that do not depends on the models

being used. It implements the mentioned just-in-time mechanism that converts dynamically

the original instructions into the simulator ones, memory allocation and other simulation

dependencies [55].

3.2.1 Modeled Functionalities

The used OVP model is a single core processor modeled by ARM Ltd to be used along

with OVP simulator, called “Cortex-A9MPx1”. Its instruction model is accurate, and the

simulation results of a single thread program will correctly match the actual hardware that it

models. However, not all actual architectures characteristics are modeled, these being

dependent on the processor used, since the existence of a given function is a developer's

decision and not necessarily a limitation of the platform. Therefore, it is possible to find

processors with and without cache implemented, for example, but as mentioned the Cortex-

A9 model is provided by ARM with the purpose to provide means of simulated debugging

software so that it can later be used in a real processor, a factor that indicates the equivalence

between the model and the device is reliable.

3.2.1.1 Pipeline e Cache L1

The Cortex-A9 instruction pipeline is not modeled, so that the bus may not be

accessed in the proper sequence, but it is assumed that all instructions conclude immediately

when read from memory and in the same reading order, disregarding all of the steps of load,

fetch and store, for example. This means that the instructions of the type Instruction Barrier

and Data Barrier, such as ISB and DSB, are treated as NOPs, except for instructions with

defined behavior at runtime only. The model also does not implement the functionality of a

speculative fetch.

37

For this reason, typically caches are not modeled, although the platform has the

resources to create both L1 as the shared L2, L3, etc. The ARM used in this work does not

have caches or modeled buffers, nor the branch cache shown in real processor architecture.

Cache handling instructions are implemented as NOPs, but again except for instructions with

defined behavior at runtime, which are modeled. However, the cache control registers are

present, allowing applications that normally make use of this resource, to run normally [56].

3.2.1.2 Performance and Timing

The OVP model approximate the processor performance, but does not model

accurately the execution time of the real processor, since it would need to be cycle accurate. It

is given an estimative of MIPS that represents the same parameters of real processors, but in

the processor model perspective, each instruction is executed in one unit of time, meaning that

a fair comparison can be done between application running in the same environment, but a

real hardware can produce very different performance results. The idea of time used in the

OVP simulator is based on simulation time, that is incremented at the end of each iteration,

which is global across the simulator and is called simulation quantum [55].

3.2.1.3 Special Functions

According to the description of the real architecture [56], the special functions that

were modeled in the ARM Cortex-A9 are:

 Specific instructions for memory reduction;

 Java byte code execution for JIT operations;

 Single Instruction, Multiple Data (SIMD) are supported;

 Functions for NEON media processing;

 Vector Floating Point Coprocessor (VFP) is modeled;

 Extensions for data security modules (TrustZone);

 Address translation for secured and unsecured virtual memory.

3.2.1.4 Modeled Registers

To support the implementation of a real processor application, whole register file and

support registers are implemented, enabling a better reproduction of the real behavior.

38

Table 3.1 lists the modeled registers of the ARM Cortex-A9 architecture.

Table 3.1 – ARM Cortex-A9 Register File

Source: [56]

3.3 Linux Operating System

The Linux kernel was selected as a target for our experiments as it provides a

representative Operating System. The mainly reason for choosing this OS is that it is an open

source environment, which significantly facilitates the controllability and observability

required by the internal experiments. Beyond that, it is worth mentioning that Linux is already

considered as an option of a commercial purpose operating system, which is being included in

a wide range of applications, including those with reliability requirements [13].

The controllability of the OS enables our failure classification, which will be discussed

later, through the observations made after each experiment. It is correct to say that based on

the error detection mechanisms of Linux we draw part of our conclusions.

In this section, the focus is the Linux Kernel analysis and discussion on the OS

exception handling mechanism.

Name # of Bits Initial Value Operation Type Function

R0 32 0 R/W General Purpose

R1 32 0 R/W General Purpose

R2 32 0 R/W General Purpose

R3 32 0 R/W General Purpose

R4 32 0 R/W General Purpose

R5 32 0 R/W General Purpose

R6 32 0 R/W General Purpose

R7 32 0 R/W General Purpose

R8 32 0 R/W General Purpose

R9 32 0 R/W General Purpose

R10 32 0 R/W General Purpose

R11 32 0 R/W Frame Pointer

R12 32 0 R/W General Purpose

SP 32 0 R/W Stack Pointer

PC 32 0 R/W Program Counter

39

3.3.1 Conceptual Architecture

The Linux is a UNIX-like operating system based on the open source concept and,

according to [57], it is composed of four major subsystems. The first is the user space, which

includes the user applications in a specific Linux installation, a region where they are

executed and the Linux libraries, which promote mechanisms for allocation and

communication of the applications and the kernel . The next subsystem is the O/S services,

gathering all OS interfaces like command shell, kernel interface for programming. The

hardware controllers provide interface for physical devices, like communications systems,

memory architecture, disks and the CPU itself, making this subsystem dependent on the

hardware architecture. Finally, the Linux kernel, that is the main interest of this work, since it

provide an abstraction layer for hardware managing, specially the processor, making this

subsystem independent from the architecture.

The described topology can be seen in Figure 3.2.

Figure 3.2 – Linux System Major Subsystems

Source: Adapted from [57]

Each subsystem can only communicate with the subsystem that is immediately

adjacent to it. In addition, the dependencies between subsystems are from the top to bottom,

i.e., a subsystem near the top depends on lower subsystems, but subsystems nearer the bottom

do not depend on those at the top [57].

Being our major interest, the Linux kernel can interface with user code through an

abstraction layer, allowing applications to run without hardware specific concerns, that’s why

the application running in Linux doesn't need pre cross compilation.

The Operating System used in this work is provided by Imperas Software Company,

along with the model of the ARM Cortex-A9 processor and is a reduced Linux v2.6 kernel.

40

The codes are compiled using the standard g++ Gnu Compiler Collection and automatically

run from the file system that, in the simulation platform, is a directory.

Linux adopts a monolithic kernel strategy, meaning that it has a single block compiled

with all services provided by the system. The kernel also is composed by subsystems [57],

where each one is responsible for implementing operating system functions, as follows:

 Process Scheduler: manages CPU resource sharing by the kernel and

running applications. In real time OS versions, it is responsible for

guaranty that each task is being executed on time;

 Memory Management: similar to the Process Manager, this subsystem

manages accesses to the system main memory, supporting virtualization;

 Virtual File System: provides a common interface for all the data stored in

hardware devices, supporting different formats of file systems;

 Network Layer: allows connection to other network devices;

 Process Communication: implement communication management between

active processes in the OS;

Additionally, to support the described subsystems, the kernel also include specific

libraries to sustain processes dependencies and an initialization subsystem, for setting up user

dependent configurations.

The described architecture and how the subsystems interact is shown in Figure 3.3.

Figure 3.3 – Linux Kernel Architecture

Source: Adapted from [57]

41

3.3.2 Exception Management

One of the advantages of the Linux is the ability to detect natively exceptions by

implementing dedicated kernel functions that monitors each application operation before

execution. Kernel calls functions are generated via interrupts and manifest themselves in 4

ways: (1) an interruption issued to the processor by a hardware device indicating that it

requires attention, (2) an exception indicated by the processor due an error, (3) a kernel call or

system call issued by an application, or (4) a kernel thread [58]. The activation of internal

kernel functions is not defined only by the mentioned events, but also the current kernel state.

In this work, we focus on the second and third items (kernel calls issued by an error in the

processor or by an application), since the injected faults can result in both behaviors and are

reflected similarly in the operating system mechanisms [59].

In this scope, a process may result in a hardware exception generation when, for

example, it attempts to divide by zero or fails translating a virtual address. In a UNIX based

operating system, this event automatically changes the processor context to start the execution

of an exception handler in the kernel. In this cases kernel are able to manage the exception,

like in a 'page fault' that happens when there is a mapped address page which is not loaded in

fact, but the kernel can pre-identify the problem before an illegal access actually occur. As a

result, the application exits, but if possible the page will be allocated, remapped and the

application flow can follow.

When an exception is detected and cannot be handled by the kernel's internal

mechanisms, then it is identified and a default trigger mechanism is called in order to handle

these exceptions. This mechanism is called signals, where the system sends a notification to

the application with the type of exception that occurred [58][60]. Examples of such

exceptions that triggers default signals are:

 Division by zero: a division by zero error exception (SIGFPE) is generated

by making the kernel sending this signal to the application.

 Segmentation Fault: access to a memory address out of virtual address

space, making the kernel notify the application through a SIGSEGV

signal, since he cannot know the right address.

By sending a signal back to the application indicating the exception, it may contain a

handler to treat it. The existence of these handlers depends on the software developer, and if it

does not exist, the operating system can terminate the application. In this work, all

42

benchmarks were edited by including a default signal handler able to capture any signal

propagated by the Linux kernel with no corrective action, but only generating an external

message to the OVPSim platform in order to provide failure classification for further result

gathering.

3.4 Fault Injection Environment

The embedded systems emulation method for fault injection envisions the reduction of

limitations when compared to other techniques. Since the architecture model is available in

software, it is possible to obtain a high degree of control and observability in the experiments

provided by the source code emulator. Through this, it is possible to emulate soft errors in the

memory elements of the available processor model. In contrast to several fault injection

techniques, this approach does not require application modifications that will run in the target

processor for fault injection, except for diagnosis improvements regarding software masking

effects. Another relevant aspect is the emphatic run time reduction of the experiments

compared to hardware description simulation through tools such as ModelSim. The software

validation for state of the art processors also makes this approach attractive, since the

manufacturers do not normally provide hardware description for COTS devices.

As previously defined at Section 3.2.1.4, all the faults in this work are injected into the

processor’s register bank. The ARM processor embedded at the studied SoC is a single-core

ARM Cortex-A9. The system is simulated with the OVPSim simulator, defined at Section

2.3. The fault injector is the OVPSim-FIM and its technique will be introduced at Section

3.4.2. Each benchmark execution has one random fault injection, as defined at Section

3.4.2.1. The model used to simulate the ARM Cortex-A9 was the model developed by ARM

Ltd itself to be specially used at OVPSim, called "Cortex-A9MPx1". This model is validated

by use, since it is largely used by embedded software developers along with the OVP

simulator, which means that realistic simulations can be possible with this environment.

As the fault injections are limited to the ARM's register bank, the only part of the SoC

simulated is the ARM processor itself and the minimum infrastructure, i.e., memory and bus

models. Other elements such as I/O, DMA and special interfaces are not of importance for

this work.

Figure 3.4 depicts the composition of all this elements that composes the environment.

43

Figure 3.4 – Proposed fault injection framework organization

Source: [12]

This section will define the fault model used in both approaches (bare metal and Linux

OS) and how it is implemented by the Fault Injector module by discussing its architecture and

detailing the Figure 3.4.

3.4.1 Fault Model Definition

The fault model used is called bit-flip or upset, which is nothing but a modification of

the contents of a storage cell during program execution.

In a processor, the regions likely to be affected by this kind of faults are the internal

memory cells, logic registers, control registers and registers that cannot be accessed by the

instruction set. In addition, register files and integrated caches can be included in this list.

Despite the wide range of memory devices, the models only allow access to the register bank,

as shown in Table 3.1, therefore the faults are emulated only in these registers.

Despite its relative simplicity, the bit-flip model is widely used for real faults, since it

accurately corresponds to the default behavior in a real case [62].

44

3.4.2 Fault Injector Module

The simulation platform already described in this work provides an API called ICM,

briefly described in Section 2.3.1. Through this API is granted read and write access at any

time in any part of the architecture implemented on the platform, such as the processor, bus,

memory, or cache. Access is possible during the simulation, exception handling or by calling

specific platform functions. Thus, it is possible to trigger an access when a certain event

occurs, which generates a function call by the simulator capable of manage any architecture

element in accordance depending on the function features.

The Fault Injection Module (OVPSim-FIM) used in this work was introduced by [12],

and developed with the support of the microelectronics post-graduation program of UFRGS.

It uses the ICM resource and is responsible for inserting SEUs, capturing the processor model

exceptions for results elaboration and reports generation. This module is individually

connected to an OVP processor model, that in this work is the ARM Cortex-A9 with one core,

as mentioned, providing independence between simulations, i.e., numerous platform instances

comprising processor, memories and fault injector can be run concurrently, as each processor

model includes one fault injection event.

The fault injector module uses the instruction bus monitoring at runtime and can be

used in any processor model. The monitoring function has been developed using the Callback

API of the OVP platform, which is called when any previously configured event occurs.

Then, after the detection of this event, the simulator calls the data handling function, pointing

to the fault injector module.

The callback function triggers the execution sequence of the fault injector by accessing

the fault information, position, location and mask pattern that will always be a single-bit flip.

To ensure a better distribution of faults, the module checks if the position to inject the fault is

the same as the previous one. If it is valid, another ICM function is used to read the selected

register value and store its value in a temporary variable. By using a masking operation, it is

possible to invert the target bit, emulating an SEU. After that, the resulting value is written

back in the selected register and simulation returns where it left off.

Depending on the target register, the erroneous value can lead to an exception in the

processor, such as a shift in the program counter register that may cause a simulation crash,

and is an intrinsic behavior of the OVP processor model to be interrupted until this exception

be handled. Several situations may occur due to the random fault injection, like the processor

45

fault manager activation or read/write events beyond the extent of memory accepted by the

platform, which is limited to 500 MB for any application. Each one of these errors generates a

specific exception in the model. The fault injector module allows you to separate the different

exceptions individually and to continue running from the stop point, as long the OVP

scheduler are returned to the processor´s model when an exception is captured.

It is worth emphasis that the objective is to identify possible failures arising from the

impact of a SEU and not to treat or mitigate them. To do this, as many environments run

simultaneously, we must remove the processor that has failed without affecting others. The

icmFreeze function is responsible for remove a specific processor, allowing the simulation to

be resumed for all pending models. This process is repeated until all of the processors

complete their operation or generate an exception. Eventually the generated error might lead

the application to fall into an infinite loop, generating an excessive memory consumption and

simulation time; to avoid such a situation the application, every time the current simulation

run 10% more instructions than the expected number, it is considered incorrect, the processor

is removed and the simulator generates an exception.

If no exception is identified during the execution, the memory still needs to be

compared. Thus, the model recovers the memory map attached to the processor model and

compares with a known map without errors and this process is repeated for all running

simulation instances. The collection of exceptions and differences between memories in the

simulations are compiled in a final report.

Figure 3.5 shows the described structure of the fault injector module.

46

Figure 3.5 – Fault injector module architecture

Source: Author

However, the presence of an operating system may cause that some errors are masked.

As described in the exception handling Linux mechanisms, an exception indicated by the

processor because of an error can generates a kernel call and the OS are able to manage the

issue and resume the application without crashing or hanging the system. In the eyes of the

processor, no error was reported and consequently the platform or the presented fault injector

can identify no failures.

To work around this phenomenon, a different fault injector was proposed when the

Linux OS is on top of the embedded system. Each application needs to be edited by including

a default signal handler able to capture any signal propagated by the Linux kernel. The signal

handler should have no corrective action; it only generates an external message to the

OVPSim platform in order to provide an failure classification for further result gathering. The

message is able to write and classify each Linux signal in a reserved memory area with no

47

code or application data. During results collection phase, the fault injector can access this

memory and classify the items together with default platform reports.

Figure 3.6 shows the proposed fault injector structure to support Linux exception

signals.

Figure 3.6 – Fault injector module architecture for embedded system with Linux

Source: Author

3.4.2.1Fault Injection Phases

For evaluation, fault injection comprises five steps: executing a simulation without

injecting faults, fault creation, fault injection, failure checking and result collection.

Figure 3.7 present all the steps and its subdivisions.

48

Figure 3.7 – Fault Injector Operation Flow

Source: Author

The execution of the environment without fault injection, also called gold model, is

performed with the target platform and code without any intervention, so that from this

simulation the essential information such as instruction count and memory map are collected.

The same application that is compiled using the proper cross-compiler, is executed in the gold

model and in the fault campaign platforms. The instruction count is used in the next step as a

reference for pseudorandom register selection where the fault is injected. The memory map

file contains a copy of the memory content, containing all addresses that have changed in

comparison to the initial memory, avoiding that the full memory space is copied, that is, even

if the memory model used on the platform have 10 MB, if an application uses a smaller

quantity of data, the copied memory map will contain exactly what the application uses, not

all 10 MB.

49

The second phase comprises the fault creation where the SEU that will be injected is

implemented in pseudo-random manner. This stage selects the timing, location and fault

mask. As mentioned above, the OVP platform has granularity of an instruction (instruction

accurate) and consequently the smallest element where a fault can be injected is during

execution of an instruction, ignoring at which clock cycle the fault happen. The fault injector

in this work selects a pseudorandom position that is, in practice, the execution time of the

application. This position is nothing more than a number between 0 (zero) and the last

instruction that were extracted during the previous step for the bare metal environment. For

the Linux environment, the position starts where the application starts in memory. Once the

insertion time has been selected, it is necessary to select a location, i.e., a flip-flop in the

register file to introduce a single fault. The process for choosing the register is also

pseudorandom and follows a similar concept as the timing selection, but now from a list

containing all registers.

As previously discussed, the processor model provides only registers that can be

observed from the application standpoint, not including therefore registers that exist in the

physical architecture, as those present in the pipeline. In this work, faults are injected into the

entire register file as listed in Table 3.1 and are implemented as a single bit flip. To do this, a

bit mask to "1" is used to inject this event, and only one bit is selected for masking to "0"

(zero), exchanging its value by doing an XNOR operation between the mask value and the

actual register value. For example, to change the third bit in a 32-bit register, the mask value

would be 0xFFFFFFFB. As in the other steps, the generation of these masks is also pseudo-

random. After mask value definition, the selected position receives its opposite value,

ensuring that the fault will produce an error, since the value in a real situation caused by SEU

can be the same as the bit already has, and does not represent an actual error. In this third

stage, beyond the fault injection, any exceptions that the simulator accuse due to error caused

by unexpected behavior of the processor model is captured. As multiple instances of the

simulation environment can be triggered independently, each one can simulate a fault

injection and executes the described process.

In the fourth stage, the simulation results are compared to the results obtained from the

gold model. In this work, a fault is counted as a failure when there is a change in the

application behavior or when data stored in memory is different from the expected.

The last step comprises the information collection where results are gathered from all

simulations platforms and compiled in a final report.

50

3.4.3 Failure Classification

In the last OVPSim-FIM step, the final report is generated and the simulation

campaign shall then be interpreted. The most important information for this work’s analysis is

the number of failures and their classifications. In order to establish a relationship between

both environments, bare metal and Linux failure classification are equivalent. The failure

types are defined, alongside with their categorization, which helps to understand better the

effect of the errors on the application run, as follows [12]:

 Masked_Fault: The fault produce an error that was masked, meaning that

simulation finishes normally, without processor signaling or memory

incoherencies with gold model;

 Control_Flow_Data_OK: Divergence between executed instructions

during test and gold phase, but memory is correct;

 Control_Flow_Data_ERROR: Divergence between executed instructions

during test and gold phase, and also between memories;

 REG_STATE_Data_OK: Internal state is incorrect, but memory is correct;

 REG_STATE__ERROR: Both internal state and memory incorrect;

 SDC: Silent data corruption failure, meaning that simulation ended with

no noticeable events, but memory ended different than gold model;

 RD_PRIV: Read privilege exception;

 WR_PRIV:Write privilege exception;

 RD_ALIGN: Read align exception;

 WR_ALIGN: Write align exception;

 FE_PRIV: Fetch privilege exception;

 FE_ABORT: Fetch an inconsistent instruction;

 ARITH: Arithmetic exception in an instruction;

 Hang: Application presumably in an infinite loop;

The above classification does not take into account the OS failures. As mentioned in

Section 3.4.2.1, the Fault Injector was modified to handle Linux signals. The fault injection

campaigns have shown that between operating system available signals, Linux was able to

detect only segmentation fault, illegal access and floating point exception violations, and so,

only these signals were included in results.

51

 SEG_FAULT: Segmentation fault error (the application tries to address a

non-allocated memory area);

 ILLEGAL_INST: Illegal instruction error (the processor attempts to

execute an illegal, malformed, unknown, or privileged instruction);

 FLOAT_PT_EXC: Floating Point Exception (code generates an overflow,

underflow, or divide-by-zero error).

Nevertheless, for practical reasons those types of failures are re-classified on three

different groups, based on their behavior and consequences to the application execution:

HANG, SDC and UNACE. Those groups are defined below.

 SDC: Those failures are detected due to a difference in the final memory

from the golden phase execution and the fault-injected test executions.

 HANG: Failures that cause the application to be stuck in a certain point.

Not necessarily in a given instruction, but also in an infinite loop.

 UNACE: Any error that had no influence at all at the final memory state,

i.e., memory is just as if it was predicted to be by the golden phase

execution.

Table 3.2 classifies the previously defined Failures into those new classifications.

Table 3.2 – Failure Group Classification

Failure Group Failure Types

HANG

Hang, RD_PRIV, WR_PRIV, RD_ALIGN, WR_ALIGN, FE_PRIV,

FE_ABORT, ARITH, SEG_FAULT, ILLEGAL_INST and

FLOAT_PT_EXC

SDC SDC, Control_Flow_Data_ERROR and REG_STATE_Data_ERROR

UNACE Masked_Fault, Control_Flow_Data_OK and REG_STATE_Data_OK

Source: Author

This classification helps to better identify the type of failure and what may have

caused it. Note that not all of the nineteen types of failures are defined at Table 3.2. That is

because this failure grouping definition does not take into account the errors that were caught

by Linux.

52

4 APPLICATIONS ENVIRONMENT

In this section, it is defined the environments in which the tests were proceeded. For

both platforms, bare metal and Linux, a brief description of compilation methodology and

fault timing selectivity is presented, since the presence of an Operating System requires

particular techniques to provide fair comparisons. These different environments are intended

to define the level of implementation complexity, which for bare metal application is

considered lower, providing means to evaluate the impact these approaches. In total, eleven

benchmarks are presented and discussed in terms of functionality but particularly its data

behavior diversity. The simulation report structure is also presented, providing an overview

on the platform observability.

4.1 Testing Platform

The structure of each system that is target of faults can be seen in Figure 4.1. In each

environment, the complete set of benchmarks is run to exercise the registers in the emulated

processor's register file. The bare metal system, Figure 4.1 (a), is set in two layers, a processor

initialization and the main function, which is responsible for implementing the applications.

The Linux system, Figure 4.1 (b), considered the most complex system between the

environments, has a Kernel v3.7.1 and it is structured in two main levels: user space and

kernel space. In the user space, a process for benchmark execution is defined, and again the

purpose is to generate debug messages to indicate the condition of the system that is running

in the emulator. The user space naturally shares resources with the kernel space, whose

functions was described above.

Figure 4.1 – Test Environments Structure

Source: Author

53

The system setup on where OVPSim runs is not relevant on the simulation results, but

it shall influence only the simulation execution time. It also has no influence at all in the

simulation model execution. The benchmarks execution relies only on the defined target

architecture being simulated, in this case the ARM Cortex-A9 in an ARMv7 architecture

version. Figure 4.2 shows the system information given by the simulator itself.

Figure 4.2 – Emulated CPU Information

Source: Author

The tests were executed on a personal computer with an Intel® Core™ i5-5200U CPU

@ 2.20GHz processor, 4GB of RAM and running CentOS 7 Linux as OS. The test execution

time for each benchmark is very variable, as some are more complex and computing

demanding than others. All tests were automated by script, allowing parallel simulation with

multiple environment, each one composed of only one embedded processor and memory.

4.2 Benchmarks

In this work, we choose to work along with Worst-Case Execution Time (WCET)

analysis project [63] that performs research in static WCET. In this research project, the

application does not run in a conventional way, instead it derives the WCET information by

analyzing the characteristics of the program code and the target hardware. The focus is on

methods for deriving safe information on the possible executions of a program, like iteration

54

limits of loops and dependencies between conditional statements. The group maintains a large

number of WCET benchmark programs, used to evaluate and compare different types of

analysis tools and methods. The benchmarks are collected from several different research

groups and tool vendors. Each benchmark is provided as a C source file.

All benchmark programs are single path programs. While different input data cause

the code to execute on different execution paths with different execution times, the single-

path approach avoids this uncertainty by ensuring that the code has only a single execution

path. To do this, the approach uses code with loops with invariable iteration counts and

branches dependent only on local data, avoiding I/O operation. By using this benchmark, we

guaranty predictability on execution time making the bit-flip localization equally distributed

in all simulations during fault injection campaign.

Ten benchmarks from WCET group were used in the tests. Additionally, an Imperas

benchmark was included since its intention is to achieve maximum CPU performance. They

were chosen intentionally in order to exploit the diversity of behavior and to attempt to reach

failure detection classification variety, as described below:

 binary_search: Binary search relies on a divide and conquer strategy to find a

value within an already-sorted collection. It divides a range of values into

halves, and continues to narrow down the field of search until the unknown

value is found. It can be used to access any sorted collection data quickly;

o Loop based;

o Uses arrays and/or matrixes;

 bitManipulation: To act on data at bit level or set of bits using boolean

operations is called bit manipulation. In computing, this technique is used for

low-level operations such as device control, or in some algorithms such as

detection and error correction and encryption, as well as for optimization. The

operations used in bit manipulation are boolean operations like AND, OR,

XOR, NOT, the arithmetic and logic shifts and rotations;

o Uses arrays and/or matrixes;

o Bit operations

 bubble: The bubble sort makes multiple passes through a list, comparing

adjacent items and exchanging those that are out of order. Each pass through

the list places the next largest value in its proper place, doing it repeatedly until

55

no swaps are needed, which indicates that the list is sorted. It is a good

example of an O(n
2
) complexity algorithm;

o Nested loops;

o Uses arrays and/or matrixes;

 compress: The algorithm is based on the common Unix compression utility.

This version has been modified to its work in memory, rather than reading and

writing files, to avoid disk IO. Only compression is done from a buffer

containing random data to another one;

o Loop based;

o Uses arrays and/or matrixes;

 crc: Implements a cyclic redundancy check computation on 40 bytes of data by

using a 16-bit CRC CCITT standard with polynomial x
16

 + x
12

+ x
5
 + 1, which

is now widely used for a CRC checksum;

o Single path stereotype;

o Bit operation;

 factorial: Simple algorithm that repeats 50 times the factorial operation of 25.

This algorithm was chosen in order to exploit recursion;

o Nested loops;

o Recursion;

o Data interdependence;

 fdct: The forward discrete cosine transform is a technique for converting a

signal into elementary frequency components, similar to the discrete Fourier

transform. It is widely used in image compression;

o Uses arrays and/or matrixes;

o Floating point operations;

 harm: implementation of a harmonic series defined by equation (4.1)

(4.1)

o Loop based;

o Floating point operations;

o Data interdependence;

56

 matrixMult: This program multiplies two 20x20 square matrices resulting in a

3
rd

 matrix. It uses compiler's resources to handle multidimensional arrays and

simple arithmetic and exploits looping code behavior.

o Single path stereotype

o Nested loops;

o Uses arrays and/or matrixes;

 mdc: The Euclidean algorithm is a way to find the greatest common divisor

(the largest positive integer that divides the numbers without a remainder) of

positive integers;

o Loop based;

o Data intensive;

 peakSpeed: This is the Imperas benchmark to achieve maximum CPU

performance. It consists of 500 interactions of sequential variables attributions,

concluding with the sum of all compromised values;

o Loop based;

o Data interdependence;

Table 4.1 shows the number of instructions executed in bare metal and in Linux for the

set of applications. The Linux boot executes 1,176,574,110 instructions. Note that the number

of instructions of the application executed in bare metal and in Linux is very similar. The

difference comes from the fact that for bare metal we use a compiler for the ARM Cortex-A9

architecture, while for Linux we use the default GNU compiler, since the application is on top

of the OS, what results in a different instruction count.

Table 4.1 – Number of Instructions Executed in Bare metal and in Linux for the set of Applications

Applications
Bare Metal # of Exec.

Instructions

Linux

of Exec. Instructions

binary_search 138,293 130,010

bitManipulation 305,211 293,520

bubble 236,548 236,164

compress 196,736 189,141

crc 201,812 223,448

factorial 310,343 310,061

fdct 507,696 537,709

harm 449,123 448,839

matrixMult 343,373 343,172

57

mdc 658,172 510,295

peakSpeed 19,859 19,574

Source: Author

4.3 Fault Distribution

The fault injection process in 15 registers of the Cortex-A9 architecture was made in a

random distributed manner, i.e., register bank were injected with 100000 faults that guaranty

an approximate distribution for each register. Thus, 1.1 million faults were injected during the

campaign of each environment, since we are working with 11. To ensure a known condition

for the comparison step of the results in the fault injector, at the end of each benchmark

running the whole system is returned to the initial value, therefore, no more than one fault is

injected per application execution. After that procedure, a new run is initiated, in order to

emulate a new fault.

As mentioned, due to Linux ability to handle errors, OVPSim-FIM classification was

extended to include signals triggered by kernel categories. The signal handler added to each

application code has the ability to write and classify each signal in a reserved memory area

with no code or application data and after that, resumes the simulation. During results

collection phase, the fault injector can access this memory and classify the items together with

default platform reports.

When executing an application in bare metal mode, all instructions in memory belong

to the application and the code is compiled directly for the architecture. As a result, it is

guaranteed that any injected fault will aggress a register with an application content. Figure

4.3 presents the bare metal fault distribution approach.

Figure 4.3 – Bare Metal Fault Distribution over Time

Source: Author

58

Applications that run in Linux shall be compiled for the specific operating system and

the resulting memory occupation is very different from bare metal, as it includes the OS data.

This works aims to analyze the application behavior under faults in both platforms, but in this

case much OS Linux architecture runs alone and a fault injected in this moment would check

only the Operating System. In order to run the benchmark, the Linux shall be booted first,

resulting in a much higher number of instructions than in bare metal version. This behavior

generates an unfair comparison between platforms, since random fault injections are most

likely to happen during Linux boot than in the application itself. Safe critical applications that

use operating systems are commonly initialized before being exposed to the susceptible

environment, thus booting should not be taken into account. In addition, when performing the

OS boot, all the latent errors are cleaned.

OVPSim-FIM was modified to identify application beginning and guaranty that fault

injection happens only after it starts, but after that, Linux kernel is also exposed to faults

along with the application, since it shares the processor resources even running with only one

application.

Besides that, the application signal handler is an additional code used as a solution to

overcome the inability of the platform to capture exceptions since Linux was able to prevent.

This strategy may lead to an unbalanced analysis if these additional functions are take into

account during fault injection, as bare metal applications do not include this code. So, in

addition to finishing the simulation when a Linux exception signal is captured, it also informs

to fault injector the moment where injecting faults is allowed, that is after signal handling

functions initialization. Figure 4.4 presents the Linux fault distribution approach.

Figure 4.4 – Linux Fault Distribution over Time

Source: Author

59

4.3.1 System Observability

Each simulation, independently the environment it is running, results in three tables.

The first table summarizes all executions of a given benchmark in the following

characteristics:

 Fault number;

 Selected instruction number for fault injection;

 Selected register;

 The mask to determine the position in the register that will suffer the bit-flip;

 The value that the program counter stopped when simulation ends due to

normal or exceptional reasons;

 The result of comparison between the golden model memory and the one under

analysis;

 The failure detection, and;

 The simulator flag returned at the end of the simulation.

The second table summarizes all executions in terms of architecture, i.e., the place

where the fault was inserted. This analysis is of great importance as it highlights the critical

points in microprocessor architecture. The table lists in order, the register where the fault is

injected, the injected total number of faults in that register, the percentage of injected faults,

the number of failures that occurred due to an inserted fault and the error rate.

The third table is complementary to the second one, as it depicts the failure

classification per register, i.e., the failure gamma that arises in each register during the

campaign. This information is valuable, since along with critical registers highlighted by the

second table, the know of failure types in a given register can provide means to understand

how each application allocate processor resources and consequently knows which one to

protect.

Second and third result tables will be presented and discussed in Chapter 5. Table 4.2

presents an excerpt of the first table from an example report.

Table 4.2 – Result Example with Faults Details

Fault # Instruction # Register
Bit-Flip

Mask

Final

PC

Memory

Comparison

Failure

Detection

Simulator

Flag

0 130,811 R1 0xFFFFFFFF 276,735 0 0 3

1 160,830 R11 0xDFFFFFFF 160,830 1 1 12

60

2 210,709 R7 0xFFFFFFDF 276,735 1 1 3

...

18 28,631 R3 0xFDFFFFFF 276,595 0 1 3

...

Source: Author

In Table 4.2, always the first line corresponds to the simulation in which no fault has

been inserted and which is used as reference for the other simulations, i.e., the golden model.

It is for this reason that the mask in line 0 (zero) is 0xFFFFFFFF, corresponding to no bit-flip.

It is also through this implementation reference that can be seen the highest value that the

program counter takes, indicating that this is the last instruction number of the test

application. The simulator flag always finishes with number 3 and 12 in all tests, which

means, respectively, that the simulation has ended normally and the simulation was stopped

by icmFreeze function previously described.

Based on this information we can still notice some behaviors resulting from the fault

injection. In line 1, a failure in the R11 register (frame pointer) is expected, since this record

helps a function return along with stack pointer. This type of failure is noticed by the

platform, causing a simulation crash and forcing the environment to kill it. This event

generates two actions in the report: failure detection and final memory discrepancy, as the

execution does not come to an end and therefore not finished writing in memory.

Some errors, as the depicted in line 2, will not cause the simulation interruption and

will execute completely. However, the comparison between the final memories warns

discrepancy in the results, indicating that the bit-flip probably happen in a register with data

stored in it that was written back to the memory or that was used in a result calculation.

The line with index 18 shows the opposite; a simulation that was not killed by the

simulator (simulator flag 3) due to the error, ended prematurely, but at the same time executed

enough code to complete the simulation with correct memory data. This case is known for

demonstrating the fact that an error may manifest later in the execution (fault injected in the

first instructions, but which generates locking near the end of the application) and that was not

detected in terms of data generated erroneously.

61

5 RESULTS AND ANALYSIS

In this chapter, the results of the test campaigns discussed in Section 4 are presented.

At first, our test environment and methodology is compared to a real hardware setup in order

to establish a relationship between simulated and physical testing.

After that, all fault injection procedures were repeated for both environments, bare

metal and Linux OS, and the results aimed to establish comparison between them. Initially,

we evaluated the types of failures that take place in each application, classifying them

according to Section 3.4.3, comparing them with each other and between environments. The

classification proposal aims to synthesize the behavior under a functional perspective, but the

complete classification can be seen in Appendix A. At first, both platforms will be analyzed

equivalently, without concerning the operating system features. Also in this context, will be

possible to analyze from the perspective of the ARM Cortex-A9 processor architecture the

location of these errors and recognize the most sensitive points of the register bank to some

benchmarks. In a second step, we refine the analysis comparing the final memory, separating

the effects of latent errors from the ones that generate wrong results.

Finally, an analysis on architectural and application vulnerability factor will be

presented in order to sustain the work developed in this study, along with the overall error rate

between environments for all benchmarks.

5.1 Interruption-based Physical Environment Comparison

Before comparing the results between Linux and bare metal environment achieved by

simulation in our OVP environment, we must establish a correlation between the real

processor in an equivalent methodology. This comparison is based on the study developed by

Lins [68], where a Xilinx Zynq-7000 Processing System, that includes an embedded single

core ARM Cortex-A9, was tested against an interruption-based environment, commonly

called hardware emulation. This approach exploits an identical strategy used in this work,

where a bit-flip is forced in an internal memory element triggered by a pseudo random

interruption. In [68], Lins evaluate the behavior of three applications by injecting faults in the

processor’s register file, from R0 to R12.

This method is based on the idea published by Raoul Velazco [69] that is based on

adding functions to your code that are able to inject upsets in the register file, PC and SP

62

registers. These functions, as implemented by Lins, are triggered by hardware interruptions,

which randomly select fault location and time. By doing this, the method include instruction

sequences to inject faults on critical control registers, often not directly accessible by the

instruction set. As depicted by Velazco, the approach has the same limitations as our

simulation based method, since not all possible sensitive elements can be reached and the

effects of SEUs cannot be seen during instruction execution.

In the referred environment, when the application is completed the output is compared

with a previously executed application with no faults inserted. The interruption-based

platform is able to categorize two possible failures: (a) a mismatch between executions are

identified as a Silent Data Corruption (SDC) and (b), whenever the ARM becomes

unresponsive or sends garbage through the serial communication used for result collection, a

Single Event Functional Interruption (SEFI) is detected by a watchdog in the host PC, causing

a system reboot. Those classifications are equivalent to the SDC and HANG categories

previously explained in section 3.4.3. The platform also allows logging the register where the

fault was injected in the cases where it caused corruption of the expected output value.

The applications under test were a Matrix Multiplication (MxM), Advanced

Encryption Standard (AES) and Quicksort algorithms. All of them were executed

approximately 100000 times each in the interrupt-based platform, and exactly 100000 times

each in OVP platform. For comparison purposes, the same application sources were used,

compilation optimization was set to level 2 and exposed registers (R0 to R12) are the same in

both environments. However, the software compilers and assemblers are different, since

Xilinx provide its own development and integration platform, despite having the same

processor architecture.

Figure 5.1 depicts the SDC error comparison between platforms for all mentioned

applications.

63

Figure 5.1 – SDCs Comparison with Interruption-based Platform

Source: Author

Matrix multiplication, AES and Quicksort applications have failures rates around 35%,

3% and 2.5%, respectively. As can be noted, there is a correlation between the OVP platform

and the hardware emulation by interrupt-based fault injection in terms of proportion, i.e., in a

single application, both environments have no more than 3% of difference from the total

amount of injected faults. Considering that and the amount of executions performed in both

environments, it is possible to say that the application has a similar flow and data

management, which means coherence between real processor's architecture and modeled one.

Observing the results from this perspective we cannot conclude that the observed difference is

a result of the environment discrepancies, since both methods use pseudo random fault

distribution, which can lead to differences even bigger between applications in the same

environment. However, if we compare the amount of failures, it is possible to have a different

interpretation, where OVP environment has 2 times more failures for Quicksort and 2.3 times

more failures for AES algorithm. Despite the applications behave similar in the processor, we

cannot say that data distribution in the register file are analogous, because the results shows

that interrupt-based platform is twice times less susceptible to SEU faults. One possible

reason to this behavior is the compilation process, since we were not able to compile the code

for both platform in a single compiler. The result can be different optimization strategies,

register allocation and/or distribution, which reflects on the error rate.

64

Figure 5.2 shows the comparison between errors that results in a crash or undesirable

behavior of the same applications.

Figure 5.2 – HANGs Comparison with Interruption-based Platform

Source: Author

Now, a different behavior can be observed, since there is more deviation in the results

for mostly applications even from the total amount of injected faults perspective. MxM still

have a coherent result, with 1.2% of difference, but AES and Quicksort algorithms presented

a significant deviation, ranging from 7.1% and 8.5%, respectively. Again, if we consider the

amount of failures, we'll see interrupt-based platform with 50% more failures in AES

application and OVP with approximately 9 times more failures for Quicksort. These

discrepancies again reflects the fact that the we have different compilers in both scenarios,

resulting in different behaviors in front of the same fault injection pattern.

To enforce this assumption, an analysis at register level gives us a better understanding

of the register susceptibility in each platform. Figure 5.3 bellow presents the error rate for all

applications in each tested register that produced SDC failures.

65

Figure 5.3 – SDCs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort

Source: Author

The SDCs results showed to be coherent in the overall error analysis, and this

correlation can be confirmed again in Figure 5.4. Although at the first sight many differences

can be noticed from register to register in the same application, the average error rate of all

66

applications gives the results discussed earlier. A closer look shows that for MxM, the

interrupt-based environment tend to distribute data in R0 to R2 and R8 to R10, while OVP

compiler prefers to distribute data in R5 to R10. The same phenomena happen in the AES and

Quicksort application, where OVP platform locate data between R5 to R10. In the other hand,

interrupt-based platform distributed data along the available registers for AES, while

concentrate in R0 to R3 for Quicksort. A main conclusion can be drawn from this analysis,

that is, despite the results noticed for overall rate are similar, register allocation can be very

different, justifying the relative error previously explained.

In the same way, the tests produced the fault sensibility result for all applications in

each tested register that generates HANG failures. Figure 5.4 bellow presents the results.

Figure 5.4 – HANGs Comparison at Register Level: (a) MxM, (b) AES and (c) Quicksort

67

Source: Author

In the graphs presented in Figure 5.4, a memory element with noticeable error rate

means that flow control information is allocated in that register. This allocation, as mentioned,

is intrinsically related with the compiler, who maps this information to the available register

resources. Depending on the optimization and the compiler algorithm itself, the register

mapping will differ, and the same application will allocate different resources, despite the

processor being the same. MxM application has a similar error rate along the register bank,

and it is noticeable that OVP platform tend to use R11 for control flow operations, while

interrupt-based platform prefers R10. Therefore, this regular distribution of both

environments produced a similar error rate, as seen in Figure 5.2. The OVP tendency to

allocate R11 (frame pointer) is recurrent in AES and Quicksort, while interrupt-based

platform compiler find different solutions to resolve the application control flow. For example

in AES, where R0 to R7 doesn’t generate any failure like in OVP environment, which are

locate mostly in R8 to R11. Quicksort application shows a singular situation, where both

environments used R0 to R4 to locate the control flow data. However, exceptionally in OVP

platform, the frame pointer was abused by the OVP compiler, which results in a high error

rate due to the register AVF, which is expected to be high.

Based on the presented results we cannot conclude that the environments have any

kind of equivalency. The approach of using different compilers brought a variable that adds

uncertainty to the results and unfortunately, it was not possible to perform a new fault

campaign, meaning that OVP platform results can only be analyzed in the scope of the

simulation environment.

68

5.2 Environment Comparison

This section will present the comparative results of SEUs injection from the viewpoint

of the failures classification in a functional perspective. As mentioned, the failure analysis

compares each application running under fault injection with a gold reference to detect errors.

A failure would be reported when a mismatch is found in the application control flow or data

results.

The platform OVPSim is able to report an UNACE event, when no error is detected

and the result memory is identical to golden execution, a HANG, meaning the application or

system hanged or crashed and a SDC, informing that application has finished but the data

memory mismatch with the golden memory. For SDC failures, note that not only the

application results stored in memory are compared but the entire memory space. This is

important to analyze any latent error that may occur in the memory.

Figure 5.5 shows the number of UNACE events (white columns), HANG (grey

columns) and SDC (orange columns) failures for each bare metal application. The campaign

of 100,000 faults in each application reached an average error rate slightly above 50 % of the

total number of injected faults. The number of HANGs ranges from 10% to 15%, showing

that regardless of the application behavior, it tends to crash at a relatively constant rate. This

shows a good performance considering that the injections are done in registers in their active

storage cycle. The low rate of HANGs is obtained due to the WCET benchmark

characteristics in the bare metal environment, since they were designed to worst case

execution time analysis, they are all single data path algorithms, with a few number of control

code and mostly data intensive, meaning that the SEUs are less prone to cause a loss of flow.

In the same Figure, SDC failures in most benchmark cases range from 40 % to 47 %

of total injected faults. A substantial number of failures were detected, and again it is a result

of the benchmark composition, strongly based on data manipulation, which constantly

allocates mostly registers for data storing. The variation on fault susceptibility is mainly

because the application particularities. It is important to remark, for example, that the

compress application shows to be less susceptible to SDC failures with 16.6 %, due to the

extensively use of external memory and less necessity of spreading data over registers. The

matrixMult in the other hand, shows a SDC error rate of 58.8 % because it abuses of nested

loops, which is highly benefited from the register renaming mechanism that does loop

unrolling, exposing more the data in the register file.

69

Figure 5.5 – Bare Metal Error Classification

Source: Author

Figure 5.6 – Linux OS Error Classification

Source: Author

As mentioned, the Linux kernel has the capacity to manage errors before they manifest

due to memory virtualization and is able to pre evaluate the execution of an operation. The

impact of this treatment is presented in Figure 5.6. In Linux environment, the majority of the

applications have an error rate ranging from 12 % to 25 %. HANGs in this case can also

happens in OS kernel as it is exposed to faults during application execution, and so they prove

to have a regular distribution, from 12 % to 18 % of total injected faults. It is important to

mention that in this category, we also included hangs that the operating system was able to

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

IN
JE

C
T

E
D

 F
A

U
L

T
S

APPLICATIONS

SDC # Hang # Unace

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

IN
JE

C
T

E
D

 F
A

U
L

T
S

APLICATIONS

SDC # Hang # Unace

70

signalize. However, two applications in this group, compress and matrixMult, draws attention

by having 21 % and 32 % hangs, respectively, this may be due to the fact of the register

allocation for Linux and the application that exposes more frequently control flow registers

due to resource sharing.

In the SDC category, most applications in Figure 5.6 stayed under 6 % of total injected

faults. It happens because in Linux the application is statistically less likely to have a fault,

since the application shares the register file resources with operating system, i.e., part of the

register file is allocated to Linux and part for the application, so the chances to hit a register

file that causes a SDC in the application is reduced. As expected, matrixMult still has more

SDC failures than the average due to hardware loop unrolling.

To better understand the presented results, Figure 5.7 and Figure 5.8 depicts

comparison graphics with HANG and SDC results, respectively.

Figure 5.7 – HANG Comparisons Between Environments

Source: Author

71

Figure 5.8 – SDC Comparisons Between Environments

Source: Author

Figure 5.7 shows that bare metal and Linux environments present a similar behavior

considering HANG type of failure. One of the reasons is the fact that this type of failure is

also manifested due to violations in the execution flow that causes an invalid state of the

processor, not depending on the characteristics of the application itself. Also, the fact that

ARM Cortex-A9 has a build in register renaming mechanism makes control variables to be

equally distributed between registers, causing control variables stored in registers to be spread

and consequently equally prone to errors. However, Linux OS have shown on average a

slightly higher rate comparing with bare metal, which make sense, since resource sharing with

the kernel increase the control flow exposition to SEUs.

However, in neither case we observed such a significant impact on HANGs rate

produced by SEUs in registers. This result can be explained by the applications morphology

and how the registers are allocated during execution. One of the major factors for HANGs

appearance are the branch instruction, there are always conditional or compulsory jumps in

the code. Loops in code generate these instructions, but they use few records to allocate its

controlling while it is operating. As most benchmarks have shown few of these operations

throughout the execution, it is plausible that HANG error rate is low. However, nested loops

start loops inside another loop and take up more registers, making the control instructions

72

more susceptible to SEUs, as in matrixMult application. Another factor that causes an

increase in the number HANGs is the code needed to access external memory, which

increases the number of control instructions and thus HANGs susceptibility, as we noted in

the case of the compress algorithm, which also showed a higher HANG rate.

In Figure 5.8, it is noticed a considerable difference in SDCs detected in bare metal

environment than in Linux. Note that the graph is in logarithmic scale; otherwise, it would be

difficult to see the difference. The high rate of errors in the bare metal environment takes

place due to WCET benchmark characteristics again, which in addition to limiting the

algorithms to single path, they are data manipulation intensive, such as bit manipulation,

matrixes and floating points. These characteristics causes that mostly instructions in the

application manipulate data that will be part of the result. Of course, a large concentration of

such instructions greatly increases the chances of SEUs, causing SDC failures.

On the other hand, we can obtain a significant improvement on using Linux OS, since

SDC rates are much lower, as noted in Figure 5.8. In the operating system case there is still a

lot of data manipulation, therefore this is not the reason that explains the difference seen in

the environments. In fact, two types of masking effects can be observed in presence of OS.

One is the exchange of context by sharing hardware resources with application and Linux

kernel, making the application less likely to be hit by a fault, since the total run time

increases. The other is the increasing number of accesses to the external memory, which

constantly moves data to and from the registers whenever a thread takes precedence, causing

the data to resides less time inside the processor.

5.2.1 Register Fault Susceptibility Analysis

The Fault Injector module was improved to allow detailed reports on the error

coverage by register. By doing this, it was possible to identify critical points in the

applications and to determine how compiler allocates the register bank. The information can

also be used for programmers to improve software reliability.

The results presented in Table 5.1 are expressed in terms of failure percentages

classified between HANGs and SDCs failures per register. Among the benchmark, a set of 4

applications was subjected to this analysis.

73

Table 5.1 – Manifested Failures by Register

compress fdct harm mxm

pc

SDC
Bare metal 1.27% Bare metal 26.87% Bare metal 3.23% Bare metal 15.00%

Linux 0.00% Linux 0.00% Linux 2.86% Linux 3.51%

Hang
Bare metal 68.35% Bare metal 67.16% Bare metal 79.03% Bare metal 73.33%

Linux 80.00% Linux 83.87% Linux 82.86% Linux 80.70%

sp

SDC
Bare metal 8.96% Bare metal 0.00% Bare metal 74.29% Bare metal 1.49%

Linux 7.14% Linux 2.94% Linux 30.56% Linux 4.62%

Hang
Bare metal 2.99% Bare metal 4.05% Bare metal 11.43% Bare metal 1.49%

Linux 3.57% Linux 9.32% Linux 50.00% Linux 1.54%

r0

SDC
Bare metal 0.00% Bare metal 0.00% Bare metal 7.58% Bare metal 56.52%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 47.83%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 10.61% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 3.03% Linux 0.00%

r1

SDC
Bare metal 1.54% Bare metal 12.79% Bare metal 0.00% Bare metal 60.32%

Linux 0.00% Linux 2.94% Linux 0.00% Linux 33.33%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 1.59%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 33.33%

r2

SDC
Bare metal 1.72% Bare metal 29.03% Bare metal 0.00% Bare metal 37.50%

Linux 0.00% Linux 35.71% Linux 0.00% Linux 13.04%

Hang
Bare metal 1.72% Bare metal 1.61% Bare metal 1.19% Bare metal 0.00%

Linux 0.00% Linux 10.71% Linux 5.41% Linux 27.54%

r3

SDC
Bare metal 18.57% Bare metal 68.12% Bare metal 1.75% Bare metal 60.87%

Linux 2.86% Linux 44.12% Linux 0.00% Linux 29.82%

Hang
Bare metal 1.43% Bare metal 2.90% Bare metal 3.51% Bare metal 0.00%

Linux 34.29% Linux 38.24% Linux 7.41% Linux 29.82%

r4

SDC
Bare metal 76.27% Bare metal 0.00% Bare metal 8.20% Bare metal 76.19%

Linux 17.95% Linux 100.00% Linux 0.00% Linux 25.81%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 15.87%

Linux 43.59% Linux 0.00% Linux 0.00% Linux 69.35%

r5

SDC
Bare metal 2.99% Bare metal 100.00% Bare metal 100.00% Bare metal 93.75%

Linux 0.00% Linux 100.00% Linux 0.00% Linux 30.00%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 6.25%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 68.57%

r6

SDC
Bare metal 15.15% Bare metal 100.00% Bare metal 100.00% Bare metal 84.48%

Linux 14.71% Linux 100.00% Linux 0.00% Linux 43.55%

Hang
Bare metal 63.64% Bare metal 0.00% Bare metal 0.00% Bare metal 10.34%

Linux 64.71% Linux 0.00% Linux 0.00% Linux 51.61%

r7

SDC
Bare metal 3.28% Bare metal 100.00% Bare metal 100.00% Bare metal 100.00%

Linux 3.70% Linux 100.00% Linux 0.00% Linux 1.45%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00%

r8 SDC Bare metal 2.74% Bare metal 100.00% Bare metal 100.00% Bare metal 100.00%

74

Linux 4.65% Linux 100.00% Linux 0.00% Linux 5.80%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00%

r9

SDC
Bare metal 100.00% Bare metal 100.00% Bare metal 100.00% Bare metal 100.00%

Linux 0.00% Linux 100.00% Linux 0.00% Linux 4.17%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00%

r10

SDC
Bare metal 1.49% Bare metal 100.00% Bare metal 100.00% Bare metal 100.00%

Linux 3.57% Linux 100.00% Linux 0.00% Linux 2.94%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00%

r11

SDC
Bare metal 6.06% Bare metal 0.00% Bare metal 4.41% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 1.37%

Hang
Bare metal 93.94% Bare metal 100.00% Bare metal 92.65% Bare metal 100.00%

Linux 96.88% Linux 100.00% Linux 95.35% Linux 98.63%

r12

SDC
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 34.29%

Linux 0.00% Linux 100.00% Linux 0.00% Linux 25.40%

Hang
Bare metal 0.00% Bare metal 0.00% Bare metal 0.00% Bare metal 0.00%

Linux 0.00% Linux 0.00% Linux 0.00% Linux 0.00%

Source: Author

As expected, the registers program counter, stack pointer and r11 (frame pointer) have

the highest rate of hangs. The first occurs because it keeps the sequence of instructions and

code jumps and tends to an error rate close to 100%. The second and third pointers are the

callback functions that compute the locations in memory for both arguments as well as local

variables, which also tend to have a high error rate. A noticeable amount of SDC failures can

be seen in these registers, which means that these registers are used to compute data offsets

that result in result miscalculation.

It is clearly shown that starting from r0 to r10 and r12, the HANG are near to 0 % in

all applications. It happens as this registers are almost used exclusively for data storing, which

result in SDC failures, as depicted in Table 5.1 . The exceptions for this are applications that

require a more complex code flow, like compress and matrix multiplication, that uses external

memory accesses and nested loops, respectively. This code behavior causes the compiler to

allocate more registers, in this case r0 to r6, for control, provoking HANGs. The same

registers, specially r5 to r10 have a high SDC rate (around 100 %) in both bare metal and

Linux code, meaning that they are preferable by the compiler to store temporary and result

data. This finding can drive developers to distribute registers better along the code or

optimizes code, in order to reduce the vulnerability of this registers.

75

It is also noticeable that Linux has a better performance over bare metal for SDCs

failures, but in contrast it has a worst HANG error rate in same registers. It is expected that

Linux change software context from kernel to the application, leading to a higher data

masking, since it is moved to and from external memory. However, doing this the kernel code

is also exposed, and since it has high vulnerability for being the operating system core, it

consequently causes the software to crash.

From a broader perspective, it is possible to say that in addition to the characteristics

of Cortex-A9 processor and the system in which it is enclosed, the reliability of an embedded

processor depends strongly on the application running on it. Otherwise, it would be possible

to observe regularity in the amount of failures for all applications, which is not true, as they

tend to vary in a coherent manner to the behavior described in Section 4.2. As already shown

by [65], it´s perceived that the architecture vulnerability factor (AVF) estimates only the

processor reliability, but for a system perspective the program vulnerability factors (PVF) is

equally important, since soft-error susceptibility can be aggravated by this aspect. This

perspective will be discussed later in this chapter.

This dependence is expected and has been observed previously in [64], in which a

uniform set of faults were used, i.e., only Single Event Upset faults were injected into each of

the studied processor registers in the same quantity, showing that despite the regularity of

architecture and standard injections, the behavior of the system varies dramatically. Assuming

this behavior, it is also expected different results being observed in the same application when

it runs on bare metal or on an operating system. Although the algorithm is the same, the

compiler is not, since Linux is cross-compiled for the ARM architecture, but the application

that runs it uses the default parameters of the GCC compiler. In fact, and due to this, the

instructions running in both environments are not completely identical, allied to this,

resources sharing that exists in the operating system adds a level of complexity and a degree

of fault masking.

5.3 Silent Data Corruption Classification

Silent Data Corruption is a critical failure type that can lead to disastrous events in an

embedded system. SDC refers to operations returning a wrong result without any indication

(for all intents and purposes the result is valid, yet is actually not correct). SDC is especially

difficult to mitigate in a safety critical system, as to do so requires that every result be

checked by both repeating the operation and checking that the result matches, or by including

76

some kind of algorithmic check analysis comparing the final memory, separating the effects

of latent errors from the ones that generates wrong results. This Section proposes to

implement this separation, identifying the relationship between total number of failures and

latent errors.

As mentioned, the OVPSim Fault Injector Module detects SDC failures by comparing

application final memory with a reference model from an execution without faults. The

process compares the entire memory that includes instructions (that are not affected by faults

in this work), software data, temporary data and the result. By doing this, it is not possible to

identify in which location the SDC happen. In the real world, it means that an error in the

results will return a wrong data to the system in the current execution, but an error in another

part of the memory, called latent error, can manifest a failure in a future code execution,

continuing propagating its error every time the algorithm is executed. However, a latent error

can be easily mitigated by reloading application content to the main memory, for example

from a flash device.

The OVPSim-FIM was modified to identify the memory region where the result was

placed after execution, being possible to identify the discussed types of SDC failures.

Figure 5.9 and Figure 5.10 depicts comparison graphics between total number of SDC

and in results for bare metal and Linux environments, respectively.

Figure 5.9 – Bare Metal Total SDC vs SDC Only in Results

Source: Author

77

Figure 5.10 – Linux Total SDC vs. SDC Only in Results

Source: Author

Only four applications were chosen in this analysis, since each fault injection

campaign takes about 12 hours in Linux setup. For both environments and all applications, it

was possible to identify that the number of SDCs present only in results is much smaller than

total number, meaning that the differences in the final memory are likely to happen outside

the result region. This phenomenon is a probabilistic matter, since during application

execution a large number of data is moved in and out the external memory and not necessarily

is part of results. Another reason is fault injection timing, as during algorithm execution

information that was already used by the application can still in the register until it is needed

again, thus a fault that happens in this moment will not lead to a failure, but if the value is

written back to the memory, the SDC failure will be noticed.

5.4 Linux OS and Error Mitigation

Error reports triggered by Linux kernel signals comprise a specific set. As detected

and reported by the operating system they can be handled by functions added in the

application code, allowing correction, discarding of unreliable results or even restart of the

application. As mentioned in Section 4.2, each application was modified by including signal

handling functions with no corrective action, but with communication with the OVPSim-FIM

to provide feedback from the inside the application, feature that is not supported by the

simulator itself.

78

The fault injection campaigns have shown that between operating system available

signals, Linux was able to detect only segmentation fault, illegal access and floating point

exception violations.

Exceptions detected by Linux can be considered either HANGs or SDCs. It is a SDC

because the Operation System does not stop working as it can recover for these occurrences,

but the application result is wrong or even does not exists in memory. It is also a HANG

because the application that is running under Linux crashed. This reason justifies the need for

identifying OS exceptions between results presented.

The Linux signals was treated as HANGs before, since strictly they are from the

application perspective. However, the OS provide the ability to treat them by the application,

even if it is not being done here, and therefore should be counted apart.

Figure 5.11 depicts Linux Hang detection rate.

Figure 5.11 – Linux Exception Signal Rate Over Total Detected HANGs

Source: Author

Figure 5.11 correlate the rate of identified soft errors by the operating system among

total number of manifested HANG errors. Surprisingly, Linux shows to have a high rate of

HANG perception, reaching 100% of detection in the case of the fdct application. As

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

%
 O

F
 L

IN
U

X
 E

X
C

E
P

T
IO

N
S

APPLICATIONS

% Linux Exceptions over Total Hangs

79

expected, analyzing the reports in details we found that around 90% of detected failures are

Segmentation Faults, when the application tries to address a non-allocated memory area,

making this more perceptive in applications that recursively access external data, like bit

manipulation and matrix multiplication. In a regular distribution between applications, Illegal

Access signal happened when the processor attempts to execute an illegal, malformed,

unknown or privileged instruction, what’s is an unsurprising behavior since we are modifying

randomly internal registers values. Harm, fdct and mdc are the only applications with floating

point operations in the benchmark, and so Linux triggered Floating Point Exception signal.

5.5 Overall Error Rate

Finally, considering the results presented, it is possible to determine the overall error

rate comparison between bare metal and Linux applications, which is the sum of SDC and

HANGs.

Figure 5.12 depicts the results.

Figure 5.12 – Linux Exception Signal Rate Over Total Detected HANGs

Source: Author

Results show clearly that all applications running in bare metal environment are more

prone to failures in general than under Linux OS when faults are injected in the register file. It

80

is known that ARM Cortex-A9 is a complex out-of-order architecture with many more

internal registers. For a complete evaluation, these registers must be taken into account during

fault injection, which unfortunately is not supported by the used simulator. However, the

processor observability allows the architectural vulnerability factor analysis, which makes this

evaluation meaningful considering the ability to examine in an isolated manner the register

file of a large-scale commercial processor.

Taken the bare metal environment result in Figure 5.13 as an example, we can say that

architectural vulnerability factor ranges from 32% to 74 %. This results show that each tested

register, individually, should be taken into account to determine AVF, and what is seen is the

average result. Yet, not only the register itself, but to generate a failure, the register content

must be relevant in the moment of the fault. This means that depending on the register

allocation, the error rate can vary and, consequently, architectural vulnerability factor varies

according to the application.

This statement articulates the error rate result in a more complex perspective, since it

is not only the hardware architecture the single factor taking into account, but also software

architecture. As the software has its own structure and workflow, it is reasonable to talk in

terms of application vulnerability factor. In fact, the presented error rates are a function of

both factors, showing that a program has an inherent fault masking.

As a case study, a simple experiment is conduced to enforce this analysis, as depicted

in Figure 5.13.

Figure 5.13 – Error Rate of Three Applications Running on ARM Cortex-A9 and Cortex-M4

Source: Author

81

Figure 5.13 shows that architectural/application vulnerability factor of a register file

when running three different applications on two processors, the ARM Cortex-A9 and ARM

Cortex-M4, both available for Imperas simulator and with identical register file structure, but

different overall architecture. To sustain what was said, Figure 5.13 reveal that the

vulnerability factor depends on both workload and hardware configuration, since results for

the same application are different between processors, but also results for the same processor

are different between applications.

Figure 5.13 shows clearly that applications running in bare metal environment are

more prone to failures in general than when running in Linux OS version when faults are

injected in the register file. Additionally, it depicts the total Linux environment error rate and

the error rate excluding exceptions detected by the kernel, in black and blue respectively.

Therefore, according to what was discussed in Section 5.4, in case of the Operating System,

exceptions are handled, and they not produce HANGs or SDCs, the error rate of a Linux

environment can be even better.

82

6 CONCLUSIONS

The work analyzed in a comparative approach the susceptibility of several applications

under SEUs in two environments: bare metal and on the top of the Linux operating system. It

demonstrates the use of an embedded system simulation platform that uses microprocessors

models with architectural elements and functionality equivalent to the physical device, the

OVPSim platform, in order to perform the sensitivity analysis. Starting from the feasibility

study of the simulated environment, target architecture choice and fault model, the OVPSim-

FIM fault injector was used and adapted to comply with the observability needs in this study.

The fault injector was able to inject bit-flips in the register file of the ARM Cortex-A9

processor followed by the failure classification collected by the platform with report features

that includes Linux exception signals. The methodology promotes statistical results separating

the main groups of failures between control flow (HANGs), silent data corruption and Linux

captured errors.

The studied OVP platform has shown great versatility for creation and system

integration as it provides numerous validated processors models supported by the

manufacturers. The main factor that led to the choice of this platform was the availability of

an API for control of the entire architecture, allowing the fault injector strategy. The

microprocessor ARM Cortex-A9 was chosen because of its degree of fidelity to the original

architecture, including specific functions of the physical architecture and access to all the

registers visible by the application. Furthermore, since it is a large-scale industrial and

commercial application processor, the same test can be replicated in the FPGA embedded

version from Altera and Xilinx manufacturers in order to establish a correlation between

simulated tests and practice.

The goal was achieved by performing an analysis in terms of failure and not fault

domain, since location is not the focus, but the variety of failures that can arise in similar

faults. By doing this, we have shown that application running bare metal increase

significantly the overall error rate for all 11 benchmarks that comprises a diverse scenario of

data utilization. Despite this, considering different groups of failures, we found that the

operating system has considerably less silent data corruption than bare metal environment,

having the majority of failures located in HANG failure group. By saying this, it is possible

to conclude that in our experiment the Linux OS environment tend to mask more frequently

soft errors, while bare metal is more prone to corrupt the data of the application.

83

Additionally, the fault injector was modified in order to separate SDC failures in the results

from the ones in other regions of the external memory. We observed that mostly of these

errors are outside the results in both Linux and bare metal environments, which shows an

opportunity to diminish these errors by restarting the application at each run.

The comparison with an interrupt-based environment developed by Lins [68], was an

attempt to correlate the processor model with the real architecture in a fault injection method

equivalent to the one used with OVP. Unfortunately, we were able to give credit to the results

in the way they the tests were performed, showing us an important perspective of this work,

that is the dependency on the compiler. The strategy developed in this work that is also

presented in [70], was compared with the results in [32], where a correlation with an

environment under radiation was analyzed. A different behavior was observed, since in [32]

SDC failures in Linux was almost the same as in bare metal. What happens, and the paper

itself points out, is that it happens mainly because the neutron flux also injected faults in the

cache, where the application data is always exposed, leading in data corruption even before

the content reaches the register file. Another reason is that in [32] the application is restarted

continuously without restarting the operating system, a process where bit-flips that are not

expressed in a particular execution may be manifested in the future.

Given the availability of the processor model, the only conclusion from the

architectural perspective was the Architectural Vulnerability Factor of the register file. From

the results, it is possible to identify that the AVF varies by register and not with the register

file as a single entity. However, tests showed a variability in the AVF for each used

benchmark, showing that the more correct is to determine the factor taking into consideration

the application, establishing an Application Vulnerability Factor. Both measures provide a

better understanding of the soft errors effects in embedded systems, especially a better

observability of the application behavior, revealing their critical points and giving room for

improvement.

An additional category of failure was analyzed by separating signals triggered by

Linux kernel, and this approach found that the contribution of this group could be up to 100%

of the total number of HANGs. Since the kernel reports to the application the signal, it is

possible to implement signals handlers in the code in order to deal with the exception. The

main contribution of this analysis is that, besides the natural SDC hardening that the

Operation System promotes by sharing hardware resources with the application, this work

shows that mitigation of soft error effects can be even better if corrective actions are adopted.

84

As a future work, some analysis limitations can be overcome, such as the impact on

the results of using different compilers between environments and the running time factor that

also influence the comparative results. A deeper analysis on the Linux architecture can also

contribute with a better interpretation of the results concerning OS resource sharing

mechanisms along with the investigation of the failure classification considering multiple

applications running together. The failure distribution analysis will then help the elaboration

of tolerant techniques focused on these aspects. This approach can be greatly supported by the

failures classified by register, which allows depth analysis on how the application and

compiler uses the register file, providing means to develop dedicated fault tolerance systems,

according to each application’s necessities and sensitivity to faults. Another proposal includes

sharing processor and operating system resources by running multiple applications at the

same time and evaluating soft errors masking effects with and without multicore platforms.

Finally, the modeled embedded system can be better detailed to provide more fidelity

compared with other discussed studies, which also uses the Xilinx Zynq SoC FPGAS, but also

includes external and cache memories.

85

REFERENCES

[1] A. Benso and P. Prinetto, Eds., Fault Injection Techniques and Tools for Embedded

Systems Reliability Evaluation, vol. 23. Boston: Kluwer Academic Publishers, 2004.

[2] M.-C. Hsueh, T. K. Tsai, and R. K. Iyer, “Fault injection techniques and tools,”

Computer, vol. 30, no. 4, pp. 75–82, Apr. 1997.

[3] P. Vanhauwaert, R. Leveugle, and P. Roche, “Reduced Instrumentation and Optimized

Fault Injection Control for Dependability Analysis,” in 2006 IFIP International

Conference on Very Large Scale Integration, 2006, pp. 391–396.

[4] C. Bolchini, A. Miele, F. Salice, and D. Sciuto, “A model of soft error effects in generic

IP processors,” in 20th IEEE International Symposium on Defect and Fault Tolerance in

VLSI Systems, 2005. DFT 2005, 2005, pp. 334–342.

[5] T. R. Oldham and F. B. McLean, “Total ionizing dose effects in MOS oxides and

devices,” IEEE Transactions on Nuclear Science, vol. 50, no. 3, pp. 483–499, Jun. 2003.

[6] P. Koopman, Eushiuan Tran, and G. Hendrey, "Toward Middleware Fault Injection for

Automotive Networks," Fault Tolerant Computing Symposium, June, 1998, pp. 78 - 79.

[7] J. Arlat, A. Costes, Y. Crouzet, J.-C. Laprie, and D. Powell, “Fault injection and

dependability evaluation of fault-tolerant systems,” IEEE Transactions on Computers,

vol. 42, no. 8, pp. 913–923, Aug. 1993.

[8] A. Benso, M. Rebaudengo, M. S. Reorda, and P. L. Civera, “An integrated HW and SW

fault injection environment for real-time systems,” in 1998 IEEE International

Symposium on Defect and Fault Tolerance in VLSI Systems, 1998. Proceedings, 1998,

pp. 117–122.

[9] P. P. A. Benso, “EXFI: a low-cost fault injection system for embedded microprocessor-

based boards,” ACM Transactions on Design Automation of Electronic Systems

(TODAES), vol. 3, no. 4, pp. 626–634, 1998.

[10] Imperas. Open Virtual Platforms (OVP), 2014. http://www.ovpworld.org/, [acessado em

20 de Novembro de 2014].

[11] D. Sanchez and C. Kozyrakis, “ZSim: fast and accurate microarchitectural simulation of

thousand-core systems,” ACM SIGARCH Computer Architecture News, vol. 41, no. 3, p.

475, Jul. 2013.

[12] F. Rosa, F. Kastensmidt, R. Reis, and L. Ost, “A fast and scalable fault injection

framework to evaluate multi/many-core soft error reliability,” in 2015 IEEE International

Symposium on Defect and Fault Tolerance in VLSI and Nanotechnology Systems

(DFTS), 2015, pp. 211–214.

[13] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau, “Analysis of the effects of

real and injected software faults: Linux as a case study,” in 2002 Pacific Rim

International Symposium on Dependable Computing, 2002. Proceedings, 2002, pp. 51–

58.

[14] T. Noergaard, Embedded systems architecture: a comprehensive guide for engineers and

programmers. Amsterdam ; Boston: Elsevier/Newnes, 2005.

86

[15] Mit and navigating the path to the moon. http://web.mit.edu/

aeroastro/news/magazine/aeroastro6/mit-apollo.html. [Accessed: 11-Dec-2015].

[16] A. S. Tanenbaum, Sistemas Operacionais Modernos, Edição: 3ª. Rio de Janeiro (RJ):

Pearson, 2009.

[17] A. Sandstedt, Implementation and analysis of a virtual platform based on an embedded

system. Linköping University, Department of Electrical Engineering, Computer

Engineering 2014.

[18] Unknown author. NS7520 Hardware Reference. Net sillicon, 2003. Cited on pages 6, 7,

and 58.

[19] D. Liu, Embedded DSP processor design: application specific instruction set processors.

Amsterdam ; Boston: Morgan Kaufmann/Elsevier, 2008.

[20] F. H. Schmidt, “Fault tolerant design implementation on radiation hardened by design

SRAM-Based FPGAs,” Thesis, Massachusetts Institute of Technology, 2013.

[21] B. W. Johnson, “Fault-Tolerant Microprocessor-Based Systems,” IEEE Micro, vol. 4,

no. 6, pp. 6–21, Dec. 1984.

[22] A. Avizienis, “Toward systematic design of fault-tolerant systems,” Computer, vol. 30,

no. 4, pp. 51–58, Apr. 1997.

[23] Ray Ladbury. Osiris-rex radiation hardness assurance plan. Technical Report OSIRIS-

REx-PLAN-0014, NASA Goddard Space Flight Center, Janeiro, 2012, pg. 32, 33, 35, 36.

[24] R. Oldham and F.B. McLean. Total ionizing dose e ects in MOS oxides and devices.

IEEE Transactions on Nuclear Science, 50(3):483{499, June 2003.

[25] C. Claeys and E. Simoen, Radiation Effects in Advanced Semiconductor Materials and

Devices. Springer Science & Business Media, 2002.

[26] Guenzer. C. S.; Wolicki, E. A.; Allas, R. G. "Single event upset of dynamic RAMs by

neutrons and protons". IEEE Transactions on Nuclear Science, Dec. 1979.

[27] M. M. McCormack, “Trade study and application of symbiotic software and hardware

fault-tolerance on a microcontroller-based avionics system,” Thesis, Massachusetts

Institute of Technology, 2011.

[28] J. R. Schwank, M. R. Shaneyfelt, and P. E. Dodd, “Radiation Hardness Assurance

Testing of Microelectronic Devices and Integrated Circuits: Radiation Environments,

Physical Mechanisms, and Foundations for Hardness Assurance,” IEEE Transactions on

Nuclear Science, vol. 60, no. 3, pp. 2074–2100, Jun. 2013.

[29] M. Caffrey, K. Morgan, D. Roussel-Dupre, S. Robinson, A. Nelson, A. Salazar, M.

Wirthlin, W. Howes, and D. Richins, “On-Orbit Flight Results from the Reconfigurable

Cibola Flight Experiment Satellite (CFESat),” in 17th IEEE Symposium on Field

Programmable Custom Computing Machines, 2009. FCCM ’09, 2009, pp. 3–10.

[30] S. S. Mukherjee, C. Weaver, J. Emer, S. K. Reinhardt, and T. Austin, “A Systematic

Methodology to Compute the Architectural Vulnerability Factors for a High-Performance

Microprocessor,” in Proceedings of the 36th Annual IEEE/ACM International

Symposium on Microarchitecture, Washington, DC, USA, 2003, p. 29–.

87

[31] D. Alexandrescu, L. Sterpone, and C. Lopez-Ongil, “Fault injection and fault tolerance

methodologies for assessing device robustness and mitigating against ionizing radiation,”

in Test Symposium (ETS), 2014 19th IEEE European, 2014, pp. 1–6.

[32] T. Santini, P. Rech, L. Carro, and F. Rech Wagner, “Exploiting cache conflicts to reduce

radiation sensitivity of operating systems on embedded systems,” in 2015 International

Conference on Compilers, Architecture and Synthesis for Embedded Systems (CASES),

2015, pp. 49–58.

[33] W. Gu, Z. Kalbarczyk, K. Iyer, and Z. Yang, “Characterization of linux kernel behavior

under errors,” in 2003 International Conference on Dependable Systems and Networks,

2003. Proceedings, 2003, pp. 459–468.

[34] M. Nicolaidis, Ed., Soft Errors in Modern Electronic Systems, vol. 41. Boston, MA:

Springer US, 2011, p. 335.

[35] J. Arlat, M. Aguera, L. Amat, Y. Crouzet, J.-C. Fabre, J.-C. Laprie, E. Martins, and D.

Powell, “Fault injection for dependability validation: a methodology and some

applications,” IEEE Transactions on Software Engineering, vol. 16, no. 2, pp. 166–182,

Feb. 1990.

[36] R. Velazco, P. Fouillat, and R. Reis, Eds., Radiation Effects on Embedded Systems.

Dordrecht: Springer Netherlands, 2007.

[37] C. Slayman, “JEDEC Standards on Measurement and Reporting of Alpha Particle and

Terrestrial Cosmic Ray Induced Soft Errors,” in Soft Errors in Modern Electronic

Systems, vol. 41, M. Nicolaidis, Ed. Boston, MA: Springer US, 2011, pp. 55–76.

[38] H. Ziade, R. Ayoubi, and R. Velazco, “A Survey on Fault Injection Techniques”. Int.

Arab J. Inf. Technol., v. 1, n. 2, p. 171–186, 2004.

[39] S. Mukherjee, Architecture Design for Soft Errors. San Francisco, CA, USA: Morgan

Kaufmann Publishers Inc., 2008.

[40] H. Madeira, R. R. Some, F. Moreira, D. Costa, and D. Rennels, “Experimental

evaluation of a COTS system for space applications,” in International Conference on

Dependable Systems and Networks, 2002. DSN 2002. Proceedings, 2002, pp. 325–330.

[41] A. da Silva and S. Sanchez, “LEON3 ViP: A Virtual Platform with Fault Injection

Capabilities,” in 2010 13th Euromicro Conference on Digital System Design:

Architectures, Methods and Tools (DSD), 2010, pp. 813–816.

[42] E. Jenn, J. Arlat, M. Rimen, J. Ohlsson, and J. Karlsson, “Fault injection into VHDL

models: the MEFISTO tool,” in Twenty-Fourth International Symposium on Fault-

Tolerant Computing, 1994. FTCS-24. Digest of Papers, 1994, pp. 66–75.

[43] P. Folkesson, S. Svensson, and J. Karlsson, “A comparison of simulation based and scan

chain implemented fault injection,” in Twenty-Eighth Annual International Symposium

on Fault-Tolerant Computing, 1998. Digest of Papers, 1998, pp. 284–293.

[44] A. V. Fidalgo, G. R. Alves, and J. M. Ferreira, “Real time fault injection using a

modified debugging infrastructure,” in On-Line Testing Symposium, 2006. IOLTS 2006.

12th IEEE International, 2006, p. 6 pp.–.

[45] K.-T. Cheng, S.-Y. Huang, and W.-J. Dai, “Fault emulation: a new approach to fault

grading,” in, 1995 IEEE/ACM International Conference on Computer-Aided Design,

1995. ICCAD-95. Digest of Technical Papers, 1995, pp. 681–686.

88

[46] C. Lopez-Ongil, M. Garcia-Valderas, M. Portela-Garcia, and L. Entrena, “Autonomous

Fault Emulation: A New FPGA-Based Acceleration System for Hardness Evaluation,”

IEEE Transactions on Nuclear Science, vol. 54, no. 1, pp. 252–261, Feb. 2007.

[47] M. Alderighi, F. Casini, S. D’Angelo, M. Mancini, D. M. Codinachs, S. Pastore, C.

Poivey, G. R. Sechi, G. Sorrenti, and R. Weigand, “Experimental Validation of Fault

Injection Analyses by the FLIPPER Tool,” IEEE Transactions on Nuclear Science, vol.

57, no. 4, pp. 2129–2134, Aug. 2010.

[48] Mathieu Brethes, “Atome - Binary Translation for Accurate Simulation”, September 16,

2004.

[49] Frank Schirrmeister, “Delivering Software Productivity for Multi-core Systems on

Chip”, www.imperas.com/news March 3, 2008.

[50] OVPSim and Imperas CpuManager User Guide – Version 2.0.1.

[51] OVP Processor Modeling Guide – Version 2.0.1.

[52] J. R. Eastlack, “Extending volunteer computing to mobile devices,” 2011

[53] ARM® Cortex-A9 Technical Reference Manual.

http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ddi0388i/I1002917.html,

[Accessed: 10-Dec-2014].

[54] ARM Holdings. CoreTile Express A9x4 - For the Versatile Express Family. ARM

corporate website. [Online] www.arm.com.

[55] Imperas Software Limited. "OVP Guide to Using Processor Models". Imperas Buildings,

North Weston, Thame, Oxfordshire, OX92HA, UK, January 2015. Version 0.5,

docs@imperas.com.

[56] Imperas Software Limited. " Model Specific Information for variant ARM Cortex-

A9MPx1". Imperas Buildings, North Weston, Thame, Oxfordshire, OX92HA, UK, July

2016. Version 0.5, docs@imperas.com.

[57] Bowman, Ivan. "Conceptual Architecture of the Linux Kernel". 1998. Available at

http://www.stillhq.com/pdfdb/000524/data.pdf.

[58] “Linux.org.” [Online]. Available: http://www.linux.org/. [Accessed: 05-Oct-2015].

[59] P. C. P. Bhatt, An Introduction to Operating Systems: Concepts and Practice, 4 edition.

Prentice-Hall of India. PHI Learning, 2014.

[60] “Linux manual page.” [Online]. Available:

http://man7.org/linux/manpages/man7/signal.7.html. [Accessed: 13-Mar-2016].

[61] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a case study: its extracted

software architecture,” in Proceedings of the 21st International Conference on

Software Engineering, 1999, pp. 555–563.

[62] M. Nicolaidis, “Time redundancy based soft-error tolerance to rescue nanometer

technologies,” in 17th IEEE VLSI Test Symposium, 1999. Proceedings, 1999, pp. 86–94.

[63] http://www.mrtc.mdh.se/projects/wcet/benchmarks.html, 01/2016

[64] F. de A. Geissler, “Metodologia de injeção de falhas baseada em emulação de

processadores”, Universidade Federal do Rio Grande do Sul, 2014.

89

[65] R. Kost, D. Connors, S. Pasricha, "Characterizing the Use of Program Vulnerability

Factors for Studying Transient Fault Tolerance in Multi-core Architectures", Workshop

on Compiler and Architectural Techniques for Application Reliability and Security

(CATARS 2009) Estoril, Portugal, Jun 2009.

[66] “Cyclone V Soc - Overview”. [Online]. Available at:

https://www.altera.com/products/soc/portfolio/cyclone-v-soc/overview.html. [Accessed:

08-mar-2016].

[67] “Zynq-7000 All Programmable SoC”. [Online]. Available at:

http://www.xilinx.com/products/silicon-devices/soc/zynq-7000.html#documentation.

[Accessed: 08-mar-2016].

[68] F. M. Lins, L. Tambara, F. L. Kastensmidt, and P. Rech, “Register File Criticality on

Embedded Microprocessor Reliability”, 2015, unpublished.

[69] S. Rezgui, R. Velazco, R. Ecoffet, S. Rodriguez, and J. R. Mingo, “Estimating Error

Rates in Processor-Based Architectures”, IEEE Transactions on Nuclear Science, vol. 48,

no. 5, pp. 1680-1687, 2001.

[70] L. G. Casagrande and F. L. Kastensmidt, “Soft error analysis in embedded software

developed with without operating system,” in 2016 17th Latin-American Test

Symposium (LATS), 2016, pp. 147–152.

[71] T. S. Weber, "Um roteiro para a exploração dos conceitos básicos de tolerância a falhas".

[Online]. Available at:

http://www.inf.ufrgs.br/~taisy/disciplinas/textos/Dependabilidade.pdf . [Accessed: 23-

aug-2016].

90

APPENDIX A – COMPLETE BENCHMARK RESULTS

As the benchmark results are extensive, it was decided to include them in this

appendix. The results are presented with the error rates in both environments, considering the

detailed classification presented in Section 3.4.3.

91

Table Appendix A.1 – Bare Metal Benchmark Results with Full Classification (a)

BARE METAL

UNACE

SDC

APLICATIONS
MASKED

FAULT

Control Flow

Data OK

REG

STATE Data

OK

Total Number

of faults

Control Flow

Data ERROR

REG STATE

Data ERROR
SDC

binary_search 46161 3514 0 50325 212 39215 324

bitManipulation 39965 4412 0 55623 2345 38141 1472

bubble 42138 504 0 57358 5614 39001 906

compress 66096 1908 0 31996 1702 7741 7144

crc 45573 1932 0 52495 401 37819 255

factorial 39693 1574 0 58733 1562 40818 3041

fdct 40706 502 0 58792 1547 45261 608

fibonacci 43980 2614 0 53406 1206 40172 0

harm 36648 3116 0 60236 523 41232 5602

matrixMult 25600 607 0 73793 16020 27314 15472

mdc 32359 9042 0 58599 2184 40321 1616

peakSpeed 43118 320 0 56562 2499 42819 310

92

Table Appendix A.2 – Bare Metal Benchmark Results with Full Classification (b)

BAREMETAL

HANG

APLICATIONS Hang RD PRIV WR PRIV
RD

ALIGN

WR

ALIGN
FE PRIV FE ABORT ARITH

Hard

Fault
Lockup

binary_search 1065 4521 0 421 98 4145 324 0 0 0

bitManipulation 1421 5547 699 211 108 5214 465 0 0 0

bubble 925 5468 255 266 0 4625 298 0 0 0

compress 4820 4214 632 913 107 4617 106 0 0 0

crc 1431 5934 625 741 112 4923 254 0 0 0

factorial 8128 241 164 108 119 4416 136 0 0 0

fdct 204 5237 714 0 142 4238 841 0 0 0

fibonacci 6621 261 0 312 0 4625 209 0 0 0

harm 7332 104 116 416 329 4202 380 0 0 0

matrixMult 3002 4621 1153 564 0 4412 1235 0 0 0

mdc 7116 915 261 627 206 4139 1214 0 0 0

peakSpeed 5821 107 104 649 0 3952 301 0 0 0

93

Table Appendix A.3 – Linux OS Benchmark Results with Full Classification (a)

LINUX

UNACE

SDC

APLICATIONS
MASKED

FAULT

Control Flow

Data OK

REG

STATE Data

OK

Total Number

of faults

Control Flow

Data ERROR

REG STATE

Data ERROR
SDC

binary_search 30479 2205 53796 13520 408 213 0

bitManipulation 38701 2820 40102 18377 1236 99 515

bubble 20928 384 59101 19587 2743 114 408

compress 26063 1617 47255 25065 1723 1516 492

crc 33863 2056 51648 12433 417 0 219

factorial 16691 1930 64622 16757 2314 205 197

fdct 27343 102 51026 21529 1117 5612 109

fibonacci 20612 0 15421 63967 4837 38920 1913

harm 22313 3142 54916 19629 2014 399 920

matrixMult 22339 108 28028 49525 6913 2859 7827

mdc 20458 8826 51482 19234 2039 537 129

peakSpeed 9872 325 74907 14896 1321 2154 0

94

Table Appendix A.4 – Linux OS Benchmark Results with Full Classification (b)

LINUX

HANG Hang Detected by Linux

APLICATIONS Hang
RD

PRIV

WR

PRIV

RD

ALIGN

WR

ALIGN

FE

PRIV

FE

ABORT
ARITH

Hard

Fault
Lockup

 SEG

FAULT

ILLEGAL

INST

FLTPNT

EXC

binary_search 286 0 0 0 0 0 0 0 0 0 12507 106 0

bitManipulation 309 0 0 0 0 0 0 0 0 0 15714 504 0

bubble 98 0 0 0 0 0 0 0 0 0 15623 601 0

compress 10324 0 0 0 0 0 0 0 0 0 10923 87 0

crc 0 0 0 0 0 0 0 0 0 0 11768 29 0

factorial 4008 0 0 0 0 0 0 0 0 0 9327 706 0

fdct 0 0 0 0 0 0 0 0 0 0 14478 0 213

fibonacci 6435 0 0 0 0 0 0 0 0 0 11756 106 0

harm 5431 0 0 0 0 0 0 0 0 0 9111 645 1109

matrixMult 502 0 0 0 0 0 0 0 0 0 30916 508 0

mdc 2768 0 0 0 0 0 0 0 0 0 11615 412 1734

peakSpeed 387 0 0 0 0 0 0 0 0 0 10826 208 0

95

APPENDIX B – LATS 2016 PAPER

A paper related to the topic of this thesis is presented in this appendix. The paper also

called “Soft Error Analysis in Embedded Software Developed with & without Operating

System” has been accepted for publication in Latin American Test Symposium (LATS) in

2016 for oral presentation.

Soft Error Analysis in Embedded Software
Developed with & without Operating System

Luiz Gustavo Casagrande and Fernanda Lima Kastensmidt

PGMICRO – Instituto de Informática
Universidade Federal do Rio Grande do Sul

Porto Alegre, Brazil
{lgcasagrande, fglima}@inf.ufrgs.br

Abstract— This work presents a comparative analysis of soft
error susceptibility in a well-known embedded microprocessor
ARM Cortex-A9 single core, widely used along with safety critical
applications, running embedded software developed for a bare
metal environment and with operating system. The soft error
analysis is performed by fault injection on OVPSim-FIM
simulator platform. The faults injection campaign injects
thousands of bit-flips in the microprocessor register file while
executing a set of benchmarks with a diverse code behavior from
control flow dependence to data intensive. Results present the
percentage of masking faults, the classification of the errors and
the number of exceptions detected by the operating system. The
proposed method and the obtained results can help guiding
software developers in choosing different architectures of the code
in order to improve fault masking.

Keywords—bare metal; operating system; Linux; soft errors;
comparison; ARM Cortex-A9; embedded processor

I. INTRODUCTION

Soft errors are transient faults that are mainly observed as
bit-flips in memory elements operating under radiation
environment [1]. The radiation environment can be space or on
Earth, where neutrons interact with the material provoking
secondary particles such as alpha that can provoke transient
faults [2]. Soft errors have emerged as a key challenge in
microprocessor design. In microprocessors, the effect of Single
Event Upsets (SEU) can be noticed by errors in the data or errors
that change the application flow. The architecture of the program
code is one of the most important and critical parameter in the
embedded processor and it plays a major role to develop highly
efficient and robust embedded systems.

Safe-critical applications seek high reliability. They are
usually composed of single or multi-core processors that may
run embedded software developed with or without operating
systems. Bare metal software is a term used in embedded
systems when the program code is directly hosted on the target
microprocessor and is self-managed. It is known to be reliable,
allowing high controllability of hardware and software flow.
Additionally, maintenance, debugging and troubleshooting of
code is easier and less time consuming.

Operating systems can provide the availability of hardware
resources for applications with a high level of complexity. The
increasing need of this complex operations and resource sharing

demands better using of the available capabilities as well as
better programmability. In addition, under soft errors bare metal
software is not necessarily more robust than operating systems.
For the best of our knowledge there are not many works in the
literature that compare bare metal and operating systems in
modern processor under soft errors.

Consequently, in order to understand the behavior of a
microprocessor under soft errors, the use of fault injection
mechanism is needed to emulate soft errors for different
applications running in the microprocessor without and with
operating system. Between the many different ways to inject
faults, soft errors can be injected by using radiation accelerators,
where the embedded system is exposed to the beam under a
certain ion flux for a period of time. Another fault injection
mechanism is by emulating soft errors by simulation, which was
the choice of this paper. The embedded system is modeled in C
language and faults are injected during the simulation by using
the Imperas OVPSim simulator.

This paper aims to compare soft error susceptibility in
embedded software that was developed for a bare metal
environment and under an operating system. It also analyses the
architectural vulnerability factor (AVP) of the register file in the
well-known embedded microprocessor ARM Cortex-A9,
widely used commercially in low-power or thermally
constrained applications. The soft error analysis is performed by
fault injection on OVPSim-FIM simulator, capable of
simulating failures induced by cosmic particles on the processor
registers bank, producing bit-flips with controlled locality and
temporality, allowing a survey of errors detected and treated by
both the platforms. The OVPSim fault injection environment
was proposed by [3].

A set of 11 applications was used as benchmarks that
diversify control and data flow behavior. Those applications
were compiled for the target architecture and run directly on the
processor for the bare metal tests. The chosen operating system
for the comparative tests was Linux, mainly because it has open
code, which significantly facilitates the controllability and
observability required by the internal experiments. Beyond that,
it is worth mentioning that Linux is already considered as an
option of a commercial purpose operating system, which is
being included in a wide range of applications, including those
with reliability requirements [4].

During the fault injection campaign, it was injected 100,000
faults in the register file to evaluate the benchmark. Results were
classified into unace or masked faults, silent data corruption
(SDC) and hang. Results show that applications running in
Linux environment are less prone to errors due to bit-flips in the
register file, while bare metal applications have shown more
susceptible to silent data corruption (SDC) errors.

The rest of the paper is organized as follows. Section 2
reports background information about error analysis in bare
metal approaches and with the presence of an operating system.
Section 3 describes processor architecture setup, outlining ARM
Cortex-A9 relevant features and simulation model, as well as the
Linux environment. In the section 4, the fault injection platform
is presented, including the error model overview. Experimental
campaign results and discussion including used benchmark is
presented along with the error classification in the section 5.
Finally, section 6 reports some conclusions.

II. RELATED WORK

Many studies on error analysis were performed targeting
embedded systems under soft error injection and most of them
agree on using bit flip strategy as a representative error model of
physical faults [5]. However, these studies focus on a single
perspective and don't explore the system dependence in terms of
software implementation on a comparative approach.

The bare metal software implementation in embedded
processors has been largely investigated under soft. Works from
Rebaudengo [6] show significantly susceptibility of the register
file in the SPARC v8 architecture. Results from this work show
that upsets in register file can provoke errors in the application
generating up to 7 % of total SDC and hangs errors. The work
from Reorda [7] also classify the soft errors effect in silent,
failure and time out categories for a PowerPC 405 processor by
injecting faults in any available bit of the general and special
registers, reaching up to 16 % of error detection.

Some works have investigated embedded processors running
operational systems. Sterpone et al. [8] evaluate dependability
of real time applications under OS environment and define an
error classification of arising faults. They use the microkernel
scheduler of the µC-Linux in the Xilinx Microblaze® processor,
injecting faults in the registers values in the configuration
memory and they classify the results between stall, crash, latent
and silent errors. In this work, they show more than 35 % of
injected faults that can be detected by OS exception. Some
works also investigate Linux operating systems under soft
errors, like Fabre [9] and [10] which evaluate the Chorus
ClassiX r3 microkernel reliability under different types of
failure, including bit-flips, resulting in up to 70 % of error rate
and a total of 38 % to 56 % of detected exception errors
depending on the kernel fault location.

For a direct comparison between bare metal and operating
systems, we found the recent work from Rech et al [11] that
investigates the cache conflict effect in ARM-A9 to tolerate
some soft errors. A set of applications running Linux kernel and
with bare metal were tested under radiation. Results in terms of
number of observed errors classified as SDC and hang are
shown. However, because the experiment is under radiation, it
is not possible to have a large observability of the errors and a

more detailed classification as it can be done in a simulation
environment as shown in this paper.

III. SOFT ERROR ANALYSIS METHODOLOGY AND

SETUP

The proposed methodology includes a simulation platform,
a microprocessor model, a set of meaningful benchmarks to
simulate under faults and a dedicated module that allows the
injection of faults and the collection of the results.

A. Microprocessor Model
We choose ARM Cortex-A9 processor in this study mainly

because it represents an architecture widely used in industry
primarily combined with operating systems. It is a single core
processor modeled by ARM Ltd to be used along with OVP
simulator, called “Cortex-A9MPx1”. Based on the ARMv7-A
architecture, it supports the 32-bit ARM instruction set with a
multi issued architecture, dividing its operations into primary
and secondary data processing, load and store functions and
floating point operations. Among others, allows registers virtual
renaming for better resource sharing.

The ARM Cortex-A9 processor model implemented in
OVPSim platform is functionally equivalent to the real
processor, but since its execution is accurate in an instruction
level, structural characteristics are not modeled in the same way
as the actual architecture [14]. The ARM A9 model uses an API
to convert the target processor code into native code: it builds an
instruction decoder for the target processor instruction set,
provides the disassembly output and generates native code for
the simulation without explicit reference to native instruction
set. The platform strategy is code translation, and is
responsibility of the simulator to implements the just-in-time
translation algorithm, memory allocation, back translation of
modified code and further resources necessary for the
simulation. In this manner, the main structural element of the
Cortex-A9 processor architecture modeled accurately is the
register file, including 12 general purpose registers, plus stack
and frame pointer.

Therefore, fault injection campaigns are limited only to the
register file, which is a small portion of the complexity
embedded in the A9 processor. However, is highly valuable the
ability to analyze in an isolated manner the architectural
vulnerability factor of the register file of a large-scale
commercial processor.

B. Linux Operating System
The Operating systems is a reduced Linux v2.6 kernel. The

codes are compiled using the standard g++ Gnu Compiler
Collection and automatically run from the file system directory
by a script. It is also possible to set application priority in the
script, allowing behavior analysis under different OS scenarios.

One of the advantages of the Linux is the ability to natively
detect exceptions by implementing dedicated kernel functions
that monitors each application operation before execution.
Kernel calls functions are generated via interrupts and manifest
themselves in 4 ways: (1) an interruption issued to the processor
by a hardware device indicating that it requires attention, (2) an
exception indicated by the processor because of an error, (3) a

kernel call or system call issued by an application, or (4) a kernel
thread [12]. The activation of internal kernel functions is not
defined only by the mentioned events, but also the current kernel
state. In this work, we focus on the second and third items
(kernel calls issued by an error in the processor or by an
application), since the injected faults can result in both behaviors
and are reflected similarly in the operating system mechanisms.

In this scope, a process may result in a hardware exception
generation when, for example, it attempts to divide by zero or
fails translating a virtual address. In a UNIX based operating
system, this event automatically changes the processor context
to start the execution of an exception handler in the kernel. In
this cases kernel are able to manage the exception, like in a 'page
fault' that happens when there is a mapped address page which
is not loaded in fact, but the kernel can pre-identify the problem
before an illegal access actually occur. As a result, the
application exits, but if possible the page will be allocated,
remapped and the application flow can follows.

When an exception is detected and cannot be handled by the
kernel's internal mechanisms, them it is identified and a default
trigger mechanism is called in order to handle these exceptions.
This mechanism is called signals, where the system sends a
notification to the application with the type of exception that
occurred [13]. Examples of such exceptions that triggers default
signals are:

 Division by zero: a division by zero error exception
(SIGFPE) is generated by making the kernel sending this
signal to the application.

 Segmentation Fault: access to a memory address out of
virtual address space, making the kernel notify the
application through a SIGSEGV signal, since he cannot
know the right address.

By sending a signal back to the application indicating the
exception, it may contain a handler to treat it. The existence of
these handlers depends on the software developer, and if it does
not exist, the operating system can terminate the application. In
this work all benchmarks was edited by including a default
signal handler able to capture any signal propagated by the
Linux kernel with no corrective action, but only generating an
external message to the OVPSim platform in order to provide
error classification for further result gathering.

C. Benchmark Applications
The chosen applications are binary_search, bitManipulation,

bubble, compress, crc, factorial, fdct, harm, matrixMult, mdc,
peakSpeed. These applications comprises diverse data behavior,
from a highly flow dependence, like crc algorithm, to data
intensive, like matrixMult and bitManiulation. The applications
choice was intentional in order to exploit the diversity of
behavior and attempt to reach error detection classification
variety.

Table I shows the number of instructions executed in bare
metal and in Linux for the set of applications. The Linux boot
executes 1176574110 instructions. Each application has a Linux
boot before it starts. And at this time it is not used to inject faults.
Note that the number of instructions of the application executed
in bare metal and in Linux is very similar. The difference comes

from the fact that for bare metal we use a compiler for the ARM
Cortex-A9 architecture, while for Linux we use the default
compiler, since the application is on top of the OS.

D. Fault Injection Platform
The ARM Cortex-A9 processor model implemented in

OVPSim platform is functionally equivalent to the real
processor, but since its execution is accurate in an instruction
level, structural characteristics are not modeled in the same way
as the actual architecture [14]. The only structural element of the
Cortex-A9 processor architecture that is modeled accurately as
the real architecture is the register file, which includes 12
general-purpose registers, stack and frame pointer registers.

The OVPSim platform is code translation, and the simulator
is responsible to implement the just-in-time translation
algorithm, memory allocation, back translation of modified code
and further resources needed for the simulation. The ARM A9
model uses an API to convert the target processor code into
native code. It builds an instruction decoder for the target
processor instruction set providing the disassembly output and
generating native code for the simulation without explicit
reference to native instruction set.

The OVPSim platform setup consists of a single core ARM-
cortexA9 processor connected by a bus to a memory model, both
natives of OVPSim platform. OVPSim-FIM [1] is a module
based on OVPSim technology to inject faults during the
simulation in the process model register file. So in the case of
the ARM-CortexA9, the 12 general-purpose registers, stack and
frame pointer registers received random bit-flips during the fault
injection campaign. OVPSim-FIM allows read and write access
to all environment variables at any time during the simulation.

The fault injection flow is divided into 5 stages:

1) Gold execution: each application is executed with no
fault injection intervention for reference parameters collecting,
like instruction count and memory map results.

TABLE I. NUMBER OF INSTRUCTIONS EXECUTED IN BARE METAL AND

IN LINUX FOR THE SET OF APPLICATIONS

Applications
Bare Metal

of
Instructions

Linux
of

Instructions

binary_search 138,293 130,010

bitManipulation 305,211 293,520

bubble 236,548 236,164

compress 196,736 189,141

crc 201,812 223,448

factorial 310,343 310,061

fdct 507,696 537,709

harm 449,123 448,839

matrixMult 343,373 343,172

mdc 658,172 510,295

peakSpeed 19,859 19,574

2) Fault creation: it randomly chooses a register and one
of its 32-bit of that target register to flip. Also it determines the
moment when this fault will be injected. The accuracy of time
is at instruction level.

3) Fault injection: The following application executions
are interrupted by the platform and the raffled bit-flip is applied.

4) Results collection: Each application under fault is
compared with the golden run. If the normal control flow
behavior or final data changes, it is considered an error.

5) Report creation: The platform collects the status of
each run and classifies the errors accordingly to its effect. A
final report is generated summarizing the campaign.

Due to Linux ability to handle errors, OVPSim-FIM
classification is extended to include signals triggered by kernel
categories. The signal handler added to each application code
has the ability to write and classify in a reserved memory area
with no code or application data each signal. During results
collection phase, the fault injector can access this memory and
classify the items together with default platform reports. The
fault injection campaigns have shown that between operating
system available signals, Linux was able to detect only
segmentation fault, illegal access and floating point exception
violations, and so, only this signals was included in results.

When executing an application in bare metal mode, all
instructions in memory belong to the application and it is
compiled directly for the architecture. Applications that run in
Linux shall be compiled for the specific operating system and
the resulting memory occupation may vary.

Additionally, in order to run the benchmark, the Linux shall
be booted first, resulting in a much higher number of instructions
than in bare metal version. This behavior generates an unfair
comparison between platforms, since random fault injections are
most likely to happen during Linux boot than in the application
itself. Safe critical applications that use operating systems are
commonly initialized before being exposed to the susceptible
environment, thus booting should not be taken into account.
Also, when performing the OS boot, all the latent errors are
cleaned.

OVPSim-FIM was modified to identify application
beginning and guaranty that fault injection happens only after
application starts, but after that, Linux kernel is also exposed to
faults, since it shares the processor resources. Fig. 1 presents the
environment fault injection approach.

IV. EXPERIMENTAL RESULTS

Each campaign consists on running each benchmark
application 100,000 times for each software code case, i.e., bare
metal and Linux OS, injecting one fault per run in a randomly
sorted register of the register file.

A. Fault Classification

As mentioned, the error analysis compares each application
running under fault injection with a gold reference to detect
errors. An error would be reported when a mismatch is found in
the application control flow execution or data results. The
platform OVPSim along with the fault injector is able to report
and classify errors, such as:

1) Unace: No error detected and the result memory is
identical to golden execution;

2) Hang: The application or system hanged or crashed;

3) SDC: Means that application has finished but the data
memory mismatch with the golden memory. Note that not only
the application results stored in memory are compared but the
entire memory space. This is important to analyze any latent
error in the memory that may occur.

Fig. 2 shows the number of unace, hang errors and SDC
errors for each bare metal application. Note that in general the
error rate is slightly above 50 % of the total number of injected
faults. The number of hangs ranges from 10% to 15%, showing
that regardless of the application behavior, it tends to crash at a
constant rate. This can be explained by the fact that this type of
error is manifested due to a violation of the execution flow that
causes an invalid state of the processor, not depending on the
characteristics of the application itself. Also, the fact that ARM
Cortex-A9 has a build in register renaming mechanism makes
control variables to be equally distribute between registers,
causing control variables stored in registers to be spread and
consequently equally prone to errors. SDC errors in most
benchmark cases range from 40 % to 47 % of total injected
faults. But it is important to remark that the compress application
shows to be less susceptible to SDC errors with 16.6 %. This
may be due to the extensively use of external memory. The
matrixMult shows a SDC error rate of 58.8 % because it abuses
of ‘for’ functions, which is highly benefited from the register
renaming mechanism that does loop unrolling, exposing more
the data in the register file.

As mentioned, the Linux kernel has the capacity to manage
failures before they happen due to memory virtualization and is
able to pre evaluate the execution of an operation. The impact of
this treatment is presented in Fig. 3. In Linux environment, the
majority of the applications have an error rate ranging from 12 %
to 25 %. Hangs in this case can also happens in OS kernel as it
is exposed to faults during application execution, and so they
prove to have a regular distribution, from 12 % to 18 % of total
injected faults. It is important to mention that in this category,
we also included hangs that the operating system was able to
signalize. However two applications in this group, compress and
matrixMult, draws attention by having 21 % and 32 % hangs,
respectively, this may be due to the fact of the allocation of
registers in Linux and for the application. In the SDC category,
most applications stayed under 6 % of total injected errors. It
happens because in Linux the application is statistically less

Fig. 1. Fault injection localization in Bare Metal and Linux OS Environment.

likely to manifest an error, since the application shares the
register file resources with operating system, i.e., part of the
register file is allocated to Linux and part for the application, so
the chances to hit a register file that causes a SDC in the
application is reduced. As expected, matrixMult still has more
SDC errors than the average due to hardware loop unrolling.

The Linux campaign for all benchmarks was repeated by

setting a different application priority, from low to high. Results
showed to have less than 3 % of variation compared with normal
priority, making them not conclusive, since they can be
accredited to the randomness of the tests.

Error reports triggered by Linux kernel signals comprise a
specific set. As detected and reported by the operating system
they can be handled by functions added in the application code,
allowing correction, discarding of unreliable results or even
restart of the application. Exceptions detected by Linux are
hangs that can be treated by the application and therefore should
not be considered as errors. Fig. 4 depicts Linux Hang detection
rate.

Linux error detection graph correlate the rate of identified
soft errors by the operating system among total number of
manifested Hang errors. Surprisingly, Linux shows to have a

high rate of Hang perception, reaching 100% of detection in the
case of the fdct application. As expected, analyzing the reports
in details we found that around 90% of detected errors are
Segmentation Faults, when the application tries to address a non-
allocated memory area, making this more perceptive in
applications that recursively access external data, like bit
manipulation and matrix multiplication. In a regular distribution
between applications, Illegal Access signal happened when the
processor attempts to execute an illegal, malformed, unknown,
or privileged instruction, an unsurprising behavior since we are
modifying randomly internal registers values. Harm, fdct and
mdc are the only applications with floating point operations in
the benchmark, and so Linux triggered Floating Point Exception
signal.

Finally, considering the results presented, it is possible to
determine the final error rate, which reflects the architectural
vulnerability factor of the register file. The comparison between
bare metal and Linux applications reflects the sum of SDC and
hangs not detected by the operating system on both
environments. Fig. 5 depicts the results.

Results show clearly that applications running in bare metal

environment are more prone to errors in general than when

Fig. 2. Bare Metal Error Classification.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

IN
JE

C
T

E
D

 F
A

U
L

T
S

APPLICATIONS

SDC # Hang # Unace

Fig. 3. Linux OS Error Classification.

0

10000

20000

30000

40000

50000

60000

70000

80000

90000

100000

IN
JE

C
T

E
D

 F
A

U
L

T
S

APPLICATIONS

SDC # Hang # Unace

Fig. 4. Linux Error Detection.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

90,0%

100,0%

%
 O

F
 L

IN
U

X
 E

X
C

E
P

T
IO

N
S

APPLICATIONS

% Linux Exceptions over Total Hangs

Fig. 5. Experimental Results Error Rate.

0,0%

10,0%

20,0%

30,0%

40,0%

50,0%

60,0%

70,0%

80,0%

%
 E

R
R

O
R

 R
A

T
E

APPLICATIONS

BAREMETAL LINUX

running in Linux OS version when faults are injected in the
register file.

V. CONCLUSION

The paper analyzed in a comparative approach the
susceptibility of several application under soft errors in two
environments: bare metal and on the top of the Linux operating
system. The implementation was conducted by simulation with
OVPSim platform and the OVPSim-FIM fault injector to
introduce bit-flips in the register file of the ARM Cortex-A9
processor. We classified the errors reported by the platform and
extended the report including Linux signal reporting. The
methodology promotes statistical results separating the main
groups of errors between control flow, silent data corruption and
Linux captured errors.

The goal is achieved by performing an analysis in terms of
error and not failure domain, since location is not the focus, but
the variety of errors that can arise in similar failures. By doing
this, we have shown that application running bare metal increase
significantly the overall error rate for all 11 benchmarks that
comprises a diverse scenario of data utilization. Despite this,
considering different groups of errors, we found that the
operating system has considerably less silent data corruption
than bare metal environment, having the majority of failures
located in Hang errors group. By saying this we can conclude
that in our experiment the Linux OS environment tend to hide
more frequently soft errors, while bare metal is more prone to
corrupt the data of the application. When comparing the results
with [11] we faced a different behavior where SDC errors in
Linux was almost the same as in bare metal; we understand and
the paper itself points out that it happens mainly because in the
neutron flux the faults were also injected in the cache, where the
application data is always exposed, leading in data corruption
even before the content reaches the register file. Another reason
is that in [11] the application is restarted continuously without
restarting the operating system, a process where bit-flips that are
not expressed in a particular execution may be manifested in the
future in others.

An additional category of error was analyzed by separating
signals triggered by Linux kernel, where we found that the
contribution of this group can be up to 100% of the total number
of Hangs. Since the kernel reports back to the application the
signal, it is possible to implement signals handlers in the code in
order to deal with the exception and effectively mitigate the error
effect.

As a future work, we propose to analyze the detailed error
classification considering multiple applications running with

Linux OS with the intention of proposing tolerant techniques
focused on error distribution. Another proposal includes sharing
processor and operating system resources by running multiple
applications at the same time and evaluating soft errors masking
effects with and without multicore platforms.

REFERENCES
[1] C. Bolchini, A. Miele, F. Salice, and D. Sciuto, “A model of soft error

effects in generic IP processors,” in 20th IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, DFT 2005, 2005, pp.
334–342.

[2] T.R. Oldham and F.B. McLean. “Total ionizing dose effects in MOS
oxides and devices,” in IEEE Transactions on Nuclear Science, 2003. pp.
483–499.

[3] F. Rosa, “A Fast and Scalable Fault Injection Framework to Evaluate
Many-core Soft Error Reliability,” in Defect and Fault Tolerance in VLSI
and Nanotechnology Systems Symposium. DFT 2015, 2015, unpublished.

[4] T. Jarboui, J. Arlat, Y. Crouzet, K. Kanoun, and T. Marteau, “Analysis of
the effects of real and injected software faults: Linux as a case study,” in
2002 Pacific Rim International Symposium on Dependable Computing,
2002. Proceedings, 2002, pp. 51–58.

[5] Z. Wang, C. Chen, and A. Chattopadhyay, “Fast reliability exploration for
embedded processors via high-level fault injection,” in 2013 14th
International Symposium on Quality Electronic Design (ISQED), 2013,
pp. 265–272.

[6] M. Rebaudengo, M. S. Reorda, and M. Violante, “An accurate analysis of
the effects of soft errors in the instruction and data caches of a pipelined
microprocessor,” in Design, Automation and Test in Europe Conference
and Exhibition, 2003, pp. 602–607.

[7] M. Sonza Reorda, L. Sterpone, M. Violante, M. Portela-Garcia, C. Lopez-
Ongil, and L. Entrena, “ ,” in Test Symposium, 2006. ETS ’06. Eleventh
IEEE European, 2006, pp. 75–82.

[8] L. Sterpone and M. Violante, “An Analysis of SEU Effects in Embedded
Operating Systems for Real-Time Applications,” in IEEE International
Symposium on Industrial Electronics, 2007. ISIE 2007, 2007, pp. 3345–
3349.

[9] J.-C. Fabre, F. Salles, M. R. Moreno, and J. Arlat, “Assessment of COTS
microkernels by fault injection,” in Dependable Computing for Critical
Applications 7, 1999, 1999, pp. 25–44.

[10] M. Rodríguez, F. Salles, J.-C. Fabre, and J. Arlat, “MAFALDA:
Microkernel Assessment by Fault Injection and Design Aid,” in
Dependable Computing — EDCC-3, J. Hlavička, E. Maehle, and A.
Pataricza, Eds. Springer Berlin Heidelberg, 1999, pp. 143–160.

[11] T. Santini, P. Rech, F. R. Wagner and L. Carro, “Exploiting Cache
Conflicts to Reduce Radiation Sensitivity of Operating Systems on
Embedded Systems,” in International Conference on Compilers
Architectures and Synthesis of Embedded Systems, 2015, unpublished.

[12] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux As a Case Study:
Its Extracted Software Architecture,” in Proceedings of the 21st
International Conference on Software Engineering, New York, NY,
USA, 1999, pp. 555–563.

[13] “Linux.org.” [Online]. Available: http://www.linux.org/. [Accessed: 05-
Oct-2015].

[14] “ovpworld.org.” [Online]. Available: http://www.ovpworld.org/.
[Accessed: 05-Oct-2015].

