
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

TAIS LOUREIRO BELLINI

Extensible Simulator for Replay of Trace
Files in the Pajé Format

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Lucas Mello Schnorr

Porto Alegre
May 2016

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang
Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKNOWLEDGEMENTS

First of all, I would like to say thank you to my advisor, Lucas Mello

Schnorr, for dedicating his time and attention to make this project a relevant con-

tribution.

To my mother, Zaida Loureiro, for understanding the time I needed to

finish this work and trying to review it even without a deep knowledge of the

language.

To my university colleagues, specially Arthur Jacobs and Matheus Prola,

for always being available to help me at any time and without whom I would not

have come so far.

To my good friend, Thom Morais, for helping me create a visual identity

for this project.

Last, but not least, to Adolfo Schneider, for his love and support and for

making my life easier when I needed to be focused.

ABSTRACT

Observation of program behavior through trace files is particularly important in

High Performance Computing (HPC) since it enables an accurate performance

analysis. In this context, the Pajé framework is commonly employed to simulate

trace files in the Pajé file format. The simulator works by recreating the program

behavior in an offline fashion, allowing the performance analyst to better un-

derstand performance issues that might have occurred during execution. As of

today, there are at least three problems with the Pajé simulator: little extensibility,

lack of partial outcomes and impermanent results. Although Pajé has been built

in an extensible manner, it is necessary to write a full component for Pajé to actu-

ally achieve extensibility. This is a complex task since it implies in understanding

the internal class hierarchy of the framework. The second issue is that it is im-

possible to get a partial view of simulated data prior to the end of the input trace.

And finally, the third is related to the ephemerality of results: all simulated data

is discarded once Pajé exits. To address these issues, an extensible plugin-based

trace file simulator called Aiyra has been designed and implemented. Aiyra’s ob-

jective is to allow extreme extensibility by letting the performance analyst write

plugins that deal with simulated data. The plugins can be attached to the simu-

lator in specific and important points where the trace events are combined. As a

proof of concept, we have implemented plugins to dump partial data that has just

been simulated and to make the results permanent, by inserting simulated data

into a database. A performance analysis has been conducted to compare Aiyra

against the existing Pajé trace simulator. Our simulator presented better perfor-

mance results with larger files, that being possibly attributed to the fact that our

solution keeps the memory footprint low throughout execution. We have also

evaluated the database plugin in a number of different scenarios through the use

of a rigorous experimental design.

Keywords: Trace simulation. Replay. Pajé. JavaCC. MySQL. Performance.

Simulador Extensível para Arquivos de Rastro no Formato Pajé

RESUMO

Observação do comportamento de programas através de arquivos de rastro é

particularmente importante em Computação de Alta Performance, uma vez que

permite uma análise de desempenho precisa. Neste contexto, a ferramenta Pajé

é bastante utilizada para simular arquivos de rastro no formato de arquivo Pajé.

O simulador funciona recriando o comportamento do programa em modo offline,

permitindo que o analista de desempenho entenda melhor complicações que pos-

sam ter ocorrido durante a execução. Atualmente, há pelo menos três problemas

com o simulador Pajé: pouca extensibilidade, falta de resultados parciais e resul-

tados temporários. Embora o Pajé tenha sido construído para ser extensível, é

necessário escrever um componente inteiro para atingir realmente a extensibili-

dade. Esta é uma tarefa complexa, pois implica em compreender a hierarquia de

classes interna do programa. A segunda questão é que é impossível obter uma

visão parcial dos dados simulados antes do final do arquivo de entrada. E, final-

mente, o terceiro problema está relacionado com a efemeridade dos resultados:

todos os dados simulados são descartados quando o Pajé termina de executar.

Para resolver estas questões, um simulador extensível baseado em plugins cha-

mado Aiyra foi concebido e implementado. O objetivo da Aiyra é permitir ex-

trema extensibilidade deixando o analista de desempenho construir plugins que

lidam com os dados simulados. Os plugins podem ser conectados ao simulador

em pontos específicos onde eventos de rastreamento importantes são combina-

dos. Como prova de conceito, implementamos plugins para mostrar na saída

padrão dados parciais que acabaram de ser simulados e para tornar os resultados

permanentes, inserindo os dados simulados em uma base de dados. Uma aná-

lise de desempenho foi conduzido para comparar Aiyra com o simulador Pajé

existente. Nosso simulador apresentou melhores resultados de desempenho com

arquivos maiores, o que foi atribuído ao fato de que o nosso solução mantém o

consumo de memória baixo ao longo da execução. Nós também avaliamos o plu-

gin de inserção em uma base de dados para diferentes cenários através de um

rigoroso design experimental.

Palavras-chave: Simulação de Rastros,Simulação,Pajé,JavaCC,MySQL,Performance.

LIST OF FIGURES

Figure 2.1 JavaCC’s file generation flow...15
Figure 2.2 Architecture of JDBC. [Inspired in (POINT, 2016b)]16
Figure 2.3 Example of ER Model..17

Figure 3.1 Example of Entities Hierarchy ...23
Figure 3.2 PajeNG Architecture [inspired in (KERGOMMEAUX; STEIN; BERNARD,

2000)]..24
Figure 3.3 Events class hierarchy ...25
Figure 3.4 Types class hierarchy...26
Figure 3.5 Entities class hierarchy..27

Figure 4.1 Aiyra Architecture ...31
Figure 4.2 Aiyra’s Core Architecture...33
Figure 4.3 Aiyra’s Plugin Package ...35

Figure 5.1 Aiyra’s Dump Plugin ..37
Figure 5.2 Aiyra’s Insert DB Plugin...38
Figure 5.3 ER Model for the Pajé format...40

Figure 6.1 Network topology..44
Figure 6.2 Results of comparison between Aiyra and PajeNG..............................46
Figure 6.3 Results of comparison between Aiyra and PajeNG for the small

input...47
Figure 6.4 Results of batch sizes variability for big input49
Figure 6.5 Results of batch sizes variability for medium input.............................50
Figure 6.6 Results for remote and local executions for the big input50
Figure 6.7 Results for remote and local executions for the medium input..........51
Figure 6.8 Results of batch sizes variability for the small input............................51
Figure 6.9 Results for remote and local executions for the small input52
Figure 6.10 Memory usage for the big input ..52
Figure 6.11 Memory usage for the medium input...53
Figure 6.12 Memory usage for the small input ..54
Figure 6.13 Insertion time for the big input..54
Figure 6.14 Insertion time for the medium input ..55
Figure 6.15 Insertion time for the small input..55
Figure 6.16 Remote and local insertion times for the big input.............................56
Figure 6.17 Remote and local insertion times for the medium input56
Figure 6.18 Timeline of batch executions for the big input57
Figure 6.19 Timeline of batch executions for the medium input...........................58
Figure 6.20 Timeline of batch executions for the small input58

LIST OF TABLES

Table 6.1 Experimental Units description...43
Table 6.2 JVM heap sizes ...43

LIST OF ABBREVIATIONS AND ACRONYMS

ANTLR Another Tool For Language Recognition

CSV Comma Separated Values

DBMS Database Management System

GC Garbage Collector

HPC High Performance Computing

JDBC Java Database Connectivity

JVM Java Virtual Machine

CONTENTS

1 INTRODUCTION...11
2 BASIC CONCEPTS ..14
2.1 The Java Compiler Compiler (JavaCC) Tool..14
2.2 JDBC and MySQL...15
2.3 Entity-Relationship and Relational Models ..16
2.4 Experimental Design..18
2.5 The R Language...20
3 THE PAJENG FRAMEWORK ..21
3.1 The Pajé Trace File Format ..21
3.1.1 Header Section: Events Definition ...22
3.1.2 Body Section: Timestamped Events ...22
3.2 PajeNG Tools and Simulation Library ...23
3.2.1 Class Hierarchy for Pajé Events ..25
3.2.2 Class Hierarchy for the Pajé Types ...26
3.2.3 Class Hierarchy for the Pajé Entities ..26
3.2.4 The Core Simulator ...27
3.3 Current Issues Regarding PajeNG ..28
4 AIYRA - A JAVA-BASED SIMULATOR FOR PAJE TRACE FILES................30
4.1 The Controller: Option Handling and JavaCC ...30
4.2 Aiyra’s Core Simulator...31
4.3 The Plugin Package ..34
5 AIYRA’S STANDARD PLUGINS ...36
5.1 Paje Null Plugin ..36
5.2 Paje Dump Plugin...36
5.3 Paje Insert Database Plugin..37
5.3.1 Entity-Relationship Model...39
5.3.2 Relational Model ...40
6 PERFORMANCE EVALUATION ..42
6.1 Methodology..42
6.1.1 Aiyra and PajeNG Comparison Methodology ...43
6.1.2 PajeInsertDBPlugin Evaluation Methodology..44
6.2 Results and Graphics ...45
6.2.1 Comparison Between Aiyra and PajeNG..45
6.2.2 PajeInsertDBPlugin Evaluation...47
7 CONCLUSION..59
REFERENCES ...61
APPENDIX A — JAVACC TUTORIAL..63
A.0.1 Usage with Java..66

11

1 INTRODUCTION

Observation of program behavior is particularly important in High Per-

formance Computing since it enables an accurate performance analysis. A very

common method of evaluation is registering program events in trace files that

work as a log, so, whenever a relevant event happens, it will be logged in the

trace file with the proper information. Then, these traces are replayed in simu-

lation combining information that is spread across multiple events deriving new

and richer entities. This event processing is usually done once and discarded,

which can be very inconvenient considering that some trace files are very large.

Therefore, it would be interesting to save these entities for further analysis.

In this context of performance analysis, a common tool used is the Pajé

Trace Simulator (KERGOMMEAUX; STEIN; BERNARD, 2000), an open source

project that reads trace files in a specific format and processes five types of enti-

ties: Containers, States, Events, Variables and Links. This format is named Pajé

Trace File Format (SCHNORR, 2016a). These concepts represent basic structures

of computer programs executed in parallel or distributed systems, such as pro-

cesses, threads, network links, hardware counters and so on. As a base for the im-

plementation of this proposal, the new generation of Pajé, PajeNG (SCHNORR,

2016b), was used. Details of PajeNG, the types of entities and the Pajé File Format

will be presented in Chapter 3. Although it has a visualization functionality, we

will focus on the simulation part of the Pajé implementation in this project. The

most commonly used tool of PajeNG is the Pajé Dump1 (pj_dump), that dumps

to the standard output all information regarding entities created throughout the

simulation.

There are at least three problems with the current implementation of Pajé:

little extensibility, lack of partial outcomes and impermanent results. The original

Pajé and, consequently, its next generation were idealized and built in an exten-

sible way, that could be easily expanded based on the user’s needs. Although

the implementation is very modular, it is necessary to write a full component for

Pajé, which is a complex thing because it implies in understanding the internal

objects, class hierarchy, protocol, and so on. Until now, very few people have ac-

tually extended this tool. Throughout the simulation, the Pajé tool creates entities

1http://github.com/schnorr/pajeng/

12

according to the events listed in the trace file, saving each one of them in memory

to dump everything at once in the end. Since some trace files can be very large

(over 1 Gigabyte), it may take a while for the results to be printed out. Besides

not being able to have a partial view of already simulated entities, the user won’t

have records of the results between executions for different files unless he speci-

fies a destination for it himself. To address these issues, an extensible trace files

simulator, Aiyra2, was developed in Java. The full code is publicly available on

Github.

The objective of this proposal is to allow the performance analyst to change

the simulator behavior when a new entity is detected. Thus, the partial results can

be immediately presented to the user, or saved in a database, or even discarded

if not relevant. This extensibility is implemented through the concept of plugins

that are attached to the simulator in specific and important points where the trace

events are combined. This main objective solves the lack of extensibility problem.

Once the simulator allows the immediate manipulation of the entities, the other

two issues can be easily addressed with extensions. Hence, the secondary objec-

tives of the project are the creation of plugins to dump partial data that has just

been simulated and to make the results permanent.

For the validation of the extensible trace files simulator, two plugins were

implemented: Paje Dump Plugin and Paje Insert Database Plugin. The first one

plays the same roll as the original Paje Dump tool in the Pajé new generation,

with the difference that the entities are dumped at the moment they are com-

pleted. The second one inserts all the data in a relational database. A specific

schema for the Pajé Format was designed and will be presented in Chapter 5. A

performance analysis was developed to compare Aiyra against the previous one.

It is worth highlighting that the new simulator had better performance results

with bigger files (over 120 Megabytes), that being possibly attributed to the fact

that it discards from memory entities that will no longer be used. Additionally,

the Pajé Insert Database plugin was evaluated comparing its different possibili-

ties of usage. In this investigation, we varied the frequency of the insertions in

the database by grouping queries in memory until it had a specific size to insert.

The objective of this test was to understand the impact of an access to a database

in the performance of the program. Likewise, the usage of the memory was also

2http://github.com/taisbellini/aiyra/

13

examined to determine the best balance between execution time and memory

management. As we will see in Chapter 6, the memory usage had more impact

in the performance than the accesses to the database themselves, probably due to

the Garbage Collector mechanism used by Java.

This document is organized as follows. Chapter 2 provides the basic con-

cepts of the technologies used throughout the project. Chapter 3 gives an overview

of the existing simulator for the Pajé format and the problems with this current

implementation. Chapter 4 describes the details of the extensible simulator de-

veloped in Java and Chapter 5 characterize the plugins developed. Chapter 6

presents a performance analysis of the Pajé Insert Database Plugin and a com-

parison between Aiyra and PajeNG. The conclusion and final considerations are

expressed in Chapter 7.

14

2 BASIC CONCEPTS

This chapter describes the basic notions of the concepts and technologies

used to develop this project. They contribute to the understanding of our work.

It is structured in five topics: the Java Compiler Compiler (JavaCC), the Java

Database Connectivity (JDBC) API in the MySQL context, a brief description

about the construction of conceptual and logical database schemas, an overview

about experimental design, and the R language in the experimental design con-

text.

2.1 The Java Compiler Compiler (JavaCC) Tool

The Java Compiler Compiler (JavaCC) (JAVACC, 2016) is a scanner and

parser generator configured with a set of regular expressions describing the to-

kens of a language and a grammar using these tokens. As output, it generates a

lexical and syntax parser in the Java language (HAMILTON, 2016). The lexical

code separates the input file into tokens; the parser code is responsible for the

syntax analysis.

What differentiates JavaCC from other parser generators that exist for the

Java language is that it creates source code in Java. This facilitates the under-

standing and eliminates the need of having dependencies in the code. JavaCC

has also shown itself to have a much better performance than other tools such

as Another Tool For Language Recognition (ANTLR), that requires a runtime li-

brary (CRAWLEY, 2015). ANTLR was our first choice of parser generator, but it

was soon discarded due to its very low performance.

JavaCC can be downloaded, unzipped and added to the PATH. It also has

a plugin for Eclipse. Figure 2.1 exemplifies the flow in JavaCC. Once installed,

JavaCC processes your grammar defined in a file with extension .jj using the

command javacc. The whole grammar is kept in this file and it is the only

file that needs to be modified. It is also possible to add Java code that has to be

executed during the parsing. A detailed tutorial about the JavaCC is in Appendix

A.

In Figure 2.1 we can see an example of the processing of a file named My-

Grammar.jj, which results in seven files: the parser, that is in MyGrammar.java;

15

Figure 2.1: JavaCC’s file generation flow

JavaCC

PajeGrammarTokenManager.java

MyGrammar.jj

PajeGrammar.java

PajeGrammarConstants.java

Source: Author

the lexical analyser in MyGrammarTokenManager.java and some useful con-

stants in MyGrammarConstants.java. The other four files generated: Token.java,

TokenMgrError.java, SimpleCharStream.java and ParseException.java are boil-

erplate files that can be reused within parsers and are not affected by the gram-

mar itself. The corresponding Java source code for the scanner and parser can be

compiled as usual with javac.

2.2 JDBC and MySQL

The Java Database Connectivity (JDBC) API is a standard for connectivity

between Java and a range of relational databases (ORACLE, 2016). It comprises

methods to query and update data, enabling the Java language to interact with

several Database Management Systems (DBMS) in a standard manner. This API

facilitates the migration from one database tool to another and unbounds your

application from a DBMS.

The JDBC architecture, depicted in Figure 2.2, consists in two layers: JDBC

API and JDBC Driver API. JDBC can support multiple heterogeneous databeses

(POINT, 2016b) by using drivers connected to them. In the example of Figure 2.2,

we have an application communicating with three different databases: A, B and

C. The JDBC Driver API manages the corresponding drivers to ensure that the

correct one is being used. The JDBC API layer, in turn, administrates the commu-

nication between the application and the driver manager. The JDBC API consists

in classes and interfaces, such as DriverManager, which connects requests from

16

the application and the proper database driver; Connection, containing all the

methods necessary to contact the database; Statement, that creates objects that

will be submitted to the database; and ResultSet, where the retrieved objects are

placed.

Figure 2.2: Architecture of JDBC. [Inspired in (POINT, 2016b)]

JDBC Driver CJDBC Driver BJDBC Driver A

A B C

JDBC Driver
Manager

JDBC API

Java
Application

Source: Author

Among the possible DBMS that can be used in a Java application using

JDBC is the MySQL system, one of the most important open-source DBMS in the

market. It has been developed by Oracle and uses SQL language as interface. To

enable the use of MySQL with Java, Oracle provides a driver for JDBC, as well as

a native C library to allow developers to embed SQL commands directly in the

application’s code.

2.3 Entity-Relationship and Relational Models

An Entity-Relationship (ER) model defines a database in a conceptual view

(HEUSER, 2008). This model can be represented by an ER Diagram (ERD) and

can be denoted by schema. It is based in the notion of entities, which can be

real-world objects that are easily identifiable (POINT, 2016a), and the relation-

ship between them. Figure 2.3 exemplifies a schema of a school system where

the people and places involved are represented. The entities have a set of at-

tributes, where one or more are defined as the identifier, which uniquely identify

17

an object of that entity. It is also possible for a relationship to have attributes,

like the address attribute in Figure 2.3. Besides, an entity can derive other more

specialized entities, which is called specialization.

A relationship between entities A and B can have one of the following pat-

terns: one-to-one, where an object of the entity A can be associated to only one of

type B and vice versa; one-to-many, which means that an instance of the entity A

can be associated to more than one entities of type B, but B entities can only relate

to at most one of type A; many-to-many, where one object from the A entity can

be associated to more than one entities of type B and vice versa. These charac-

teristics also apply to self-referencing relations, where there is a relationship of

an entity with itself. Besides, a connection can be an identifying relationship,

which means that the relationship identifies an object. In Figure 2.3 we can see

the example of the relationship between a City and a State, where we define that

a state can have more than one city, while a city belongs to only one state. Also,

the state identifies a city along with its name, since there can be other cities with

the same name but in different states. In these cases the entity is called a weak

entity.

Figure 2.3: Example of ER Model

PersonId

Student

GradeId
Value

Teacher

State

School

GradeCity

Person

Entity

Many-to-many relationship

Specialization

One-to-one self-referencing relationship
Mother

One-to-many relationship

Identifying relationship

Weak entity

NN

1

1

N

1

StateName
StatePopulation

StudentId
Course

Salary

Identifier

Attribute

SchoolId
SchoolName

AddressCityName
CityPopulation

NamePhone
1

1

N

N

Source: Author

The ER Model is an overview of the structure of a database. To evolve to

the implementation, a translation to a Relational Model must be performed. The

ER model is a conceptual description of the database, while the relational model

is a logical representation (HEUSER, 2008). Relational databases are based in the

18

concept of tables (BARRY, 2013), thus, the terminology used in this step involves

tables, rows (or tuples) and columns. The identifier is called primary key. There

is a set of rules to make this translation, although sometimes it is necessary to

adapt the schema based on the user’s needs.

The entities of the ER model become tables in the relational model, while

its attributes become the columns of the tables. Each instance of an entity is a

row and its identifier can be one or more columns that compose the primary key.

When there is an identifying relationship, the weak entity attaches the identifier

of the other entity to its own primary key. In the example of Figure 2.3, the City

table will have two columns as primary key: stateName and cityName. A one-to-

one relationship generates a merge of both tables involved. One-to-many links

adds an attribute in one of the tables. The entity that can only be related to one

of the instances of the other receives the attribute, which is called foreign key. It

also absorbs the attributes of the relationship. In the example of figure 2.3, the

table referencing the School entity would have the stateName and cityName as

foreign keys and address as attribute. The foreign key is what preserves the link

between two entities. Many-to-many relationships have to be represented by a

separate table with the primary keys of both entities involved, which also work

as foreign keys. In our illustration, the relationship between Grade and Student

would become a table, with studentId and gradeId as primary and foreign keys.

The translation of specializations can be made in two ways: one single

table for all of the hierarchy, where the primary key would be the identifier of

the most generic entity and there would be optional columns; and one table for

each specialized entity, where all of them would have the identifier of the most

generic entity composing the primary key. In Figure 2.3, the first case would

generate a single Person table, with personId as primary key and name, phone,

studentId, course and salary as attributes. In the second option, Student and

Teacher become tables, with personId composing their primary key.

2.4 Experimental Design

Experimental design, in the context of performance analysis, aims to define

a minimum number of experiments that collects the maximum information nec-

essary (JAIN, 2015). It also targets random variations that could affect the results,

19

guaranteeing that the number of tests executed and the error margin calculated

is sufficient to avoid misleading conclusions.

There is a specific terminology used in experimental design. The term Re-

sponse Variable is the outcome of an experiment; Factors are all of the variables

that can have several different values affecting the response variable, and Levels

are the possible values that a factor can assume. Also, the Primary Factors are the

factors that need to be quantified, Secondary Factors are the factors whose im-

pacts in the performance are irrelevant for the analysis, Replication is the number

of repetition of all or some experiments and Design is the specification of total

number of experiments based on factor level combination and number of repli-

cations for each experiment. The Experimental Unit is the entity used for the

experiment, which could be a computer, for example, and Interaction is when

the levels of a fator affect the results of other factor.

There are several types of experimental design modeling. One of them is

the full factorial design, which consists in evaluating every possible combination

at all levels of all factors. With this type of design, it is possible to measure factors

with multiple numbers of levels. The advantage of this model is that every possi-

ble combination is measured, generating richer results. However, depending on

the number of factors, levels and replications, it may generate too many exper-

iments, which can cost a lot of time. Therefore, when using this technique, it is

important to weight the relevance of each factor and level to generate an appro-

priate and accurate design. To calculate the total size of the sample you multiply

the numbers of levels of the factors and the number of replications (SAS, 2016).

For example, a design with a three-level factor, a two-level factor and 20 replica-

tions would have 120 experiments (the result of 3 ∗ 2 ∗ 20).

When there are too many factors and levels, it may not be possible to use

the full factorial design. In these cases, one can use a fractional factorial design,

which covers just a fraction of the full factorial design. In this type of experiment,

a carefully chosen subset of factors and levels is taken into consideration, based

on the most important features the analyser wants to test. Although it saves time

and expenses, the results provide less information.

20

2.5 The R Language

R is a language for statistical computing and graphics generation. It can

be very easily extended, by creating and using packages. With R, it is possible to

create full factorial or fractional designs using the DoE.base package (GROEMP-

ING; AMAROV; XU, 2016). It contains the class design with several accessor

functions to create different types of design. One particular important function

is the fac.design, which creates full factorial designs with an arbitrary numbers

of levels. The function receives several arguments, including number of factors,

levels and replication. The usage of the function is the following:

1 requi re (DoE . base) ;

2 f a c . design (

3 n f a c t o r s =2 ,

4 r e p l i c a t i o n s =30 ,

5 repeat . only=FALSE ,

6 blocks =1 ,

7 randomize=TRUE,

8 seed =10373 ,

9 n l e v e l s = (3 , 6) ,

10 f a c t o r . names= l i s t (

11 input=c (" small " , "medium" , " big ") ,

12 batch=c ("A" , "B" , "C" , "D" , "E" , " F "))) ;

where nfactors represents the number of factors, replications is the number of

replications, repeat.only tells if the replications of each run are grouped together,

blocks is a prime-number telling in how many blocks the experiment is subdi-

vided, randomize informs the design is randomized, seed is the optional seed

for the randomization, nlevels is a vector with the number of levels for each fac-

tor and factor.names: a list of vectors with factor levels. This example is one of

the designs used for the performance evaluation in Chapter 6.

21

3 THE PAJENG FRAMEWORK

The Pajé Visualization Tool is an implementation to display the execution

behavior of parallel and distributed programs. It reads information from trace

files that describe the important events during the execution of a program and

replays them through simulation. It has been developed to simulate trace files

in the Pajé Trace File Format, thus, it is important to understand how the Pajé

trace files are composed. Section 3.1 describes this format and all entity types

it contains. The next section describes the new generation of the Pajé Visualiza-

tion Tool, the PajeNG, focusing on the libpaje module, which is where the core

simulation is performed.

3.1 The Pajé Trace File Format

The Pajé Trace File Format (SCHNORR, 2016a) is a textual and generic pat-

tern that describes the behavior of parallel and distributed programs. The Pajé

format describes five types of entities: containers, states, events, variables and

links. Each entity is always associated to a container, even the containers them-

selves. A container can be any hardware or software entity, such as a processor,

a thread, a network link, etc. It is the only Pajé object that holds other objects,

including containers, which makes it the main component to define a type hier-

archy. A state is used to describe periods of time where a container stays at the

same state, like a thread that is blocked, for example. It always has beginning and

an ending timestamps. An event has only one timestamp, and can be anything

noteworthy to be uniquely identified. A variable entity represents the progres-

sion of a variable’s value along time. It is represented by an object with a value

and two timestamps, beginning and end, indicating how long the variable had

that specific value. A link represents a relationship between two containers, such

as a communication between processes. It contains two timestamps specifying

the beginning and the end of the communication. A Pajé trace file is divided in

two segments: event definition and timestamped events. A brief description of

these sections is provided below.

22

3.1.1 Header Section: Events Definition

The first part of a trace file describes all of the possible events of the trace.

This part is composed by a block where the first line contains the name of the

event, like PajeDefineContainerType, for example, followed by a unique identi-

fier. The identifier is an integer and will be used later by the events to determine

the type of event in question. After, there is a set of fields, one in each line. Each

field comprises a name, and a type. The type of a filed can be string, double, int,

date, hex or color.

3.1.2 Body Section: Timestamped Events

After the events definition, the events themselves are described, one in

each line. Every event starts with its identifying number, which was defined

previously, followed by the fields separated by space or tab. Before the entities,

such as states or links, can be created, a hierarchy of types and containers must

be defined and containers need to be instantiated, since every entity belongs to

a container. There are sets of events associated to each kind of entity described

above, besides the events that define entity types.

The Pajé objects are organized in two separated hierarchies: types and en-

tities. These hierarchies are specific for each trace file. In the beginning body

section, each type of the program is defined and one of the fields is the parent

type. Each entity is always associated to a type and they must follow the same

precedence as the types definition. In Figure 3.1, we have a type hierarchy on the

left, and a corresponding entities hierarchy on the right. The only kind of entity

that holds other entities is the container, thus, the rounded entities are container

types, while the squared ones represent states. On the right, the M type stands

for machine, C is core, P is process and Sp and Sc are states. On the left, we have

one machine, M1, with two cores: C1, running a process P1; and C2, running a

process P2. The processes and the cores have a stack of states organized by the

timestamp. Notice that the entities tree respect the precedences set on the left.

The difference between both hierarchies relies on the number of nodes: while the

type hierarchy has only a few, the entities hierarchy may have millions depending

on the number of containers in the trace.

23

Figure 3.1: Example of Entities Hierarchy

M M1

C

P P1 P2time

C2C1

time time

timeSC

SP

Source: Author

Type definition events do not have a timestamp field and can occur at any-

time in a trace file, as long as the type is not used before its definition. It is more

common to have all the types defined in the beginning. The events associated

to the containers are timestamped and can create or destroy instances during the

trace file. A container cannot be referenced after it was destroyed. Variables can

be set at a specific timestamp and have its value changed throughout the sim-

ulation by addition and subtraction events. The value of a variable is a double

precision floating-point number, which is different from the values of the other

entities. A variable must be set before changes to its value can be made. States

have push and pop events that can occur several times during a trace. Links have

start and end events, and must be completed before the end of the file.

3.2 PajeNG Tools and Simulation Library

The PajeNG implementation is the new generation of the Pajé Visualiza-

tion Tool (SCHNORR, 2016b). It was developed in C++ and follows the same

architecture as the original Pajé, written in Objective-C. It comprises a library

containing the core of the simulation (libpaje), a space-time visualization tool

and some auxiliary tools to manage the trace files. The base for the implementa-

tion of this project was the libpaje library.

The library, that is represented in Figure 3.2 has three main components

forming a pipeline resulting in complete simulated entities. These components

24

are: FileReader, EventDecoder and PajeSimulator. First, the FileReader reads a

chunk of data from the trace file and puts it in memory. Then, the EventDecoder

breaks it into events identifying, line by line, the event’s fields and creating an

object with all the necessary information. Last, the PajeSimulator receives this

event object and addresses to the proper simulation.

Figure 3.2: PajeNG Architecture [inspired in (KERGOMMEAUX; STEIN;
BERNARD, 2000)]

49 2.14 2 6 12faba40 2.56 anneau.c 93

Thread State

Name
Time
Node

Thread
Mutex

EndTime
Color

Blocked
2
6
3
2.14
2.56
RED

Event

Name
Time
Node

Thread
Mutex

EndTime
FileName

Line

a0LockMutex
2.14
2
6
12faba40
2.56
anneau.c
93

Statistics

Visualization

PajeSimulatorEventDecoderFileReader

Pajé Trace File

Source: Author

Pajé was idealized to be extensible, specially in terms of creating new types

of events. Actually, the Pajé format itself is very expandable, which makes it nec-

essary to build a simulator accordingly. This flexibility is implemented by a class

hierarchy, going from the most general, containing the basic fields common to ev-

ery type and entity, to the most specific. Besides, the PajeNG tool supports extra

fields in the events, which allows the simulation of extended entities. There are

three main class hierarchies that are particularly important in this objective: one

for events, one for types and one for entities. With this modular implementation,

it is relatively easy to add a new type of event or entity and integrate it with the

rest of the code.

25

3.2.1 Class Hierarchy for Pajé Events

An event object is what is passed as an argument to the simulator so that

it can be processed. Therefore, it must contain all of the necessary information

for the simulation. The first object created when a trace file is being parsed is

of type PajeTraceEvent, which is a class containing all the fields read by the

EventDecoder. As depicted in Figure 3.3, the event hierarchy starts with a sim-

ple PajeEvent class. This class has a trace event object, a container, a type and

a timestamp. The immediate childs of PajeEvent are: PajeCategorizedEvent,

PajeVariableEvent and PajeDestroyContainerEvent. The variable event is the

parent of the specific events for variables, which are set, add and subtract. A

categorized event is characterized by having a PajeValue associated to it, thus,

PajeStateEvent, PajeEventEvent, PajeLinkEvent, and their respective childs in-

herit from it.

Figure 3.3: Events class hierarchy

PajeCategorizedEvent

PajeVariableEventPa
je

Ev
en

t

PajeStateEvent

PajeEventEvent

PajeLinkEvent

PajeSetVariableEvent

PajeAddVariableEvent

PajeSubVariableEvent

PajeSetStateEvent

PajePushStateEvent

PajePopStateEvent

PajeResetStateEvent

PajeStartLinkEvent

PajeEndLinkEvent

PajeNewEventEvent

PajeDestroyContainerEvent

Source: Author

26

3.2.2 Class Hierarchy for the Pajé Types

Figure 3.4 portrays the type hierarchy, where the first element is the Paje-

Type. It has a name, an alias and a parent type, which is also a PajeType. These

fields are the ones common to all the type definition events mentioned in section

3.1. The immediate childs of this class are: PajeCategorizedType, PajeVariable-

Type and PajeContainerType. As the events, the categorized types are associated

to a value, hence, the PajeCategorizedType has a PajeValue field and methods

to manipulate it. Its childs are the PajeStateType, PajeEventType and PajeLink-

Type.

Figure 3.4: Types class hierarchy

PajeCategorizedType

PajeVariableType

PajeContainerTypePa
je
Ty

pe

PajeStateType

PajeEventType

PajeLinkType

Source: Author

3.2.3 Class Hierarchy for the Pajé Entities

As demonstrated in Figure 3.5, the PajeEntity is the first node of the enti-

ties tree. It originates a PajeSingleTimedEntity class, that describes entities with

one single timestamp. The PajeUserEvent is the only entity with this character-

istic, but it is possible to add, in the future, more entities with just one times-

tamp. The PajeDoubleTimedEntity inherits from this class and represents enti-

ties with start and end timestamps. Like the other hierarchies, the valued entities

are grouped together so a PajeValuedEntity is a child of the double timed entity,

having PajeUserState and PajeUserLink as descendents. The double timed en-

tity also has PajeUserVariable and PajeNamedEntity as childs. A PajeContainer

inherits from the named entity.

27

Figure 3.5: Entities class hierarchy

PajeContainer

Pa
je
En

tit
y

PajeSingle
TimedEntity

PajeUserEvent

PajeDoubleTimedEntity

PajeValuedEntity

PajeUserVariable

PajeNamedEntity

PajeUserState

PajeUserLink

Source: Author

3.2.4 The Core Simulator

All the simulation is performed in two classes: PajeSimulator and Paje-

Container. A PajeSimulator object is instantiated in the beginning of the pro-

gram and incorporates all the event processing of the simulation. The type defini-

tions, container creations and entity value declarations are completed and stored

in the PajeSimulator object. Every time there is an event of type PajeCreateCon-

tainer, a PajeContainer object is instantiated. All other events are simulated in

the appropriate container instance. The PajeContainer object will keep the enti-

ties until the program finishes. The end timestamp is used to signal that an entity

no longer can be referred.

The PajeSimulator class lists every type declared and container created

throughout the simulation by using map structures (typeMap and contMap)

with the name or alias as key. There is always a pointer to the root type and

another to the root container initialized in the beginning of the program. The

simulator contains one method for each type of event, which perform all the val-

idations, besides the processing itself. Whenever there is an event that defines a

type the entity generated is added to the typeMap. The created containers are

included in the contMap structure. When there is an event associated to a con-

tainer, the object is found in the contMap and the proper method of the container

object is called.

The PajeContainer class also uses map structures to store all the entities

that are related to it including other containers. Besides one general structure

that lists all of the objects related to the container (entities), there are auxil-

iar structures for some specific types, such as states (stackStates) and links

(pendingLinks). There is some redundancy between entities and the other

constructions but, since the objects are pointers, the changes made in one struc-

ture are reflected in the other ones.

28

Every event that pushes a state will add a state entity to the end of the

stackStates stack, while every pop state event will "remove" the last state in

the vector by setting its end time. The simulation keeps track of the pending

communication links and fails if a container is destroyed, or the simulation ends,

before all the links are completed. The PajeContainer class contains a method for

each event that is associated to a container, adding and removing entities of these

structures listed above.

3.3 Current Issues Regarding PajeNG

The focus of the Pajé implementation is to allow the user to extend the

Pajé format and adapt the simulator to it. Its support for extra fields allows the

inclusion of different descriptions for the events and its modularity facilitates the

integration of new classes. Altering or adding simulation behavior can be done

by modifying only the PajeSimulator and PajeContainer classes.

Although complying with its goal of extensibility in terms of expanding

the Pajé format, we identified three main issues in the current implementation

of PajeNG: little flexibility in the manipulation of data, lack of partial outcomes,

and ephemeral results. When the entities are already simulated, a deeper under-

standing of the code structure is necessary if one wants to define another way of

handling the results. Also, the user needs to manage a full set of entities, since

there is no flexibility of discarding data that is not relevant. The second issue

relies on the fact that the PajeSimulator instance maintains all of the simulated

objects in memory. If a user wants to see the resulted entities during the simu-

lation, he would need to get into the PajeSimulator code to make the necessary

changes. Technically, since all the results are stored in memory, it would be sim-

ple to add a new functionality, but it is limited to the manipulation of the whole

set of results, not each entity separately. Last, the results kept in memory during

simulation are discarded at the end, which implies in executing all the simulation

again if a trace file needs to be revisited.

Considering the presented issues, an extensible simulator written in Java

was developed. The intention of this proposal is to make the simulation core

more transparent for the performance analyst providing the created entities in a

way that can manipulated without knowledge of the rest of the implementation.

29

The program uses the concept of plugins that attached to every type of event.

The simulator itself addresses the first issue presented, while the creation of new

plugins provide a possible solution to the other two. The details of this novel

approach, developed in our work, are detailed in the next chapter.

30

4 AIYRA - A JAVA-BASED SIMULATOR FOR PAJE TRACE FILES

Aiyra is an extensible simulator written in Java that reads trace files in the

Pajé format and, instead of storing the results in memory, forwards every cre-

ated entity to a common place where it can be manipulated freely. The architec-

ture of the implementation, characterized in Figure 4.1, contains three packages:

controller, core simulator and plugin. Every event of a trace file always goes

through all packages. First, the trace file in the input is read by the controller,

where a trace event object is created. This instance contains the type of event in

question and the field values. In the example of Figure 4.1, the event read is the

creation of a container of type P with alias P1 and parent 0, which is root. Then,

the simulator receives this object and executes the simulation based on the event

type. The simulation always generates an entity, even if incomplete. In Figure 4.1,

a PajeContainer is created without an ending timestamp. Finally, this new entity

is sent to the plugin, which contains specific entry points for every different kind

of entity.

The program receives arguments from the user in its execution. The file-

name option (-f) is the only mandatory one, which indicates what is the trace file

to be simulated. There are other two general options: comment (-m), a comment

about the file; and plugin (-p), which indicates which plugin will be used in the

simulation. The details about the already implemented plugins are presented in

chapter 5. The following subsections detail each one of the packages.

4.1 The Controller: Option Handling and JavaCC

The controller package is the entry point of the program, thus, it also han-

dles the arguments passed by the user. For this processing, an external library

(LAUX, 2004) was used. The arguments handling is centralized in one single

class, OptionsHandler, to facilitate the inclusion of new ones. The Pajé file format

(see Section 3.1) is parsed by a grammar written using the JavaCC syntax. The

file PajeGrammar.jj containing all the grammar rules of the format is processed

by the Java Compiler Compiler (JavaCC) to generate the parser. Each event def-

inition is stored in an array, while the events are simulated as soon as they are

obtained from the trace.

31

Figure 4.1: Aiyra Architecture
Simulator

Controller

Trace

Core Simulator Plugin

newType
newValue
newCreatedContainer
destroyedContainer
setState
pushState
popState
startLink
endLink
newCompleteLink
updateVar
setVar
newEvent

6 0.000000000 p1 0 P "p1"

PajeTraceEvent
Time

Alias

Container

Type

Name

0.000

P1

0

P

“P1”

PajeContainer
Alias

Type

StartTime

Name

P1

P

0.00

“P1”

Source: Author

The controller package is composed by all of the JavaCC files described

in Section 2.1 and the OptionsHandler class. The generated class PajeGram-

mar.java contains, besides the parsing component, all the necessary Java code

for the program to run, such as the initialization of the simulator object, where

all of the simulation takes place. Every time an event is identified, the simula-

tor instance, which is the entry point of the simulator core package, is called to

simulate that event. The next section describes the simulator core package.

4.2 Aiyra’s Core Simulator

Aiyra’s core simulator, depicted in Figure 4.2, follows the exact same struc-

ture of the PajeNG implementation described in section 3.2. Every event read by

the parser and sent to the core by the controller goes through the PajeSimula-

tor component, which is then forwarded to a PajeContainer if necessary. In the

32

example of Figure 4.2, the simulator receives a PajePushStateEvent, that is vali-

dated in the PajeSimulator, forwarded to the C2 container, and then dispatched

to the proper instrumentation point. The class hierarchy follows the same organi-

zation as the PajeNG, thus, it is equally expandable in terms of creating new types

of events or entities. However, it does not support extra fields in the events since

the focus on the implementation was extending the output of the simulator. This

makes our solution more limited for changes in the Pajé Trace file, which happens

not very often. Despite that, it would be simple to adjust it since changes do not

affect the implementation of the plugins.

Every entity generated is represented by an object with attributes repre-

senting its fields. The class hierarchy of the entities is the same as the one pre-

sented in Figure 3.5. All of the types derive from the PajeType class, which con-

tains alias, name, depth, and parent, a PajeType as well, as attributes. It also

provides the getNature() method, to identify which entity this type describes.

The nature is an enumeration and can assume ContainerType, StateType, Event-

Type, LinkType or VariableType. The PajeVariableType adds a PajeColor to its

attributes, which is an object with the values for red (r), green (g), blue(b) and

alpha(a). The PajeLinkType, in turn, includes startType and endType, which

stand for the type of the start and end containers of the communication. A value

is represented by a PajeValue class, with name, alias, type and color as attributes.

A container object (PajeContainer) has an alias, name, type and parent

(another PajeContainer), besides the structures to store the entities related to it,

as described in section 3.2. Since the container class is a child of the PajeDou-

bleTimedEntity, it also has a startTime and an endTime. All other entities are

associated to a container and a type, thus, they have a container and a type fields.

The event entity (PajeUserEvent) is the only one that derives from PajeSingle-

TimedEntity, hence, it has a unique timestamp named time. Also, it has a value

attribute, which is a PajeValue. The other valued entities, PajeUserState and Pa-

jeUserLink, inherit the PajeValue attribute from the PajeValuedEntity class. A

PajeUserVariable object also has a value attribute but, unlike events, states and

links, it is a double number. The PajeUserLink has a string that defines the key

and start and end containers identified by startContainer and endContainer.

Every trace event simulation has an instrumentation point, which dispatches

the entity objects generated to the plugin package. These points are either in the

33

PajeSimulator or in the PajeContainer, as illustrated in Figure 4.2. In the Pa-

jeSimulator are the outputs regarding the definition of types and values and the

creation of containers. Although in this point the containers are not complete ob-

jects, since they do not have ending timestamp or the related entities, they are

forwarded anyway with the alias and type information. In Figure 4.2 we repre-

sent the processing of a PajePushState, which, after being validated by the sim-

ulator, is forwarded to the appropriate container. The PajeContainer is in charge

of dispatching to the plugin the instances related to it, which involve the states,

events, links and variables. It also may send unfinished objects. In our example,

the container sends the PajeUserState to the pushState plugin without an ending

timestamp. When there is a PajeDestroyContainerEvent, the container object is

sent again, now complete with an ending timestamp.

Figure 4.2: Aiyra’s Core Architecture

C1

C2

C3

Core Simulator

destroyedContainer
setState
pushState
popState
startLink
endLink
newCompleteLink
updateVar
setVar
newEvent

newType
newValue
newCreatedContainer

PajeSimulator

PajeTraceEvent
Time

Container
Type

Value

2.001
C2
S
“S1”

PajePushStateEvent
Time

Container
Type

Value

2.001
C2
S
“S1”

PajeUserState
Time

Container
Type

Value

2.001
C2
S
“S1”

Source: Author

34

The choice of creating an instrumentation point for each trace event is due

to the intention of covering all of the different needs of the user. One may need

the container name before it can process the entities related to it, for example,

which cannot be achieved by receiving the container only when it is completed.

Or else, may be a situation where the push state events need to be measured,

instead of the pop state events, where the entities are finished. Since we cannot

predict all of the use cases, it is desirable to have a broad approach. A full list of

the plugin entrances and the information received in each one is presented in the

next section.

4.3 The Plugin Package

The plugin package, as depicted in Figure 4.3 is a common place where all

entities created throughout simulation are sent. It has sets of entry points specific

for each type of entity and event. The entrances consist in: newType, newValue,

startLink, endLink, newCompleteLink, newCreatedContainer, destroyedCon-

tainer, setState, pushState, popState, resetState, setVar, updateVar, and new-

Event. The details of each point are presented later in this section. The plugin

package is composed by an abstract class, the PajePlugin, with one method for

each instrumentation point. It also contains a method called finish where the user

can perform some concluding actions after the simulation is completed. To create

a new plugin, the user just needs to extend the PajePlugin class and override its

methods. It is also possible to extend another existing plugin, if the differences

are small and not worth of a new class implementation.

The entrances of the plugins comprise the definition of types and values,

the creation of containers, and the formation and completion of new entities. The

newType entry point is a unique entrance for when a type of any kind is defined,

having the PajeType object as argument. The getNature() method can be used

to identify the exact type. The newValue method receives every PajeValue cre-

ated.

When a container is created in the simulation, the instance is forwarded to

the newCreatedContainer entry point, with the end timestamp set to −1. When-

ever a method receives an entity that is not completed yet, the end timestamp will

be −1. The destroyedContainer method takes in a complete container that has

35

Figure 4.3: Aiyra’s Plugin Package

PajeContainer

Core Simulator

destroyedContainer
setState
pushState
popState
startLink
endLink
newCompleteLink
updateVar
setVar
newEvent

newType
newValue
newCreatedContainer

PajeSimulator

Plugin

Source: Author

just been destroyed. Most of the entities are removed during simulation, but the

destroyed container may have some remaining ones that could not be excluded,

such as variables.

The link entry points receive PajeUserLink objects. In the startLink, the

end time and end container of the communication link are unknown, while in the

endLink, the instance has the end point of the link but not the start. The new-

CompleteLink method takes in a link entity with beginning and end. Anytime

a variable is set or updated, there are three PajeUserVariable entities sent to the

plugin: the first, which contains the first value of the variable; the last, which is

the one immediately before the variable in question; and the new variable which

is not completed yet (newVar). The aditions and subtractions are sent to the same

point (updateVar). Since the previous variable objects are necessary to generate

the new value, they are not removed from memory during simulation. The set,

push and pop state instrumentation points all receive a PajeUserState. The only

one with an entity with beginning and end timestamps is the popState. The Pa-

jeUserEvent objects are sent to the newEvent function.

To validate the concept of the plugins and its entry points, three plug-

ins were created: PajeNullPlugin, PajeDumpPlugin and PajeInsertDBPlugin.

Their implementation is described in the next chapter.

36

5 AIYRA’S STANDARD PLUGINS

To address traditional uses of Paje trace files, we have implemented three

plugins for the Aiyra framework: the PajeDumpPlugin, the PajeInsertDBPlu-

gin, and the PajeNullPlugin. The first one is used to match the behavior of the

existing pj_dump tool but without the issues we have mentioned in Section 3.3;

the second one can be used to insert the trace file in a relational database, allow-

ing the user to use SQL commands to inspect simulated traces; and finally, the

third can be used to evaluate the Aiyra’s performance for any kind of input. We

detail each of them in the following, from the one that presents the lowest to the

highest complexity.

5.1 Paje Null Plugin

The PajeNullPlugin is the default plugin option. It does not make any

treatment to the data so the objects are simply discarded. The utility of this plu-

gin relies on the need to verify the performance of the simulation itself, without

the interference of data manipulation. Since the main goal of this proposal is to

detach the core simulation from the data handling, it is desirable to be able to

execute the core alone.

5.2 Paje Dump Plugin

The Dump plugin performs the same action as the pj_dump tool, which

dumps to the standard output the entities generated by the simulator. The imple-

mentation consists in inserting a print function in each instrumentation point

that receives a complete entity. These points are: destroyContainer, popState,

newCompletedLink, and newEvent. Figure 5.1 demonstrates the usage of the

available entry points. When it is a destroyed container, it is necessary to iterate

over the entities left in the container. The variables are printed in the destruction

of the container, since they are not removed during simulation.

The difference between the PajeDumpPlugin and the pj_dump tool is that

the first approach reveals the information to the as soon as the entity is completed.

37

Figure 5.1: Aiyra’s Dump Plugin

PajeContainer

Core Simulator

destroyedContainer

popState

newCompleteLink

newEvent

newType
newValue
newCreatedContainer

PajeSimulator

Plugin

setState
pushState

startLink
endLink

updateVar
setVar

Source: Author

The pj_dump, in turn, keeps everything in memory and then dumps it all at once

in the end of the execution. With this approach, it is possible to solve the issue

regarding the need to wait for the program to end to have the results.

This plugin can be called with the argument PajeDump in the -p option

and adds a new argument (-l) that can group together a certain number of enti-

ties before dumping it. The option receives an integer as parameter defining the

number of lines it should reach before dumping the entities. This provides a little

more flexibility for the user and may improve the performance, since the printing

function of Java costs time. For it to be possible, a StringBuilder is used as a

buffer keeping all of the output until it reaches the number of lines desired.

5.3 Paje Insert Database Plugin

The PajeInsertDBPlugin saves in a relational database all the results of the

simulation. For the implementation, the JDBC API was used to make a connec-

tion with the MySQL database. The schema used was specially designed for the

Pajé format and is presented in the next subsections. This plugin allows the user

to save data from multiple files in the same database.

It can be used by specifying mysql as argument for the -p option. To use

38

the plugin, it is necessary to have a MySQL connection and a database with the

correct schema. To specify the server of the connection, there is the option -s. It

is also possible to inform a username (-u) and a password (-pwd). The default

for these options is: localhost, root and root, respectively.

The following entry points were used in the PajeInsertDBPlugin: new-

Type, newValue, newCreatedContainer, destroyedContainer, popState, new-

CompleteLink, updateVar and newEvent. Figure 5.2 demonstrates these points.

Types, values and containers are inserted in the database as soon as they are cre-

ated due to the dependency of other entities on these ones. When a container is

destroyed, its endTime is updated in the database.

Figure 5.2: Aiyra’s Insert DB Plugin

PajeContainer

Core Simulator

destroyedContainer

popState

newCompleteLink
updateVar

newEvent
setVar

newType
newValue
newCreatedContainer

PajeSimulator

Plugin

setState
pushState

startLink
endLink

Source: Author

The first approach of this implementation consisted in inserting the entities

in the database at the time they were created. Database accesses cost time and,

by executing some preliminary tests, we observed a very bad performance, that

took an unacceptable amount of time (over 24 hours for 1 Gigabyte trace files).

To solve this problem, we used the mechanism of batches provided by JDBC,

which sends a block of queries all at once, reducing the communication overhead.

This functionality is optional and can be included by adding the (-batch) option

with an integer as argument. This number will define how many queries it will

store before inserting a batch in the database. This is only applicable to states,

39

events, links and variables, since types, values and containers are immediately

inserted. A performance analysis for different sizes of batch is presented in the

next chapter.

To create a relational database for the Pajé format, first, we created an

entity-relationship model that is described in the subsection below.

5.3.1 Entity-Relationship Model

The entity-relationship (ER) model, illustrated in Figure 5.3, contains one

entity for each type of Pajé object. Also, to support multiple files, there is a file

entity, which has the name, a comment and the date as attributes, as well as a

fileId. The Type and Container entities have an identifying relationship with

file, which means that the file id is part of their identifier. The relationship is

one-to-many, since a file can have multiple types and containers.

The Type entity has alias, composing the identifier, name and depth as

attributes. It also contains a self-referencing one-to-many relationship to indicate

the parent type, as a type can have multiple children. It is associated to a Value

entity, which describes the PajeValue class, with alias, name, type (identifying

relation) and color. Link and variable types have exclusive attributes that are not

common to all types, thus, both are specializations of Type. LinkType adds a

relationship with itself to represent a the start and end. This is a many-to-many

relationship because the types can be the start and end to various communica-

tions. The VariableType has a color attribute.

The Container entity has an identifying one-to-many relationship with

Type, as well as every other entity, since all of them are classified by a type.

Containers have the same attributes as types, including the parent one-to-many

relation. All of the entities that are related to a container, have an identifying

one-to-many relation with Container entity. State has startTime and endTime

attributes, where the first is identifier. Link has two one-to-many relationships

with Container, one for startContainer and one for endContainer. A Variable

entity contains the time attribute, as well as an updateTime in the relation with

Container. Also, this relation has a value attribute. The Event entity has a time

field.

40

Figure 5.3: ER Model for the Pajé format

1

1

N N
Alias

Depth

FileId
Name

1

N

1

N

Comment

Alias
Name
Color Date

Name
Color

1N

NN

Alias DepthName

Value

N

1

N

N
N

1

N

11

N

1

N

1

N

Time

Key

EndTime

StartTime

UpdateTime

Time

Value

1 N

Link

Variable

Event

End
State

VariableType

Parent

Start

Container Parent

LinkType

Type

EndTime

StartTime

File
N

1

1

Source: Author

5.3.2 Relational Model

A translation to a logical model was made after the creation of the con-

ceptual model. In this conversion, besides applying the universally known rules

presented in Chapter 2, we considered the usability of the schema, analysing the

common requests made in the Pajé data. This reflection is a usual part of the

process, where the needs of the client are contemplated.

The entities defined in the ER Model all became tables. For the Type

specialization, we used the first option presented in Section 2.3, combining ev-

erything in a single table with the following fields: file_id, alias, name, depth,

parent_type_alias, start_link_type, end_link_type and color. File_id, inherited

from the identifying relation with File, and alias compose the primary key. The

41

self-referencing relationships are described as foreign keys in their tables. The

entities associated to the container all have at least three foreign keys that are also

identifiers: type_alias, container_alias and file_id. Since the Link entity has a

unique key, its two foreign keys from Container don’t belong to the identifier.

In our ER Model, the value is only associated to the Type, thus, if one

wants to know the value of a state, for example, it needs to first get its type,

then, go to Type table to retrieve the value. Since it is desirable to easily get an

entity’s value, we added a relationship between the valued entities (State, Link

and Variable) with Value. Value_alias is an identifying foreign key for all, except

Link, where the identifier consists only in the key, type and file_id. With the

conceptual model of the Variable entity, it is required to retrieve two rows if one

needs to know the beginning and ending timestamps of one entity. Since this

information is very important, we changed the Variable table for the tuples to

explicitly have startTime and endTime.

42

6 PERFORMANCE EVALUATION

An evaluation of Aiyra’s performance was made to have concrete conclu-

sions about the outcome of this proposal. Two main tests were executed: a com-

parison between Aiyra and PajeNG and an analysis of the impact of different

batch sizes in the PajeInsertDBPlugin. Since Aiyra is strongly based in the Pa-

jeNG implementation, it is valid to examine if the modifications and language

transition have brought significant performance impact on the simulation. The

plugin that inserts the data in a MySQL database is the only one that brings an ex-

tremely different functionality to the program, hence, it was chosen to be studied.

As it involves the connection with an external tool, the analysis of its performance

and the study of the most efficient use of it is very important.

The experiment execution order is dictated by full factorial experimental

designs created in the R language with the DoE.base package. The package gen-

erates a Comma-Separated Values (CSV) file with one column for each factor. The

rows represent each possible combination of the different levels and multiplies it

by the number of replications. We created bash scripts to execute the experiments

of the design generating another CSV sheet including the response variables de-

fined for the experiments. The details about the factors and levels for each test

are described in the next section. The remainder of this chapter comprises the

analysis results.

6.1 Methodology

The experiments are performed in three different machines: luiza, with

a Mac OSX environment, guarani, and orion1, both running Linux. The details

about the experimental platforms are described in Table 6.1. We have created

three input trace files with different sizes identified by small, medium, and big.

The sizes for each of these cases are 128 Kilobytes, 128 Megabytes, and 1 Giga-

bytes, respectively.

Java programs run in the Java Virtual Machine (JVM), an abstract com-

puting machine where the specifications about memory size are placed. For the

experiments, the heap size is the relevant information. We used the default con-

figuration, which is presented in Table 6.2.

43

Table 6.1: Experimental Units description
Luiza Orion1 Guarani

Processor Intel Core i7 Xeon E5-2630 Intel Core i5-2400
CPU(s) 1 2 1
Cores per CPU 4 6 4
Max. Freq. 2.7 GHz 2.30GHz 3.10GHz
L1d/L1i Cache 32/32KBytes 32/32KBytes 32/32KBytes
L2 Cache 256KBytes 256KBytes 256KBytes
L3 Cache 6MBytes 15MBytes 6MBytes
Memory 16GBytes 32GBytes 20GBytes

OS OSX 10.10.5 Ubuntu 12.04.5 Debian 4.3.5-1

Table 6.2: JVM heap sizes
Luiza Orion1 Guarani

Inital heap size 256MBytes 501MBytes 312Megabytes
Maximum heap size 4GBytes 8GBytes 5GBytes

6.1.1 Aiyra and PajeNG Comparison Methodology

This experiment evaluates the performance of Aiyra using the PajeNullPlu-

gin against two versions of the pj_dump tool (pj and pjflex), both part of PajeNG.

The difference between the pj_dump versions is in the reading of the trace file:

while the first (pj) uses a hand-tailored parsing, the second (pjflex) uses a stan-

dard scanner and parser generator (based on the flex and bison from GNU). Since

we only need the execution time to carry out the comparison, the pj_dump ex-

ecutions received --quiet as a parameter to avoid the actual dumping of the

information in the standard output. It is important to highlight that Aiyra does

not perform any action in the resulted entities and discards all of them.

Concerning the experimental design, two factors are chosen: input and

version. The first assumes the values small, medium, and big. The second,

aiyra, pj and pjflex. Each experimental combination is executed 30 times so we

can understand measurement variability. This value was selected after a few pre-

liminary experiments where we have noticed very little experimental variability.

As the executions take a significant amount time, 30 repetitions is enough to have

reliable results. Since we have two factors, each with three levels, we have a total

of 270 experiments (the product of 3 ∗ 3 ∗ 30). The outcome of this experiment is

the execution time for each combination of input and version. We execute the

design in each one of the platforms, thus, we had three files each with 270 rows.

44

6.1.2 PajeInsertDBPlugin Evaluation Methodology

The PajeInsertDBPlugin provides an option for the user to define a batch

size for the insertion in the database. The size defines the number of entities to be

inserted at once. This means that the queries are stored in a buffer until a counter

reaches the specified value. Although this approach reduces the execution time,

compared to the first attempt described in Chapter 5, it occupies a significant

amount of memory. We want to define what is the best choice of batch size for

different scenarios.

For this experiment we have used the same experimental platforms as the

first one, but we added a fourth experiment which consists in the remote access

between guarani and orion1. In the experiment, we had the simulator running in

guarani inserting data in the database hosted by orion1. Figure 6.1 represents the

network topology connecting the two machines. Both are placed at the Informat-

ics Institute of the Federal University of Rio Grande do Sul. The plataforms are

in a network with bandwidth of 100 Mbps. The average round-trip time (RTT) is

0.5 seconds and was measured by the ping bash command.

Figure 6.1: Network topology
Guarani

100Mb/s

Orion1

The factors for this evaluation consist in the input, the same as the ones

described previously, and batch, which assumes six different values. The batch

factor consists in the size of the batch to be inserted in the database. The batch

size numbers are not fixed and varies depending on the different input sizes.

The levels are classified from A to F, where A represents the highest number

possible for a batch, meaning one single insertion with all the contents of the

trace. The other five levels consist in dividing the previous one in half. The A

value for each input size was previously calculated and the rest was generated

by the dividing the first one. In this design, we have a six-level factor, a three-

level factor and 30 replications, which results in 540 experiments to run in each of

the four experimental units (total of 2160 experiments).

45

To complement this analysis, we also generate traces for the batch execu-

tions. The trace contains the start time and end time of every database insertion.

This data is useful to obtain richer information about the impacts of the batch

mechanism in the performance. The next section demonstrates the results and

our interpretation of the experiments.

6.2 Results and Graphics

We have used the R language to merge the data from the different files

generated and to plot results. For the experiments we have used the average exe-

cution time among the replications as a measurement. For PajeInsertDBPlugin,

there is also the average insertion time. The time unit is seconds. We considered

the standard error to be three standard deviations divided by the square root of

the number of experiments, which cover 99.7% of the cases assuming a normal

distribution (NARASIMHAN, 1996). We describe below our expectation about

each experimental setup and the interpretation of the measurements.

6.2.1 Comparison Between Aiyra and PajeNG

Expectation

It is universally known that C++ is a language with better performance

than Java. We suppose that Aiyra will be slower than PajeNG, but with an ac-

ceptable execution time. It is also expected that the version pj_flex will be slower

than pj, an information provided by the PajeNG developers.

Observed Results

We can see in Figure 6.2 that the result is what we expected. We see aiyra

having a lower performance for the big and medium inputs in all three platforms,

taking almost two times more time than pj to execute in guarani and orion1.

When comparing with pjflex, the difference is smaller since pjflex is slower than

pj, and in the luiza platform the difference almost does not exist. An important

difference among Aiyra and PajeNG is the process of reading the trace file, pars-

ing it and then sending to the simulator. As seen in Chapter 3, the PajeNG file

reader first reads from the file a chunk of data, then the decoder breaks it into

46

events and sends them to the simulator. The next segment of data is only read

after the first is completely decoded. On the other hand, Aiyra’s controller reads

each event one at time making more I/O calls to read the file. This is probably

one of the causes of Aiyra being slower. Besides, the language is also a factor,

since we know Java is slower than C++.

Figure 6.2: Results of comparison between Aiyra and PajeNG

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

guarani luiza orion1

0

30

60

90

120

aiyra pj pjflex aiyra pj pjflex aiyra pj pjflex
Version

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Input Size
●

●

●

big

medium

small

So far, we have analysed the execution time of the medium and big inputs.

Figure 6.3 shows only the measurement considering the small input in the differ-

ent platforms, to have a closer look in its time scale. The behavior for the small

input is not different from the others.

These results do not affect the relevance of the proposal, since it was never

a goal to make a faster simulator. The implementation of Aiyra gives the user

more flexibility to manage the memory usage of his program and space to de-

velop high performance implementations. It is also possible to notice that changes

in the design of the program, specially in the trace file parsing and detected events

handling, may have impacts in the performance of the program.

47

Figure 6.3: Results of comparison between Aiyra and PajeNG for the small input

●

● ●

●

● ●

●

● ●

guarani luiza orion1

0.00

0.05

0.10

0.15

0.20

aiyra pj pjflex aiyra pj pjflex aiyra pj pjflex
Version

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

6.2.2 PajeInsertDBPlugin Evaluation

The objective of this experiment is to measure what is the best balance

between number of database accesses and memory usage. We have already dis-

carded inserting each entity at a time, so it is necessary to keep entities temporar-

ily in memory. We tested the simulation time and memory usage for different

combinations of input and batch size. The response variables were: execution

time, which is the total duration of the execution; insertion time, the time it took

to insert the data in the database; and maximum memory, the maximum usage

of the memory during the simulation. The memory value used was the maxi-

mum observed in the replications. As this experiment consists in storing data of

540 executions in memory, we used a -test flag, which drops the database and

recreates it after each simulation.

Since we had a very large number of experiments, it took more than 48

hours to execute the design in each platform. Guarani and orion1 are machines

shared by the professors and students in the Informatics Institute of the Federal

University of Rio Grande do Sul, thus, it was not desirable to disable other users

from using the machine for longer than two days. For these reasons, we chose

48

to use only 10 replications orion1 and guarani. Even so, we have observed very

little variability among the executions in the exploratory tests. The experiments

for these platforms do not have the A batch size.

Expected

According to the observation of bad performance when executing exces-

sive accesses to the database, we expect that the bigger the batch, the better the

performance, since it will make fewer requests to the MySQL server. Naturally,

this would also cause a higher memory usage, so the maximum memory uti-

lization will be larger for bigger batches. We have three experiments making an

access to a local database, and one performing remote request in another machine

in the same network. It is logical to expect that the remote case takes longer than

the local experiment.

Observed Results

As the values for A, B, C, D, E and F vary among the different input sizes,

it is consistent to analyze each input separately. The results are divided in sub-

sections according to the metrics analysed: execution time, insertion time, and

maximum memory usage. There is also a subsection to analyse metrics obtained

during the execution of the batches.

Execution Time

The execution time measures the duration of the entire simulation from begin-

ning to end. Figure 6.4 illustrates the behavior of the execution using the big

input. We have results for all batch sizes except A. The reason for this is that

Aiyra exceeded the heap space to store data in memory, mainly because we have

adopted default values for heap allocation in the JVM, as presented in Table 6.2.

The guarani platform was incapable of handling A and B sizes. Our analysis is

unaffected by these missing cases since it is possible to observe a pattern, which is

the opposite of what we have expected. We can see that the smaller the batch size,

the better the performance. In fact, this is easily explained since Java’s memory

management may be very slow, specially if the heap size is big. By these results,

we see that the memory usage overhead is higher than the database access cost.

With the medium input, presented in Figure 6.5, we observe the same behavior

as the big one for luiza, guarani and orion1 platforms. The orion1 results are

inconclusive for the medium input size, probably due to external interferences.

49

Although we have locked the machine for the experiment, we haven’t the rights

to stop other user programs that could be running and affecting the performance.

Figure 6.4: Results of batch sizes variability for big input

●

●

●
●

●

●

●
●

●

●

●

●

●

guarani luiza orion1

0

300

600

900

B C D E F B C D E F B C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Figures 6.6 and 6.7 portray the comparison between the local and remote

execution times in guarani. As expected, the remote access increases the execu-

tion time. It is not a big difference because both machines are in the same network

and connected by one single switch.

For smaller inputs, however, the results for either the local and the remote

tests were different from the other sizes. We see (in Figure 6.8) that the behav-

ior for the local experiment is what we have predicted. It is explained by the

very little memory usage, that is too irrelevant to impact the performance. It

is worth mentioning that 128 Kilobytes, which is the size of the small input, is

very uncommon and that the usual traces are at least in the Megabytes order of

magnitude. In Figure 6.9, we see that the remote execution was actually faster

than the local one. This can be possibly explained by the remote database allow-

ing a resource usage distribution, while the local environment is overloaded by

the MySQL server. However, this would have affected the other inputs as well,

which was not the case. This is still open for further analysis.

50

Figure 6.5: Results of batch sizes variability for medium input

guarani luiza orion1

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

0

30

60

90

120

A B C D E F A B C D E F A B C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Figure 6.6: Results for remote and local executions for the big input

●

●

●

●

●

●

●

●

big

0

250

500

750

C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Platform
●

●

guarani

remote

Memory Usage

Going further on the analysis, we see in Figures 6.10 and 6.11 the memory usage

51

Figure 6.7: Results for remote and local executions for the medium input

●

●

●

●

●

●

●

●

●

●

medium

0

30

60

90

120

B C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Platform
●

●

guarani

remote

Figure 6.8: Results of batch sizes variability for the small input

guarani luiza orion1

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

0

1

2

3

4

A B C D E F A B C D E F A B C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

for the scenarios with big and medium inputs. Naturally, the memory usage

peak is higher for bigger batches.

52

Figure 6.9: Results for remote and local executions for the small input

●

●

●

●

●

●

●

●

●

●

small

0

1

2

3

4

B C D E F
Batch Size

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(s
)

Platform
●

●

guarani

remote

Figure 6.10: Memory usage for the big input

guarani luiza orion1

0

1000

2000

3000

4000

B C D E F B C D E F B C D E F
Batch Size

M
ax

im
um

 M
em

or
y

U
til

iz
at

io
n

(M
eg

ab
yt

es
)

The memory usage with the small file, portrayed in Figure 6.12, had the

same behavior as the previous ones, except for the guarani platform. Since it is

53

Figure 6.11: Memory usage for the medium input

guarani luiza orion1

0

250

500

750

1000

A B C D E F A B C D E F A B C D E F
Batch Size

M
ax

im
um

 M
em

or
y

U
til

iz
at

io
n

(M
eg

ab
yt

es
)

not logical that the batch size E, which is the second smallest of the levels, occu-

pies more memory than A, B, C, D, and we can see in Figure 6.8 that there was a

big variability in this platform, we consider that it was an external interference.

Even though, the memory usage of this input is less than 5 Megabytes, while for

the others it reached over 1Gigabyte for the medium input and 4Gigabytes with

the big.

Insertion Time

The insertion time measures only the moments of the execution that the program

is making an insertion in the database. By analyzing the results, we observed

that the number of accesses to the database did not impact on the performance

of big and medium traces. Figures 6.13 and 6.14 support our conclusion that

the number of accesses did not affect the insertion time and what increases the

execution time is the memory usage. We see in both graphics that the insertion

time is almost the same for the different batch sizes. The medium input in guarani

had actually a lower insertion time for smaller batches.

For the small input, the average insertion time had a small difference be-

tween batches, as depicted in Figure 6.15. It presented the expected behavior

described previously.

54

Figure 6.12: Memory usage for the small input

guarani luiza orion1

0

1

2

3

4

A B C D E F A B C D E F A B C D E F
Batch Size

M
ax

im
um

 M
em

or
y

U
til

iz
at

io
n

(M
eg

ab
yt

es
)

Figure 6.13: Insertion time for the big input

● ●
● ●

● ● ● ●

● ● ●
● ●

guarani luiza orion1

0

200

400

B C D E F B C D E F B C D E F
Batch Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(s
)

We can also observe by analysing Figures 6.16 and 6.17 that the differ-

ence of performance among the remote and local experiments rely exclusively on

55

Figure 6.14: Insertion time for the medium input

guarani luiza orion1

●
●

●

●

●

● ● ● ● ● ●

● ●
●

●
●

0

20

40

60

A B C D E F A B C D E F A B C D E F
Batch Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(s
)

Figure 6.15: Insertion time for the small input
guarani luiza orion1

●

●

●

●

●

●
● ● ● ●

●
●

●
●

●

●

0

1

2

3

A B C D E F A B C D E F A B C D E F
Batch Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(s
)

the insertion time. That is probably the case since insertion requests have to be

communicated through the network topology. Since the network is a contention

56

point, in situations with high data volume, this affects directly the performance,

as our results have shown.

Figure 6.16: Remote and local insertion times for the big input

●

●

●

●

●

●

●

●

big

0

200

400

600

C D E F
Batch Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(s
)

Platform
●

●

guarani

remote

Figure 6.17: Remote and local insertion times for the medium input

●

●

●

●

●

●

●

●

●

●

medium

0

20

40

60

80

B C D E F
Batch Size

A
ve

ra
ge

 In
se

rt
io

n
T

im
e

(s
)

Platform
●

●

guarani

remote

57

Batch Insertion Traces

To have a more detailed sight of the insertion time behavior, we generated traces

for the batch executions. These traces logged the duration of every batch inser-

tion for each experiment. It is depicted, in Figures 6.18 and 6.19, 10 replications of

the experiments for each platform and batch size. The graphics present a timeline

in the horizontal axis of all the execution. There is one line for each replication

and they are separated by batch size. The colored segments portray the moments

where a batch is being executed. For batch size C, for example, there are 4 inser-

tions, thus, there are four colored segments for each replication. It is possible to

see through these graphics that bigger batches take longer to execute, a detail that

we had not considered in the hipotesis. In this way, we see that the insertion time

does not significantly change between configurations for the same input size, as

the number of queries is always the same, while the simulation itself is what im-

pacts the run time. As we have seen before, the memory usage is what penalizes

the performance.

Figure 6.18: Timeline of batch executions for the big input
guarani luiza orion1

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

B
C

D
E

F

0 300 600 900 0 300 600 900 0 300 600 900
Time (s)

R
un

 (
or

de
r)

For the small input, we can observe, in Figure 6.20, the opposite behavior.

In these cases, it is better to insert all the data at once.

58

Figure 6.19: Timeline of batch executions for the medium input
guarani luiza orion1

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

B
C

D
E

F

0 25 50 75 100 125 0 25 50 75 100 125 0 25 50 75 100 125
Time (s)

R
un

 (
or

de
r)

Figure 6.20: Timeline of batch executions for the small input
guarani luiza orion1

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

0

3

6

9

B
C

D
E

F

0 1 2 3 4 0 1 2 3 4 0 1 2 3 4
Time (s)

R
un

 (
or

de
r)

59

7 CONCLUSION

In this work, we have elaborated a different approach to an existing simu-

lation tool for Pajé Trace files (PajeNG). We have observed issues in the PajeNG

implementation regarding the lack of flexibility to handle the resulting data of

the simulation, the lack of partial results and the ephemerality of these results.

To improve the extensibility of the tool, we introduced the concept of plugins,

where every generated entity is sent to. This permits the manipulation of the re-

sults totally deattached from the core simulation. We also validated this design

by implementing plugins that solve the other problems we have identified.

The objective of this work is to build a simulator, called Aiyra, that would

give the performance analyst more flexibility to extend it how he desired. With

Aiyra, it is fast and easy to develop plugins to manipulate the results of any part

of the simulation. It is possible to build either specific extensions, that comprise

very particular types of events, or broad approaches, including multiple types

of entities. The performance analyst does not need to get into the details of the

simulation code to build a plugin and will only need to know which entities are

provided by the simulator.

Building plugins for the solution was extremely important to validate and

improve the proposal. The first approach consisted in having instrumentation

points only for the events that generated complete entities, like PajePopState,

which was soon discarded during the implementation of the PajeInsertDBPlu-

gin. We saw that, for example, to insert a state entity, with foreign keys referring

a container and a type, the object referenced must already be in the database.

Thus, we noticed that, for the extensibility to apply to the maximum number of

potential scenarios, it needed to give access to every type of event possible in the

Pajé format. Implementing this plugin took a lot of time, and changes to it were

made very frequently. It was interesting to observe that the modifications were

only performed in the PajeInsertDBPlugin class, demonstrating clearly that the

handling of the results was totally deattached from the core simulation.

The PajeInsertDBPlugin analysis presented some issues that the Java lan-

guage may bring regarding memory usage. First, it can become very slow de-

pending on the number of objects it is storing. Second, there must be a careful

analysis of the JVM configuration to be sure that it will have a capacity consistent

60

to the platform in which it is running. This may cause a limitation for the user that

needs to store many entities in memory. The PajeDumpPlugin, although solving

an issue, brings another concern which is the order in which the entities are pre-

sented, for example, states will be dumped before their containers. Concerning

the simulator design, there are some points that can be improved. First, the or-

ganization of the plugin’s entry points is still strongly based on the two plugins

created. There is room to make more generic entrances that can comprehend as

many scenarios as possible. Second, it does not accepts entities with extra fields,

which limits a little the extension of the Pajé format.

For future work, it would be interesting to provide an interface for the

plugin package to make it support multiple languages. It would also be desirable

to shift the options handling regarding each plugin to its proper class, instead of

centralizing all in the controller. The way it is currently implemented, the user

needs to modify the code in the controller package to add an argument to the

plugin. In terms of analysis, the PajeInsertDBPlugin can be deeper explored.

There can be evaluation testing different configurations for the JVM, as well as an

study on the eficiency of the schema.

61

REFERENCES

BARRY, D. K. Relational Model Concepts. 2013. <http://www.
service-architecture.com/articles/database/relational_model_concepts.html>.
Accessed: 2016-05-09.

CRAWLEY, B. Parser Generators: ANTLR vs JavaCC. 2015. <https:
//dzone.com/articles/antlr-and-javacc-parser-generators>. Accessed:
2016-04-23.

GROEMPING, U.; AMAROV, B.; XU, H. Package ‘DoE.base’. 2016.
<https://cran.r-project.org/web/packages/DoE.base/DoE.base.pdf>.
Accessed: 2016-04-24.

HAMILTON, D. G. JavaCC. 2016. <http://www.computing.dcu.ie/~hamilton/
teaching/CA448/notes/JavaCClex2.pdf>. Accessed: 2016-04-23.

HEUSER, C. A. Projeto de Banco de Dados. 6th. ed. [S.l.]: Ed. Sagra-Luzzato,
2008.

JAIN, R. Art of Computer Systems Performance Analysis: Techniques for
Experimental Design Measurements Simulation and Modeling. 2nd. ed. [S.l.]:
John Wiley & Sons, 2015.

JAVACC. Java Compiler Compiler tm (JavaCC tm) - The Java Parser Generator.
2016. <https://javacc.java.net/>. Accessed: 2016-04-23.

KERGOMMEAUX, J. C. de; STEIN, B. de O.; BERNARD, P. E. Pajé, an interactive
visualization tool for tuning multi-threaded parallel applications. Parallel
Computing, v. 26, n. 10, p. 1253–1274, 2000.

LAUX, D. M. Processing command line arguments in Java: Case closed:
Facilitate command line argument processing for java tools with a simple
helper class. 2004. <http://www.javaworld.com/article/2074849/core-java/
processing-command-line-arguments-in-java--case-closed.html>. Accessed:
2016-02-28.

NARASIMHAN, B. The Normal Distribution. 1996. <http://statweb.stanford.
edu/~naras/jsm/NormalDensity/NormalDensity.html>. Accessed: 2016-05-16.

ORACLE. Java SE Technologies - Database. 2016. <http://www.oracle.com/
technetwork/java/javase/jdbc/index.html>. Accessed: 2016-05-09.

POINT, T. ER Model - Basic Concepts. 2016. <http://www.tutorialspoint.com/
dbms/er_model_basic_concepts.htm>. Accessed: 2016-05-09.

POINT, T. JDBC Tutorial. 2016. <http://www.tutorialspoint.com/jdbc/
jdbc-introduction.htm>. Accessed: 2016-05-14.

SAS. Full Factorial Designs. 2016. <http://www.jmp.com/support/help/Full_
Factorial_Designs.shtml>. Accessed: 2016-04-24.

http://www.service-architecture.com/articles/database/relational_model_concepts.html
http://www.service-architecture.com/articles/database/relational_model_concepts.html
https://dzone.com/articles/antlr-and-javacc-parser-generators
https://dzone.com/articles/antlr-and-javacc-parser-generators
https://cran.r-project.org/web/packages/DoE.base/DoE.base.pdf
http://www.computing.dcu.ie/~hamilton/teaching/CA448/notes/JavaCClex2.pdf
http://www.computing.dcu.ie/~hamilton/teaching/CA448/notes/JavaCClex2.pdf
https://javacc.java.net/
http://www.javaworld.com/article/2074849/core-java/processing-command-line-arguments-in-java--case-closed.html
http://www.javaworld.com/article/2074849/core-java/processing-command-line-arguments-in-java--case-closed.html
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
http://statweb.stanford.edu/~naras/jsm/NormalDensity/NormalDensity.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.oracle.com/technetwork/java/javase/jdbc/index.html
http://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm
http://www.tutorialspoint.com/dbms/er_model_basic_concepts.htm
http://www.tutorialspoint.com/jdbc/jdbc-introduction.htm
http://www.tutorialspoint.com/jdbc/jdbc-introduction.htm
http://www.jmp.com/support/help/Full_Factorial_Designs.shtml
http://www.jmp.com/support/help/Full_Factorial_Designs.shtml

62

SCHNORR, L. M. Pajé trace file format. Porto Alegre, Brazil, 2016.
<https://github.com/schnorr/pajeng/tree/master/doc/lang-paje>.

SCHNORR, L. M. PajeNG - Trace Visualization Tool. 2016. <https:
//github.com/schnorr/pajeng>. Accessed: 2016-05-09.

https://github.com/schnorr/pajeng/tree/master/doc/lang-paje
https://github.com/schnorr/pajeng
https://github.com/schnorr/pajeng

63

APPENDIX A — JAVACC TUTORIAL

To build a grammar that will be compiled by JavaCC you only need to

create one file whith ‘.jj‘ extension. The structure of this file is the following:

1 options {

2 }

A set of optional flags. An example, is the flag STATIC, which means that

there is only one parser for the JVM when set to true.

1 PARSER_BEGIN(MyGrammar)

2 publ ic c l a s s MyGrammar {

3 }

4 PARSER_END(MyGrammar)

In this part, the Java code will be placed and it’s the main class of the

program. Notice that the class must have the same name as the generated parser.

1 TOKEN_MGR_DECLS :

2 {

3 }

In the TOKEN_MGR_DECLS function, the declarations used by the lexi-

cal analyser are placed.

Below these three structures, comes the lexical analysis where the Token

rules and parser actions can be written using a top-down approach. First, the

Tokens are declared, always using the word "TOKEN" before. To exemplify the

creation of a grammar in JavaCC, we will create a language that consists in the

declaration of integer and char variables and assignments of values to these vari-

ables. All the declarations come first, then the assignments. No verification will

be performed since it is just an example to clarify the JavaCC syntax. To declare

tokens, we use the following notation:

1 TOKEN:

2 {

3 < [NAME] : [EXPRESSION] >

4 }

For our example of language we will have the following tokens:

1 /* I n t e g e r L i t e r a l s */

64

2 TOKEN :

3 {

4 < INTEGER : " 0 " | [" 0 "− " 9 "] ([" 0 "−" 9 ") * >

5 }

6

7 /* Variables , assignments and char values */

8 TOKEN :

9 {

10 < VARIABLE : ([" a "−" z " , "A" − "Z"]) + >

11 < ASSIGNMENT: "=" >

12 < CHAR: (~ [" \" "] | "\\" " (["n" , " r " , "\\" " , " \ ’ " , " \" "])) >

13 }

14 /* Types */

15 TOKEN:

16 {

17 < INTEGER_TYPE : " i n t " >

18 < CHAR_TYPE : " char " >

19 }

As we can see in the definitions above, it is not necessary to explicit the

word TOKEN for each one. It is usually separated to be better organized and

easier to understand. Although the token’s agroupation is not relevant, the order

in which they are declared is. When an input matches more than one token spec-

ification, the one declared first will be considered. There is also another kind of

regular expression production, which is the SKIP. Whatever matches the regular

expression defined in the SKIP scope will not be treated by the parser. Example:

1 SKIP :

2 {

3 "\n"

4 \| "\ t "

5 }

After the token declaration, comes the grammar rules. The rules are de-

clared as methods, that can have return values or not. The structure of a method

is the following:

1 [type] [name] ()

2 { }

3 {

4 /* Rules */

65

5 }

The empty braces in the beginning of the method can be filled with vari-

able declarations in Java. More Java code can be added in the middle of the rules

by using braces. Inside the next braces, it is possible to assign tokens, regular ex-

pressions or even methods to the variables declared earlier. To refer to the tokens,

we use its name between angular brackets. Example:

1 void parser ()

2 { i n t number ; }

3 {

4 number = <INTEGER>

5 }

The first method defined will be the entrance to the parser and it can con-

tain methods inside that will be expanded later in the rules. The entrance for the

language we are using as an example would be as follows:

1 void s t a r t ()

2 { }

3 {

4 d e c l a r a t i o n s () assignments () <EOF>

5 }

EOF is a default token. It is important to guarantee that the file will be

parsed until the end. By the definition of our first method, we assure that the

declarations will obligatorily be in the beginning, and the assignments at the end.

Next, we expand the two methods to address all the possibilities:

1 void d e c l a r a t i o n s ()

2 { }

3 {

4 ((<INTEGER_TYPE> | <CHAR_TYPE>) <VARIABLE>) *
5 }

6

7 void assignments ()

8 { }

9 {

10 (<VARIABLE> <ASSIGNMENT> (<CHAR> | <INTEGER>)) *
11 }

66

The multiplicity can be defined with the standard characters "*", "?", "+",

just as in the lexer. This example is just one possible approach to define these

rules. For example, you can use another non-terminal to describe a value that will

be assigned to a variable. In this case, the assignments() rule would be expanded

as follows:

1 void assignments ()

2 { }

3 {

4 (<VARIABLE> <ASSIGNMENT> a s s i g n a b l e ()) *
5 }

6

7 void a s s i g n a b l e () :

8 { }

9 {

10 <CHAR> | <INTEGER>

11 }

A.0.1 Usage with Java

In order to call the parser in a Java program, an object of the MyGrammar

class needs to be instantiated:

1 MyGrammar parser = new MyGrammar(input) ;

Then, once there is an instance of the parser, it is possible to call the first

method of the parser:

1 parser . s t a r t () ;

This code has a Java syntax and is placed in the main class presented previ-

ously. Between the declarations of PARSER_BEGIN and PARSER_END, any Java

code can be placed to manipulate the results of the parsing.

1 PARSER_BEGIN(MyGrammar)

2 /* Imports */

3 publ ic c l a s s MyGrammar {

4 publ ic s t a t i c void main (S t r i n g args []) {

5 /* Code to read the input */

6 MyGrammar parser = new MyGrammar(input) ;

7 parser . s t a r t () ;

67

8 /* Java code to manipulate the parser r e s u l t s */

9 }

10 }

11 PARSER_END(MyGrammar)

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	2 Basic Concepts
	2.1 The Java Compiler Compiler (JavaCC) Tool
	2.2 JDBC and MySQL
	2.3 Entity-Relationship and Relational Models
	2.4 Experimental Design
	2.5 The R Language

	3 The PajeNG Framework
	3.1 The Pajé Trace File Format
	3.1.1 Header Section: Events Definition
	3.1.2 Body Section: Timestamped Events

	3.2 PajeNG Tools and Simulation Library
	3.2.1 Class Hierarchy for Pajé Events
	3.2.2 Class Hierarchy for the Pajé Types
	3.2.3 Class Hierarchy for the Pajé Entities
	3.2.4 The Core Simulator

	3.3 Current Issues Regarding PajeNG

	4 Aiyra - a Java-based simulator for Paje trace files
	4.1 The Controller: Option Handling and JavaCC
	4.2 Aiyra's Core Simulator
	4.3 The Plugin Package

	5 Aiyra's Standard Plugins
	5.1 Paje Null Plugin
	5.2 Paje Dump Plugin
	5.3 Paje Insert Database Plugin
	5.3.1 Entity-Relationship Model
	5.3.2 Relational Model

	6 Performance Evaluation
	6.1 Methodology
	6.1.1 Aiyra and PajeNG Comparison Methodology
	6.1.2 PajeInsertDBPlugin Evaluation Methodology

	6.2 Results and Graphics
	6.2.1 Comparison Between Aiyra and PajeNG
	6.2.2 PajeInsertDBPlugin Evaluation

	7 Conclusion
	References
	Appendix A — JavaCC Tutorial
	A.0.1 Usage with Java

