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ABSTRACT

DRAMs have a considerable impact on performance and contribute significantly to the

total power consumption in computer systems. They are based on dynamic memory cells

that require periodic refreshes in order to ensure data integrity. Recent research shows

the increasingly impact of DRAM refresh on power consumption for future high density

DRAM devices (LIU et al., 2012),(BHATI et al., 2015).

The employment of new DRAM refresh techniques with focus on energy savings and

enhanced memory throughput is an active research topic in the DRAM community. Many

strategies renounce the reliability provided by a worst-case driven refresh interval present

on the standards. They consciously break some rules in order to achieve certain gains.

Evidently, increases on the refresh interval or even the total suppression of refreshes may

cause total or partial corruption of the stored data within its life time. Therefore, approx-

imate DRAM storage is specially interesting for error resilient applications. Fortunately,

error resilience is a characteristic that can be found on a broad range of applications such

as signal processing, image, audio, and video processing, graphics, wireless communica-

tions, web search, and data analytics (CHIPPA et al., 2013).

The main purpose of this work is to evaluate the impact of disabling the DRAM refresh

in terms of energy savings and occurrence of retention errors. Furthermore, this work

presents some possible applications that could derive benefit from the suppression of

DRAM refreshes.

Keywords: DRAM, refresh, retention time, accuracy, approximate computing, energy

savings.



Explorando Armazenamento Aproximado em DRAMs

RESUMO

DRAMs impactam de maneira considerável na performance e contribuem significativa-

mente no consumo energético e potência dissipada em sistemas computacionais. DRAMs

têm como base células dinâmicas de armazenamento que demandam atualização periódica

de seu conteúdo para que se mantenha íntegro. Pesquisas recentes indicam um crescente

impacto na potência consumida devido à atualização periódica das células de memória

para futuros dispositivos de alta densidade de células. (LIU et al., 2012),(BHATI et al.,

2015).

Pesquisadores da área procuram novas técnicas para a atualização das células de memória

visando menor consumo energético e aumento da taxa de transferência de dados da me-

mória. Muitas estratégias abrem mão das garantias providas pelo estrito seguimento às

especificações que forçosamente devem contemplar o pior caso.

Evidentemente, atualizar as células de memória menos frequentemente ou simplesmente

deixar de atualizá-las pode causar perda total ou parcial dos dados armazenados caso o

tempo de vida dos dados seja superior ao tempo de retenção das células de memória que

o armazenam. Sendo assim, a utilização de armazenamento aproximado em DRAMs é

especialmente interessante para aplicações que apresentem tolerância à erros. Felizmente,

essa é uma característica presente em diversas aplicações tais como processamento de

sinais, processamento de imagem, áudio e vídeo, comunicação sem fio, buscas em bancos

de dados na rede mundial de computadores e análise de enormes quantidades de dados

(CHIPPA et al., 2013).

O principal propósito deste trabalho é avaliar o impacto da supressão da atualização pe-

riódica da memória em termos de economia energética e ocorrência de erros de retenção.

Além disso, são apresentadas sugestões de aplicações que podem colher algum benefício

do uso desta técnica.

Palavras-chave: DRAM, atualização periódica da memória, tempo de retenção, precisão,

computação aproximada, economia de energia.
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1 INTRODUCTION

1.1 Context and Motivation

Computer systems permeate today’s life. Memory is an essential part of computers

and is present in cheap electronic gadgets, mobile computers (phones, tablets, wearables),

high availability data communication equipments and data servers to cite a few. DRAM is

the primary memory of most computer systems since many decades. The simple hardware

structure, the relative high access speed, the relative lower costs of production and the

scalability provided by this memory technology corroborate this scenario.

Despite technological advances, there is a growing disparity between processor

and memory speeds. This issue was formally announced two decades ago in a research

paper as the memory wall (WULF; MCKEE, 1995). Furthermore, the process scaling

of current semiconductors is approaching its limits. Hence, new solutions are necessary

in order to deliver increased storage capacity and bandwidth. Stacked three-dimensional

structures, in which each layer consists in a two-dimensional die, are being explored to

overcome the current demands. However, this new approach comes with new challenges

related to power density and removal of heat (WEIS et al., 2015).

Along with storage capacity and bandwidth, power and energy requirements are

major concerns in current computer system designs (CAMERON; GE; FENG, 2005),

(BENINI; BOGLIOLO; MICHELI, 2000). Trade-offs involving power and performance

are recurrent among system-level architects. Approximate computing breaks with the all-

or-nothing correctness philosophy adopted so far by computer systems. This concept

applied to DRAMs, which is often referred to as approximate DRAM storage (TEMAN

et al., 2015), (JUNG et al., 2016), explores trade-offs involving energy savings and per-

formance improvements in the memory subsystem against acceptable inaccuracy in the

computation caused by non-critical data corruption.

1.2 Relevance and Contribution

The development of new DRAM refresh techniques with focus on energy savings

and enhanced memory throughput is an active research topic in the DRAM community.

Many research papers, some of them below mentioned, suggest the relevance of the topic.

The idea of postponing DRAM refresh is presented in (BHATI; CHISHTI; JA-
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COB, 2013) and a temperature variation aware bankwise refresh for 3D-DRAMs is pre-

sented in (SADRI et al., 2014).

Some techniques allow parts of the memory to be corrupted such as the REVA

scheme (ADVANI et al., 2014) that refreshes only a region of interest and Flikker (LIU

et al., 2011) that reduces the number of refreshes by partitioning the DRAM in a critical

and non-critical regions.

Selective refresh techniques are explored by PARIS (BAEK; CHO; MELHEM,

2014) that only refreshes rows that contain useful data. CREAM (ZHANG et al., 2014)

shows per-bank and per-subarray refresh techniques.

Retention time aware refresh techniques are proposed in RAIDR (LIU et al., 2012)

that group rows in retention time bins refreshed with different rates and AVATAR (QURESHI

et al., 2015) that tries to overcome VRT issues by combining an on-line ECC detection

with row selective refresh.

In this work DRAMSys (JUNG; WEIS; WEHN, 2015), a flexible memory sub-

system design space exploration framework, is adapted and then combined with 3D-ICE

(SRIDHAR et al., 2014), a tool which can perform transient thermal analysis of integrated

circuits, in order to study and better understand the impact on energy savings and reten-

tion error occurrence of a simple but audacious new approach to DRAM cells refresh -

omitting refresh.

Furthermore, as additional contributions to the scientific community a SystemC

wrapper was ported to inside the 3D-ICE project in order to easily provide integration of

3D-ICE with any SystemC/TLM2.0 based simulation environment and part of the effort

made also contributed to a conference paper (JUNG et al., 2015).
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2 DRAM

DRAM is a volatile memory, i.e., its content fades when power is turned off, and

it is also dynamic, i.e., during normal operation the binary information written to a cell

will leak off due to leakage currents. The time that a cell can hold the data is called

retention time. Therefore, DRAM cells have to be periodically refreshed to maintain the

data integrity. While a DRAM bit cell requires only a single transistor and capacitor pair

an SRAM cell uses six transistors. Consequently, DRAM offers much higher densities

and lower cost per bit. However, DRAM performance is worse than SRAM’s mostly

because the requirement of a specialized circuitry to sense and amplify slight voltage

differences in the bitlines caused by a passive storage cell.

Commodity DRAM devices are designed to be simple and inexpensive to manu-

facture, so they do not bring much intelligence embedded on them. Thus the memory con-

troller is responsible for refreshing all banks, ensuring that all timing constraints are met,

avoiding timing violations, avoiding collisions on the data bus, respecting the turnaround

time when the directions of the data bus changes, etc. Modern computers use improved

versions of the original DRAM architecture. Along with process scaling, several tech-

niques have been applied in order to extend the lifespan of the DRAM architecture up to

these days. For example, the bandwidth was increased by doubling the data clock rate

(data is transfered in both rising and falling edge of the clock signal), with on-die ter-

mination used to match line impedance increasing the quality of signals allowing higher

frequency and the inclusion of delay-locked loop circuits used to compensate signal skew.

2.1 Basic Circuits

Modern DRAM devices use 1T1C DRAM cells to store a single bit of data. 1T1C

DRAM cells consist of an access transistor controlled by a wordline, which selectively

connects a bit storage capacitor to a bitline. This storage cell is a passive circuit that must

be carefully sensed in order to read the logic level stored in it. The potentials VDD or VSS

on the storage capacitor correspond to logical 1 or 0.
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Figure 2.1: 1T1C DRAM Cell Structure
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Multiple cells are connected to the same bitline but only one cell per bitline will

have its access transistor open at a given time. When inactive, the bitlines are held at

mid-rail potential VDD/2. At the beginning of a memory access one of the wordlines is

enabled causing a balance of charges between the bitline and the cell capacitor. Since the

cell capacitance is roughly an order of magnitude smaller than the bitline capacitance the

bitline voltage changes only a few hundred millivolts above or below VDD/2. For this

reason a bitline sense amplifier is needed to sense this small change in the bitline voltage

and amplify it to the appropriate voltage.

The bitline sense amplifier is a regenerative latch that amplifies the bitline voltage

to full-rail. The sense amplifiers will keep the resultant levels until the DRAM array is

precharged for another access. Thus they act as a row buffer that caches an entire row

of data. Subsequent reads to the same row of cells can be done directly from the sense

amplifier without accessing the cells themselves, this is known as a row hit.

To sense very small changes in the bitline voltage modern DRAM devices use

differential sense amplifiers which connect to a pair of bitlines. While the slight volt-

age variation of one line is sensed the other bitline works as a reference voltage. This,

however, makes possible to sense only one bitline of the pair and consequently limits the

number of memory cells that can be accessed at a given time.
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Figure 2.2: Differential Sense Amplifiers (Open Bitline Structure)
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Differential sense amplifiers require bitlines that are very similar in terms of ca-

pacitance, voltage, path length and number of cells connected to them. The two main

array structures of DRAM devices are open bitline and folded bitline. In the open bitline

structure the array is divided in segments and differential sense amplifiers are connected to

bitlines of different segments while in a folded bitline structures the pair of bitlines comes

from the same array segment. Basically, the open bitline structure requires less area but,

when compared to folded bitline structure, is more susceptible to electronic noise.

Since data reads to 1T1C DRAM cells are destructive (due to the balance of

charges between the bit line and the storage cell), to complete the DRAM read cycle

the data must be written back into the memory cell. The n-channel access transistor must

be fully turned on. To store VDD level in the memory cell, the wordline must be raised

to VDD + VT where VT is the access transistor threshold voltage. Extra hardware may be

required to generate this potential above VDD.
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2.2 Organization

DRAM memory cells are arranged together forming a bi-dimensional array of

cells and each cell within such array can be accessed by a memory controller by specifying

the row address and the column address to the DRAM. There is one or more arrays of cells

inside a DRAM chip. Typically the memory arrays are designed to operate as a unity and

as consequence the width in bits of each access to the memory chip is equal to the number

of arrays contained in it. The number of arrays inside a chip can be used to characterize

the DRAM. In a simple organization, for example a x8 DRAM chip (pronounced "by

eight") has at least eight arrays of cells inside it and each column access (read or write)

corresponds to an eight bits transfer (column width is 8 bits). Thus an 8-bit-wide-column

is the basic addressable chunk of data for this device. A set of memory arrays that works

independently of other sets is known as a bank. The bank is the granularity for memory

operations, then commands targeting different banks can execute in parallel with respect

to each other. DRAM devices can implement multiple independent banks internally.

Figure 2.3: Common DRAM Organization
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Source: (JACOB; NG; WANG, 2007)

Commercial DRAM modules are made of a circuit board with some DRAM chips

plus associated circuitry attached to it and are typically sold as DIMMs. A system can

have multiple DIMMs or one DIMM that implements separate groups of banks that can be

accessed independently. The term rank is used to describe this level of independence. All

ranks share the same address and data busses. Therefore individual chip select signals for

each rank are required to put them in active or inactive state. Ranks whose chip select pin

is held low are "deaf" and pay no heed to changes in the state of the bus, they hold their

outputs in high impedance state allowing other devices to drive the lines. The selected

rank whose chip select pin is held high is "listening" for changes and responds as if it was
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the only chip on the bus.

Typically, the bus width of a non-ECC memory is 64 bits (64 pins) while DRAM

modules that provide ECC require 72 pins due to an extra chip required. In DDR memo-

ries the address is split into row and column addresses in order to save pins. Every bank

is able to decode the address information and retrieve the data from the addressed cells.

Figure 2.4: DRAM DIMM

DRAM DRAM DRAM DRAMDRAMDRAMDRAM DRAM

In traditional computer systems DRAM devices are arranged together to form a

memory system that is managed by a single DMC. The DRAM memory controller may

be in an external package connected to a processor or integrated in a SoC together with a

processor core. DRAM controller and DRAM devices communicate via separate busses

for data, address and control plus chip select signals.

Figure 2.5: DRAM Memory Controller
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All memory transactions (e.g., read and write) are managed by the DMC. The

DMC translates transactions into commands. Then it generates signal patterns in the

memory bus in order to send the commands to the DRAM in the proper sequence and

proper timing. The DMC is responsible to retrieve or store data on behalf of other devices

and it is also responsible to issue refresh commands during normal operation. It can

perform other tasks, e.g., ECC.

Additionally, modern DIMMs have a hardware feature called SPD that provides

vital information to the system BIOS to keep the system working in optimal condition

with the memory DIMM. JEDEC standards require that certain parameters be in the lower
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128 bytes of an EEPROM located on the memory module. These bytes contain timing

parameters, manufacturer, serial number among other useful information about the mod-

ule. The SPD EEPROM is accessed using SMBus, a variant of the I2C protocol. The

communication is done via a simple two-wire bus that consists of a clock line and a data

line.

2.3 DRAM Peculiarities

Due to process variation when integrated circuits are fabricated the attributes of

nodes (length, width, oxide thickness) vary. Since the beginning of DRAM production

different retention times among cells have been noticed, typically ranging from hundreds

of milliseconds to tens of seconds (JACOB; NG; WANG, 2007, p. 356). Cells that are

marked by shorter retention time are known as weak-cells.

Advances in fabrication process allow high-density DRAM devices, with smaller

cells whose dimensions are approaching fundamental dimensions for current semiconduc-

tor technologies. For a given fabrication process, considering changes only in dimensions,

not in materials (e.g., dopant elements, insulators), the smaller the number of atoms sep-

arating gate and drain the easier the leakage current flows and the higher the influence of

the environment is.

Moreover, a not so often emphasized or sometimes forgotten phenomenon is the

existence of DRAM cells with VRT. VRT is caused by microdefects in the p-n junction

which are very difficult to detect. A microdefect of the right type and at the right place

serve as an GR center. The GR center may conduct current through the p-n junction

acting as an additional and significant leakage component (JACOB; NG; WANG, 2007,

p. 826). Therefore there is a non-zero probability that a given cell changes its retention

time for a while. The bi-modal retention time behaviour of some DRAM cells makes

the estimation of a 100% accurate map of weak-cells infeasible. Since VRT is rare and

difficult to detect, DRAM manufacturers are not interested in finding and eliminating it

as long as the proposed refresh time is enough to make sure that even cells with VRT can

pass all tests and work properly (JACOB; NG; WANG, 2007, p. 826).
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2.4 Refresh

By the time of DRAM invention, as stated in its patent (DENNARD, 1968), the

regeneration of the binary information stored in its cells (capacitors whose charge weak-

ens over time) should take 10% to 20% of the device’s operation time and conventional

operations the remaining 80%. This means that since the very beginning of DRAM tech-

nology it is a well known fact that increases on DRAM refresh rates come with penalties:

performance and energy efficiency degradation.

During normal operation the memory controller is responsible to send the right

amount of refresh commands within a certain time window to ensure the integrity of the

data in all memory cells. The duration of the time window is temperature dependent.

The refresh granularity vary among memory technologies. Nevertheless, a com-

mon fact is that the refresh of a memory segment takes tRFC and no accesses to that

segment can be performed during this time. Additionally, right after the refresh operation

all the rows within the refreshed segment are closed. Therefore the memory controller

has to issue Activate commands to open rows and re-populate the row buffers. These

inevitable row misses contribute to decrease the memory throughput as well.

Recent research on the impact of refresh for DRAM devices are presented in the

table 2.1.

Table 2.1: Impact of Refresh on DRAM Devices
Device Capacity (Gb)

2 4 8 16 32 64
Average Power 10% 15% 17% 24% 34% 47%

Energy 10% 14% 16% 18% 25% n/a
Source: (LIU et al., 2012; BHATI et al., 2015)

The JEDEC is an independent organization that is responsible for many standards

related to semiconductor engineering. The maximum time interval between refresh opera-

tions is standardized by JEDEC for each DRAM technology and it is specified by DRAM

manufacturers within the device’s datasheet.

Typically a wide range of temperatures is considered as normal operation temper-

ature. For example, the DDR4-SDRAM standard (JEDEC, 2012) specifies that tempera-

tures ranging from 0 ◦C to 85 ◦C are the normal operation temperature for that technology.

Nevertheless, for the same technology, a not so wide interval defines the extended tem-

perature range: 85 ◦C to 95 ◦C.

The leakage current increases with the temperature and consequently the retention
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time of the DRAM cells decreases. Thus the refresh commands have to be issued more

often for higher temperatures in order to avoid retention errors (SADRI et al., 2014).

Figure 2.6 presents the leakage current behaviour against temperature and the necessary

adjustment to the refresh interval to completely avoid retention errors.

Figure 2.6: Leakage Current and Refresh Interval vs. Temperature.
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Source: (LIU et al., 2013), (Micron Technology Inc., 2013), (SADRI et al., 2014) re-

viewed by (JUNG et al., 2015)

Though it is known that many cells can retain data for times much longer than the

standard refresh interval, refresh requirements are based on a worst-case data decay time

in order to ensure data integrity for all cells. The rareness of VRT allied to the capability

of some applications to tolerate certain amount of errors make interesting the investigation

of the impact on energy savings when disabling DRAM refreshes.

2.5 Error Correction Mechanisms

Along with temperature several aspects of the device’s operation environment such

as ambient radiation (from inside the computer system), electromagnetic interference,

interactions with high-energy particles (from outside the computer system) have influence

on chip-level soft errors.

Since errors in DRAM happen even though refresh requirements are met, some

DRAM devices provide mechanisms for detection and possible correction of errors. Such

mechanisms act decreasing the effective error rate and as consequence may be used to

minimize some drawbacks of the approximate DRAM storage. In the other hand extra

storage and logic are required by ECC memory with impact on power consumption and
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final costs. Thus the decision of combining ECC memory with approximate DRAM is

non-obvious but is beyond the scope of this work.

2.6 Technological Trends

It is uncertain how long process scaling and improvements will be sufficient to

maintain today’s DRAM architecture. Efficiency and performance gains using the tradi-

tional DRAM have become smaller and more difficult to achieve. New solutions are nec-

essary to attend the ever growing demand for memory performance. Therefore DRAM

manufactures search for innovations to DRAM memory architecture that lead to higher

performance and lower power consumption.

2.6.1 Wide I/O

The Wide I/O memory architecture is designed to consume low power and provide

a high bandwidth with focus on mobile devices and battery powered embedded systems.

Wide I/O can be stacked on top of system on chip (SoC) devices by means of vertical

through-silicon via (TSV) interconnections. This accounts in favor of an optimized pack-

age size. On the other hand, the heat radiated from the SoC will pass through the memory

die worsening the thermal scenario. Wide I/O high bandwidths are due to a wide memory

bus that is up to 1024 bits wide.

The current Wide I/O standard supports memory stacks of up to four memory

chips. Each memory chip in the stack is called a slice and a single memory chip is

divided into four quadrants. The electrical connection between two stacked dies is know

as Micropillar. A channel is a set of physically discrete connections within the Wide I/O

interface which contains all the control, data and clock signals necessary to independently

control a partition of the Wide I/O device. A rank is a portion of memory connected to a

channel. Multiple slices may be connected to form a rank.
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Figure 2.7: Wide I/O 3D memory stack
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2.6.2 Hybrid Memory Cube

A HMC is a single package containing multiple DRAM dies (four or eight are pos-

sible according to the current specification) and one logic die, all stacked together using

through-silicon via technology. Within each cube, memory is organized vertically. Each

memory die is divided into partitions. The combination of vertically aligned partitions

(one of each memory die in the stack) with a memory controller within the logic die is

called a vault and is comparable to a channel in Wide I/O architecture.

Figure 2.8: A representation of the HMC scheme in respect to memory accesses
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The vault controller manages all memory reference operations within the vault.

Operations may be buffered and executed out of order in respect to the order of arrival.

Responses from vault operations back to the external serial links will be out of order.

However, requests from a single serial link to the same vault/bank address are executed in

order. Requests from different external serial links to the same vault/bank address are not

guaranteed to be executed in a specific order and must be managed by the host controller.
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Each vault controller determines its own timing requirements and controls its refresh rate.

2.7 Impact on Power

Energy and power usage are important concerns in the design of computer sys-

tems. This section presents power breakdowns, extracted from publications, for different

computer systems. Figure 2.9 shows the power breakdown for a smartphone from 2013

operating in suspend state and 3G radio enabled.

Figure 2.9: Power Breakdown Samsung Galaxy S III (suspended state, 3G enabled)
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Source: (CARROLL; HEISER, 2013)

Figure 2.10 and figure 2.11 provides a power breakdown for a datacenter equip-

ment. The authors of (BARROSO; HÖLZLE, 2009) showed that in 2007 the relative

power consumption of the memory system was very close to the CPU consumption.
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Figure 2.10: Power Breakdown Google’s Datacenter (2007)
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In its second edition (BARROSO; CLIDARAS; HÖLZLE, 2013) presents the re-

sults for the year 2012. According to the authors the expressive decrease in the DRAM

portion of the total power has more than one cause:

• Improved thermal management have allowed CPUs to run closer to their maximum

power envelope resulting in higher energy consumption per CPU.

• Power hungry FB-DIMMs were replaced by DDR3-SDRAMs which consume less.

• The DRAM’s voltage has dropped from 1.8 V down to 1.5 V and below.

Figure 2.11: Power Breakdown Modern Datacenter (2012)
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Fiugure 2.12 presents a power breakdown for an energy-efficient seismic simula-

tion platform.

Figure 2.12: Power Breakdown Energy-Efficient Seismic Simulation Platform
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Figure 2.13 for a multi-chip custom digital super-computer called eBrain.

Figure 2.13: Power Breakdown eBrain
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The information presented on this section is intended to provide some insights

about the impact of DRAMs on the power and energy consumption for different com-

puter systems. It shows that the portion related to DRAM is not negligible for any of the

applications described and also shows that for specific applications the DRAM impact

can be very high.
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3 DESIGN SPACE EXPLORATION TOOLS

Scalability, speed and low costs of production allied to a successful technological

evolution sustain DRAM hegemony as primary memory of computer systems. Although

current technology scaling is reaching its limits, demands for memory capacity, high-

performance and energy-efficiency are increasing in what looks like an unstoppable trend.

Also, technological advances come with new challenging engineering problems that need

to be fully understood and solved.

The design space of DRAM is huge. In order to face the new challenges that arise

designers must have an in-depth understanding of the memory system and its subsystems.

This combined with a detailed and accurate model of the memory system may provide

a way of increasing the intuition and knowledge on how the system behaves when its

parameters vary. Hence simulation provides substantial help for design space exploration.

It plays an important role saving resources and anticipating the release of new solutions.

DRAM design space exploration tools empower researchers and engineers with flexibility

and agility to find out how to enhance current devices, to foresee how systems will behave

in extreme conditions, to elaborate new refresh strategies aiming optimization, and even

to create totally new models.

3.1 SystemC and TLM

SystemC is a set of C++ classes which can be used to develop event-driven ap-

plications. SystemC is described and documented in the IEEE Standard for Standard

SystemC Language Reference Manual (IEEE Computer Society, 2012).

TLM is an approach to modeling digital systems focused in the abstraction of com-

munication between the primary functional blocks within a system. TLM2.0 is described

and documented in a reference manual released by the Open SystemC Initiative group

(AYNSLEY, 2009).

Combined they represent a powerful alternative to create fast and still accurate

virtual platforms typically used for performance analysis and architecture exploration.
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3.2 DRAMSys

DRAMSys is a flexible DRAM subsystem design space exploration framework

that consists of models reflecting the DRAM functionality, power consumption and re-

tention time errors. The exploration framework models a wide range of standard and

emerging DRAM subsystems such as DDR3, DDR4, LPDDR3, Wide I/O and HMC. Im-

plemented in C++ and SystemC this framework offers interoperability with third party

tools.

A key concept behind this tool is the use of TLM2.0 to implement AT simulation

based on function calls instead of a pin accurate register transfer level simulation where

all events are simulated. This approach ensures faster simulation with negligible losses in

accuracy (JUNG et al., 2013; JUNG; WEIS; WEHN, 2015).

Figure 3.1: DRAMSys Base Architecture

Source: (JUNG; WEIS; WEHN, 2015)

DRAMSys is able to process pre-recorded trace files containing memory transac-

tions. The framework supports trace files from other simulators like Gem5 (BINKERT et

al., 2011) or Simplescalar (BURGER; AUSTIN, 1997). This feature facilitates efficient

analysis and explorations.

3.2.1 Error Model

DRAMSys implements a DRAM bit error model (WEIS et al., 2015) that enables

early investigations on retention time behaviour against temperature. The DRAM bit error

model takes into consideration the possibility of DRAM cells with variable retention time

behaviour. The current version supports Wide I/O and DDR3-SDRAM memories.
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3.3 3D-ICE

3D-ICE stands for 3D Interlayer Cooling Emulator. It is a Linux based Thermal

Emulator Library written in C, which can perform transient analysis of 2D or 3D inte-

grated circuits. The tool offers a client-server mode which is the operation mode relevant

to this work. This feature is very useful when power traces are dynamically generated and

to simulate the temperature behaviour in run-time. Client and server exchange messages

through the network, the client provides power information to the server and requests the

server to perform thermal simulation steps based on it. Thermal maps of individual dies

are available as thermal data output of the simulator.

A 3D-ICE project is composed of a stack description file and one or more floorplan

files. The stack description file describes structure, material properties of the 3D stack,

possible heat sinks in the system, the discretization parameters, analysis parameters, and

3D-ICE commands specifying the desired outputs for the simulation. The floor plan file

contains the coordinates and dimensions of the logic blocks relevant to the thermal sim-

ulation. Power information for every block specified in this file must be provided to the

simulator in order to execute a thermal simulation step.

3.4 DRAMPower

DRAMPower (CHANDRASEKAR et al., 2011) is an open source tool for fast

and accurate DRAM power and energy estimation. Its current version supports DDR2,

DDR3, DDR4, LPDDR, LPDDR2, LPDDR3 and Wide I/O DRAM memories based on

JEDEC standards. DRAMPower can be compiled as a library and called directly from a

simulator using a provided API. This is the approach adopted by DRAMSys that simulates

the DRAM memory controller sends commands to the library. Also, part of the library

can be found inside Gem5 where it is employed for power and energy estimation.
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4 IMPLEMENTATION AND RESULTS

In this work a simulation environment which consists of the tools presented in the

previous chapter was adapted in order to investigate how disabling refreshes affects the

energy consumption and the occurrence of retention errors. Since temperature plays an

important role in the occurrence of retention errors, 3D-ICE was used for thermal simu-

lation in some experiments providing dynamic temperature values during the simulation.

DRAMSys was adapted to act as 3D-ICE client. The client obtains power information

the DRAMPower library and forwards it to the server during the request of a thermal

simulation step. The server then generates temperature and power maps.

Figure 4.1: DRAMSys and 3D-ICE Integration
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A new SystemC module was created in DRAMSys to connect it to the 3D-ICE

server. This module contains a thread process that is initialized at the beginning of the

simulation and is responsible for the requests to the thermal simulator. Since thermal

simulation adds an extra time overhead to the total simulation time, the period for the

execution of thermal simulation steps can be chosen by the user via DRAMSys’ configu-

ration. The code for the module created can be found in the appendix A.

An additional piece of software IceWrapper was used to implement the interface

between DRAMSys and 3D-ICE. It was incorporated to DRAMSys’ repository as a sub-

module. The IceWrapper was extended to provide ability to request a power map from

the 3D-ICE server. Later the IceWrapper itself was ported to inside the 3D-ICE project in

order to easily provide integration of 3D-ICE with any SystemC/TLM2.0 based simula-

tion environment. Changes are currently being reviewed by the 3D-ICE team and should
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be incorporated to the project in the near future.

A 3D-ICE project that consist of three input files describing the test setup was

created and can be found in the appendix B. The files describe a 3D-DRAM chip mounted

on top of a SoC. They also define a heat sink on top of the DRAM die.

Figure 4.2: Graphical representation of some aspects of the 3D-ICE project

(a) 3D Memory on top of a SoC
(b) A heat sink mounted on top of the stack

4.1 Simulation of WIDE I/O Memory

Faster simulations can be achieved by replaying prerecorded transaction trace files

(KOGEL, 2010). This convenient approach is adopted in this work for the sake of time

saving.

In order to investigate the behaviour of the retention time errors input trace files

were generated in a way to fill up the memory with a certain pattern and after some time

read it back. Several simulations with a static temperature value ranging from 75 ◦C to

89 ◦C were executed for different refresh intervals, all of them greater than the standard

refresh interval, so errors could happen. Figure 4.3 shows the results.
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Figure 4.3: Retention Errors for different Refresh Intervals and Temperatures
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In a further experiment a region of 128 MiB of the memory was filled with data

patterns (similar to the ones used in the previous experiment) and after some time its

content was read back. The refresh interval chosen was 350 milliseconds that is more than

five times the interval in which all memory cell are usually refreshed. For this experiment

the temperature was dynamically simulated. Figure 4.4 presents the trend for retention

errors against the temperature.

Figure 4.4: Retention Errors vs. Temperature (350 ms without refresh)
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Table 4.1 shows the number of bit-flips observed for each pattern with refresh
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enabled and refresh disabled.

Table 4.1: Retention Errors (350 ms without refresh)

Retention Errors

DataPattern Normal Refresh Omitted Refresh

0xFFFF 0 294

0xAA55 0 153

RND 0 149

Table 4.2 presents a comparison of the energy consumption and the average power.

The savings are around 24%.

Table 4.2: Energy and Power Comparison (350 ms without refresh)

Normal Refresh Omitted Refresh

TotalEnergy[mJ] 10.03 7.62

AveragePower[mW] 26.73 20.33

From the results just presented it is possible to conclude that the energy consump-

tion and average power can be reduced by about 24% by omitting refreshes at the price of

tolerating 294 bit flips.

Nevertheless, from the several simulations with different retention times and tem-

peratures it was possible to realize that the gains are very application dependent. For

generalization the following applies:

• The number of retention errors depends on the data lifetime (how long the data must

remain in the memory) and also on the operation temperature.

• Refresh can be omitted only for resilient applications, i.e., applications that tolerate

a certain amount of errors.

• The total energy saving is due to refresh omission during the application run time.

Therefore it is application dependent.

4.2 Applicability of Approximate DRAM Storage

The simulations showed (figure 4.3) that the occurrence of retention errors when

exceeding the standard refresh interval is low even for high operation temperatures. Nev-

ertheless, since errors may happen approximate DRAM storage is interesting for error re-
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silient applications only. Fortunately error resilience is a characteristic that can be found

on a broad range of applications such as signal processing, image, audio, and video pro-

cessing, graphics, wireless communications, web search, and data analytics (CHIPPA et

al., 2013). Examples of applications that could derive benefit on terms of energy savings,

reduced power peaks and performance gains from the suppression of DRAM refresh are

presented below.

• All sorts of electronic gadgets that can tolerate occasional inaccuracy in the output

or even failures that humans are not able to perceive.

• Smart TV devices operating in energy-saving mode could use unreliable DRAM

for buffering the video frames. Since the image refresh rate is relatively high the

human eye would hardly detect a few failures caused by bit flips in the DRAM.

• End-user telecommunication devices in which DRAM is used as temporary storage

for the network packets when using unreliable protocols with respect to data deliv-

ery. In general, non-critical voice and video traffic is transmitted using UDP. From

the application point of view a slight degradation in quality due to lost of datagrams

is better than large delays due to retransmission. Therefore those applications show

an inherent resilience to errors what accounts in favor of DRAM refresh suppres-

sion.

• An algorithm to adaptive control of screen brightness may tolerate some impreci-

sion on the brightness level of a few pixels since it is something hard to notice and

most of the time acceptable.

• The lifetime of the streaming data in embedded systems may be less than the

DRAM refresh period. As suggested in (ADVANI et al., 2014) wearable video

systems such as smart glasses require capabilities for real-time video analytics and

prolonged battery lifetimes.

• As stated in (JUNG et al., 2016), channel decoding techniques used in digital com-

munication systems such as WiGig and WiFi are error resilient and can tolerate

a certain amount of bit errors due to the lack of DRAM refreshes with negligible

impact on the application performance.

It is important to note that not all data can be stored into unreliable memory. Thus

the use of approximate DRAM is a design decision since extra hardware may be required

(e.g., the addition of an extra memory rank to the system to be used as unreliable memory

or make use of DRAM that provides the necessary features to create reliable and unreli-
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able sectors). Furthermore, the software needs to match up the hardware and implement

mechanisms to explore its capabilities.

4.3 Hardware Experiment with DDR3-SDRAM and FPGA

An experiment using real hardware was carried out to show the feasibility of the

approach for a real image processing application. In this experiment, an image stream

from a camera is rotated by 90 degrees using the DDR3-SDRAM (1 GiB DDR3 SO-

DIMM 64 bit data bus, 4 devices x16) as temporary data storage. Four chips together

result in 1 GiB (or 8 Gb) storage thus each device has a density of 2 Gb and provide

16 bits of data each (by 16). Each image frame has 4,525,056 pixels with 48 bits per

pixel (approximately 26 MiB of data). The image is stored into the DRAM at consecutive

addresses and it is retrieved back from specific locations in a way such that the output

image is rotated 90 degrees. It is important to mention that the results of this experiment

were published in (JUNG et al., 2015).

Figure 4.5: Image Rotation in FPGA

The application has a real-time constraint of 8.6 ms on the frame rate. Therefore,

no frame stays in the memory longer than 8.6 ms and being this time much less than the

typical refresh window time of 64 ms (in which all rows and consequently all cells must

be refreshed) no errors are expected to happen when refresh is omitted. Indeed, all frames

were checked for data corruption and no bit errors occurred.

Figure 4.6 presents the results in terms of energy and time consumption for the

same task with refresh enable and refresh disabled.
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Figure 4.6: Image Rotation Energy and Time Results

The normal runtime to process 611,620 frames is 43.7 minutes. This time was

reduced by 62 seconds and the total energy was reduced by 1.6% with refreshes disabled.

Even though the savings in time and energy are modest, this experiment shows the feasi-

bility of the approach for a real application.

The modest gains observed are due to the low refresh overhead for the memory

used. Since the memory’s density is relatively low the refresh overhead is low. Higher

densities imply more cells to be refreshed within the same refresh time window. Therefore

the memory requires more time to conclude the refresh operation internally after receiving

an auto refresh command. The refresh overhead can be calculated with equation 4.1:

refresh overhead =
time required for refresh

refresh window time
(4.1)

The time required for refreshing all the rows (then all the memory cells) can be

obtained by multiplying refresh cycle time by the number of auto refresh commands that

must be issued within the refresh window interval. Equation 4.1 can be rewritten in terms

of information from the memory specification as shown in equation 4.2:

refresh overhead =
tRFC × number of AR commands in a window

tREFW

(4.2)

According to the DDR3-SDRAM standard (JEDEC, 2010) the refresh cycle time

tRFC = 160 ns for the device density of 2 Gb and it requires refresh cycles at an average

periodic interval of tREFI = 7.8 µs for the test conditions (normal temperature range

0 ◦C to 85 ◦C). Also, for the test scenario tREFW = 64 ms what means that 8192 AR

commands are issued within a window. By applying equation 4.2 it is possible to obtain
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the refresh overhead.

refresh overhead =
160× 10−9 × 8192

64× 10−3
= 2.048% (4.3)

Additionally to the refresh overhead calculated above there are some extra penal-

ties that explain the observed time savings that are greater than the refresh overhead:

• All banks of the SDRAM must be precharged and idle for a minimum of the

precharge time tRP (min) = 12.5 ns before the refresh command can be applied.

Therefore, the memory controller must issue an precharge-all command before is-

suing the refresh command when necessary.

• When the refresh cycle has completed, all banks of the SDRAM will be in the

precharged (idle) state. The data previously loaded in the row buffers is lost and a

miss will inevitably occur in case a read is performed (the data can not be directly

retrieved from the sense amplifiers).
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5 CONCLUSION

The use of an unreliable DRAM (or unreliable sectors within the DRAM) means

that some bits may flip resulting in some imprecision in the final result. Nonetheless, the

imprecision can be reduced, for example, by storing only the least significant bits of a

word in a lesser reliable area of the memory. This can be achieved if the software layers

of a system implement a finer level of control suitable to the hardware features. Operating

systems must be aware of the hardware capabilities and implement proper device drivers

to explore the features provided.

An operating system aware of the accuracy level required by a given task has to be

able to identify different kinds of data for that task and choose the proper storage location

in the DRAM that satisfies the task’s requirements. Alternatively, the operating system

could first store the data then dynamically change the reliability level (by disabling or

re-enabling refresh) to fit the task with possible energy savings.

The software should be able to allocate precise storage for precision sensitive

parts of an application and also allocate imprecise storage to imprecision tolerant data.

Programming languages and compilers could be precision aware and define mechanisms

e.g., variable qualifiers, to allow programmers to choose among reliability levels.

Much has to be done in the hardware software interface in order to have general-

purpose computers that dynamically achieve a desirable trade-off between efficiency (in

terms of performance gains or energy savings) and acceptable inaccuracy of the output.

The audacious approach presented in this work minimizes the demands regard-

ing hardware and software changes and so facilitates design explorations. Evidently the

applicability of this radical strategy has a limited scope, i.e., it is not suitable for all

general-purpose computation. Nevertheless researchers and designers can easily apply

this approach for testing and eventually make use of it in some of today’s special-purpose

applications.

The omission of DRAM refreshes is beneficial to applications that exhibit some

resilience to errors and require high memory throughput. Moreover, it can extend the

battery life in mobile devices that most of the time run non-critical applications creating

an interesting scenario in which loss of accuracy of the output is acceptable and energy

savings are very welcome.
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AppendixA C++ FILES

# i f n d e f TEMPERATURE_CONTROLLER_H_

# d e f i n e TEMPERATURE_CONTROLLER_H_

# i n c l u d e < sys t emc . h>

# i n c l u d e < i o s t r e a m >

# i n c l u d e < s t r i n g >

# i n c l u d e < f s t r e a m >

# i n c l u d e " . . / common / DebugManager . h "

# i n c l u d e " . . / common / U t i l s . h "

# i n c l u d e " . . / c o n t r o l l e r / c o r e / c o n f i g u r a t i o n / C o n f i g u r a t i o n . h "

# i f d e f THERMALSIM

# i n c l u d e " IceWrapper . h "

# e n d i f

SC_MODULE( T e m p e r a t u r e C o n t r o l l e r ) {

p u b l i c :

s t a t i c i n l i n e T e m p e r a t u r e C o n t r o l l e r &g e t I n s t a n c e ( )

{

s t a t i c T e m p e r a t u r e C o n t r o l l e r t e m p e r a t u r e c t r l ( " T e m p e r a t u r e C o n t r o l l e r " ) ;

r e t u r n t e m p e r a t u r e c t r l ;

}

SC_CTOR( T e m p e r a t u r e C o n t r o l l e r )

{

t e m p e r a t u r e S c a l e = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . T e m p e r a t u r e S c a l e ;

dynamicTempSimEnabled = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . T h e r m a l S i m u l a t i o n ;

s t a t i c T e m p e r a t u r e =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . S t a t i c T e m p e r a t u r e D e f a u l t V a l u e ;

i f ( dynamicTempSimEnabled == t r u e ) {

# i f d e f THERMALSIM

/ / Connect t o t h e s e r v e r

s t d : : s t r i n g i p = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . I c e S e r v e r I p ;

u n s i g n e d i n t p o r t =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . I c e S e r v e r P o r t ;

t h e r m a l S i m u l a t i o n = new IceWrapper ( ip , p o r t ) ;

p r in tDebugMessage ( " Dynamic t e m p e r a t u r e s i m u l a t i o n . S e r v e r @ " + i p + " : " +

s t d : : t o _ s t r i n g ( p o r t ) ) ;

# e l s e

SC_REPORT_FATAL( name ( ) , "DRAMSys was b u i l d w i t h o u t s u p p o r t t o dynamic

t e m p e r a t u r e s i m u l a t i o n . Check t h e README f i l e f o r f u r t h e r d e t a i l s . " ) ;

# e n d i f

/ / I n i t i a l power d i s s i p a t i o n v a l u e s ( g o t from c o n f i g )

c u r r e n t P o w e r V a l u e s =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . p o w e r I n i t i a l V a l u e s ;
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l a s t P o w e r V a l u e s = c u r r e n t P o w e r V a l u e s ;

/ / S u b s t a n t i a l changes i n power w i l l t r i g g e r a d j u s t m e n t s i n t h e s i m u l a i t o n

p e r i o d . Get t h e t h r e s h o l d s from c o n f i g .

p o w e r T h r e s h o l d s =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . p o w e r T h r e s h o l d s ;

d e c r e a s e S i m P e r i o d = f a l s e ;

p e r i o d A d j u s t F a c t o r =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . S i m P e r i o d A d j u s t F a c t o r ;

n P o w S t a b l e C y c l e s T o I n c r e a s e P e r i o d =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . N P o w S t a b l e C y c l e s T o I n c r e a s e P e r i o d ;

c y c l e s S i n c e L a s t P e r i o d A d j u s t = 0 ;

/ / Get t h e t a r g e t p e r i o d f o r t h e t h e r m a l s i m u l a t i o n from c o n f i g .

t a r g e t P e r i o d = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . ThermalS imPer iod ;

p e r i o d = t a r g e t P e r i o d ;

t _ u n i t = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . ThermalSimUni t ;

genTempMap =

C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . Genera teTempera tu reMap ;

t e m p e r a t u r e M a p F i l e = " t empe ra tu r e_map " ;

s t d : : sys tem ( " rm −f t empe ra tu r e_map ∗ " ) ;

genPowerMap = C o n f i g u r a t i o n : : g e t I n s t a n c e ( ) . t e m p e r a t u r e S i m . GeneratePowerMap ;

powerMapFile = " power_map " ;

s t d : : sys tem ( " rm −f power_map∗ " ) ;

SC_THREAD( t e m p e r a t u r e T h r e a d ) ;

} e l s e {

pr in tDebugMessage ( " S t a t i c t e m p e r a t u r e s i m u l a t i o n . Tempera tu r e s e t t o " +

s t d : : t o _ s t r i n g ( s t a t i c T e m p e r a t u r e ) ) ;

}

}

do ub l e g e t T e m p e r a t u r e ( i n t d e v i c e I d , f l o a t c u r r e n t P o w e r ) ;

p r i v a t e :

s t d : : s t r i n g t e m p e r a t u r e S c a l e ;

do ub l e t e m p e r a t u r e C o n v e r t ( d oub l e t K e l v i n ) ;

do ub l e s t a t i c T e m p e r a t u r e ;

boo l dynamicTempSimEnabled ;

# i f d e f THERMALSIM

IceWrapper ∗ t h e r m a l S i m u l a t i o n ;

# e n d i f

s t d : : v e c t o r < f l o a t > t e m p e r a t u r e s B u f f e r ;

s t d : : v e c t o r < f l o a t > t e m p e r a t u r e V a l u e s ;

s t d : : v e c t o r < f l o a t > c u r r e n t P o w e r V a l u e s ;

s t d : : v e c t o r < f l o a t > l a s t P o w e r V a l u e s ;
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s t d : : v e c t o r < f l o a t > p o w e r T h r e s h o l d s ;

do ub l e t a r g e t P e r i o d ;

do ub l e p e r i o d ;

enum s c _ t i m e _ u n i t t _ u n i t ;

vo id t e m p e r a t u r e T h r e a d ( ) ;

vo id u p d a t e T e m p e r a t u r e s ( ) ;

do ub l e a d j u s t T h e r m a l S i m P e r i o d ( ) ;

vo id checkPowerThresho ld ( i n t d e v i c e I d ) ;

boo l d e c r e a s e S i m P e r i o d ;

u n s i g n e d i n t p e r i o d A d j u s t F a c t o r ;

u n s i g n e d i n t c y c l e s S i n c e L a s t P e r i o d A d j u s t ;

u n s i g n e d i n t n P o w S t a b l e C y c l e s T o I n c r e a s e P e r i o d ;

boo l genTempMap ;

s t d : : s t r i n g t e m p e r a t u r e M a p F i l e ;

boo l genPowerMap ;

s t d : : s t r i n g powerMapFile ;

vo id pr in tDebugMessage ( s t d : : s t r i n g message ) ;

} ;

# e n d i f /∗ TEMPERATURE_CONTROLLER_H_ ∗ /

# i n c l u d e <cmath >

# i n c l u d e " T e m p e r a t u r e C o n t r o l l e r . h "

# i n c l u d e " . . / c o n t r o l l e r / c o r e / c o n f i g u r a t i o n / C o n f i g u r a t i o n . h "

do ub l e T e m p e r a t u r e C o n t r o l l e r : : t e m p e r a t u r e C o n v e r t ( d ou b l e t K e l v i n )

{

i f ( t e m p e r a t u r e S c a l e == " C e l s i u s " ) {

r e t u r n t K e l v i n − 2 7 3 . 1 5 ;

} e l s e i f ( t e m p e r a t u r e S c a l e == " F a h r e n h e i t " ) {

r e t u r n ( t K e l v i n − 2 7 3 . 1 5 ) ∗ 1 . 8 + 3 2 ;

}

r e t u r n t K e l v i n ;

}

do ub l e T e m p e r a t u r e C o n t r o l l e r : : g e t T e m p e r a t u r e ( i n t d e v i c e I d , f l o a t c u r r e n t P o w e r )

{

pr in tDebugMessage ( " Tempera tu r e r e q u e s t e d by d e v i c e " + s t d : : t o _ s t r i n g ( d e v i c e I d ) + "

c u r r e n t power i s " + s t d : : t o _ s t r i n g ( c u r r e n t P o w e r ) ) ;

i f ( dynamicTempSimEnabled == t r u e ) {

c u r r e n t P o w e r V a l u e s . a t ( d e v i c e I d ) = c u r r e n t P o w e r ;

checkPowerThresho ld ( d e v i c e I d ) ;

i f ( t e m p e r a t u r e V a l u e s . empty ( ) )

r e t u r n t e m p e r a t u r e C o n v e r t ( s t a t i c T e m p e r a t u r e + 2 7 3 . 1 5 ) ;



45

r e t u r n t e m p e r a t u r e C o n v e r t ( t e m p e r a t u r e V a l u e s . a t ( d e v i c e I d ) ) ;

} e l s e {

pr in tDebugMessage ( " Tempera tu r e i s " + s t d : : t o _ s t r i n g ( s t a t i c T e m p e r a t u r e ) ) ;

r e t u r n s t a t i c T e m p e r a t u r e ;

}

}

vo id T e m p e r a t u r e C o n t r o l l e r : : u p d a t e T e m p e r a t u r e s ( )

{

# i f d e f THERMALSIM

t h e r m a l S i m u l a t i o n −>sendPowerValues (& c u r r e n t P o w e r V a l u e s ) ;

t h e r m a l S i m u l a t i o n −>s i m u l a t e ( ) ;

t h e r m a l S i m u l a t i o n −>g e t T e m p e r a t u r e ( t e m p e r a t u r e s B u f f e r , TDICE_OUTPUT_INSTANT_SLOT ,

TDICE_OUTPUT_TYPE_TFLPEL , TDICE_OUTPUT_QUANTITY_AVERAGE) ;

s t d : : s t r i n g m a p f i l e ;

s c _ t i m e t s = s c _ t i m e _ s t a m p ( ) ;

i f ( genTempMap == t r u e ) {

m a p f i l e = t e m p e r a t u r e M a p F i l e + " _ " + s t d : : t o _ s t r i n g ( t s . t o _ d e f a u l t _ t i m e _ u n i t s ( ) )

+ " . t x t " ;

t h e r m a l S i m u l a t i o n −>getTempera tureMap ( m a p f i l e ) ;

}

i f ( genPowerMap == t r u e ) {

m a p f i l e = powerMapFile + " _ " + s t d : : t o _ s t r i n g ( t s . t o _ d e f a u l t _ t i m e _ u n i t s ( ) ) +

" . t x t " ;

t h e r m a l S i m u l a t i o n −>getPowerMap ( m a p f i l e ) ;

}

# e n d i f

/ / Save v a l u e s j u s t o b t a i n e d f o r p o s t e r i o r use

t e m p e r a t u r e V a l u e s = t e m p e r a t u r e s B u f f e r ;

/ / C l e a r t h e b u f f e r , o t h e r w i s e i t w i l l grow e v e r y r e q u e s t

t e m p e r a t u r e s B u f f e r . c l e a r ( ) ;

}

vo id T e m p e r a t u r e C o n t r o l l e r : : checkPowerThresho ld ( i n t d e v i c e I d )

{

i f ( s t d : : abs ( l a s t P o w e r V a l u e s . a t ( d e v i c e I d ) − c u r r e n t P o w e r V a l u e s . a t ( d e v i c e I d ) ) >

p o w e r T h r e s h o l d s . a t ( d e v i c e I d ) ) {

d e c r e a s e S i m P e r i o d = t r u e ;

}

l a s t P o w e r V a l u e s . a t ( d e v i c e I d ) = c u r r e n t P o w e r V a l u e s . a t ( d e v i c e I d ) ;

}

do ub l e T e m p e r a t u r e C o n t r o l l e r : : a d j u s t T h e r m a l S i m P e r i o d ( )

{

/ / Tempera tu r e S i m u l a t i o n P e r i o d Dynamic Adjus tmen t

/ /

/ / 1 . Ad jus tmen t i s r e q u i e r d when :

/ /

/ / 1 . 1 . The power d i s s i p a t i o n o f one o r more d e v i c e s change c o n s i d e r a b l y

/ / ( e x c e e d s t h e c o n f i g u r e d t h r e s h o l d f o r t h a t d e v i c e i n any d i r e c t i o n ,

/ / i . e . i n c r e a s e s o r d e c r e a s e s s u b s t a n t i a l l y ) d u r i n g t h e c u r r e n t
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/ / s i m u l a i t o n p e r i o d .

/ /

/ / 1 . 1 . 1 . The s i m u l a t i o n p e r i o d w i l l be r e d u c e d by a f a c t o r o f ’ n ’ so t h e

/ / s i m u l a t i o n o c c u r s ’ n ’ t i m e s more o f t e n .

/ /

/ / 1 . 1 . 2 . The s t e p 1 . 1 . 1 w i l l be r e p e a t e d u n t i l t h e p o i n t t h a t t h e r e a r e

/ / no s u s t a n t i a l changes i n power d i s s i p a t i o n between two c o n s e c u t i v e

/ / e x e c u t i o n s o f t h e t h e r m a l s i m u l a t i o n , i . e . a l l changes f o r a l l d e v i c e s

/ / a r e l e s s t h a n t h e c o n f i g u r e d t h r e s h o l d .

/ /

/ / 1 . 2 . The c u r r e n t s i m u l a t i o n p e r i o d d i f f e r s from t h e t a r g e t p e r i o d

/ / d e f i n e d i n t h e c o n f i g u r a t i o n by t h e u s e r .

/ /

/ / 1 . 2 . 1 P r o v i d e d a s c e n a r i o i n which power d i s s i p a t i o n changes do n o t

/ / exceed t h e t h r e s h o l d s , t h e s i t u a t i o n p e r i o d w i l l be k e p t f o r a number

/ / o f s i m u l a t i o n c y c l e s ’ nc ’ and a f t e r ’ nc ’ t h e p e r i o d w i l l be i n c r e a s e d

/ / a g a i n i n s t e p s o f ’ n / 2 ’ u n t i l i t a c h i e v e s t h e d e s i r e d v a l u e g i v e n by

/ / c o n f i g u r a t i o n o r t h e d e s c r i b e d i n 1 . 1 o c c u r s .

i f ( d e c r e a s e S i m P e r i o d == t r u e ) {

p e r i o d = p e r i o d / p e r i o d A d j u s t F a c t o r ;

c y c l e s S i n c e L a s t P e r i o d A d j u s t = 0 ;

d e c r e a s e S i m P e r i o d = f a l s e ;

p r in tDebugMessage ( " Thermal S i m u l a t i o n p e r i o d r e d u c e d t o " +

s t d : : t o _ s t r i n g ( p e r i o d ) + " . T a r g e t i s " + s t d : : t o _ s t r i n g ( t a r g e t P e r i o d ) ) ;

} e l s e {

i f ( p e r i o d != t a r g e t P e r i o d ) {

c y c l e s S i n c e L a s t P e r i o d A d j u s t ++;

i f ( c y c l e s S i n c e L a s t P e r i o d A d j u s t >= n P o w S t a b l e C y c l e s T o I n c r e a s e P e r i o d ) {

c y c l e s S i n c e L a s t P e r i o d A d j u s t = 0 ;

p e r i o d = p e r i o d ∗ ( p e r i o d A d j u s t F a c t o r / 2 ) ;

i f ( p e r i o d > t a r g e t P e r i o d )

p e r i o d = t a r g e t P e r i o d ;

p r in tDebugMessage ( " Thermal S i m u l a t i o n p e r i o d i n c r e a s e d t o " +

s t d : : t o _ s t r i n g ( p e r i o d ) + " . T a r g e t i s " +

s t d : : t o _ s t r i n g ( t a r g e t P e r i o d ) ) ;

}

}

}

r e t u r n p e r i o d ;

}

vo id T e m p e r a t u r e C o n t r o l l e r : : t e m p e r a t u r e T h r e a d ( )

{

w h i l e ( t r u e ) {

u p d a t e T e m p e r a t u r e s ( ) ;

do ub l e p = a d j u s t T h e r m a l S i m P e r i o d ( ) ;

i n t i = 0 ;

f o r ( a u t o t : t e m p e r a t u r e V a l u e s ) {

pr in tDebugMessage ( " Tempera tu r e [ " + s t d : : t o _ s t r i n g ( i ++) + " ] i s " +
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s t d : : t o _ s t r i n g ( t ) ) ;

}

p r in tDebugMessage ( " Thermal s i m u l a t i o n p e r i o d i s " + s t d : : t o _ s t r i n g ( p ) ) ;

w a i t ( s c _ t i m e ( p , t _ u n i t ) ) ;

}

}

vo id T e m p e r a t u r e C o n t r o l l e r : : p r in tDebugMessage ( s t d : : s t r i n g message )

{

DebugManager : : g e t I n s t a n c e ( ) . p r in tDebugMessage ( name ( ) , message ) ;

}
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AppendixB 3D-ICE PROJECT FILES

A 3D-ICE project consists of writing a stack descriptor file and one or more floor-

plan files.

B.1 Stack File

The stack description file is a netlist that specifies all the physical and geometrical

properties of the 3D-IC for the simulation.

3d_stack.stk

material SILICON :

thermal conductivity 1.30e-4 ;

volumetric heat capacity 1.628e-12 ;

material BEOL :

thermal conductivity 2.25e-6 ;

volumetric heat capacity 2.175e-12 ;

material SIO2 :

thermal conductivity 1.38e-6 ;

volumetric heat capacity 1.62e-12 ;

material COPPER :

thermal conductivity 4.01e-04 ;

volumetric heat capacity 3.37e-12 ;

heat sink :

sink height 1e03, area 100e06, material COPPER ;

spreader height 0.5e03, area 70e06, material SILICON ;

heat transfer coefficient 1.3e-09 ;

ambient temperature 318.15 ;

layer PCB :

height 10 ;

material BEOL ;

die DRAM_TOP :

layer 58.5 SILICON ;
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source 2 SILICON ;

layer 1.5 BEOL ;

die DRAM :

layer 15 SIO2 ;

layer 1.5 BEOL ;

source 2 SILICON ;

layer 58.5 SILICON ;

die MPSOC :

layer 27 SIO2 ;

layer 10 BEOL ;

source 2 SILICON ;

layer 50 SILICON ;

dimensions :

chip length 6100, width 10600 ;

cell length 100, width 100 ;

stack:

die DRAM_DIE_4 DRAM_TOP floorplan "./mem.flp" ;

die DRAM_DIE_3 DRAM floorplan "./mem.flp" ;

die DRAM_DIE_2 DRAM floorplan "./mem.flp" ;

die DRAM_DIE_1 DRAM floorplan "./mem.flp" ;

die MPSOC_DIE MPSOC floorplan "./core.flp" ;

layer CONN_TO_PCB PCB ;

solver:

transient step 0.01, slot 0.05 ;

initial temperature 300.0 ;

output:

TflpelDRAM_DIE_4.channel0 , "d4_ch0.txt" , average , slot ;

TflpelDRAM_DIE_4.channel1 , "d4_ch1.txt" , average , slot ;

TflpelDRAM_DIE_4.channel2 , "d4_ch2.txt" , average , slot ;

TflpelDRAM_DIE_4.channel3 , "d4_ch3.txt" , average , slot ;

Tmap DRAM_DIE_4, "d4_tmap.txt", slot ;

Pmap DRAM_DIE_4, "d4_pmap.txt", slot ;

TflpelDRAM_DIE_3.channel0 , "d3_ch0.txt" , average , slot ;

TflpelDRAM_DIE_3.channel1 , "d3_ch1.txt" , average , slot ;
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TflpelDRAM_DIE_3.channel2 , "d3_ch2.txt" , average , slot ;

TflpelDRAM_DIE_3.channel3 , "d3_ch3.txt" , average , slot ;

Tmap DRAM_DIE_3, "d3_tmap.txt", slot ;

Pmap DRAM_DIE_3, "d3_pmap.txt", slot ;

TflpelDRAM_DIE_2.channel0 , "d2_ch0.txt" , average , slot ;

TflpelDRAM_DIE_2.channel1 , "d2_ch1.txt" , average , slot ;

TflpelDRAM_DIE_2.channel2 , "d2_ch2.txt" , average , slot ;

TflpelDRAM_DIE_2.channel3 , "d2_ch3.txt" , average , slot ;

Tmap DRAM_DIE_2, "d2_tmap.txt", slot ;

Pmap DRAM_DIE_2, "d2_pmap.txt", slot ;

TflpelDRAM_DIE_1.channel0 , "d1_ch0.txt" , average , slot ;

TflpelDRAM_DIE_1.channel1 , "d1_ch1.txt" , average , slot ;

TflpelDRAM_DIE_1.channel2 , "d1_ch2.txt" , average , slot ;

TflpelDRAM_DIE_1.channel3 , "d1_ch3.txt" , average , slot ;

Tmap DRAM_DIE_1, "d1_tmap.txt", slot ;

Pmap DRAM_DIE_1, "d1_pmap.txt", slot ;

B.2 Floorplan Files

Every die in the stack must be related to a floorplan file, which provides the heat

sources within the die for the simulation. Floorplan files provide information about func-

tional blocks and their positions inside a die.

mem.flp

channel0:

position 150, 100;

dimension 2600, 5200;

channel1:

position 3350, 100;

dimension 2600, 5200;

channel2:

position 150, 5300;

dimension 2600, 5200;
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channel3:

position 3350, 5300;

dimension 2600, 5200;

core.flp

CPUs :

position 0, 0 ;

dimension 2750, 4300 ;

GPU :

position 3350, 0 ;

dimension 2750, 4000 ;

BASEBAND1 :

position 4250, 4000 ;

dimension 1850, 3300 ;

BASEBAND2 :

position 3350, 7300 ;

dimension 2750, 3300 ;

LLCACHE :

position 0, 4300 ;

dimension 1900, 3000 ;

DRAMCTRL1 :

position 1900, 4300 ;

dimension 850, 3000 ;

DRAMCTRL2 :
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position 3350, 4000 ;

dimension 900, 3300 ;

TSVS :

position 2750, 2300 ;

dimension 600, 6000 ;

ACELLERATORS :

position 0, 7300 ;

dimension 2750, 3300 ;
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ABSTRACT
Dynamic Random Access Memories (DRAM) have a big im-
pact on performance and contribute significantly to the total
power consumption in systems ranging from mobile devices
to servers. Up to half of the power consumption of future
high density DRAM devices will be caused by refresh com-
mands. Moreover, not only the refresh rate does depend on
the device capacity, but it strongly depends on the temper-
ature as well. In case of 3D integration of MPSoCs with
Wide I/O DRAMs the power density and thermal dissipa-
tion are increased dramatically. Hence, in 3D-DRAM even
more DRAM refresh operations are required. To master
these challenges, clever DRAM refresh strategies are manda-
tory either on hardware or on software level using new or
already available infrastructures and implementations, such
as Partial Array Self Refresh (PASR) or Temperature Com-
pensated Self Refresh (TCSR).

In this paper, we show that for dedicated applications
refresh can be disabled completely without or with negligible
impact on the application performance. This is possible if
it is assured that either the lifetime of the data is shorter
than the currently required DRAM refresh period or if the
application can tolerate bit errors to some degree in a given
time window.
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•Computer systems organization→ Reliability; Pro-
cessors and memory architectures;

Keywords
DRAM, Retention, Refresh, 3D-Integration, Reliability, Ap-
proximate Computing

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MEMSYS ’15 Washington DC, USA
c© 2015 ACM. ISBN 123-4567-24-567/08/06. . . $15.00

DOI: 10.475/123 4

256

192

128
96 96

64
32

16
8 0

50

100

150

200

250

300

350

0

500

1000

1500

2000

2500

3000

10 20 30 40 50 60 70 80 90 100

Re
fre

sh
	  	  p
er
io
d	  
[m

s]

Le
ak
ag
e	  c

ur
re
nt
	  	  [
uA

]

Temp	  [°C]

Leakage	  current	  [uA]

Refresh	  Per.	  [ms]

Figure 1: Leakage Current and Required Refresh
Periods at Different Temperatures. [28, 31, 39]

1. INTRODUCTION
Memory energy consumption has become a significant con-

cern in mobile computing, servers and high-performance com-
puting platforms. There are applications, such as used in the
GreenWave computing platform [25], in which 49% of the
total power consumption has to be attributed to DRAMs.

DRAMs must be refreshed regularly due to their charge
based bit storage property (capacitor). The retention time of
a DRAM cell is defined as the amount of time that a DRAM
cell can safely retain data without being refreshed [18]. This
DRAM refresh operation must be issued periodically and
causes both performance degradation and increased energy
consumption. Liu et al. [29] predicted that 40% to 50%
of the power consumption of future DRAM devices will be
caused by refresh commands (compare Table 1).

Moreover, 3D integrated DRAMs like Wide I/O or HMC
worsen the temperature behavior. Due to the much in-
creased leakage at the cells the refresh frequency needs to be
adjusted accordingly to avoid retention errors [39] as shown
in Figure 1. Thus, the efficient utilization of the available
DRAM bandwidth and the efficient usage of DRAM power-
down modes and clever refresh techniques are major con-
tributions to a high energy efficiency of DRAM subsystems
and the computing system in which they are integrated [22].

Recently, a lot of research has been done (see Section 2)
to minimize the number of refresh operations by means of
different techniques. However, it was not considered that
for some safety uncritical applications DRAM Auto-Refresh
(AR) can be disabled completely without or with negligible



Ref. Impact on DRAM Device Size (Gb)
2 4 8 16 32 64

[29] Avg. Power 10% 15% 17% 24% 34% 47%
[5] Energy 10% 14% 16% 18% 25% ?
[29] CPU Perf. -5% -7% -9% -14% -26% -46%
[5] CPU IPC -5% -8% -11% -18% -36% ?
[5] CPU Latency 4% 6% 8% 13% 24% ?

Table 1: Impact of Refresh on Future DRAM De-
vices

impact on the application performance, called Omit Refresh
(OR) strategy. This strategy is feasible, if it is assured that
either the lifetime of the data is shorter than the currently
required DRAM refresh period or the application can toler-
ate bit errors to some degree in a given time window.

Similar to Flikker [30] we propose a reliable and an un-
reliable memory region. However, we go one step further:
Instead of lowering the refresh rate in the unreliable region
we apply the OR-Strategy.

As shown in Figure 3 the lowest 3D-DRAM layer has the
highest average temperature. Hence, this layer requires a
higher refresh rate than the rest of the DRAM stack [39].
Consequently, the lowest layer is a perfect candidate for ap-
plying the OR-Strategy by tolerating an unreliable memory
layer in order to save refresh power. While the upper reli-
able part of the stack is refreshed the unreliable region can
be accessed exclusively, which is managed by the DRAM
controller. In combination with a compiler that can handle
reliable and unreliable data types [40, 30] OR can be used
even on CPU based applications.

A retention error aware DRAM model is key to analyze
the impact of lower refresh rates or even disabled refresh
(OR) on executed applications. Especially for error resilient
applications, this can be exploited to save energy [16]. We
measured [46] the retention times of WIDE I/O [14, 24] and
DDR3 DRAM devices using different data pattern. We ob-
served data pattern dependencies (DPD), shown in Figure 2
and variable retention times (VRT), similar to the study in
[28] for commodity DRAMs. With this data we created a
DRAM retention time error model [46] that can be used to
study energy vs. reliability trade-offs. Obviously, the aspect
ratio of the DRAM cell capacitor is increasing by technol-
ogy scaling, while the dimensions of the select transistor are
decreasing. Thus, the leakage power and the reported soft
error rates are higher for newer DRAM device technologies
[34]. We considered this effect in our executed experiments.

In this paper, we apply the OR-Strategy on different ap-
plications that range from image processing to big data ac-
celerators. This highlights the feasibility of this approach
and shows the impact on each selected application.

2. RELATED WORK
DRAM refresh has become one of the most important re-

search topics in the DRAM community. This section gives
a survey of the important state-of-the-art techniques to re-
duce the number of refreshes. A more detailed recent survey
can be found in [5].

Reliability vs. Refresh.
The REVA [1] refresh scheme can be used in dedicated

video applications. It refreshes only the important region
of interest (ROI) in a video frame. Flikker [30] reduces
the number of refreshes by partitioning a DRAM bank in a

Figure 2: Measurement Results with Fixed Refresh
Periods

Figure 3: Wide I/O DRAM on an MPSoC, sim-
ulated with gem5 [8] DRAMSys [21], DRAM-
Power [11] and 3D-ICE [41]

critical and non-critical region. The non-critical region will
be refreshed with a lower refresh rate.

Selective Refresh.
PARIS [2], DTail [13] and ESKIMO [20] exclude rows

that do not store useful data from being refreshed. Smart
Refresh [15] refreshes only rows that have not been accessed
recently. CREAM [47], [39] and [12] show per-bank and
per-subarray refresh techniques. The authors of [37] issue
refresh commands according to the stored data values. Flex-
ible Auto-Refresh [7] shows a realistic implementation of a
flexible and row selective refresh.

Thermal aware Refresh.
A temperature variation aware bank-wise refresh for 3D-

DRAMs is presented in [39]. [22] presents how DRAM self-
refresh can be approached in a staggered way.

Refresh Scheduling.
The idea of postponing DRAM refresh into self-refresh

phases is presented in [6]. The authors of [35] show how
to use JEDEC’s DDR4 fine granularity refresh (FGR) effi-
ciently, [43] presents an enhancement (EFGR). In [42], Elas-
tic Refresh, an approach that adapts the refresh behavior
according to the current workload is shown. Refresh Paus-
ing [36] is a technique that allows to pause a current refresh
operation to serve a DRAM access. To make refresh pre-
dictable for real-time application it can be triggered from
software level, as shown in [4].



Retention Aware Refresh.
RAPID [44] is a software approach that allocates longer-

retention pages before shorter-retention pages. The refresh
rate is adjusted according to the shortest-retention page
used. RAIDR [29] forms rows into retention time bins that
are refreshed with different rates. RIO [2], a software ap-
proach, excludes weak rows from usage. SECRET [27] and
[48] store the content of weak cells in a separate region in
the DRAM by using an error correction pointer mechanism.
The authors of [17] lower the overall refresh rate and refresh
weak rows selectively by issuing single ACT-PRE commands.
In ProactiveDRAM [45] a list of weak rows exists in the
DRAM device and the DRAM itself decides at each refresh
command if the row should be refreshed. AVATAR [38] tries
to overcome VRT issues by combining an online ECC detec-
tion with row selective refresh.

Overall, it is very difficult to create a valid list of weak
cells for DRAMs, as they experience VRTs and DPDs for
their retention times. Moreover, in [46] it is shown that the
temperature has a strong effect on VRT. Hence, it is in-
feasible during startup of a system to determine an exact
list of weak cells that considers all parameters, such as tem-
perature, retention time and DPD. Thus, it is preferable to
omit refresh in the unreliable regions and use standard guard
banding in the reliable regions for commodity devices (see
Figure 1) and advanced margins for 3D stacked devices, as
it was analyzed in [26]. Moreover, in the reliable part of the
stack the previously mentioned state-of-the-art techniques
e.g. temperature aware bank-wise refresh [39] can still be
applied.

3. EXPERIMENTS
To prove our assumptions and to demonstrate the fea-

sibility of the OR-Strategy we conduct three experiments.
The first study investigates the similarity in large complex
graphs while considering data that need no refresh. In the
second experiment we evaluate the input data resilience of
an LDPC decoder for wireless baseband processing. Finally,
in the last application we execute an image processing task
on a XILINX FPGA to obtain real measurement data of the
applied OR-Strategy.

3.1 Big Data
Complex graphs are at the heart of today’s big data chal-

lenges like recommendation systems, customer behavior mod-
eling, or incident detection systems. One reoccurring task
in these fields is the extraction of network motifs, reoccur-
ring and statistically significant subgraphs. In this example
we show the influence of OR to a precisely tailored embed-
ded architecture [10] for computing similarities based on one
special network motif, the co-occurrence. It is based on ef-
ficient and scalable building blocks that exploit well-tuned
algorithmic refinements and an optimized graph data repre-
sentation approach.

In [10] the following method is considered for calculating
similarities using the co-occurrence: In the example given in
Figure 4, the similarity between you and Liam is based on
the number of common friends, the so-called co-occurrence:
coocc(you, Liam) = 3. The question arises whether the
number three is significant. Assume you and Liam have
thousands of friends, versus you have only three. For this
random graphs are created based on the same degree se-
quence and the premise that nodes have no similarities.

Figure 4: Co-Occurrence and Swapping in a Graph

To get the random graphs a sufficient number of pairs of
edges are swapped, drawn uniformly at random, if and only
if no multiple edges would arise due to the swap. This gener-
ates independent graphs with the same degree sequence, see
Figure 4. Generating many of such graphs the expected co-
occurrence can be calculated. That information can judge
how significant the similarity in the original graph is.

However, for large graphs this is in general a very time
and memory consuming job on standard computing clus-
ters. Therefore, this application has been implemented as
an ASIC [10], where the graph is stored in the DRAM as
sparse adjacency matrix.

There is a reason to believe that a certain amount of errors
in the large graph matrix will not influence the quality of the
result. For instance, when this ASIC is used as accelerator
in an MPSoC similar to Figure 3, the graph matrix can be
stored in the unreliable region, whereas important control
variables are stored in the reliable region of the memory.

To show the feasibility of this idea we simulated similarity
measures for the Netflix dataset [19, 3] in combination with
our retention time error model [46]. Netflix, a commercial
video streaming service, has released 100,480,507 user rat-
ings for all of their 17,700 movies from 480,189 users. For
this simulation we use a data subset with 20,000 users.

The dataset is stored in both list and matrix form. The
list allows to select edges uniformly at random, while the
matrix allows to check for conflicting edges in constant time.
The datasets for recommendation are typically sparse, as
each user only rate a few movies. In our case, the matrix
has a sparsity of 1% and a size of 337 Mbit. We store the
edge in the matrix as zeros. In that case, retention errors
(transitions from ’1’ to ’0’, as shown in [46] for a Wide I/O
device) can only introduce new edges, but not delete existing
edges. This is important for the algorithm to not introduce
duplicate edges in the swap step. The list has a size of 99
Mbit and is stored in the reliable region.

In each co-occurrence calculation the complete dataset is
touched at least one time and this is equivalent to a com-
plete refresh. The required lifetime of the data in the DRAM



Figure 5: Netflix - 20k Users

between two co-occurrence calculations (swap-phase) is ap-
proximately 244ms. In this time frame retention errors can
occur. This is modeled with the model of [46] under a worst
case temperature of 90◦C.

To check the impact of omitting refresh, we compare the
quality of the output of the Link Assessment algorithm with
normal Auto-Refresh (AR) and OR. The quality is assessed
based on a ground-truth, a set of human selected movie pairs
of highly similar movies, as described in [9]. In our case, it is
assembled based on all permutations of movie sequels. The
higher these pairs are ranked in the output, the higher the
quality. In [9] so called phase-transitions have been observed
for key variables like the number of swaps. Figure 5 shows
this phase transition with AR and OR. Important features
are the position of the transition and the final level, the
higher and more left the better. Both curves for AR and
OR lie on each other, apart from statistical variations, no
difference in quality can therefore be observed. In green the
number of affected swaps are shown also in Figure 5. Of
108 swaps only 48 swaps are affected by retention errors on
average. This explains the negligible impact of OR on the
resulting quality.

3.2 Channel Decoding
In digital communication systems channel coding can be

considered as key-technology to achieve reliable communica-
tion. Thus, it plays an integral role in all important modern
communication standards.

One of the currently most sophisticated concepts of channel-
coding is Low-Density Parity Check (LDPC) coding. This
circumstance is also reflected in its adoption to recent wire-
less communication standards like WiGig and WiFi. The
strength of LDPC coding is its iterative decoding algorithm
that allows the utilization of information on the reliability
of each bit, so-called soft-information. As for most iterative
decoders, the number of iterations is limited to a maximum
value and can be adjusted on demand without deteriora-
tion of the result. As a consequence, the amount of itera-
tions the decoder performs strongly depends on the degree
of impairment of the currently received signal. This feature
drastically reduces the energy consumption of the decoder.

In this experiment we determine the communications per-
formance of an LDPC decoder that is used in an MPSoC as
shown in Figure 3. The unreliable region of the DRAM is
used for buffering the input soft-information. The commu-
nication system simulation consists of a source that gener-
ates random binary data, a WiGig LDPC channel encoder,
a Binary phase-shift keying (BPSK) modulator that maps

Figure 6: Communications performance of two
WiGig decoders with and without OR

bits to the signal values +1 and −1 respectively, a channel
that adds random gaussian-distributed noise to our signal,
and the component’s corresponding counterparts on receiver
side. The channel code is a rate 13/16 WiGig code of length
N = 672. Communications performance is determined by
Monte-Carlo simulation of 107 frames for a given Signal-to-
Noise-Ratio (SNR) and keeping track of the corresponding
Frame-Error-Rate (FER) after the channel decoding.

The results are shown in Figure 6. We can clearly see
that although some of the bits in the input memory of the
decoder have flipped (due to OR), the FER is the same
as with enabled AR. This shows that the influence of the
retention errors in the DRAM on the FER after decoding
is much smaller than the influence of the errors induced by
the channel. This is known as inherent error resilience of
channel coding [16].

Figure 7 shows that for a worst case temperature of 100◦C
and a refresh rate for AR of tREF = 8ms about 12% of the
total energy can be saved by disabling the refresh (OR).

Figure 7: Energy Breakdown of WiGig Decoder and
DRAM for 107 Frames at SNR=3.5dB



3.3 Image Processing
In this section we demonstrate that our OR-Strategy can

be beneficial for even today’s commodity DDR3 DRAMs by
using an image processing FPGA application in which the
lifetime of the image in the memory is less than the DDR3
refresh interval (tREF ).

In this application, an image stream from a camera is
rotated by 90 degrees using the DRAM. Each image (frame)
consists of 4,525,056 pixels with 48 bits per pixel. An image
is stored into the DRAM at consecutive address locations
and it is retrieved back from specific locations in a way such
that the image is rotated. This application has a real-time
constraint (deadline) of 8.6ms on the frame rate. As shown
in [4] DRAM refresh is an unpredictable factor for worst-
case execution (WCET) analysis. Therefore, it makes a lot
of sense to disable refresh for applications with real-time
deadlines smaller than tREF .

Figure 8: Image Processing Pipeline with Applica-
tion Specific Memory Controller (ASMC)

Figure 8 shows a part of the image processing pipeline re-
alized on a Xilinx Zynq ZC706 FPGA Evaluation Board [32].
The board consists of a 1 GB, x64 DDR3 SO-DIMM con-
nected to the Programmable Logic (PL) side of the FPGA.
We use a customized Application Specific Memory Controller
(ASMC) based on the Xilinx Memory Interface Generator
(MIG) [33]. This controller has a lean front-end, which
consists of an AXI-Stream interface and an address genera-
tor. The address generator calculates the addresses to store
and retrieve images, since AXI-Stream has no address infor-
mation. It internally consists of a scrambler, which trans-
forms [23] the bits of the generated addresses to achieve an
optimized access pattern for this particular application.

The FPGA evaluation board has four different voltage
rails controlled by Texas Instruments UCD90120A power
supply sequencer and monitor [32]. We use the TI USB
Interface adapter along with the TI Fusion Digital Power
graphical user interface to record the voltage and current
levels of the rails. The measurements are made only on the
voltage rail 3, since this rail solely powers the DDR3 SO-
DIMM and the PHY I/Os of the memory controller.

We conducted two different experiments: auto refresh en-
abled (AR) and with refresh disabled completely (OR). In
both cases we sent a fixed number of frames (611,620) to the
DRAM and monitored the execution time as well as the rail
voltage and currents. With refresh enabled, the MIG issues
an Auto-Refresh (AR) command to the DRAM every 7.8µs.
These refreshes interfere with the normal READ/WRITE com-
mand execution of the MIG memory controller and there-
fore increases the time to process the complete set of frames.

However, in this application each frame is stored in the mem-
ory only for less than 9ms. Since this is much less than the
64ms refresh period of the DDR3 DRAM at normal tem-
perature and the DRAM is exclusively used for the rotation
task, we disable the refresh mechanism inside the MIG con-
troller (by modifying the Verilog source code) and conducted
the second experiment.

In our test setup all frames are checked for data corruption
and no bit error occurred. As shown in Figure 9 the normal
runtime to process 611,620 frames is 43.7min. This time
is reduced by applying OR by 62s. The required energy
can be reduced by 1.6%. Even though the savings in time
and energy are not significant, this experiment shows the
feasibility of the OR approach for a real device. As soon
as more refresh operations are required for higher capacity
commodity DRAM devices OR will be a perfect option for
many applications.

Figure 9: Results of enabled (AR) and disabled re-
fresh (OR) for an image processing task

4. CONCLUSION
In this paper, we investigated the feasibility of the OR-

Strategy for three different applications. We demonstrated
that switching-off the refresh during co-occurrence calcula-
tion in graph processing has a negligible impact on the re-
sulting quality of the prediction. We presented the influence
on the QoS of an LDPC decoder for wireless baseband pro-
cessing, while applying OR on its input data buffer. We
found a very small increase in iterations with no impact
on the FER. Additionally, we executed an image processing
task on a XILINX FPGA with OR applied on the attached
DDR3 DRAMs. This application was running error free for
a huge number of frames and decreased the execution time
and energy consumption. Overall, we have shown that the
OR-Strategy is sensible to use in these three applications
and in others that are able to tolerate errors to some degree.
Especially, for future high-density DRAMs the OR-Strategy
will be very beneficial as it will recover the available band-
width and reduce the average power consumption.
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Abstract. In this work DRAMSys, a flexible memory subsystem design space
exploration framework, is combined with 3D-ICE, a thermal simulator library
which can perform transient thermal analysis of integrated circuits, in order to
investigate and better understand the impact on power usage and retention er-
rors occurrence when disabling DRAM’s refresh. This investigation may also
stimulate reflection on which sort of application could benefit from omitted re-
freshes.

1. Introduction

Computer systems permeate today’s life. Memory is an essential part of computers and is
present in cheap electronic gadgets, mobile computers (phones, tablets, wearables), high
availability data communication equipments and data servers to cite a few.

Dynamic Random Access Memory (DRAM) is the primary memory of most com-
puter systems since many decades. The simple hardware structure, the relative high access
speed, the relative lower costs of production and the scalability provided by this memory
technology corroborate this scenario.

Despite technological advances, there is growing disparity between processor and
memory speeds. This issue was formally announced two decades ago in a paper as the
memory wall [Wulf and McKee 1995].

The process scaling of current semiconductors is approaching its limits. Therefore
new solutions are necessary in order to deliver increased storage capacity and bandwidth.
Stacked three-dimensional structures, in which each layer consists in a bi-dimensional
die, are being explored. This new technology carries new challenges related to power
density and removal of heat [Weis et al. 2015].

Along with storage capacity and bandwidth, power efficiency has become a major
concern in current computer system designs [Cameron et al. 2005, Benini et al. 2000].
Trade-offs involving power and performance are recurrent among system-level architects.
Approximate computing breaks with the all-or-nothing correctness philosophy adopted
so far by computer systems and, leveraged by power savings and gains in performance,
brings the possibility to explore a not so deeply explored trade-off: power savings against
acceptable losses in accuracy. This concept applied to DRAMs, which is often referred



to as approximate DRAM storage [Teman et al. 2015, Jung et al. 2016], explores trade-
offs involving energy savings and performance improvements in the memory subsystem
against acceptable inaccuracy in the computation caused by non-critical data corruption.

In this work DRAMSys [Jung et al. 2015], a flexible memory subsystem design
space exploration framework, is combined with 3D-ICE [Sridhar et al. 2014], a tool
which can perform transient thermal analyses of integrated circuits, in order to study
and better understand the impact on power usage and retention error occurrence of an
audacious strategy to DRAM cells refresh - omitting refresh.

2. DRAM

DRAM is a volatile memory, i.e., its content fades when power is turned off, and it is also
dynamic, i.e., during normal operation the binary information written to a cell will leak
off. The time that a cell can hold the data is called retention time. DRAM cells have to be
periodically refreshed to maintain the data integrity. While a DRAM bit cell requires only
a single transistor and capacitor pair an SRAM cell uses six transistors. Therefore DRAM
offers much higher densities and lower cost per bit. However, DRAM performance is
worse than SRAM’s mostly because the requirement of a specialized circuitry to sense
and amplify slight voltage differences in the bitlines caused by a passive storage cell.

Commodity DRAM devices are designed to be simple and inexpensive to man-
ufacture, so they do not bring much intelligence embedded on them. Thus the mem-
ory controller is responsible for refreshing all banks, ensuring that all timing constraints
are met, avoiding timing violations, avoiding collisions on the data bus, respecting the
turnaround time when the directions of the data bus changes, etc. Modern computers
use improved versions of the original DRAM architecture. Along with process scaling,
several techniques have been applied in order to extend the lifespan of the DRAM archi-
tecture up to these days. For example, the bandwidth was increased by doubling the data
clock rate, with on-die termination used to match line impedance increasing the quality
of signals allowing higher frequency and the inclusion of delay-locked loop circuits used
to compensate signal skew.

2.1. Basic Circuits

Modern DRAM devices use One-Transistor One-Capacitor (1T1C) DRAM cells to store
a single bit of data. 1T1C DRAM cells consist of an access transistor controlled by a
wordline, which selectively connects a bit storage capacitor to a bitline. This storage cell
is a passive circuit that must be carefully sensed in order to read the logic level stored in
it. The potentials VDD or VSS on the storage capacitor correspond to logical 1 or 0.

bi
t l
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word line

Figure 1. 1T1C DRAM Cell Structure



Multiple cells are connected to the same bitline but only one cell per bitline will
have its access transistor open at a given time. When inactive, the bitlines are held at
mid-rail potential VDD/2. At the beginning of a memory access one of the wordlines is
enabled causing a balance of charges between the bitline and the cell capacitor. Since the
cell capacitance is roughly an order of magnitude smaller than the bitline capacitance the
bitline voltage changes only a few hundred millivolts above or below VDD/2. For this
reason a bitline sense amplifier is needed to sense this small change in the bitline voltage
and amplify it to the appropriate voltage.

The bitline sense amplifier is a regenerative latch that amplifies the bitline voltage
to full-rail. The sense amplifiers will keep the resultant levels until the DRAM array is
precharged for another access. Thus they act as a row buffer that caches an entire row
of data. Subsequent reads to the same row of cells can be done directly from the sense
amplifier without accessing the cells themselves.

To sense very small changes in the bitline voltage modern DRAM devices use
differential sense amplifiers which connect to a pair of bitlines. While the slight volt-
age variation of one line is sensed the other bitline works as a reference voltage. This,
however, makes possible to sense only one bitline of the pair and consequently limits the
number of memory cells that can be accessed at a given time.

bitline bitline bitline bitline sensed bitlines

sense amp sense amp sense amp sense amp

bitline bitline bitline bitline

word line

word line

word line

word line
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row data sensed
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Figure 2. Differential Sense Amplifiers (Open Bitline Structure)

Differential sense amplifiers require bitlines that are very similar in terms of ca-
pacitance, voltage, path length and number of cells connected to them. The two main
array structures of DRAM devices are open bitline and folded bitline. In the open bitline



structure the array is divided in segments and differential sense amplifiers are connected to
bitlines of different segments while in a folded bitline structures the pair of bitlines comes
from the same array segment. Basically, the open bitline structure requires less area but,
when compared to folded bitline structure, is more susceptible to electronic noise.

Since data reads to 1T1C DRAM cells are destructive (due to the balance of
charges between the bit line and the storage cell), to complete the DRAM read cycle
the data must be written back into the memory cell. The n-channel access transistor must
be fully turned on. To store VDD level in the memory cell, the wordline must be raised
to VDD + VT where VT is the access transistor threshold voltage. Extra hardware may be
required to generate this potential above VDD.

2.2. DRAM Peculiarities

Due to process variation when integrated circuits are fabricated the attributes of nodes
(length, width, oxide thickness) vary. Since the beginning of DRAM production different
retention times among cells have been noticed, typically ranging from hundreds of mil-
liseconds to tens of seconds [Jacob et al. 2008, p. 356]. Cells that are marked by shorter
retention time are known as weak-cells.

Advances in fabrication process allow high-density DRAM devices, with smaller
cells whose dimensions are approaching fundamental dimensions for current semiconduc-
tor technologies. For a given fabrication process, considering changes only in dimensions,
not in materials (e.g., dopant elements, insulators), the smaller the number of atoms sep-
arating gate and drain the easier the leakage current flows and the higher the influence of
the environment is.

Moreover, a not so often emphasised or sometimes forgotten phenomenon is the
existence of DRAM cells with variable retention time (VRT). VRT is caused by microde-
fects in the p-n junction which are very difficult to detect. A microdefect of the right type
and at the right place serve as an electron-hole generation-recombination (GR) center.
The GR center may conduct current through the p-n junction acting as an additional and
significant leakage component [Jacob et al. 2008, p. 826]. Therefore there is a non-zero
probability that a given cell changes its retention time for a while. The bi-modal retention
time behaviour of some DRAM cells makes unfeasible a 100% accurate map of weak-
cells. Since VRT is rare and difficult to detect, DRAM manufacturers are not interested
in finding and eliminating it as long as the proposed refresh time is enough to make sure
that even cells with VRT can pass all tests and work properly [Jacob et al. 2008, p. 826].

2.3. Refresh

By the time of DRAM invention, as stated in its patent [Dennard 1968], the regeneration
of the binary information stored in its cells (capacitors whose charge tends to leak off with
time) should take 10% to 20% of the device’s operation time and conventional operations
the remaining 80%. This means that since the very beginning of DRAM technology it
is a well known fact that increases on DRAM refresh rates come with penalties: perfor-
mance degradation and higher power consumption. Nonetheless for many years power
consumption was not the main focus of system designers.

A projection for future DRAM devices is that 40% to 50% of the power consump-
tion will be due to refresh commands [Liu et al. 2012].



The Joint Electron Device Engineering Council (JEDEC) is an independent or-
ganization that is responsible for many standards related to semiconductor engineering.
The maximum time interval between refresh operations is standardized by JEDEC for
each DRAM technology and it is specified by DRAM manufacturers within the device’s
datasheet.

The refresh interval depends on the operation temperature because leakage cur-
rents are affected by the temperature. The higher the temperature the higher the leakage
current. Thus the refresh interval needs to be decreased for higher temperatures. Typi-
cally a wide range of temperatures is considered as normal operation temperature. For
example, the DDR4-SDRAM standard specifies that temperatures ranging from 0 ◦C to
85 ◦C are the normal operation temperature for that technology. Nevertheless, for the
same technology, a not so wide interval defines the extended temperature range: 85 ◦C to
95 ◦C.

Though it is known that many cells can retain data for times much longer than the
standard refresh interval, refresh requirements are based on a worst-case data decay time
in order to ensure data integrity for all cells. The rareness of VRT allied to the capability
of some applications to tolerate certain amount of errors make interesting the investigation
of the impact on energy savings when disabling DRAM refreshes.

2.4. Error Correction Mechanisms

Along with temperature several aspects of the device’s operation environment such as
ambient radiation (from inside the computer system), electromagnetic interference, inter-
actions with high-energy particles (from outside the computer system) have influence on
chip-level soft errors.

Since errors in DRAM happen even though refresh requirements are met, some
DRAM devices provide mechanisms for detection and possible correction of errors. Such
mechanisms act decreasing the effective error rate and as consequence may be used to
minimize some drawbacks of the approximate DRAM storage. In the other hand extra
storage and logic are required by ECC memory with impact on power consumption and
final costs. Thus the decision of combining ECC memory with approximate DRAM is
non-obvious but is beyond the scope of this work.

2.5. Technological Trends

It is uncertain how long process scaling and improvements will be sufficient to main-
tain today’s DRAM architecture. Efficiency and performance gains using the traditional
DRAM have become smaller and more difficult to achieve.

New solutions are necessary to attend the ever growing demand for memory per-
formance. Therefore DRAM manufactures search for innovations to DRAM memory
architecture that lead to higher performance and lower power consumption.

2.5.1. Wide I/O

The Wide I/O memory architecture is designed to consume low power and provide a high
bandwidth with focus on mobile devices and battery powered embedded systems. Wide



I/O can be stacked on top of system on chip (SoC) devices by means of vertical through-
silicon via (TSV) interconnections. This accounts in favor of an optimized package size.
On the other hand, the heat radiated from the SoC will pass through the memory die
worsening the thermal scenario. Wide I/O high bandwidths are due to a wide memory bus
that is up to 1024 bits wide.

The second version of the Wide I/O standard supports memory stacks of up to
four memory chips. Each memory chip in the stack is called a slice and a single memory
chip is divided into four quadrants. The electrical connection between two stacked dies
is know as Micropillar. A channel is a set of physically discrete connections within the
Wide I/O interface which contains all the control, data and clock signals necessary to
independently control a partition of the Wide I/O device. A rank is a portion of memory
connected to a channel. Multiple slices may be connected to form a rank.

Memory Die

Logic Die

SoC Die

Package

Memory Die

Memory Die

Memory Die

Figure 3. Wide I/O 3D memory stack

2.5.2. Hybrid Memory Cube

A Hybrid Memory Cube (HMC) is a single package containing multiple DRAM dies (four
or eight are possible according to the current specification) and one logic die, all stacked
together using through-silicon via technology. Within each cube, memory is organized
vertically. Each memory die is divided into partitions. The combination of vertically
aligned partitions (one of each memory die in the stack) with a memory controller within
the logic die is called a vault and is comparable to a channel in Wide I/O architecture.
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The vault controller manages all memory reference operations within the vault.
Operations may be buffered and executed out of order in respect to the order of arrival.
Responses from vault operations back to the external serial links will be out of order.
However, requests from a single serial link to the same vault/bank address are executed in
order. Requests from different external serial links to the same vault/bank address are not
guaranteed to be executed in a specific order and must be managed by the host controller.
Each vault controller determines its own timing requirements and controls its refresh rate.

3. Design Space Exploration Tools

Scalability, speed and low costs of production allied to a successful technological evo-
lution sustain DRAM hegemony as primary memory of computer systems. Although
current technology scaling is reaching its limits, demands for memory capacity, high-
performance and energy-efficiency are increasing in what looks like an unstoppable trend.
Also, technological advances come with new challenging engineering problems that need
to be fully understood and solved.

The design space of DRAM is huge. In order to face the new challenges that arise
designers must have an in-depth understanding of the memory system and its subsystems.
This combined with a detailed and accurate model of the memory system may provide
a way of increasing the intuition and knowledge on how the system behaves when its
parameters vary. Hence simulation provides substantial help for design space exploration.
It plays an important role saving resources and anticipating the release of new solutions.
DRAM design space exploration tools empower researchers and engineers with flexibility
and agility to find out how to enhance current devices, to foresee how systems will behave
in extreme conditions, to elaborate new refresh strategies aiming optimization, and even
to create totally new models.

3.1. SystemC and TLM

SystemC is a set of C++ classes which can be used to develop event-driven applications.
SystemC is described and documented in the IEEE Standard for Standard SystemC Lan-
guage Reference Manual [IEEE Computer Society 2012].



Transaction Level Modelling (TLM) is an approach to modeling digital systems
focused in the abstraction of communication between the primary functional blocks
within a system. TLM2.0 is described and documented in a reference manual released
by the Open SystemC Initiative group [Aynsley 2009].

Combined they represent a powerful alternative to create fast and still accurate
virtual platforms typically used for performance analysis and architecture exploration.

3.2. DRAMSys

DRAMSys is a flexible DRAM subsystem design space exploration framework that con-
sists of models reflecting the DRAM functionality, power consumption and retention time
errors.

The exploration framework models a wide range of standard and emerging DRAM
subsystems such as DDR3, DDR4, LPDDR3, Wide I/O and HMC. Implemented in C++
and SystemC this framework offers interoperability with third party tools.

A key concept behind this tool is the use of TLM2.0 to implement approximately
timed (AT) simulation based on function calls instead of a pin accurate register transfer
level simulation where all events are simulated. This approach ensures faster simulation
with negligible losses in accuracy [Jung et al. 2013, Jung et al. 2015].

Figure 5. DRAMSys Base Architecture [Jung et al. 2015]

DRAMSys is able to process pre-recorded trace files containing memory
transactions. The framework supports trace files from other simulators like Gem5
[Binkert et al. 2011] or Simplescalar [Burger and Austin 1997]. This feature facilitates
efficient analysis and explorations.

3.2.1. Error Model

DRAMSys implements a DRAM bit error model [Weis et al. 2015] that enables early
investigations on retention time behaviour against temperature.

The DRAM bit error model takes into consideration the possibility of DRAM
cells with variable retention time behaviour. The current version supports Wide I/O and
DDR3-SDRAM memories.



3.3. 3D-ICE
3D-ICE stands for 3D Interlayer Cooling Emulator. It is a Linux based Thermal Emulator
Library written in C, which can perform transient analysis of 2D or 3D integrated circuits.
The tool offers a client-server mode which is the operation mode relevant to this work.
This feature is very useful when power traces are dynamically generated and to simulate
the temperature behaviour in run-time. Client and server exchange messages through
the network, the client provides power information to the server and requests the server
to perform thermal simulation steps based on it. Thermal maps of individual dies are
available as thermal data output of the simulator.

Two input files constitute a 3D-ICE project: a stack description file and a floor
plan file. The stack description file describes structure, material properties of the 3D
stack, possible heat sinks in the system, the discretization parameters, analysis parameters,
and 3D-ICE commands specifying the desired outputs for the simulation. The floor plan
file contains the coordinates and dimensions of the logic blocks relevant to the thermal
simulation. Power information for every block specified in this file must be provided to
the simulator in order to execute a thermal simulation step.

4. Goals
The aim of this work is to investigate the effect that disabling DRAM’s refresh has on
power usage and also on retention errors occurrence. Data is obtained from simulation
experiments with DRAMSys being the main simulation environment. Since temperature
plays an important role in the occurrence of retention errors 3D-ICE is used for thermal
simulation. In order to achieve the intended goal the following steps are essential:

• Gain knowledge and improve skills regarding the technologies and tools involved.
• Adequate the simulation environment by interconnecting DRAMSys and 3D-ICE.
• Create inputs for the tools describing the setup.
• Execute the pertinent simulations.
• Analyse the output data.
• Generate conclusions.

5. Current Development Status
During the first part of this work a considerable amount of specialized information was
studied in order to acquire essential knowledge to accomplish it. Afterwards an imple-
mentation phase took place focused on the integration of DRAMSys and 3D-ICE. The
execution of simple simulation tests followed.

5.1. Development of Specialized Know-how
Essential aspects of modern DRAM devices like basic circuits and architecture were re-
viewed (basic building blocks such as DRAM storage cells, DRAM array structure, volt-
age sense amplifiers) also DRAM timing constraints, DRAM commands and the basic
memory access protocol. High performance 3D stacked memories standards such as Wide
I/O and Hybrid Memory Cube were visited in order to obtain details about 3D device’s
organization and features.

The design space exploration tool DRAMSys and the thermal emulator library 3D-
ICE were sufficiently understood with respect to usage, capabilities provided and finally



in a source code level. Reference manuals of SystemC and TLM2.0 were studied and
skills were developed through the implementation of features and improvements for the
simulators.

5.2. DRAMSys and 3D-ICE integration
DRAMSys was adapted to act as 3D-ICE client. The client provides power information
to the server and requests thermal simulation steps.

A SystemC module encapsulates a hardware or software description. They rep-
resent the basic block of a hierarchical system. A module may contain several concur-
rent processes used to implement its behaviour. A new SystemC module was created in
DRAMSys to connect it to the 3D-ICE server. This module contains a thread process
that is initialized at the beginning of the simulation and is responsible for the requests to
the thermal simulator. Since thermal simulation adds an extra time overhead to the total
simulation time, the period for the execution of thermal simulation steps can be chosen
by the user via DRAMSys’ configuration.

DRAMSys 3D-ICENetwork

Temperature
map

Power
map

DRAMPower

DRAM
power 

and
 energy

 estimation Thermal simulation
based on the provided
power dissipation data

Pre-recorded
memory

transactions
trace file

Figure 6. DRAMSys and 3D-ICE integration

An additional piece of software IceWrapper was used to implement the interface
between DRAMSys and 3D-ICE. It was incorporated to DRAMSys’ repository as a sub-
module. The IceWrapper was extended to provide ability to request a power map from the
3D-ICE server. Later the IceWrapper itself was ported to inside the 3D-ICE project in or-
der to easily provide integration of 3D-ICE with any SystemC/TLM2.0 based simulation
environment. Changes are currently being reviewed by the 3D-ICE team and should be
incorporated in the near future. The integration of this feature is very convenient, though
it is not essential to the continuity of this work.

5.3. Initial Tests
Faster simulations can be achieved by replaying pre-recorded transaction trace files
[Kogel 2010]. This convenient approach is adopted in this work for the sake of time
saving. Thus all the memory transactions that are executed by DRAMSys come from
pre-recorded files previously generated by the Simplescalar simulator.



Two simple 3D-ICE input files were created for tests purpose: a stack description
file and a floorplan file. The stack file presented below describes a DRAM die mounted on
top of a printed circuit board (PCB). It also defines a spreader layer and a heat sink made
of copper on top of the DRAM die. This test file is not intended to be 100% accurate,
some details such as the material of the spreader layer that connects the memory die and
the heat sink will be reviewed to the final version.

stack.stk

material SILICON:
thermal conductivity 1.30e-4;
volumetric heat capacity 1.628e-12;

material BEOL:
thermal conductivity 2.25e-6;
volumetric heat capacity 2.175e-12;

material COPPER:
thermal conductivity 4.01e-04;
volumetric heat capacity 3.37e-12;

heat sink:
sink height 1e03, area 100e06, material COPPER;
spreader height 0.5e03, area 70e06, material SILICON;
heat transfer coefficient 1.3e-09;
ambient temperature 318.15;

layer PCB:
height 10;
material BEOL;

die DRAM:
layer 58.5 SILICON;
source 2 SILICON;
layer 1.5 BEOL;
layer 58.5 SILICON;

dimensions:
chip length 6100, width 10600;
cell length 100, width 100;

stack:
die DRAM_DIE DRAM floorplan "./mem.flp";
layer CONN_TO_PCB PCB;

solver:
transient step 0.01, slot 0.05;
initial temperature 300.0;

output:
TflpelDRAM_DIE.channel0, "temp_flp_element_ch0.txt", average, slot;
TflpelDRAM_DIE.channel1, "temp_flp_element_ch1.txt", average, slot;
TflpelDRAM_DIE.channel2, "temp_flp_element_ch2.txt", average, slot;
TflpelDRAM_DIE.channel3, "temp_flp_element_ch3.txt", average, slot;
Tmap DRAM_DIE, "temp_map.txt", slot;



Pmap DRAM_DIE, "power_map.txt", slot;

The following floorplan file contains the positions and the dimensions of four
functional blocks within a memory die. Each block acts as a heat source. Power dissipa-
tion information regarding each block must be provided to the thermal simulation in order
to execute a simulation step.

mem.flp

channel0:
position 150, 100;
dimension 2600, 5200;

channel1:
position 3350, 100;
dimension 2600, 5200;

channel2:
position 150, 5300;
dimension 2600, 5200;

channel3:
position 3350, 5300;
dimension 2600, 5200;

Both 3D-ICE input files together describe a 2D memory divided in four logic
blocks each block representing an independent memory channel.

Tests were successfully executed using this simple scheme as a prototype to vali-
date the integration between DRAMSys and 3D-ICE.

6. Next Implementation Steps and Practical Activities

The next phase begins with the creation of an elaborated simulation scenario describing a
real 3D stacked memory on top of a SoC that has influence on the memory’s temperature.
Afterwards relevant tests will be executed in order to obtain data to posterior analysis and
finally generate conclusions about the impact of disabling DRAM’s refresh over power
usage and retention errors occurrence. The following tasks are to be done:

• Create a 3D-ICE simulation project which consists in a stack file and floorplan file
describing a 3D stacked memory on top of a SoC.
• Run simulations with refresh enabled (no errors are expected).
• Run simulations with refresh disabled (retention errors may occur).
• Collect data about power usage and retention errors occurrence in both scenarios.
• Analyse the data generating relevant information to the conclusion of this work.
• Suggest possible applications which could benefit from refresh suppression.
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