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Abstract. The competition between pattern reconstruction and sequence processing is studied here
in an exactly solvable feed-forward layered neural network model of binary units and patterns near
saturation. We show results for both symmetric and asymmetric sequence processing, either one
competing with pattern reconstruction represented by a Hebbian interaction, in order to compare
these two kinds of sequence processing. Phase diagrams of stationary states are obtained and a
new phase of cycles of period two is found for a weak Hebbian term in the case of symmetric
sequence processing, independently of the number of condensed patterns ¢ which have macroscopic
overlaps with the states of the network. In contrast, the stability of these cycles depends strongly on
c. These results are in contrast with those for the competition between a Hebbian interaction and
an asymmetric sequence processing interaction [1], in which the period of the cycles is ¢ and the
stability of these solutions does not depend on c. The dynamics of the macroscopic overlaps in the
stationary cyclic phase is analyzed in both models.
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INTRODUCTION

Models of associative memory - the ability of a network to retrieve stored information
(patterns) using as clues corrupted sets of this information - concentrate mostly on
systems with symmetric couplings, i. €., the connection between two neurons satisfy
Jij =Jji (i # j). Inthis case the system will always evolve to an equilibrium configuration
which is a local minimum of an energy function, and the tools of statistical mechanics
can be applied. The simplest way to endow the network with properties of associative
memory is to choose a Hebbian interaction between a pair of neurons i and j, given by
Jy=N"! 2u éi“ 5“ , the dependence on the units being implicit, where N is the total

number of units and éi“ represents the component i of the stored pattern (. The most
representative model with these features is the Hopfield model [2].

Instead of the retrieval of individual patterns statically, another interesting task for
a neural network is to reproduce a sequence of stored patterns. The simplest way to
induce transitions between patterns is by means of a modified Hebbian learning rule

Jy=N"! Su él.” + j” , in asymmetric sequence processing (ASP) in which a pattern
is connected to the next one in the sequence, combined with a parallel execution of
the neural dynamics. The synaptic matrix in this case is asymmetric and equilibrium
statistical mechanics cannot be applied. A dynamical procedure must be used in that case
to find the stationary states of the network. Asymmetric interactions may, eventually,
give rise to cyclic or to chaotic behavior.

One of the first models for temporal association between patterns by recalling time
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sequences and cycles was introduced by Sompolinsky and Kanter [3]. It is a recurrent
neural network of binary units that stores a finite number of patterns in which the synapse
J between a pair of neurons is composed of a Hebbian term Jy, which tends to stabilize
the network in a pattern, and an ASP term J,, which induces transitions between the
patterns. The resulting competitive interaction between a pair of neurons is given by
J=Jg+vJy (0 < Vv < o). In addition, a slow dynamic response was introduced in J4
as a finite time delay of response of a neuron at one end of a synapse to a signal at the
other end. Simulations performed in that work showed that, when v is sufficiently large,
the network stays in a pattern for a finite period of time after which a transition is made
to the next pattern in the sequence. Much progress has been done on purely ASP and its
competition with a Hebbian interaction. The model without time delays in the synapses
was studied analytically [4] and the effects of the correlation between the stored patterns
on the stationary states of the network was also analyzed [5]. Complete phase diagrams
and some results on the transient dynamics, including the presence of cycles of period ¢
with stability properties that do not depend on ¢, were presented in these works.

More recently, there has been a revival of interest in the behavior of these models for
the storage of a macroscopic number of patterns. Diiring et al. [6] analyzed the properties
of the stationary states (the storage capacity and the phase diagram) of a recurrent
network for purely ASP, without pattern reconstruction, and a solution for the transient
dynamics of the model was recently discussed [7]. The effects of stochastic noise on the
model [4] were only recently analyzed in a feed-forward neural network architecture [1],
in which an exact solution for the dynamics and complete phase diagrams of stationary
states were obtained. The phase of cyclic solutions are not qualitatively affected by the
presence of stochastic noise and the properties remain the same as in the finite loading
case. A region of non-stationary quasi-periodic states was also found in a range of
parameters where J /J4 =~ 1.

Another interesting way to associate patterns sequentially is by the introduction of
another sequence composed by the same set of patterns in opposite order. Thus, for
symmetric sequence processing (SSP), Js = N™' (3, gt Hé]‘-l + 2y 4 _15;1 ) and a
given pattern is connected simultaneously to the next pattern and to the previous one
in the sequence with the same weights, in a way that it is more difficult to know a priori
the effects of on the dynamics of the network.

This kind of sequence processing was first introduced in order to explain experimental
findings in the cortex of monkeys [8, 9, 10]. In one of the experiments, correlations in the
internal representations of stimuli, chosen to be uncorrelated, were observed when the
stimuli were presented during training in a fixed sequence. To account for this temporal-
spatial conversion, Griniasty et al. [11] proposed a model in which the synaptic matrix is
composed of a Hebbian term J; in competition with SSP. They obtained activity patterns
(fixed-point attractors), each one due to the presentation of one of the uncorrelated
stimuli (patterns), that are significantly correlated with several patterns in the learning
sequence up to a finite distance from the stimulated pattern. This fact seems to capture
the essential features of the experiment. Complete phase diagrams for a recurrent neural
network of binary units with asynchronous dynamics, which only exhibit fixed-point
solutions, were obtained for both finite and extensive loading of patterns [12]. An
approximate solution for the transient dynamics was also derived recently by means
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of the dynamical replica theory [13], and the coexistence of several attractors including
correlated states were obtained for both finite and infinite loading. However, the models
for SSP are restricted to a dominating Hebbian interaction in which 1 < Jy/Jg < oo
leading only to fixed-point solutions. The case of network models with dominating SSP
has not been analyzed and it is interesting to find out what kind of solutions appear in
this case.

The purpose of this work is to present a summary of results for the competition
between pattern reconstruction of a Hebbian type and SSP in the full range of the ratio
Ji/Js, in particular for dominating SSP, which is expected to lead to cyclic behavior.
The dynamics of a feed-forward layered network model of binary units is used [14] and
the results are compared with those for ASP. How the model is solved, the relation to
other models and a full discussion of results for SSP can be found elsewhere [15]. A
dynamical procedure must be used since the synaptic interactions are asymmetric due
to the feed-forward nature of the network. The model is expected to exhibit some of the
relevant features of more realistic models.

It will be shown that a new phase of stationary cyclic solutions with period two
is obtained, independently of the number of condensed patterns ¢ with macroscopic
overlap with the states of the network, for sufficiently weak Hebbian interaction, and that
the stability of this phase is strongly dependent on c. We focus mainly on the differences
between this model and that for ASP competing with pattern reconstruction in a feed-
forward layered network [1], where the cycles have period ¢, for arbitrary ¢, and the
stability of these solutions does not depend on this parameter. Phase diagrams and the
behavior of the overlaps in the stationary cyclic phase are shown here and the effects of
stochastic noise are briefly discussed.

The paper is organized as follows. First we present the model and the recursion
relations for the relevant parameters. Then we show some of the main results for the
overlaps and the phase diagrams and conclude with a further discussion and an outlook.

THE MODEL

The model is an Ising spin neural network composed of L layers, each containing N

spins 0;(/) € {1,—1}, where i = 1,..., N represents the unit and / = 1,...,L the layer.

If neuron i on layer / is firing or at rest, 6;(/) = +1, respectively. The state of unit / on

layer /4 1 is determined in parallel by the collective state 6 (/) = {01(/),...,0on(l)} of

the previous layer according to the stochastic rule with conditional probability
exp[Bo;({+ 1)h(I+1)]

P(o(I+1)|6(1)) = 2cosh[Bhr;(1+1))] .

N
hi(l+1) = Zlfu(l)cj(l) , )
=

where £;(I+ 1) is the local field produced by the entire layer / on neuron i of layer / + 1
and J; (/) represents the strength of the connection between unit ; on layer / to unit i on
layer / + 1. The parameter § = T'~! controls the synaptic noise such that the dynamics
is fully deterministic when 7 — 0 and fully random when 7 — oo. In the former case the
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dynamics of a neuron assumes the form o;(/+ 1) = sgn[h;(/)]. There is no feedback in
the updating of the units and all units on each layer are updated simultaneously. Thus, the
layer index may be thought as a discrete time step, and the network evolves according
to a parallel dynamics.

A macroscopic set of p = aN statistically independent and identically distributed
random patterns {EX (1)}, i = 1,..., p, with components & (/) = £1 and probability %
for either value, are stored on every layer independently of other layers according to a
learning rule in two stages involving patterns on two consecutive layers. There is a stage
of Hebbian learning as a static process reinforcing the same pattern on every layer, and a
second stage in which the patterns are presented to the network in sequential order, with
a given pattern (. on one layer associated with patterns t 4+ 1 and ¢ — 1 on the next layer.
The second stage may be considered as a dynamic process favoring transitions between
consecutive patterns. The synaptic interactions between neurons are then given by

P

Jii(l) = 2 E 1+ 1)XpER (1) 3)
et

in which X}, are the elements of the matrix
A 0
(5 )

Apyp = VOup+(1—=Vv)(8upt1+6up-1), 4)

and

The matrices A and B have dimensions ¢ X ¢ and (p — ¢) x (p — ¢), respectively. The
diagonal two-block interaction matrix reflects the fact that the patterns are grouped into

two independent cycles, one for the condensed patterns (5 () = (_f 1(1)) and the other

one for the non-condensed patterns (51’“ (H= Eetl (). Since the off-diagonal blocks
are absent in our model, there is no connection between condensed and non-condensed
patterns and this feature guarantees the applicability of the signal-to-noise analysis [14],
in which the local field can be separated in a signal and a noise term. The choice of
two independent parameters v and b (0 < v,b < 1) enables one to explore the effects
of the relative weights of the interactions and the form of the noise on the dynamics
of the network. When b = 1 there is a purely Hebbian noise and when b # 1 there is
a Hebbian plus sequential noise. In the case of ASP also discussed here, in which a
pattern i on a given layer is connected only to pattern i + 1 on the following layer,
App =VOyu,p+(1—V)0yu,pt1 and Byp = by, p + (1 —b) Oy, py1. We restrict ourselves
in the following to Hebbian noise and the general case for both forms of sequence
processing can be found elsewhere [1, 15].

To describe the state of the network on a given layer /, we introduce the macroscopic
overlap my (1) ~ O(1) between the conﬁguration G (/) and a condensed pattern i, as the
large-N limit of mj (/) = N EF(D)(oi(1)), in which = 1,...,c and the brackets
(...) represent a thermal average wrth Eq. (1). The self-averagmg property may be used
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to write my (1) = ((EF(1)oy(1))) g in the limit N — oo, since the number of condensed
patterns is finite. Here (.. '>§ denotes an explicit configurational average over the con-

densed patterns. The remaining p — ¢ non-condensed patterns have microscopic overlaps
M3 (1) =~ O(1/+/N). The solution of the model consists in obtaining a dynamical equa-
tion for the overlaps that allows to predict the macroscopic state on any layer / for a
given state on the first layer. The local field on layer can be written [14], in the large-N
limit, as a sum of a signal and a noise term due to the macroscopic and microscopic
overlaps on the previous layer, respectively. The noise follows a Gaussian distribution
with mean zero and a layer-dependent variance A(/). We refer the reader to a recent work
for a further discussion and a detailed derivation of all recursion relations [15].

We restrict ourselves here to the discrete dynamical equation for the macroscopic
vector overlap 7 (l) = (my(1),...,m.(1))

i1+ 1) = (€ [ D tanh{BIE.Aw(1) + A)2] 5)
where Dz = e=%/ 2dz/+/2x. The spin-glass order parameter ¢(I) = ((S(1))?) 2 which
enters in the recursion relation for A(/),

A (141) = o+ (1—q(1))* B2A%()) (6)
is given by
(1) = (| D= tank?{BIE AT (1) + A()Z]})g ™

This is the complete set of equations to be solved in the case of Hebbian noise and the
situation is more complicated in the case of full noise (b # 1) [1, 15]. The transient
dynamics and the stationary states of the network model can be studied in full detail and
we discuss here only the latter.

RESULTS

The results are shown mainly in the form of phase diagrams in which each phase
represents a different behavior of the network achieved by iterating numerically the
system of recursion relations until the network reaches a stationary solution. Non-
stationary states could also appear since the synaptic matrix J;;(/) is always asymmetric.
The Hopfield ansatz my, (1) = dy,1 (4 = 1,...,¢) is used as an initial condition in all the
cases studied.

First we consider the solutions for finite loading, where o¢ = 0, in order to discuss the
phases that appear, and in that case we have the fixed-point value A*(/) = 0. In Figs. 1(a)
and 1(b) we show the (v, T) phase diagrams for the symmetric and asymmetric cases,
respectively. There is a paramagnetic phase (P) where 7 = 0 and ¢ = 0 above a line of
continuous bifurcation from a phase of symmetric-like fixed-point solutions (S) which
have equal or nearly equal overlap components. The Hopfield-like fixed-point solutions
(H) have one large condensed overlap component and the other ones are either small
or zero. These fixed-point states are qualitatively the same for both the symmetric and
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FIGURE 1. Phase diagrams for (a) SSP and (b) ASP, both for purely Hebbian noise and finite loading
(a0 = 0). The dotted and full lines indicate, continuous and discontinuous transitions, respectively. The
phases are described in the text. The unlabeled phase boundaries are independent of c.

the asymmetric case. The phase boundaries for v > 0.5 practically do not depend on ¢
although they are different for SSP and ASP. That is also the case for ASP when v < 0.5,
in distinction to the dependence on ¢ for SSP shown in Fig. 1(a) that will be discussed
below in more detail. In the case of ASP only the boundary between the S phase and the
phase of quasi-periodic states (q-p) depends on ¢ and it is shown in Fig. 1(b) only for
¢ = 4. In addition, there is a v < (1 — v) duality between phases, H <> C in the case of
ASP, where C is the phase of cyclic solutions, which relates the solutions for v > 0.5
with the solutions for v < 0.5, and this follows from the symmetry properties of the
matrix A [4]. There is no duality, instead, in the case of SSP.

The first difference between the two cases appears when v ~ 0.5. At high T the
stabilizing effect of the static process (Hebbian term) locks the transition between the
patterns and leads to symmetric states. At low 7 the Hebbian term fails to lock the
transitions and we have different phases in the two cases. In the SSP we have a phase
of correlated fixed-point attractors (D) in which the stationary vector overlap has the
form i = (1/27)(0,0,1,3,13,51,77,51,13,3,1,0,0), for ¢ = 13 when T — 0, where
the central component is the stimulated one. An increase in the synaptic noise 7 only
affects the values of each component, with the qualitative form of the vector remaining
the same. The correlation coefficients between these vector overlaps decay to zero as the
distance with the initially stimulated patterns increases.

We consider now the phase of stationary cyclic solutions (C) for SSP. The appearance
of cycles for v < 0.5 is a remarkable property in SSP, which has not been discussed
before. Fig. 2(a) illustrates the dependence of the first seven components of the vector
overlap with respect to time ¢, again for ¢ = 13 condensed patterns, when the network
reaches a stationary cyclic solution after a transient time. The oscillating vector overlap

144



(b)
112 13 1
0.45 | v
0.3
0.15 0.3
0 L N N " L L L N N
90 92 94 96 08 90 92 94 96 98 100 102 104
t t

FIGURE 2. Overlap components as functions of discrete time ¢ (or layer /) for (a) SSP and (b) ASP for
a typical point inside the cyclic phase C. The values of parameters are ¢ = 13, o« =0, 7' = 0.3, v =0.01
and Hebbian noise, for both figures. Each kind of point represents a different overlap component and is
marked by a label. The dotted lines are a guide to the eye for the dynamics of the first overlap component.
The dynamics of the other overlap components follows in a similar way.

m(t+2) = m(t) has period two, with each overlap component assuming a larger and a
smaller value at each time step, with a decreasing oscillation amplitude as we move away
from the stimulated pattern (4 = 1). The overlap components in the cyclic phase have the
symmetry my 1, (t) = my_,, where u is the stimulated pattern and n = 1,...,(c—1)/2
foroddcandn=1,...,(c—2)/2 for even c. In the case of even ¢ we have this same kind
of cyclic solutions and another one in which all the overlap components keep oscillating
between the same two values at each time step. The main feature of these cyclic states
is that they have always period two, independently of the number of condensed patterns
¢. Coming back to Fig. 1(a), we notice that the stability of the cyclic phase has a strong
dependence on ¢, with its size decreasing or increasing with an increase of ¢, if ¢ is even
or odd, respectively. The transition between the S and C phases also depends on ¢, being
continuous or discontinuous if ¢ is even or odd, respectively.

In Fig. 2(b) we show the overlap components as functions of time ¢, after a transient,
when the network reaches the stationary cyclic solution in the case of ASP. One can see
that one overlap component is one and all the others are zero at each time step. This
fact characterizes the retrieval of a sequence of stored patterns in which the network
makes a transition from one pattern to the next at each time step. In contrast to SSP,
these cyclic solutions have period ¢ (¢ = 13 in Fig. 2(b)), and this is also the case for
even ¢. Moreover, the transition between the S and C phases is always discontinuous and
the phase boundary practically does not depend on ¢, which reflects the independence of
the stability of these solutions with respect to this parameter.

Finally, we consider the effects of stochastic noise due to a macroscopic number of
stored patterns p = oN on the phase diagram, and we present the results in Fig. 3 only
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FIGURE 3. Phase diagram for SSP at 7 = 0 and a purely Hebbian noise (b = 1). The dotted and full
lines indicate, respectively, continuous and discontinuous transitions. The phases are described in the text.

for SSP, again for a purely Hebbian noise at 7 = 0. For the variance of the noise we
choose the initial condition A>(1) = c. As usual in the layered network, there is now a
spin-glass phase (SG) with 71 = 0 and g # 0. The other phases are qualitatively similar
to those described previously and the cyclic phase also preserves the same properties as
in the finite loading regime. The cyclic solutions are again of period two, independently
of ¢, and the phase boundary between the C and S phases depends strongly on c. The
continuity of this transition and the qualitative form of the cyclic solutions depends on
the parity of ¢ in the same way as for the o = 0 case. Again, the boundaries between
phases of fixed-point solutions are fairly independent of ¢ and the phase diagram for
v > 0.5 is similar to that of a recurrent network in equilibrium [12]. For v =1 we
recover the critical storage ratio ¢, ~ 0.269 for the Hebbian layered network model
[14]. For the effects of stochastic noise in ASP we refer the reader to [1] for a detailed
discussion.

CONCLUSIONS AND OUTLOOK

We presented here the dynamics of competition between pattern reconstruction and
sequence processing in an exactly solvable feed-forward layered neural network model
of binary units and patterns for both finite and extensive loading. Two kinds of sequence
processing were discussed: SSP where a pattern [ is connected to patterns ( + 1 and
U — 1 on the next layer and ASP where a pattern u is only connected to pattern (t + 1 on
the next layer. In both cases there is a Gaussian noise due to the non-condensed patterns
in the local field and the model can be solved for finite or extensive loading of patterns.
The extension to Q-state (Q > 3) neurons and patterns as well as continuous neurons
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is straightforward. Non-stationary quasi-periodic states were found in the case of ASP
[4, 1] which apparently are absent in SSP.

There are important differences in the phase of cyclic solutions, as discussed here,
and these are phases which appear for v < 0.5 for either SSP or ASP. To summarize,
in the case of SSP the period of cycles is always two, independently of the number
of condensed patterns, but the stability of the cyclic phase is strongly dependent on c.
On the other hand, in ASP there are cycles of period ¢ while the stability of the phase
practically does not depend on c. Despite the fact that the synaptic matrix J;;(/) is always
asymmetric due to the dependence of the patterns with respect to the layer index (the
feed-forward nature of the network), what seems to determine these differences is the
symmetry of A with respect to the pattern indexes.

Since the phase diagrams for v > 0.5 in SSP are qualitatively similar to those for a
recurrent network in equilibrium, one may also expect that cycles of period two appear
in SSP in a recurrent network with parallel dynamics, for a sufficiently weak Hebbian
interaction. Work along this line, currently in progress, indicates that this is indeed the
case [16].

>From an experimental point of view, there is the possibility of making qualitative
extended predictions for the kind of Miyashita et al. experiments [8, 9], which revealed
that temporal correlations expressed by the position number of the patterns in a sequence
during learning are converted into spatial correlations of the stored activity patterns in
the cortex of monkeys. This was interpreted as the presence of correlated states in a
recurrent network [11]. Also, it became apparent from this kind of experiments that
there is a direct connection between persistent (delay) activity and fixed-point attractor
dynamics. It would be interesting to see if this connection extends to cyclic attractor
dynamics and both further experimental and theoretical work has to be done in order to
settle this issue.

One may speculate that if the training of the random patterns, which seems to be a
realization of a Hebbian rule, is not quite successful, one may have a situation as that
described here for small v with the presence of cyclic states of period two. For a possible
quantitative prediction of experiments one has to use, of course, a more appropriate
model in terms of integrate-and-fire neurons rather than the binary model discussed in
this work.
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