
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM
MICROELETRÔNICA

UNIVERSIDAD DE ALICANTE

DEPARTAMENTO DE TECNOLOGÍA
INFORMÁTICA Y COMPUTACIÓN

DOCTORADO EN INFORMÁTICA

EDUARDO CHIELLE

Selective Software-Implemented Hardware
Fault Tolerance Techniques to Detect Soft Errors

in Processors with Reduced Overhead

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Microelectronics

Dr. Fernanda Lima Kastensmidt
Advisor at UFRGS

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Informatics

Dr. Sergio Cuenca-Asensi
Advisor at Universidad de Alicante

April 2016.

CIP – CATALOGAÇÃO NA PUBLICAÇÃO

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Aldo Bolten Lucion
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PGMICRO: Prof. Fernanda Lima Kastensmidt
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Chielle, Eduardo

Selective Software-Implemented Hardware Fault Tolerance
Techniques to Detect Soft Errors in Processors with Reduced
Overheads / Eduardo Chielle. – Porto Alegre: Programa de Pós-
Graduação em Microeletrônica, 2016.

221 f.:il.

Thesis (doctorate) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Microeletrônica. Porto Alegre, RS,
Brazil, 2016. Advisor: Fernanda Lima Kastensmidt. Universidad de
Alicante. Doctorado en Informática. Alicante, Spain. Advisor:
Sergio Cuenca-Asensi.

1. Fault tolerance. 2. Processors. 3. Soft errors. I. Kastensmidt,
Fernanda G. L.; Cuenca-Asensi, S. II. Selective Software-
Implemented Hardware Fault Tolerance Techniques to Detect Soft
Errors in Processors with Reduced Overheads.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS .. 8

LIST OF FIGURES ... 10

LIST OF TABLES ... 18

PREFACE ... 21

ABSTRACT ... 23

RESUMO ... 25

RESUMEN .. 27

1 INTRODUCTION ... 29

1.1 Motivation ... 29

1.2 Objectives and contributions .. 31

1.3 Thesis organization .. 32

2 DEFINITIONS AND BACKGROUND KNOWLEDGE 33

2.1 Sources of ionizing radiation ... 33

2.2 Non-destructive Single Event Effects ... 34

2.3 Fault, error, and failure ... 35

2.4 Soft errors in processors .. 35

2.5 Fault tolerance techniques ... 36
2.5.1 Hardware-based fault tolerance techniques ... 36
2.5.2 Software-based fault tolerance techniques ... 38

2.5.2.1 Data-flow techniques .. 38
2.5.2.2 Control-flow Techniques .. 39

3 RELATED WORK ... 41

3.1 Data-flow techniques .. 41
3.1.1 EDDI ... 41
3.1.2 Variables 1 .. 42
3.1.3 Variables 2 .. 43
3.1.4 Variables 3 .. 44
3.1.5 Drawbacks of data-flow techniques ... 45

3.2 Control-flow techniques... 45
3.2.1 CCA .. 45
3.2.2 ECCA .. 47
3.2.3 CFCSS .. 47
3.2.4 YACCA .. 49
3.2.5 CEDA .. 50
3.2.6 HETA .. 51
3.2.7 Drawbacks of control-flow techniques .. 53

3.3 Combined data-flow and control-flow techniques ... 53
3.3.1 Transformation rules by Rebaudengo .. 54
3.3.2 Transformation rules by Nicolescu .. 57
3.3.3 SWIFT .. 60
3.3.4 Transformation rules by Azambuja .. 61
3.3.5 Drawbacks of combined data-flow and control-flow techniques 64

3.4 Selective hardening .. 64
3.4.1 Selective SWIFT-R .. 64

4 METHODOLOGIES AND METRICS .. 69

4.1 Hardening methodology .. 69

4.2 Fault injection methodology .. 70
4.2.1 Fault injection by logical simulation .. 70
4.2.2 Radiation tests with neutrons and heavy ions .. 71

4.3 Metrics ... 72

5 PROPOSED TECHNIQUES ... 75

5.1 Data-flow techniques based on rules .. 75
5.1.1 Methodology and implementation ... 75
5.1.2 Fault injection results in the miniMIPS processor ... 80

5.2 Control-flow technique .. 87
5.2.1 Methodology and implementation ... 87
5.2.2 Fault injection results in the miniMIPS processor ... 90

5.3 Combined data-flow and control-flow techniques ... 92
5.3.1 Methodology and implementation ... 92
5.3.2 Fault injection results in the miniMIPS processor ... 93
5.3.3 Radiation test results in the ARM Cortex-A9 processor ... 100

5.3.3.1 Test with neutrons ... 100
5.3.3.2 Test with heavy ions ... 101

5.4 Summary ... 104

6 PROPOSED SELECTIVE HARDENING .. 105

6.1 Selective data-flow technique .. 105
6.1.1 Methodology and implementation ... 105
6.1.2 Fault injection results in the miniMIPS processor ... 107

6.2 Selective control-flow technique ... 115
6.2.1 Methodology and implementation ... 115

6.2.1.1 S-SETA ... 116
6.2.2 Fault injection results in the miniMIPS processor ... 117

6.3 Selective data-flow technique and selective control-flow technique 142
6.3.1 Methodology and implementation ... 143
6.3.2 Fault injection results in the miniMIPS processor ... 144
6.3.3 Validation ... 158
6.3.4 Reducing number of points for fitting model .. 164

6.4 Summary ... 179

7 CONCLUDING REMARKS ... 181

7.1 Conclusions ... 181

7.2 Future work .. 182

7.3 Publications ... 183
7.3.1 Book chapters ... 183
7.3.2 Journals ... 183
7.3.3 Conferences .. 183

REFERENCES .. 187

APPENDIX A <CFT-TOOL> ... 193

A.1 Configuration .. 193

A.2 Parameters .. 196

APPENDIX B <DEVICES> ... 197

B.1 miniMIPS .. 197

B.2 ARM Cortex-A9 ... 198

B.3 ZedBoard ... 199

APPENDIX C <BENCHMARKS> ... 201

C.1 Bubble sort .. 203

C.2 Dijkstra’s algorithm ... 206

C.3 Recursive depth-first search ... 208

C.4 Sequential depth-first search .. 209

C.5 Matrix multiplication ... 211

C.6 Run length encoding... 213

C.7 Summation .. 216

C.8 TETRA encryption algorithm .. 217

C.9 Tower of Hanoi ... 218

LIST OF ABBREVIATIONS AND ACRONYMS

BID Basic Block Identifier

BS Bubble Sort

CCA Control Flow Checking using Assertions

CEDA Control flow Error Detection through Assertions

CFCSS Control Flow Checking by Software Signatures

CFID Control Flow Identifier

CFT Configurable Fault Tolerant

DA Dijkstra’s Algorithm

ECCA Enhanced Control Flow Checking using Assertions

EDDI Error Detection by Duplicated Instructions

HETA Hybrid Error-Detection Technique Using Assertions

MM Matrix Multiplication

MWTF Mean Work To Failure

PC Program Counter

rDFS Recursive Depth-First Search

RLE Run-Length Encoding

RISC Reduced Instruction Set Computer

RTL Register Transfer Level

sDFS Sequential Depth-First Search

SEE Single Events Effects

SET Single Event Transient

SETA Software-only Error-detection Technique using Assertions

SEU Single Event Upset

SIHFT Software-Implemented Hardware Fault Tolerance

SUM Summation

SWIFT Software Implemented Fault Tolerance

SWIFT-R SWIFT - Recovery

S-SETA Selective SETA

S-SWIFT-R Selective SWIFT-R

S-VAR Selective VAR

TEA2 TETRA Encryption Algorithm 2

TETRA Terrestrial Trunked Radio

TH Tower of Hanoi

VAR Variables

VHDL VHSIC Hardware Description Language

VHSIC Very High Speed Integrated Circuit

YACCA Yet Another Control-Flow Checking using Assertions

LIST OF FIGURES

Fig. 2.1: Source of ionizing radiation. .. 33
Fig. 2.2: SEU and SET in circuits. .. 35
Fig. 2.3: Effect of soft errors in processors. ... 36
Fig. 2.4: Example of DWC hardware-based technique using a black box processors. 37
Fig. 2.5: Example of a SIHFT technique. ... 38
Fig. 2.6: Example of a data-flow technique. ... 39
Fig. 2.7: Basic Blocks and program flow.. 40
Fig. 3.1: EDDI technique (REIS, 2005b). ... 42
Fig. 3.2: VAR1 technique (AZAMBUJA, 2011a). ... 43
Fig. 3.3: VAR2 technique (AZAMBUJA, 2011a). ... 44
Fig. 3.4: VAR3 technique (AZAMBUJA, 2011a). ... 44
Fig. 3.5: Example of CCA technique (ALKHALIFA, 1999). .. 46
Fig. 3.6: Signature update during correct and illegal branch. .. 48
Fig. 3.7: Basic blocks sharing a common successor. ... 48
Fig. 3.8: Update of D when BBs share a successor. ... 49
Fig. 3.9: Undetected illegal branch. ... 49
Fig. 3.10: Transformation rules by Rebaudengo to protect the data. .. 54
Fig. 3.11: Transformation rules by Rebaudengo to protect the data in procedures. 55
Fig. 3.12: Transformation rules by Rebaudengo to protect the control-flow. ... 55
Fig. 3.13: Transformation rules by Rebaudengo to protect branch decisions... 56
Fig. 3.14: Transformation rules by Rebaudengo to protect the control in procedures. 56
Fig. 3.15: Transformation rules to protect the data (NICOLESCU, 2003). .. 58
Fig. 3.16: Transformation rules to protect the control-flow (NICOLESCU, 2003). 59
Fig. 3.17: Transformation to protect branch decisions (NICOLESCU, 2003). ... 59
Fig. 3.18: Transformation rules to protect procedures (NICOLESCU, 2003). ... 60
Fig. 3.19: Transformation rules (REIS, 2005b). ... 61
Fig. 3.20: Example of the modified CCA proposed by (AZAMBUJA, 2011b). .. 63
Fig. 3.21: Technique to detect illegal branches inside basic blocks by (AZAMBUJA, 2011b). 63
Fig. 3.22: Example of a code hardened by S-SWIFT-R (RESTREPO-CALLE, 2016). 65
Fig. 3.23: Code size and execution time overheads for an FIR hardened by S-SWIFT-R (RESTREPO-
CALLE, 2016). ... 66
Fig. 4.1: Fault, error, and failure in processors hardened by SIHFT techniques. 69
Fig. 4.2: Steps to protect an application using CFT-tool. .. 70
Fig. 4.3: Setup for radiation tests. ... 71
Fig. 5.1: Average results for the VAR techniques. The execution time, code size, and MWTF are
normalized by the unhardened applications (left axis). The fault coverage is presented in percentage
(right axis). ... 81
Fig. 5.2: Results for the bubble sort (BS) hardened by the VAR techniques. The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 81
Fig. 5.3: Results for the Dijkstra’s algorithm (DA) hardened by the VAR techniques. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 82
Fig. 5.4: Results for the recursive depth-first search (rDFS) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 82
Fig. 5.5: Results for the sequential depth-first search (sDFS) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 83
Fig. 5.6: Results for the matrix multiplication (MM) hardened by the VAR techniques. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 83

Fig. 5.7: Results for the run length encoding (RLE) hardened by the VAR techniques. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 84
Fig. 5.8: Results for the summation (SUM) hardened by the VAR techniques. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 84
Fig. 5.9: Results for the TETRA encryption algorithm (TEA2) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 85
Fig. 5.10: Results for the Tower of Hanoi (TH) hardened by the VAR techniques. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 85
Fig. 5.11: Memory accesses for duplication rules D1 and D2 for the nine case-study applications and
average (harmonic mean). ... 86
Fig. 5.12: Representation of a program flow. Basic blocks (circles) classified as of type A or X, and
grouped into networks (dashed rectangles). The arrows indicate the valid directions that a basic block
can take. ... 88
Fig. 5.10: Comparison between CEDA and proposed SETA techniques. The execution time, code size,
and MWTF are presented normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 91
Fig. 5.11: Comparison between SETA and CEDA. The results obtained with SETA are normalized by the
ones obtained with CEDA. ... 91
Fig. 5.12: Comparison between CEDA and SETA. The average results are presented. The execution time,
code size, and MWTF are normalized by the unhardened applications (left axis). The fault coverage and
error detection rates are presented in percentage (right axis). .. 92
Fig. 5.13: Average results for combining VAR and SETA. The execution time, code size, and MWTF are
normalized by the unhardened application (left axis). The fault coverage is presented in percentage (right
axis). ... 94
Fig. 5.14: Results of combining VAR and SETA for the bubble sort (BS). The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 95
Fig. 5.15: Results of combining VAR and SETA for the Dijkstra’s algorithm (DA). The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 95
Fig. 5.16: Results of combining VAR and SETA for the recursive depth-first search (rDFS). The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 96
Fig. 5.17: Results of combining VAR and SETA for the sequential depth-first search (sDFS). The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 96
Fig. 5.18: Results of combining VAR and SETA for the matrix multiplication (MM). The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 97
Fig. 5.19: Results of combining VAR and SETA for the run-length encoding (RLE). The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 97
Fig. 5.20: Results of combining VAR and SETA for the summation (SUM). The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 98
Fig. 5.21: Results of combining VAR and SETA for the TETRA encryption algorithm (TEA2). The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 98
Fig. 5.22: Results of combining VAR and SETA for the Tower of Hanoi (TH). The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 99
Fig. 5.23: Average results for combining VAR and SETA vs. state-of-the-art (SoA) techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 100

Fig. 5.24: (a) View of the surface of the XC7Z020-CLG484 device, and (b) Microscopic section of the
XC7Z020-CLG484 device. ... 102
Fig. 6.1: Results for the bubble sort (BS) hardened by the S-VAR technique. The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 108
Fig. 6.2: Results for the Dijkstra’s algorithm (DA) hardened by the S-VAR technique. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 108
Fig. 6.3: Results for the recursive depth-first search (rDFS) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 108
Fig. 6.4: Results for the sequential depth-first search (sDFS) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 109
Fig. 6.5: Results for the matrix multiplication (MM) hardened by the S-VAR technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 109
Fig. 6.6: Results for the run length encoding (RLE) hardened by the S-VAR technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 109
Fig. 6.7: Results for the summation (SUM) hardened by the S-VAR technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 110
Fig. 6.8: Results for the TETRA encryption algorithm (TEA2) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 110
Fig. 6.9: Results for the Tower of Hanoi (TH) hardened by the S-VAR technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 110
Fig. 6.10: Highest MWTF for the benchmarks hardened by the S-VAR technique. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 111
Fig. 6.11: Results for the bubble sort (BS) hardened by S-VAR and SETA. The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 111
Fig. 6.12: Results for the Dijkstra’s algorithm (DA) hardened by S-VAR and SETA. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 112
Fig. 6.13: Results for the recursive depth-first search (rDFS) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 112
Fig. 6.14: Results for the sequential depth-first search (sDFS) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 112
Fig. 6.15: Results for the matrix multiplication (MM) hardened by S-VAR and SETA. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 113
Fig. 6.16: Results for the run length encoding (RLE) hardened by S-VAR and SETA. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 113
Fig. 6.17: Results for the summation (SUM) hardened by S-VAR and SETA. The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage is presented in
percentage (right axis). .. 113
Fig. 6.18: Results for the TETRA encryption algorithm (TEA2) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 114
Fig. 6.19: Results for the Tower of Hanoi (TH) hardened by S-VAR and SETA. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 114

Fig. 6.20: Highest MWTF for the benchmarks hardened by S-VAR and SETA. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 115
Fig. 6.21: Example of tunnel effect (S-SETA) (a) protecting 100% of BBs, equivalent to SETA, (b)
protecting 80%, (c) protecting 70%, (d) protecting 30%, and (e) protecting 20% of BBs. 117
Fig. 6.22: Results for the bubble sort (BS) hardened by the S-SETA technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 117
Fig. 6.23: Results for the bubble sort (BS) hardened by the SETA-C technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 118
Fig. 6.24: Comparison between S-SETA and SETA-C for the bubble sort (BS). The results obtained with
S-SETA are normalized by the ones obtained with SETA-C. .. 118
Fig. 6.25: Results for the Dijkstra’s algorithm (DA) hardened by the S-SETA technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 119
Fig. 6.26: Results for the Dijkstra’s algorithm (DA) hardened by the SETA-C technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 119
Fig. 6.27: Comparison between S-SETA and SETA-C for the Dijkstra’s algorithm (DA). The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 120
Fig. 6.28: Results for the recursive depth-first search (rDFS) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 120
Fig. 6.29: Results for the recursive depth-first search (rDFS) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 121
Fig. 6.30: Comparison between S-SETA and SETA-C for the recursive depth-first search (rDFS). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 121
Fig. 6.31: Results for the sequential depth-first search (sDFS) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 122
Fig. 6.32: Results for the sequential depth-first search (sDFS) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 122
Fig. 6.33: Comparison between S-SETA and SETA-C for the sequential depth-first search (sDFS). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 123
Fig. 6.34: Results for the matrix multiplication (MM) hardened by the S-SETA technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 123
Fig. 6.35: Results for the matrix multiplication (MM) hardened by the SETA-C technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 124
Fig. 6.36: Comparison between S-SETA and SETA-C for the matrix multiplication (MM). The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 124
Fig. 6.37: Results for the run length encoding (RLE) hardened by the S-SETA technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 125
Fig. 6.38: Results for the run length encoding (RLE) hardened by the SETA-C technique. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 125
Fig. 6.39: Comparison between S-SETA and SETA-C for the run length encoding (RLE). The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 125
Fig. 6.40: Results for the summation (SUM) hardened by the S-SETA technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 126
Fig. 6.41: Results for the summation (SUM) hardened by the SETA-C technique. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 126

Fig. 6.42: Comparison between S-SETA and SETA-C for the summation (SUM). The results obtained with
S-SETA are normalized by the ones obtained with SETA-C. .. 127
Fig. 6.43: Results for the TETRA encryption algorithm (TEA2) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 127
Fig. 6.44: Results for the TETRA encryption algorithm (TEA2) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 128
Fig. 6.45: Comparison between S-SETA and SETA-C for the TETRA encryption algorithm (TEA2). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 128
Fig. 6.46: Results for the Tower of Hanoi (TH) hardened by the S-SETA technique. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 129
Fig. 6.47: Results for the Tower of Hanoi (TH) hardened by the SETA-C technique. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 129
Fig. 6.48: Comparison between S-SETA and SETA-C for the Tower of Hanoi (TH). The results obtained
with S-SETA are normalized by the ones obtained with SETA-C. .. 129
Fig. 6.49: Highest MWTF for the benchmarks hardened by the S-SETA or SETA-C. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 130
Fig. 6.50: Results for the bubble sort (BS) hardened by VAR3+ and S-SETA. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 130
Fig. 6.51: Results for the bubble sort (BS) hardened by VAR3+ and SETA-C. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 131
Fig. 6.52: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the BS. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 131
Fig. 6.53: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and S-SETA. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 131
Fig. 6.54: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and SETA-C. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 132
Fig. 6.55: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the DA. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 132
Fig. 6.56: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 132
Fig. 6.57: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 133
Fig. 6.58: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the rDFS. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 133
Fig. 6.59: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 133
Fig. 6.60: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 134
Fig. 6.61: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the sDFS. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 134
Fig. 6.62: Results for the matrix multiplication (MM) hardened by VAR3+ and S-SETA. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 134
Fig. 6.63: Results for the matrix multiplication (MM) hardened by VAR3+ and SETA-C. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 135

Fig. 6.64: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the MM. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 135
Fig. 6.65: Results for the run length encoding (RLE) hardened by VAR3+ and S-SETA. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 135
Fig. 6.66: Results for the run length encoding (RLE) hardened by VAR3+ and SETA-C. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis). ... 136
Fig. 6.67: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the RLE. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 136
Fig. 6.68: Results for the summation (SUM) hardened by VAR3+ and S-SETA. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 136
Fig. 6.69: Results for the summation (SUM) hardened by VAR3+ and SETA-C. The execution time, code
size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 137
Fig. 6.70: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the SUM. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 137
Fig. 6.71: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 137
Fig. 6.72: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 138
Fig. 6.73: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for TEA2. The results obtained
with S-SETA are normalized by the ones obtained with SETA-C. .. 138
Fig. 6.74: Results for the Tower of Hanoi (TH) hardened by VAR3+ and S-SETA. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 138
Fig. 6.75: Results for the Tower of Hanoi (TH) hardened by VAR3+ and SETA-C. The execution time,
code size, and MWTF are normalized by the unhardened application (left axis). The fault coverage is
presented in percentage (right axis). ... 139
Fig. 6.76: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the TH. The results
obtained with S-SETA are normalized by the ones obtained with SETA-C. .. 139
Fig. 6.77: Highest MWTF for the benchmarks hardened by (VAR3+, S-SETA) or (VAR3+, SETA-C). The
execution time, code size, and MWTF are normalized by the unhardened application (left axis). The fault
coverage is presented in percentage (right axis). ... 140
Fig. 6.78: Estimated fault coverages for BS hardened by S-VAR, S-SETA. .. 143
Fig. 6.79: Estimated fault coverages for BS hardened by S-VAR, S-SETA. .. 145
Fig. 6.80: Estimated execution times for BS hardened by S-VAR, S-SETA. .. 145
Fig. 6.81: MWTF for BS hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 146
Fig. 6.82: Estimated fault coverages for DA hardened by S-VAR, S-SETA. .. 146
Fig. 6.83: Estimated execution times for DA hardened by S-VAR, S-SETA. ... 147
Fig. 6.84: MWTF for DA hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 147
Fig. 6.85: Estimated fault coverages for rDFS hardened by S-VAR, S-SETA. .. 148
Fig. 6.86: Estimated execution times for rDFS hardened by S-VAR, S-SETA. .. 148
Fig. 6.87: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 149
Fig. 6.88: Estimated fault coverages for sDFS hardened by S-VAR, S-SETA. .. 149
Fig. 6.89: Estimated execution times for sDFS hardened by S-VAR, S-SETA. .. 150
Fig. 6.90: MWTF for sDFS hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 150
Fig. 6.91: Estimated fault coverages for MM hardened by S-VAR, S-SETA. .. 151
Fig. 6.92: Estimated execution times for MM hardened by S-VAR, S-SETA. .. 151
Fig. 6.93: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 152
Fig. 6.94: Estimated fault coverages for RLE hardened by S-VAR, S-SETA. .. 152

Fig. 6.95: Estimated execution times for RLE hardened by S-VAR, S-SETA. .. 153
Fig. 6.96: MWTF for RLE hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 153
Fig. 6.97: Estimated fault coverages for SUM hardened by S-VAR, S-SETA. ... 154
Fig. 6.98: Estimated execution times for SUM hardened by S-VAR, S-SETA. .. 154
Fig. 6.99: MWTF for SUM hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 155
Fig. 6.100: Estimated fault coverages for TEA2 hardened by S-VAR, S-SETA. .. 155
Fig. 6.101: Estimated execution times for TEA2 hardened by S-VAR, S-SETA. 156
Fig. 6.102: MWTF for TEA2 hardened by S-VAR, S-SETA based on estimated fault coverage and
execution time. ... 156
Fig. 6.103: Estimated fault coverages for TH hardened by S-VAR, S-SETA. .. 157
Fig. 6.104: Estimated execution times for TH hardened by S-VAR, S-SETA. .. 157
Fig. 6.105: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. .. 158
Fig. 6.106: Validation of model for estimating the fault coverages of rDFS hardened by S-VAR, S-SETA.
Green dots are the validation points. .. 159
Fig. 6.107: Validation of model for estimating the execution time of rDFS hardened by S-VAR, S-SETA.
Green dots are the validation points. .. 159
Fig. 6.108: Validation of model for estimating the execution time of rDFS hardened by S-VAR, S-SETA.
Green dots are the validation points. View from another perspective. .. 160
Fig. 6.109: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault coverage and
execution time. Green dots are the validation points. .. 160
Fig. 6.110: Validation of model for estimating the fault coverages of MM hardened by S-VAR, S-SETA.
Green dots are the validation points. .. 161
Fig. 6.111: Validation of model for estimating the execution time of MM hardened by S-VAR, S-SETA.
Green dots are the validation points. .. 161
Fig. 6.112: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. Green dots are the validation points. ... 162
Fig. 6.113: Validation of model for estimating the fault coverages of TH hardened by S-VAR, S-SETA.
Green dots are the validation points. .. 162
Fig. 6.114: Validation of model for estimating the execution time of TH hardened by S-VAR, S-SETA.
Green dots are the validation points. View from another perspective. .. 163
Fig. 6.115: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault coverage and execution
time. Green dots are the validation points. ... 163
Fig. 6.116: Fault coverage for rDFS (38 points). The red dots are the input points and the green dots are
the validation points. ... 165
Fig. 6.117: Fault coverage for rDFS (18 points). The red dots are the input points and the green dots are
the validation points. ... 166
Fig. 6.118: Fault coverage for rDFS (12 points). The red dots are the input points and the green dots are
the validation points. ... 166
Fig. 6.119: Execution time for rDFS (38 points). The red dots are the input points and the green dots are
the validation points. ... 167
Fig. 6.120: Execution time for rDFS (18 points). The red dots are the input points and the green dots are
the validation points. ... 167
Fig. 6.121: Execution time for rDFS (12 points). The red dots are the input points and the green dots are
the validation points. ... 168
Fig. 6.122: MWTF for rDFS (38 points). The red dots are the input points and the green dots are the
validation points. ... 168
Fig. 6.123: MWTF for rDFS (18 points). The red dots are the input points and the green dots are the
validation points. ... 169
Fig. 6.124: MWTF for rDFS (12 points). The red dots are the input points and the green dots are the
validation points. ... 169
Fig. 6.125: Fault coverage for MM (46 points). The red dots are the input points and the green dots are
the validation points. ... 170
Fig. 6.126: Fault coverage for MM (22 points). The red dots are the input points and the green dots are
the validation points. ... 170
Fig. 6.127: Fault coverage for MM (12 points). The red dots are the input points and the green dots are
the validation points. ... 171

Fig. 6.128: Execution time for MM (46 points). The red dots are the input points and the green dots are
the validation points. ... 171
Fig. 6.129: Execution time for MM (22 points). The red dots are the input points and the green dots are
the validation points. ... 172
Fig. 6.130: Execution time for MM (12 points). The red dots are the input points and the green dots are
the validation points. ... 172
Fig. 6.131: MWTF for MM (46 points). The red dots are the input points and the green dots are the
validation points. ... 173
Fig. 6.132: MWTF for MM (22 points). The red dots are the input points and the green dots are the
validation points. ... 173
Fig. 6.133: MWTF for MM (12 points). The red dots are the input points and the green dots are the
validation points. ... 174
Fig. 6.134: Fault coverage for TH (42 points). The red dots are the input points and the green dots are
the validation points. ... 174
Fig. 6.135: Fault coverage for TH (20 points). The red dots are the input points and the green dots are
the validation points. ... 175
Fig. 6.136: Fault coverage for TH (12 points). The red dots are the input points and the green dots are
the validation points. ... 175
Fig. 6.137: Execution time for TH (42 points). The red dots are the input points and the green dots are
the validation points. ... 176
Fig. 6.138: Execution time for TH (20 points). The red dots are the input points and the green dots are
the validation points. ... 176
Fig. 6.139: Execution time for TH (12 points). The red dots are the input points and the green dots are
the validation points. ... 177
Fig. 6.140: MWTF for TH (42 points). The red dots are the input points and the green dots are the
validation points. ... 177
Fig. 6.141: MWTF for TH (20 points). The red dots are the input points and the green dots are the
validation points. ... 178
Fig. 6.142: MWTF for TH (12 points). The red dots are the input points and the green dots are the
validation points. ... 178
Fig. A.1: Steps to protect a code using the CFT-tool. .. 193
Fig. A.2: Example of label format configuration. ... 194
Fig. A.3: The branch not equal must be informed because it is necessary for the implementation of
checkers. ... 194
Fig. A.4: Number of instructions reordered by the branch delay slot. .. 194
Fig. A.5: Configuration informing the logically inverse conditional branches. .. 194
Fig. A.6: Example of an instruction format. ... 194
Fig. A.7: Example of a group of instructions. ... 195
Fig. A.8: Example of a group with overloaded instructions with regards to Fig. A.7. 195
Fig. A.9: Example of a group of registers. .. 195
Fig. A.10: Example of a label format in the disassembly. .. 195
Fig. A.11: Example of the instruction format in the disassembly. .. 196
Fig. A.12: Equivalent names of the registers in the disassembly (left) and in the assembly (right). 196
Fig. B.1: miniMIPS register set. .. 197
Fig. B.2: Comparison and branch in the miniMIPS processor. ... 197
Fig. B.3: Transformations to run an application on the miniMIPS processor .. 198
Fig. B.4: Example of comparison in the ARM Cortex-A9 processor. .. 199
Fig. B.5: Example of branch in the ARM Cortex-A9 processor. .. 199
Fig. B.6: ZedBoard block diagram (AVNET, 2015). .. 200

LIST OF TABLES

Table 1.1: Operating frequency and power of RadHard processors. .. 30
Table 1.2: Operating frequency, power, and price of commercial processors. ... 30
Table 3.1: State-of-the-art data-flow techniques .. 45
Table 3.2: Overheads of CFCSS, ECCA and YACCA. ... 53
Table 3.3: Percentage of undetected faults (%UF) and performance overhead (%PO) for CFCSS,
YACCA, and CEDA. .. 53
Table 5.1: Rules for data-flow techniques .. 76
Table 5.2: Data-flow techniques and rules ... 77
Table 5.3: Examples of VAR data-flow techniques for the miniMIPS processor .. 79
Table 5.4: Signature division. ... 88
Table 5.5: Role of each half in the signatures .. 88
Table 5.6: Signature update .. 89
Table 5.7: Example of SETA control-flow technique for the miniMIPS processor 90
Table 5.8: Example of VAR3 and SETA techniques for the miniMIPS processor 93
Table 5.9: Summary of radiation test with neutrons on the ARM Cortex-A9 processor (VAR4++ and
SETA) ... 101
Table 5.10: Summary of radiation test with heavy ions on the ARM Cortex-A9 processor (VAR3+ and
SETA) ... 103
Table 5.11: Summary of radiation test with heavy ions on the ARM Cortex-A9 processor (VAR3 and
SETA) ... 104
Table 6.1: Example of a selective data-flow technique (S-VAR) .. 107
Table 6.2: Example of a selective data-flow technique (S-VAR) .. 115
Table 6.3: Summary of selective hardening. Fault coverage (FC) showed in percentage, execution time
(ET) presented normalized by the unhardened application.. 141
Table 6.3: Mean and maximum deviations in the fault coverage (FC) and execution time (ET) for the
rDFS, MM, and TH with different numbers of input points to the method to estimate the results 165
Table C.1: Some parameters of CFT-tool ... 196
Table B.1: Instruction to compare in the ARM Cortex-A9 processor .. 198
Table C.1: Summary of instructions for each benchmark .. 201
Table C.2: Detailed division of instructions for each benchmark .. 202
Table C.3: Overall information about the basic blocks for each benchmark .. 202
Table C.4: Additional information about the basic blocks for each benchmark 203
Table C.5: Execution time, code size, and fault coverage of the unhardened applications 203
Table C.6: Dynamic evaluation of the registers usage for the bubble sort .. 204
Table C.7: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the bubble sort ... 204
Table C.8: Detailed information about the basic blocks of the bubble sort .. 205
Table C.9: BBs in the predecessor network for each network of the bubble sort 205
Table C.10: Dynamic evaluation of the registers usage for the Dijkstra’s algorithm 206
Table C.11: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the Dijkstra’s algorithm .. 206
Table C.12: Detailed information about the basic blocks of the Dijkstra’s algorithm 207
Table C.13: BBs in the predecessor network for each network of the Dijkstra’s algorithm 207
Table C.14: Dynamic evaluation of the registers usage for the recursive depth-first search 208
Table C.15: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the rDFS .. 209
Table C.16: Detailed information about the basic blocks of the recursive depth-first search 209
Table C.17: BBs in the predecessor network for each network of the recursive depth-first search 209
Table C.18: Dynamic evaluation of the registers usage for the sequential depth-first search 210
Table C.19: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the sDFS .. 210
Table C.20: Detailed information about the basic blocks of the sequential depth-first search 210
Table C.21: BBs in the predecessor network for each network of the sequential depth-first search 211
Table C.22: Dynamic evaluation of the registers usage for the matrix multiplication 211

Table C.23: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the MM... 212
Table C.24: Detailed information about the basic blocks of the matrix multiplication 212
Table C.25: BBs in the predecessor network for each network of the MM.. 213
Table C.26: Dynamic evaluation of the registers usage for the run length encoding 213
Table C.27: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the RLE .. 214
Table C.28: Detailed information about the basic blocks of the run length encoding 214
Table C.29: BBs in the predecessor network for each network of the run length encoding 215
Table C.30: Dynamic evaluation of the registers usage for the summation .. 216
Table C.31: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the summation ... 216
Table C.32: Detailed information about the basic blocks of the summation ... 217
Table C.33: BBs in the predecessor network for each network of the summation 217
Table C.34: Dynamic evaluation of the registers usage for the TETRA encryption algorithm 217
Table C.35: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the TEA2 .. 218
Table C.36: Detailed information about the basic blocks of the TETRA encryption algorithm 218
Table C.37: BBs in the predecessor network for each network of the TETRA encryption algorithm 218
Table C.38: Dynamic evaluation of the registers usage for the Tower of Hanoi 219
Table C.39: Effective lifetime (EL), weight in conditional branches (WCB), functional dependencies (FD),
and criticality of the registers used by the Tower of Hanoi .. 219
Table C.40: Detailed information about the basic blocks of the Tower of Hanoi 220
Table C.41: BBs in the predecessor network for each network of the Tower of Hanoi 220

PREFACE

This document is the result of the jointly supervised doctoral work in the Programa
de Pós-Graduação em Microeletrônica at Universidade Federal do Rio Grande do Sul
(PGMICRO – UFRGS) and in the Escuela de Doctorado at Universidad de Alicante
(EDUA). During the period of the doctorate work, I have been granted a scholarship from
the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES), a Brazilian
agency.

In this work, the problem of designing processor-based fault tolerant systems is
undertaken. The research is focused on the selective application of software-based
techniques to get high fault detection levels with low overhead costs.

This thesis has been performed in the context of the following research project:

 “Development of hybrid fault tolerance techniques for embedded
microprocessors” (ref.:292/13), CAPES/DGU. The main goal of the project is
the proposal of new hardware/software techniques to improve the tolerance to
faults induced by radiation and their automatic application to embedded
modern processors.

ABSTRACT

Software-based fault tolerance techniques are a low-cost way to protect processors
against soft errors. However, they introduce significant overheads to the execution time
and code size, which consequently increases the energy consumption. System operation
with time or energy restrictions may not be able to make use of these techniques. For this
reason, this work proposes software-based fault tolerance techniques with lower
overheads and similar fault coverage to state-of-the-art software techniques. Once
detection is less costly than correction, the work focuses on software-based detection
techniques.

Firstly, a set of data-flow techniques called VAR is proposed. The techniques are
based on general building rules to allow an exhaustive assessment, in terms of reliability
and overheads, of different technique variations. The rules define how the technique
duplicates the code and insert checkers. Each technique uses a different set of rules. Then,
a control-flow technique called SETA (Software-only Error-detection Technique using
Assertions) is introduced. Comparing SETA with a state-of-the-art technique, SETA is
11.0% faster and occupies 10.3% fewer memory positions. The most promising data-flow
techniques are combined with the control-flow technique in order to protect both data-
flow and control-flow of the target application.

To go even further with the reduction of the overheads, methods to selective apply the
proposed software techniques have been developed. For the data-flow techniques, instead
of protecting all registers, only a set of selected registers is protected. The set is selected
based on a metric that analyzes the code and rank the registers by their criticality. For the
control-flow technique, two approaches are taken: (1) removing checkers from basic
blocks: all the basic blocks are protected by SETA, but only selected basic blocks have
checkers inserted, and (2) selectively protecting basic blocks: only a set of basic blocks
is protected. The techniques and their selective versions are evaluated in terms of
execution time, code size, fault coverage, and Mean Work To Failure (MWTF), which is
a metric to measure the trade-off between fault coverage and execution time. Results
show that was possible to reduce the overheads without affecting the fault coverage, and
for a small reduction in the fault coverage it was possible to significantly reduce the
overheads. Lastly, since the evaluation of all the possible combinations for selective
hardening of every application takes too much time, this work uses a method to
extrapolate the results obtained by simulation in order to find the parameters for the
selective combination of data and control-flow techniques that are probably the best
candidates to improve the trade-off between reliability and overheads.

Keywords: SIHFT techniques, selective hardening, transient faults, soft errors, Single
Event Effects, SEU, SET, processor, reliability, execution time, code size, energy
consumption, lower overheads.

Técnicas Seletivas de Tolerância a Falhas em Software com Custo
Reduzido para Detectar Erros Causados por Falhas Transientes em

Processadores

RESUMO

A utilização de técnicas de tolerância a falhas em software é uma forma de baixo custo
para proteger processadores contra soft errors. Contudo, elas causam aumento no tempo
de execução e utilização de memória. Em consequência disso, o consumo de energia
também aumenta. Sistemas que operam com restrição de tempo ou energia podem ficar
impossibilitados de utilizar tais técnicas. Por esse motivo, este trabalho propoe técnicas
de tolerância a falhas em software com custos no desempenho e memória reduzidos e
cobertura de falhas similar a técnicas presentes na literatura. Como detecção é menos
custoso que correção, este trabalho foca em técnicas de detecção.

Primeiramente, um conjunto de técnicas de dados baseadas em regras de
generalização, chamada VAR, é apresentada. As técnicas são baseadas nesse conjunto
generalizado de regras para permitir uma investigação exaustiva, em termos de
confiabilidade e custos, de diferentes variações de técnicas. As regras definem como a
técnica duplica o código e insere verificadores. Cada técnica usa um diferente conjunto
de regras. Então, uma técnica de controle, chamada SETA, é introduzida. Comparando
SETA com uma técnica estado-da-arte, SETA é 11.0% mais rápida e ocupa 10.3% menos
posições de memória. As técnicas de dados mais promissoras são combinadas com a
técnica de controle com o objetivo de proteger tanto os dados quanto o fluxo de controle
da aplicação alvo.

Para reduzir ainda mais os custos, métodos para aplicar seletivamente as técnicas
propostas foram desenvolvidos. Para técnica de dados, em vez de proteger todos os
registradores, somente um conjunto de registradores selecionados é protegido. O conjunto
é selecionado com base em uma métrica que analisa o código e classifica os registradores
por sua criticalidade. Para técnicas de controle, há duas abordagens: (1) remover
verificadores de blocos básicos, e (2) seletivamente proteger blocos básicos. As técnicas
e suas versões seletivas são avaliadas em termos de tempo de execução, tamanho do
código, cobertura de falhas, e o Mean Work to Failure (MWTF), o qual é uma métrica
que mede o compromisso entre cobertura de falhas e tempo de execução. Resultados
mostram redução dos custos sem diminuição da cobertura de falhas, e para uma pequena
redução na cobertura de falhas foi possível significativamente reduzir os custos. Por fim,
uma vez que a avaliação de todas as possíveis combinações utilizando métodos seletivos
toma muito tempo, este trabalho utiliza um método para extrapolar os resultados obtidos
por simulação com o objetivo de encontrar os melhores parâmetros para a proteção
seletiva e combinada de técnicas de dados e de controle que melhorem o compromisso
entre confiabilidade e custos.

Palavras-Chave: técnicas de tolerância a falhas em software, proteção seletiva, falhas
transientes, soft errors, SEU, SET, processador, confiabilidade, tempo de execução,
tamanho do código, consumo de energia, diminuição de custos.

Técnicas Selectivas de Tolerancia a Fallos en Software con Gastos
Generales Reducidos para Detectar Errores Causados por Fallos

Transitorios en Procesadores

RESUMEN

La utilización de tecnicas de tolerancia a fallos en software és un método de bajo costo
utilizado para la protección de procesadores contra soft errors. Sin embargo, causan el
aumento en el tiempo de ejecución y la utilización de memoria. En consecuencia, el
consumo de energia también aumenta. Sistemas que operan con restricción de tiempo o
energia pueden quedarse imposibilitados de utilizar tales técnicas. Por lo tanto, este
trabajo propone técnicas de tolerancia a fallos en software con reducción de gastos
generales en desempeño y memoria; Además, incorpora la cobertura a fallos similar a
técnicas de la literatura. Como detección és menos costosa que corrección, este trabajo se
centra en técnicas de detección.

Primeramente, un conjunto de técnicas de dados basadas en reglas de generalización,
llamada VAR, és presentada. Las técnicas son baseadas en este conjunto generalizado de
reglas para permitir una investigación exhaustiva, en termos de confiabilidad y gastos
generales, de diferentes variaciones de técnicas. Las reglas definen como la técnica
duplica el código y inserta verificadores. Cada técnica utiliza un conjunto diferente de
reglas. Después, una técnica de control, llamada SETA, és introducida. Comparando
SETA com una técnica del estado del arte, SETA és 11.0% más rápida y utiliza 10.3%
menos posiciones de memoria. Las técnicas de dados más prometedoras son combinadas
con la técnica de control con el objetivo de proteger tanto los dados como también el flujo
de control de la aplicación.

Posteriormente, fueron desarrollados métodos para aplicar selectivamente las técnicas
propuestas. Para técnica de datos, en vez de proteger todos los registros, solamente un
conjunto de registros és seleccionado y protegido. El conjunto és selecionado basado en
una métrica que analiza el código y ordena los registros por su nivel crítico. Para técnicas
de control, hay dos métodos: (1) remoción de verificadores de bloques básicos, y (2)
selectivamente proteger bloques básicos. Las técnicas y sus versiones selectivas son
evaluadas en términos de tiempo de ejecución, tamaño de código, cobertura de fallos, y
por el Mean Work to Failure (MWTF), que és una métrica para medir el compromiso
entre la cobertura de fallos y el tiempo de ejecución. Los resultados muestran una
reduccíon de los gastos generales sin reducir la cobertura de fallos, y, también, realizando
una pequeña reducción en la cobertura de fallos fue posible reduzir significativamente los
gastos generales. Finalmente, la evaluación de todas las posibles combinaciones
utilizando métodos selectivos requiere mucho tiempo, este trabajo utiliza un método para
extrapolar los resultados obtenidos por simulación para encontrar los mejores parámetros
para la protección selectiva y combinada de técnicas de datos y de control que mejoren el
compromiso entre confiabilidad y gastos generales.

Palabras-Clave: técnicas SIHFT, protección selectiva, fallos transientes, soft errors,
SEU, SET, procesador, confiabilidad, tiempo de ejecución, tamaño de código, consumo
de energía, reducción de gastos generales.

29

1 INTRODUCTION

1.1 Motivation

Aerospace applications use dozens to hundreds of processors (FERNANDEZ-LEON,
2013), (ANTHONY, 2012), which are susceptible to transient faults caused by the
radiation present in the operating environment (O'BRYAN, 2015). Furthermore,
processors, as other integrated circuits, have significantly improved their performance in
the last decades due to the advances in the semiconductor industry. Such advances have
led to the fabrication of high-density integrated circuits (ICs). We are reaching the
physical limits of a couple of atoms to form the transistor’s gate (KIM, 2003),
(THOMPSON, 2005). On the other hand, the higher quantity of transistors per die
combined with reduced voltage threshold and increased operating frequencies have made
ICs more sensitive to transient faults caused by radiation (BAUMANN, 2001).

Transient faults can be caused by energized particles present in space or secondary
particles, such as alpha particles, generated by the interaction of neutron and materials at
flight altitude or ground level (ITRS, 2005). The interaction with an off-state transistor’s
drain in the PN junction may charge or discharge a node of the circuit. The consequence
is a transient pulse in the circuit logic, also known as Single Event Effect (SEE). SEE can
be potentially destructive, known as hard errors, or non-destructive, known as soft errors
(O'BRYAN, 2015). In this work, we focus on soft errors.

The consequence in circuits can be seen as a bit flip (alteration of logical value) in
memory elements, known as Single Event Upset (SEU), or as a transient pulse in the
combinational logic, known as Single Event Transient (SET), which can be captured by
a memory element. With regards to processor, the consequence of such faults can be seen
as an error affecting the control-flow of a running application, where an unexpected
branch happens, or as an error affecting the data-flow, where the result of the computation
is incorrect, even if the application runs until its end.

In critical systems, errors are unaceptable. Since nowadays critical systems use dozens
to hundreds of embedded processors, it is necessary to ensure reliability to these
processors in order to provide reliability to the whole system. In this context, it is possible
to use radiation hardened processors (RadHard processors). However, they present
several limitations, such as:

 Low processing speed: the operating frequency is significantly lower than
commercial processors, as can be seen in Table 1.1

 High energy consumption: the energy consumption per task is also higher,
mainly because the RadHard processor needs considerably more time to
perform it

30

 High price: the high cost of RadHard devices is becoming a determinant
factor to support an increasing use of commercial devices, mainly in the less
critical parts of a system (MCHALE, 2014). Besides, the necessity of extra
hardware in aerospace applications has an additional cost, because the weight
and the physical space that the device occupies are also important factors in
this regard (E2V, 2015)

 Commercial restrictions: another limitation for using RadHard processors
that makes the search for other alternatives more interesting is the existence of
restrictions for the commerce of RadHard devices, due to international trade
regulations, such as ITAR (International Traffic in Arms Regulations), which
makes impossible to many countries to buy many of these devices (CASTRO
NETO, 2010).

Table 1.1: Operating frequency and power of RadHard processors.

Processor Frequency (MHz) Power (W)

GR712RC Dual-Core 100 1.5 / core

UT699 Single-Core 66 not available

LEON3FT-RTAX 25 0.3 – 0.5

Source: (COBHAM GAISLER AB, 2015)

Commercial processors are an alternative for the use of RadHard processors.
Furthermore, they present some advantages, such as:

 More recent technology: commercial processors are developed with the most
recent technology, which were still not used in RadHard processors

 High processing speed: commercial processors operate in significantly higher
frequencies, as shown in Table 1.2. It permits, for example, that much of the
information be processed on board, before sending to Earth

 Low power/energy: there are ultra-low-power models of commercial
processors, as one can see in Table 1.2. In general, the energy consumption of
commercial processors is lower due to their higher processing speed.

 Low price: commercial processors are considerably cheaper, what makes their
utilization very interesting to reduce costs. This approach could facilitate the
developing and deployment of new systems that could not be developed due
to high costs if RadHard devices were utilized.

Table 1.2: Operating frequency, power, and price of commercial processors.

Processor Frequency (MHz) Power (W) Price (USD)

TMS320C6748 375-456 0.006 – 0.42 11

ARM Cortex-A9 800 – 2000 0.5 – 1.9 33

Intel I7 960 3200 130 414

Sources: (TEXAS INSTRUMENTS, 2015), (ARM, 2015), (EBAY, 2015), (AMAZON,
2015), and (WANG, 2011).

On the other hand, commercial processors are more sensitive to radiation. Still, it is
possible to use software-based fault tolerance techniques to provide reliability to

31

commercial processors (OH, 2002a), (AZAMBUJA, 2011a), (REIS, 2005b),
(GOLOUBEVA, 2003), (VEMU, 2011). These techniques are also known in the literature
as Software-Implemented Hardware Fault Tolerance (SIHFT) techniques
(GOLOUBEVA, 2006). They modify the source code of a target application without
modifying the underlying hardware. Therefore, they are applicable to commercial
processors. Software-based fault tolerance techniques are capable of detecting a high
amount of errors affecting the processors by the effect they cause in the program
execution.

Although software redundancy brings reliability to the system, it requires extra
processing time, since more instructions are executed. As a consequence, the energy
consumption is increased (YAO, 2013), (ASSAYAD, 2013). Furthermore, a reliable
program will require more area in memory since software redundancy is inserted. The
larger code size increases the probability of cache misses, which increases the number of
accesses to the main memory and reduces the performance. Besides, the redundancy of
load or store instructions also increases the number of memory accesses. All these extra
memory transfers contribute to increase the power consumption (VOGELSANG, 2010),
(LI, 2003).

1.2 Objectives and contributions

The aim of this thesis is to provide reliability to commercial processors, with a level
of fault coverage similar to state-of-the-art SIHFT techniques, and a significant reduction
of overheads in the execution time and memory. Thus, the application will run faster,
occupy less space in memory, and, as a consequence, reduce the energy consumption.
Furthermore, the faster an application runs, the lower is the probability that it is affected
by a transient fault, simply by the fact that the application is executed in less time.
Therefore, the application exposure to radiation is lower. Consequently, the reliability is
higher. Also, a smaller code size reduces the probability of cache misses.

The main objective of this work consists of reducing drastically overheads in the
execution time and memory, keeping the fault coverage similar to state-of-the-art SIHFT
techniques. In order to do so, three steps are proposed: (1) development of SIHFT
techniques with lower overheads; (2) implementation of selective hardening methods
using the proposed techniques to go further in the overhead reduction; and (3) proposition
of a method to indicate the best parameters for selective hardening. A detailed list is
presented bellow:

1. Decomposition of SIHFT techniques in general building rules to allow an
exhaustive assessment, in terms or reliability and overheads, of different
technique variations. As a result, the proposal of new techniques specifically
designed to combine the protection of both data and control-flow with lower
overheads

2. Implementation of selective methods for the proposed data-flow and control-
flow techniques. With regards to the data-flow techniques, the selectiveness is
based on register selection, i.e., the most critical registers have higher priority
to be protected. Concerning the control-flow technique, there are two methods
for selectiveness: (a) removing checkers from the least critical basic blocks1,

1 A basic block is a branch-free sequence of instructions. This term is better discussed in
the following chapters.

32

and (b) protecting only the most critical basic blocks, i.e., completely
removing the protection of the least critical basic blocks

3. Proposal of a method to guide the selective application of the SIHFT
techniques in order to find in a shorter time better trade-offs between reliability
and performance. A method that indicates the probable best parameters for the
selective hardening methods discussed in this work. The goal of this item is to
avoid the need for excessive fault tolerance tests. Thus, it is possible to select
the recommended parameters. Fault tolerance tests may still be needed, but the
number of required tests will be considerably reduced.

All SIHFT techniques and selective methods will be evaluated regarding fault
coverage, execution time, code size, and suitable metrics that provide the trade-off
between reliability and overheads.

Therefore, the main contributions of this thesis work are:

 Improve the reliability of SIHFT techniques by reducing overheads and
keeping similar fault coverage. Achievable with new proposed SIHFT
techniques and complemented with existing and proposed selective hardening
methodologies

 Provide high reliability with very low overheads using the proposed SIHFT
techniques with selective hardening methodologies. It allows the protection of
applications with strict performance or energy constraints

 Provide high reliability for applications with limited availability of resources
for redundancy. Sometimes, there are no enough resources for applying
entirely the SIHFT techniques. In such scenarios, the protection of more
sensitive parts may increase significantly reliability. Therefore, it is important
to identify and protect these parts

 Propose a model that can guide designers to select how much protection is
needed to reach one of the following parameters:

o Maximum reliability
o Minimum overhead for a specific fault coverage
o Maximum reliability for a maximum overhead.

1.3 Thesis organization

Chapter II introduces some definitions and background knowledge necessary for the
understanding of the thesis. Chapter III presents the related work. It shows the main
SIFHT techniques and selective hardening methods. The fault injection methodology and
the metrics used in this work to evaluate the results are exposed in Chapter IV. In Chapter
V, one can see the proposed data-flow and control-flow techniques. Then, the selective
hardening methods using the proposed techniques is introduced in Chapter VI. Chapter
VI also includes a method to estimate the probable bet parameters for selective hardening
methods. Finally, Chapter VII draws conclusions, discusses future work, and lists the
publications. Additional information can be found in the appendices.

33

2 DEFINITIONS AND BACKGROUND KNOWLEDGE

This chapter introduces the main definitions and background knowledge for the
understanding of the thesis. It presents the sources of radiation and its effects on circuits
and processors and shows some techniques to protect the processors against the radiation.

2.1 Sources of ionizing radiation

Ionizing radiation comes from solar flares, solar wind, and cosmic rays. In the
interaction with Earth's magnetosphere, some ionizing particles are trapped. The Van
Allen belts include two electron belts and one inner proton belt. The inner electron belt
contains electrons with energy lower than 5 MeV, and the outer belt contains electrons
with energy that may reach 7 MeV. Heavy ions may also be trapped in the magnetosphere
(BOUDENOT, 2007).

Cosmic rays entering the atmosphere may interact with the atoms and molecules
present. This interaction produces a cascade of lighter particles (air shower) that includes
x-rays, muons, protons, alpha particles, pion, electrons, and neutrons (MORRISON,
2008), as shown in Fig. 2.1. Neutrons are typical particles produced in such events.

Fig. 2.1: Source of ionizing radiation.

According to the operating environment, there are different types of particles and
different fluxes that may affect the integrated circuit:

34

 Space: heavy ions, protons, and electrons
 Flight altitude: mainly neutrons
 Sea level: neutrons.

Each kind of particle may produce different effects on integrated circuits. Heavy ions
produce direct ionization, while protons interact with matter producing nuclear reactions
and secondary ionizations. Neutrons also interact with material producing secondary
particles such as alpha particles and nuclear reactions.

The transient faults are originated from the interaction of such energized or secondary
particles with the silicon at the PN junctions of an off-state CMOS transistors. The
electron-hole pair track formed by this interaction may charge or discharge that struck
node producing a transient pulse. The phenomena is known as Single Event Effect (SEE).
SEE can be potentially destructive, known as hard errors, but generally they are non-
destructive, known as soft errors (O'BRYAN, 2015). This work focuses on soft errors.

2.2 Non-destructive Single Event Effects

According to the European Space Agency (ESA) (STURESSON, 2009), the main type
of non-destructive SEEs are:

 Single Event Upsets (SEU): an SEU is characterized when a transient fault
affects a memory element, such as a memory cell or a register, changing the
state of the element

 Single Event Functional Interrupts (SEFI): it is an event that leads to
temporal loss of device functionality. SEFIs are often induced from SEU in
control registers. The system is recovered by reset or power cycle

 Single Event Transients (SET): when the transient fault affects a gate of the
combinational logic, creating a glitch, it is called Single Event Transient. SETs
are becoming a major concern because the frequency is increasing (FERLET-
CAVROIS, 2005).

Fig. 2.2 shows an example of an SEU and an SET. A particle hits a memory element,
causing an SEU, changing the stored value from 0 to 1. The change of the memory
element value is known as bit flip. Fortunately, the SEU in the example is masked by the
NAND gate that follows the fault because the other NAND input is 0. If it were 1, then
the output of the first NAND would be affected by the fault, and the error would
propagate. Another particle hits an NOR gate causing an SET, temporarily changing the
expected output from 1 to 0. In the example, the fault is not masked by any gate.
Therefore, it propagates until a memory element. If the pulse hits a memory element
during a clock event, a wrong value is stored in the memory element.

35

Fig. 2.2: SEU and SET in circuits.

2.3 Fault, error, and failure

Following the definitions presented by (AVIZIENIS, 2004), the concepts of fault,
error, and failure can be understood as:

 Fault: it is the logical effect of the particle hit. The fault effect is a bit flip in
a memory element. Faults can lead to errors, or they can be masked by latch
window, logical, or electrical properties.

 Error: error is an active fault. It may propagate to the system output and
causes a system failure.

 Failure: a failure is defined as a system malfunction. It occurs when the
system produces an incorrect output.

It is important to notice that not all faults cause errors, and not all errors lead to
failures.

2.4 Soft errors in processors

Soft errors affect processors by modifying values stored in memory elements (such as
registers or data memory). They may lead the processor to incorrectly execute an
application, producing a wrong output or even entering into a loop and never finishing
the execution. They can affect the control-flow and the data-flow of a running application,
as Fig. 2.3 shows.

36

Fig. 2.3: Effect of soft errors in processors.

Data-flow error refers to soft errors caused by bit flips in storage devices, such as
registers or memories. They affect the program output, but not its execution. When a fault
affects the data-flow, the application runs normally, but the result, in the end, is incorrect.
The data-flow errors are normally caused by:

 Wrong operation: the bit flip modifies the instruction, and it performs another
operation, which affects a memory element, such as a register or memory cell

 Incorrect data: the bit flip affects directly a memory element that contains
the data used by an operation. Since the operation input is wrong, it is likely
that its output will also be wrong. The error may propagate to the program
output.

A control-flow error occurs when the program flow is incorrectly followed, i.e., the
error changes the program execution. When a fault affects the control-flow, an erroneous
execution flow occurs. The possible outcomes caused by the fault are:

 Branch creation: a bit flip converts a non-branch instruction into a branch,
and then this illegal branch changes the program flow to a wrong address

 Branch deletion: a branch instruction is converted into another instruction.
Thus, a branch is not taken when it should be

 Incorrect branch decision: it happens when a branch that should go in one
direction, based on a comparison, goes in the other direction, i.e., a branch is
not taken when it should be, or when it is taken when it should not be

 Incorrect target address: the bit flip modifies the register that contains the
target address of a branch instruction (for example, the one used to return from
a subroutine). It will change the program execution to an incorrect address

 Bit flip in the PC register: it changes the next instruction to be executed. It
has the same effect as branch creation.

2.5 Fault tolerance techniques

The use of fault tolerance techniques can provide reliability for processors against soft
errors and significantly reduces the chances of an application being incorrectly executed.
The techniques can detect, mask or correct errors. The ones detecting errors are less costly
than the ones masking or correcting because less redundancy is added. Therefore, this
work focuses on detection techniques. Once an error is detected, a restarting or rollback
process can be performed. With regards to processors, there are two types of fault
tolerance techniques: hardware-based techniques, which rely on replicating or adding
hardware modules, and software-based techniques, which rely on the replication of
information and instructions in the program code (UNSAL, 2002).

2.5.1 Hardware-based fault tolerance techniques

Hardware-based techniques are fault tolerant schemes based on hardware redundancy
(PRADHAN, 1996). The redundancy can be applied at many different logic granularities.
The Triple Modular Redundancy (TMR) is a well-known hardware-based fault tolerance
technique. It triplicates the hardware and masks the error by voting the results in order to
get the correct values. In some cases, the datapath and registers can be triplicated, which
implies modifying the original processor design (PILOTTO, 2008).

37

The processors specially designed with hardware-based techniques in the internal
architecture are used called RadHard processors. Examples of RadHard processors are
Cobham LEON 3FT/4FT, Space Micro Proton200k SBC, etc. However, they are very
expensive and are not high-end architectures, usually fabricated in old technologies.
Another limitation for using RadHard processors is the restrictions on the commerce of
RadHard devices, due to international trade regulations, such as ITAR (International
Traffic in Arms Regulations), which makes impossible to many countries to buy many of
these devices (CASTRO NETO, 2010).

Other techniques use the processor as a black box by adding redundancy or extra
hardware just outside the processor. One example is when the entire processor is
triplicated, and just the outputs or memory values are voted, as, for instance, the Maxwell
SCS750 (MAXWELL TECHNOLOGIES, 2015), Atmel SPARC V7 ERC32 and
TSC695FL (GINOSAR, 2012). For only detecting an error, the Duplication With
Comparison (DWC) technique (WAKERLY, 1978) can be used. After masking or
detecting an error, the processor must restart or to recompute from a safe state step.

Fig. 2.4 shows an example of a processor protected by a hardware-based technique.
In the example, a copy processor, similar to the original, is utilized. The copy processor
executes the same application of the original processor. A checker compares if the outputs
of both processors match. If they do, the output is correct; otherwise, an error is reported.

Fig. 2.4: Example of DWC hardware-based technique using a black box processors.

Many modern multi-core processors have the lockstep capability. It means that
different cores run the same program, which allows error detection (if dual modular
redundancy) or correction (if triple modular redundancy). Examples of the processors
implementing the lockstep capability are the ARM Cortex-R processors, which
implement a dual modular redundancy. Detection is done in a short time, usually few
clock cycles, and the process rollback to a previous correct saved state. The rollback
requires additional memory for storage the previously executed commands. Furthermore,
the time consumed on saving the current processor’s state for a future rollback is an
important drawback (BELCASTRO, 2006).

The hardware techniques can also be based on hardware monitoring devices, called
watchdogs (MAHMOOD, 1988), to monitor specific information. Such devices monitor
the control-flow and memory accesses of applications running on the target processor,
such as (AZAMBUJA, 2011b), or the information provided by the processor through the
debug port, for example, as in (DU, 2015). On the downside, the information that
watchdogs can access may be limited. Some registers, buses, cache memories may not be
accessible. That limits the use of watchdogs depending on the architecture of the target
processor.

Although the high reliability of hardware-based techniques, they introduce significant
overheads, like an increase in area and power consumption. It can be critical for space

38

applications since they are supplied by batteries (REIS, 2005b). Furthermore, hardware-
based techniques present high design and manufacture costs (ASENSI, 2011).

2.5.2 Software-based fault tolerance techniques

Software-based techniques, also referred in the literature as SIHFT (Software-
Implemented Hardware Fault Tolerance) techniques (GOLOUBEVA, 2006), are an
approach to protect processor-based systems against soft errors by modifying the program
code, without having to modify the underlying hardware. They rely on adding instruction
redundancy and comparison to detect errors, as exemplified in Fig 2.5. These techniques
provide high flexibility and low development time and cost. In addition, they allow the
use of commercial off-the-shelf (COTS) processors, since no modification of the
hardware is necessary. That makes possible to use new generations of processors with no
available equivalent RadHard.

Fig. 2.5: Example of a SIHFT technique.

As stated, there are two types of soft errors that affect processors: errors in the data-
flow and errors in the control-flow. In consequence, the software-based techniques
present in the literature can be divided in two groups: control-flow techniques (OH,
2002b), (MCFEARIN, 1995), (ALKHALIFA, 1999) and data-flow techniques
(AZAMBUJA, 2011b), (OH, 2002a). The first group aims to detect faults affecting the
data. In order to do so, such techniques duplicate registers used by the application. By
duplicating the registers, it is possible to compare them by adding checking instructions.
It is important to notice that every operation performed in a register must also be
performed in its copy to keep consistency. The second group aims to detect illegal
branches in the program execution by assigning a unique signature for each block of
instructions. Then, these techniques assign the block signature to one register available
during the execution. Checking instructions are inserted in the code to compare the
signature register with the expected signature for that block. By doing so, it is possible to
detect incorrect branches in the program execution. Finally, it is important to mention that
there are techniques that aim at protecting against both data-flow and control-flow errors.
These techniques combine characteristics of both data-flow and control-flow techniques
with some optimizations (REBAUDENGO, 1999), (CHEYNET, 2000), (REIS, 2005b).
Anyhow, they can be seen as a data-flow and a control-flow technique applied together.
Details about data-flow and control-flow techniques are presented as follows.

2.5.2.1 Data-flow techniques

Data-flow techniques aim to detect faults affecting the data, i.e., the values stored in
registers and the memory. In order to do so, such techniques duplicate, when detecting,
and triplicate, when correcting, the registers used by the application. By duplicating
registers, it is possible to detect data-flow errors by comparing a register with its replica.
It is important to notice that every operation performed in a register must also be
performed in its replica to keep the program consistent. Fig. 2.6 shows an example of a
code hardened by a data-flow technique. On the left side, one can see the original code
composed of five instructions, lines 1, 4, 9, 13, and 17. And the right side shows the same
code hardened. Registers $12, $13, $14, and $15 are replicas of registers $2, $3, $4 and

39

$5, respectively. The duplicated instructions are presented at lines 2, 5, 10, and 14
(formatted as italic). In this technique, checkers are inserted before stores and branches,
checking the source registers, and after any other instruction, checking the destination
register. Checkers are inserted at lines 3, 6, 7, 8, 11, 12, 15, and 16 (formatted as bold).

original code hardened code

1: lw $2,0($4)

4: sll $4,$2,1

9: sw $2,0($3)

13: sw $4,0($2)

17: ble $4,$5,$L2

1: lw $2,0($4)

2: lw $12,offset($14)
3: bne $2,$12,error

4: sll $4,$2,1

5: sll $14,$2,1
6: bne $4,$12,error

7: bne $2,$12,error

8: bne $3,$13,error

9: sw $2,0($3)

10: sw $12, offset ($13)
11: bne $4,$14,error

12: bne $2,$12,error

13: sw $4,0($2)

14: sw $14, offset ($12)
15: bne $4,$14,error

16: bne $5,$15,error

17: ble $4,$5,$L2

Fig. 2.6: Example of a data-flow technique.

It is possible to notice by the example that data-flow techniques introduce significant
overheads. The overheads caused by data-flow techniques are higher than the ones caused
by control-flow due to the duplication of data and instructions, and the insertions of
checkers. Control-flow techniques only insert instructions to modify and check the value
of signatures. If the application needs fault tolerance but has performance or energy
constraints, data-flow techniques might not be applied. New data-flow techniques with
reduced overheads are desirable in such scenarios.

2.5.2.2 Control-flow Techniques

Control-flow techniques aim to detect incorrect branches during the program
execution. The code is divided into basic blocks (BBs), which are branch-free sequences
of instructions with no branches into the basic block, except to the first instruction, and
no branches out of the basic block, except possibly for the last instruction. Fig. 2.7(b)
shows the basic blocks and the program flow of the code presented in Fig 2.7(a). Calls
to subroutines (jal), branches, and jumps are ends of basic blocks. Consequently, the
following instruction is a beginning of another basic block. Labels indicate the beginning
of basic blocks. Thus, the instruction before a label is the end of the previous basic block.

40

BB0

main:

 la $5,$LC0

 lw $2,0($5)

 lw $3,4($5)

 jal function #$31<-C+4

BB1

 sw $4,8($5)

 lw $2,12($5)

 lw $3,16($5)

 jal function

BB2
 sw $4,20($5)

 …

BB3
function:

 li $4,0

BB4

func_loop:

 add $4,$4,$2

 subu $3,$3,1

 bgtz func_loop

BB5 jr $31 #PC <- $31

(a) (b)

Fig. 2.7: Basic Blocks and program flow.

These techniques usually assign a unique signature for each basic block and,
sometimes, another protection to the program flow. The signature is assigned to an
available register at the beginning of the basic block, and it is usually checked at the
beginning or end of the basic block. By doing so, they are able to detect illegal branches
in the program execution.

The following chapter presents, in details, some of the state-of-the-art SIHFT
techniques and selective hardening methods. They are important for a deep understanding
SIHFT techniques and the contributions of this work.

41

3 RELATED WORK

Software-based fault tolerance techniques, also referred in the literature as Software-
Implemented Hardware Fault Tolerance (SIHFT) techniques (GOLOUBEVA, 2006), are
techniques implemented in software to protect processor against soft errors that may
affect the program flow or the data stored in registers or memory. The techniques that
aim to protect the data are called data-flow techniques, and the ones to protect the control-
flow are the control-flow techniques. There are also techniques that combine features of
both data-flow and control-flow techniques. They consist of code transformation rules,
and can be understood as a data-flow and control-flow technique applied together.

Although software techniques bring reliability to processors, they cause performance
and memory overheads, and, consequently, increase the energy consumption. To reduce
those overheads, selective methods to protect processors, known as selective hardening,
can be implemented. Their goal is to reduce the overheads with minimum impact in the
protection. This chapter presents the state-of-the-art of data-flow techniques, control-flow
techniques, techniques that combine features of data-flow and control-flow techniques,
and methods for selective hardening.

3.1 Data-flow techniques

Data-flow techniques are designed to protect the data stored in registers or memory.
These techniques replicate the variables, assigning copies to the original ones. When the
aim is error detection, variables are duplicated, and when correction is desirable, variables
are triplicated. Checkers are inserted in the code to compare variables with their copies.
The points where checkers are inserted depends on the technique. Since error detection
presents lower overheads than correction, due to duplication instead of triplication, this
work focuses on that. Some data-flow techniques present in the literature are discussed
below.

3.1.1 EDDI

EDDI (Error Detection by Duplicated Instructions) is a well-known data-flow
technique proposed by (OH, 2002a). It duplicates all the information, i.e., all registers are
duplicated, and all operations on the registers are also performed on the registers replicas.
To ensure that the data is correct, instructions are inserted to compare the original register
with its replica. If the values differ, an error is detected. The points where checkers are
inserted by EDDI are:

 Before storing a register value in memory: stores are the connection
between the processed information and the memory. If an error occurs during

42

the computation, it will probably propagate to the output. Therefore, stores are
a good point to check the consistency of the information

 Before branch instructions: a misdirected branch can make the program
execution skip stores, or execute incorrect stores. Besides, exiting a loop
before or after its supposed exiting point can make the output incorrect.

Fig. 3.1 shows how EDDI is applied. As one can see, the original instructions are
presented at lines 1, 3, and 8 (formatted as normal text). Their replicas are at lines 2, 4,
and 9, respectively (formatted as italic). Instructions accessing the memory present an
offset to duplicate the values in memory. The replicas of the registers r11, r12, and r13
are the registers r21, r22, and r23, respectively. Instructions to compare the registers used
by the store at line 8 are inserted at lines 5 and 6. If an error is detected, the branch at line
7 is taken. The checking instructions are formatted as bold.

original code EDDI code

1: ld r12=[GLOBAL]

1: ld r12=[GLOBAL]

2: ld r22=[GLOBAL+offset]

3: add r11=r12, r13

3: add r11=r12,r13

4: add r21=r22,r23

8: st m[r11]=r12

5: cmp.neq.unc p1,p0=r11,r21

6: cmp.neq.or p1,p0=r12,r22

7: (p1) br faultDetected

8: st m[r11]=r12

9: st m[r21+offset]=r22

Fig. 3.1: EDDI technique (REIS, 2005b).

3.1.2 Variables 1

Variables 1 (VAR1) is a data-flow technique proposed by (AZAMBUJA, 2011a). It
is based on (CHEYNET, 2000) rules that aim to protect the data. These rules are
implemented in a high-level language. On the other hand, VAR1 is implemented in the
assembly code. Therefore, the variables are replaced by registers. VAR1 proposes rules
aiming at detecting faults affecting the data. Such rules are presented below; they
comprise of instruction replication and insertion of checkers to detect incorrect values.

 Rule 1: every variable used in the program must be duplicated

 Rule 2: every write operation performed on a variable must be performed on its
replica

 Rule 3: before each read on a variable, its value and the value of its replica must
be checked for consistency.

Fig. 3.2 shows an example of how VAR1 rules are applied. The original code is
presented on the left side, and the protected one is on the right side. The duplications are
showed at lines 3, 7, and 11 (formatted as italic), and checkers at lines 1, 4, 5, 8, and 9
(formatted as bold). The checker at line 1 checks the base address register of the load
operation with its replica. Checkers at lines 4 and 5 are related to the add instruction at
line 6. Finally, the checkers at lines 8 and 9 check the registers used by the store operation
at line 10.

43

original code VAR1 code

2: ld r1, [r4]

1: bne, r4, r4', error

2: ld r1, [r4]

3: ld r1', [r4' + offset]

6: add r1, r2, r4

4: bne r2, r2', error

5: bne r4, r4', error

6: add r1, r2, r4

7: add r1', r2', r4'

10: st [r1], r2

8: bne r1, r1', error

9: bne r2, r2', error

10: st [r1], r2

11: st [r1' + offset], r2'

Fig. 3.2: VAR1 technique (AZAMBUJA, 2011a).

3.1.3 Variables 2

Variables 2 (VAR2) is an alternative data-flow technique, proposed by (AZAMBUJA,
2011a), that aims at reducing the overheads imposed by VAR1. The technique uses VAR1
rules 1 and 2, but it changes the way checkers are inserted in order to reduce the number
of extra instructions. Based on that, it is expected to reduce the execution time overhead.
Instead of checking the variables before read them, VAR2 checks the variables after
writing a new information on them. VAR2 is also implemented in assembly level. Thus,
the references to variables should be understood as references to registers. In instructions
where there no new value is assigned to any variable (stores, for example), it is
implemented the same checking approach of VAR1, i.e., the variables are checked before
they are read. The rules are stated as:

 Rule 1: every variable used in the program must be duplicated

 Rule 2: every write operation performed on a variable must be performed on its
replica

 Rule 3: after each write on a variable, its value and the value of its replica must
be checked for consistency. If no value is assigned to a variable in the instruction,
the checking is performed before reading the variable.

Fig. 3.3 shows how VAR2 is implemented. Duplications are inserted at lines 2, 5, and
10 (formatted as italic). Checkers are presented at lines 3, 6, 7, and 8 (formatted as bold).
The checkers, at lines 3 and 6, check after a write operation on r1, and the ones at lines 7
and 8 perform checkings before reading the registers in the store instruction (line 9).

44

original code VAR2 code

1: ld r1, [r4]

1: ld r1, [r4]

2: ld r1', [r4' + offset]

3: bne, r1, r1', error

4: add r1, r2, r4

4: add r1, r2, r4

5: add r1', r2', r4'

6: bne r1, r1', error

9: st [r1], r2

7: bne r1, r1', error

8: bne r2, r2', error

9: st [r1], r2

10: st [r1' + offset], r2'

Fig. 3.3: VAR2 technique (AZAMBUJA, 2011a).

3.1.4 Variables 3

Variables 3 (VAR3) is a technique proposed by (AZAMBUJA, 2011a) that aims to
reduce the overheads of VAR1. It considers that inconsistency between the duplicated
variable only needs to be checked before reading or writing data to memory, and before
branches. The rules for VAR3 technique are:

 Rule 1: every variable used in the program must be duplicated

 Rule 2: every write operation performed on a variable must be performed on its
replica

 Rule 3: before each read on a variable by loads, stores or branches, its value and
the value of its replica must be checked for consistency.

Fig. 3.4 presents an example of VAR3. The original code is shown on the left side,
and the one protected by VAR3 is presented on the right side. Firstly, the instructions are
duplicated. The duplications can be seen at lines 3, 5, and 9 (formatted as italic). The way
VAR3 duplicates the code is the same of VAR1. Checkings are also performed before
reads on variables, but not in all operations. Checkers are not inserted for arithmetic
instructions. They are inserted at lines 1, 6, and 7, and are related to a load and a store
instruction. VAR3 presents significant overhead reduction when compared to VAR1 or
VAR2.

original code VAR3 code

2: ld r1, [r4]

1: bne, r4, r4', error

2: ld r1, [r4]

3: ld r1', [r4' + offset]

4: add r1, r2, r4

4: add r1, r2, r4

5: add r1', r2', r4'

8: st [r1], r2

6: bne r1, r1', error

7: bne r2, r2', error

8: st [r1], r2

9: st [r1' + offset], r2'

Fig. 3.4: VAR3 technique (AZAMBUJA, 2011a).

45

3.1.5 Drawbacks of data-flow techniques

The data-flow techniques duplicate the data and instructions in the code. Replicas are
assigned to the registers used by the application. The main difference among these
techniques consists of the location where checkers are inserted. Table 3.1 shows the
average execution time, code size, and data error detection rate for tests with the state-of-
the-art data-flow techniques using a set of applications2 running on the miniMIPS
processor3 (HANGOUT, 2009). As one can see, the execution time varies from 1.63x
(EDDI) to 2.54x (VAR2), and the code size ranges from 1.73x (EDDI) to 2.48x (VAR2).
The percentage of errors affecting the data-flow detected goes from 91.7% (EDDI) to
96.3% (VAR2). One can notice that the current data-flow techniques detect most of the
errors affecting the data-flow. However, the overheads they imply to the application are
high. New approaches to reduce such overheads are necessary.

Table 3.1: State-of-the-art data-flow techniques

technique execution time code size data error detection

EDDI 1.63x 1.73x 91.7%

VAR1 2.42x 2.35x 96.1%

VAR2 2.54x 2.48x 96.3%

VAR3 1.83x 1.90x 95.3%

3.2 Control-flow techniques

Control-flow techniques are designed to protect the program flow, i.e., to protect
against incorrect branches. Such techniques divide the code into basic blocks. A basic
block (BB) is a branch-free sequence of instructions, i.e., a portion of code that is always
executed in sequence. There only can be a branch instruction at the end of the basic block.
Furthermore, there are no branches to the basic block, except, possibly, to the first
instruction. For each basic block, a signature is assigned. The signature is attributed to a
global register at the beginning of the basic block. Checkers are inserted into the code to
verify if the signature register contains the expected value. If it does not, it means there
was an incorrect branch and an error is reported. The main control-flow techniques
present in the literature are described below.

3.2.1 CCA

McFearin (1995) proposed a control-flow technique called Control-Flow Checking
Using Assertions (CCA). CCA divides the code into basic blocks, referred by them as
Branch Free Interval (BFI), and assigns two identifiers for each basic block, the Branch
Free Interval Identifier (BID) and the Control Flow Identifier (CFID). CCA requires
three registers to be implemented, one for BID and two for CFID. BID represents the BB,
and it has a unique value for each BB. The BB’s BID is attributed to the BID register at
the beginning of the basic block and checked at the end. CFID is used to check if the BBs
are executed in the correct order. It indicates the possible next BBs. CFID works with two

2 The set of applications consists of bubble sort, Dijkstra's algorithm, matrix
multiplication, run-length encoding, summation, TETRA encryption algorithm. Details
about them in the appendix C.
3 More details about the miniMIPS processor in the appendix B.1.

46

queue elements, and that is why it requires two registers. At the beginning of the program
execution, the queue contains only the CFID of the first BB. When it enters in a BB, the
next BB’s CFID is enqueued. And before exiting the basic block, the queue is dequeued,
and the dequeued element is checked with the expected CFID. Fig. 3.5 summarizes the
explained above. It is important to notice that BBs B and C share a common parent;
therefore, they have the same CFID. A control-flow error is detected for any of the
following cases:

 The BID register differs from the BB’s BID: an illegal branch has occurred
from the previous BB to the middle of the current one. It will be detected at
the end of the current basic block

 Trying to enqueue when the queue is full: it happens due to an illegal branch
from the middle of the previous BB to the beginning of the current one

 Trying to dequeue an empty queue: an illegal branch from the end of the
previous BB to the middle of the current BB

 The dequeued CFID differs from the expected one: it means there was a
branch to another BB, different from the expected ones.

Fig. 3.5: Example of CCA technique (ALKHALIFA, 1999).

CCA can detect most control-flow errors, but it cannot detect errors affecting the
branches used as checkers by the technique. Furthermore, when two parents have a
common child, all the children have the same CFID. For example, if parent A has C and
D as children, and parent B has D and E as children, all C, D, and E, have the same CFID.

47

So if an illegal branch occurs, from A to E or from B to C, it will not be detected. Besides,
CCA presents high overheads. Instructions to enqueue, dequeue, check the queue
integrity, check the CFID, assign and check the BID, are quite costing. Actually, it could
also increase the probability of error due to the increased program size (ALKHALIFA,
1999).

3.2.2 ECCA

Enhanced Control-flow Checking Using Assertions (ECCA) is the successor of CCA
(ALKHALIFA, 1999). It divides the code into blocks that are collections of consecutive
basic blocks with a single entry and exit. A unique prime number is assigned for each
block as the block identifier (BID). At the beginning of the block, a global variable id is
updated using the following equation:

Eq.	3.1 	 ←
∙ 2

 And, at the end of the block, the variable is updated using the equation below. The
NEXT component of the equation is the product of all possible subsequent blocks.

Eq.	3.2 	 ←

ECCA combines the CCA’s BID and CFID in one signature. Although ECCA seems
to present lower overheads, the equations to update id are quite complex, and they are
implemented using several instructions at the assembly level.

3.2.3 CFCSS

Oh (2002b) proposed Control-flow Checking by Software Signatures (CFCSS). It is a
control-flow technique that updates signature register G at runtime. Firstly, the program
is divided into basic blocks, and for each basic block, a random signature is assigned.
When the execution pass from one BB (let us call BB1) to another BB (let us call BB2),
a new G is generated based on an XOR function f that uses the signatures of the BB1 and
BB2, as shown in Eq. 3.3:

Eq.	3.3 	 ≡ , ⊕

where G is the signature register that, at first, contains the BB1’s signature, and dd is a
value to update G to the new signature (the BB2’s signature). The dd, defined in Eq. 3.4,
is given by the XOR operation between the signatures of BB1 (ss) and BB2 (sd):

Eq.	3.4 	 ⊕

If a branch is correctly taken, G is updated to the correct signature. In Fig. 3.6, during
the execution of BB1, G is equal to signature s1. It is updated to s2 when entering BB2 by
using Eq. 3.3. If an illegal branch from BB1 to BB4 occurs, G is updated to an incorrect
value. To detect errors, branches to check G with the expected signature are placed at the
beginning of the basic block, right after updating G.

48

Fig. 3.6: Signature update during correct and illegal branch.

The presented method can detect most control-flow errors. However, when a basic
block has more than one predecessor, the predecessors’ signatures must be the same so G
can be correctly updated to the new signature in any case. If this method is used, the same
problem that occurs with CCA can happen with CFCSS, i.e., if BB1 and BB2 share a
common successor (BB4), and each one has an independent successor (BB3 and BB5,
respectively), as shown in Fig 3.7, an illegal branch from BB1 to BB5, or from BB2 to
BB3, cannot be detected.

Fig. 3.7: Basic blocks sharing a common successor.

To avoid this problem, a runtime adjusting signature D is used. After G is transformed
by Eq. 3.3 at the beginning of BB4, G is also updated by an XOR operation between the
just transformed G and D. The value of D is defined in the predecessors BBs. Fig. 3.8
illustrates how D is used. The d4 is calculated using Eq. 3.4, where ss is randomly picked
among the predecessors. In the example, d4 = s1 � s4. For this reason, D is set to zero in
BB1 because G has the correct signature after the first update. On the other hand, D, in
BB2, needs to be set to s1 � s2. Thus, G has the correct value after the two updates: G =
(G � d4) � D = (s2 �	s1	�	s4 	�	 s1	�	s2 	 	s4.	The	not	shared	successors	do	not	need	
to	use	D.	In	this	case,	G	can	be	updated	using	only	Eq.	3.3.	

49

Fig. 3.8: Update of D when BBs share a successor.

Although that the introduction of the runtime adjusting signature solve the problem
cited above, the same problem can still happen if multiple basic blocks share multiple
successors, as shown in Fig. 3.9. BB5 has three predecessors, BB1, BB2, and BB3, and
BB6 has two predecessors, BB2 and BB3. Since there is only one runtime adjusting
signature D, both BB5 and BB6 have to use the same value for D. Thus, if D is calculated
for BB5, BB6 has to use the same D to update G. Thus, if an illegal branch occurs from
BB1 to BB6, it will not be detected.

Fig. 3.9: Undetected illegal branch.

3.2.4 YACCA

Goloubeva (2003) introduced a new control-flow technique called YACCA, acronym
for Yet Another Control-Flow Checking using Assertions. The code is divided into basic
blocks, and a unique signature is assigned for each basic block. Like ECCA, a global
variable is updated at the beginning and end of the basic blocks. At the beginning, the
global variable is used to control if the transition from previous basic block to the current
one is valid. And at the end, the global variable is updated to the BB’s signature. However,

50

unlike ECCA the basic block transitions are not controlled by checking if the current BB
signature is multiple of the previous ones. Actually, it checks if the global variable
contains the signature of a predecessor BB. In order to avoid adding multiple checkers
for each basic block since a basic block can have many predecessors, a global variable
ERR_CODE is defined as follows:

Eq.	3.5 	 ERR_CODE = (code != BB1) &&(code != BB2) && (...) && (code !=
BBN)

where BB1, BB2, ..., BBN are the signatures of the previous basic blocks, and code is the
global variable that contains the current signature. If ERR_CODE is 1, an incorrect
transition has occurred.

The equation to update the global variable code is presented below (Eq. 3.6). M1
represents a constant defined only by the signatures of the previous basic blocks. And M2
is a constant based on the previous BBs’ signatures further the current BB signature. This
method avoids the aliasing effect presented by CFCSS when multiple BBs share multiple
previous BBs. Furthermore, the runtime adjusting signature is not necessary.

Eq.	3.6 	 code = (code & M1) � M2

In addition, another rule proposed by Rebaudengo (1999) integrated to the technique.
It aims at detecting incorrect decisions of conditional branches. For this, the branch
instruction is repeated at the beginning of both target basic blocks to detect if the same
test produces different results, which means that an error has occurred. This method is
better discussed in section 2.3.1 with the original technique.

YACCA is capable of detecting most of the faults affecting the control-flow.
Furthermore, it avoids the aliasing presented by CFCSS when multiple basic blocks share
multiple predecessors. However, the technique present a high overhead in performance,
mainly due to the method to detect erroneous transitions between basic blocks. It requires
as many instructions as the number of predecessors the basic block has to determine
ERR_CODE, besides another instruction to check the ERR_CODE value.

3.2.5 CEDA

Control flow Error Detection through Assertions (CEDA) is an efficient control-flow
technique (VEMU, 2011). It divides the code into basic blocks. For each BB, two
signatures are assigned. One is the basic block’s signature, called Node Signature (NS),
and the other is a transition signature, called Node Exit Signature (NES). Only one
signature register S is necessary for implementing CEDA. At the beginning of the basic
block, S is updated to the BB's NS and at the end, before exiting the BB, S is updated to
the BB's NES. The basic blocks are classified in two types: A and X, which are used to
define the operation to update S to the BB's NS. A basic block is of type A if it has multiple
predecessors and at least one of its predecessors has multiple successors. Otherwise, the
basic block is of type X. The possible equations to update S when entering in a BB are:

Eq.	3.7 	 S = S AND d1(BBi), if BBi is of type A

Eq.	3.8 	 S = S XOR d1(BBi), if BBi is of type X

where BBi is the current basic block, and d1 is a constant to update S to the current NS.
The equation to update S to NES, before exiting the BB, is presented bellow. The constant
d2 is used for this.

Eq.	3.9 	 S = S XOR d2(BBi)

51

Furthermore, the same rule proposed by Rebaudengo (1999), and used by YACCA,
is implemented in CEDA. It aims at detecting incorrect decision of conditional branches.
The branches are retested at both true and false destinations. However, CEDA does not
implement it to the basic blocks that have multiple predecessors.

There is a new concept introduced in CEDA, the networks. A network is a set of basic
blocks that share a common predecessor. Each basic block belongs to one and only one
network. And the network predecessors are the predecessor basic blocks of a network. It
is a group composed of all the basic blocks that are predecessors of any basic block of a
network. Furthermore, there is the related signature set, which is a set containing all the
BBs’ NES of the network predecessors, plus the NS of the BBs of type A in the current
network.

The signatures in CEDA are divided into upper and lower half. The upper half of NS
and NES are related to the network. For each network, the signatures contained in the
related signatures set have the upper half assigned the same unique value. The remaining
NS and NES have a unique and independent value assigned to their upper halves. The
upper half signature is never masked, so it can detect any illegal branch, except for those
between basic blocks belonging to the same related signature set. In order to detect such
errors, the lower half is used, and it is assigned based on the following rules, considering
the signatures as binary numbers:

 Since signatures in the same related signature set have the same upper half,
the lower half cannot be equal, with exception of the NES signatures that
belong to basic blocks that share a common successor of type X. In these cases,
the entire signature (upper and lower half) must be equal

 Let set of zeros of a signature be all the zeros in the lower half. The positions
of the zeros must also be taken into account. Considering BB1 as a basic block
of type A, and BB2 as being a predecessor of BB1, the set of zeros of BB2's
NES must be contained in the set of zeros of BB1's NS, but they cannot be
equal. It makes possible the transition from BB2 to BB1 since the set of zeros
of BB1's NS is masked by the AND operation from Eq. 3.7

 Considering BB1 as a basic block of type A that belongs to a network Net, and
BB2 a basic block that is not a predecessor of BB1, but that belongs to the
network predecessors of Net. The set of zeros of BB2's NES cannot be
contained in the set of zeros of BB1's NS. Thus, an illegal branch to the
beginning of a basic block of type A (from BB2 to BB1) will not be masked.

CEDA is an efficient control-flow technique when compared to previous control-flow
techniques because it presents error detection rates similar to YACCA and performance
overhead similar to CFCSS. However, when a program has many small basic blocks, i.e.,
basic blocks with just a few instructions, the overhead introduced by CEDA is high.

3.2.6 HETA

HETA, acronym for Hybrid Error-Detection Technique Using Assertions, is a hybrid
control-flow technique that mixes SIHFT techniques and hardware techniques
(AZAMBUJA, 2013). The software part of HETA is based on CEDA. It also classifies
basic blocks into types A and X and add them to networks. But instead of using two
signatures, HETA uses three signatures:

 Node Ingress Signature (NIS): a signature for entering the basic block

52

 Node Signature (NS): the basic block signature. It is defined by XOR
operations of all instructions contained in the basic block and the memory
address of its first instruction

 Node Exit Signature (NES): a signature for exiting the basic block.

The aim of NIS and NES is to detect illegal branches between different basic blocks.
It follows the same idea of CEDA. The NS is used to detect illegal branches inside a basic
block. A global predetermined register S is used to store the current signature. The update
of S from NIS to NS and from NS to NES follows the equation 2.10. The invariant is a
constant necessary to update S to its next value.

Eq.	3.10 	 S = S XOR invariant(BBi)

To update S from NES to NIS, the possible equations are:

Eq.	3.11 	 S = S AND invariant(BBi), if BBi is of type A

Eq.	3.12 	 S = S XOR invariant (BBi), if BBi is of type X

When the basic block is of type X, NIS and NS can be combined for optimization
because the updating of S to NS is subsequent to its updating to NIS.

Another novelty of HETA is related to the upper and lower halves of the signatures.
HETA reserves the maximum number of bits to the lower half, i.e., the upper half, which
is related to the networks, receives the minimum number of bits possible,
log2(#networks). Thus, the probability of bits being masked is lower since the upper half
is never masked and there are more bits to represent the lower half.

The NS cannot detect illegal branches inside a basic block by itself only. It needs
assistance of a watchdog. The watchdog reads the memory address and data buses. When
a basic block starts, the internal register W of the watchdog is reset. The beginning of the
basic block is determined by the watchdog using the XOR operation that updates S.
Register W is updated by performing XOR operation on the instructions coming from the
memory. Checkers to determine if S contains the correct value are done by performing
store operations of S to a predetermined memory address. The watchdog compares if S
and W have different values to determine if an error has occurred. Illegal branches inside
of a basic block would also be detected because, in such cases, the watchdog would
perform XOR operation on some instructions twice, or it would just skip some
instructions, which would result in a W different from S.

Furthermore, the rule proposed by Rebaudengo (1999) to detect incorrect decisions in
conditional branches, which is implemented by CEDA, is not implemented by HETA.
Azambuja implements it in a particular technique called Inverted Branches
(AZAMBUJA, 2011c). Anyhow, the author proposes the use of both techniques together
to improve the protection of the control-flow.

HETA presents very high detection rates. It is even capable of detecting illegal
branches inside a basic block due to the help of a watchdog. Such errors are impossible
to be detected by software-only techniques. However, the use of an extra signature
increases the performance and memory overheads, when compared to CEDA, because it
needs an extra instruction to update S in every basic block of type A. The power
consumption is increased due to the additional hardware. Also, the additional hardware
affects the portability of the technique to various platforms (GOLOUBEVA, 2003). And,
as the author stated, the watchdog needs access to the memory buses. Some processors

53

that use on-chip embedded cache memories may not be accessible by the watchdog. It
would make impossible the implementation of this technique.

3.2.7 Drawbacks of control-flow techniques

Control-flow techniques assign signatures and checkers to basic blocks. The main
difference among these techniques is the way the signatures are attributed and updated.
Table 3.2 shows the overheads for CFCC, ECCA, and YACCA. One can notice that
ECCA presents significant higher overheads when compared to CFCSS and YACCA.

Table 3.2: Overheads of CFCSS, ECCA and YACCA.

Program
Code size Execution time

CFCSS ECCA YACCA CFCSS ECCA YACCA

Matrix multiplication

5th order elliptical wave filter

Kalman filter

LZW data compression

2.61x

1.24x

1.64x

3.38x

4.08x

1.53x

2.82x

6.30x

1.91x

1.29x

2.17x

4.96x

1.35x

1.07x

1.17x

1.85x

1.99x

1.20x

1.68x

4.26x

1.47x

1.10x

1.56x

3.54x

Source: (GOLOUBEVA, 2003).

Vemu (2011) compared CEDA with CFCSS and YACCA. Only three types of
control-flow faults were injected: (1) branch deletion, jump instruction was replaced by
nop instruction, (2) branch creation, the value in the PC corresponding to any instruction
was corrupted, and (3) corrupting the target address of branch instruction. As can be
noticed, CFCSS and CEDA present the lower performance overhead, and YACCA and
CEDA present lower percentage of undetected faults. Thus, CEDA is the best state-of-
the-art software-only control-flow technique.

Table 3.3: Percentage of undetected faults (%UF) and performance overhead (%PO) for
CFCSS, YACCA, and CEDA.

Benchmarks
CFCSS YACCA CEDA

%UF %PO %UF %PO %UF %PO

parser

gzip

ammp

twolf

equake

4.6

3.4

4.7

2.8

2.8

14.36

57.7

4.45

7.5

18.81

1.0

0.7

0.3

0.6

0.5

33.9

84.32

78.97

39.8

33.9

1.1

0.6

0.2

0.6

0.5

13.79

57.8

3.15

9.8

17.9

Source: (VEMU, 2011).

The overheads presented by control-flow techniques are lower than the ones presented
by data-flow techniques. However, there is still room to reduce such overheads.
Furthermore, the use of selective hardening is not well explored in control-flow
techniques.

3.3 Combined data-flow and control-flow techniques

Some SIHFT techniques combine characteristic of both data-flow and control-flow
techniques. Usually, such techniques are composed of transformation rules. Part of these

54

rules aim at protecting the control-flow, and the other part aim at protecting the data-flow.
The combined data and control-flow techniques can be understood as an independent
data-flow technique and an independent control-flow technique applied together. Some
optimizations are possible when the protection of both techniques overlaps. In the
following subsections, some combined data-flow and control-flow techniques are
presented.

3.3.1 Transformation rules by Rebaudengo

Transformation rules in a high-level language have been proposed by Rebaudengo
(1999), and, lately, implemented by Cheynet (2000). They consist of rules that modify
the program code, introducing data and code redundancy. Since the rules are applied in
the high-level code, they are independent of the processor architecture. However, the
compiler optimization flags have to be disabled to avoid that the redundant code, inserted
by the technique, is removed by the compiler.

The first three rules of Rebaudengo aim at protecting the data. They consist of
duplicating the variables and inserting checkers right after the variables are read. The
rules are:

 Rule #1: every variable x must be duplicated: let x1 and x2 be the names of the
two copies

 Rule #2: every write operation performed on x must be performed on x1 and x2

 Rule #3: after each read operation on x, the two copies x1 and x2 must be checked
for consistency, and an error detection procedure should be activated if an
inconsistency is detected.

Fig. 3.10 shows an example of how these rules are applied. The original code is
presented at left, and the code modified by the rules is presented at right. The original
instructions can be seen at lines 1 and 4. The replicas are showed at lines 2 and 5. Checkers
are inserted after the variables are read, at lines 3 and 6. These rules are the same of
VAR1, but in this case, they are implemented in a high-level language. The same rules
discussed above must be applied to the parameters passed to a procedure. Fig. 3.11 shows
an example of it. The return value is also duplicated. To do so, the return variable and its
copy are passed as reference to the procedure.

original code modified code

1: a = b;

1: a1 = b1;

2: a2 = b2;

3: if (b1 != b2) error();

4: a = b + c;

4: a1 = b1 + c1;

5: a2 = b2 + c2;

6: if ((b1 != b2) || (c1 != c2)) error();

Fig. 3.10: Transformation rules by Rebaudengo to protect the data.

55

original code modified code

res = search(a);

...

int search (int p)

{

int q;

...

q = p + 1;

...

return(1);

}

search(a1, a2, &res1, &res2);

...

int search (int p1, int p2,
int *r1, int *r2)

{

int q1, q2;

...

q1 = p1 + 1;

q2 = p2 + 1;

if (p1 != p2) error();

...

*r1 = 1;

*r2 = 1;

return;

}

Fig. 3.11: Transformation rules by Rebaudengo to protect the data in procedures.

Other five rules have been proposed to protect the control-flow. Firstly, the code is
divided into basic blocks. Then the following rules are inserted to check if all the
instructions in a basic block were all executed in sequence.

 Rule #4: an integer value ki is associated with every basic block i in the code

 Rule #5: a global execution check flag (ecf) variable is defined; a statement
assigning to ecf the value of ki is introduced at the very beginning of every basic
block i; a test on the value of ecf is also introduced at the end of the basic block.

Fig. 3.12 provides an example of how rules #4 and #5 are applied. If there is an illegal
branch from one basic block to another, the different ecf value will signalize the error.
However, if the illegal branch goes to the beginning of the other basic block, to exactly
the instruction that assigns the signature, the error will not be detected.

original code modified code

/* basic block beginning */

...

/* basic block end */

/* basic block beginning #371 */

ecf = 371;

...

If (ecf != 371) error();

/*basic block end */

Fig. 3.12: Transformation rules by Rebaudengo to protect the control-flow.

Furthermore, to detect errors affecting the branch decisions, which cannot be detected
by signatures, another rule is proposed:

 Rule #6: for every test statement the test is repeated at the beginning of the target
basic block of both the true and false clauses. If the two versions of the test
produce different results, an error is signaled.

56

An example of how rule #6 is applied to the code can be seen in Fig. 3.13. At the
beginning of each basic block, a condition opposite to the valid one is inserted to check
if the branch was correctly taken.

original code modified code

if (condition)

{

/* BB 1 */

...

}

else

{

/* BB 2 */

...

}

if (condition)

{

/* BB 1 */

if (!condition) error();

...

}

else

{

/* BB 2 */

if (condition) error();

...

}

Fig. 3.13: Transformation rules by Rebaudengo to protect branch decisions.

The last two rules are used to protect procedures against control-flow errors. Such
rules are presented as follows:

 Rule #7: an integer value kj is associated with any procedure j in the code

 Rule #8: immediately before every procedure return statement, the value kj is
assigned to ecf; a test of ecf is also introduced after any call to the procedure.

These rules detect illegal branches to a procedure, erroneous target address of the
function calls, and errors affecting the register that contains the return address. An
example of rules #7 and #8 is presented in Fig. 3.14.

original code modified code

...

ret = my_proc(a);

/* procedure call */

...

/* procedure definition */

int my_proc(int a)

{

/* procedure body */

...

return (0);

}

...

/* call of procedure #790 /*

ret = my_proc(a);

if (ecf != 790) error();

...

/* procedure definition */

int my_proc(int a)

{

/* procedure body */

...

ecf = 790;

return (0);

}

Fig. 3.14: Transformation rules by Rebaudengo to protect the control in procedures.

57

The transformation rules by Rebaudengo present very high overheads. First of all,
protecting in the high-level language produces higher overheads than protecting in the
low-level (CHIELLE, 2014), (RESTREPO-CALLE, 2011). The deactivation of the flags
to optimize the code during compilation significantly reduces the performance.
Furthermore, besides the duplication, checkers are inserted to verify every single read for
every variable. The overheads it causes are clearly very high because, for most of the
instructions in the code, two other instructions are added, one to duplicate and the other
to check the variables. If the instruction reads two variables, the checker needs to test both
variables. This more complex checker is converted to assembly in more than one
instruction, which makes the overheads even higher. Therefore, performing checkings
every time a variable is read is very costly. Additionally, the signatures for control-flow
protection can easily be masked because they are assigned for each basic block and not
updated from one basic block to the other.

3.3.2 Transformation rules by Nicolescu

Nicolescu (2003) proposed new transformation rules to modify the high-level code,
specifically in C language, and provide reliability to it. The rules are partially based on
(REBAUDENGO, 1999). There are rules to protect the data-flow and rules to protect the
control-flow. The rules to protect the data-flow duplicate all variables and perform, on
their replicas, the same operations performed on the original variable. Checkers are
inserted to verify only the final variables, which are variables that do not take part in the
calculation of any other variable. For example, in Fig. 3.15 (a), variables c and b are used
to compose variable a; therefore, c and b are considered intermediary variables. In the
following instruction, a and b are used to define variable d. Since a is used to define the
value of another variable, it is also an intermediary variable. On the other hand, variable
d is not used by any other variable, so it is a final variable, and it will have its value
checked with its replica. The rules proposed by Nicolescu to protect the data-flow are:

 Identification of the relations among the variables

 Classification of the variables according to their role in the program: intermediary
variable or final variable

 Every variable x must be duplicated: let x1 and x2 be the names of the two copies

 Every operation performed on x must be performed on x1 and x2

 After each write operation on the final variables, the two copies x1 and x2 must
be checked for consistency, and an error detection procedure is activated if an
inconsistency is detected.

One can see the application of these rules in Fig. 3.15. All variables are duplicated,
and the operation is replicated to the copies. Since d is the only final variable in this code,
a checker is inserted to verify only d. The value of d1 is compared with the value of d2
after a write operation on them. If they have the same value, the program execution
continues normally. Otherwise, an error detection procedure is called.

58

Fig. 3.15: Transformation rules to protect the data (NICOLESCU, 2003).

For the protection of the control-flow, the code is divided into basic blocks, and for
each basic block, a Boolean flag is assigned. The flag takes the value zero if the BB is
active, and one otherwise. It is updated by incremented modulo 2 at both beginning and
end of the basic block. Thus, the value is always one or zero. Furthermore, an integer is
associated with every basic block. A global signature variable is assigned based on the
Boolean flag and the associated integer. The control-flow rules are presented as follows:

 A boolean flag status_block is associated with every basic block i in the code; 1
for the inactive state and 0 for the active state

 An integer value ki is associated with every basic block i in the code

 A global execution check flag (gef) variable is defined

 A statement assigning to gef the value of (ki & (status_block = status_block + 1)
mod 2) is introduced at the beginning of every basic block i; a test on the value of
gef is also introduced at the end of the basic block.

Fig. 3.16 shows an example of how the control-flow rules are applied. The
status_block flag is updated at the beginning of the basic block, and the gef is updated
right after. At the end, gef is compared with the basic block integer signature. If they are
different, the error procedure is called. In theory, it should avoid masking errors when an
illegal branch goes to the beginning of the basic block because, in this case, status_block
would be updated to one, which would make gef different from the expected signature i,
and it would be detected at the end of the basic block. However, when compiled, the
update at the beginning of the basic block is divided in two assembly instructions, one to
update status_block and another to update gef. If the illegal branch goes to the second
instruction, the error would not be detected.

59

Fig. 3.16: Transformation rules to protect the control-flow (NICOLESCU, 2003).

The incorrect branch decisions cannot be detected by the control-flow rules described
above. Thus, Nicolescu implements Rebaudengo's rule to protect that. The branches are
retested at both true and false destinations of the branches. This transformation can be
seen in Fig. 3.17.

Fig. 3.17: Transformation to protect branch decisions (NICOLESCU, 2003).

Furthermore, a ctrl_branch flag is assigned to every procedure in the program. The
value is assigned at the beginning of each procedure. Checkers are inserted before and
after the procedure call. The rules are presented bellow, and their application is illustrate
in Fig. 3.18.

 A flag ctrl_branch is defined in the program

 An integer value kj is associated with any procedure j in the code

 At the beginning of every procedure, the value kj is assigned to ctrl_branch; a test
on the value of ctrl_branch is introduced before and after every call to the
procedure.

60

Fig. 3.18: Transformation rules to protect procedures (NICOLESCU, 2003).

The transformation rules by Nicolescu present high overheads. They are implemented
in the high-level language, which makes necessary to deactivate the optimizations
performed by the compiler. The rules to protect the data are less costly than Rebaudengo's
since they only check the final variables. On the other hand, the control-flow techniques
are more costly. The protection of procedures needs extra instructions, two checkers
instead of one, and the value of ctrl_branch is also assigned after the return from the
procedure. Furthermore, the basic blocks' signatures use two variables, one for the
signature and another for the status_flag. When compiled, the operation to update
status_flag and assign the new value to the signature variable gef is converted in two
instructions. Besides being slower than Rebaudengo's by using two instructions instead
of one, it will still not detect an illegal branch if it jumps to the instruction that assigns
the signature variable.

3.3.3 SWIFT

Software Implemented Fault Tolerance (SWIFT) is an SIHFT technique proposed by
Reis (2005b) that aims at protecting the data-flow and the control-flow of a running
application. It is based on two techniques, one data-flow technique (EDDI) and one
control-flow technique (CFCSS). The union of these two techniques, together with a set
of optimizations that have been made, was named SWIFT.

The transformation rules to protect the data are very similar to EDDI, but there are
two differences: (1) the authors assume that the memory is protected by some ECC. Thus,
it is not necessary to duplicate the data in memory. Since there is no replicated data in
memory, the loads for the replicas are done from the same memory position that for the
originals. Furthermore, it is not necessary to duplicate store instructions. (2) Checkers to
verify registers used by branch instructions are removed. The authors justify that by
saying its protection is redundant with the control-flow technique. As follows, one can
understand the transformation rules to protect the data:

 Every register in the program must be duplicated

 The same operation performed on a register must be performed on its replica, with
the exception of stores

61

 Checkers are inserted before storing register values in memory. The variable is
compared with its replica. If they are different, an error is signaled.

For protecting the processor against control-flow errors, CFCSS is implemented by
SWIFT. However, it does not protect against incorrect branch decisions. A modification
of the implemented CFCSS has been proposed to extend the fault coverage to such cases.
It consists of a dynamic equivalent of a runtime adjusting signature for all basic blocks.
The target basic block is assigned to the runtime adjusting signature before the branch
instruction. The runtime adjusting signature is checked after the branch by comparing it
with the general signature register (GSR). For optimization purpose, the checkings are
done only in basic blocks with store instructions. If it is possible to ensure that only stores
that should be executed are executed and that they write the right data, the application
runs correctly.

One can see the transformation rules applied by SWIFT in Fig. 3.19. Instruction 1 and
2 are replicas applied by the transformation rules to protect the data. Instruction 3
computes the runtime signature (RTS) to the target basic block by performing an XOR
operation using the current basic block’s signature and the target basic block’s signature.
Instruction 4 does the same as instruction 3, but in the case the branch is not taken.
Instruction 5 updates the GSR to the new basic block’s signature. Instructions 6 and 7 are
used to detect mismatches in the signature. They are included only in basic blocks that
contain store instructions. And instructions 8-10 implement data-flow rules to check the
registers before their values are stored in the memory.

Fig. 3.19: Transformation rules (REIS, 2005b).

SWIFT is an efficient SIHFT technique when compared to previous software
techniques to protect both data-flow and control-flow. It presents performance
improvements. However, the control-flow part of SWIFT uses two signatures
transformations per basic block, GSR and RTS, and it increases the overheads in time and
performance.

3.3.4 Transformation rules by Azambuja

Transformation rules in software were combined with a watchdog in order to cover
errors not detectable by SIHFT techniques. This hybrid technique was proposed by
(AZAMBUJA, 2011b). It consists of the data-flow technique VAR1, plus two control-

62

flow techniques, the Inverted Branches and a modified version of CCA that works
together with a watchdog, which is connected to the memory bus. The rules to protect the
data are:

 Rule #1: variables must be duplicated

 Rule #2: write operations performed on a variable must also be performed on its
replica

 Rule #3: before each read on a variable, its value and the value of its replica must
be checked for consistency.

Furthermore, there is the rule for the Inverted Branches technique, which aims at
detecting incorrect branch decisions. It is presented below:

 Rule #4: every branch instruction is replicated on both destination addresses.

A modified version of CCA was implemented to work with the watchdog. It aims at
detecting two types of illegal branches: (1) to the beginning of a basic block and (2) to
the same basic block. The same concepts introduced in CCA using BID to identify the
basic blocks and CFID in a queue to protect the transitions between basic blocks is used
here. However, the queue management, which is a task that significantly increases the
overheads, is performed by the watchdog. To inform the watchdog about the BID or to
tell when to enqueue or dequeue CFID, store instructions to predetermined memory
addresses are used. An example of how the code changes by this modified CCA is
presented in Fig. 3.20. The target address of the branch at line 1 is modified to keep the
correctness of the program. Stores to send the BID to the watchdog are inserted at the
beginning of the basic blocks (lines 2 and 6). CFID is enqueued at lines 3 and 7, also
beginning of the basic blocks, right after sending the BID. And CFID is dequeued at the
end of the basic blocks (lines 5 and 10). The enqueuing and dequeuing of CFID is also
done using store instructions.

XOR operations are done in real-time by the watchdog to detect illegal branches inside
the same basic blocks. The executed instructions of a basic block are xored and compared
to the expected value for that basic block. If they differ, an illegal branch inside of the
basic block has occurred. Fig. 3.21 shows how this technique is applied. At the beginning
of each basic block, a store operation to a predetermined memory address signalizes the
watchdog to reset its internal register that contains the result of the XOR operations of
the executed instructions. During the execution, the executed instructions are xored and
stored in the watchdog's internal register. At the end of the basic block, another store
instruction to a predetermined memory address signalizes the watchdog to check its
register with the expected value for that basic block.

63

1: beq r1, r2, 8 1: beq r1, r2, 6

4: add r2, r3, 1

2: send BID

3: enqueue CFID

4: add r2, r3, 1

5: dequeue CFID

8: add r2, r3, 4

9: st [r1], r2

6: send BID

7: enqueue CFID

8: add r2, r3, 4

9: st [r1], r2

10: dequeue CFID

11: jmp end 11: jmp end

Fig. 3.20: Example of the modified CCA proposed by (AZAMBUJA, 2011b).

1: beq r1, r2, 8 1: beq r1, r2, 5

3: add r2, r3, 1

2: reset XOR

3: add r2, r3, 1

4: check XOR

6: add r2, r3, 4

7: st [r1], r2

5: reset XOR

6: add r2, r3, 4

7: st [r1], r2

8: check XOR

9: jmp end 9: jmp end

Fig. 3.21: Technique to detect illegal branches inside basic blocks by (AZAMBUJA,
2011b).

The transformation rules by Azambuja present very high detection rates. It is capable
of detecting errors inside a basic block, which is impossible to detect by software-only
techniques. Although the high overhead, to enqueue and dequeue that CCA presents, was
moved to the watchdog, it still presents significant overheads. The modified CCA uses
two signatures, so in every basic block, three instructions are inserted: one to send BID
to the watchdog; one to enqueue CFID; and one to dequeue CFID. Furthermore, other
two instructions to detect illegal branches inside a basic block are also included in all
basic blocks. For programs with small basic blocks, the overheads it causes are very high.
Some of the flaws presented by CCA are also presented in this technique. When two basic
blocks have a common successor, all the successors have the same CFID. For example,
if basic block A has C and D as successors, and basic block B has D and E as successors,
all C, D, and E have the same CFID. Thus, illegal branches from A to E or from B to C
will not be detected. This problem was later corrected when Azambuja replaced the
modified CCA by HETA. Anyhow, the overheads are the same. Furthermore, the
technique to detect data errors is VAR1. This technique presents very high overheads
because, before each read on a variable, a checker is inserted to check the variable with
its replica. In addition, the power consumption due to the additional hardware is
increased. The additional hardware also affects the portability of the technique to other
platforms because it needs access to the memory buses. Some processors that use on-chip

64

embedded cache memories may not be accessible by the watchdog and, thus, the
technique could not be implemented.

3.3.5 Drawbacks of combined data-flow and control-flow techniques

The combined data-flow and control-flow techniques are nothing more than a data-
flow technique and a control-flow technique applied together. Therefore, the same
comments for data-flow and control-flow techniques can be extended to the combined
data-flow and control-flow techniques. With regards to the presented techniques, SWIFT
is by far the one with the lower overheads. It is mainly due to its data part, which
implements EDDI and uses checkers only before stores. The control-flow part is
complemented by CFCSS, a control-flow technique that has low overheads, but not the
highest fault coverage. The advantage of SWIFT over EDDI + CFCSS consists in the fact
that the redundant protection of branches is removed. However, the overheads are still
high. Another approach to reducing more the overheads is essential.

3.4 Selective hardening

A recent approach to reduce overheads caused by SIHFT techniques consists of
applying them selectively. Only selected portions of the application are protected, not the
entire application. Few works based on selective hardening aim to guarantee application-
level correctness in multimedia applications (CONG, 2011), (SUDARAM, 2008). For
multimedia applications, some errors can be tolerated since they will not be noticed by
the user (YEH, 2009). However, in critical systems, correctness is required. A recent work
on this field was proposed by (RESTREPO-CALLE, 2013). In this work, subset of the
registers used by the application were protected by data-flow techniques and evaluated.

With regards to data-flow techniques, the selective hardening is applied to registers,
i.e., the most critical subset of used registers is protected. For control-flow techniques,
selected basic blocks are protected. In the literature, (VEMU, 2011) states that the number
of checkers in the code can be reduced to decrease overheads. On the other hand, it
increases the latency of the error detection. The selective hardening also brings flexibility
to SIHFT techniques due to the new range of possibilities in which a code can be
hardened. It can bring reliability given a maximum time overhead, or reduce overheads
given a minimum fault coverage, for example.

Furthermore, portions of code can be selectively hardened. For example, an
application that is not critical in general, but that has few critical subroutines. These
critical subroutines could be hardened, while the rest of the application is left unhardened.
It would increase the reliability of the application when compared to the unhardened, and
it would reduce the overheads when compared to hardening the entire application. This
type of selectiveness is application-dependent, so a study on the target application must
be performed. It is not part of this work, which focuses on selective hardening for data-
flow and control-flow techniques. A state-of-the-art selective technique is presented as
follows.

3.4.1 Selective SWIFT-R

S-SWIFT-R stands for Selective Software Implemented Fault Tolerance – Recovery.
It is a selective hardening technique proposed by Restrepo-Calle (2013). It is based on
the software recovery technique SWIFT-R (REIS, 2007), which is based on the software
detection technique SWIFT (REIS, 2005b). Later, Restrepo-Calle (2016) proposed a
selective hybrid technique combining S-SWIFT-R with a hardware Selective Triple

65

Modular Redundancy (S-TMR). Some registers were protected by TMR in order to
reduce the overheads caused by SWIFT-R. On the other hand, it was necessary to modify
the underlying hardware, which increased the area and power consumption, as the author
stated.

SWIFT-R triplicates the registers and instructions, and it inserts software majority
voters to identify and correct errors. Its aim is to protect the register file. S-SWIFT applies
SWIFT-R selectively, i.e., a selected set of registers is triplicated, instead of all used
registers. Fig. 3.22 shows examples of a code hardened by S-SWIFT-R. Several versions
where different sets of registers have been protected are presented. The version that all
used registers are protected (s0 and s1) is equivalent to SWIFT-R. In the version that s0
is protected, copies of s0 are created after it is loaded from the memory. Then, the ADD
operation is replicated to the copies. Finally, a voter is inserted before s0 is stored. In the
version where only s1 is protected, copies of s1 are created, and two voters are inserted.
The first voter (line 5) is due to the use of s1 by the ADD operation (line 6) to define a
new value to s0, which is stored after. And the second voter is due to the use of s1 to
address the memory in the STORE operation. No instruction is replicated since no new
value is attributed to s1.

unhardened protected: s0 protected: s1 protected: s0, s1

1

2

3

4

5

6

7

8

9

10

11

LOAD s0, 00

LOAD s1, 2A

ADD s0, s1

STORE s0, (s1)

LOAD s0, 00

Create s0 copies

LOAD s1, 2A

ADD s0, s1

ADD s0', s1'

ADD s0'', s1''

Voter for s0

STORE s0, (s1)

LOAD s0, 00

LOAD s1, 2A

Create s1 copies

Voter for s1

ADD s0, s1

Voter for s1

STORE s0, (s1)

LOAD s0, 00

Create s0 copies

LOAD s1, 2A

Create s1 copies

ADD s0, s1

ADD s0', s1'

ADD s0'', s1''

Voter for s0

Voter for s1

STORE s0, (s1)

Fig. 3.22: Example of a code hardened by S-SWIFT-R (RESTREPO-CALLE, 2016).

Fig. 3.23 shows the code size and execution time overheads for a Finite Impulse
Response (FIR) filter implemented using five registers for the PicoBlaze soft-core
processor. Each possible set of registers was protected using S-SWIFT-R. The horizontal
axis presents the names of the registers protected in that version. The code overhead varies
from 1.01x to 2.67x, and the execution time ranges from 1.01x to 2.53x.

66

Fig. 3.23: Code size and execution time overheads for an FIR hardened by S-SWIFT-R
(RESTREPO-CALLE, 2016).

The fault coverages of several versions of an FIR hardened by S-SWIFT-R are
presented in Fig. 3.24. The fault coverage is indicated by unACE. SDC (Silent Data
Corruption) indicates the faults that caused errors in the output. And Hang represents the
faults that caused abnormal program termination or infinite loop. As one can see, the
unhardened version presents around 74% of fault coverage. Meanwhile, the one with all
registers hardened (SWIFT-R) reached 92% of fault coverage. The S-SWIFT-R goes
from 82% to 92%. An interesting example can be seen by the protection of register 2 and
3. It achieves 89.6% of fault coverage with a cost of 1.89x in the execution time and 1.93x
in the code size. Depending on the case, it could be a better solution than SWIFT-R.

Fig. 3.24: Fault coverage for an FIR using S-SWIFT-R (RESTREPO-CALLE, 2016).

67

S-SWIFT-R reduces the overheads when compared to the standard SWIFT-R.
However, since it triplicates instead of duplicating the registers, it causes higher
overheads. Furthermore, the selective hardening is only applied to registers. Therefore, it
is only a selective data-flow technique. The selective hardening for control-flow
techniques is, so far, limited to removing checkers from basic blocks. A new approach
for selective hardening of control-flow techniques that explores better the basic block
protection is necessary.

68

69

4 METHODOLOGIES AND METRICS

The subjects of this chapter are the methodologies for hardening applications with
SIHFT techniques and the fault injection utilized in this work. Furthermore, the metrics
to evaluate and compare the proposed techniques are introduced.

The concept of fault, error, and failure was already defined in a previous chapter.
Nevertheless, to elucidate the discussion of this chapter, Fig. 4.1 shows a fault and its
possible effects on a processor hardened by SIHFT techniques. If the fault is masked, the
application runs correctly. In case of error, this error can be detected or undetected. An
error detected would possibly cause a failure if it were not detected, but it is also possible
that this error would not produce a failure. Finally, an undetected error causes necessarily
a failure; otherwise, it would be a masked fault.

Fig. 4.1: Fault, error, and failure in processors hardened by SIHFT techniques.

4.1 Hardening methodology

The SIHFT techniques are automatically applied to the assembly code of unhardened
applications using the CFT-tool (CHIELLE, 2012).4 For this, the code in a high-level
language is compiled and assembled, generating, respectively, the assembly code and the
executable. Sometimes, the CFT-tool needs additional information not available in the
assembly code. Thus, it is necessary to provide the disassembly file to the tool. The entire
process is illustrated in Fig. 4.2. CFT-tool reads the assembly code and the disassembly
file, and, based on some configuration files, creates a new assembly code hardened by the
selected SIHFT techniques. The configuration files contain information about the
processor architecture and organization the SIHFT techniques. Finally, the hardened
assembly can be assembled to generate a hardened executable.

4 Details about the CFT-tool are available in the appendix A.

70

Fig. 4.2: Steps to protect an application using CFT-tool.

After the process described above, the hardened application is ready to run on the
target processor. In this stage, the execution time and code size can be extracted. It is also
possible to evaluate the application’s fault coverage by performing a fault injection
campaign. The methodology for fault injection utilized in this work is described as
follows.

4.2 Fault injection methodology

It would be infeasible to acquire the large amount of information about fault coverage
necessary for this work only from radiation experiments. Thus, most of the tests were
performed through simulation. Anyhow, radiation tests were done in selected cases to
confirm the results obtained by simulation. The simulated fault injections at logical level
using the hardware description (HDL) of the processor. The radiation experiments
utilized a hard-core processor embedded in an All Programmable SoC. Details about the
simulated fault injection and the radiation experiments are presented below.

4.2.1 Fault injection by logical simulation

Faults are injected by forcing a bit flip at RTL level in the processor's internal signals
using ModelSim (MENTOR GRAPHICS, 2012), a simulation tool. For this, it is
necessary the processor’s hardware description. A total of 10,000 faults is injected per
version of each application5. Only one fault is injected per execution. It can affect any of
the processor’s internal signals. The fault duration is set to one clock cycle in order to
force its effect to hit the clock barrier of the flip-flops and, thus, increase the probability
of error. A golden execution (with no injected faults) is executed. All the PC values during
the execution are saved. Also, the portion of the memory that contains the program output
is saved. Then, the program is submitted to faults, and the values of the PC and the
memory results of the program under test are compared with the gold results. The error
is signaled when the result stored in the memory differs from the expected one. The effect
of a fault can be classified as:

 Correct: the fault had no effect on the program output, i.e., the result is
correct

5 Applications with more than 98% of fault coverage may have up to 40,000 faults
injected.

71

 Data-flow error: it occurs when the fault affects the output, but the PC is
correct during the execution. It is also known as Silent Data Corruption
(SDC). If the error is detected by a fault detection technique, it is classified
as detected data-flow error. Otherwise, it is an undetected data-flow error

 Control-flow error: the output and PC are incorrect. It is a detected control-
flow error if detected, and an undetected control-flow error if not.

The sum of data-flow errors and control-flow errors for a fault injection campaign
gives the total of errors. The sum of detected data-flow errors and detected control-flow
errors provides the total of errors detected. The processor utilized in the fault injections
by logical simulation was miniMIPS (HANGOUT, 2009).6

4.2.2 Radiation tests with neutrons and heavy ions

Radiation tests were used to validate the fault injection campaigns by simulation.
They were performed with neutrons and heavy ions. During the tests with neutrons, all
the board was irradiated. During the tests with heavy ions, only the processor was
irradiated. For the test with heavy ions, it was necessary to decapsulate the chip to allow
the ions to hit the sensitive parts of the processor. In both cases, the board was exposed
to air at room temperature.

The setup, shown in Fig. 4.3, consists of a board, computer, USB net switch, cables
for communication, and cables for power supply. The computer is connected to the board
by two USB cables. One is used to program the board, and the other is used to receive the
output from the board. The board’s power supply is connected to the USB net switch,
which is connected by USB to the computer. It is used to control when the power supply
is available to the board.

Fig. 4.3: Setup for radiation tests.

The board utilized in the tests was a ZedBoard™. It is a low-cost development board
for the Xilinx Zynq®-7000 All Programmable SoC, XC7Z020-CLG484 part, which
offers high configurability, stimulates strong interest in the scientific community, and is
highly present in the market. The board is composed of two main parts: a Processing
System (PS) that contains a dual-core ARM® Cortex-A9 processor7, and Programmable
Logic (PL) (AVNET, 2015)8. The PL section is ideal for implementing high-speed logic,
arithmetic, and data processing subsystems, while the PS supports software routines and

6 More information about the miniMIPS processor is available in the appendix B.1.
7 Details about the ARM Cortex-A9 processor are available in the appendix B.2.
8 More information about the ZedBoard™ is available in the appendix B.3.

72

operating systems. The proposed analysis is based only on the PS part of the board. The
PL part is not used at any moment during the experiment. One only ARM core was
utilized. It ran a target application that sends the output by UART to the computer and,
then, restarts its execution. The computer was running a monitoring application that
listens to the COM port connected to the board's UART and classifies the output as:

 Correct: the output of the program is correct

 Detected: an error was detected and reported

 Undetected error: the output is incorrect, and no error was reported by the
fault detection technique

 Timeout: no output was produced until a time limit.

Depending on the output, different actions are taken:

 No action: for correct outputs

 Soft reset: the fault tolerance technique applied to the target application has
detected an error. It calls the error subroutine that reports the error and restarts
the application by software

 Hard reset: it happens when timeout, undetected errors, or consecutive
detected errors are reported. The monitoring application performs a power
cycle on the board and, then, reprograms it.

When consecutive detected errors are reported, they are accounted as only one
detected error because it affected a region that was not corrected by the soft reset.
Furthermore, the hard reset presents a delay in which the processor is still running and,
possibly, producing output. For that reason, any output, since the hard reset is started until
it is concluded, is ignored.

4.3 Metrics

Applications are hardened using the proposed techniques and some state-of-the-art
techniques. For comparison purpose, the following parameters are utilized, in this work,
to evaluate the quality of the proposed and state-of-the-art techniques:

 Execution time: it expresses the time that an application takes to execute.
The execution time of a hardened application is presented normalized by the
execution time of the equivalent unhardened application, as shown in Eq. 4.1.
Tnormalized represents the normalized execution time of the hardened
application, Thardened is the absolute execution time of the hardened
application, and Tunhardened is the absolute execution time of the unhardened
application. For example, if the unhardened application runs in 5 ms and the
hardened one runs in 10 ms, the hardened one is expressed as being 2x the
execution time of the unhardened

Eq.	4.1 	 ℎ
ℎ

 Code size: it refers to the total of bytes a program occupies in disk. As the
execution time, the code size of a hardened application is also normalized by
the unhardened application, as one can see in Eq. 4.2. Mnormalized represents
the normalized code size of the hardened application, Mhardened is the absolute

73

code size of the hardened application, and Munhardened is the absolute execution
time of the unhardened application

Eq.	4.2 	 ℎ
ℎ

 Error detection rate: let Eundetected be the number of undetected errors that
led to an incorrect output (system failure), Edetected the number of detected
errors in executions with an incorrect output, and Etotal the sum of Edetected and
Eundetected, i.e., the total number of executions with an incorrect output. The
error detection rate (EdetectionRate) is the percentage of errors with incorrect
output detected by the fault tolerance technique out of the total number of
errors with incorrect output. It is given by the Eq. 4.3

Eq.	4.3 	

 Fault coverage: it is the sum of Edetected and the number of correct executions
(Xcorrect), divided by the total number of executions (Xtotal). The fault coverage
is expressed in percentage, and it is given by Eq. 4.4. It can also be expressed
as one minus Eundetected, divided by the total number of executions

Eq.	4.4 	 1 	

 Mean Work To Failure (MWTF) (REIS, 2005a): the MWTF, given by Eq.
4.5, is an overall quality metric. It captures the tradeoff between reliability
and performance, once that the more time an application needs to run, the
higher is the probability that it is hit by a particle and, consequently, affected
by a fault. Some of the parameters are the Average Vulnerability Factor
(AVF), which is used to measure microarchitectural structure's susceptibility
to transient faults (MUKHERJEE, 2003), and the raw error rate, which is
determined by the circuit technology (MARTINEZ-ALVAREZ, 2012). The
AVF can be calculated analytically, or it can be estimated statistically by fault
injection campaigns. In our case, the AVF is estimated as the sum of data-
flow and control-flow errors (SDCs + Hangs) out of the total of faults injected
(equivalent to 1-Fcoverage). Furthermore, the MWTF of a hardened application
is normalized by MWTF of the unhardened application, as shown in Eq. 4.6.

Eq.	4.5 	

	

Eq.	4.6 	 ℎ
ℎ

During the evaluation, the parameters are presented per benchmark. Also, the average
results are included. In order to avoid biased results, the average the data of a specific
parameter of each application is divided by the highest value of that parameter for that
application. Thus, the highest value for each application is always 1. Then, a harmonic
mean is performed using these normalized values. Finally, in order to put the data back
to the normal representation, the harmonic mean of the normalized values is multiplied

74

by the harmonic mean of the highest values of that parameter for each application. Eq.
4.7 shows how the mean is calculated.

Eq.	4.7 	
ℎ

∙ ℎ 	

Where:

 x is a parameter of the evaluated SIHFT technique (or combination of SIHFT
techniques)

 AVGx is the average value of x

 xi is the value of x for the evaluated SIHFT technique and case-study
application i

 maxi is the highest value of x for case-study application i (including all SIHFT
techniques)

 harmean is the harmonic mean.

The harmonic mean was selected instead of other averages (arithmetic or geometric
mean) because the average results are not biased by extreme values. Thus, it better
represents populations with outliers. In this work, the term average is always referring to
the Eq. 4.7, except if explicitly said.

75

5 PROPOSED TECHNIQUES

This chapter introduces the proposed SIHFT techniques that aim at reducing
overheads and keeping a similar level of fault coverage of state-of-the-art SIHFT
techniques. Firstly, a set of data-flow techniques based on general building rules is
presented. They evaluate the influence of checkers in the fault coverage and overheads.
The aim is to reduce overheads by reducing the number of checkers without losing
reliability. Then, a control-flow technique with similar fault coverage and lower
overheads than state-of-the-art techniques is introduced. The aim of this control-flow
technique is to complement the proposed data-flow techniques in order to protect the data-
flow and the control-flow of the target application running on a COTS processor.

5.1 Data-flow techniques based on rules

Data-flow techniques are based on replicating information and verifying if the
original information matches the replica. Spare registers are assigned as replicas of the
used registers (for detection techniques, one spare register per used register). The replicas
perform the same instructions as the original registers do. Finally, checkers are inserted
in the code to compare the original register with its replica. Since the code is entirely
replicated and many checkers are inserted, it is clear that the overheads introduced by
data-flow techniques are high. As a first approach, what can be done to reduce such
overheads is listed as follows.

 Reducing the number of instruction duplication: if the memory is
protected by some ECC, it is possible to remove the duplication of the stores.
It also removes the need to duplicate the data in memory

 Reducing the number of checkers: considering that the errors will probably
propagate and can be detected later, it is possible to remove checkers from
the hardened code.

In order to reduce the overheads caused by data-flow techniques, the proposed data-
flow techniques focus on reducing duplication and number of checkers. The aim is to
evaluate the trade-off between reliability and overheads and find the point that the
insertion of checkers saturates the reliability and only increases the overheads.

5.1.1 Methodology and implementation

A set of rules for data-flow protection is proposed. They consist of three different
types of rules: global, duplication, and checking rules, as one can see in Table 5.1. The
global rule states that every register used by the application must have a spare register
assigned as a replica. The global rule is implemented by all techniques. Duplication rules
regard how the instructions are duplicated. They are only applicable to instructions that
perform write operations in registers or memory. Therefore, branch instructions are not
considered in this case.

There are two types of duplication rules: D1 and D2. Each technique must implement
one and only one duplication rule. D1 duplicates all instructions, including stores, which
allow the use of unhardened memories because the original value and its replica can be
stored in different memory positions. D2 duplicates all instructions, except stores. The
last one is adequate when the memory is hardened because the data in memory do not

76

need to be duplicated. Thus, the overhead caused by duplicating the code and the number
of memory accesses are reduced.

Checking rules indicate when a register is compared to its replica. Thus, it is possible
to verify if an error has occurred (when the register and its replica have different values).
Techniques can have more than one checking rule. Theoretically, the more checkers are
included in one technique, the more reliability is achieved. On the other hand, the
overheads are higher. For this reason, a technique using all checking rules was not
proposed. The overheads would be higher than the state-of-the-art data-flow techniques,
and it would go against of this work proposal. Checking rule C1 states that a checker must
be placed before a register is read by an instruction (excluding loads, stores, and
branches). The checker compares the register value with the value of its replica to detect
a possible error. For C2 rule, a checker is inserted right after a write operation is
performed on a register. When C3 is implemented, the register that contains the address
in load instructions has to be checked before the load is performed. C4 and C5 insert
checkers before stores. C4 checks the register that contains the datum, and C5 checks the
register that contains the address. Finally, C6 is responsible for checking the registers
used by branch instructions (conditional or not).

Table 5.1: Rules for data-flow techniques

Global Rules
(valid for all techniques)

G1
every register used in the program must have a spare register

assigned as replica

Duplication Rules
(perform the same operation on the register's replica)

D1 all instructions

D2 all instructions, except stores

Checking Rules
(compare the register with its replica)

C1
before every read on a register

(except load/store and branch/jump instructions)

C2 after every write on a register

C3 the register that contains the address (before loads)

C4 the register that contains the datum (before stores)

C5 the register that contains the address (before stores)

C6 before branches or jumps

Based on the rules, seventeen techniques have been implemented. They are listed in

Table 5.2. Each technique consists of a combination of rules. Global rule G1 and one
duplicating rule (D1 or D2) are mandatory. Only one duplication rule can be used per
technique. The checking rules are optional. Three techniques (VAR1, VAR2, and VAR3)
belong to Azambuja (2011a), VAR4 is equivalent to EDDI, and VAR4++ is similar, but
not equal, to the data part of SWIFT. The only difference is with regards to the duplication

77

of load instructions. VAR4++ duplicates the load instructions, and the data part of SWIFT
performs a move from the original register to its copy after each load. VAR0 and VAR0+
do not implement any checking rule. Therefore, they are not capable of detecting errors.
They are implemented to show the minimum overhead for each duplication rule when all
the used registers are duplicated. VAR1+ and VAR1++ are variations of VAR1. They use
a different duplication rule, and VAR1++ implements fewer checking rules. The same
can be said about VAR2+ and VAR2++ in comparison to VAR2, and VAR3+ and
VAR3++ concerning VAR3. They have a different duplication rule, and VAR2++ and
VAR3++ use fewer checking rules than VAR2 and VAR3, respectively. By removing
more checking rules, we get to VAR4 and VAR5, and by applying the same explanation
stated above, we get techniques VAR4+, VAR4++, VAR5+, and VAR5++.

Table 5.2: Data-flow techniques and rules

Technique Duplication Rule Checking Rules

VAR0 D1 None

VAR0+ D2 None

VAR1 D1 C1, C3, C4, C5, C6

VAR1+ D2 C1, C3, C4, C5, C6

VAR1++ D2 C1, C3, C4, C5

VAR2 D1 C2, C4, C5, C6

VAR2+ D2 C2, C4, C5, C6

VAR2++ D2 C2, C4, C5

VAR3 D1 C3, C4, C5, C6

VAR3+ D2 C3, C4, C5, C6

VAR3++ D2 C3, C4, C5

VAR4 D1 C4, C5, C6

VAR4+ D2 C4, C5, C6

VAR4++ D2 C4, C5

VAR5 D1 C4, C6

VAR5+ D2 C4, C6

VAR5++ D2 C4

Table 5.3 exemplifies how the different techniques are applied to the unhardened

code. In this regard, it was used a piece of code that permits to see the application of all
rules. It consists of five instructions: two loads, one add, one store, and one branch. The
original code is formatted as normal text, the duplications are in italics, and the checkers
are bold. Techniques that use D1 have no plus sign in the name, and other ones, with one
(+) or two (++) plus signs, use D2. Techniques that have D1 as duplication rule, such as
VAR0, have all instructions that perform write operations in registers or memory (all
instructions except branches) replicated to the registers replicas. Techniques using D2,

78

such as VAR0+, only duplicate the instructions that perform write operations in registers,
i.e., all instructions but branches and stores are duplicated.

With regards to the checking rules, VAR1 and VAR1+ use almost all the checking
rules, with the exception of C2. The first and the second checkers are due to C3, and the
third one is due to C1. The fourth and fifth checkers are related to C4 and C5, respectively.
And the sixth and the seventh are due to C6. It is important to mention that if a register is
used twice by an instruction, it will only be checked once. This optimization is applied
because there is no point in checking the same register twice in a row. It would only
increase even more the overheads without providing more reliability. VAR1++ has the
same checking rules of VAR1 and VAR1+, with the exception of C6. VAR2 and VAR2+
implement all the checking rules but C1 and C3. The first three checkers are related to
C2. The fourth and the fifth are due to C4 and C5, respectively. And the last two are
because of C6. VAR2++ implements the same checking rules as VAR2 and VAR2+, with
the exception of C6. VAR3 and VAR3+ use C3, C4, C5, and C6. The first and second
checkers are due to C3, the fourth and the fifth are due to C4 and C5, respectively, and
the last two checkers are due to C6. VAR3++ implements the same checking rules of
VAR3 and VAR3+, except for C6. VAR4 and VAR4+ use checking rules C4, C5, and
C6, and VAR4++ uses C4 and C5. Finally, VAR5 and VAR5+ use C4 and C6, and
VAR5++ uses only checking rule C4, which checks the register that contains the datum
in store instructions.

Let us see an example using VAR3. Firstly, we must assign replicas to all registers
used by the application. In this regard, registers $12, $13, $14, $15, and $16 are assigned
as replica of registers $2, $3, $4, $5, and $6, respectively. VAR3 uses duplication rule
D1. The duplications are inserted in lines 3, 7, 11, and 16 (lines in italics). And the
checking rules are C3, C4, C5, and C6. Thus, checkers have to be inserted before loads,
verifying the register that contains the address (C3), before stores, checking the registers
that contain the datum and the address (C4 and C5), and before branches, checking the
registers used by the respective branch (C6). At the first and fifth lines, there are checkers
regarding C3. At lines 13 and 14, checkings are made respecting C4 and C5, respectively.
C6 is applied at lines 17 and 18. Now, if we look at VAR4++, the duplication rule is D2.
So all the instructions, except branches and stores are duplicated. Duplications appear at
lines 3, 7, and 11 (in italics). The checking rules consist of C4 and C5. They are applied
at lines 13 and 14, respectively (bold). If we compare VAR3 and VAR4++, we can see
that VAR4++ clearly present a lower overhead, but at a cost of fewer checking
instructions. Thus, it is important to find out if such techniques with fewer checkers can
provide similar reliability than the ones with more checkers.

79

Table 5.3: Examples of VAR data-flow techniques for the miniMIPS processor

Unhardened VAR0 VAR0+ VAR1 VAR1+ VAR1++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

lw $4,0($2)

lw $5,4($2)

add $3,$3,1

sw $4,0($5)

ble $3,$6,loop

lw $4,0($2)
lw $14,1000($12)

lw $5,4($2)
lw $15,1004($12)

add $3,$3,1
add $13,$13,1

sw $4,0($5)
sw $14,1000($15)

ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)

lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

sw $4,0($5)

ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14,1000($12)

bne $2,$12,err
lw $5,4($2)
lw $15,1004($12)

bne $3,$13,err
add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)
sw $14, 1000($15)
bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14,0($12)

bne $2,$12,err
lw $5,4($2)
lw $15,4($12)

bne $3,$13,err
add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14,0($12)

bne $2,$12,err
lw $5,4($2)
lw $15,4($12)

bne $3,$13,err
add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

ble $3,$6,loop

VAR2 VAR2+ VAR2++ VAR3 VAR3+ VAR3++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

lw $4,0($2)
lw $14, 1000($12)
bne $4,$14,err

lw $5,4($2)
lw $15, 1004($12)
bne $5,$15,err

add $3,$3,1
add $13,$13,1
bne $3,$13,err
bne $4,$14,err
bne $5,$15,err
sw $4,0($5)
sw $14, 1000($15)
bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)
bne $4,$14,err

lw $5,4($2)
lw $15,4($12)
bne $5,$15,err

add $3,$3,1
add $13,$13,1
bne $3,$13,err
bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)
bne $4,$14,err

lw $5,4($2)
lw $15,4($12)
bne $5,$15,err

add $3,$3,1
add $13,$13,1
bne $3,$13,err
bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14, 1000($12)

bne $2,$12,err
lw $5,4($2)
lw $15, 1004($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)
sw $14, 1000($15)
bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14,0($12)

bne $2,$12,err
lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

bne $2,$12,err
lw $4,0($2)
lw $14,0($12)

bne $2,$12,err
lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

ble $3,$6,loop

VAR4 VAR4+ VAR4++ VAR5 VAR5+ VAR5++

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

lw $4,0($2)
lw $14, 1000($12)

lw $5,4($2)
lw $15, 1004($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)
sw $14, 1000($15)
bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)

lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)

lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err
bne $5,$15,err
sw $4,0($5)

ble $3,$6,loop

lw $4,0($2)
lw $14, 1000($12)

lw $5,4($2)
lw $15, 1004($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err

sw $4,0($5)
sw $14, 1000($15)
bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)

lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err

sw $4,0($5)

bne $3,$13,err
bne $6,$16,err
ble $3,$6,loop

lw $4,0($2)
lw $14,0($12)

lw $5,4($2)
lw $15,4($12)

add $3,$3,1
add $13,$13,1

bne $4,$14,err

sw $4,0($5)

ble $3,$6,loop

80

5.1.2 Fault injection results in the miniMIPS processor

To evaluate how much the different techniques impact in the overheads and fault
coverage, we hardened nine case-study applications with the proposed data-flow
techniques, tested the overheads, and submitted them to a fault injection campaign. The
case-study applications consist of a bubble sort (BS), the Dijkstra's algorithm (DA), a
recursive depth-first search (rDFS), a sequential depth-first search (sDFS), a matrix
multiplication (MM), the run length encoding (RLE), a summation (SUM), the TETRA
encryption algorithm (TEA2), and the Tower of Hanoi (TH)9. A total of 162 versions was
evaluated (9 unhardened and 153 hardened).

Fig. 5.1 shows the averages execution time, code size, MWTF, and fault coverage for
all VAR techniques. The fault coverage is presented in percentage (right axis). The other
parameters are normalized by the unhardened application (left axis). The horizontal axis
identifies the data-flow technique. For example, 3++ means that the data-flow technique
VAR3++ was utilized. As one can see, the average minimum execution time is 1.32x, and
the average minimum code size is 1.29x when hardening with a data-flow technique that
implements duplication rule D1 (see VAR0). If D2 is used as the duplication rule, the
average minimum execution time is 1.24x, and the average minimum code size is 1.23x
(see VAR0+).

Techniques VAR1, VAR1+, VAR1++, VAR2, VAR2+, and VAR2++, present a high
fault coverage for data-flow techniques, but very high overheads. Similar fault coverages
can be obtained by techniques VAR3 and VAR3+ with the advantage of considerably
lower overheads. It shows that after a certain point, checking instructions get saturated.
Considering only the baseline techniques, VAR3 presents the best results since it has a
similar fault coverage to VAR1 and VAR2 and lower overheads. VAR4 has lower
overheads than VAR3, but it does not achieve the fault coverage. By changing the
VAR3’s duplication rule from D1 to D2, we get VAR3+. This change reduces the average
execution time from 1.85x to 1.77x, and the average code size from 1.74x to 1.68x, and
it keeps a similar fault coverage rate to VAR3. Comparing VAR4++ to VAR3, we can
see a significant reduction in the overheads. The execution time went from 1.85x to 1.42x,
and the code size dropped from 1.77x to 1.48x, with a loss of around 2% in the fault
coverage. Although the lower fault coverage, VAR4++ can be a better solution when
constraints are more restrictive or when using the technique combined with a control-
flow technique. It is important to notice that the unhardened applications have
nonnegligible fault coverages due to the masked faults and fault injection methodology.
Actually, their fault coverage ranges from 81% to 89% depending on the application. The
contribution of fault tolerance techniques is better evaluated by looking at how much the
fault tolerance technique reduced the distance to 100% of fault coverage. This is one of
the MWTF’s parameters.

9 More information about the case-study applications is available in appendix C.

81

Fig. 5.1: Average results for the VAR techniques. The execution time, code size, and
MWTF are normalized by the unhardened applications (left axis). The fault coverage is
presented in percentage (right axis).

Fig 5.2 presents the execution time, code size, MWTF, and fault coverage for the
bubble sort (BS). The duplication rule D1 increases the execution time to 1.33x and the
code size to 1.37x (VAR0), while duplication rule D2 increases the execution time to
1.25x and the code size to 1.30x (VAR0+). Considering only the VAR techniques that
implement some checking rule (VAR1 to VAR5++), the execution time, code size, and
fault coverage range, respectively, from 1.36x to 2.62x, from 1.40x to 2.58x, and from
90.7% to 92.6%, which is similar to the average results.

Fig. 5.2: Results for the bubble sort (BS) hardened by the VAR techniques. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The
fault coverage is presented in percentage (right axis).

Fig. 5.3 shows the execution time, code size, MWTF, and fault coverage for the
Dijkstra’s algorithm (DA) when protected by VAR. The execution time ranges from
1.28x to 2.52x, the code size goes from 1.46x to 2.69x, and the fault coverage ranges from
90.5% to 92.7%, when checking rules are implemented. Duplication rules D1 and D2
cause a respective execution time of 1.24x and 1.16x, and a code size of 1.38x and 1.28x.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (AVG)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

82

Fig. 5.3: Results for the Dijkstra’s algorithm (DA) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

The recursive depth-first search presents a high fault coverage when protected by
VAR technique that implements checking rule C6, as shown in Fig. 5.4. On the other
hand, when this rule is not applied (VAR1++, VAR2++, VAR3++, VAR4++, and
VAR5++), the application suffers a significant drop in the fault coverage. In recursive
applications, the number of errors causing wrong, but legal branches is higher due to
many condition tests and returns from subroutines. An error affecting a register used by
such instructions may not be detected if C6 is not implemented. The drop in fault coverage
for VAR1++, VAR2++, and VAR3++ is lower than VAR4++ and VAR5++ because the
first ones implement more checking rules, which increases the probability of checking
the registers used by branches or returns in other points of the code. The fault coverage
can reach more than 92%. The execution time and code size range from 1.26x to 2.16x,
and from 1.08x to 1.25x, respectively, when checking rules are implemented. VAR0 and
VAR0+ have an execution time of 1.26x and 1.20x and a code size of 1.08x and 1.07,
respectively.

Fig. 5.4: Results for the recursive depth-first search (rDFS) hardened by the VAR
techniques. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 5.5 presents the execution time, code size, MWTF, and fault coverage for the
sequential depth-first search (sDFS). Although a lower execution time, code size, and
fault coverage, the behavior of these parameters is similar to rDFS. Furthermore, sDFS

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

verage

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

83

has a higher percentage of branch instructions10, which explains why techniques that do
not implement checking rule C6 present lower fault coverage. Considering all the
techniques, the fault coverage can reach up to almost 91.6%. The execution time and code
size of techniques implementing checking rules range from 1.18x to 2.03x, and from
1.05x to 1.17x, respectively. For this application, duplication rules D1 and D2 have
similar execution time and code size (due to few number of store instructions), which are
1.18x and 1.05x, respectively.

Fig. 5.5: Results for the sequential depth-first search (sDFS) hardened by the VAR
techniques. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

The matrix multiplication (MM) has data processing and load/store instructions. The
VAR techniques that check both load and store instructions are VAR1 to VAR3++. As a
result, they provide a higher fault coverage for this application, as one can see in Fig. 5.6.
The execution time, code size, and fault coverage of VAR techniques that implement
checking rules range, respectively, from 1.30x to 2.61x, from 1.42x to 2.63x, and from
87.7% to more than 92.5%. VAR0 and VAR0+ present an execution time of 1.29x and
1.24, and a code size of 1.40x and 1.31x, respectively.

Fig. 5.6: Results for the matrix multiplication (MM) hardened by the VAR techniques.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

10 Further information about the benchmarks is available in the appendix C.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

84

Fig. 5.7 shows the results for the run-length encoding (RLE). RLE has the greatest
number of instructions, which explains the higher code size overhead. The execution time
varies from 1.29x to 2.44x, the code size ranges from 1.49x to 2.99x, and the fault
coverage goes from 90.2% to almost 92%, when checking rules are implemented. The
minimum execution time and code size when using duplication rule D1 are 1.27x and
1.35x, respectively. When using D2, the minimum execution time is 1.19x, and the
minimum code size is 1.24x.

Fig. 5.7: Results for the run length encoding (RLE) hardened by the VAR techniques.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Summation (SUM) is a small and heavily loop-based application, and the single
output depends on the entire program execution. Thus, an error affecting the program at
any time will very likely propagate to the output, which consists of a store instruction that
is checked by all techniques implementing checkers. That increases the chance of
detecting an error, which is shown by the high fault coverage (from 90.8% to 92.3%)
presented in Fig. 5.8. The execution time and code size range, respectively, from 1.40x
to 2.47x, and from 1.15x to 1.55x, when implementing checking rules. VAR0 and VAR0+
present execution time of 1.33x and 1.20x, and code size of 1.14x and 1.10x, respectively.

Fig. 5.8: Results for the summation (SUM) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

The TETRA encryption algorithm has many load/store instructions. Once the store
instructions are hardened by all VAR techniques implementing checking rules, the

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

85

probability of detecting an error increases. In addition, there are very few branches or
jumps that rely on registers to get the target address. It corroborates to explain why the
techniques present similar fault coverages (from 91.8% to more than 92.6%), as one can
see in Fig. 5.9. The execution time ranges from 1.42x to 2.61x, and the code size varies
from 1.41x to 2.43x when implementing checking rules. Duplication rule D1 causes an
execution time of 1.38x and code size of 1.29x, and D2 causes an execution time of 1.29x
and code size of 1.20x.

Fig. 5.9: Results for the TETRA encryption algorithm (TEA2) hardened by the VAR
techniques. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

The Tower of Hanoi has just a few conditional branches. On the other hand, it has
many subroutine calls, and consequently many returns. If checking rule C6 is not
implemented, the return register will not be checked, and an error affecting this register
will not be detected. That explains why techniques that do not implement C6 have lower
fault coverage, which goes from 88% to more than 92%. The execution time and code
size of VAR techniques implementing checking rules range from 1.58x to 2.96x, and
from 1.38x to 2.10x, respectively, as shown in Fig. 5.10.

Fig. 5.10: Results for the Tower of Hanoi (TH) hardened by the VAR techniques. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

The memory accesses caused by load or store instructions are presented in Fig. 5.11.
All the techniques that implement duplication rule D1 present twice the memory accesses
of the unhardened application because they duplicate all load and store instructions. On

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

84%

88%

92%

96%

100%

0.5

1.0

1.5

2.0

2.5

3.0

0 0+ 1 1+ 1++ 2 2+ 2++ 3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

86

the other hand, when duplication rule D2 is used, only the load instructions are duplicate.
Thus, the number of memory accesses can be define as twice the number of loads, plus
the number of stores of the unhardened code. So the relation between the number of
memory accesses of techniques using D2 and the number of memory accesses of the
corresponding unhardened application depends on the application. Anyhow, it will
always range from the same number of memory accesses of the unhardened application
(when there are no load instructions) to twice the number of memory accesses (when there
are loads, but there are no store instructions).

Fig. 5.11: Memory accesses for duplication rules D1 and D2 for the nine case-study
applications and average (harmonic mean).

SIHFT techniques are cheaper than hardware-based ones, but they present
performance and memory overheads. The proposed set of rules and VAR techniques
evaluated the execution time, code size, MWTF, and fault coverage. As one can see, it
was possible to reduce the overheads and keep similar fault coverage. For loop-based
applications, the implementation of checking rule C6 is very implement to improve the
fault coverage.11 Based on the results, the following items were enumerated as the most
points where checkers are important:

1. Before stores (checking rules C4 and C5): store instructions are the final
point before sending the results to the memory. The protection of the
registers used by store instructions is fundamental to increase the fault
coverage

2. Before branches or jumps (checking rule C6): checking registers used by
branches or jumps increases the fault coverage, mainly in applications in
which the average number of executions of the basic blocks is high

3. Before loads (checking rule C3): it was observed that checking the register
used as address by loads increases, in general, a little the fault coverage.
Thus, checking rule C3 could be not necessary. However, in applications that
make significant use of sequences of load/stores in which there is a high data
dependency, i.e., the following calculations depends on the previous
calculations (which is the case of the matrix multiplication), checking rule
C3 increases significantly the fault coverage. This rule could be replaced by

11 It is possible to find the loop-based applications by the relation between the average
number of times a BB is executed (Table C.4) and the execution time (Table C.5).

1.00

1.25

1.50

1.75

2.00

BS DA rDFS sDFS MM RLE SUM TEA2 TH AVG

Memory Accesses D1 D2

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

87

a rule checking the data register after the load, but it would cause a higher
execution time due to data dependency in the pipeline.

The other rules increased a lot the overheads and did not increase the fault coverage
when compared to applications hardened by rules C3 to C6. Furthermore, it is possible to
notice that the MWTF is lower, or not much higher, than unhardened application in many
cases. This is explained by the high overheads imposed by VAR techniques (mainly
VAR1 to VAR2++), and because they only protect the data-flow12. Thus, the control-flow
is left uncovered, and errors affecting it are not detected. Therefore, it may be a better
option to leave a code unhardened than to protect only with a data-flow technique.
However, if a control-flow is applied together with a data-flow technique, both data-flow
and control-flow will be protected, and that may increase the application’s MWTF. The
use of data-flow techniques together with control-flow techniques is evaluated in section
5.3.

5.2 Control-flow technique

In order to complement the data-flow techniques and promote a protection of both
data-flow and control-flow, we introduce a technique called SETA (Software-only Error-
detection Technique using Assertions) to detect control-flow errors in processors with no
modification or addition of extra hardware. The penalties in performance and memory
caused by SETA are lower than other control-flow techniques. SETA is based on HETA
and CEDA. These techniques use runtime signatures to detect errors affecting the control-
flow of a running application. HETA uses an extra signature, which increases the
overheads. Also, it makes use of a watchdog to help in the detection, which requires extra
power. And, as the author stated, the watchdog needs access to the memory buses. Some
processors that use on-chip embedded cache memories may not be accessible by the
watchdog, which makes impossible to implement this technique in the target ARM
processor. Furthermore, both CEDA and HETA are concerned about the error detection
rate they achieve, but not about the overheads they cause. Aiming at providing similar
error detection rate as CEDA with lower overheads, SETA is proposed. The technique
uses signatures calculated a priori and processed during runtime. The program code is
divided into basic blocks (BB), and signatures are assigned to the basic blocks.

5.2.1 Methodology and implementation

Two Basic Block Types (BBT) are defined: A and X. A basic block is of type A if it
has multiple predecessors, and at least one of its predecessors has multiple successors.
And it is of type X if it is not of type A. Then, the basic blocks are grouped into networks.
Basic blocks sharing a common predecessor belong to the same network. An example is
shown in Fig. 5.12.

12 The next chapter presents an analysis trying to reduce even more such overheads caused
by data-flow techniques by selectively hardening the registers used by the application.

88

Fig. 5.12: Representation of a program flow. Basic blocks (circles) classified as of type
A or X, and grouped into networks (dashed rectangles). The arrows indicate the valid
directions that a basic block can take.

Every basic block has two different signatures: a Node Ingress Signature (NIS), for
when entering the basic block, and a Node Exit Signature (NES), for when exiting the
basic block. The NIS represents the current basic blocks, and the NES is used to identify
the successor network and the valid successor basic blocks.

The signatures are divided in two parts: an upper half and a lower half, as shown in
Table 5.4. The upper half identifies the network, and the lower half identifies the basic
block. The NIS’ upper half identifies the network that the basic block belongs to. The
lower half has a random number assigned if the BB is of type X. If the BB is of type A,
the lower half is calculated by the AND operation of the lower halves of all predecessor
BBs’ NES. The NES’ upper half identifies the successor network, and the lower half has
a random number. Table 5.5 summarizes it. If a BB of type X has multiple predecessors,
all its predecessors must have the same NES. The size of these "halves" is, actually,
variable per application in order to maximize the basic block identifier (lower half) and,
thus, avoid aliasing. The upper half receives the minimum number of bits it needs to
represent all the networks, i.e., the first integer greater or equal to log2(N+1), where N is
the total number of networks. Let us define it as ceil(log2(N+1)). The remaining bits are
used by the lower half. The networks are sequentially identified, from 0 to N-1. The
identifier N is reserved for what we call ghost network. It is used as successor network of
the basic blocks that have no successors. Thus, it invalidates any transition (caused by a
fault) from such BBs to another BB.

Table 5.4: Signature division.

Upper half Lower half

01000100 010010111101010010111101

 variable per application

Table 5.5: Role of each half in the signatures

89

Signature Upper half Lower half

NIS Identifies the BB's network BB's signature 1

NES Identifies the successor network BB's signature 2

At runtime, a signature register S is updated according to the conditions presented in

Table 5.6 to keep track of the program execution. The operation to update S can be an
XOR or an AND. It is performed with S and an invariant value, as shown by Eqs. 5.1 and
5.2.

Table 5.6: Signature update

BB Type NIS NES

A AND XOR

X XOR XOR

Eq.	5.1 	 S ← S XOR invariant

Eq.	5.2 	 S ← S AND invariant

The invariant is a constant that will make S have the expected signature during a
correct execution. Its calculation is described as follows. From NIS to NES (inside a BB),
the NES invariant to update S depends only on the BB’s signatures. The invariant is the
result of an XOR operation of the BB’s NIS and NES. From NES to NIS (BBs transition),
the NIS invariant relies on the predecessor BBs’ NES, and on the NIS and type of the
current BB. If the BB is of type X, there are two possible ways to calculate the invariant:

 The BB has no predecessors (starting BB): in this case, the NIS invariant
is equal to the BB’s NIS

 The BB has predecessors: the NIS invariant is the result of an XOR
operation with any predecessor NES and the BB’s NIS.

If the BB is of type A, the NIS invariant is divided into upper and lower half (like the
signatures) for its calculation. The upper half is filled with ones (the equivalent in
unsigned integer is 2ceil(log

2
(N+1))-1). The lower half of the NIS invariant is equal to the

lower half of the BB’s NIS. The classification of basic blocks into types and networks
ensures that there will not be invalid transitions, except for the following case: the starting
BB has itself as successor. Consequently, it is also its predecessor. In this case, a constant
is loaded to S at the beginning of the BB to keep the execution consistent.

Checkers are inserted in the basic blocks to verify if S contains the expected signature
for that basic block. The more checkers, the lower is the latency to detect errors. On the
other hand, the higher is the overhead. The maximum number of checkers in SETA
matches the number of basic blocks since only one checker is needed per basic block.
Table 5.7 shows an example of SETA for the miniMIPS processor. An unhardened
portion of code is shown in the left side, and, in the right side, there is the same code
protected by SETA. The instructions inserted by SETA are in italics (signature updates)
or bold (checkers). The first XOR (xori) is to update the signature to the basic block's
NIS. The instructions li and bne are used to compare the signature register $7 with the
expected signature for that basic block. Finally, the last XOR is used to update the

90

signature to the expected NES. Since new instructions are inserted, it is clear that the
execution time and the code size will increase.

Table 5.7: Example of SETA control-flow technique for the miniMIPS processor

Unhardened code Code hardened by SETA

1

2

3

4

5

6

7

8

9

10

jal dfs

la $2,$result

lw $4,0($6)

sw $6,4($2)

sw $4,0($2)

j loop

jal dfs

xori $7,$7,41407

la $2,$result

lw $4,0($6)

sw $6,4($2)

sw $4,0($2)

li $8,41407

bne $7,$8,error

xori $7,$7,29184

j loop

The main differences from CEDA to SETA are:

 Removed inverted branches check. CEDA inserts branches at both possible
targets of each branch to check it was taken correctly. SETA does not
implement it because the fault coverage it provides is negligible compared to
the overheads it causes. It only detects errors affecting the decision of a
branch when the registers and the comparison are correct, but the branch takes
the wrong direction.

 Removed extra instructions used to avoid aliasing. SETA does not need to
insert instructions to "clear" the signature, as it is done in CEDA because the
signature values are assigned in a different way. The upper half is
deterministic, and the lower half is randomly determined. Thus, the signature
register can always be directly updated, which reduces the overheads. SETA
avoid aliasing by varying the size of the "halves", trying to maximize the size
of the lower half.

5.2.2 Fault injection results in the miniMIPS processor

Firstly, we compared SETA with CEDA. Fig. 5.10 shows the execution time, code
size, MWTF, and fault coverage of both techniques for all benchmarks. The average
(AVG) is also included. The execution time, code size, and MWTF are presented
normalized by the equivalent unhardened application (left axis). The fault coverage is
expressed in percentage (right axis). The results show that both techniques present fault
coverage around of 94% on average.

91

Fig. 5.10: Comparison between CEDA and proposed SETA techniques. The execution
time, code size, and MWTF are presented normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

In all case-study applications, one can notice an improvement of the MWTF from
CEDA to SETA, as shown in Fig. 5.11. It is due to the reduction of the execution time.
The sequential depth-first search (sDFS) and the recursive depth-first search have very
high overheads when protected by control-flow techniques. These applications have small
basic blocks that are executed many times, which makes the addition of signature updates
and checkers more noticeable in the execution time. The inverted branches check makes
CEDA way more costly in such cases.

Fig. 5.11: Comparison between SETA and CEDA. The results obtained with SETA are
normalized by the ones obtained with CEDA.

Fig. 5.12 shows the average results for each technique. The execution time, code size,
and MWTF are presented normalized by the unhardened applications (left axis). Fault
coverage and error detection rates are showed in percentage (right axis). The horizontal
axis presents the techniques. When CEDA and SETA have one checker per basic block,
the fault coverage and error detection of both techniques are similar. One can notice that
even the techniques have been designed to detect control-flow errors, they are capable of
detecting more than half of the data-flow errors. The advantages of SETA are due to its

80%

84%

88%

92%

96%

100%

1.0

1.3

1.6

1.9

2.2

2.5

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

C
ED

A

SE
TA

CEDA x SETA

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

| BS | DA | rDFS | sDFS | MM | RLE | SUM | TEA2 | TH | AVG |

0.7

0.8

0.9

1.0

1.1

1.2

1.3

BS DA rDFS sDFS MM RLE SUM TEA2 TH AVG

SETA normalized by CEDA

execution time code size MWTF fault coverage

SE
TA

 /
C
ED

A

92

reduced overheads. SETA is 11.0% faster and occupies 10.3% fewer memory positions
than CEDA. Once SETA runs faster than CEDA, the application protected by SETA has
a lower chance of being hit by an energized particle that causes a bit flip. And since both
have similar fault coverage, SETA is more reliable than CEDA. That is reason why while
SETA's MWTF is 1.74x, while CEDA's is 1.60x.

Fig. 5.12: Comparison between CEDA and SETA. The average results are presented. The
execution time, code size, and MWTF are normalized by the unhardened applications
(left axis). The fault coverage and error detection rates are presented in percentage (right
axis).

5.3 Combined data-flow and control-flow techniques

Once the aim is to protect both the data-flow and the control-flow of a running
application, SETA was combined with some of the proposed data-flow VAR techniques
(3, 3+, 3++, 4, 4+, 4++, 5, 5+, and 5++). VAR0 and VAR0+ are not evaluated in this
section because they do not detect errors. They are just used to evaluate the overhead that
the duplication rules cause. The remaining VAR techniques (1, 1+, 1++, 2, 2+, and 2++)
are also not included in this section because they have similar data error detection rate to
VAR3 and VAR3+, but higher overheads. All the case-study applications are evaluated
considering all the combinations of a VAR technique and SETA in terms of execution
time, code size, MWTF, and fault coverage. As well as the previous sections, the fault
coverage is provided by fault injection simulation. Nevertheless, some selected cases are
also submitted to radiation experimements in order to validate the simulated fault
injection.

5.3.1 Methodology and implementation

The code is hardened by one VAR technique and SETA. Firstly, a VAR technique is
applied to the unhardened code, and then SETA is applied to this code hardened by VAR.
The VAR techniques are implemented as discussed in 5.1.1, and SETA is implemented
as explained in 5.2.1. The only consideration is with regards to the checkers inserted by
VAR when applying SETA. SETA counts the checkers as instructions, but they are not
considered ends of basic blocks. Thus, the unhardened code and the code hardened by
VAR have the same basic blocks division, and SETA is applied evenly to both codes, as

0%

25%

50%

75%

100%

1.0

1.2

1.4

1.6

1.8

CEDA SETA

CEDA x SETA

execution time code size MWTF

fault coverage data error detection control error detection

error detection

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

93

one can see in Table 5.8. The table presents four versions of a code, an unhardened and
three others hardened by SETA, VAR3, and VAR3 and SETA. The original code is
formatted as normal text, the code inserted by VAR3 is shown in italics, and the code
inserted by SETA is bold. We can notice that SETA ignores the checkers inserted by
VAR3 when dividing the code into basic blocks. Thus, the signature updates and checkers
are inserted as in the unhardened code.

Table 5.8: Example of VAR3 and SETA techniques for the miniMIPS processor

Unhardened

code
Code hardened

by SETA
Code hardened

by VAR3
Code hardened by
VAR3 and SETA

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

jal dfs

la $2,$result

lw $4,0($6)

sw $6,4($2)

sw $4,0($2)

j loop

jal dfs

xori $7,$7,41407

la $2,$result

lw $4,0($6)

sw $6,4($2)

sw $4,0($2)

li $8,41407

bne $7,$8,error

xori $7,$7,29184

j loop

jal dfs

la $2,$result

la $12,$result

bne $6,$16,error

lw $4,0($6)

lw $14,1000($16)

bne $6,$16,error

bne $2,$12,error

sw $6,4($2)

sw $16,1004($12)

bne $4,$14,error

bne $2,$12,error

sw $4,0($2)

sw $14,1000($12)

j loop

jal dfs

xori $7,$7,41407

la $2,$result

la $12,$result

bne $6,$16,error

lw $4,0($6)

lw $14,1000($16)

bne $6,$16,error

bne $2,$12,error

sw $6,4($2)

sw $16,1004($12)

bne $4,$14,error

bne $2,$12,error

sw $4,0($2)

sw $14,1000($12)

li $8,41407

bne $7,$8,error

xori $7,$7,29184

j loop

If SETA considered the VAR checkers as ends of basic blocks, the code hardened by

VAR would have a considerably higher number of basic blocks than the unhardened code,
which would result in a significant increase in the overheads in execution time and code
size when SETA is applied.

5.3.2 Fault injection results in the miniMIPS processor

Fig. 5.13 presents the average results (AVG) for combining the VAR techniques with
SETA. The execution time, code size, and MWTF are expressed normalized by the
corresponding unhardened application (left axis). The fault coverage is presented in
percentage (right axis). The horizontal axis identifies the data-flow technique. For
example, 3++ means that the data-flow technique VAR3++ and the control-flow

94

technique SETA have been applied. We can see that the overheads in performance and
memory introduced by the data-flow techniques for the target applications and processor
are higher than the ones presented by the control-flow techniques. It is justified by the
insertion of redundancy and checkers in the entire code, instruction by instruction, and
not by dividing into basic blocks. The execution time ranges from 1.74x to 2.20x, and the
code size ranges from 1.68x a 1.95x. However, one can notice an increase of up to 5.19x
in the MWTF when VAR3+ and SETA are applied. All the data-flow techniques, when
combined with SETA, present a significant increase in the MWTF. It is clear from the
chart that techniques VAR3++, VAR4++, and VAR5++ have inferior MWTF. These
three techniques share a common feature, they do not implement checking rule C6. This
rule states that registers must be checked before they are used by branches or jumps. All
the other VAR techniques implement C6, and they have higher MWTF. Therefore,
checking registers before they are used by branches or jumps is important to provide
reliability to the application. An error affecting a register used by a branch would not be
detected by either SETA or CEDA, because it would be a valid basic block transition.
The inverted branches check implemented by CEDA is also incapable of detecting such
errors because the redundant branch would have the same decision of the original one. It
was observed in Chielle (2016) that almost the totality errors causing wrong, but legal
branches are due to an incorrect value in a register used during the branch comparison.

Fig. 5.13: Average results for combining VAR and SETA. The execution time, code size,
and MWTF are normalized by the unhardened application (left axis). The fault coverage
is presented in percentage (right axis).

In Fig. 5.14, the results for the bubble sort (BS) are presented. They are very similar
to the average results. Therefore, the same conclusions from the average results can be
applied to the BS. The execution time ranges from 1.65x to 2.20x, the code size goes from
1.89x to 2.31x, and the MWTF reaches up to 5.45x when VAR4+ is selected.

80%

84%

88%

92%

96%

100%

1

2

3

4

5

6

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (AVG)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

95

Fig. 5.14: Results of combining VAR and SETA for the bubble sort (BS). The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The
fault coverage is presented in percentage (right axis).

Fig. 5.15 shows the execution time, code size, MWTF, and fault coverage for the
Dijkstra’s algorithm (DA) when protected by VAR and SETA. The execution time ranges
from 1.52x to 1.93x, the code size goes from 1.76x to 2.25x, and the MWTF reaches up
to 6.39x when VAR3++ is selected.

Fig. 5.15: Results of combining VAR and SETA for the Dijkstra’s algorithm (DA). The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

The recursive depth-first search presents high fault coverage when protected by SETA
and a VAR technique that implements checking rule C6, as shown in Fig. 5.16. On the
other hand, when this rule is not applied, the application suffers a considerable drop in
the fault coverage, which can be seen by the lower MWTF presented by VAR3++,
VAR4++, and VAR5++ (3.28x, 1.74x, and 1.78x, respectively). In recursive applications,
the number of errors causing wrong, but legal branches is very high due to many
condition tests and returns from subroutines. An error affecting a register used by such
instructions is not detected if C6 is not implemented. The highest MWTF is 5.85x,
achieved when VAR4+ and SETA are applied. The execution time and code size range
from 1.88x to 2.37x, and from 1.21x to 1.29x, respectively.

80%

84%

88%

92%

96%

100%

1

2

3

4

5

6

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

85%

90%

95%

100%

1.0

2.5

4.0

5.5

7.0

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

96

Fig. 5.16: Results of combining VAR and SETA for the recursive depth-first search
(rDFS). The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 5.17 presents the execution time, code size, MWTF, and fault coverage for the
sequential depth-first search (sDFS). The MWTF is inferior to rDFS, mainly due to the
higher execution time overhead. And although sDFS has a similar percentage of
arithmetic, load/store, and branch instructions to rDFS, the percentage of branches is a
little higher13. It explains why techniques that do not implement checking rule C6
(VAR3++, VAR4++, and VAR5++) present lower MWTF. The highest MWTF for this
application is achieved by VAR5 and SETA (4.11x), and the execution time and code
size range from 2.03x to 2.46x, and from 1.17x to 1.22x, respectively.

Fig. 5.17: Results of combining VAR and SETA for the sequential depth-first search
(sDFS). The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

The matrix multiplication (MM) has data processing and load/store instructions. The
only VAR techniques that check both load and store instructions are VAR3, VAR3+, and
VAR3++. As a result, they provide a higher fault coverage for this application, as one can
see in Fig. 5.18. It results in an MWTF of up to 6.46x when MM is protected by VAR3+

13 More information about the benchmarks is available in the appendix C.

80%

84%

88%

92%

96%

100%

1

2

3

4

5

6

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

85%

90%

95%

100%

1

2

3

4

5

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

97

and SETA. The execution time ranges from 1.50x to 1.81x, and the code size varies from
1.88x to 2.31x.

Fig. 5.18: Results of combining VAR and SETA for the matrix multiplication (MM). The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 5.19 shows the results for the run-length encoding (RLE). RLE is the largest code,
it explains why its code size overhead is higher when compared to the execution time
overhead. The execution time varies from 1.60x to 2.09x, and the code size ranges from
1.90x to 2.61x. The MWTF reaches up to 6.30x.

Fig. 5.19: Results of combining VAR and SETA for the run-length encoding (RLE). The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Summation (SUM) is the smallest code, and its code is well-balanced regarding the
types of instructions (arithmetic, load/store, and branch). However, its execution is
heavily loop-based, and the single output depends on the entire program execution. Thus,
an error affecting the program at any time during the execution will very likely propagate
to the program output. The program output is a store instruction that is checked by all
techniques. That is why all the techniques present a high fault coverage, as one can see in
Fig. 5.20. The MWTF of techniques that do not protect the branches (VAR3++, VAR4++,
and VAR5++) is compensated by their lower execution time. The execution time and
code size range, respectively, from 1.77x to 2.37x, and from 1.39x to 1.58x.

80%

85%

90%

95%

100%

1.0

2.5

4.0

5.5

7.0

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

85%

90%

95%

100%

1.0

2.5

4.0

5.5

7.0

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

98

Fig. 5.20: Results of combining VAR and SETA for the summation (SUM). The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

The TETRA encryption algorithm is, by far, the case-study application with the
highest average number of instructions per basic block. Furthermore, it is a code heavily
based on load/store instructions. That is why all techniques perform well in detecting
errors and providing fault coverage, once the store instructions are hardened. In addition,
there are very few branches or jumps that rely on registers to get the target address. Fig.
5.21 presents the average results for each combined technique. The hardened application
achieves up to 7.87x when VAR5+ and SETA are applied. The execution time ranges
from 1.52x to 1.92x, and the code size varies from 1.57x to 2.06x.

Fig. 5.21: Results of combining VAR and SETA for the TETRA encryption algorithm
(TEA2). The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

The Tower of Hanoi is a high arithmetic, load/store application, with just a few
conditional branches. On the other hand, it has many subroutine calls, and consequently
many returns. A return instruction consists of a jump and a register containing the return
address. If this register contains a wrong value, the return will go to the wrong position,
and that may cause an incorrect execution. Once again, checking rule C6 is essential to
improve the fault coverage and MWTF, which reaches up to 6.20x with VAR5 and SETA.
The execution time and code size range from 2.15x to 2.72x, and from 1.64x to 1.95x,
respectively, as shown in Fig. 5.22.

80%

85%

90%

95%

100%

1

2

3

4

5

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

84%

88%

92%

96%

100%

1.0

2.5

4.0

5.5

7.0

8.5

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

99

Fig. 5.22: Results of combining VAR and SETA for the Tower of Hanoi (TH). The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 5.23 presents the average execution time, code size, MWTF, and fault coverage
for some combinations of VAR techniques with SETA, and for an improved version of
the state-of-the-art SWIFT technique. We used the original data-flow part of SWIFT and
replaced the control-flow part, which is a modified version of CFCSS technique, by
CEDA because CEDA achieves and extends the capabilities of detecting errors of the
control-flow part of SWIFT with very similar overheads. The proposed techniques follow
the same representation of previous charts, and the state-of-the-art technique is
represented by the name SoA. Its execution time, code size, MWTF, and fault coverage
are, respectively, 1.99x, 1.87x, 2.85x, and 97.30%. VAR3+, SETA presents the highest
MWTF (5.19x), and fault coverage (98.62%), with a higher execution time (2.11x) and
little higher code size (1.90x). If the aim is reliability, then VAR3+, SETA should be
chosen. If the execution time cannot be higher than SoA, then VAR5 can replace it (once
it has an execution time of 1.97x) and improve significantly the reliability (the MWTF is
4.88x). If the code size is the constraint, VAR3+, SETA could replace SoA with little
increase in the code size, from 1.87x to 1.90x. Another option is to use VAR4, SETA,
which presents a code size of 1.86x, with an execution time of 2.05x and MWTF of 5.14x.
Finally, if the reliability achieved by SoA is enough, it is possible to reduce the overheads
by replacing SoA by VAR4++, SETA or VAR5+, SETA. The first presents 1.82x of
execution time, 1.74x of code size, and 2.89x of MWTF. And the second presents an
execution time of 1.88x, a code size of 1.68x, and an MWTF of 4.01x. If CEDA is used
with another state-of-the-art data-flow technique, it can provide a fault coverage similar
fault to the proposed techniques. However, the overheads will be higher than any
combination of VAR with SETA. Therefore, its MWTF will be lower.

80%

85%

90%

95%

100%

1.0

2.5

4.0

5.5

7.0

3 3+ 3++ 4 4+ 4++ 5 5+ 5++

VAR and SETA (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

100

Fig. 5.23: Average results for combining VAR and SETA vs. state-of-the-art (SoA)
techniques. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

5.3.3 Radiation test results in the ARM Cortex-A9 processor

Radiation test is considered one of the approaches more close to the real application
environment to measure the reliability of new fault tolerant techniques. However,
contrarily to the simulations carried out in previous section an exhaustive evaluation of
every combination is not feasible with radiation due to limited beam time. Therefore, we
used the fault injection campaigns as a guideline to select the most suitable combination
of SIHFT techniques based on MWTF.

5.3.3.1 Test with neutrons

Experiments were performed at Los Alamos National Laboratory’s (LANL) Los
Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics House
II, Los Alamos, US, in order to validate the fault injection campaign by simulation. As
mentioned in (VIOLANTE, 2007), LANSCE provides a white neutron source that
emulates the energy spectrum of the atmospheric neutron flux. The relationship between
neutron energy and modern devices cross section is still an open question. Nevertheless,
LANSCE beam has been empirically demonstrated to be suitable to mimic terrestrial
radiation environment (VIOLANTE, 2007).

The setup is the one presented in section 4.2.2. It consists of a board, computer, USB
net switch, cables for communication, and cables for power supply. The neutron flux was
approximately 1.5x106 n/(cm².s) for energies above 10 MeV. The beam was focused on
a spot with a diameter of 2 inches plus 1 inch of penumbra, which provided uniform
irradiation of the device without directly affecting nearby board power control circuitry.
Irradiation was performed at room temperature with normal incidence and nominal
voltages.

Two versions of case-study Tower of Hanoi (30 elements in the stack) have been
tested, one unhardened and the other hardened by VAR4++ and SETA techniques. Table
5.9 summarizes the data from the neutron experiment. The unhardened version was
executed for 100 minutes under the beam, receiving a total fluence of 9.0x109 n/cm² in
average. The hardened version was executed for 730 minutes under the beam, receiving
a total fluence of 6.57x1010 n/cm² in average. We observed 6 incorrect executions out of
1557, which results in an SER of 3.854x10-3 and a cross section of 6.67x 10-10 cm² for the
unhardened application. In the hardened version, we observed 5 undetected errors that

80%

84%

88%

92%

96%

100%

1

2

3

4

5

6

3+ 4 4++ 5 5+ SoA

VAR and SETA x State of the Art (AVG)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

101

lead to incorrect output on a total of 4872 executions, which results in an SER of
1.026x10-3 and a cross section of 7.61x10-11 cm². The detection techniques were capable
of detecting 90.9% of the errors affecting the processor. That is the reason why we can
see a reduction of the SER by 3.76 and of the cross-section by one order of magnitude
when hardening using VAR4++ and SETA. However, the execution time of the hardened
case-study application used in ARM is 2.33x, and the code size is 2.13x compared to the
unhardened application. That results in an MWTF of 1.61x for the hardened application.

Table 5.9: Summary of radiation test with neutrons on the ARM Cortex-A9 processor
(VAR4++ and SETA)

BB Type Unhardened
Hardened by

VAR4++ and SETA
Flux 1.5x106 n/(cm².s) 1.5x106 n/(cm².s)

Time of exposure 100 min 720 min

Fluence 9.0x109 n/cm² 6.57x1010 n/cm²

SER 3.854x10-3 1.026x10-3

Cross-section 6.67x10-10 cm² 7.61x10-11 cm²

Executions 1557 4872

Execution time 3.85 s 9.00 s

Code size 472 B 1004 B

MWTF 1.00x 1.61x

The MWTF obtained by simulation on the miniMIPS processor for the Tower of

Hanoi hardened by VAR4++ and SETA was 2.68x. The same benchmark, but running on
the ARM Cortex-A9 processor and tested under neutrons reached an MWTF of 1.61x. A
factor that influenced in this difference is the different processor used in both tests. Thus,
the final code and the processor architecture are not the same. Anyhow, it is noticeable
an increase of the MWTF from the unhardened to the hardened version.

5.3.3.2 Test with heavy ions

Heavy ions experiments were conducted at Laboratório Aberto de Física Nuclear of
the Universidade de São Paulo (LAFN-USP), Brazil (AGUIAR, 2014). The ion beams
were produced and accelerated by the São Paulo 8UD Pelletron Accelerator. Aiming to
achieve a very low particle flux in the range from 102 to 105 particles.cm-2.s-1, as
recommended by the European Space Agency (ESA) for SEU tests (ESA, 2014). A
standard Rutherford scattering setup using a gold foil was used. The experiment was
performed in air. A silicon barrier detector was mounted inside the vacuum chamber at
an angle of 45º to monitor the beam intensity. In front of the detector, it was mounted a
collimator with a diameter of 4 mm, defining a solid angle of about 0.085 msr. The SEU
events were observed irradiating 16O beams, scattered by an 184 µg/cm² gold target, with
an energy of 51 MeV (effective energy of 41 MeV), which provided a Linear Energy
Transfer (LET) of 5 MeV/mg/cm² and penetration in Si of 29 µm. To achieve the desired
particle flow, the DUT was positioned at a scattering angle of 15º, resulting in an average
flux of 584.44 particles.cm-2.s-1. Finally, the DUT was also positioned in a way that the
center of the beams was focused in the PS part.

102

The package of the device was thinned to allow that irradiated particles penetrate the
active region of the silicon. Fig. 5.24(a) shows the chip surface without its package. It is
possible to distinguish between the PS and the PL part. Fig. 5.24(b) shows a microscopic
section of the chip performed to evaluate the energy loss of the heavy ions after passing
the passive layers. The passive layers consist of eleven copper metallization layers
separated by dielectric layers. The total thickness of the passive layers is 12.87 µm. To
estimate the energy loss of the heavy ions, it was assumed a total thickness of the copper
metallization layers of 7.87 µm, and a total thickness of the dielectric layers of 5.0 µm.

Fig. 5.24: (a) View of the surface of the XC7Z020-CLG484 device, and (b)
Microscopic section of the XC7Z020-CLG484 device.

The setup is the one presented in section 4.2.2. It consists of a board, computer, USB
net switch, cables for communication, and cables for power supply. Only one ARM core
was utilized during the test, data and instruction L1 caches were enabled, and L2 was
disabled. The processor was running a target application that sends the output by UART
to the computer and, then, restarts its execution. The computer was running a monitoring
application that listens to the COM port connected to the board UART and classifies the
output. In case of error in the ARM processor, the processor is reset.

 Two versions of a Tower of Hanoi (20 elements in the stack) have been tested,
one unhardened, and the other hardened by VAR3+ and SETA techniques. Table 5.10
summarizes the parameters utilized in the radiation test with heavy ions. The unhardened
version was 92 minutes under radiation, receiving a total fluence of 3.23x106 part/cm² in
average. The hardened version was 91 minutes under radiation, receiving a total fluence
of 3.19x106 part/cm² in average. We observed an SER of 5.43x10-3 and a cross section of
9.30x10-6 cm² for the unhardened application. For the hardened version, we observed an
SER of 1.47x10-3 and a cross section of 2.51x10-6 cm². One can see a reduction of the
SER and cross section by a factor of 3.71 when hardening using VAR3+ and SETA.
However, the execution time of the hardened case-study application is 2.62 times, and the
code size is 3.95 times the unhardened application for the ARM processor. That results
in a normalized MWTF of 1.66x for the hardened application.

103

Table 5.10: Summary of radiation test with heavy ions on the ARM Cortex-A9
processor (VAR3+ and SETA)

BB Type Unhardened
Hardened by

VAR3+ and SETA
Flux 5.84x102 part/(cm².s) 5.84x102 part/(cm².s)

Time of exposure 92 min 91 min

Fluence 3.23x106 part/cm² 3.19x106 part/cm²

SER 5.43x10-3 1.47x10-3

Cross section 9.30x10-6 cm² 2.51x10-6 cm²

Execution time 6.08 x10-2 s 1.59 x10-1 s

Code size 252 B 996 B

MWTF 1.00x 1.66x

Although the results obtained from simulated fault injection cannot be directly

compared with the ones obtained from the radiation experiment, it is possible to notice
that the MWTF of the hardened version in the radiation experiment was not very high,
only 1.66x. There are many factors that influenced the lower MWTF of the radiation test.
One of the major causes is the presence of cache memories. The experiments show that
ARM caches are very sensitive to radiation and prone to faults that become errors.
Another concern is that simulation model does not include microarchitectural registers.

Data-flow technique VAR3+ implements duplication rule D2, which does not create
redundancy in the main memory and, consequently, in the cache memories. Therefore, a
fault affecting the L1 cache (enabled in the heavy ion experiment) is not detected by
VAR3+. Anyhow, it is important to mention that the fault injection method must not be
used to replace radiation because it cannot reproduce the complexity of the radiation flux
and the complete hardware architecture implementation. The fault injection simulator was
designed only for comparing the increase of reliability offered by different SIHFT
techniques, but not to get estimations of absolute reliability values.

Another test with heavy ions comparing VAR3 and SETA with the unhardened
application was performed. The same configuration utilized, including the same
benchmark (a Tower of Hanoi with 20 elements in the stack). However, it is not possible
to directly compare the results of this experiment with the previous one because the beam
does not cover the entire chip. Therefore, we cannot ensure that particles are hitting the
same area. Table 5.11 summarizes the parameters utilized in the radiation test with heavy
ion. The unhardened version was 88.5 minutes under radiation, receiving a total fluence
of 3.10x106 part/cm² in average. The hardened version was 179.8 minutes under radiation,
receiving a total fluence of 6.30x106 part/cm² in average. We observed an SER of
5.35x10-4 and a cross section of 1.22x10-5 cm² for the unhardened application. For the
hardened version, we observed an SER of 1.38x10-4 and a cross section of 1.11x10-6 cm².
One can see a reduction of the SER by a factor of 3.88 and a reduction of the cross section
by a factor of 11.03 when hardening using VAR3 and SETA. However, the execution
time of the hardened case-study application is 2.69x for the ARM processor. As a
consequence, the hardened application presents an MWTF of 1.64x.

104

Table 5.11: Summary of radiation test with heavy ions on the ARM Cortex-A9
processor (VAR3 and SETA)

BB Type Unhardened
Hardened by

VAR3 and SETA
Flux 5.84x102 part/(cm².s) 5.84x102 part/(cm².s)

Time of exposure 88.5 min 179.8 min

Fluence 3.10x106 part/cm² 6.30x106 part/cm²

SER 5.35x10-4 1.38x10-4

Cross section 1.22x10-5 cm² 1.11x10-6 cm²

Execution time 6.08 x10-2 s 1.64 x10-1 s

Code size 252 B 1020 B

MWTF 1.00x 1.66x

5.4 Summary

In this chapter we proposed new data-flow and control-flow techniques. The goal of
providing similar reliability of state-of-the-art techniques with lower overheads was
achieved. In addition, it was possible to improve the reliability by keeping a similar fault
coverage and reducing overheads when compared to state-of-the-art techniques. We
discussed the importance of checking registers used by store, load, and branch
instructions. Furthermore, the variations of VAR techniques open a set possibilities for
hardening an application depending on different constraints due to their differents levels
of reliability and overheads.

105

6 PROPOSED SELECTIVE HARDENING

Selective implementations using one of the proposed data-flow techniques plus the
proposed control-flow technique are introduced in this chapter. Firstly, the selective
hardening is performed with a data-flow technique through the selection of which register
will be hardened. Then, the selective data-flow technique is complemented by a control-
flow technique (with no selective hardening). After that, the selectiveness is implemented
in the control-flow technique in two ways: (1) removing checkers from selected basic
blocks and (2) removing the entire protection of selected basic blocks. These two
approaches are tested individually and with a data-flow technique. Finally, the selective
hardening is applied in both data-flow and control-flow techniques. By applying the
techniques selectively, it is possible to lower even more the overheads. The aim is to find
the point with minimum overheads where the fault coverage is still similar to applying
the techniques completely. Furthermore, finding the best trade-off between reliability and
performance is a point of interest.

6.1 Selective data-flow technique

Data-flow techniques duplicate all the registers used by an application, which may
cause significant overheads. Thus, the use of data-flow techniques may be infeasible if
the application has performance or memory constraints. Furthermore, sometimes the
application uses many registers, not leaving enough for duplicating all used registers. In
such cases, a subset of the used registers can be hardened. It will present lower overheads
than hardening all registers, which can meet the application constraints and provide some
reliability. Nevertheless, the registers cannot be randomly selected. A random selection
of registers may provide a lower reliability than a smarter approach based on the
application behavior. Therefore, the method to select registers is of great importance and
will affect the application reliability.

6.1.1 Methodology and implementation

In order to improve the trade-off between reliability and overheads, every register
must be analyzed. However, testing all the possible subset of used registers is infeasible
due to its exponential property. Eq. 6.1 demonstrates that the number of possible subsets
C of an application depends on the number of used registers n. It is given by the
summation from 0 to n of the Newton's binomial with n and i as coefficients, where i is
the summation variable. This equation is equivalent to 2n.

Eq.	6.1 	 : →
!

! !
2

A metric to define the criticality of registers was proposed by Restrepo-Calle (2015).
It analyzes the application dynamically, evaluating the registers’ effective lifetime,
functional dependencies, and their use in branch instructions. As result, the metric
provides a list of registers ranked by their criticality. Thus, there are no need for
exhaustive tests. This work protects registers following this metric. As follows, we
present a brief explanation of the main topics of this metrics:

106

 Dynamic code analysis: it consists of using dynamic measurements for the
computation algorithms during runtime. This kind of assessment does not
represent any inconvenience in the usual design flow of embedded systems,
and alternatively, improves significantly the accuracy of the estimations

 Lifetime: the register lifetime represents the time when useful data in present
in the register. Any fault occurring to the register during that time destroys
the data integrity. Therefore, the higher the lifetime, the longer the register
is prone to faults. The lifetime is expressed as the sum of clock cycles of all
the register living intervals during the program execution

 Living interval: a living interval starts with a write operation and ends with
the last read operation before the next write operation in the same register

 Effective lifetime: it is an improved evaluation of the register lifetime.
Registers with the same lifetime, but with a different number of living
intervals have a different effective lifetime. The more living intervals a
register has, the lower is its effective lifetime. That is a very important
consideration that takes into account characteristics of the pipeline

 Weight in conditional branches: errors affecting registers used by branch
instructions may lead the application control to take an incorrect path. That
is the reason to give more attention to branch instructions

 Functional dependencies: this criterion is the count of functional
dependencies among registers. Registers having a lot of descendants are
more sensitive to the whole application because an error affecting it has a
higher chance of propagating to other registers and the application output. In
Restrepo-Calle (2015), only the direct descendants were considered

 Criticality: it is the score that each register receives based on its effective
lifetime, weight in conditional branches, and functional dependencies. The
registers are then ranked by their criticality. The higher the value, the more
critical the register.

The criticality, as well as its components for each case-study application of this
thesis work, are listed and discussed in the appendix C, which presents the benchmarks.

VAR3+ was selected as the data-flow technique for the selective hardening due to
its high fault coverage and MWTF when applied together with SETA. VAR4 is also a
good candidate because it presented a slightly lower MWTF with lower overheads.
However, it means that it has a lower fault coverage too. And since the overheads of
VAR3+ are higher, it means that the selective hardening of this technique will reduce
more the overheads. That in addition to the fact that VAR3+ has a higher fault coverage
makes it is the best candidate to improve the reliability with the selective hardening. The
selective VAR3+ technique will be referred as S-VAR from now on. The methodology is
similar to the one presented in section 3.4.1. However, the registers are hardened based
on the ranking provided by the metric for criticality cited above. Table 6.1 shows
examples of S-VAR when different numbers of registers are hardened. The original code
is presented as normal text, and the code inserted by S-VAR is bold. Note that the S-VAR
with all registers hardened is equivalent to VAR3+. In order to apply the selective
hardening in the applications, we used features of the CFT-tool that allow us to indicate
which registers must be hardened, and which are their priorities to be hardened. There are
built-in static metrics for criticality in the tool, but once Restrepo-Calle (2015)’s metric
is dynamic, it was necessary to calculate the registers criticality for each case-study

107

application before hand. Then, we inform CFT-tool of the registers that must have a
higher priority to be hardened through a customized option to select registers.

Table 6.1: Example of a selective data-flow technique (S-VAR)

Unhardened

code
Hardened by
S-VAR ($2)

Hardened by
S-VAR ($2,$6)

Hardened by
S-VAR ($2,$4,$6)

1

2

3

4

5

6

7

8

9

10

11

12

13

la $2,$result

lw $4,0($6)

sll $4,$4,2

sw $6,4($2)

sw $4,0($2)

la $2,$result

la $12,$result

lw $4,0($6)

sll $4,$4,2

bne $2,$12,error

sw $6,4($2)

bne $2,$12,error

sw $4,0($2)

la $2,$result

la $12,$result

bne $6,$16,error

lw $4,0($6)

sll $4,$4,2

bne $6,$16,error

bne $2,$12,error

sw $6,4($2)

bne $2,$12,error

sw $4,0($2)

la $2,$result

la $12,$result

bne $6,$16,error

lw $4,0($6)

lw $14,0($16)

sll $4,$4,2

sll $14,$14,2

bne $6,$16,error

bne $2,$12,error

sw $6,4($2)

bne $4,$14,error

bne $2,$12,error

sw $4,0($2)

6.1.2 Fault injection results in the miniMIPS processor

Figs. 6.1 to 6.9 present the execution time, code size, MWTF, and fault coverage for
all benchmarks hardened with S-VAR. The horizontal axis represents the percentage of
registers hardened by S-VAR, where 0% is equivalent to the unhardened application, and
100% is equivalent to VAR3+. The execution time, code size, and MWTF are normalized
by the unhardened application. The fault coverage is presented in percentage. Although
the case-study applications have a different behavior and use a different number of
registers, they all present similar results. The fault coverage saturates after a certain
percentage of registers is hardened. This percentage depends on the application, but in
general, the more registers an application have, the lower is the percentage to saturate the
fault coverage. The number of more critical registers does not vary much, which means
that if there are more used registers, the percentage of critical ones is lower than the
average. Furthermore, the overheads roughly follow the behavior of the fault coverage,
which explains why the MWTF does not change much with the increase of protection.
Any difference can also be explained by the fact the metric for criticality, although good,
is not perfect. As stated in the previous chapter, data-flow techniques are not enough for
protecting an application. The use combined with a control-flow technique is necessary.

108

Fig. 6.1: Results for the bubble sort (BS) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.2: Results for the Dijkstra’s algorithm (DA) hardened by the S-VAR technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.3: Results for the recursive depth-first search (rDFS) hardened by the S-VAR
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 8% 15% 23% 31% 38% 46% 54% 62% 69% 77% 85% 92% 100%

S‐VAR (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 14% 29% 43% 57% 71% 86% 100%

S‐VAR (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 11% 22% 33% 44% 56% 67% 78% 89% 100%

S‐VAR (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

109

Fig. 6.4: Results for the sequential depth-first search (sDFS) hardened by the S-VAR
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.5: Results for the matrix multiplication (MM) hardened by the S-VAR technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.6: Results for the run length encoding (RLE) hardened by the S-VAR technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 17% 33% 50% 67% 83% 100%

S‐VAR (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 8% 15% 23% 31% 38% 46% 54% 62% 69% 77% 85% 92% 100%

S‐VAR (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 13% 25% 38% 50% 63% 75% 88% 100%

S‐VAR (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

110

Fig. 6.7: Results for the summation (SUM) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.8: Results for the TETRA encryption algorithm (TEA2) hardened by the S-VAR
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.9: Results for the Tower of Hanoi (TH) hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 20% 40% 60% 80% 100%

S‐VAR (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 13% 25% 38% 50% 63% 75% 88% 100%

S‐VAR (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 9% 18% 27% 36% 45% 55% 64% 73% 82% 91% 100%

S‐VAR (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

111

In Fig. 6.10 we can see the highest MWTF achieved for each application and the
average results. In summary, the MWTF stays a little higher than 1.0, and the higher the
fault coverage, the higher the overheads. The execution time, code size, and MWTF are
normalized by the equivalent unhardened application, and the fault coverage is presented
in percentage.

Fig. 6.10: Highest MWTF for the benchmarks hardened by the S-VAR technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.11 to 6.19 present the execution time, code size, MWTF, and fault coverage
for all the benchmarks (one per chart) hardened by S-VAR and SETA. The execution
time, code size, and MWTF are normalized by the corresponding unhardened application.
It is possible to notice that the same behavior observed with S-VAR only can be seen with
the addition of SETA. However, the fault coverage saturates much later (with a higher
percentage of registers hardened). It means that the small increase in the fault coverage
that a not very critical register provides is still enough to compensate the additional
overheads. Furthermore, the MWTF is considerably higher than S-VAR because both
data-flow and control-flow are hardened, as also observed in the previous chapter.

Fig. 6.11: Results for the bubble sort (BS) hardened by S-VAR and SETA. The execution
time, code size, and MWTF are normalized by the unhardened application (left axis). The
fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.0

0.5

1.0

1.5

2.0

BS DA rDFS sDFS MM RLE SUM TEA2 TH AVG

S‐VAR (highest MWTF per benchmark)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

0% 8% 15% 23% 31% 38% 46% 54% 62% 69% 77% 85% 92% 100%

S‐VAR and SETA (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

112

Fig. 6.12: Results for the Dijkstra’s algorithm (DA) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.13: Results for the recursive depth-first search (rDFS) hardened by S-VAR and
SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.14: Results for the sequential depth-first search (sDFS) hardened by S-VAR and
SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

0% 14% 29% 43% 57% 71% 86% 100%

S‐VAR and SETA (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

0% 11% 22% 33% 44% 56% 67% 78% 89% 100%

S‐VAR and SETA (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.5

2.5

3.5

4.5

0% 17% 33% 50% 67% 83% 100%

S‐VAR and SETA (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

113

Fig. 6.15: Results for the matrix multiplication (MM) hardened by S-VAR and SETA.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.16: Results for the run length encoding (RLE) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.17: Results for the summation (SUM) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

8.0

0% 8% 15% 23% 31% 38% 46% 54% 62% 69% 77% 85% 92% 100%

S‐VAR and SETA (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

0% 13% 25% 38% 50% 63% 75% 88% 100%

S‐VAR and SETA (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

1.5

2.5

3.5

4.5

0% 20% 40% 60% 80% 100%

S‐VAR and SETA (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

114

Fig. 6.18: Results for the TETRA encryption algorithm (TEA2) hardened by S-VAR and
SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.19: Results for the Tower of Hanoi (TH) hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

In Fig. 6.20 one can see the highest MWTF achieved for each application and the
average results. The execution time, code size, and MWTF are normalized by the
equivalent unhardened application, and the fault coverage is presented in percentage. The
average MWTF achieved by S-VAR and SETA is a little higher than when no selective
hardening is implemented (VAR3+ and SETA). The reason is that VAR3+ is one of the
cases of S-VAR, so the highest MWTF of S-VAR will never be lower than VAR3+.
Furthermore, some cases of S-VAR near but lower than 100% achieve higher MWTF
than when 100% of the registers are hardened. Thus, S-VAR increases the MWTF of
VAR3+.

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

8.0

0% 13% 25% 38% 50% 63% 75% 88% 100%

S‐VAR and SETA (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

80%

85%

90%

95%

100%

0.5

2.0

3.5

5.0

6.5

0% 9% 18% 27% 36% 45% 55% 64% 73% 82% 91% 100%

S‐VAR and SETA (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of registers hardened

115

Fig. 6.20: Highest MWTF for the benchmarks hardened by S-VAR and SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

In conclusion about selective data-flow techniques, it is noticeable that a higher
MWTF is reached near to 100% of registers hardened. Therefore, it is recommendable to
protect the most registers possible, respecting possible constraints, to increase the fault
coverage and MWTF. In addition, it is clear that the use of a control-flow technique
together with a data-flow technique is key to the improvement of the reliability.

6.2 Selective control-flow technique

The selective hardening on control-flow techniques is applied to the basic blocks.
Selected basic blocks are hardened with the control-flow technique while the others will
lack protection in some manner, which depends on the selective hardening method
implemented.

6.2.1 Methodology and implementation

As SETA showed to be a superior control-flow technique, the selective hardening on
control-flow techniques is implemented using this technique. Regarding the selective
hardening methods, there are two approaches, one cited by Vemu (2011), but with no
implementation or evaluation, and another proposed in this work. Table 6.2 summarizes
these approaches. In addition, they are explained as follow.

 SETA-C (SETA minus Checkers): consists of removing checkers from the
basic blocks, as stated in (VEMU, 2011). All the basic blocks are protected by
SETA with signatures. However, not all of them receive a checker. Basic
blocks with more connections (predecessors and successors) have a higher
priority to receive a checker. If an error occurs in a basic block with no
checker, it can be detected in a subsequent basic block since the error will
propagate. It presents lower overheads than the standard SETA

 S-SETA (Selective SETA): is a new selective method. It consists of
completely ignoring some basic blocks. The ignored basic blocks receive no
signatures or checkers. Thus, it is possible to provide overheads even lower
than only removing checkers. This selective hardening method of SETA is
better explained below.

Table 6.2: Example of a selective data-flow technique (S-VAR)

80%

85%

90%

95%

100%

1.0

2.5

4.0

5.5

7.0

BS DA rDFS sDFS MM RLE SUM TEA2 TH AVG

S‐VAR and SETA (highest MWTF per benchmark)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e
u
n
h
ar
d
e
n
e
d

ap
p
lic
at
io
n

fau
lt co

ve
rage

116

S-SETA SETA-C

 Protect only selected basic
blocks with signatures and
checkers

 Other basic blocks are

ignored

 Protect all basic blocks with
signatures

 Only insert checkers in

selected basic blocks

6.2.1.1 S-SETA

S-SETA ignores some basic blocks in order to reduce costs. This method was named
as tunnel effect. It creates the effect of a tunnel between the predecessors and successors
of ignored basic blocks. Thus, S-SETA does not see ignored BBs and does not protect
them. The criterion used to select the basic blocks to be hardened is the basic block size.
Larger basic blocks have higher priority to be selected and, thus, hardened. The size was
selected as the criterion based on the following assumption:

 Small basic blocks are quickly executed and uses fewer memory positions.
Therefore, the chance of being affected by a fault is lower. If they are executed
just a few times, they would not be very sensitive, so its protection is not very
important. On the other hand, if they are frequently executed, their
susceptibility to faults increase due to their increased time of exposure, but the
insertion of protection in such small basic blocks would cause significant
performance degradation.

SETA-C could have implemented the same criterion to select the basic blocks to
receive checkers, but it would have the two following consequences:

1. The execution time of the applications hardened by SETA-C would decrease.
However, the reduction would be around 50% smaller than for S-SETA
because SETA-C removes only checkers, while S-SETA removes all the
basic block protection

2. The error detection rate would decrease if the size was the criterion when
compared with the number of connections. Once SETA-C protects all the
basic blocks, the errors are propagated to the following basic blocks. Thus, if
the basic blocks with more connections receive checkers, the chance of
detecting an error increases, once the chance of executing a basic block with
a checker also increases.

Fig. 6.21 shows how the tunnel effect is applied to a program. Fig. 6.21(a) presents
the default program flow where all the basic blocks are hardened. If the protection is
reduced to 70%, as shown in Fig. 6.21(c), basic blocks 1, 4, 8, and 9 are removed. The
successors of BB 1 are attributed to its predecessor, BB 0. The successors of BB 2 now
are BBs 3, 5, and 6, once BB 4 was removed. BBs 5 and 6 now point to BBs 2 and 7
instead of BB 1. Furthermore, BB 8 was removed. Therefore, BB 9 has no longer a
successor. Following the same idea, Fig. 6.21(b), Fig 6.21(d) and Fig. 6.21(e) show how
S-SETA sees the program flow for hardening 80%, 30%, and 20% of the basic blocks,
respectively.

117

Fig. 6.21: Example of tunnel effect (S-SETA) (a) protecting 100% of BBs, equivalent to
SETA, (b) protecting 80%, (c) protecting 70%, (d) protecting 30%, and (e) protecting
20% of BBs.

6.2.2 Fault injection results in the miniMIPS processor

Fig. 6.22 shows the execution time, code size, MWTF, and fault coverage for the
bubble sort (BS) hardened by S-SETA. The horizontal axis represents the percentage of
basic blocks hardened. When 0% of the basic blocks are hardened, S-SETA is equivalent
to the unhardened application, and when 100% are hardened, S-SETA is equivalent to
SETA. One can notice that for a low percentage of basic blocks hardened, S-SETA does
not increase much the fault coverage and MWTF. It happens because there is not enough
protection for the application to detect control-flow errors. However, from half of basic
blocks hardened on, it is possible to notice an increase of the MWTF when compared to
SETA. That is explained by a similar fault coverage and a lower execution time.

Fig. 6.22: Results for the bubble sort (BS) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

With regards to SETA-C hardening BS, shown in Fig. 6.23, it is possible to notice a
constant MWTF, similar to SETA. SETA-C protects all the basic blocks, which means

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

118

that the selective hardening is only related with where checkers are inserted. Therefore,
there is a chance that an error in basic block will be detected by a later checker. On the
other hand, the overheads caused by SETA-C are higher because there are signature
updates in all basic blocks.

Fig. 6.23: Results for the bubble sort (BS) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.24 compares the S-SETA with SETA-C for the bubble sort (BS). SETA-C
reaches a high MWTF with fewer basic blocks protected. However, it does not mean that
SETA-C is a better option for implementations with low overhead because it always
presents higher overheads than S-SETA. For example, SETA-C 10% has similar
overheads to S-SETA 50%. Therefore, S-SETA is a better option for meeting overhead
constraints. Furthermore, S-SETA presents similar fault coverage with lower overheads,
and, in consequence, higher MWTF. With the percentage of basic blocks getting near to
100%, S-SETA and SETA-C start to converge to SETA.

Fig. 6.24: Comparison between S-SETA and SETA-C for the bubble sort (BS). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Similar results to BS can be found for the Dijkstra’s algorithm (DA). Fig. 6.25 and
6.26 present, respectively, the execution time, code size, MWTF, and fault coverage for
DA. The fault coverage is presented in percentage, and the other parameters are showed

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (BS)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

119

normalized by the unhardened application. The MWTF when hardening with S-SETA
increases after a certain percentage of basic blocks is hardened. When hardening with
SETA-C, the MWTF is constant. Similarly to BS, S-SETA reaches a higher MWTF when
it achieves similar fault coverage, as one can see by the comparison presented in Fig.
6.27. Note: SETA-C 0% presents overheads higher than 1.0 because all basic blocks have
signature updates, even so that no checker is inserted. This case would never be
implemented in real cases because it would be better to use the unhardened application
instead.

Fig. 6.25: Results for the Dijkstra’s algorithm (DA) hardened by the S-SETA technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.26: Results for the Dijkstra’s algorithm (DA) hardened by the SETA-C technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

120

Fig. 6.27: Comparison between S-SETA and SETA-C for the Dijkstra’s algorithm (DA).
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.28 presents the execution time, code size, MWTF, and fault coverage for the
recursive depth-first search (rDFS) hardened by S-SETA. As one can see, S-SETA
reaches high fault coverage with low overheads when 20% of the basic blocks are
hardened. The MWTF reduces with the increase of the protection because the additional
gain in fault coverage is very low if compared to the increase of the execution time. When
compared to SETA-C, presented in Fig. 6.29, it is possible to notice that exceptionally
for this application, the MWTF of SETA-C increases for a greater percentage of basic
blocks hardened if compared to S-SETA. It is due the way each technique select the most
critical basic blocks. S-SETA selects based on the BB size, and SETA-C selects based on
the number of connections the BB have. It means, for this application, that the number of
connections is not a major factor to define which basic block should receive a checker.
Furthermore, the MWTF is not constant because the execution time increases more than
most other case-study applications with no additional fault coverage. That explain the
earlier convergence of SETA-C to SETA.

Fig. 6.28: Results for the recursive depth-first search (rDFS) hardened by the S-SETA
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (DA)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

121

Fig. 6.29: Results for the recursive depth-first search (rDFS) hardened by the SETA-C
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.30 shows the comparison between S-SETA and SETA-C for rDFS. The
execution time, code size, MWTF, and fault coverage of S-SETA are normalized by the
respective parameters of SETA-C. For 20% of the basic blocks hardened, there is a peak
in the difference of the MWTF because SETA-C still does not provide an increase in the
fault coverage. From that point on, we can see a slight advantage of S-SETA, due to its
lower execution time overhead and similar fault coverage.

Fig. 6.30: Comparison between S-SETA and SETA-C for the recursive depth-first search
(rDFS). The results obtained with S-SETA are normalized by the ones obtained with
SETA-C.

Fig. 6.31 presents the results for a depth-first search (sDFS) hardened by S-SETA,
and Fig. 6.32 shows the results of the sDFS hardened by SETA-C. As for the other
applications, the fault coverage and the MWTF provided by SETA-C are more or less
constant. However, there are a little increase in the MWTF for a lower percentage of basic
blocks with checkers due to the lower execution time overhead. With regards to S-SETA,
we can see an earlier increase of the MWTF. The two largest basic blocks are in the
beginning and end of the application, and both are very interactive, mainly the last one.
Thus, many errors are detected when these two large basic blocks are hardened (S-SETA

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (rDFS)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

122

20%) by the interaction of them through the tunnel effect with very low overheads
(execution time of 1.02x and code size of 1.03x).

Fig. 6.31: Results for the sequential depth-first search (sDFS) hardened by the S-SETA
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.32: Results for the sequential depth-first search (sDFS) hardened by the SETA-C
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

The comparison between S-SETA and SETA-C for the sDFS presented in Fig. 6.33
shows a higher MWTF for S-SETA from 20% on. The techniques converge to SETA near
100%, which is why they have similar MWTF near that point. It is important to notice
that the significantly lower overhead of S-SETA is the factor responsible for improving
the MWTF.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

123

Fig. 6.33: Comparison between S-SETA and SETA-C for the sequential depth-first search
(sDFS). The results obtained with S-SETA are normalized by the ones obtained with
SETA-C.

The matrix multiplication (MM) has a basic block configuration (number of basic
blocks, average size of the basic blocks, and percentage of basic blocks of one type)
similar to the bubble sort. Therefore, in this case, we can also see a later increase in the
MWTF for MM hardened by S-SETA, as shown in Fig. 6.34. When SETA-C is
implemented (Fig. 6.35), one can notice the same configuration of all applications, an
almost constant MWTF.

Fig. 6.34: Results for the matrix multiplication (MM) hardened by the S-SETA technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

0.50

0.75

1.00

1.25

1.50

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (sDFS)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

124

Fig. 6.35: Results for the matrix multiplication (MM) hardened by the SETA-C technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

We can see by the comparison between S-SETA and SETA-C for MM in Fig. 6.36
that while S-SETA does not increase the fault coverage, SETA-C has a higher MWTF,
although the higher overheads. However, from 60% of the basic blocks hardened on, S-
SETA provides a higher MWTF until both techniques converge to SETA.

Fig. 6.36: Comparison between S-SETA and SETA-C for the matrix multiplication
(MM). The results obtained with S-SETA are normalized by the ones obtained with
SETA-C.

The run length encoding (RLE) is the application with the greatest number of basic
blocks. It means that for the same percentage of basic blocks hardened, a greater absolute
number of basic blocks was hardened. That explains why since 10% of the basic blocks
hardened, both S-SETA (Fig. 6.37) and SETA-C (Fig. 6.38) reach a high fault coverage
and MWTF. Once both approaches reach similar high MWTF, the comparison between
them (presented in Fig. 6.39) does not vary much from 1.0.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (MM)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

125

Fig. 6.37: Results for the run length encoding (RLE) hardened by the S-SETA technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.38: Results for the run length encoding (RLE) hardened by the SETA-C technique.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.39: Comparison between S-SETA and SETA-C for the run length encoding (RLE).
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

0.8

0.9

1.0

1.1

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (RLE)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

126

Although the summation (SUM) has a very different basic block configuration than
BS and MM, it has a similar execution property. It consists of a loop controlled by a value
stored in a register. Furthermore, it has very few basic blocks, so a higher percentage need
to be hardened (in comparison to other benchmarks) in order to protect a greater number
of basic blocks. Fig. 6.40 presents the execution time, code size, MWTF, and fault
coverage for SUM hardened by S-SETA. And Fig. 6.41 presents the same parameters for
SUM hardened by SETA-C. In the comparison between both selective hardening
approaches (Fig. 6.42), one can notice a punctual higher execution time for S-SETA. It
would not happen if the method to select the basic blocks were the same. However, there
is a difference in the implementation that justify this result. S-SETA selects the basic
blocks by their size. SETA-C select the basic block with more connections (predecessors
and successors). This difference explains punctual higher execution time of S-SETA.

Fig. 6.40: Results for the summation (SUM) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.41: Results for the summation (SUM) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

127

Fig. 6.42: Comparison between S-SETA and SETA-C for the summation (SUM). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.43 and Fig. 6.44 show the execution time, code size, MWTF, and fault coverage
for the TETRA encryption algorithm hardened, respectively, by S-SETA and SETA-C.
We can see that both approaches present the expected behavior. S-SETA increases the
MWTF after a certain percentage of basic blocks is hardened, while SETA-C keeps a
constant MWTF. We can see in the comparison presented in Fig. 6.45 that after S-SETA
increases the MWTF, both approaches converge to SETA.

Fig. 6.43: Results for the TETRA encryption algorithm (TEA2) hardened by the S-SETA
technique. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (SUM)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

128

Fig. 6.44: Results for the TETRA encryption algorithm (TEA2) hardened by the SETA-
C technique. The execution time, code size, and MWTF are normalized by the
unhardened application (left axis). The fault coverage is presented in percentage (right
axis).

Fig. 6.45: Comparison between S-SETA and SETA-C for the TETRA encryption
algorithm (TEA2). The results obtained with S-SETA are normalized by the ones
obtained with SETA-C.

Fig. 6.46 shows that S-SETA when hardening a Tower of Hanoi (TH) achieves a high
fault coverage with a small percentage of basic blocks hardened (S-SETA 10%). Due to
its negligible execution time overhead, the MWTF reaches the maximum value. With the
increase in the percentage of basic blocks hardened, the fault coverage increases, but it is
not enough to compensate the increase in the overheads, and that reduces the MWTF,
converging to SETA. In Fig. 6.47, one can see the standard behavior of SETA-C, which
presents an almost constant MWTF. In the comparison between S-SETA and SETA-C
for TH, S-SETA always presents higher MWTF than SETA-C, being higher for a lower
percentage due to the lower overhead and converging to SETA with the increase of the
percentage of basic blocks hardened, as one can see in Fig. 6.48.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.55

0.70

0.85

1.00

1.15

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (TEA2)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

129

Fig. 6.46: Results for the Tower of Hanoi (TH) hardened by the S-SETA technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.47: Results for the Tower of Hanoi (TH) hardened by the SETA-C technique. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.48: Comparison between S-SETA and SETA-C for the Tower of Hanoi (TH). The
results obtained with S-SETA are normalized by the ones obtained with SETA-C.

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

80%

85%

90%

95%

100%

0.5

1.0

1.5

2.0

2.5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

SETA‐C (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

0.70

0.85

1.00

1.15

1.30

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

S‐SETA normalized by SETA‐C (TH)

execution time code size MWTF fault coverage

S‐
SE
TA

/
SE
TA

‐C

percentage of basic blocks

130

Fig. 6.49 shows the highest MWTF with its respective execution time, code size, and
fault coverage for each application hardened either by S-SETA or SETA-C. The
execution time, code size, and MWTF is presented normalized by the unhardened
application, and the fault coverage is showed in percentage. As one can notice, for most
of the applications, S-SETA reaches a higher MWTF. And for the other ones, the
difference between the MWTF of S-SETA and SETA-C is small. Anyhow, it is necessary
to test the selective hardening for control-flow techniques with a data-flow technique,
which is discussed below.

Fig. 6.49: Highest MWTF for the benchmarks hardened by the S-SETA or SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Although the overheads, fault coverage, and MWTF of using VAR3+, and S-SETA
or SETA-C are higher than only using a selective control-flow technique, the behavior
for each application and selective hardening approach is similar. Thus, the same
conclusions from using only S-SETA or SETA-C can be extended to VAR3+, S-SETA,
and VAR3+, SETA-C. Figs. 6.50 to 6.76 present the results for all benchmarks hardened
by VAR3+, S-SETA or VAR3+, SETA-C, and also the comparison between both
selective hardening approaches applied together with VAR3+.

Fig. 6.50: Results for the bubble sort (BS) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

0%

20%

40%

60%

80%

100%

1.0

1.3

1.6

1.9

2.2

2.5

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐SETA x SETA‐C (highest MWTF per application)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

| BS | DA | rDFS | sDFS | MM | RLE | SUM | TEA2 | TH | AVG |

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
en

e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

131

Fig. 6.51: Results for the bubble sort (BS) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.52: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the BS.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.53: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and S-SETA.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (BS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (BS)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

132

Fig. 6.54: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and SETA-C.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.55: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the DA.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.56: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and S-
SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (DA)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.1

0.4

0.7

1.0

1.3

1.6

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (DA)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
ed

 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks hardened

133

Fig. 6.57: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.58: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the rDFS.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.59: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and
S-SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (rDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n

fau
lt co

ve
rage

percentage of basic blocks with checkers

0

1

2

3

4

5

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (rDFS)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

134

Fig. 6.60: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.61: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the sDFS.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.62: Results for the matrix multiplication (MM) hardened by VAR3+ and S-SETA.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (sDFS)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.2

0.4

0.6

0.8

1.0

1.2

1.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (sDFS)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

135

Fig. 6.63: Results for the matrix multiplication (MM) hardened by VAR3+ and SETA-C.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.64: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the MM.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.65: Results for the run length encoding (RLE) hardened by VAR3+ and S-SETA.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (MM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.0

0.2

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (MM)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

136

Fig. 6.66: Results for the run length encoding (RLE) hardened by VAR3+ and SETA-C.
The execution time, code size, and MWTF are normalized by the unhardened application
(left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.67: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the RLE.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.68: Results for the summation (SUM) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (RLE)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.6

0.8

1.0

1.2

1.4

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (RLE)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

137

Fig. 6.69: Results for the summation (SUM) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.70: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the SUM.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.71: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and
S-SETA. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0.0

1.5

3.0

4.5

6.0

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (SUM)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.2

0.4

0.6

0.8

1.0

1.2

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (SUM)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

138

Fig. 6.72: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened
application (left axis). The fault coverage is presented in percentage (right axis).

Fig. 6.73: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for TEA2.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.74: Results for the Tower of Hanoi (TH) hardened by VAR3+ and S-SETA. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (TEA2)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.1

0.4

0.7

1.0

1.3

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (TEA2)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and S‐SETA (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks hardened

139

Fig. 6.75: Results for the Tower of Hanoi (TH) hardened by VAR3+ and SETA-C. The
execution time, code size, and MWTF are normalized by the unhardened application (left
axis). The fault coverage is presented in percentage (right axis).

Fig. 6.76: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the TH.
The results obtained with S-SETA are normalized by the ones obtained with SETA-C.

Fig. 6.77 shows the highest MWTF with its respective execution time, code size, and
fault coverage for each application hardened by either VAR3+, S-SETA or VAR3+,
SETA-C. The execution time, code size, and MWTF are presented normalized by the
unhardened application, and the fault coverage is showed in percentage. As one can
notice, VAR3+, S-SETA usually reaches a higher MWTF. For the other applications, the
difference between the MWTF of VAR3+, S-SETA, and VAR3+, SETA-C is small. We
can see a significant increase in the fault coverage and MWTF when a data-flow
technique is applied together with S-SETA or SETA-C.

80%

85%

90%

95%

100%

0

2

4

6

8

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+ and SETA‐C (TH)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
ed

 a
p
p
lic
at
io
n

fau
lt co

verage

percentage of basic blocks with checkers

0.7

0.8

0.9

1.0

1.1

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

VAR3+, S‐SETA normalized by VAR3+, SETA‐C (TH)

execution time code size MWTF fault coverage

(V
A
R
3
+
, S
‐S
ET
A
)
/
(V
A
R
3
+,

SE
TA

‐C
)

percentage of basic blocks

140

Fig. 6.77: Highest MWTF for the benchmarks hardened by (VAR3+, S-SETA) or
(VAR3+, SETA-C). The execution time, code size, and MWTF are normalized by the
unhardened application (left axis). The fault coverage is presented in percentage (right
axis).

S-SETA presents better gains in the MWTF. On the other hand, SETA-C keeps the
fault coverage high for a lower percentage of basic blocks with checkers. Nevertheless, it
does not mean that SETA-C can provide reliability with lower overheads. Actually, it is
the opposite. S-SETA presents significantly lower overheads than SETA-C. For example,
sDFS hardened by SETA-C 10% presents 1.42x of execution time, while S-SETA 70%
presents 1.32x. Thus, S-SETA is a better solution to meet time or energy constraints.
Furthermore, it achieves a general higher MWTF due to its similar fault coverage and
lower overheads. It is possible to combine S-SETA with SETA-C, S-SETA would select
the basic blocks that will be hardened, and then, SETA-C would select which of the
hardened basic blocks should receive a checker. This combination is an interesting
approach to be evaluated in future work.

Table 6.3 presents selected data from all the selective hardening approaches presented
above. The data selected respect some specific constraints. However, it is necessary
cautiousness when using these results. It is important to take into account that these results
are for the miniMIPS processor using a specific fault injection methodology. Adjusts may
be necessary depending the target processor and the real rate of upsets over time affecting
the system. Furthermore, it does not give the best options for every scenario, we just point
out some selected cases. For example, when using VAR3+ with S-SETA, it may be
necessary to protect around 40% of the basic blocks to achieve a fault coverage of at least
98%. The X means that the constraint is unachievable. For example, for many
applications, it is not possible to reach more than 92% of fault coverage with only data-
flow techniques.

0%

20%

40%

60%

80%

100%

1.0

2.5

4.0

5.5

7.0

8.5

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

S‐
SE
TA

SE
TA

‐C

VAR3+, S‐SETA x VAR3+, SETA‐C (highest MWTF per application)

execution time code size MWTF fault coverage

n
o
rm

al
iz
e
d
 b
y
th
e

u
n
h
ar
d
e
n
e
d
 a
p
p
lic
at
io
n

fau
lt co

verage

| BS | DA | rDFS | sDFS | MM | RLE | SUM | TEA2 | TH | AVG |

141

Table 6.3: Summary of selective hardening. Fault coverage (FC) showed in percentage,
execution time (ET) presented normalized by the unhardened application.

S-VAR (% of hardened registers)

LIMIT BS DA rDFS sDFS MM RLE SUM TEA2 TH
FC 88% 23% 0% 44% 67% 46% 13% 40% 63% 36%
FC 90% 31% 57% 56% 67% 46% 38% 60% 75% 64%
FC 92% 46% 71% X X X 63% X 75% X
ET 1.25x 23% 43% 33% 50% 38% 38% 40% 38% 18%
ET 1.50x 23% 57% 44% 67% 38% 38% 40% 50% 45%
ET 1.75x 38% 100% 78% 100% 58% 75% 40% 100% 55%

S-VAR, SETA (% of hardened registers)

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH
FC 94% 0% 0% 11% 17% 38% 0% 20% 63% 9%
FC 96% 31% 29% 56% 67% 46% 25% 60% 63% 27%
FC 98% 46% 71% 67% 83% 54% 50% 80% 75% 91%
ET 1.4x 23% 43% X X 38% 38% 20% 50% X
ET 1.7x 23% 57% 11% X 46% 38% 40% 50% 18%
ET 2.0x 77% 100% 33% 50% 100% 75% 40% 100% 36%

S-SETA (% of BBs hardened)

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH
FC 90% 40% 20% 20% 20% 60% 10% 50% 50% 20%
FC 92% 50% 30% 20% 40% X 10% 60% X 90%
FC 94% 50% 60% 80% X X 10% 80% X X
ET 1.1x 40% 50% 30% 20% 50% 10% 10% 100% 30%
ET 1.2x 60% 70% 50% 50% 100% 20% 10% 100% 40%
ET 1.3x 100% 100% 60% 60% 100% 100% 50% 100% 60%

SETA-C (% of BBs with checkers)

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH
FC 90% 10% 10% 30% 10% 10% 10% 20% 30% 10%
FC 92% 10% 10% 30% 10% X 10% 20% X 50%
FC 94% 20% 10% X X X 10% 70% X X
ET 1.1x 0% 10% X X 10% X X 100% X
ET 1.2x 40% 60% X X 100% 20% 10% 100% X
ET 1.3x 100% 100% 20% 0% 100% 100% 50% 100% 30%

VAR3+, S-SETA (% of BBs hardened)

 BS DA RDFS SDFS MM RLE SUM TEA2 TH
FC 92% 0% 0% 20% 20% 10% 10% 30% 0% 10%
FC 95% 40% 20% 20% 20% 50% 10% 50% 50% 10%
FC 98% 40% 40% 20% 40% 50% 10% 60% 50% 10%
ET 1.7x X 30% X 20% 70% X X X X
ET 1.9x 30% 100% 40% 50% 100% 30% X 100% X
ET 2.1x 100% 100% 60% 80% 100% 100% 40% 100% 20%

VAR3+, SETA-C (% of BBs with checkers)

 BS DA RDFS SDFS MM RLE SUM TEA2 TH
FC 92% 0% 0% 10% 10% 10% 0% 20% 0% 10%
FC 95% 10% 10% 30% 10% 10% 10% 20% 20% 10%
FC 98% 10% 10% 30% 30% 10% 10% 30% 20% 10%
ET 1.7x 0% 10% X X 70% X X X X
ET 1.9x 40% 100% 0% 0% 100% 20% X 100% X
ET 2.1x 100% 100% 50% 20% 100% 100% 50% 100% X

142

Based on the results, we present some conclusions:

 We observed that the applications can reach a maximum fault coverage of
around 98-99%. However, it is very complicated to predict the fault coverage
for each level of selective hardening by online analyzing the code. There are
too many variables that influence on that. Any change in one of the following
items may cause a significant chance in the fault coverage and overheads

o It depends on what task the application performs
o It depends on how the application was implemented
o It depends on how it was compiled

 An application compiled with no optimizations will have few
registers that perform most of the calculations. These registers
are much more critical than the others because they are much
more utilized. On the other hand, it means that the overheads
when protecting them are higher
 The same application compiled with optimizations would have

completely different results, with a more distributed use of
registers
 If the application was implemented in assembly, the fault

coverage and overheads will depend on how the application
was implemented

 One characteristic that was possible to observe regards the checking rule C6
and was discussed in the previous chapter. When the average number of times
that the basic blocks are executed is high, there is a higher chance of errors
affecting branches due to upsets in the registers used by these branches.
Therefore, the checking rule C6 increases significantly the fault coverage in
such cases.

The difficulty in finding patterns in the code due to the high number of parameters
and the high variability they cause in the overheads and fault coverage of a selectively
hardened application makes interesting the search for other approaches to find the best
trade-offs between fault coverage and overheads when using selective hardening. In the
following section, we introduce a method to extrapolate the results using a small set of
results as input, and provide an accurate overall picture of the application reliability and
overheads.

6.3 Selective data-flow technique and selective control-flow technique

The use of selective hardening is possible to be done at the same time in both data
and control-flow techniques. Thus, it would be possible to get even better trade-offs
between reliability and performance than only applying selective hardening to one of the
techniques. However, it is difficult to find patters to use in the selective hardening because
the application is highly variable due to the many parameters that influence its fault
coverage and overheads. Furthermore, exploring all the possibilities for every application
is infeasible, mainly due to the need to perform fault injection campaigns in all possible
selective hardened versions. The test of each version takes from several hours to weeks
in the RTL level, depending on the application. This means that testing all possibilities
for selective hardening would take from weeks to years. A less time-consuming manner
to find the points of interest, or at least to indicate the most promising areas, can speed up
the time needed to protect and evaluate an application.

143

6.3.1 Methodology and implementation

An extrapolation of the results was performed using a linear interpolation of four
hyperbolic tangent regressions. Each hyperbolic tangent (like the one in Eq. 6.2)
represents one extreme of the S-VAR, S-SETA combination. Firstly, let us define these
four extremes:

 S-VAR(x), S-SETA(0): all the results with no basic block hardened and
variable hardening of the registers

 S-VAR(x), S-SETA(1): all the results with all basic blocks hardened and
variable hardening of the registers

 S-VAR(0), S-SETA(x): all the results with no register hardened and variable
hardening of the basic blocks

 S-VAR(1), S-SETA(x): all the results with all registers hardened and variable
hardening of the basic blocks.

For example, when S-SETA is 0 (has no basic block hardened), x is the percentage
of registers hardened, and y the fault coverage. Then, we fit Eq. 6.2 with the data from
fault injection with respect to S-VAR(x), S-SETA(0). The same process is done for the
other three extremes. Finally, the four equations are linearly interpolated in order to get a
surface of fault coverages for all possible variation of the number of registers hardened
or basic blocks hardened.

Eq.	6.2 	 ∙ ℎ ∙

The method for extrapolating the results was implemented in the Matlab. The
function fit was used with the Levenberg-Marquardt algorithm to fit the fault coverage
obtained from simulation in the Eq. 6.2. Fig. 6.78 shows an example using the data from
the extreme S-VAR(x), S-SETA(1) of the bubble sort (BS).

Fig. 6.78: Estimated fault coverages for BS hardened by S-VAR, S-SETA.

144

All the four extremes defined in the beginning of this subsection are fitted with the
same procedure described above. Then, the four curves generated are linearly interpolated
to create a surface of fault coverage. The Matlab function fit is used with the parameter
linearinterp to create the surface.

It is possible to notice that the Eq. 6.2 is very suitable for fitting the fault coverage of
selective hardening methodologies. And as for the fault coverage, Eq. 6.2 showed very
suitable to fit the execution time too. Although the execution time can be found in a short
time, we decided to use the same equation to fit and extrapolate it. The advantage of
extrapolating also the execution time is observed in the reduction of the time to generate
all the possible selective hardened versions, added to the time to compile them all, and,
finally, the time to execute the many versions and get all the execution times.

Finally, with the surfaces of fault coverage and execution time, it is possible to
calculate the MWTF, which is our metric of reliability. All the results are presented in the
next subsection and validated in the following subsection.

6.3.2 Fault injection results in the miniMIPS processor

Fig. 6.79 presents the estimated fault coverage for the bubble sort (BS). The
horizontal axes indicate the level of protection of S-VAR and S-SETA, where 0 represents
no protection, and 1 represents 100% of protection. The red dots are the results obtained
from fault injections. They are used as inputs for the method. The estimation shows some
differences for the simulated values, mainly for low level of protection. However, for
most level of protection, the estimation is quite approximate.

The same method was used to extrapolate the execution time. Fig. 6.80 presents the
surface with the estimated execution times for the bubble sort (BS). The red dots indicate
the real values used as input. The gathering of the execution time is not as time consuming
as the fault coverage. The application just needs to be hardened by the possibilities of
selective hardening and, then, the execution time of all created versions have to be
extracted. Anyhow, the estimation is very approximate to real values since the increasing
of the execution time with the increasing of the level of protection is more predictable.
Thus, it can also be used to speed up this process, and there will be no need to create all
the possibilities of selective hardening and get all the execution times.

Fig. 6.81 presents the MWTFs for the bubble sort (BS), which were calculated using
the estimated values. Although there are some differences in the values of the highest
MWTFs, the estimation shows correctly the area where such MWTFs are. Using the
estimation, it is possible to find quickly points with high MWTF. The same results for
each benchmark are presented from Fig. 6.82 to Fig. 6.105. We can see in all cases that
although the method does not provide a precise magnitude in the estimations, it points the
regions that present the highest MWTF. In general, the highest estimated MWTF is when
100% of registers are hardened and around 80% of basic blocks are hardened. These
results match the ones from the previous sections of this chapter.

145

Fig. 6.79: Estimated fault coverages for BS hardened by S-VAR, S-SETA.

Fig. 6.80: Estimated execution times for BS hardened by S-VAR, S-SETA.

146

Fig. 6.81: MWTF for BS hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

Fig. 6.82: Estimated fault coverages for DA hardened by S-VAR, S-SETA.

147

Fig. 6.83: Estimated execution times for DA hardened by S-VAR, S-SETA.

Fig. 6.84: MWTF for DA hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

148

Fig. 6.85: Estimated fault coverages for rDFS hardened by S-VAR, S-SETA.

Fig. 6.86: Estimated execution times for rDFS hardened by S-VAR, S-SETA.

149

Fig. 6.87: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

Fig. 6.88: Estimated fault coverages for sDFS hardened by S-VAR, S-SETA.

150

Fig. 6.89: Estimated execution times for sDFS hardened by S-VAR, S-SETA.

Fig. 6.90: MWTF for sDFS hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

151

Fig. 6.91: Estimated fault coverages for MM hardened by S-VAR, S-SETA.

Fig. 6.92: Estimated execution times for MM hardened by S-VAR, S-SETA.

152

Fig. 6.93: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

Fig. 6.94: Estimated fault coverages for RLE hardened by S-VAR, S-SETA.

153

Fig. 6.95: Estimated execution times for RLE hardened by S-VAR, S-SETA.

Fig. 6.96: MWTF for RLE hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

154

Fig. 6.97: Estimated fault coverages for SUM hardened by S-VAR, S-SETA.

Fig. 6.98: Estimated execution times for SUM hardened by S-VAR, S-SETA.

155

Fig. 6.99: MWTF for SUM hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

Fig. 6.100: Estimated fault coverages for TEA2 hardened by S-VAR, S-SETA.

156

Fig. 6.101: Estimated execution times for TEA2 hardened by S-VAR, S-SETA.

Fig. 6.102: MWTF for TEA2 hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

157

Fig. 6.103: Estimated fault coverages for TH hardened by S-VAR, S-SETA.

Fig. 6.104: Estimated execution times for TH hardened by S-VAR, S-SETA.

158

Fig. 6.105: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time.

In conclusion, we can say that the highest MWTF are reached near 100% of registers
hardened by S-VAR and 80% of the basic blocks hardened by S-SETA. Nevertheless,
due to the imprecision in the magnitude of the estimated values, it is not possible to find
the highest fault coverage for a given maximum execution time, or the lowest execution
time for a given minimum fault coverage. A more precise method is necessary in this
regard.

6.3.3 Validation

Three case-study applications were used to validate the model to extrapolate the
results due to the different surfaces they produced (rDFS, MM, TH). For the rDFS, three
points tested. They were not included in the model inputs. One can see that the results
presented from Figs. 6.106 to 6.109 match very well with the results predicted by the
model. The test dots are the green dots, and the red dots are the model inputs. There is
one extra charting presenting the execution time from another perspective to show the
test points that are under the surface. The mean and maximum deviations in the fault
coverage from the estimated results to the simulated points are of 0.4% and 0.6%,
respectively. And the mean and maximum deviations in the execution time are of 3.0%
and 4.7%, respectively. For the MM, four points were tested, as showed from Figs. 6.10
to 6.112. Once again, the results match very well the model. The mean deviation in the
fault coverage is of 1.3%, and in the execution time is of 2.2%. The maximum deviation
is of 3.6% in the fault coverage and 5.5% in the execution time at S-VAR(0.46), S-
SETA(0.5). For the TH, presented from Figs. 6.113 to 6.115, two points were tested, S-
VAR(0.91), S-SETA(0.7) and S-VAR(0.82), S-SETA(0.6). Their deviations were,
respectively, of 0.0% and 0.6% in the fault coverage, and of 1.5% and 0.2% in the

159

execution time. Therefore, we conclude that the model can extrapolate the results with a
good precision, providing accurate predictions of fault coverage, execution time, and
MWTF, and pointing the areas with higher MWTF.

Fig. 6.106: Validation of model for estimating the fault coverages of rDFS hardened by

S-VAR, S-SETA. Green dots are the validation points.

Fig. 6.107: Validation of model for estimating the execution time of rDFS hardened by
S-VAR, S-SETA. Green dots are the validation points.

160

Fig. 6.108: Validation of model for estimating the execution time of rDFS hardened by
S-VAR, S-SETA. Green dots are the validation points. View from another perspective.

Fig. 6.109: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time. Green dots are the validation points.

161

Fig. 6.110: Validation of model for estimating the fault coverages of MM hardened by
S-VAR, S-SETA. Green dots are the validation points.

Fig. 6.111: Validation of model for estimating the execution time of MM hardened by
S-VAR, S-SETA. Green dots are the validation points.

162

Fig. 6.112: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time. Green dots are the validation points.

Fig. 6.113: Validation of model for estimating the fault coverages of TH hardened by S-
VAR, S-SETA. Green dots are the validation points.

163

Fig. 6.114: Validation of model for estimating the execution time of TH hardened by S-
VAR, S-SETA. Green dots are the validation points. View from another perspective.

Fig. 6.115: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault
coverage and execution time. Green dots are the validation points.

164

6.3.4 Reducing number of points for fitting model

Depending on the fault injection platform, the simulation of around 40 cases per
application may be time-consuming. Thus, we decided to test the fitting model using
fewer input points to discover if it still produces an accurate surface. For this, three
applications that present different set of surfaces were selected. They are the recursive
depth-first search (rDFS), the matrix multiplication (MM), and the Tower of Hanoi (TH).
For each of these applications, the three following cases with a different number of points
were evaluated:

 Original: all the simulated points are used as input. The rDFS, MM, and TH
have 38, 46, and 42 points, respectively

 Half: roughly half of the simulated points are used as input. The rDFS, MM,
and TH use 18, 22, and 20 points, respectively

 Minimum: each of the four curves needs a minimum of 4 points as input.
Thus, the minimum number of points for the fitting model is 12 (4 points are
shared by two curves).

Figs. 6.116 to 6.124 show the fault coverage, execution time, and MWTF, for the
rDFS with a different number of input points for the fitting method. It is possible to notice
that the curves, and consequently the surface, get smoother with fewer input points.
Nevertheless, the surfaces of fault coverage, execution time, and MWTF, for the
approaches with original, half, and minimum number of points are similar. Figs. 6.125 to
6.133 present the results for MM, and Figs. 6.134 to 6.142 show the results for TH. The
fault coverage, execution time, and MWTF for the Tower of Hanoi using a different
number of input points are very similar. For the matrix multiplication, one aspect must be
pointed out. The fault coverage surface starts to drop nearer to S-VAR(1), S-SETA(1),
mainly in the S-SETA axis. The same can be said of the execution time, but in this case,
it is more noticeable in the S-VAR axis. This difference result is better seen in the charts
of MWTF. With regards to the original approach, the half approach reduces the area of
high MWTF in the S-SETA axis, and the minimum approach reduces this area in both S-
VAR and S-SETA axes. Anyhow, the results are still accurate for most coordinates.

The test points used to validate the method were also added in this section in order
to make able the calculation of the deviations from the values predicted by the method to
the values obtained by simulation. Table 6.3 presents the mean and maximum deviations
in the fault coverage (FC) and execution time (ET) for the rDFS, MM, and TH, with the
three cases with a different number of input points. It is possible to notice that the
deviations do not chance much when using fewer input points. It means that for the
current precision of the model, the use of the minimum number of points as input is
enough to provide accurate estimations of the fault coverage and execution time. In
addition, the half approach could be used to reinforce the estimations predicted by the
minimum approach. Another thing that is worth commenting is the higher deviations
presented by the matrix multiplication. It happens due to inconsistencies added by the
interpolation. That creates invalid behaviors in the surface of fault coverages in the case
of the matrix multiplication, which reduces the accuracy of the model. The replacement
of the linear interpolation to connect the four fitted curves by a method that avoid these
invalid behaviors would solve this issue. This subject is discussed in the future works.

165

Table 6.3: Mean and maximum deviations in the fault coverage (FC) and execution time
(ET) for the rDFS, MM, and TH with different numbers of input points to the method to

estimate the results

benchmark case
of input

points
mean dev.

(FC)
max dev.

(FC)
mean dev.

(ET)
max dev.

(ET)

rDFS

original

half

minimum

38

18

12

0.4%

0.4%

0.2%

0.6%

0.4%

0.5%

3.0%

3.6%

2.7%

4.7%

6.1%

3.7%

MM

original

half

minimum

46

22

12

1.3%

1.5%

1.8%

3.6%

3.3%

4.4%

2.2%

1.6%

3.5%

5.5%

4.1%

8.9%

TH

original

half

minimum

42

20

12

0.3%

0.3%

0.3%

0.6%

0.4%

0.5%

0.9%

1.3%

2.0%

1.5%

1.7%

2.4%

Fig. 6.116: Fault coverage for rDFS (38 points). The red dots are the input points and
the green dots are the validation points.

166

Fig. 6.117: Fault coverage for rDFS (18 points). The red dots are the input points and
the green dots are the validation points.

Fig. 6.118: Fault coverage for rDFS (12 points). The red dots are the input points and
the green dots are the validation points.

167

Fig. 6.119: Execution time for rDFS (38 points). The red dots are the input points and
the green dots are the validation points.

Fig. 6.120: Execution time for rDFS (18 points). The red dots are the input points and
the green dots are the validation points.

168

Fig. 6.121: Execution time for rDFS (12 points). The red dots are the input points and
the green dots are the validation points.

Fig. 6.122: MWTF for rDFS (38 points). The red dots are the input points and the green
dots are the validation points.

169

Fig. 6.123: MWTF for rDFS (18 points). The red dots are the input points and the green
dots are the validation points.

Fig. 6.124: MWTF for rDFS (12 points). The red dots are the input points and the green
dots are the validation points.

170

Fig. 6.125: Fault coverage for MM (46 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.126: Fault coverage for MM (22 points). The red dots are the input points and the
green dots are the validation points.

171

Fig. 6.127: Fault coverage for MM (12 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.128: Execution time for MM (46 points). The red dots are the input points and the
green dots are the validation points.

172

Fig. 6.129: Execution time for MM (22 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.130: Execution time for MM (12 points). The red dots are the input points and the
green dots are the validation points.

173

Fig. 6.131: MWTF for MM (46 points). The red dots are the input points and the green
dots are the validation points.

Fig. 6.132: MWTF for MM (22 points). The red dots are the input points and the green
dots are the validation points.

174

Fig. 6.133: MWTF for MM (12 points). The red dots are the input points and the green
dots are the validation points.

Fig. 6.134: Fault coverage for TH (42 points). The red dots are the input points and the
green dots are the validation points.

175

Fig. 6.135: Fault coverage for TH (20 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.136: Fault coverage for TH (12 points). The red dots are the input points and the
green dots are the validation points.

176

Fig. 6.137: Execution time for TH (42 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.138: Execution time for TH (20 points). The red dots are the input points and the
green dots are the validation points.

177

Fig. 6.139: Execution time for TH (12 points). The red dots are the input points and the
green dots are the validation points.

Fig. 6.140: MWTF for TH (42 points). The red dots are the input points and the green
dots are the validation points.

178

Fig. 6.141: MWTF for TH (20 points). The red dots are the input points and the green
dots are the validation points.

Fig. 6.142: MWTF for TH (12 points). The red dots are the input points and the green
dots are the validation points.

179

6.4 Summary

In this chapter, we proposed and applied selective hardening methods to data-flow
and control-flow techniques. The selective hardening of data-flow techniques consists of
selecting the registers to be hardened. Considering S-VAR, SETA, we observed that the
more registers are hardened, the higher the reliability, even when normalizing the results
by the execution time (which is higher for when more registers are hardened).
Nevertheless, it is important to notice that the reliability increases more for hardening the
most critical registers than the extra reliability provided by the subsequent registers (based
on the rank of criticality). There are two justifications for that: (1) the most critical
registers are more critical; therefore, it increases more the fault coverage when hardened;
and (2) the more registers are hardened, the more the protections of the registers overlap.
In summary, it means that it is still possible to achieve high fault coverages when
hardening fewer registers.

With regards to selective hardening on control-flow techniques, we compared two
approaches: SETA-C and S-SETA. SETA-C provides high reliability even when few
basic blocks are selected. That is justified because SETA-C protects all basic blocks and
select which basic blocks will receive checkers. Thus, a fault affecting a basic block may
propagate and may be detected in one of the following basic blocks. The downside is that
SETA-C does not reduce very much the overheads. In some cases, hardening 70% of the
basic blocks with S-SETA presents lower overheads than hardening 10% of the basic
blocks with SETA-C. S-SETA implements a new method for selecting the basic blocks
when basic blocks are completely ignored. It does not improve the reliability when very
few basic blocks are hardened. However, it achieves very high MWTF when more than
half of the basic blocks are hardened. And that is mainly due to its extreme lower
overheads.

Finally, to evaluate all the possibilities of using selective hardening with both data-
flow techniques and control-flow techniques, and helping designers to get a global picture
of the reliability for an application, a model to extrapolate the simulated results was
proposed. The model showed accuracy estimating the fault coverage, execution time, and
MWTF, and pointing the areas of higher MWTF, even when fewer points are used as
input to the model.

180

181

7 CONCLUDING REMARKS

This chapter concludes the thesis. Firstly, the conclusions of the work are drawn.
Then, a list of published works developed during the Ph.D. is presented.

7.1 Conclusions

This work presented a study to reduce the execution time and memory overheads
without losing reliability. In this way, a set of data-flow techniques based on general
building rules called VAR techniques was proposed. They include and extend previous
data-flow techniques due to the general building rules. With the general building rules, a
complete analysis of the data-flow techniques based on redundancy was possible. By
following the MWTF results, it was shown that may be not worth to protect an application
with only data-flow techniques because the drawbacks caused by the overheads may
overcome the reliability provided by the technique. Nevertheless, data-flow techniques
area meant to be used together with control-flow techniques. In this situation, the benefits
provided by SIHFT techniques are clear, once that the MWTF achieved by combining
data-flow and control-flow techniques is much higher than the unhardened application.
In addition, the highest MWTF is achieved by a new data-flow technique (VAR3+) when
combined with SETA.

SETA is a new control-flow technique that is 11.0% faster and occupies 10.3% fewer
memory positions with similar fault coverage of a state-of-the-art technique. When using
one of the most promising VAR data-flow techniques with SETA, a similar fault coverage
to techniques present in the literature is achieved, with reduction of the overheads. In such
scenario, the hardened applications reached an average MWTF of 5.17x.

A step further on reducing overheads or increasing the MWTF is the use of selective
hardening. It can significantly reduce the overheads with none or small loss in fault
coverage. Regarding the data-flow techniques, the selective hardening was implemented
in order to find which registers should and which should not be hardened based on their
criticality. One can notice that it is possible to achieve similar fault coverage hardening
fewer registers than hardening all used ones. This information is very useful in many
applications that do not have enough available registers to be assigned as replicas because
high reliability can be achieved only hardening the most critical registers. Anyhow, the
highest MWTF were achieved when most registers are hardened. Therefore, if there are
enough unused registers, and the overheads still meet the application constraints, it is
recommendable the protection of all registers.

Concerning selective hardening on control-flow techniques, two methods were
evaluated using SETA. One hardening all basic blocks, but removing checkers from the
least critical ones (called SETA-C), and another hardening only selected basic blocks and
ignoring the remaining (called S-SETA). The last method is a novelty of this work. Both
selective hardening methods can improve the MWTF of SETA by reducing the
overheads. This improvement is more notable in S-SETA due to its significantly lower
overheads. The highest MWTFs are usually achieved starting from 60% of basic blocks
hardened on when using S-SETA. The results converge to SETA near to 100% of basic
blocks hardened.

182

In summary, the two main contributions of the proposed SIHFT techniques and
selective hardening methods are: (1) it was possible to reduce significantly the overheads
with a small reduction in the fault coverage, which can bring reliability to applications
with restrict time or energy constraints; and (2) it was possible to keep similar fault
coverage of state-of-the-art SIHFT techniques and reduce the overheads. In other words,
it means an increase in the reliability, because the application with the same fault coverage
will be exposed for a shorter time.

Finally, it was proposed a method to extrapolate the fault coverage and execution
time, and estimate the results achievable by the combination of selective data-flow and
selective control-flow techniques. The method gives estimated results with high accuracy,
which can significantly speed up a project since only a few cases need to be tested, instead
of testing all possibilities, in order to find the best combination of selective data-flow
technique and selective control-flow technique that suit the application requirements.

7.2 Future work

This work evaluated and improved SIHFT techniques. Nevertheless, there are some
points that were not investigated in this work that could contribute to the improvement of
SIHFT techniques. They are listed and discussed as follows:

 Selection of basic blocks: the criteria utilized in this work to select basic blocks
were based on assumptions. Therefore, the evaluation of different criteria to select
basic blocks could improve the selective control-flow techniques, or at least,
provide data that support the assumptions

 S-SETA-C: two different approaches for selective hardening on control-flow
techniques were tested. The results show the advantages of the proposed
approach. However, it is possible to use both approaches together. Selecting the
basic blocks that will be hardened using S-SETA, and then, removing checkers
from some of the selected basic blocks, as in SETA-C, resulting in the S-SETA-
C control-flow technique. This combined approach could improve the selective
control-flow techniques

 Extrapolation method: the method to extrapolate the results using curve fitting
on hyperbolic tangents matches very well the results. However, the linear
interpolation of the four hyperbolic tangents may not be the best method to find a
surface of fault coverage for S-VAR and S-SETA. Some method that can keep
better the hyperbolic tangent characteristic of the curves could improve the
method’s precision. Furthermore, a generalization of the four 2D hyperbolic
tangent equations in one single 3D general equation with a regression method that
can fit the results in this equation is desirable

 Reset and rollback: this work proposed and improved software detection
techniques. Any system with detection techniques needs a method to return to a
safe state. It could be achieved by resetting the processing and restarting the
application, or returning a previously saved state (rollback). This was not in the
scope of this work, but it is crucial for using the proposed SIHFT techniques (or
any detection technique) in real world applications

 Other SIHFT techniques: the data-flow techniques are based on replicating data
and instructions and comparing the original values with their replicas. Other ways
of hardening the data-flow that not the ones based on replication and comparison

183

must be investigated. They may provide reliability with very low overheads, or
could be used to complement the current SIHFT techniques, as by improving the
fault coverage, or as allowing a more aggressive use of selective hardening
methods.

7.3 Publications

7.3.1 Book chapters

Overhead Reduction in Data-flow Software-Based Fault Tolerance Techniques.
E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. FPGAs and Parallel Architectures
for Aerospace Applications, part V, pp. 279-291. Springer International Publishing AG,
Cham, part V, ch. 18, pp. 279-291, Jan. 2016. DOI 10.1007/978-3-319-14352-1_18.

7.3.2 Journals

Reliability on ARM Processors against Soft Errors through SIHFT Techniques.
E. Chielle et al. IEEE Transactions on Nuclear Science, 2016. (accepted)

Analyzing the Impact of Radiation-induced Failures in Programmable SoCs. L.
A. Tambara, P. Rech, E. Chielle, J. Tonfat, and F. L. Kastensmidt. IEEE Transactions on
Nuclear Science, 2016. (accepted)

S-SETA: Selective Software-Only Error-Detection Technique Using Assertions.
E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi, L. A. Tambara, P.
Rech, and H. Quinn. IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3088-
3095, Dec. 2015. DOI 10.1109/TNS.2015.2484842.

Application-Based Analysis of Register File Criticality for Reliability
Assessment in Embedded Microprocessors. F. Restrepo-Calle, S. Cuenca-Asensi, A.
Martinez-Alvarez, E. Chielle, and F. L. Kastensmidt. Journal of Electronic Testing, vol.
31, no. 2, pp. 139-150, Apr. 2015. DOI 10.1007/s10836-015-5513-9.

Evaluating Selective Redundancy in Data-Flow Software-Based Techniques. E.
Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt. IEEE
Transactions on Nuclear Science, vol. 6, no. 4, pp. 2768-2775, Aug. 2013. DOI
10.1109/TNS.2013.2266917.

7.3.3 Conferences

Hybrid Soft Error Mitigation Techniques for COTS Processor-based Systems.
E. Chielle et al. Latin-American Test Symposium (LATS 2015), Foz do Iguaçu, Brazil.

Reliability on ARM Processors against Soft Errors by a Purely Software
Approach. E. Chielle, F. Rosa, G. S. Rodrigues, F. L. Kastensmidt, R. Reis, and S.
Cuenca-Asensi. Conference on Radiation Effects on Components and Systems
(RADECS 2015), Moscow, Russia. DOI 10.1109/RADECS.2015.7365660.

Analyzing the Failure Impact of Using Hard- and Soft-cores in All
Programmable SoC under Neutron-induced Upsets. L. A. Tambara, P. Rech, E.
Chielle, and F. L. Kastensmidt. Conference on Radiation Effects on Components and
Systems (RADECS 2015), Moscow, Russia. DOI 10.1109/RADECS.2015.7365586.

Selective Software Techniques to Detect Neutron-induced Soft Errors in
Processors with Minimum Overhead. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt,
S. Cuenca-Asensi, L. A. Tambara, P. Rech, and H. Quinn. IEEE Nuclear and Space
Radiation Effects Conference (NSREC 2015), Boston, USA.

184

Reducing Performance Degradation in Software Detection Techniques on
Embedded Processors. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, and S. Cuenca-
Asensi. Military and Aerospace Programmable Logic Devices (MAPLD 2015), San
Diego, USA.

Software Error-Detection Techniques with Reduced Overheads on Embedded
Processors. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, and S. Cuenca-Asensi.
Simpósio Sul de Microeletrônica (SIM 2015), Santa Maria, Brazil.

Tuning Software-based Fault-tolerance Techniques for Power Optimization. E.
Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. 24th IEEE International Workshop on
Power and Timing Modeling, Optimization and Simulation (PATMOS 2014), Palma de
Mallorca, Spain. DOI 10.1109/PATMOS.2014.6951871.

Tuning Software-based Fault-tolerance Techniques for Soft-core Processors. E.
Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. FPGAs for Aerospace Applications
(FASA 2014). Munich, Germany.

Efficient metric for register file criticality in processor-based systems. F.
Restrepo-Calle, S. Cuenca-Asensi, A. Martinez-Alvarez, E. Chielle, and F. L.
Kastensmidt. 15th IEEE Latin American Test Workshop (LATW 2014), pp. 1-6.
Fortaleza, Brazil. DOI 10.1109/LATW.2014.6841922.

Evaluating Software-Based Fault Detection Techniques Applied at Different
Programming Abstraction Levels. E. Chielle, J. R. Azambuja, and F. L. Kastensmidt.
10th Workshop on Silicon Errors in Logic – System Effects (SELSE 2014). Stanford,
USA.

Comparing Software-Based Fault Detection Techniques Applied at Different
Abstraction Levels. E. Chielle, D. H. Grehs, J. R. Azambuja, and F. L. Kastensmidt.
Radiation Effects on Components and Systems (RADECS 2013). Oxford, UK. DOI
10.1109/RADECS.2013.6937383.

Evaluating the Effectiveness of a Diversity TMR Scheme under Neutrons. L. A.
Tambara, J. R. Azambuja, E. Chielle, F. Almeida, G. L. Nazar, P. Rech, M. S.
Lubaszewski, F. L. Kastensmidt, and C. Frost. Radiation Effects on Components and
Systems (RADECS 2013). Oxford, UK. DOI 10.1109/RADECS.2013.6937382.

Improving error detection with selective redundancy in software-based
techniques. E. Chielle, J. R. Azambuja, R. S. Barth, and F. L. Kastensmidt. 14th IEEE
Latin American Test Workshop (LATW 2013). Cordoba, Argentina. DOI
10.1109/LATW.2013.6562659.

Evaluating Selective Redundancy in Data-flow Software-based Techniques. E.
Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt. Radiation and
its Effects on Components and Systems (RADECS 2012). Biarritz, France.

Single-Event-Induced Charge Sharing Effects in TMR with Different Levels of
Granularity. F. Almeida, F. L. Kastensmidt, S. Pagliarini, L. Entrena, A. Lindoso, E. S.
Millan, E. Chielle, L. Naviner, and J. F. Naviner. Radiation and its Effects on Components
and Systems (RADECS 2012). Biarritz, France.

Soft Error Rate Reduction by Using Configurable SET Temporal Filtering. J.
E. Souza, F. L. Kastensmidt, F. Almeida, and E. Chielle. Radiation and its Effects on
Components and Systems (RADECS 2012). Biarritz, France.

185

Soft-Error Probability Due to SET in Clock Tree Networks. R. Chipana, E.
Chielle, F. L. Kastensmidt, J. Tonfat, and R. Reis. IEEE Computer Society Annual
Symposium on VLSI (ISVLSI 2012), Amherst, USA. DOI 10.1109/ISVLSI.2012.39.

186

187

REFERENCES

AGUIAR, V.A.P. et al. Experimental setup for Single Event Effects at the São Paulo 8UD
Pelletron Accelerator. Nuclear Instruments & Methods in Physics Research, vol. 332,
pp. 397-400, Aug. 2014.

ALKHALIFA, Z.; NAIR, V.S.S.; KRISHNAMURTHY, N.; ABRAHAM, J.A. Design
and evaluation of system-level checks for on-line control flow error detection. IEEE
Transactions on Parallel and Distributed Systems, New York, vol. 10, no. 6, p. 627-
641, Jun. 1999.

AMAZON. Amazon Best Sellers: Best Computer CPU Processors, 2015. Available at:
<http://www.amazon.com/gp/bestsellers/electronics/229189/>. Accessed on: Aug. 2015.

ANTHONY, S. Boeing 787 Dreamliner: Powered by Android, and 69TB of solid-state
storage. ExtremeTech, Jul. 2012.

ARM. ARM – The Architecture For The Digital World, 2015. Available at:
<http://www.arm.com/>. Accessed on: Aug. 2015.

ARM. ARM Architecture Reference Manual ARMv7-A and ARMv7-R edition.
Cambridge: ARM Limited, 2014.

ARM. The ARM Cortex-A9 Processors, 2009. Available at:
<http://www.arm.com/files/pdf/armcortexa-9processors.pdf>. Accessed on: May 2015.

ASENSI, S.C.; ALVAREZ, A.M.; CALLE, F.R.; PALOMO, F.R.; MIRANDA, H.G.;
AGUIRRE, M.A. A Novel Co-Design Approach for Soft Errors Mitigation in Embedded
Systems. IEEE Transactions on Nuclear Science, vol. 58, no. 3, pp. 1059-1065, Jun.
2011.

ASSAYAD, I.; GIRAULT, A.; KALLA, H. Tradeoff Exploration between reliability,
power consumption and execution Time for embedded systems. International Journal
on Software Tools for Technology Transfer, vol. 15, no. 3, pp. 229-245, Jun. 2013.

AVIZIENIS, A.; LAPRIE, J.C.; RANDELL, B.; LANDWEHR, C. Basic concepts and
taxonomy of dependable and secure computing. IEEE Transactions on Dependable
and Secure Computing, vol. 1, no. 1, pp. 11-33, Mar. 2004.

AVNET. ZedBoard, featuring the Zynq-7000 All Programmable SoC, 2015. Available
at: <http://www.em.avnet.com/en-us/design/drc/Pages/Zedboard.aspx>. Accessed on:
May 2015.

AVNET. ZedBoard (Zynq Evaluation and Development) Hardware User's Guide, 2014.
Available at: <http://zedboard.org/support/documentation/1521>. Accessed on: May
2015.

AZAMBUJA, J.R.; LAPOLLI, A.; ALTIERI, M.; KASTENSMIDT, F.L. Evaluating the
efficiency of software-only techniques to detect SEU and SET in microprocessors. IEEE
Latin American Symposium on Circuits and Systems, Mar. 2011a.

AZAMBUJA, J.R.; LAPOLLI, A.; ROSA, L.; KASTENSMIDT, F.L. Detecting SEEs in
microprocessors through a non-Intrusive hybrid technique. IEEE Transactions on
Nuclear Science, vol. 58, no. 3, p. 993-1000, Jun. 2011b.

188

AZAMBUJA, J.R., PAGLIARINI, S., ROSA, L., KASTENSMIDT, F.L. Exploring the
limitations of software-only techniques in SEE detection coverage. Journal of
Electronic Testing, vol. 27, no. 4, pp. 541-550, Aug. 2011c.

AZAMBUJA, J.R.; ALTIERI, M.; BECKER, J.; KASTENSMIDT, F.L. HETA: Hybrid
Error-Detection Technique Using Assertions. IEEE Transactions on Nuclear Science,
vol. 60, no. 4, pp. 2805-2812, Aug. 2013.

BAUMANN, R. Soft errors in advanced semiconductor devices-part I: the three radiation
sources. IEEE Transactions on Device and Materials Reliability, Los Alamitos, USA,
vol. 1, no. 1, p. 17-22, Mar. 2001.

BELCASTRO, C.M.; EURE, K.; HESS, R. Testing a Flight Control System for Neutron-
Induced Disturbances. Los Alamos Science, no. 30, pp. 104-111, 2006.

BOUDENOT, J. Radiation Space Environment. In: VELAZO, R.; FOUILLAT, P; REIS,
R. Radiation Effects on Embedded Systems. Springer Netherlands, Dordrecht, pp. 1-9,
2007.

CASTRO NETO, J.C; STEFANI, M.; BARBALHO, S. A indústria e os obstáculos ao
desenvolvimento de pesquisas, produtos e aplicações na área espacial no Brasil. In:
ROLLEMBERG, R. A política espacial Brasileira, parte II ‐ Análises Técnicas,
Cadernos de Altos Estudos, Câmara dos Deputados, Edições Câmara, Brasília, vol.
7, pp. 17-35, 2010.

CHEN, K.Y.; HSU, P.H.; CHAO, K.M. Hardness of comparing two run-length encoded
strings. Journal of Complexity, vol. 26, no. 4, pp. 364-374, Aug. 2010.

CHEYNET, P; NICOLESCU, B.; VELAZCO, R.; REBAUDENGO, M.; REORDA, M.
S.; VIOLANTE, M. Experimentally evaluating an automatic approach for generating
safety-critical software with respect to transient errors. IEEE Transactions on Nuclear
Science, vol. 47, no. 6, pp. 2231-2236, Dec. 2000.

CHIELLE, E.; AZAMBUJA, J.R.; BARTH, R.S.; ALMEIDA, F.; KASTENSMIDT, F.L.
Evaluating Selective Redundancy in Data-Flow Software-Based Techniques. IEEE
Transactions on Nuclear Science, vol. 6, no. 4, pp. 2768-2775, Aug. 2013.

CHIELLE, E.; AZAMBUJA, J.R.; KASTENSMIDT, F.L. Evaluating Software-Based
Fault Detection Techniques Applied at Different Programming Abstraction Levels.
Workshop on Silicon Errors in Logic – System Effects (SELSE). Stanford, Apr. 2014.

CHIELLE, E.; BARTH, R.S.; LAPOLLI, A.C.; KASTENSMIDT, F.L. Configurable
Tool to Protect Processors against SEE by Software-based Detection Techniques. Latin
American Test Workshop, Quito, Apr. 2012.

CHIELLE E. et al. Hybrid Soft Error Mitigation Techniques for COTS Processor-based
Systems. Latin American Test Symposium, Foz do Iguaçu, Apr. 2016.

COBHAM GAISLER AB. Processors, 2015. Available at:
<http://www.gaisler.com/index.php/products/processors>. Accessed on: Aug. 2015.

CONG, J.; GURURAJ, K. Assuring application-level correctness against soft errors.
IEEE/ACM International Conference on Computer-Aided Design (ICCAD), San
Jose, pp. 150-157, Nov. 2011.

DIJKSTRA, E.W. A note on two problems in connexion with graphs. Numerische
Mathematik, vol. 1, no. 1, pp. 269-271, Dec. 1959.

189

DU, B.; SONZA REORDA, M.; STERPONE, L.; PARRA, L.; PORTELA-GARCIA, M.;
LINDOSO, A.; ENTRENA, L. On-line Test of Control Flow Errors: A new Debug
Interface-based approach. IEEE Transactions on Computers, vol. PP, no. 99, Jul. 2015.

E2V. Space grade semiconductor solutions, 2015. Available at:
<http://www.e2v.com/resources/account/download-literature/113>. Accessed on: Aug.
2015.

EBAY. Computer Processors | eBay, 2015. Available at:
<http://www.ebay.com/sch/CPUs-Processors-/164/i.html>. Accessed on: Aug. 2015.

ESA. ESA/SCC Basic Specification No. 25100: Single Event Effects Test Methods and
Guidelines. European Space Components Coordination, Noordwijk, no. 2, pp. 1-24,
Oct. 2014.

FERLET-CAVROIS. V. et al. Direct measurement of transient pulses induced by laser
irradiation in deca-nanometer SOI devices. IEEE Transactions on Nuclear Science, vol.
52, pp. 2104-2113, 2005.

FERNANDEZ-LEON, A.; GARDENYES, R. Trends and patterns of ASIC and FPGA
use in European space missions. Master thesis, TUDelft and European Space Agency
(ESA), 2013.

GINOSAR, R. Survey of Processors for Space. Data System in Aerospace, 2012.

GOLOUBEVA, O.; REBAUDENGO, M.; REORDA, M.S.; VIOLANTE, M. Soft-error
detection using control flow assertions. IEEE International Symposium on Defect and
Fault Tolerance in VLSI Systems, p. 581–588, Nov. 2003.

GOLOUBEVA, O.; REBAUDENGO, M.; REORDA, M.S.; VIOLANTE, M. Software-
Implemented Hardware Fault Tolerance. Springer US, 2006.

HANGOUT, L.M.O.S.S.; JAN, S. The minimips project, 2009. Available at:
<http://www.opencores.org/projects.cgi/web/minimips/overview>. Accessed on: Mar.
2012.

ITRS. Design. In: International Technology Roadmap for Semiconductors, pp. 6-7, 2005.

KIM, N. et al. Leakage current: Moore's law meets static power. IEEE Computer, vol.
36, no. 12, pp. 68-75, Dec. 2003.

KOUBA, D. The Algebra of Summation Notation, 1999. Available at:
<https://www.math.ucdavis.edu/~kouba/CalcTwoDIRECTORY/summationdirectory/Su
mmation.html>. Accessed on: May 2015.

LI, S.; LAI, E.M.K.; ABSAR, M.J. Minimizing Embedded Software Power Consumption
Through Reduction of Data Memory Access. International Conference on
Information, Communications & Signal Processing, vol. 1, pp. 309-313, Dec. 2003.

MAHMOOD, A.; McCLUSKEY, E. Concurrent error detection using watchdog
processors – a survey. IEEE Transaction on Computers, vol. 37, no. 2, pp. 160-174,
Feb. 1988.

MARTINEZ-ALVAREZ, A.; CUENCA-ASENSI, S.; RESTREPO-CALLE, F.; PINTO,
F.R.P.; GUZMAN-MIRANDA, H.; AGUIRRE, M.A. Compiler-Directed Soft Error
Mitigation for Embedded Systems. IEEE Transactions on Dependable and Secure
Computing, vol. 8, no. 2, pp. 159-172, Mar. 2012.

190

MAXWELL TECHNOLOGIES. SCS750 Super Computer for Space, 2015. Available at:
<https://www.maxwell.com/images/documents/scs750_rev7.pdf>. Accessed on: Mar.
2016.

MCFEARIN, L.D.; NAIR, V.S.S. Control-flow checking using assertions. IFIP
International Working Conference on Dependable Computing for Critical
Applications (DCCA-05), Urbana-Champaign, pp. 103-112, Sept. 1995.

MCHALE, J. Budget cuts pressuring rad-hard designers to maintain quality while cutting
costs. Military Embedded Systems, Jun. 2014.

MENTOR GRAPHICS. ModelSim, 2010. Available at:
<http://www.model.com/content/modelsim-support>. Accessed on: Mar. 2012.

MORISON, I. Introduction to Astronomy and Cosmology. John Wiley & Sons, Dec.
2008.

MUKHERJEE, S.S.; WEAVER, C.; EMER, J.; REINHARDT, S.K.; AUSTIN, T. A
Systematic Methodology to Compute the Architectural Vulnerability Factors for a High-
Performance Microprocessor. Annual IEEE/ACM International Symposium on
Microarchitecture, pp. 29-40, 2003.

NICOLESCU, B.; VELAZCO, R. Detection soft errors by a purely software approach:
method, tools and experimental results. Design, Automation and Test in Europe
Conference and Exhibition, pp. 57-62, 2003.

O'BRYAN, M. Radiation Effects & Analysis, Nov. 2015. Available at:
<http://radhome.gsfc.nasa.gov/radhome/see.htm>. Accessed on: Dec. 2015.

OH, N.; SHIRVANI, P.P.; McCLUSKEY, E.J.; Error detection by duplicated instructions
in super-scalar processors. IEEE Transactions on Reliability, vol. 51, no. 1, pp. 63–75,
Mar. 2002a.

OH, N.; SHIRVANI, E.; McCLUSKEY, E. Control-flow checking by software
signatures. IEEE Transactions on Reliability, vol. 51, no. 2, pp. 111-122, Mar. 2002b.

PARKINSON, D.W. TETRA Security. BT Technology Journal, vol. 19, np. 3, pp. 81-
88, 2001.

PILOTTO, C.; AZAMBUJA, J.R.; KASTENSMIDT, F.L. Synchronizing triple modular
redundant designs in dynamic partial reconfiguration applications. Symposium on
Integrated Circuits and Systems Design, Gramado, pp. 199-204, 2008.

PRADHAN, D. Fault-Tolerant Computer System Design. Prentice Hall, Upper Saddle
River, 1996.

REBAUDENGO, M; REORDA, M.S.; TORCHIANO, M.; VIOLANTE, M. Soft-error
detection through software fault-tolerance techniques. IEEE International Symposium
on Defect and Fault Tolerance in VLSI Systems, Albuquerque, pp. 210-218, 1999.

REIS, G.A.; CHANG, J.; AUGUST, D.I. Automatic Instruction-Level Software-Only
Recovery, IEEE Micro, vol. 27, no. 1, pp. 36-47, 2007.

REIS, G.A.; CHANG, J; VACHHARAJANI, N.; MUKHERJEE, S.S.; RANGAN, R.;
AUGUST, D.I. Design and Evaluation of Hybrid Fault-Detection Systems. International
Symposium on Computer Architecture, pp. 148-159, Jun. 2005a.

191

REIS, G.A.; CHANG, J.; VACHHARAJANI, N.; RANGAN, R.; AUGUST, D.I.
SWIFT: software implemented fault tolerance. Symposium on Code Generation and
Optimization, San Francisco, pp. 243-254, 2005b.

RESTREPO-CALLE, F. Co-diseño de sistemas hardware/software tolerantes a fallos
inducidos por radiación. Ph.D. thesis, Computer Technology Department, University
of Alicante, pp. 78, 2011.

RESTREPO-CALLE, F.; CUENCA-ASENCI, S.; MARTINEZ-ALVAREZ, A.
Reducing implicit overheads of soft error mitigation techniques using selective
hardening. In: KASTENSMIDT, F.; RECH, P. FPGAs and Parallel Architectures for
Aerospace Applications. Springer International Publishing, 2016.

RESTREPO-CALLE, F.; CUENCA-ASENSI, S., MARTINEZ-ALVAREZ, A.;
CHIELLE, E.; KASTENSMIDT, F.L. Application-Based Analysis of Register File
Criticality for Reliability Assessment in Embedded Microprocessors. Journal of
Electronic Testing, vol. 31, no. 2, pp. 139-150, Apr. 2015.

RESTREPO-CALLE, F.; MARTINEZ-ALVAREZ, A.; CUENCA-ASENSI, S.;
JIMENO-MORENILLA, A. Selective SWIFT-R. Journal of Electronic Test, vol. 29,
no. 6, pp. 825-838, Dec. 2013.

STURESSON, F. Single Event Effects (SEE) Mechanism and Effects. Space Radiation
and its Effects on EEE Components, Jun. 2009.

SUDARAM, A.; AKAEL, A.; LOCKHART, D.; THAKER, D.; FRANKLIN, D.
Efficient fault tolerance in multi-media applications through selective instruction
replication. Workshop on Radiation effects and fault tolerance in nanometer
technologies, pp. 339-346, 2008.

TEXAS INSTRUMENTS. TMS320C6748 | C674x DSP | C6000 DSP | Description &
parametrics. Available at: <http://www.ti.com/product/tms320c6748>. Accessed on:
Aug. 2015.

THOMPSON, S.E.; CHAU, R.S.; GHANI, T.; MISTRY, K.; TYAGI, S.; BOHR, M.T.
In search of "Forever," continued transistor scaling one new material at a time. IEEE
Transactions on Semiconductor Manufacturing, New York, vol. 18, no. 1, pp. 26-36,
Feb. 2005.

UNSAL, O.S.; KOREN, I.; KRISHNA, C.M. Towards Energy-Aware Software-Based
Fault Tolerance in Real-Time Systems. International Symposium on Low Power
Electronics and Design, 2002.

VEMU, R.; ABRAHAM, J. CEDA: Control-Flow Error Detection Using Assertions.
IEEE Transactions on Computers, vol. 60, no. 9, pp. 1233-1245, Sept. 2011.

VIOLANTE, M. et al. A New Hardware/Software Platform and a New 1/E Neutron
Source for Soft Error Studies: Testing FPGAs at the ISIS Facility. IEEE Transactions
on Computers, vol. 54, no. 4, pp. 1184-1189, Aug. 2007.

VOGELSANG, T. Understanding the Energy Consumption of Dynamic Random Access
Memories. Annual IEEE/ACM International Symposium on Microarchitecture,
2010.

WAKERLY, J. Error detection codes, self-checking circuits and applications, North-
Holland, New York, 1978.

192

WANG, P.S.P. Handbook of Optical Character Recognition and Document Image
Analysis. World Scientific Publishing Company, 1997.

WANG, W.; DEY, T. A Survey on ARM Cortex A Processors, 2011. Available at:
<http://www.cs.virginia.edu/~skadron/cs8535_s11/ARM_Cortex.pdf>. Accessed on:
Aug. 2015.

WURSTER, S.; EGYEDI, T.M.; HOMMELS, A. The development of the public safety
standard TETRA: lessons and recommendations for research managers and strategists in
the security industry. International Conference on Standardization and Innovation in
Information Technology (SIIT), 2013.

YAO, T.; ZHOU, H.; FANG, M.; HU, H. Low Power Consumption Scheduling Based on
Software Fault-tolerance. International Conference on Natural Computation, 2013.

YEH, T.Y.; REINMAN, G.; PATEL, S.J.; FALOUTSOS, P. Fool me twice: Exploring
and exploiting error tolerance in physics-based animation. ACM Transactions on
Graphics, vol. 29, no. 1, pp. 5.1-5.11, Dec. 2009.

193

APPENDIX A <CFT-TOOL>

CFT-tool (Configurable Fault-Tolerant tool) is a configurable tool that applies SIHFT
techniques to the assembly code of target applications (CHIELLE, 2012). Its
configurability comes from two aspects:

 Processor: the target processor is informed by configuration files that
describe the processor architecture and organization. Thus, different
processors can be targeted by modifying the configuration files

 Techniques: a set of data-flow and control-flow SIHFT techniques is
available in the CFT-tool. It is possible to select the techniques, the order that
they are applied, and the registers and basic blocks that shall be hardened.

Fig. A.1 shows the steps that a program pass until a hardened executable is created.
The code in high-level language is compiled, generating the equivalent assembly code.
After, the code is assembled, creating the executable, which is, then, disassembled. CFT-
tool reads the assembly code, the disassembly, and the configuration files about the target
processor and techniques. The assembly is the base code to create the hardened
application. The code from subroutines presents in libraries, which is not present in the
assembly code, is extracted from the disassembly. Information about the processor, such
as the instruction set, register file, is read from the configuration files about the processor.
And the configuration files about the techniques informs the selected techniques, and how
they shall be applied. Then, CFT-tool creates a new assembly code hardened by the
selected techniques. The hardened assembly is assembled, creating the hardened
executable, which is ready to use.

Fig. A.1: Steps to protect a code using the CFT-tool.

A.1 Configuration

CFT-tool is independent of the processor architecture and organization. Considering
that the SIHFT techniques are applied by CFT-tool to the assembly code of the target
application and that the assembly code is architecture dependent, it is necessary to provide
information about the processor to the tool. All instructions, registers, as well as many

194

other vital characteristics of the processor, must be informed in order to CFT-tool work
properly.

In this regard, there is a set of configuration files that describe the processor
architecture and organization. One of these files contains general configurations. For
example, the label format as showed in Fig. A.2; the mnemonic of instruction to check if
two values are different (Fig. A.3); if there is the implementation of the branch delay
slot14 informing how many instructions are reordered (Fig. A.4); or the mnemonics of the
logically inverse conditional branches, as showed in Fig. A.5.

Fig. A.2: Example of label format configuration.

Fig. A.3: The branch not equal must be informed because it is necessary for the
implementation of checkers.

Fig. A.4: Number of instructions reordered by the branch delay slot.

Fig. A.5: Configuration informing the logically inverse conditional branches.

Another configuration file contains information about the instructions, such as
mnemonic, format, and type. Fig. A.6 presents an example of an instruction format, ins
indicates where the mnemonic is placed, rd concerns to a destination register, rs refers to
the source register, and offset is the memory offset with regards to rs.

Fig. A.6: Example of an instruction format.

The instructions are organized in groups. Fig. 3.8 presents the configuration of a
group of instructions. The tag [GROUP] marks the start of a group, while
{INSTRUCTIONS} indicates the mnemonics, {FORMAT} identifies the format of these
instructions in the assembly code, and {TYPE} points the type of the instructions (arithmetic, in
the example).

14 Branch delay slot is a feature of the pipeline present in some processors, in which the
instructions immediately before branches are shifted down (to after the branch) in order
to increase performance because the processor will always execute the instructions
subsequent to branches.

195

Fig. A.7: Example of a group of instructions.

CFT-tool recognizes instruction overload, i.e., instructions with the same mneumonic
but slightly different features. For example, an add instruction that sum two registers and
another add that sum a register with an immediate. Fig. A.8 shows another group of
instructions containing instructions with the same mnemonic of Fig. A.7. By comparing
both figures, it is possible to notice that the format in both cases is different. One has two
registers, and the other has one register and one immediate.

Fig. A.8: Example of a group with overloaded instructions with regards to Fig. A.7.

As well as the instructions, the registers are configured in groups. In Fig. A.9, one
can see an example of a group of registers. This group contains the registers $2 to $15.
They are readable and writable, and can be accessed from any part of the code due to their
type (global).

Fig. A.9: Example of a group of registers.

There is also a configuration file to make CFT-tool able to understand the
disassembled code. This file identifies the equivalent configurations of the assembly code
in the disassembly. For example, Fig. A.10 shows the configuration for the label format;
Fig. A.11, the instruction format; and Fig. A.12, the equivalent name of each register in
the disassembly and the assembly.

Fig. A.10: Example of a label format in the disassembly.

196

Fig. A.11: Example of the instruction format in the disassembly.

Fig. A.12: Equivalent names of the registers in the disassembly (left) and in the
assembly (right).

There are many other configurations, but they are not in the scope of this work. We
just wanted to illustrate how CFT-tool works.

A.2 Parameters

It is possible to select and configure the SIHFT techniques that shall be applied to the
code with configuration files. In addition, there is also another option, the use of command
line parameters when running the CFT-tool. Table A.1 presents some of the parameters
that can be passed to the tool.

Table C.1: Some parameters of CFT-tool

parameter description

assemblyFilename

techniques

targetProcessor

selectedRegisters

priorityMode

offset

setaHigherPriority

the filename of the assembly code of the target application

the SIHFT techniques that shall be applied

the target processor. It works for the processors already
configured

the registers that shall be hardened

indicates the criterium to rank the registers

offset in memory between original data and replica

reserves registers to guarantee the implementation of SETA

CFT-tool is a very complex hardening tool that is in constant improvement, with the

add of new techniques and features. Its use was vital for the development of this work.

197

APPENDIX B <DEVICES>

This appendix presents information about the target processors (miniMIPS and ARM
Cortex-A9) and talks about the ZedBoard, a low-cost implementation of the Xilinx
Zynq®-7000 All Programmable SoC, which has a dual-core ARM Cortex-A9 embedded.

B.1 miniMIPS

miniMIPS is a 32-bit processor core based on MIPS I architecture. It implements a
total of 52 instructions, all with 32 bits of length, and it has a pipeline of 5 stages. All
miniMIPS instructions take five cycles to be executed, and the peak throughput is one
instruction per cycle (HANGOUT, 2009).

Fig. B.1 shows the register set. It is composed of 32 registers of 32 bits. They are
general purpose registers and are accessible at any part of the program. Register $0 cannot
be written (its value is the constant zero). And register $31 receives by default the return
address during subroutine calls.

Fig. B.1: miniMIPS register set.

Branch instructions are an important issue for the SIHFT techniques. The way the
comparisons and branches are performed may affect the overheads and how checkers are
inserted. The miniMIPS processor do the comparison and the branch in the same
instruction. Fig. B.2 presents an example of instruction bne (branch not equal) that
compares two registers ($2 and $3) and takes, or not, the branch to target address
depending on the result of the comparison.

bne $2, $3, target
Fig. B.2: Comparison and branch in the miniMIPS processor.

In this work, the miniMIPS was simulated at RTL level using a hardware description
(VHDL) of the processor. The target application has to be in the COE format to be
executed by the processor. The COE contains the binary code that is loaded into the
memory. It is obtained by translating from the disassembly.

198

Fig. B.3: Transformations to run an application on the miniMIPS processor

B.2 ARM Cortex-A9

The ARM Cortex-A9 is a 32-bit processor core that implements the ARMv7-A
architecture. It is an out-of-order superscalar processor, with 32 kB L1 instruction and
data caches, 512 KB L2 cache, and speculating 8-stages pipeline (ARM, 2009). There is
also a 256 KB L3 cache, also known OCM (on-chip memory), which is DRAM memory
shared among all processors and other devices in the board in which the processor we
utilized is embedded.

In the application level, the architecture ARMv7-A has thirteen general-purpose
registers, R0 to R12, and three 32-bit registers with special uses, SP (stack pointer), LR
(link register), and PC (program counter), that can also be called R13, R14, and R15,
respectively. The processor uses SP to point the active stack and LR to hold the return
link information of subroutine calls (ARM, 2014). Furthermore, there are 32 64-bit
registers for SIMD/floating-point (D0 to D31), which can also be referred as 16 128-bit
registers in dual view. Other sets of registers, mainly for control, are also available.

In general, the ARM Cortex-A9 processor uses two instructions to compare and take,
or not, a branch. Table B.1 presents the instructions used to perform comparisons. They
can compare two registers or one register and one immediate.

Table B.1: Instruction to compare in the ARM Cortex-A9 processor

Instruction Mnemonic Notes

Compare Negative CMN Set flags. Like ADD but with no destination register.

Compare CMP Set flags. Like SUB but with no destination register.

Fig. B.4. shows an example using the instruction cmp. It compares two registers and
set internal flags accordingly.

cmp r2, r3

high level language

compiler

assembler

disassembler

translator

assembly

executable

disassembly

COE

199

Fig. B.4: Example of comparison in the ARM Cortex-A9 processor.

The branches are taken or not depending on the flags. Fig. B.5 shows an example of
a branch instruction called bne (branch not equal). It will take, or not, the branch to target
depending on the values of the flags, set by a previous comparison.

bne target
Fig. B.5: Example of branch in the ARM Cortex-A9 processor.

In this work, a hardcore version of the ARM Cortex-A9 processor embedded in a
ZedBoard is utilized. The standard binary executable is used. The code in high-level
language is compiled and assembled in order to be executed. Information about the
ZedBoard is presented as follows.

B.3 ZedBoard

ZedBoard is a low-cost development board for the Xilinx Zynq®-7000 All
Programmable SoC. It has a dual-core ARM Cortex-A9 processor and 85,000 Serie-7
Programmable Logic cells (AVNET, 2014). Each core has an individual L1 cache.
Caches L2 and L3 are shared between the cores, and L3 cache is also shared with other
devices in the board. Fig. B.6 presents the ZedBoard block diagram with its features. They
consist of:

 Xilinx® XC7Z020-1CLG484C Zynq-7000 AP SoC
o Primary configuration = QSPI Flash
o Auxiliary configuration options

 Cascaded JTAG
 SD Card

 Memory
o 512 MB DDR3 (128M x 32)
o 256 Mb QSPI Flash

 Interfaces
o USB-JTAG Programming using Digilent SMT1-equivalent circuit

 Accesses PL JTAG
 PS JTAG pins connected through PS Pmod

o 10/100/1G Ethernet
o USB OTG 2.0
o SD Card
o USB 2.0 FS USB-UART bridge
o Five Digilent Pmod™ compatible headers (2x6) (1 PS, 4 PL)
o One LPC FMC
o One AMS Header
o Two Reset Buttons (1 PS, 1 PL)
o Seven Push Buttons (2 PS, 5 PL)
o Eight dip/slide switches (PL)
o Nine User LEDs (1 PS, 8 PL)
o DONE LED (PL)

 On-board Oscillators
o 33.333 MHz (PS)
o 100 MHz (PL)

 Display/Audio

200

o HDMI Output
o VGA (12-bit Color)
o 128x32 OLED Display
o Audio Line-in, Line-out, headphone, microphone

 Power
o On/Off Switch
o 12V @ 5A AC/DC regulator

Fig. B.6: ZedBoard block diagram (AVNET, 2015).

The use of ZedBoard in this work regards with the radiation tests because it is possible
to program remotely the board to run applications on the embedded ARM Cortex-A9
processor. Thus, the proposed software-based techniques can be tested.

201

APPENDIX C <BENCHMARKS>

Nine applications were selected as benchmarks in this work. They consist of a bubble
sort (BS), the Dijkstra's algorithm (DA), a recursive depth-first search (rDFS), a
sequential depth-first search (sDFS), a matrix multiplication (MM), the run-length
encoding (RLE), a summation (SUM), the TETRA encryption algorithm (TEA2), and a
Tower of Hanoi (TH). Table C.1 shows a summary, for each application, regarding the
instructions present in the code. Branches are all the branches, jumps, and subroutine
calls; load/stores are the load and stores; and arithmetics are the remaining instructions,
such as add, sub, etc.

Table C.1: Summary of instructions for each benchmark

benchmark instructions arithmetics load/stores branches

BS

DA

rDFS

sDFS

MM

RLE

SUM

TEA2

TH

144

310

38

26

171

459

24

115

75

70 (48.6%)

158 (51.0%)

16 (42.1%)

10 (38.5%)

87 (50.9%)

176 (38.3%)

8 (33.3%)

38 (33.0%)

38 (50.7%)

48 (33.3%)

122 (39.4%)

10 (26.3%)

6 (23.1%)

55 (32.2%)

232 (50.5%)

10 (41.7%)

69 (60.0%)

27 (36.0%)

26 (18.1%)

30 (9.7%)

12 (31.6%)

10 (38.5%)

29 (17.0%)

51 (11.1%)

6 (25.0%)

8 (7.0%)

10 (13.3%)

In Table C.2, one can see a more detailed division, for each benchmark, of the

instructions present in the code. In comparison to Table C.1, the no operations (nops)
have been separated from arithmetics and included in a new column. Loads and stores
have been divided. And subroutine calls, unconditional branches (jumps), and conditional
branches have been partitioned in the respective following categories: calls, jumps, and
branches.

Table C.3 presents the basic block division of each application. The table includes
the number of basic blocks, the average number of instructions per BB, the number of
basic blocks of types X and A, and the average number of successors and predecessors
per BB. Table C.4 complements Table C.3 with additional information, which includes
the number of networks that an application has, the average number of basic blocks in the
predecessor network (predNet)15, and the average number of times a BB is executed.

15 predNet is the predecessor network. It contains the predecessor of the BBs of a given
network.

202

Table C.2: Detailed division of instructions for each benchmark

benchmark nops arithmetics loads stores branches jumps calls

BS

DA

rDFS

sDFS

MM

RLE

SUM

TEA2

TH

0
(0.0%)

1
(0.3%)

3
(7.9%)

2
(7.7%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

0
(0.0%)

5
(6.7%)

70
(48.6%)

157
(50.6%)

13
(34.2%)

8
(30.8%)

87
(50.9%)

176
(38.3%)

8
(33.3%)

38
(33.0%)

33
(44.0%)

28
(19.4%)

67
(21.6%)

6
(15.8%)

4
(15.4%)

28
(16.4%)

143
(31.2%)

5
(20.8%)

43
(37.4%)

14
(18.7%)

20
(13.9%)

55
(17.7%)

4
(10.5%)

2
(7.7%)

27
(15.8%)

89
(19.4%)

5
(20.8%)

26
(22.6%)

13
(17.3%)

15
(10.4%)

14
(4.5%)

3
(7.9%)

3
(11.5%)

15
(8.8%)

26
(5.7%)

1
(4.2%)

1
(0.9%)

1
(1.3%)

10
(6.9%)

15
(4.8%)

6
(15.8%)

6
(23.1%)

12
(7.0%)

24
(5.2%)

5
(20.8%)

6
(5.2%)

4
(5.3%)

1
(0.7%)

1
(0.3%)

3
(7.9%)

1
(3.8%)

2
(1.2%)

1
(0.2%)

0
(0.0%)

1
(0.9%)

5
(6.7%)

Table C.3: Overall information about the basic blocks for each benchmark

benchmark

BBs
avg. #

instructions
type X type A

avg. #
successors

avg. #
predecessors

BS

DA

rDFS

sDFS

MM

RLE

SUM

TEA2

TH

29

39

12

11

32

67

7

9

12

4.97

7.95

3.17

2.36

5.34

6.85

3.43

12.78

6.25

18 (62.1%)

33 (84.6%)

9 (75.0%)

11 (100.0%)

22 (68.8%)

58 (86.6%)

7 (100.0%)

9 (100.0%)

11 (91.7%)

11 (37.9%)

6 (15.4%)

3 (25.0%)

0 (0.0%)

10 (31.3%)

9 (13.4%)

0 (0.0%)

0 (0.0%)

1 (8.3%)

1.48

1.36

1.92

1.27

1.47

1.39

1.00

1.11

1.25

1.48

1.36

1.92

1.27

1.47

1.39

1.00

1.11

1.25

203

Table C.4: Additional information about the basic blocks for each benchmark

benchmark

networks
avg. # BBs
in predNet

avg. # times a
BB is executed

BS

DA

rDFS

sDFS

MM

RLE

SUM

TEA2

TH

18

25

7

8

20

41

6

8

9

0.66

0.87

0.75

0.91

0.72

0.88

0.71

0.89

0.92

8.00

23.69

5.92

5.36

4.28

27.01

286.43

7.89

767.67

Not all faults affecting the unhardened application will result in failures. Actually,
the masking rate is for the miniMIPS processor considering the fault injection
methodology utilized. Table C.5 presents the fault coverage, as well as the execution time
and code size, of the unhardened applications. It is clear that the error detection rate of
unhardened applications is zero. Thus, the fault coverage is equivalent to the masking
rate.

Table C.5: Execution time, code size, and fault coverage of the unhardened applications

benchmark execution time code size fault coverage

BS

DA

rDFS

sDFS

MM

RLE

SUM

TEA2

TH

195.5

872.5

24.50

16.25

161.0

1316.0

1262.0

154.0

4729.0

1156

2364

1820

1764

1308

3080

536

1096

876

87.36%

88.80%

84.41%

84.71%

84.50%

87.73%

85.95%

83.10%

81.24%

C.1 Bubble sort

Bubble sort (BS) is a sorting algorithm that compares the value of adjacent positions
and may swap them if necessary. In this algorithm, there are many loops, branches, and
registers used to determine the execution flow.

204

Table C.6 shows a dynamic evaluation of the registers usage for the bubble sort. It
illustrates the number of times each register was used either as destination or source
register during the program execution.

Table C.6: Dynamic evaluation of the registers usage for the bubble sort

register
times used
as destination

times used
as source

total #
times used

0
2
3
4
5
6
7
8
9
10
sp
fp
31

total

0
1111
354
80
4
3
5
6
5
1
3
2
2

1576

122
1110
353
82
4
5
15
10
15
1
7

766
2

2492

122
2221
707
162
8
8

20
16
20
2

10
768
4

4068

Table C.7 shows the effective lifetime (EL), weight in conditional branches (WCB),

functional dependencies (FD), the criticality and the rank of criticality of the registers
used by the bubble sort. The register $0 was not evaluated using Restrepo-Calle (2015)
metric for criticality because it has the constant zero and cannot be modified. Thus, fault
injection could not be performed directly in this register. We decided to set the register
$0 as the one with the highest criticality by default (when it is utilized) because this
register zero showed to increase the fault coverage with very low overheads (CHIELLE,
2013). The bubble sort was compiled with no optimizations. For that reason, most of the
calculations are performed using few registers. These registers the most sensitive ones,
which is indicate by their high criticality. On the other hand, once they are the most used
registers, they cause higher overheads when hardened.

Table C.7: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the bubble sort

register EL WCB FD criticality rank

2
3
4
5
6
7
8
9
10
sp
fp
31

4.25E-01
2.28E-01
2.37E-01
9.84E-01
1.82E-02
1.33E-02
1.14E-02
1.46E-02
1.70E-02
1.50E-03
9.94E-01
1.98E-02

2.40E-02
0.00E+00
0.00E+00
0.00E+00
6.44E-04
0.00E+00
1.50E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

5.36E-03
9.03E-03
9.06E-04
1.92E-04
2.74E-06
3.24E-05
0.00E+00
4.02E-04
3.18E-05
1.56E-04
2.22E-02
0.00E+00

1.50E-01
7.84E-02
7.87E-02
3.25E-01
6.24E-03
4.40E-03
4.25E-03
4.95E-03
5.61E-03
5.47E-04
3.35E-01
6.52E-03

3
5
4
2
7
10
11
9
8
12
1
6

Tables C.8 and C.9 presents detailed information about the basic block division of

the bubble sort. Table C.8 includes the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the

205

basic block was executed. Table C.9 shows the BBs in the predecessor network of each
network.

Table C.8: Detailed information about the basic blocks of the bubble sort

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28

10
3
3
1
1
4
1
13
24
4
7
5
1
1
4
5
12
3
6
3
6
2
3
4
8
1
6
1
2

X
X
X
X
X
X
X
X
X
A
X
X
X
X
X
X
A
A
A
A
A
A
X
A
A
A
A
X
X

14
2

3, 4
11
5

6, 7
10

8, 9
9
5
2
13

13
15, 22
16, 17
17, 16
18, 19
19, 18
20, 21
21, 20

1
23, 28
24, 25
25, 24
26, 21
27, 26

21
23

21

1, 10
2
2

4, 9
5
5
7

7, 8
6
3

11, 13
0
14

15, 16
15, 16
17, 18
17, 18
19, 20

19, 20, 25, 27
14

22, 28
23, 24
23, 24
25, 26

26
22

17
16
15
14
14
13
12
12
11
11
10
9
8
7
6
5
4
4
3
3
2
2
5
1
0
0
2
2
1

1
1

11
1

10
55
10
45
32
45
10
1
0
1
1
1
2
1
2
1
0
1
0
0
0
0
0
0
0

Table C.9: BBs in the predecessor network for each network of the bubble sort

network
BBs in the
predNet

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

23
22

25, 19
17
15
14
0
11

3
6
7
5

4, 9
2

1, 10
21

206

C.2 Dijkstra’s algorithm

Dijkstra's algorithm (DA) is an algorithm proposed by Edsger W. Dijkstra (1959) to
find the shortest path between nodes in a graph. It selects the unvisited node with the
shortest distance to the origin. It is done iteratively, always selecting the current shortest
path, until finding the destination, or failing.

Table C.10 illustrates a dynamic evaluation of the registers usage for the Dijkstra’s
algorithm. It shows the number of times each register was used either as destination or
source register during the program execution.

Table C.11 shows the effective lifetime (EL), weight in conditional branches (WCB),
functional dependencies (FD), the criticality and the rank of criticality of the registers
used by the Dijkstra’s algorithm. As the bubble sort, it is compiled with no optimizations,
which concentrates the calculations in few registers. One thing that is important to notice
is the high criticality of the register $31. It is used just a few times during the program
execution. However, the register lifetime is huge because it is written in the beginning of
the application and read in the end.

Table C.12 presents the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the
basic block was executed. And Table C.13 shows the BBs in the predecessor network of
each network.

Table C.10: Dynamic evaluation of the registers usage for the Dijkstra’s algorithm

register
times used
as destination

times used
as source

total #
times used

0
2
3
4
sp
fp
31

total

0
5379
1466
110
6
4
2

6967

338
5378
1936
110
12

2786
2

10562

338
10757
3402
220
18

2790
4

17529

Table C.11: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the Dijkstra’s algorithm

register EL WCB FD criticality rank

2
3
4
sp
fp
31

3.24E-01
3.07E-01
4.04E-02
1.06E-03
9.99E-01
9.99E-01

2.57E-02
1.01E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00

3.85E-03
6.94E-03
5.06E-04
7.94E-05
1.46E-02
0.00E+00

1.17E-01
1.07E-01
1.35E-02
2.65E-04
3.35E-01
3.30E-01

3
4
5
6
1
2

207

Table C.12: Detailed information about the basic blocks of the Dijkstra’s algorithm

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

18
3
1
31
1
3
1
16
14
3
6
1
29
2
1
10
30
5
6
1
3
1
3
1
15
7
10
1
17
3
6
1
32
4
9
6
6
2
1

X
X
X
X
X
X
X
X
X
X
X
X
A
X
X
X
X
X
X
X
A
A
X
X
X
X
X
X
A
X
X
X
A
A
X
X
X
X
X

1
2, 3

4
1
5

6, 7
8
5

9, 10
12

11, 12
12
13

14, 15
34

16, 21
17, 18

20
19, 20

20
21
22

23, 24
13

25, 33
26, 28
27, 28

33
29, 30

32
31, 32

32
33
22
36
0
38
36
38

35
0, 3

1
1
2

4, 7
5
5
6
8
8
10

9, 10, 11
12, 23

13
13
15
16
16
18

17, 18, 19
15, 20
21, 33

22
22
24
25
26

25, 26
28
28
30

29, 30, 31
24, 27, 32

14

34, 37

36, 38

24
23
22
22
21
20
19
19
18
17
17
16
16
15
14
14
13
12
12
11
11
13
10
9
9
8
7
7
7
6
6
5
5
8
4
3
2
1
0

1
101

1
100

1
11
1

10
1
1
0
0
1

11
1

10
10
2
8
0

10
10
110
10
100
100
91
91
9
1
8
0
9

100
1
1
1
0
1

Table C.13: BBs in the predecessor network for each network of the Dijkstra’s
algorithm

network
BBs in the
predNet

0
1
2
3
4
5
6
7

36

34, 37

14
29, 30

28
25

208

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

24, 27, 32
22

21, 33
17, 18

16
15, 20

13
12, 23
9, 10

8
6
5

4, 7
2
1

0, 3
35

C.3 Recursive depth-first search

Two different versions of a depth-first search were implemented. They both perform
the same task, but in a different way, one sequential (sDFS) and another recursive (rDFS).
While rDFS uses many recursive subroutine calls, sDFS uses many loops. Thus, it is
possible to compare if the use of recursion may affect the reliability.

The rDFS was implemented in assembly with the aim of maximizing performance
by distributing the calculation among the registers and avoiding transferring unnecessary
data to the memory. Table C.14 illustrates a dynamic evaluation of the registers usage for
the recursive depth-first search. It shows the number of times each register was used either
as destination or source register during the program execution. The criticalities of the
registers used by the rDFS, showed in Table C.15, were more distributed than the
applications compiled with no optimizations exactly because the calculations were more
distributed. We can see that the intuitive thought that the most used registers are more
sensitive is true. On the other hand, it also means that the protection of the most sensitive
registers causes higher overheads. Finally, Table C.16 presents the number of instructions
per BB, type, successors, predecessors, the network to which the BB belongs, and the
number of times that the basic block was executed. And Table C.17 shows the BBs in the
predecessor network of each network.

Table C.14: Dynamic evaluation of the registers usage for the recursive depth-first
search

register
times used
as destination

times used
as source

total #
times used

2
3
4
5
6
7
8
sp
31

total

2
1
28
14
1
28
14
0
27
115

16
27
53
28
2
42
27
1
27
223

18
28
81
42
3

70
41
1

54
338

209

Table C.15: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the rDFS

register EL WCB FD criticality rank

2
3
4
5
6
7
8
sp
31

6.99E-01
7.24E-01
9.09E-01
2.90E-01
2.64E-01
6.10E-01
2.21E-01
8.79E-03
6.38E-01

0.00E+00
0.00E+00
0.00E+00
2.46E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

4.95E-03
2.00E-04
9.62E-03
4.95E-03
5.27E-04
8.68E-03
2.00E-04
5.27E-04
0.00E+00

2.32E-01
2.39E-01
3.03E-01
1.05E-01
8.72E-02
2.04E-01
7.31E-02
3.07E-03
2.11E-01

3
2
1
6
7
5
8
9
4

Table C.16: Detailed information about the basic blocks of the recursive depth-first
search

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11

1
2
4
2
1
5
3
5
3
6
5
1

X
X
X
X
X
X
A
X
A
X
A
X

1, 2
6, 8, 10

3, 4
6, 8, 10

5, 7
0

6, 8, 10
0

6, 8, 10
0
11
11

5, 7, 9
0
0
2
2
4

1, 3, 6, 8
4

1, 3, 6, 8

1, 3, 6, 8
10, 11

6
5
5
4
4
3
2
3
2
1
2
0

14
0

14
1

13
7
7
6
6
1
1
1

Table C.17: BBs in the predecessor network for each network of the recursive depth-
first search

network
BBs in the
predNet

0
1
2
3
4
5
6

10

1, 3
4
2
0

5, 7, 9

C.4 Sequential depth-first search

The sequential depth-first search (sDFS) is the nonrecursive version of the depth-first
search. Table C.18 illustrates a dynamic evaluation of the registers usage for the
sequential depth-first search. It shows the number of times each register was used either
as destination or source register during the program execution. Table C.19 shows the
criticality of the registers used by the sDFS. This application was implemented in
assembly with the aim of maximizing performance by distributing calculations among
the registers (as the rDFS). Therefore, we can see a more distributed criticality among the

210

registers. It is also possible to notice that the registers $31, although little used, has high
criticality due to its high effective lifetime. Table C.20 presents the number of instructions
per BB, type, successors, predecessors, the network to which the BB belongs, and the
number of times that the basic block was executed. And Table C.21 shows the BBs in the
predecessor network of each network.

Table C.18: Dynamic evaluation of the registers usage for the sequential depth-first
search

register
times used
as destination

times used
as source

total #
times used

2
3
4
5
6
31

total

2
1
43
14
1
1
62

16
27
71
27
2
1

144

18
28
114
41
3
2

206

Table C.19: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the sDFS

register EL WCB FD criticality rank

2
3
4
5
6
31

2.35E-01
3.53E-01
4.71E-01
1.47E-01
2.35E-01
6.18E-01

0.00E+00
0.00E+00
2.94E-02
0.00E+00
0.00E+00
0.00E+00

1.05E-02
4.65E-04
4.42E-03
4.65E-04
7.47E-04
0.00E+00

3.10E-01
3.18E-01
2.80E-01
1.12E-01
6.44E-03
3.14E-01

3
1
4
5
6
2

Table C.20: Detailed information about the basic blocks of the sequential depth-first
search

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10

1
1
5
2
1
2
2
2
4
5
1

X
X
X
X
X
X
X
X
X
X
X

1
2, 7
3, 4

9
5, 6

1
1
9
0
10
10

8
0, 5, 6

1
2
2
4
4
1

3, 7
9, 10

7
6
5
4
4
3
3
5
2
1
0

1
14
14
1

13
7
6
0
1
1
1

211

Table C.21: BBs in the predecessor network for each network of the sequential depth-
first search

network
BBs in the
predNet

0
1
2
3
4
5
6
7

9
3, 7

4
2
1

0, 5, 6
8

C.5 Matrix multiplication

The matrix multiplication (MM) has a large amount of data processing within few
loops. It is ideal to verify the coverage of data-flow techniques since there are few
branches in the code. The version we used was compiled with no optimizations.

Table C.22 illustrates a dynamic evaluation of the registers usage for the matrix
multiplication. It shows the number of times each register was used either as destination
or source register during the program execution. Table C.23 shows the criticality of the
registers used by MM. As stated in section C.1, register $0 set as the most critical by
default. Table C.24 presents the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the
basic block was executed. And Table C.25 shows the BBs in the predecessor network of
each network.

Table C.22: Dynamic evaluation of the registers usage for the matrix multiplication

register
times used
as destination

times used
as source

total #
times used

0
2
3
4
5
6
7
8
9
10
sp
fp
31

total

0
925
386
33
35
33
8
10
8
2
3
2
3

1448

74
923
492
37
35
37
26
16
26
2
7

480
3

2158

74
1848
878
70
70
70
34
26
34
4

10
482
6

3606

212

Table C.23: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the MM

register EL WCB FD criticality Rank

2
3
4
5
6
7
8
9
10
sp
fp
31

3.24E-01
3.90E-01
2.07E-01
5.59E-01
3.92E-01
2.72E-02
2.25E-02
3.03E-02
3.56E-02
1.83E-03
9.95E-01
4.08E-02

1.41E-02
0.00E+00
0.00E+00
0.00E+00
1.05E-03
0.00E+00
3.14E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

6.37E-03
1.32E-02
1.10E-03
1.80E-04
8.01E-04
6.73E-05
0.00E+00
6.70E-04
5.84E-05
1.86E-04
1.46E-02
0.00E+00

1.14E-01
1.33E-01
6.85E-02
1.85E-01
1.30E-01
8.99E-03
8.45E-03
1.02E-02
1.18E-02
6.65E-04
3.33E-01
1.35E-02

5
3
6
2
4

10
11
9
8

12
1
7

Table C.24: Detailed information about the basic blocks of the matrix multiplication

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31

10
6
10
3
1
1
3
1
1
3
1
50
4
4
5
1
1
4
5
12
3
6
3
6
2
3
4
8
1
6
1
2

X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
A
A
A
A
A
A
X
A
A
A
A
X
X

17
17
3

4, 5
14
6

7, 8
13
9

10, 11
12
9
6
3
16

16
18, 25
19, 20
20, 19
21, 22
22, 21
23, 24
24, 23
1, 2

26, 31
27, 28
28, 27
29, 24
30, 29

24
26

24
24

2, 13
3
3

5, 12
6
6

8, 11
9
9
10
7
4

14, 16
0, 1
17

18, 19
18, 19
20, 21
20, 21
22, 23

22, 23, 28, 30
17

25, 31
26, 27
26, 27
28, 29

29
25

19
18
18
17
16
16
15
14
14
13
12
12
11
10
9
8
7
6
5
4
4
3
3
2
2
5
1
0
0
2
2
1

1
1
1
4
1
3

12
3
9

36
9

27
9
3
1
0
1
2
2
4
2
2
2
0
2
0
0
0
0
0
0
0

213

Table C.25: BBs in the predecessor network for each network of the MM

network
BBs in the
predNet

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19

26
25

28, 22
20
18
17
0, 1
14

4
7
10
9

8, 11
6

5, 12
3

2, 13
24

C.6 Run length encoding

Run-length encoding (RLE) is an algorithm for lossless data compression in which a
homogeneous sequence of data are stored as a single datum and a count (CHEN, 2010).
RLE is useful for simple graphics images, i.e., images of large scale with identically
valued pixels (WANG, 1997).

Table C.26 illustrates a dynamic evaluation of the registers usage for the run length
encoding. It shows the number of times each register was used either as destination or
source register during the program execution. Table C.27 shows the criticality of the
registers used by the RLE. This application was compiled with no optimizations. For that
reason, we can see few registers with high criticality (similar as showed to the Dijkstra’s
algorithm). Table C.28 presents the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the
basic block was executed. And Table C.29 shows the BBs in the predecessor network of
each network.

Table C.26: Dynamic evaluation of the registers usage for the run length encoding

register
times used
as destination

times used
as source

total #
times used

0
2
3
4
5
sp
fp
31

total

0
7495
1142
206
60
6
4
2

8915

1251
7495
1241
209
119
12

4748
2

15077

1251
14990
2383
415
179
18

4752
4

23992

214

Table C.27: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the RLE

register EL WCB FD criticality rank

2
3
4
5
sp
fp
31

3.71E-01
1.91E-01
7.29E-02
3.80E-02
4.47E-04
9.99E-01
9.99E-01

3.15E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

9.20E-04
2.88E-03
2.63E-04
1.23E-04
5.27E-05
2.01E-02
0.00E+00

1.33E-01
6.40E-02
2.41E-02
1.26E-02
1.65E-04
3.36E-01
3.30E-01

3
4
5
6
7
1
2

Table C.28: Detailed information about the basic blocks of the run length encoding

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

9
1
3
1
9
1
4
1
23
3
3
1
12
2
4
15
12
3
4
3
4
1
14
3
5
3
20
1
4
1
13
15
11
19
4
13
2
6
3
20
1

X
X
X
X
X
X
X
X
X
X
X
X
X
X
A
X
X
A
A
X
X
X
X
A
X
X
X
X
X
X
X
X
X
A
X
X
X
X
X
X
X

1, 61
2

3, 4
5
2
6

7, 8
9
6
10

11, 12
15

13, 14
14
10

16, 56
17

18, 48
19, 23
20, 23
21, 22

23
18

24, 37
25, 31
26, 27

34
28

29, 30
34
28

32, 33
33
34

35, 36
52
52

38, 44
39, 40

47
41

63
0

1, 4
2
2
3

5, 8
6
6
7

9, 14
10
10
12

12, 13
11
15

16, 54, 55
17, 22

18
19
20
20

18, 19, 21
23
24
25
25

27, 30
28
28
24
31

31, 32
26, 29, 33

34
34
23
37
38
38

40
39
38
37
37
36
35
34
34
33
32
31
31
30
30
29
28
28
27
26
26
25
25
26
24
23
22
22
21
20
20
23
19
19
18
17
17
24
16
15
15

1
1

257
1

256
1

61
1

60
1

256
1

255
2

255
1
1

31
36
35
28
0

28
8
1
0
0
0
0
0
0
1
0
1
1
0
1
7
5
0
5

215

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

4
1
13
15
11
19
5
3
18
9
4
4
12
4
3
3
3
18
9
3
1
5
7
6
1
1

X
X
X
X
X
A
X
X
X
X
X
X
X
A
X
A
X
X
X
A
X
X
X
X
X
X

42, 43
47
41

45, 46
46
47
52

49, 50
51
51
52

53, 54
54

55, 17
56, 17
57, 60
58, 59

60
60
62
62
64
0
66
64
66

40, 43
41
41
37
44

44, 45
39, 42, 46

17
48
48

49, 50
35, 36, 47, 51

52
52, 53

54
15, 55

56
57
57

56, 58, 59
0

60, 61

62, 65

64, 66

14
13
13
16
12
12
11
27
10
10
9
8
7
7

28
28
6
5
5
6

39
4
3
2
1
0

16
5

11
2
0
2
7

23
0

23
23
31
30
31
1
1
0
0
0
1
0
1
1
1
0
1

Table C.29: BBs in the predecessor network for each network of the run length
encoding

network
BBs in the
predNet

0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25

64

62, 65

60, 61
57

56, 58, 59
52

35, 36, 47, 51
49, 50

48
39, 42, 46

44
41

40, 43
38
37
34

26, 29, 33
31
28

27, 30
25
24
23
20

216

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40

18, 21
17, 22
54, 15

11
12
10

9, 14
7
6

5, 8
3
2

1, 4
0
63

C.7 Summation

Summation (SUM) is the definite integral of a continuous function (KOUBA, 1999).
In this work, it was implemented the summation given by the equation C.1. It is the sum
of a sequence of numeric values. The version we implemented was compiled with no
optimizations.

Eq.	C.1 	

Table C.30 illustrates a dynamic evaluation of the registers usage for the summation.
It shows the number of times each register was used either as destination or source register
during the program execution. Table C.31 shows the criticality of the registers used by
the summation. Table C.32 presents the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the
basic block was executed. And Table C.33 shows the BBs in the predecessor network of
each network.

Table C.30: Dynamic evaluation of the registers usage for the summation

register
times used
as destination

times used
as source

total #
times used

0
2
3
sp
fp

total

0
6003
1000

3
2

7008

1004
6002
1000

5
6005

14016

1004
12005
2000

8
6007

21024

Table C.31: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the summation

register EL WCB FD criticality rank

2
3
sp
fp

3.33E-01
6.66E-02
1.33E-04
1.00E+00

3.33E-02
0.00E+00
0.00E+00
0.00E+00

0.00E+00
4.03E-03
2.20E-05
1.28E-02

1.21E-01
2.33E-02
5.12E-05
3.34E-01

2
3
4
1

217

Table C.32: Detailed information about the basic blocks of the summation

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6

5
3
1
8
5
1
1

X
X
X
X
X
X
X

1
2, 3

4
1
6

6

0, 3

1
1
2

4, 6

5
4
3
3
2
1
0

1
1001

1
1000

1
0
1

Table C.33: BBs in the predecessor network for each network of the summation

network
BBs in the
predNet

0
1
2
3
4
5

4

2
1

0, 3

C.8 TETRA encryption algorithm

The Terrestrial Trunked Radio (TETRA) is a European standard designed for
emergency, transport and military services (WURSTER, 2013). The TETRA Encryption
Algorithm is an algorithm used to provide confidentiality to the TETRA air interface.
This encryption algorithm protects against eavesdropping as well as protection of
signaling (PARKINSON, 2001). In this work, the second version of the TETRA
Encryption Algorithm (TEA2) was implemented. It was compiled with no optimizations.

Table C.34 illustrates a dynamic evaluation of the registers usage for the TETRA
encryption algorithm. It shows the number of times each register was used either as
destination or source register during the program execution. Table C.35 presents the
criticality of the registers used by the TEA2. Table C.36 presents the number of
instructions per BB, type, successors, predecessors, the network to which the BB belongs,
and the number of times that the basic block was executed. And Table C.37 shows the
BBs in the predecessor network of each network.

Table C.34: Dynamic evaluation of the registers usage for the TETRA encryption
algorithm

register
times used
as destination

times used
as source

total #
times used

0
2
3
4
5
sp
fp
31

total

0
799
290
129
1
6
4
2

1231

36
798
290
129
1
12
738
2

2006

36
1597
580
258
2

18
742
4

3237

218

Table C.35: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the TEA2

register EL WCB FD criticality rank

2
3
4
5
sp
fp
31

3.55E-01
3.69E-01
3.35E-01
1.91E-03
4.10E-03
9.93E-01
9.82E-01

9.02E-03
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

6.26E-03
9.29E-03
0.00E+00
0.00E+00
4.47E-04
2.15E-02
0.00E+00

1.22E-01
1.25E-01
1.11E-01
6.31E-04
1.50E-03
3.35E-01
3.24E-01

4
3
5
7
6
1
2

Table C.36: Detailed information about the basic blocks of the TETRA encryption
algorithm

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8

32
3
1
40
11
20
6
1
1

X
X
X
X
X
X
X
X
X

1
2, 3

4
1
6
0
8
6
8

5
0, 3

1
1
2

4, 7

6, 8

7
6
5
5
4
3
2
1
0

1
33
1

32
1
1
1
0
1

Table C.37: BBs in the predecessor network for each network of the TETRA encryption
algorithm

network
BBs in the
predNet

0
1
2
3
4
5
6
7

6

4, 7

2
1

0, 3
5

C.9 Tower of Hanoi

Tower of Hanoi (TH) is a mathematical puzzle. It consists of disks piled up in
ascending order of size from top to down. The aim is to move from one stack to another
using an auxiliary stack. It has been done respecting the following statements:

 Only one disk can be moved each time. It has to be on top of a stack and goes
to the top of another stack;

 A larger disk cannot be on top of a smaller one;

219

The TH was implemented in assembly to maximize the performance and avoid that
intermediary calculations are stored in the memory. Table C.38 illustrates a dynamic
evaluation of the registers usage for the Tower of Hanoi. It shows the number of times
each register was used either as destination or source register during the program
execution. Table C.39 shows the criticality of the registers used by the Tower of Hanoi.
One can notice that since the work was better distributed among the registers, the
criticality also was. Register $7 was the most used one. However, the metric says it is one
of the least critical. It happens because register $7 has many living intervals with very
short lifetimes, which makes its data to be often overwritten. Thus, an error in this register
will quickly disappear.

Table C.40 presents the number of instructions per BB, type, successors,
predecessors, the network to which the BB belongs, and the number of times that the
basic block was executed. And Table C.41 shows the BBs in the predecessor network of
each network.

Table C.38: Dynamic evaluation of the registers usage for the Tower of Hanoi

register
times used
as destination

times used
as source

total #
times used

2
3
4
5
6
7
8
9
10
sp
31

total

4093
3070
3070
4093
2047
9212
1023
2050
2047

0
5116

35821

16369
4095
4094
4094
4094

11259
1023
7165
4092

1
5116

61402

20462
7165
7164
8187
6141

20471
2046
9215
6139

1
10232
97223

Table C.39: Effective lifetime (EL), weight in conditional branches (WCB), functional
dependencies (FD), and criticality of the registers used by the Tower of Hanoi

register EL WCB FD criticality rank

2
3
4
5
6
7
8
9
10
sp
31

9.45E-01
5.45E-01
6.27E-01
6.36E-01
9.73E-01
1.73E-01
2.45E-01
2.55E-01
9.72E-01
1.60E-04
3.18E-01

0.00E+00
0.00E+00
0.00E+00
0.00E+00
2.73E-02
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00
0.00E+00

1.25E-02
1.29E-03
2.05E-03
3.52E-03
0.00E+00
4.56E-03
0.00E+00
3.11E-03
9.54E-04
2.77E-06
0.00E+00

3.16E-01
1.80E-01
2.08E-01
2.11E-01
3.30E-01
5.85E-02
8.10E-02
8.50E-02
3.21E-01
5.37E-05
1.05E-01

3
6
5
4
1

10
9
8
2

11
7

220

Table C.40: Detailed information about the basic blocks of the Tower of Hanoi

BB

instructions
type successors predecessors network

times
executed

0
1
2
3
4
5
6
7
8
9
10
11

15
6
1
6
7
1
12
7
3
9
7
1

X
X
X
X
X
X
X
X
X
X
X
A

5
2
2
9
8

6, 11
5
4
3
5
11

1, 7, 10

11

1, 2
8
7

0, 6, 9
5
11
4
3
11

5, 10

8
7
6
5
4
3
2
7
1
0
7
2

1
1
1

1023
1023
2047
1023
1023
1023
1023
1023

1

Table C.41: BBs in the predecessor network for each network of the Tower of Hanoi

network
BBs in the
predNet

0
1
2
3
4
5
6
7
8

3
4

5, 10
0, 6, 9

7
8
1
11

221

