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Avaliação de um sistema de predição baseado em filtragem colaborativa e avaliações 

binarias 

RESUMO 

Existem alguns problemas com alguns dos mais famosos e utilizados sistemas de 

recomendação para filmes disponíveis nos dias de hoje na internet. Algumas das técnicas 

usadas por esses sistemas podem ter influências negativas no grau de sucesso de suas 

predições. As técnicas de filtragem baseada em conteúdo aplicadas pelos sistemas de 

recomendação podem introduzir tipos de falso-positivos que podem incomodar a alguns 

usuários desses sistemas. Vários dos sistemas disponíveis utilizam-se de certos elementos nas 

suas interfaces que podem confundir seus usuários e levá-los a interpretar erroneamente as 

escalas de avaliação de itens, o que pode invalidar uma parte importante dos dados que são 

coletados e utilizados para gerar predições para todos os usuários do sistema. Este trabalho 

questiona a efetividade de algumas das técnicas utilizadas por essas plataformas e reflete em 

maneiras mais simples e intuitivas para gerar predições e coletar avaliações sobre as 

experiências dos usuários com os itens do sistema. O sistema utiliza-se de uma escala simples 

com um sistema de avaliação binário (uma avaliação corresponde a “gostei" ou “não gostei”) 

para gerar predições probabilidade de usuários gostarem de filmes via filtragem colaborativa 

item-item. Uma implementação do modelo é apresentada e usada para avaliar a efetividade do 

modelo. Um experimento é conduzido de maneira a verificar a precisão do sistema de 

predições, assim como sua validade. Os resultados desse experimento para o sistema de 

avaliações e predições são descritos e analisados. 

   

Palavras-chave: Sistemas de predição, Recomendação de filmes, Avaliações binárias, 

Filtragem colaborativa. 



Movie recommendation engine powered by collaborative filtering and binary ratings 

ABSTRACT 

There are some problems with some of the most prominent recommendation systems for 

movies available today on the internet. Some of the techniques these systems use may lower 

the success rate of their predictions. The content-based filtering techniques used by said 

recommendation systems may introduce kinds of false positives that can be specially 

bothering to some users. Many of the systems available also employ user interface elements 

that can confuse users and lead them to misunderstanding the scale for rating items, which 

may taint one important part of the input that will be used to generate predictions for all the 

users of that given system. This work questions how effective this approach really is and 

reflects on more intuitive and simpler ways to generate predictions and gather input from 

users on their experiences with the items they are rating. Employing a simpler scale with a 

binary rating system and basing predictions solely on collaborative filtering, a prediction 

engine for movie recommendations is proposed, described, prototyped and analysed. The 

model hereby presented consumes binary user ratings (a rating can be either “liked” or 

“disliked”) to generate predictions of the likability of movies using item-based collaborative 

filtering for those users. An implementation of the model is presented and used in order to test 

the model's effectiveness. An experiment is conducted so that the accuracy of the prediction 

engine can be verified, as well as its validity. The results of an experiment for the rating 

system and prediction engine are laid out and analysed. 

Keywords: Prediction engine. Movie recommendations. Binary ratings. Collaborative 

filtering. 
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1. INTRODUCTION 

  

 One of the key ways through which industries try to keep their customers 

engaged is recommendations (MELVILLE; SINDWHANI, 2010). Even though 

recommendations have been playing a significant role in consumerism for a long 

time, the advent of the web has enhanced the presence and very likely increased the 

precision of recommendations a great deal when compared to mouth-to-mouth and 

conventional media recommendations (AAMIR; BHURSY, 2015). With the Internet, 

advertisers no longer had to bulk demographics into a loosely affiliated target 

audience, seldom hitting their mark, but could rather tailor their efforts to fit each 

individual singularly. 

 The Web itself is basically a web of recommendations, or so is how much of 

the money on the internet is made. Ads try to recommend products and services 

based on the habits of those browsing it. Streaming services aim to keep their 

subscribers engaged by looking at their streaming history and suggesting things their 

algorithms think their users will like. Social networks often recommend their users to 

“follow this profile, since you follow this other profile” or to “like this page, since you 

liked that other page”. Those examples illustrate the importance of intelligent 

recommendations, and how recommendations play a role in trying to captivate and 

further immerse the users of online platforms. 

 Some years ago, the streaming giant Netflix claimed that over 75% of the films 

watched through their platform were watched as a direct consequence of their 

recommendation system. In the past, they have also launched a contest of which the 

goal was to improve their recommendation algorithm (or, more precisely, lower the 

error rate of that algorithm by at least 10%) that awarded one million dollars to the 

contest's winners (AMATRIAN; BASILICO, 2012). 

 Evidently, a lot of effort is being put in recommendation system nowadays, but 

the most popular platforms for rating and streaming movies apply relatively similar 

techniques for filtering data. Hybrid recommendation systems are used by the  

leading platforms for streaming and recommending movies, but these systems have 

some drawbacks. These hybrid systems can comprise collaborative, content-based, 

demographic and other kinds of filtering. One of the problems with content-based 

filtering is that in many cases item classification cannot be automated, and some 
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items, such as works of art, can be quite complex and multi-layered and therefore 

hard to translate into a set of quantitative or objectively-describing tags. In the 

context of content-based filtering, when items are not thoroughly classified it is very 

likely that the number of wrong predictions will rise. The same applies to 

demographic filtering: if there is not information enough about the users, or each 

demographic is defined too broadly, the system may base its predictions on flukes. If 

however a set of items and users is accurately classified, research shows that it can 

improve the accuracy of predicted ratings as well when combined with collaborative 

filtering (ALI; PAZZANI, 1996). 

 But what if the ratings the users provide are not quite on par to their own 

experience? Then predicting how a user would rate an item is not at all that useful. 

 A suggested exercise to the reader of this text is to write down the name of 10 

or so movies they have watched, and rate those movies on a scale from 1 (being the 

worst rating) and 5 (being the best rating). Let’s say the first title on the reader's list is 

a magnum opus, a perfectly executed and one of the all time greatest works of art 

mankind has ever had the pleasure to come across. Let’s say the reader rates that 

film as a 5. Continuing rating the films on that list, the reader may come across a 

decent and pleasant film, which they do not regret watching, but may catch 

themselves rating that film as a 2, thinking that it couldn’t possibly be half as good as 

the magnum opus he just rated… But would the reader really watch a movie that was 

recommended to him at a rating of just 2 out of 5 stars? 

 The little fictional example is a simple example of how difficult it can be to rate 

subjective and complex things when there is room for the scale to be interpreted as a 

linear numeric interval scale, and that even if a recommendation engine tells 

someone that they will probably rate a given item 2 out of 5, that does not mean 

consuming that item or watching that film would necessarily be an unpleasant 

experience. That depends on how the user interpreted the scale to generate their 

assessments. Therefore, it presents an example on how users of a given 

recommendation system can be misguided by their own ratings due to the fact that a 

scale that can be perceived as numeric can be not trivial. In some cases, though, 

such as Yelp!  and TripAdvisor , the platforms show a label indicating what their 1 2

 http://www.yelp.com/1

 https://www.tripadvisor.com/2

http://www.yelp.com/
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rating actually mean. In other cases, such as Netflix , that indication is hidden 3

somewhere in their information pages. MovieLens , a movie recommendation 4

platform by researchers from the University of Minnesota, does not have a particular 

meaning for ratings, or it is never explained. 

 The problems cited above, regarding inaccurate classification of items and 

demographics, as well as the potential misinterpretations that can happen by users 

when rating movies on a scale that can be misperceived depending on how it is 

presented on the user interface, are inspirations to seek a different and more intuitive 

approach when it comes to rating and recommending movies. 

 The approach hereby explained consists in an attempt to simplify ratings,  

trying to make them more meaningful and intuitive: a user either likes or dislikes a 

movie. This is not a new technique and is used by various recommendation systems, 

but it’s different from the most frequently used by the mainstream movie platforms on 

the internet. From there on, collaborative filtering techniques are applied and the 

likelihood of a user liking a given movie is predicted. Besides proposing and 

presenting experiments on the collaborative-filtering-based prediction system for 

recommending movies, this work will also discuss relevant works in the field and 

prominent recommendation systems in the web, as well as basic concepts necessary 

to understand them. 

1.1. Structure of this text 

  

 Chapter 2 will present relevant concepts for the development and 

understanding of this dissertation. Chapter 3 will go deeper into relevant information 

about mainstream recommendation systems for movies. Chapter 4 explains in detail 

the proposed approach to movie recommendations, as well as the motivation behind 

it. Chapter 5 discusses an implementation for the proposed algorithm, while Chapter 

6 presents an experiment for validating the model described in Chapter 4 that uses 

Chapter 5’s implementation. Chapter 7 summarises a conclusion for this work. 

 https://www.netflix.com/3

 https://www.movielens.org/4

https://www.movielens.org
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2. RELEVANT CONCEPTS 

  

 This chapter lays out concepts that are relevant for the understanding and 

reproduction of this work. Some basic understanding in mathematics, statistics, 

logics, computer science and programming are already required in order to fully 

understand the explanations and idioms employed in this dissertation. In order not to 

make this text overly verbose, this chapter will brush the surface of topics that are 

important to the development of this work. For further information and deeper 

explanations of the cited topic, the reader is encouraged to consult the titles listed in 

the reference sheet at the end of this text. 

2.1. The optimal recommendation problem 

 The recommendation problem is to find the most useful (optimal) item 

belonging to a finite set of items for a given user. A user has their own utility function. 

The optimal recommendation recommends the item which yields the highest value 

when used as an input for a user’s utility function (ADOMAVICIUS; TUZHILIN, 2005). 

2.2. Information filtering system 

 An Information filtering system (HANANI, 2001) is an automated system that 

filters irrelevant or undesired information or data. Examples of usage: 

recommendation systems, spam filters, search engines. 

2.3. Recommendation system 

 Recommendation systems (also sometimes referred as “recommender 

systems”) are systems developed to try and predict preferences of a user (or subject) 

within a finite set of items (ADOMAVICIUS; TUZHILIN, 2005). The usage of this kind 

of system is widely spread around the Internet, from movie streaming services to e-

commerce. This class of systems is a subclass of the system class denoted 

"information filtering” (MELVILLE; SINDHWANI, 2010). 
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2.4. Collaborative filtering 

 In the context of recommendation systems, collaborative filtering is a 

technique where multiple sources of data are used to place an educated guess about 

a particular data point that is missing from a dataset (TAKÁCS et al., 2009). For 

example, let us imagine that the following dataset was collected following a very 

serious and thorough research project (it was in fact made up to illustrate this 

example): 

Table 2.1: Cat preferences catalogue 

Source: this work’s author 

 Let us now imagine that the researchers that comprise the fictitious very 

serious and thorough project want to use collaborative filtering to determine where 

Mikhail, the cat, likes sleeping belly up. All that they can infer from the dataset is that 

Mikhail shares all its known preferences with Furry and Black Paw, and its known 

preferences are the opposite of Wormtail’s. If collaborative filtering is applied to try 

and predict the preference of Mikhail regarding sleeping belly up, the predicted 

preference would be that Mikhail dislikes sleeping belly up. The reason for that 

prediction is that the rest of the dataset implies that cats that like eating cat food and 

playing with thread ball do not like sleeping belly up.  

2.4.1. Item-based collaborative filtering 

 There are multiple techniques that fall under the genre of collaborative 

filtering. Item-based collaborative filtering computes the similarity between an item 

Cat name Eating cat food Sleeping belly up Playing w/ thread 
ball

Jumping up and 
down

Furry Likes Dislikes Likes Likes

Black Paw Likes Dislikes Likes Likes

Wormtail Dislikes Likes Dislikes Dislikes

Mikhail Likes ? Likes Likes
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the user has not rated and the items the user has already rated. The prediction will 

be the outcome of the weighted average of that item’s similarity with the items the 

user has rated (SARWAR et al., 2001). The similarity between two items can be 

computed via a similarity function. Examples of those are cosine-based similarity, 

correlation-based similarity and adjusted cosine similarity (SARWAR et al., 2001). 

2.5. Content-based filtering 

 Content-based filtering is, very much like collaborative filtering, a technique 

used by recommendation systems. The difference between the two is that while 

collaborative filtering focuses solely on the subjects' relation to a given item (i.e. 

Wormtail dislikes jumping up and down), content-based filtering breaks down items 

into categories and judges the subjects experiences with an item based on that item’s 

characteristics (PAZZANI, 1999). Let us bring back the fake cat experiment and 

suppose that the researchers classified the cat activities as follows: 

Table 2.2: Classification of cat activities 

Source: this work’s author 

 Based on those tags, the researchers would then try to predict Mikhail’s 

opinion on sleeping belly up, but this time they will only regard Mikhail’s own 

experience with other activities. A content-based filtering algorithm when presented 

the cat preference catalogue might conclude that since Mikhail likes activities that 

involve moving, Mikhail might as well dislike activities that involve staying still, 

therefore disliking sleeping belly up. Note that even though the predicted outcomes 

were the same for both examples (collaborative filtering and content-based filtering), 

the reasoning behind the prediction was different, and these two techniques are not 

guaranteed to yield similar results. 

Activity Tags

Eating cat food Moving a bit, Feeding.

Sleeping belly up Staying still, Resting.

Playing w/ thread ball Moving a lot, Fun.

Jumping up and down Moving a lot, Fun.
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2.6. Hybrid recommendation systems 

 Recommender systems that make use of more than one filtering technique are 

called “hybrid recommendation systems” (MELVILLE; SINDHWANI, 2010). There are 

several examples of information filtering techniques, such as collaborative filtering, 

content-based filtering, demographic filtering, and others. Hybrid recommendation 

systems are sometimes deemed by literature to be a more precise approach to 

recommendation systems when compared to simple filters (AAMIR; BHUSRY, 2015). 

Having said that, they usually require more on classifier agents to enhance the 

dataset. Those agents may be users chipping in with more data about themselves 

and their experience rather than a simple rating, or they may depend on people 

dedicated to classifying the dataset in some way. 

2.7. Prediction engine 

 The prediction engine is the part of the recommendation system that is 

responsible of generating a prediction based on the existing data and models 

(DELGADO; ISHII, 2009). It is the part of recommendation systems that usually holds 

the definition of utility functions, graph theory and machine learning implementations 

(when applicable). 



�19

3. RECOMMENDATION SYSTEMS 

  

 Recommendation is a natural form of social interaction and discovery. There 

were already research fields tackling problems related to recommendation systems 

prior to 1992, when first commercial recommendation system, called Tapestry 

(GOLDBERG et al., 1992), coined the phrase “collaborative filtering” and sprung new 

life into this area of research. 

 With the interest from industry and academy on the subject growing hand in 

hand, much has been produced in the area during the past 25 years and some 

systems can achieve great accuracy in predicting tastes and ratings for its users. 

 There are multiple genres of filtering algorithms used by prediction engines, 

the most popular ones being collaborative filtering and content-based filtering, which 

are often applied together in hybrid recommendation systems (AAMIR; BHUSRY, 

2015), and within those genres there are multiple variations and a variety of 

subgenres of algorithms (SU; KHOSHGOFTAAR, 2009). For a more detailed 

explanation about the three subcategories of recommendation systems, the reader is 

advised to go back to Chapter 2 of this text. 

 Note that each filtering genre is subdivided in many other different techniques 

that can bring different sets of perks and shortcomings. The table below presents and 

compares characteristics that are usually a part of the genres as a whole. 

Table 2.3: Comparison of filtering algorithms 

Advantages Disadvantages

Collaborative filtering • Require little or no data from 

the recommendable items 

belonging to the data set.

• Good scaling for co-rated 

items.

• Extending the dataset is very 

simple.

• Low per formance when 

dataset is sparse.

• If one user’s taste is radically 

different from most of the 

u s e r s i n t h e s y s t e m , 

predictions may be very 

inaccurate.
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Source: assembled by this work’s author 

 Since the focus of this work lies on movie recommendations, it is worth 

mentioning that most recommendation engines around work in a similar way. The 

following section presents some of the most relevant or widely-used movie 

recommendation engines nowadays. 

3.1. Relevant movie recommendation engines in the web 

 When it comes to classifying movies there are several limitations to what can 

be done using neural networks and machine learning without relying on extensive 

human input. Some nuances are very hard to be picked up by an artificial intelligence 

and one good example to that is Netflix’s tagging system, which relies on data 

inserted by human hands in order to label and classify the movies in their database. 

MovieLens, on the other hand, relies on users doing the expert’s work of classifying 

movies, which moves the labour from their own payroll to crowdsourcing. 

3.1.1. Netflix 

 “Netflix” may likely be the first word to pop in anyone’s mind if they were asked 

to engage on an exercise of free association between the words “internet” and 

“movies”. Inarguably a powerhouse in the streaming industry, Netflix takes its 

recommendation engine very seriously, having claimed that over 75% of their content 

was accessed as a direct consequence of it (AMATRIAIN; BASILICO, 2012). They 

Content-based filtering • P e r f o r m a n c e d o e s n o t 

depend on dataset sparsity.

• Powerful for recommending 

items that can be easily and 

objectively classified.

• Classifying complex items 

may require a lot of human 

effort.

• Subjective and complex 

items may well be wrongly 

recommended.

Hybrid • More accurate predictions

• Can overcome  some of the 

disadvantages of the simpler 

approaches

• Expensive implementation

• Usually requires a lot of 

human e f fo r t to enr ich 

dataset.

Advantages Disadvantages
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also sponsored a competition of which the goal was to produce a recommendation 

engine with a success ratio superior to the one they had, and it rewarded the winners 

with the sum of one million dollars (AMATRIAIN; BASILICO, 2012). 

 Neil Hunt, Netflix Chief Product Officer responds to a question posted on 

Quora  (“How does Netflix tag their movies?”, 2011):  5

 "Expert reviewers watch the movies and assign tags from a predefined list.  

Some are binary, some are quantitative (1-5 scale).  A variety of rules utilize tag data 

to assemble the "micro genres" ("Foreign movies featuring a strong female lead"), the 

"like" lists of similar movies, and as an input to predicting interest, and hence 

assembling pages to present.” 

 In January 2016, Hunt also told Business Insider that Netflix is studying more 

intuitive approaches to rating, such as a “like/dislike” rating system. He indicated that 

people were confused by the current rating system and were sometimes rating 

movies like critics instead of basing their ratings on how much they enjoyed watching 

that movie, which according to Hunt, is the goal of the rating system. 

 Also in Quora, an explanation of Xavier Amatrain can be found for the 

question “How does Netflix movie recommendation algorithm work?”. He answers: 

 “(…) there are many recommendation algorithms at Netflix. (…) there are two 

algorithms that are being used in production right now: Restricted Boltzman “ - he 

mispronounces Boltzmann’s name - “Machines (RBM) and a form of Matrix 

Factorization. (…) There are many other recommendation algorithms from 

personalized ranking to page optimization that make up the Netflix recommendation 

system. (…)” 

 Netflix also makes use of content-based filtering, as mentioned in the blog 

post “Netflix Recommendations: Beyond 5 Stars (Part 2)” (AMATRAIN; BASILICO, 

2012), which when added to the use of Restricted Boltzmann Machines for 

collaborative filtering (SALAKHUTDINOV; MNIH; HINTON, 2007), classify their 

recommendation engine as a hybrid one. 

 For what it’s worth, other streaming services also apply similar methods to 

their recommendation engines. Netflix was chosen as a case study for the amount of 

knowledge out there about the platform (such as their tech blog  and their staff 6

 https://www.quora.com/5

 http://techblog.netflix.com/6
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answering to questions on Quora) and also for its huge share of the movie and tv 

series streaming market. 

3.1.2. MovieLens 

 MovieLens is a movie recommendation web platform run by GroupLens, a 

research lab at the University of Minnesota. They use the data collected on the 

MovieLens platform to fuel further research on recommendation systems. Their web 

platform offers many different prediction algorithms for the user to choose from. 

 MovieLens applies a similar rating logic as Netflix, asking for ratings from 0.5 

to 5, but it differs a bit from Netflix by asking that users weight what kinds of movies 

they like before they can rate the actual movies. This works by the users rating bulks 

of tags. One reason why this technique may be applied is to try and avoid the cold 

start problem (MELVILLE; SINDWHANI, 2010). 

3.1.3. IMDb 

 Worth mentioning for its traffic and huge database, IMDb is one of the biggest 

forums on movies and tv shows on the internet. Their rating system is very similar to 

the ones in Netflix and MovieLens, but it ranges from 0 to 10 instead. They also apply 

collaborative filtering and content-based filtering in order to generate predictions, as 

mentioned in their “Personalized Recommendations Frequently Asked Questions” .  7

3.2. Considerations about the state of the art in movie recommendations 

 Different to lifestyle and social recommendations, the efforts of research and 

industry seem hardly focus on a different paradigm of user interaction with 

recommendation systems when it comes to recommending movies. Twitter’s  “Who 8

to follow” algorithm (GUPTA et al., 2013) is a good example of a massively used and 

highly successful recommendation algorithm that does not require its users to rate 

 http://www.imdb.com/help/show_leaf?personalrecommendations 7

 https://twitter.com/8
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pages with arbitrary values in order to receive good recommendations. Foursquare’s  9

rating system only requires users to “like” or “dislike” places. The examples cited are 

by no means proof that a simple “yes or no” rating is better than a scale represented 

by stars or numbers, but it gives room for one to wonder whether more literal ratings 

would lead to more meaningful predictions, and therefore more useful 

recommendations. 

 Another possible downside with the content-based filtering approach, which is 

used by the three recommendation engines mentioned in section 3.1, but more 

evidently so by MovieLens and Netflix, is the kind of false positives it brings. A good 

rating for “The Dark Knight” in MovieLens or Netflix will bring loads of 

recommendations of super hero comic-book adaptation films, even though “The Dark 

Knight” is inherently different than most super hero comic-book adaptation films. 

False positives are unavoidable, even more so for users who fall under the labels of 

grey sheep or black sheep (SU; KHOSHGOFTAAR, 2009), but perhaps different 

approaches could alleviate some of the frequency of those kinds of false positives. 

 https://foursquare.com/9
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4. MOVIE PREDICTION ENGINE FOR BINARY RATINGS WITH 

COLLABORATIVE FILTERING 

 As mentioned at the end of Chapter 3, there can be some downsides to the 

way some relevant movie recommendation platforms collect user ratings, make 

predictions, and therefore recommend items. This chapter brings suggestions to 

address some of the problems discussed in the previous one, discussing and 

presenting a model for a prediction engine to be used by movie recommendation 

systems. 

4.1. User ratings 

 Stars have long been present in the movie rating world. It works quite well for 

movie critics to evaluate pictures, but when it comes to normal people in a streaming 

service it may become confusing depending on how it is presented. And the very 

reason it confuses people is that it makes them feel like critics and judge the works of 

art like critics, instead of rating according to their experience. Going back some 

years, movie-rating systems such as Netflix’s and MovieLens at least offered a direct 

translation of what one-star and four-starts meant (they used to mean, “I didn’t like it” 

or “I really liked it”, respectively, or something close to that), but now the interface 

leaves users simply with the stars and no labels, which enhances the possibility of 

users getting confused. 

 In January 2016, Netflix’s CPO Neil Hunt told Business Insider that this user 

behaviour, when they rate for “quality” instead of “enjoyment", is causing strange 

anomalies in their data (MCALONE, 2016). But if you’re not supposed to judge it for 

“quality”, why use the same metric and symbolism used for when critics do so? And 

why hide the meanings of ratings somewhere in the help pages? It’s only natural that 

users would be confused. To avoid that kind of problem and provide a more intuitive, 

unambiguous experience for users, and expecting that meaningful ratings can be 

more easily converted into meaningful recommendations, this work adopts a very 

simple user rating system. 
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 A user has 4 options when it comes to a movie, and she must pick only one. 

The four options presented to the user for evaluating her experience with a film are 

the following: 

A. I have not watched it 

B. I have watched it and neither like nor dislike it 

C. I have watched it and I like it 

D. I have watched it and I dislike it 

 The rating system described above is not at all ambiguous or subjective, but it  

instead allows users to encapsulate the subjectivity of complex works of art into 

simple statements that translate their experiences with those works of art. The like/

dislike scale is used by several recommendation systems and has been present in 

literature for some time (PAZZANI, 1999). There should be the acknowledgement 

that if all interfaces could be perceived correctly by users, avoiding users to rate 

items like critics when they should be assessing their enjoyment, a more nuanced 

scale would potentially be a better metric due to its nature, providing more detail in 

how much a user has liked or disliked a given movie, possibly enhancing predictions 

by providing a richer way to calculate the correlation between the movies in the 

dataset and the users’ experiences with those movies. Unfortunately, as mentioned a 

couple of paragraphs back, there is evidence that simply displaying a scale may lead 

users to assess the quality of the movies they have watched, which can cause 

anomalies to the dataset. 

4.2. Information filtering 

 As a mean to develop the prediction engine powered by the rating system 

described above, it was decided that the information filtering technique used would 

be CF (collaborative filtering). In this case, only non-neutral ratings towards movies 

will be taken into account (likes and dislikes). This approach allows for quick 

implementation and does not require experts to analyse and classify entries on the 

dataset extensively, making it a very good candidate for a small experiment. There is 

also evidence that collaborative filtering can be more effective than content-based 
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filtering, as shown in various research experiments. Two experiments that exemplify 

that evidence are “Recommendation as Classification: Using Social and Content-

Based Information in Recommendation” (BASU; HIRSH; COHEN, 1998) and “A 

Framework for Collaborative, Content-Based and Demographic Filtering” (PAZZANI, 

1999).  With that in mind, it’s worth mentioning that this filtering technique does not 

cover other important issues in recommendation systems such novelty (KAPOOR et 

al., 2015) and cold-start (SU; KHOSHGOFTAAR, 2009). 

 The CF approach chosen was item-based collaborative filtering. When 

compared to user-based CF, item-based is showed yield more precise predictions 

and therefore better recommendations (DESHPANDE; KARYPIS, 2004). 

4.3. Prediction engine 

 In the previous sections (4.1 and 4.2), the basic features of the prediction 

engine were laid out. In section 4.1 it is specified how the data that will be used to 

train the prediction engine is modelled, while in section 4.2 it is specified the general 

approach to information filtering used to power predictions. In this section, the 

prediction engine will explained in more detail, and its computational complexity will 

be analysed. 

4.3.1. Predicting likability 

 As previously mentioned, the type of collaborative filtering used to generate 

recommendations chosen is the so called “item-based collaborative filtering”. Item-

based collaborative filtering works by recommending to the user items that are similar 

to the ones the user has already consumed and enjoyed (SARWAR et al., 2001). 

 In that context, instead of answering the question “How likely is it that User U 

would enjoy watching Movie M?” the prediction engine tries to answer a proxy 

question: “How similar is Movie M to the movies that User U has watched and liked, 

and how different is Movie M to the movies that User U has watched and disliked?”. 

This approach, like content-based filtering, focuses on the affinity of items among 

themselves, but note that item-based collaborative filtering looks into the similarities 
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of experiences users had with those items, while content-based filtering looks for 

similarities in the characteristics of the items. 

4.3.2. Item similarity computation 

 The first step in order to determine how similar two items are through 

collaborative filtering is by isolating all users that had experiences with those two 

items (i.e., users that rated both items). Then there are many ways to compute the 

similarity between those two items. For this work, the chosen method is conditional 

probability-based similarity. The conditional probability-based similarity is essentially 

the probability of two users giving equivalent ratings to the same items 

(DESHPANDE; KARYPIS, 2004). Agreeing ratings are when multiple ratings for the 

same items converge. In other words, ratings from different users agree when they 

have the same value for a given item. Otherwise, those ratings are disagreeing. 

 Let i,j be two different items. Let U be the subset of users who have rated  

both items i and j. Let s be the number of similar (agreeing) ratings by all users in U 

for items i and j. Let d be the number of different (disagreeing) ratings by all users in 

U for items i and j. The similarity equation for i and j is described by: 

Equation 4.1: Similarity equation for items i, j 

Source: this work’s author  

4.3.3. The likability of an item for a user 

 Being able to compute the similarity of two items allows us to move on to the 

next step: determining the probability that a user will like a given item. In other words, 

computing the likability of an item for that user. We want to recommend items that are 

similar to the items that the user has liked and to not recommend items that are 

similar to items the user has disliked. 
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 Let i be an item in the item set. Let u be a user that has not yet rated i, for 

which we are interested in predicting the likability of i. Let L be the set of items the 

user has liked and D be the set of items the user has disliked. The function below is 

used to calculate the likability of item i to user u: 

Equation 4.2: likability of item i to user u 

  

Source: this work’s author 

 The function described above ranges from -1 (when i is utterly similar to all 

items the user has disliked) to 1 (when i is utterly similar to all items the user has 

liked). In order to read that as a probability of the user liking that item, we can do 

some simple operations. Let P(u, i) be the probability that user u would like item i. 

The probability function can be described as follows: 

Equation 4.3: Probability of user u liking item i. 

Source: this work’s author 

 And that concludes the prediction engine. In order to transform that into a 

recommendation system, all there is needed is to calculate the probability for users to 

like every single item they have not rated and return the n items with the highest 

probability of the user liking them. 

4.3.4. Complexity analysis 

  

 The pseudocode below represents the extraction of the item with the highest 

likability from the prediction engine for a given user. This would be the equivalent of 
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an optimal recommendation of size 1 amongst the items not yet consumed by that 

user. 

Algorithm 4.4: pseudocode representing computation of optimal recommendation for user 

Source: this work’s author  

 Let us begin with the loop that ranges from line 2 to line 9. On line 3, we 

calculate the similarity between two items. In order to do that, we have to iterate 

through all users (except the user for which we are computing the prediction) and 

check whether they have rated those two items, and what was the rating. If there are 

n users in the database and i items, in the worst case we will iterate through (n-1)*i 

ratings. Let j = max(n, i). That leaves the similarity operation with a complexity of O(j2) 

After that, we need to check if our subject has liked the current item. The complexity 

of that is i-1, therefore the complexity of the loop ranging from lines 2 to 9 is O(j2+i-1), 

which equals O(j2). The loop ranging from lines 1 to 10 repeats the loop ranging from 

lines 2 to 9 i times, which makes the worst case for that loop O(j3) in the occasion 

where j = i. The final operation costs O(i) and therefore does not affect the 

complexity of the algorithm. 

1. map unrated_item in user.unrated_items do
2.   map rated_item in user.rated_items do
3.     similarity = similarity(unrated_item, rated_item)
4.     if user.liked_items.includes?(rated_item)
5.       return similarity
6.     else # user has disliked rated_item
7.       return -similarity
8.     end
9.   end
10. end.max
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5. IMPLEMENTATION 

 All the code that comprise the implementation of the prediction engine for 

movie recommendations can be found at <https://github.com/jmeinerz/siwi>. In order 

to make this text easier to understand, some details will be abstracted from the 

dissertation and the code presented should be interpreted as pseudocode, but it will 

presented as close as possible to the original version without impairing the 

understandability of this text. 

5.1. Technologies used 

 The following sections will list and justify the technologies used to implement a 

version of the recommendation engine. The choices were made aiming for a simple 

and understandable prototype. 

5.1.1. Neo4j database 

  

 Since a graph was used to model and describe the universe containing 

movies, users and their relationships, the most intuitive choice for modelling the 

database would be elements in a graph. 

 Neo4j  is described by their creators as "a highly scalable native graph 10

database that leverages data relationships as first-class entities” (“Neo4j: The world’s 

leading graph database”, 2016). It offers an intuitive way to model the entities for this 

work, which allows for readability of the codebase and quick implementation. 

 Achieving high computing performance was not the immediate purpose of this 

work and therefore no measurements or comparisons were drawn between the use 

of the Neo4j graph database versus the use of tables or matrices to store data. In 

order to decide whether this choice is ideal for an eventual large-scale 

implementation, benchmarks to evaluate the feasibility of using Neo4j as the 

database would be a requirement. 

 http://neo4j.com10

https://github.com/jmeinerz/siwi
http://neo4j.com
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5.1.2. Google forms 

 Google forms  was chosen due to the ease to create and respond to forms.  11

The forms can also be exported to a .csv file, which was very useful when it was time 

to parse the responses. The form created was open to the public, accessible for 

anyone in possession of the form URL.  

5.1.3. Ruby programming language 

 Ruby  is very easy to read and be understood by anyone who knows how to 12

program. Reading ruby code is almost like reading pseudocode, which makes it look 

good in stuff like an undergraduate thesis. It is also arguably fast to learn and comes 

with many built-in utilities for parsing files and text, which came in very handy for 

implementing the recommendation system prototype. 
 For what it’s worth though, Ruby is not the fastest programming language 

around. This means that choosing this particular language for a large scale 

deployment of the recommendation engine may not be ideal. 

5.2. Modelling the entities and their relationships 

 The engine operates based on two entities: users and movies. Those will be 

the nodes on our graph database. There are two types of edges connecting the 

nodes of our graph, the first one being a user-to-movie edge, weighted based on the 

referenced user opinion on that given movie and the second one being a movie-to-

movie edge, representing how likely the connected movies are of receiving similar 

ratings from a given user.  

 In order to translate this universe into code and connect our entities with our 

database, the library Neo4jrb was used. It is an utility for translating Neo4j database 

models into Ruby objects. The tool is open sourced and available at Neo4jrb’s 

GitHub repository . 13

 https://docs.google.com/forms/11

 https://www.ruby-lang.org/en/12

 https://github.com/neo4jrb/neo4j13

https://docs.google.com/forms/
https://www.ruby-lang.org/en/
https://github.com/neo4jrb/neo4j
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 The following sections will explain and exemplify the modelling of each one of 

our entities and relationships. 

5.2.1. Users 

 As previously mentioned, users have relationships with movies. We represent 

that as an edge going from a user to a movie. That edge has one of two weights: 

“liked”, for when that user has liked the movie or “disliked”, for when the user disliked 

that movie. For readability and, we represent that on the code as users having two 

types of outbound edges: “liked”, and “disliked”, representing respectively the two 

weights just mentioned. The following snippet of code illustrates the way a user is 

modelled into code in the engine: 

Algorithm 5.1: snippet of code representing User model 

Source: this work’s author 

5.2.2. Movies 

 The modelling of movies is analogous to the one for users, except that we 

keep connections to other movies for when they are rated by the same user. One 

“alike" connection means they received the same rating from a user, one “unlike" 

means the opposite of that. A method that implements the similarity function 

described on Chapter 4 is also added. The following algorithm exemplifies the 

class User
  include Neo4j::ActiveNode # this is a node in the db

  has_many :out,                # has many outbound edges
           type: 'like',        # of type liked
           model_class: :Movie  # pointing to Movie nodes

  has_many :out,                # has many outbound edges
           type: 'dislike',     # of type disliked
           model_class: :Movie  # pointing to Movie nodes

end
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modelling of the Movie entity, as well as its connections and algorithm to determine 

the similarity between two movies. 

Algorithm 5.2: snippet of code representing Movie model 

Source: this work’s author 

5.3. Collecting and parsing data 

 An online form was set up using Google Forms to collect data from movie 

watchers. The data collection will be detail in Chapter 6, so that part will be ignored 

for now. In order to parse the responses and use them as inputs for the 

recommendation engine, a simple script was written using the Ruby programming 

language. 

5.4. Generating predictions 

 The algorithm described below calculates the probability of a user liking a 

movie. As described by the model in the previous chapter, the return value of the 

function will be the difference between the similarity of that movie among the ones 

class Movie
  include Neo4j::ActiveNode

  property :title, type: String

  has_many :in, type: 'like', model_class: :User
  has_many :in, type: 'dislike', model_class: :User

  has_many :both, :alikes, rel_class: :Alike
  has_many :both, :unlikes, rel_class: :Unlike

  def similarity(other_movie)
    similar = alikes.where(title: other_movie.title).count
    different = unlikes.where(title: other_movie.title).count
    total = similar + different
    return 0.5 if total == 0
    similar.to_f / total
  end
end
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the user has liked and the similarity between the ones the user has disliked. That 

value is shifted to fit between 0 and 1 before being returned. 

Algorithm 5.3: code that calculates the probability of a user liking a movie 

Source: this work’s author  

 Finally, we can generate the optimal recommendations for a user, consisting of 

the n items the user will most likely enjoy watching. 

Algorithm 5.4: method that yields optimal recommendation for user 

Source: this work’s author  

 We now have the tools to make recommendations. It’s now time to verify how 

precise those recommendations are. 

  

def like_probability(user, movie)
  avg_liked_similarity = user.liked.map do |liked_movie|
    movie.similarity(liked_movie)
  end.inject(:+) / liked.size

  avg_disliked_similarity = user.disliked.map do |liked_movie|
    movie.similarity(liked_movie)
  end.inject(:+) / disliked.size

  (1 + avg_liked_similarity - avg_disliked_similarity).to_f / 2
end

def optimal_recommendation(user, n)
  options = Movie.all - user.liked - user.disliked
  options.map do |movie|
    { movie: movie, like_probability: like_probability(user, movie) }
  end.sort_by { |m| m[:like_probability] }.last(n)
end
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6. VALIDATION EXPERIMENT 

 In order to test the validity and precision of the prediction engine, an 

experiment was developed. In this chapter, the experiment and its results will be 

described.  

 Following the premise that data originated from sources such as Netflix, 

MovieLens and IMDb might not be totally trustworthy due to users misinterpreting the 

different versions of the Likert-type scale (LIKERT, 1932) presented by the interfaces 

of those systems, it was decided that their databases would not power this research 

experiment. Therefore, an online survey was set up in order to gather inputs 

formatted such as the input of this work’s prediction engine requires. The next section 

explains in further detail how this survey was set up. 

6.1. Gathering Data 

 A survey containing a table analogous to the one below was presented to 

respondents in the format of a form: 

  
Table 6.1: Illustration of form used to gather data for validation experiment. 

WHAT IS YOUR EXPERIENCE WITH THE FOLLOWING MOVIES?

Source: this work’s author 

 That table would allow users to rate their experience with a list of movies (that 

list will be displayed further in this section). The respondents would then check one 

column per row. The actual set of movie titles included in the form is listed as follows: 

Movie title I haven’t watched it / 
Neither like nor 
dislike it

I liked it I didn’t like it

Title 1

Title 2

…

Title N
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Table 6.2: List of movie titles used to gather data for validation experiment 

101 Dalmatians (1961) Goldfinger (1964) One Flew Over the 
Cuckoo's Nest (1975)

The Passion of the 
Christ (2004)

2012 (2009) Gone With the Wind 
(1939)

Pinocchio (1940) The Poseidon 
Adventure (1972)

Airport (1970) Gravity (2013) Pirates of the 
Caribbean: The Curse 
of the Black Pearl 
(2003)

The Robe (1953)

Aladdin (1992) Grease (1978) Raiders of the Lost Ark 
(1981)

The Rocky Horror 
Picture Show (1975)

Alice in Wonderland 
(2010)

Guardians of the 
Galaxy (2014)

Rocky (1976) The Sixth Sense (1999)

American Graffiti 
(1973)

Hancock (2008) Skyfall (2012) The Sound of Music 
(1965)

Around the World in 80 
Days (1956)

Harry Potter and the 
Sorcerer's Stone 
(2001)

Sleeping Beauty (1959) The Sting (1973)

Avatar (2009) Home Alone (1990) Smokey and the Bandit 
(1977)

The Ten 
Commandments (1956)

Back to the Future 
(1985)

House of Wax (1953) Snow White and the 
Seven Dwarfs (1937)

The Towering Inferno 
(1974)

Bambi (1942) Inception (2010) Spectre (2015) Thor: The Dark World 
(2013)

Batman (1989) Independence Day 
(1996)

Spider-Man (2002) Thunderball (1965)

Ben-Hur (1959) Indiana Jones and the 
Kingdom of the Crystal 
Skull (2008)

Star Wars: Episode I - 
The Phantom Menace 
(1999)

Titanic (1997)

Beverly Hills Cop 
(1984)

Indiana Jones and the 
Temple of Doom (1984)

Star Wars: Episode IV - 
A New Hope (1977)

Tootsie (1982)

Big Hero 6 (2014) Inside Out (2015) Star Wars: The Force 
Awakens (2015)

Toy Story 3 (2010)

Blazing Saddles (1974) Interstellar (2014) Superman (1978) Transformers (2007)

Butch Cassidy and the 
Sundance Kid (1969)

Iron Man 3 (2013) Swiss Family Robinson 
(1960)

Twister (1996)

Captain America: The 
Winter Soldier (2014)

It's a Mad, Mad, Mad, 
Mad World (1963)

The Amazing Spider-
Man (2012)

Up (2009)

Cinderella (1950) Jaws (1975) The Bells of St. Mary's 
(1945)

West Side Story (1961)

Cleopatra (1963) Jurassic Park (1993) The Best Years of Our 
Lives (1946)

X-Men: Days of Future 
Past (2014)
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Source: assembled by this work’s author 
  

 The list shown above was built based on two other lists: Top 100 Worldwide 

Grosses for a Movie  and Top 100 USA Domestic Grosses for a Movie, Adjusted for 14

Close Encounters of 
the Third Kind 
(1977/1980)

Jurassic World (2015) The Bridge On The 
River Kwai (1957)

Dawn of the Planet of 
the Apes (2014)

Kung Fu Panda (2008) The Chronicles of 
Narnia: The Lion, the 
Witch and the 
Wardrobe (2005)

Deadpool (2016) Lady and the Tramp 
(1955)

The Da Vinci Code 
(2006)

Despicable Me 2 
(2013)

Lawrence of Arabia 
(1962)

The Dark Knight (2008)

Doctor Zhivago (1965) Love Story (1970) The Dark Knight Rises 
(2012)

Duel in the Sun (1946) M*A*S*H (1970) The Exorcist (1973)

E. T. The Extra-
Terrestrial (1982)

Madagascar 3: 
Europe's Most Wanted 
(2012)

The Godfather (1972)

Fantasia (1940) Maleficent (2014) The Graduate (1967)

Fast & Furious 6 (2013) Man of Steel (2013) The Greatest Show on 
Earth (1952)

Fast Five (2011) Marvel's The Avengers 
(2012)

The Hobbit: An 
Unexpected Journey 
(2012)

Finding Nemo (2003) Mary Poppins (1964) The Hunger Games 
(2012)

Forrest Gump (1994) Men in Black (1997) The Incredibles (2004)

Frozen (2013) Minions (2015) The Jungle Book 
(1967)

Furious 7 (2015) Mrs. Doubtfire (1993) The Lion King (1994)

Ghost (1990) My Fair Lady (1964) The Lord of the Rings: 
The Fellowship of the 
Ring (2001)

Ghostbusters (1984) National Lampoon's 
Animal House (1978)

The Martian (2015)

 http://www.boxofficemojo.com/alltime/world/14

http://www.boxofficemojo.com/alltime/world/
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Inflation  according to Box Office Mojo . From those two lists, 124 titles were picked 15 16

semi-arbitrarily, aiming for a very diverse set of movies. The resulting list presents 

various kinds of movies, ranging from musicals to action films, covering animations 

and science fiction. The list also brings titles with release dates spanning from 1937 

to 2016. The list was assembled in such a way in order to be appealing to various 

demographics with varied preferences and movie watching behaviours, from the 

most casual movie watchers to children to aficionados. In the graphs below, 

respectively, are described the percentage of movies divided per decade of release 

and the percentage of movies divided by their main genre: 

Figure 6.1: Movies selected per release decade and movies selected per genre 

Source: this work’s author 

 The survey previously described was then posted online on the IMDb forums 

and Reddit, besides being shared through social media. There were 148 responses 

to the survey. Titles were said to be liked 4036 times, disliked 3570 times and they 

were said to be neither liked nor disliked or not watched 10894 times. In average, 

respondents watched 52 out of the 124 titles. 

 http://www.boxofficemojo.com/alltime/adjusted.htm15

 http:://www.boxofficemojo.com/16
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6.2. Results 

 Leave-one-out cross validation (GEISSER, 1993) was applied in order to 

predict ratings. That allowed us to predict 7606 ratings with a training database of 

7605 ratings at a time. A user is assumed to like an item when the probability of that 

happening is over 50% and to dislike the item when the probability is lower than 50%. 

In the unlikely event of the prediction engine predicting that a given user has exactly 

50% of change of liking a given user, we treat that as inconclusive. Luckily, this did 

not happen in the experiment. 

 The x axis in the graph below represents the actual rating given by the users, 

while the y axis represents the predicted probability of a user liking a given film: 

Figure 6.2: Predictions vs Ratings - distribution 

Source: this work’s author 

 Each one of the red dots represent a prediction by the system for a pair of 

movie and user versus the actual user rating for that movie. The shaded areas of the 

graph show accurate predictions, while the dots outside those areas are wrong ones. 

In fact, approximately 80.64% of the predictions were good, while approximately 
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19.36% of the predictions were bad. The success ratio (i.e., precision) was 100% for 

predictions that yielded over 62% or under 38% of likelihood that the user would like 

that movie. For predictions ranging from 45% to 55%, the success ratio was 

approximately 80.10%. 

 One other example of academic work that uses binary ratings as an input and 

tries to predict the user rating as a like/dislike in the context of movies is 

“Recommendation as Classification: Using Social and Content-Based Information in 

Recommendation” (BASU; HIRSH; COHEN, 1998). In their 1998 paper, the authors 

evaluate that Recommender, a user-based collaborative filtering recommendation 

system (HILL et al., 1995), has a success ratio of 78% percent, while their 

recommendation system, achieves a success ratio of 77% with a user-based 

collaborative filtering prediction engine. They also indicate that their success ratio 

drops to 73% when they replace collaborative filtering for content-based filtering, but 

is boosted to 83% combining collaborative and content-based filtering. Let there be 

known that study serves as a simple reference, but since the dataset used is different 

it is not possible to draw a strong correlation between those results and this work's. In 

that case, the authors also applied a function to translate user ratings from a 1 to 10 

scale to binary. 

 In order to fully grasp the effectiveness of the rating scale applied and the 

accuracy of the prediction engine and how useful the predictions are to users, a more 

detailed evaluation of the system would have been required, but that was not 

possible for this version of the experiment. It is worth to mention that in a complete 

recommendation system there are several factors for success that may or may not 

depend on the prediction accuracy. Factors such as the novelty of recommendations 

(KAPOOR et al., 2015), the prioritisation over determined aspects of items other than 

the pure likelihood of a user enjoying it, trust (FORSATI et al., 2015) notions, and 

even risk factors (ZHAO; ZHANG; WANG, 2015), among others, are important 

features within a recommendation system. 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7. CONCLUSION 

 This work introduced a prediction engine for movie recommendation systems. 

The engine uses a simpler rating system and pure collaborative filtering in order to try 

and tackle some of the issues found in prominent platforms for movie 

recommendation. A version of the like/dislike rating scale was used to assess the 

enjoyment users had with movies and item-based collaborative filtering was used to 

predict how much users would enjoy movies they have not yet watched.  

 The main objective of this work was to try and tackle two problems that exist in 

famous recommendation systems: the possible misunderstanding of the rating by its 

users and the kind of false positives caused by content-based filtering. To address 

the first problem, the usual rating scale was replaced with a version of the like/dislike 

scale, but it was not possible to conduct an experiment proving that users were more 

likely to understand this type of scale on an interface. In order to address the false 

positives caused by content-based filtering, the use of item-based collaborative 

filtering was proposed. 

 A prototype was implemented and used to extract predictions using ratings 

that were collected via an open survey destined to movie watchers. It was verified via 

leave-one-out cross-validation that the prediction engine had a precision of over 80% 

in saying whether the user had a bigger chance of liking or disliking a movie. The 

data used to train the algorithm comprised the binary ratings given by users who had 

taken part in responding to the survey. 

 It is hard to compare the results of this work with other works in the field or 

state of the art tools due to the choice of using a different dataset from the rest of the 

works. This means that no strong correlations between the results could be drawn, 

and the comparisons made are to be interpreted as a basic reference rather than 

measurement of whether this system is more or less efficient than others. On that 

note, it would be interesting to also refer to the accuracy for prediction systems such 

as Foursquare's, which employ binary rating rather than casting from another scale to 

binary, but unfortunately such data could not be found. Having said that, an eventual 

implementation of this recommendation system inside a movie recommendation 

platform may achieve over 80% of precision, based in ratings that are potentially 

meaningful, and direct. While in the case of other platforms that use a more complex 
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scale for their rating systems, some evidence show that the ratings they base their 

predictions on can be inaccurate depending on how the rating scale is presented, 

which may taint their predictions. 

 It is safe to say that there is room for improvement in the model for predicting 

user enjoyment with movies presented by this work. When contemplating the 

hypothesis of using the hereby described prediction engine to power a potential 

recommendation service, it’s worth having in mind that the pure item-based 

collaborative filtering technique does not work too well when there is little or no data 

in the dataset, which would cause the prediction engine to suffer heavily from the 

cold-start problem (SU; KHOSHGOFTAAR, 2009). In addition to that, research in 

general shows that recommendation systems with hybrid filtering perform better than 

even the ones with the best collaborative filtering techniques alone (SU; 

KHOSHGOFTAAR, 2009). 

 As a future work, it would be interesting to use the prediction engine described 

here to power a complete movie recommendation platform in a way so that users 

could have the full experience of rating movies and receiving recommendations. 

Measurements of user trust and ease of use of the platform would be interesting 

metrics to compare the effectivity of the platform in terms of user experience with 

other systems available on the web. It would also be valuable to use the dataset 

collected here to compare the proposed prediction engine with engines powered by 

other types of information filtering, such as hybrid prediction engines, or use open 

datasets to train the hereby proposed prediction engine so that it could be compared 

against other works in the field. 
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