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ABSTRACT 

Software-based fault tolerance techniques are a low-cost way to protect processors 
against soft errors. However, they introduce significant overheads to the execution time 
and code size, which consequently increases the energy consumption. System operation 
with time or energy restrictions may not be able to make use of these techniques. For this 
reason, this work proposes software-based fault tolerance techniques with lower 
overheads and similar fault coverage to state-of-the-art software techniques. Once 
detection is less costly than correction, the work focuses on software-based detection 
techniques. 

Firstly, a set of data-flow techniques called VAR is proposed. The techniques are 
based on general building rules to allow an exhaustive assessment, in terms of reliability 
and overheads, of different technique variations. The rules define how the technique 
duplicates the code and insert checkers. Each technique uses a different set of rules. Then, 
a control-flow technique called SETA (Software-only Error-detection Technique using 
Assertions) is introduced. Comparing SETA with a state-of-the-art technique, SETA is 
11.0% faster and occupies 10.3% fewer memory positions. The most promising data-flow 
techniques are combined with the control-flow technique in order to protect both data-
flow and control-flow of the target application. 

To go even further with the reduction of the overheads, methods to selective apply the 
proposed software techniques have been developed. For the data-flow techniques, instead 
of protecting all registers, only a set of selected registers is protected. The set is selected 
based on a metric that analyzes the code and rank the registers by their criticality. For the 
control-flow technique, two approaches are taken: (1) removing checkers from basic 
blocks: all the basic blocks are protected by SETA, but only selected basic blocks have 
checkers inserted, and (2) selectively protecting basic blocks: only a set of basic blocks 
is protected. The techniques and their selective versions are evaluated in terms of 
execution time, code size, fault coverage, and Mean Work To Failure (MWTF), which is 
a metric to measure the trade-off between fault coverage and execution time. Results 
show that was possible to reduce the overheads without affecting the fault coverage, and 
for a small reduction in the fault coverage it was possible to significantly reduce the 
overheads. Lastly, since the evaluation of all the possible combinations for selective 
hardening of every application takes too much time, this work uses a method to 
extrapolate the results obtained by simulation in order to find the parameters for the 
selective combination of data and control-flow techniques that are probably the best 
candidates to improve the trade-off between reliability and overheads. 

Keywords: SIHFT techniques, selective hardening, transient faults, soft errors, Single 
Event Effects, SEU, SET, processor, reliability, execution time, code size, energy 
consumption, lower overheads. 



 

 



 

 

Técnicas Seletivas de Tolerância a Falhas em Software com Custo 
Reduzido para Detectar Erros Causados por Falhas Transientes em 

Processadores 

RESUMO 

A utilização de técnicas de tolerância a falhas em software é uma forma de baixo custo 
para proteger processadores contra soft errors. Contudo, elas causam aumento no tempo 
de execução e utilização de memória. Em consequência disso, o consumo de energia 
também aumenta. Sistemas que operam com restrição de tempo ou energia podem ficar 
impossibilitados de utilizar tais técnicas. Por esse motivo, este trabalho propoe técnicas 
de tolerância a falhas em software com custos no desempenho e memória reduzidos e 
cobertura de falhas similar a técnicas presentes na literatura. Como detecção é menos 
custoso que correção, este trabalho foca em técnicas de detecção. 

Primeiramente, um conjunto de técnicas de dados baseadas em regras de 
generalização, chamada VAR, é apresentada. As técnicas são baseadas nesse conjunto 
generalizado de regras para permitir uma investigação exaustiva, em termos de 
confiabilidade e custos, de diferentes variações de técnicas. As regras definem como a 
técnica duplica o código e insere verificadores. Cada técnica usa um diferente conjunto 
de regras. Então, uma técnica de controle, chamada SETA, é introduzida. Comparando 
SETA com uma técnica estado-da-arte, SETA é 11.0% mais rápida e ocupa 10.3% menos 
posições de memória. As técnicas de dados mais promissoras são combinadas com a 
técnica de controle com o objetivo de proteger tanto os dados quanto o fluxo de controle 
da aplicação alvo. 

Para reduzir ainda mais os custos, métodos para aplicar seletivamente as técnicas 
propostas foram desenvolvidos. Para técnica de dados, em vez de proteger todos os 
registradores, somente um conjunto de registradores selecionados é protegido. O conjunto 
é selecionado com base em uma métrica que analisa o código e classifica os registradores 
por sua criticalidade. Para técnicas de controle, há duas abordagens: (1) remover 
verificadores de blocos básicos, e (2) seletivamente proteger blocos básicos. As técnicas 
e suas versões seletivas são avaliadas em termos de tempo de execução, tamanho do 
código, cobertura de falhas, e o Mean Work to Failure (MWTF), o qual é uma métrica 
que mede o compromisso entre cobertura de falhas e tempo de execução. Resultados 
mostram redução dos custos sem diminuição da cobertura de falhas, e para uma pequena 
redução na cobertura de falhas foi possível significativamente reduzir os custos. Por fim, 
uma vez que a avaliação de todas as possíveis combinações utilizando métodos seletivos 
toma muito tempo, este trabalho utiliza um método para extrapolar os resultados obtidos 
por simulação com o objetivo de encontrar os melhores parâmetros para a proteção 
seletiva e combinada de técnicas de dados e de controle que melhorem o compromisso 
entre confiabilidade e custos. 

Palavras-Chave: técnicas de tolerância a falhas em software, proteção seletiva, falhas 
transientes, soft errors, SEU, SET, processador, confiabilidade, tempo de execução, 
tamanho do código, consumo de energia, diminuição de custos. 



 

 

 



 

 

Técnicas Selectivas de Tolerancia a Fallos en Software con Gastos 
Generales Reducidos para Detectar Errores Causados por Fallos 

Transitorios en Procesadores 

RESUMEN 

La utilización de tecnicas de tolerancia a fallos en software és un método de bajo costo 
utilizado para la protección de procesadores contra soft errors. Sin embargo, causan el 
aumento en el tiempo de ejecución y la utilización de memoria. En consecuencia, el 
consumo de energia también aumenta. Sistemas que operan con restricción de tiempo o 
energia pueden quedarse imposibilitados de utilizar tales técnicas. Por lo tanto, este 
trabajo propone técnicas de tolerancia a fallos en software con reducción de gastos 
generales en desempeño y memoria; Además, incorpora la cobertura a fallos similar a 
técnicas de la literatura. Como detección és menos costosa que corrección, este trabajo se 
centra en técnicas de detección. 

Primeramente, un conjunto de técnicas de dados basadas en reglas de generalización, 
llamada VAR, és presentada. Las técnicas son baseadas en este conjunto generalizado de 
reglas para permitir una investigación exhaustiva, en termos de confiabilidad y gastos 
generales, de diferentes variaciones de técnicas. Las reglas definen como la técnica 
duplica el código y inserta verificadores. Cada técnica utiliza un conjunto diferente de 
reglas. Después, una técnica de control, llamada SETA, és introducida. Comparando 
SETA com una técnica del estado del arte, SETA és 11.0% más rápida y utiliza 10.3% 
menos posiciones de memoria. Las técnicas de dados más prometedoras son combinadas 
con la técnica de control con el objetivo de proteger tanto los dados como también el flujo 
de control de la aplicación. 

Posteriormente, fueron desarrollados métodos para aplicar selectivamente las técnicas 
propuestas. Para técnica de datos, en vez de proteger todos los registros, solamente un 
conjunto de registros és seleccionado y protegido. El conjunto és selecionado basado en 
una métrica que analiza el código y ordena los registros por su nivel crítico. Para técnicas 
de control, hay dos métodos: (1) remoción de verificadores de bloques básicos, y (2) 
selectivamente proteger bloques básicos. Las técnicas y sus versiones selectivas son 
evaluadas en términos de tiempo de ejecución, tamaño de código, cobertura de fallos, y 
por el Mean Work to Failure (MWTF), que és una métrica para medir el compromiso 
entre la cobertura de fallos y el tiempo de ejecución. Los resultados muestran una 
reduccíon de los gastos generales sin reducir la cobertura de fallos, y, también, realizando 
una pequeña reducción en la cobertura de fallos fue posible reduzir significativamente los 
gastos generales. Finalmente, la evaluación de todas las posibles combinaciones 
utilizando métodos selectivos requiere mucho tiempo, este trabajo utiliza un método para 
extrapolar los resultados obtenidos por simulación para encontrar los mejores parámetros 
para la protección selectiva y combinada de técnicas de datos y de control que mejoren el 
compromiso entre confiabilidad y gastos generales. 

Palabras-Clave: técnicas SIHFT, protección selectiva, fallos transientes, soft errors, 
SEU, SET, procesador, confiabilidad, tiempo de ejecución, tamaño de código, consumo 
de energía, reducción de gastos generales. 
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1 INTRODUCTION 

1.1 Motivation 

Aerospace applications use dozens to hundreds of processors (FERNANDEZ-LEON, 
2013), (ANTHONY, 2012), which are susceptible to transient faults caused by the 
radiation present in the operating environment (O'BRYAN, 2015). Furthermore, 
processors, as other integrated circuits, have significantly improved their performance in 
the last decades due to the advances in the semiconductor industry. Such advances have 
led to the fabrication of high-density integrated circuits (ICs). We are reaching the 
physical limits of a couple of atoms to form the transistor’s gate (KIM, 2003), 
(THOMPSON, 2005). On the other hand, the higher quantity of transistors per die 
combined with reduced voltage threshold and increased operating frequencies have made 
ICs more sensitive to transient faults caused by radiation (BAUMANN, 2001). 

Transient faults can be caused by energized particles present in space or secondary 
particles, such as alpha particles, generated by the interaction of neutron and materials at 
flight altitude or ground level (ITRS, 2005). The interaction with an off-state transistor’s 
drain in the PN junction may charge or discharge a node of the circuit. The consequence 
is a transient pulse in the circuit logic, also known as Single Event Effect (SEE). SEE can 
be potentially destructive, known as hard errors, or non-destructive, known as soft errors 
(O'BRYAN, 2015). In this work, we focus on soft errors. 

The consequence in circuits can be seen as a bit flip (alteration of logical value) in 
memory elements, known as Single Event Upset (SEU), or as a transient pulse in the 
combinational logic, known as Single Event Transient (SET), which can be captured by 
a memory element. With regards to processor, the consequence of such faults can be seen 
as an error affecting the control-flow of a running application, where an unexpected 
branch happens, or as an error affecting the data-flow, where the result of the computation 
is incorrect, even if the application runs until its end. 

In critical systems, errors are unaceptable. Since nowadays critical systems use dozens 
to hundreds of embedded processors, it is necessary to ensure reliability to these 
processors in order to provide reliability to the whole system. In this context, it is possible 
to use radiation hardened processors (RadHard processors). However, they present 
several limitations, such as: 

 Low processing speed: the operating frequency is significantly lower than 
commercial processors, as can be seen in Table 1.1 

 High energy consumption: the energy consumption per task is also higher, 
mainly because the RadHard processor needs considerably more time to 
perform it 
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 High price: the high cost of RadHard devices is becoming a determinant 
factor to support an increasing use of commercial devices, mainly in the less 
critical parts of a system (MCHALE, 2014). Besides, the necessity of extra 
hardware in aerospace applications has an additional cost, because the weight 
and the physical space that the device occupies are also important factors in 
this regard (E2V, 2015) 

 Commercial restrictions: another limitation for using RadHard processors 
that makes the search for other alternatives more interesting is the existence of 
restrictions for the commerce of RadHard devices, due to international trade 
regulations, such as ITAR (International Traffic in Arms Regulations), which 
makes impossible to many countries to buy many of these devices (CASTRO 
NETO, 2010). 

Table 1.1: Operating frequency and power of RadHard processors. 

Processor Frequency (MHz) Power (W) 

GR712RC Dual-Core 100 1.5 / core 

UT699 Single-Core 66 not available 

LEON3FT-RTAX 25 0.3 – 0.5 

Source: (COBHAM GAISLER AB, 2015) 

Commercial processors are an alternative for the use of RadHard processors. 
Furthermore, they present some advantages, such as: 

 More recent technology: commercial processors are developed with the most 
recent technology, which were still not used in RadHard processors 

 High processing speed: commercial processors operate in significantly higher 
frequencies, as shown in Table 1.2. It permits, for example, that much of the 
information be processed on board, before sending to Earth 

 Low power/energy: there are ultra-low-power models of commercial 
processors, as one can see in Table 1.2. In general, the energy consumption of 
commercial processors is lower due to their higher processing speed.  

 Low price: commercial processors are considerably cheaper, what makes their 
utilization very interesting to reduce costs. This approach could facilitate the 
developing and deployment of new systems that could not be developed due 
to high costs if RadHard devices were utilized.  

Table 1.2: Operating frequency, power, and price of commercial processors. 

Processor Frequency (MHz) Power (W) Price (USD) 

TMS320C6748  375-456  0.006 – 0.42  11 

ARM Cortex-A9  800 – 2000  0.5 – 1.9  33  

Intel I7 960  3200  130  414 

Sources: (TEXAS INSTRUMENTS, 2015), (ARM, 2015), (EBAY, 2015), (AMAZON, 
2015), and (WANG, 2011). 

On the other hand, commercial processors are more sensitive to radiation. Still, it is 
possible to use software-based fault tolerance techniques to provide reliability to 
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commercial processors (OH, 2002a), (AZAMBUJA, 2011a), (REIS, 2005b), 
(GOLOUBEVA, 2003), (VEMU, 2011). These techniques are also known in the literature 
as Software-Implemented Hardware Fault Tolerance (SIHFT) techniques 
(GOLOUBEVA, 2006). They modify the source code of a target application without 
modifying the underlying hardware. Therefore, they are applicable to commercial 
processors. Software-based fault tolerance techniques are capable of detecting a high 
amount of errors affecting the processors by the effect they cause in the program 
execution. 

Although software redundancy brings reliability to the system, it requires extra 
processing time, since more instructions are executed. As a consequence, the energy 
consumption is increased (YAO, 2013), (ASSAYAD, 2013). Furthermore, a reliable 
program will require more area in memory since software redundancy is inserted. The 
larger code size increases the probability of cache misses, which increases the number of 
accesses to the main memory and reduces the performance. Besides, the redundancy of 
load or store instructions also increases the number of memory accesses. All these extra 
memory transfers contribute to increase the power consumption (VOGELSANG, 2010), 
(LI, 2003). 

1.2 Objectives and contributions 

The aim of this thesis is to provide reliability to commercial processors, with a level 
of fault coverage similar to state-of-the-art SIHFT techniques, and a significant reduction 
of overheads in the execution time and memory. Thus, the application will run faster, 
occupy less space in memory, and, as a consequence, reduce the energy consumption. 
Furthermore, the faster an application runs, the lower is the probability that it is affected 
by a transient fault, simply by the fact that the application is executed in less time. 
Therefore, the application exposure to radiation is lower. Consequently, the reliability is 
higher. Also, a smaller code size reduces the probability of cache misses. 

The main objective of this work consists of reducing drastically overheads in the 
execution time and memory, keeping the fault coverage similar to state-of-the-art SIHFT 
techniques. In order to do so, three steps are proposed: (1) development of SIHFT 
techniques with lower overheads; (2) implementation of selective hardening methods 
using the proposed techniques to go further in the overhead reduction; and (3) proposition 
of a method to indicate the best parameters for selective hardening. A detailed list is 
presented bellow: 

1. Decomposition of SIHFT techniques in general building rules to allow an 
exhaustive assessment, in terms or reliability and overheads, of different 
technique variations. As a result, the proposal of new techniques specifically 
designed to combine the protection of both data and control-flow with lower 
overheads 

2. Implementation of selective methods for the proposed data-flow and control-
flow techniques. With regards to the data-flow techniques, the selectiveness is 
based on register selection, i.e., the most critical registers have higher priority 
to be protected. Concerning the control-flow technique, there are two methods 
for selectiveness: (a) removing checkers from the least critical basic blocks1, 

                                                 
1 A basic block is a branch-free sequence of instructions. This term is better discussed in 
the following chapters. 
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and (b) protecting only the most critical basic blocks, i.e., completely 
removing the protection of the least critical basic blocks 

3. Proposal of a method to guide the selective application of the SIHFT 
techniques in order to find in a shorter time better trade-offs between reliability 
and performance. A method that indicates the probable best parameters for the 
selective hardening methods discussed in this work. The goal of this item is to 
avoid the need for excessive fault tolerance tests. Thus, it is possible to select 
the recommended parameters. Fault tolerance tests may still be needed, but the 
number of required tests will be considerably reduced. 

All SIHFT techniques and selective methods will be evaluated regarding fault 
coverage, execution time, code size, and suitable metrics that provide the trade-off 
between reliability and overheads. 

Therefore, the main contributions of this thesis work are: 

 Improve the reliability of SIHFT techniques by reducing overheads and 
keeping similar fault coverage. Achievable with new proposed SIHFT 
techniques and complemented with existing and proposed selective hardening 
methodologies 

 Provide high reliability with very low overheads using the proposed SIHFT 
techniques with selective hardening methodologies. It allows the protection of 
applications with strict performance or energy constraints 

 Provide high reliability for applications with limited availability of resources 
for redundancy. Sometimes, there are no enough resources for applying 
entirely the SIHFT techniques. In such scenarios, the protection of more 
sensitive parts may increase significantly reliability. Therefore, it is important 
to identify and protect these parts 

 Propose a model that can guide designers to select how much protection is 
needed to reach one of the following parameters: 

o Maximum reliability 
o Minimum overhead for a specific fault coverage 
o Maximum reliability for a maximum overhead. 

1.3 Thesis organization 

Chapter II introduces some definitions and background knowledge necessary for the 
understanding of the thesis. Chapter III presents the related work. It shows the main 
SIFHT techniques and selective hardening methods. The fault injection methodology and 
the metrics used in this work to evaluate the results are exposed in Chapter IV. In Chapter 
V, one can see the proposed data-flow and control-flow techniques. Then, the selective 
hardening methods using the proposed techniques is introduced in Chapter VI. Chapter 
VI also includes a method to estimate the probable bet parameters for selective hardening 
methods. Finally, Chapter VII draws conclusions, discusses future work, and lists the 
publications. Additional information can be found in the appendices. 
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2 DEFINITIONS AND BACKGROUND KNOWLEDGE 

This chapter introduces the main definitions and background knowledge for the 
understanding of the thesis. It presents the sources of radiation and its effects on circuits 
and processors and shows some techniques to protect the processors against the radiation. 

2.1 Sources of ionizing radiation 

Ionizing radiation comes from solar flares, solar wind, and cosmic rays. In the 
interaction with Earth's magnetosphere, some ionizing particles are trapped. The Van 
Allen belts include two electron belts and one inner proton belt. The inner electron belt 
contains electrons with energy lower than 5 MeV, and the outer belt contains electrons 
with energy that may reach 7 MeV. Heavy ions may also be trapped in the magnetosphere 
(BOUDENOT, 2007). 

Cosmic rays entering the atmosphere may interact with the atoms and molecules 
present. This interaction produces a cascade of lighter particles (air shower) that includes 
x-rays, muons, protons, alpha particles, pion, electrons, and neutrons (MORRISON, 
2008), as shown in Fig. 2.1. Neutrons are typical particles produced in such events. 

 

Fig. 2.1: Source of ionizing radiation. 

According to the operating environment, there are different types of particles and 
different fluxes that may affect the integrated circuit: 
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 Space: heavy ions, protons, and electrons 
 Flight altitude: mainly neutrons 
 Sea level: neutrons. 

Each kind of particle may produce different effects on integrated circuits. Heavy ions 
produce direct ionization, while protons interact with matter producing nuclear reactions 
and secondary ionizations. Neutrons also interact with material producing secondary 
particles such as alpha particles and nuclear reactions.  

The transient faults are originated from the interaction of such energized or secondary 
particles with the silicon at the PN junctions of an off-state CMOS transistors. The 
electron-hole pair track formed by this interaction may charge or discharge that struck 
node producing a transient pulse.  The phenomena is known as Single Event Effect (SEE). 
SEE can be potentially destructive, known as hard errors, but generally they are non-
destructive, known as soft errors (O'BRYAN, 2015). This work focuses on soft errors. 

2.2 Non-destructive Single Event Effects 

According to the European Space Agency (ESA) (STURESSON, 2009), the main type 
of non-destructive SEEs are: 

 Single Event Upsets (SEU): an SEU is characterized when a transient fault 
affects a memory element, such as a memory cell or a register, changing the 
state of the element 

 Single Event Functional Interrupts (SEFI): it is an event that leads to 
temporal loss of device functionality. SEFIs are often induced from SEU in 
control registers. The system is recovered by reset or power cycle 

 Single Event Transients (SET): when the transient fault affects a gate of the 
combinational logic, creating a glitch, it is called Single Event Transient. SETs 
are becoming a major concern because the frequency is increasing (FERLET-
CAVROIS, 2005). 

Fig. 2.2 shows an example of an SEU and an SET. A particle hits a memory element, 
causing an SEU, changing the stored value from 0 to 1. The change of the memory 
element value is known as bit flip. Fortunately, the SEU in the example is masked by the 
NAND gate that follows the fault because the other NAND input is 0. If it were 1, then 
the output of the first NAND would be affected by the fault, and the error would 
propagate. Another particle hits an NOR gate causing an SET, temporarily changing the 
expected output from 1 to 0. In the example, the fault is not masked by any gate. 
Therefore, it propagates until a memory element. If the pulse hits a memory element 
during a clock event, a wrong value is stored in the memory element. 
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Fig. 2.2: SEU and SET in circuits. 

2.3 Fault, error, and failure 

Following the definitions presented by (AVIZIENIS, 2004), the concepts of fault, 
error, and failure can be understood as: 

 Fault: it is the logical effect of the particle hit. The fault effect is a bit flip in 
a memory element. Faults can lead to errors, or they can be masked by latch 
window, logical, or electrical properties. 

 Error: error is an active fault. It may propagate to the system output and 
causes a system failure. 

 Failure: a failure is defined as a system malfunction. It occurs when the 
system produces an incorrect output. 

It is important to notice that not all faults cause errors, and not all errors lead to 
failures. 

2.4 Soft errors in processors 

Soft errors affect processors by modifying values stored in memory elements (such as 
registers or data memory). They may lead the processor to incorrectly execute an 
application, producing a wrong output or even entering into a loop and never finishing 
the execution. They can affect the control-flow and the data-flow of a running application, 
as Fig. 2.3 shows. 
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Fig. 2.3: Effect of soft errors in processors. 

Data-flow error refers to soft errors caused by bit flips in storage devices, such as 
registers or memories. They affect the program output, but not its execution. When a fault 
affects the data-flow, the application runs normally, but the result, in the end, is incorrect. 
The data-flow errors are normally caused by: 

 Wrong operation: the bit flip modifies the instruction, and it performs another 
operation, which affects a memory element, such as a register or memory cell 

 Incorrect data: the bit flip affects directly a memory element that contains 
the data used by an operation. Since the operation input is wrong, it is likely 
that its output will also be wrong. The error may propagate to the program 
output. 

A control-flow error occurs when the program flow is incorrectly followed, i.e., the 
error changes the program execution. When a fault affects the control-flow, an erroneous 
execution flow occurs. The possible outcomes caused by the fault are: 

 Branch creation: a bit flip converts a non-branch instruction into a branch, 
and then this illegal branch changes the program flow to a wrong address 

 Branch deletion: a branch instruction is converted into another instruction. 
Thus, a branch is not taken when it should be 

 Incorrect branch decision: it happens when a branch that should go in one 
direction, based on a comparison, goes in the other direction, i.e., a branch is 
not taken when it should be, or when it is taken when it should not be 

 Incorrect target address: the bit flip modifies the register that contains the 
target address of a branch instruction (for example, the one used to return from 
a subroutine). It will change the program execution to an incorrect address 

 Bit flip in the PC register: it changes the next instruction to be executed. It 
has the same effect as branch creation. 

2.5 Fault tolerance techniques 

The use of fault tolerance techniques can provide reliability for processors against soft 
errors and significantly reduces the chances of an application being incorrectly executed. 
The techniques can detect, mask or correct errors. The ones detecting errors are less costly 
than the ones masking or correcting because less redundancy is added. Therefore, this 
work focuses on detection techniques. Once an error is detected, a restarting or rollback 
process can be performed. With regards to processors, there are two types of fault 
tolerance techniques: hardware-based techniques, which rely on replicating or adding 
hardware modules, and software-based techniques, which rely on the replication of 
information and instructions in the program code (UNSAL, 2002). 

2.5.1 Hardware-based fault tolerance techniques 

Hardware-based techniques are fault tolerant schemes based on hardware redundancy 
(PRADHAN, 1996). The redundancy can be applied at many different logic granularities. 
The Triple Modular Redundancy (TMR) is a well-known hardware-based fault tolerance 
technique. It triplicates the hardware and masks the error by voting the results in order to 
get the correct values. In some cases, the datapath and registers can be triplicated, which 
implies modifying the original processor design (PILOTTO, 2008). 
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The processors specially designed with hardware-based techniques in the internal 
architecture are used called RadHard processors. Examples of RadHard processors are 
Cobham LEON 3FT/4FT, Space Micro Proton200k SBC, etc. However, they are very 
expensive and are not high-end architectures, usually fabricated in old technologies. 
Another limitation for using RadHard processors is the restrictions on the commerce of 
RadHard devices, due to international trade regulations, such as ITAR (International 
Traffic in Arms Regulations), which makes impossible to many countries to buy many of 
these devices (CASTRO NETO, 2010). 

Other techniques use the processor as a black box by adding redundancy or extra 
hardware just outside the processor. One example is when the entire processor is 
triplicated, and just the outputs or memory values are voted, as, for instance, the Maxwell 
SCS750 (MAXWELL TECHNOLOGIES, 2015), Atmel SPARC V7 ERC32 and 
TSC695FL (GINOSAR, 2012). For only detecting an error, the Duplication With 
Comparison (DWC) technique (WAKERLY, 1978) can be used. After masking or 
detecting an error, the processor must restart or to recompute from a safe state step.  

Fig. 2.4 shows an example of a processor protected by a hardware-based technique. 
In the example, a copy processor, similar to the original, is utilized. The copy processor 
executes the same application of the original processor. A checker compares if the outputs 
of both processors match. If they do, the output is correct; otherwise, an error is reported. 

 

Fig. 2.4: Example of DWC hardware-based technique using a black box processors. 

Many modern multi-core processors have the lockstep capability. It means that 
different cores run the same program, which allows error detection (if dual modular 
redundancy) or correction (if triple modular redundancy). Examples of the processors 
implementing the lockstep capability are the ARM Cortex-R processors, which 
implement a dual modular redundancy. Detection is done in a short time, usually few 
clock cycles, and the process rollback to a previous correct saved state. The rollback 
requires additional memory for storage the previously executed commands. Furthermore, 
the time consumed on saving the current processor’s state for a future rollback is an 
important drawback (BELCASTRO, 2006). 

The hardware techniques can also be based on hardware monitoring devices, called 
watchdogs (MAHMOOD, 1988), to monitor specific information. Such devices monitor 
the control-flow and memory accesses of applications running on the target processor, 
such as (AZAMBUJA, 2011b), or the information provided by the processor through the 
debug port, for example, as in (DU, 2015). On the downside, the information that 
watchdogs can access may be limited. Some registers, buses, cache memories may not be 
accessible. That limits the use of watchdogs depending on the architecture of the target 
processor. 

Although the high reliability of hardware-based techniques, they introduce significant 
overheads, like an increase in area and power consumption. It can be critical for space 
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applications since they are supplied by batteries (REIS, 2005b). Furthermore, hardware-
based techniques present high design and manufacture costs (ASENSI, 2011). 

2.5.2 Software-based fault tolerance techniques 

Software-based techniques, also referred in the literature as SIHFT (Software-
Implemented Hardware Fault Tolerance) techniques (GOLOUBEVA, 2006), are an 
approach to protect processor-based systems against soft errors by modifying the program 
code, without having to modify the underlying hardware. They rely on adding instruction 
redundancy and comparison to detect errors, as exemplified in Fig 2.5. These techniques 
provide high flexibility and low development time and cost. In addition, they allow the 
use of commercial off-the-shelf (COTS) processors, since no modification of the 
hardware is necessary. That makes possible to use new generations of processors with no 
available equivalent RadHard. 

 

Fig. 2.5: Example of a SIHFT technique. 

As stated, there are two types of soft errors that affect processors: errors in the data-
flow and errors in the control-flow. In consequence, the software-based techniques 
present in the literature can be divided in two groups: control-flow techniques (OH, 
2002b), (MCFEARIN, 1995), (ALKHALIFA, 1999) and data-flow techniques 
(AZAMBUJA, 2011b), (OH, 2002a). The first group aims to detect faults affecting the 
data. In order to do so, such techniques duplicate registers used by the application. By 
duplicating the registers, it is possible to compare them by adding checking instructions. 
It is important to notice that every operation performed in a register must also be 
performed in its copy to keep consistency. The second group aims to detect illegal 
branches in the program execution by assigning a unique signature for each block of 
instructions. Then, these techniques assign the block signature to one register available 
during the execution. Checking instructions are inserted in the code to compare the 
signature register with the expected signature for that block. By doing so, it is possible to 
detect incorrect branches in the program execution. Finally, it is important to mention that 
there are techniques that aim at protecting against both data-flow and control-flow errors. 
These techniques combine characteristics of both data-flow and control-flow techniques 
with some optimizations (REBAUDENGO, 1999), (CHEYNET, 2000), (REIS, 2005b). 
Anyhow, they can be seen as a data-flow and a control-flow technique applied together. 
Details about data-flow and control-flow techniques are presented as follows. 

2.5.2.1 Data-flow techniques 

Data-flow techniques aim to detect faults affecting the data, i.e., the values stored in 
registers and the memory. In order to do so, such techniques duplicate, when detecting, 
and triplicate, when correcting, the registers used by the application. By duplicating 
registers, it is possible to detect data-flow errors by comparing a register with its replica. 
It is important to notice that every operation performed in a register must also be 
performed in its replica to keep the program consistent. Fig. 2.6 shows an example of a 
code hardened by a data-flow technique. On the left side, one can see the original code 
composed of five instructions, lines 1, 4, 9, 13, and 17. And the right side shows the same 
code hardened. Registers $12, $13, $14, and $15 are replicas of registers $2, $3, $4 and 
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$5, respectively. The duplicated instructions are presented at lines 2, 5, 10, and 14 
(formatted as italic). In this technique, checkers are inserted before stores and branches, 
checking the source registers, and after any other instruction, checking the destination 
register. Checkers are inserted at lines 3, 6, 7, 8, 11, 12, 15, and 16 (formatted as bold). 

original code hardened code

1: lw $2,0($4) 

 

 

4: sll $4,$2,1 

 

 

 

 

9: sw $2,0($3) 

 

 

 

13: sw $4,0($2) 

 

 

 

17: ble $4,$5,$L2 

1: lw $2,0($4) 

2: lw $12,offset($14) 
3: bne $2,$12,error 

4: sll $4,$2,1 

5: sll $14,$2,1 
6: bne $4,$12,error 

7: bne $2,$12,error 

8: bne $3,$13,error 

9: sw $2,0($3) 

10: sw $12, offset ($13) 
11: bne $4,$14,error 

12: bne $2,$12,error 

13: sw $4,0($2) 

14: sw $14, offset ($12) 
15: bne $4,$14,error 

16: bne $5,$15,error 

17: ble $4,$5,$L2 

Fig. 2.6: Example of a data-flow technique. 

It is possible to notice by the example that data-flow techniques introduce significant 
overheads. The overheads caused by data-flow techniques are higher than the ones caused 
by control-flow due to the duplication of data and instructions, and the insertions of 
checkers. Control-flow techniques only insert instructions to modify and check the value 
of signatures. If the application needs fault tolerance but has performance or energy 
constraints, data-flow techniques might not be applied. New data-flow techniques with 
reduced overheads are desirable in such scenarios. 

2.5.2.2 Control-flow Techniques 

Control-flow techniques aim to detect incorrect branches during the program 
execution. The code is divided into basic blocks (BBs), which are branch-free sequences 
of instructions with no branches into the basic block, except to the first instruction, and 
no branches out of the basic block, except possibly for the last instruction. Fig. 2.7(b) 
shows the basic blocks and the program flow of the code presented in Fig 2.7(a).  Calls 
to subroutines (jal), branches, and jumps are ends of basic blocks. Consequently, the 
following instruction is a beginning of another basic block. Labels indicate the beginning 
of basic blocks. Thus, the instruction before a label is the end of the previous basic block. 
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BB0 

main: 

    la $5,$LC0 

    lw $2,0($5) 

    lw $3,4($5) 

    jal function #$31<-C+4 

BB1 

    sw $4,8($5) 

    lw $2,12($5) 

    lw $3,16($5) 

    jal function 

BB2 
    sw $4,20($5) 

    … 

BB3 
function: 

    li $4,0 

BB4 

func_loop: 

    add $4,$4,$2 

    subu $3,$3,1 

    bgtz func_loop 

BB5     jr $31     #PC <- $31 

 

 

(a) (b) 

Fig. 2.7: Basic Blocks and program flow. 

These techniques usually assign a unique signature for each basic block and, 
sometimes, another protection to the program flow. The signature is assigned to an 
available register at the beginning of the basic block, and it is usually checked at the 
beginning or end of the basic block. By doing so, they are able to detect illegal branches 
in the program execution. 

The following chapter presents, in details, some of the state-of-the-art SIHFT 
techniques and selective hardening methods. They are important for a deep understanding 
SIHFT techniques and the contributions of this work. 
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3 RELATED WORK 

Software-based fault tolerance techniques, also referred in the literature as Software-
Implemented Hardware Fault Tolerance (SIHFT) techniques (GOLOUBEVA, 2006), are 
techniques implemented in software to protect processor against soft errors that may 
affect the program flow or the data stored in registers or memory. The techniques that 
aim to protect the data are called data-flow techniques, and the ones to protect the control-
flow are the control-flow techniques. There are also techniques that combine features of 
both data-flow and control-flow techniques. They consist of code transformation rules, 
and can be understood as a data-flow and control-flow technique applied together. 

Although software techniques bring reliability to processors, they cause performance 
and memory overheads, and, consequently, increase the energy consumption. To reduce 
those overheads, selective methods to protect processors, known as selective hardening, 
can be implemented. Their goal is to reduce the overheads with minimum impact in the 
protection. This chapter presents the state-of-the-art of data-flow techniques, control-flow 
techniques, techniques that combine features of data-flow and control-flow techniques, 
and methods for selective hardening. 

3.1 Data-flow techniques 

Data-flow techniques are designed to protect the data stored in registers or memory. 
These techniques replicate the variables, assigning copies to the original ones. When the 
aim is error detection, variables are duplicated, and when correction is desirable, variables 
are triplicated. Checkers are inserted in the code to compare variables with their copies. 
The points where checkers are inserted depends on the technique. Since error detection 
presents lower overheads than correction, due to duplication instead of triplication, this 
work focuses on that. Some data-flow techniques present in the literature are discussed 
below. 

3.1.1 EDDI 

EDDI (Error Detection by Duplicated Instructions) is a well-known data-flow 
technique proposed by (OH, 2002a). It duplicates all the information, i.e., all registers are 
duplicated, and all operations on the registers are also performed on the registers replicas. 
To ensure that the data is correct, instructions are inserted to compare the original register 
with its replica. If the values differ, an error is detected. The points where checkers are 
inserted by EDDI are: 

 Before storing a register value in memory: stores are the connection 
between the processed information and the memory. If an error occurs during 
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the computation, it will probably propagate to the output. Therefore, stores are 
a good point to check the consistency of the information 

 Before branch instructions: a misdirected branch can make the program 
execution skip stores, or execute incorrect stores. Besides, exiting a loop 
before or after its supposed exiting point can make the output incorrect. 

Fig. 3.1 shows how EDDI is applied. As one can see, the original instructions are 
presented at lines 1, 3, and 8 (formatted as normal text). Their replicas are at lines 2, 4, 
and 9, respectively (formatted as italic). Instructions accessing the memory present an 
offset to duplicate the values in memory. The replicas of the registers r11, r12, and r13 
are the registers r21, r22, and r23, respectively. Instructions to compare the registers used 
by the store at line 8 are inserted at lines 5 and 6. If an error is detected, the branch at line 
7 is taken. The checking instructions are formatted as bold. 

original code EDDI code

1: ld r12=[GLOBAL] 

 

1: ld r12=[GLOBAL] 

2: ld r22=[GLOBAL+offset] 

3: add r11=r12, r13 

 

3: add r11=r12,r13 

4: add r21=r22,r23 

 

 

 

8: st m[r11]=r12 

 

5: cmp.neq.unc p1,p0=r11,r21 

6: cmp.neq.or p1,p0=r12,r22 

7: (p1) br faultDetected 

8: st m[r11]=r12 

9: st m[r21+offset]=r22 

Fig. 3.1: EDDI technique (REIS, 2005b). 

3.1.2 Variables 1 

Variables 1 (VAR1) is a data-flow technique proposed by (AZAMBUJA, 2011a). It 
is based on (CHEYNET, 2000) rules that aim to protect the data. These rules are 
implemented in a high-level language. On the other hand, VAR1 is implemented in the 
assembly code. Therefore, the variables are replaced by registers. VAR1 proposes rules 
aiming at detecting faults affecting the data. Such rules are presented below; they 
comprise of instruction replication and insertion of checkers to detect incorrect values. 

 Rule 1: every variable used in the program must be duplicated 

 Rule 2: every write operation performed on a variable must be performed on its 
replica 

 Rule 3: before each read on a variable, its value and the value of its replica must 
be checked for consistency. 

Fig. 3.2 shows an example of how VAR1 rules are applied. The original code is 
presented on the left side, and the protected one is on the right side. The duplications are 
showed at lines 3, 7, and 11 (formatted as italic), and checkers at lines 1, 4, 5, 8, and 9 
(formatted as bold). The checker at line 1 checks the base address register of the load 
operation with its replica. Checkers at lines 4 and 5 are related to the add instruction at 
line 6. Finally, the checkers at lines 8 and 9 check the registers used by the store operation 
at line 10. 
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original code VAR1 code

 

2: ld r1, [r4] 

 

1: bne, r4, r4', error 

2: ld r1, [r4] 

3: ld r1', [r4' + offset] 

 

 

6: add r1, r2, r4 

 

4: bne r2, r2', error 

5: bne r4, r4', error 

6: add r1, r2, r4 

7: add r1', r2', r4' 

 

 

10: st [r1], r2 

 

8: bne r1, r1', error 

9: bne r2, r2', error 

10: st [r1], r2 

11: st [r1' + offset], r2' 

Fig. 3.2: VAR1 technique (AZAMBUJA, 2011a). 

3.1.3 Variables 2 

Variables 2 (VAR2) is an alternative data-flow technique, proposed by (AZAMBUJA, 
2011a), that aims at reducing the overheads imposed by VAR1. The technique uses VAR1 
rules 1 and 2, but it changes the way checkers are inserted in order to reduce the number 
of extra instructions. Based on that, it is expected to reduce the execution time overhead. 
Instead of checking the variables before read them, VAR2 checks the variables after 
writing a new information on them. VAR2 is also implemented in assembly level. Thus, 
the references to variables should be understood as references to registers. In instructions 
where there no new value is assigned to any variable (stores, for example), it is 
implemented the same checking approach of VAR1, i.e., the variables are checked before 
they are read. The rules are stated as: 

 Rule 1: every variable used in the program must be duplicated 

 Rule 2: every write operation performed on a variable must be performed on its 
replica 

 Rule 3: after each write on a variable, its value and the value of its replica must 
be checked for consistency. If no value is assigned to a variable in the instruction, 
the checking is performed before reading the variable. 

Fig. 3.3 shows how VAR2 is implemented. Duplications are inserted at lines 2, 5, and 
10 (formatted as italic). Checkers are presented at lines 3, 6, 7, and 8 (formatted as bold). 
The checkers, at lines 3 and 6, check after a write operation on r1, and the ones at lines 7 
and 8 perform checkings before reading the registers in the store instruction (line 9). 
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original code VAR2 code

1: ld r1, [r4] 

 

 

1: ld r1, [r4] 

2: ld r1', [r4' + offset] 

3: bne, r1, r1', error 

4: add r1, r2, r4 

 

 

4: add r1, r2, r4 

5: add r1', r2', r4' 

6: bne r1, r1', error 

 

 

9: st [r1], r2 

7: bne r1, r1', error 

8: bne r2, r2', error 

9: st [r1], r2 

10: st [r1' + offset], r2' 

Fig. 3.3: VAR2 technique (AZAMBUJA, 2011a). 

3.1.4 Variables 3 

Variables 3 (VAR3) is a technique proposed by (AZAMBUJA, 2011a) that aims to 
reduce the overheads of VAR1. It considers that inconsistency between the duplicated 
variable only needs to be checked before reading or writing data to memory, and before 
branches. The rules for VAR3 technique are: 

 Rule 1: every variable used in the program must be duplicated 

 Rule 2: every write operation performed on a variable must be performed on its 
replica 

 Rule 3: before each read on a variable by loads, stores or branches, its value and 
the value of its replica must be checked for consistency. 

Fig. 3.4 presents an example of VAR3. The original code is shown on the left side, 
and the one protected by VAR3 is presented on the right side. Firstly, the instructions are 
duplicated. The duplications can be seen at lines 3, 5, and 9 (formatted as italic). The way 
VAR3 duplicates the code is the same of VAR1. Checkings are also performed before 
reads on variables, but not in all operations. Checkers are not inserted for arithmetic 
instructions. They are inserted at lines 1, 6, and 7, and are related to a load and a store 
instruction. VAR3 presents significant overhead reduction when compared to VAR1 or 
VAR2. 

original code VAR3 code

 

2: ld r1, [r4] 

 

1: bne, r4, r4', error 

2: ld r1, [r4] 

3: ld r1', [r4' + offset] 

4: add r1, r2, r4 

 

4: add r1, r2, r4 

5: add r1', r2', r4' 

 

 

8: st [r1], r2 

 

6: bne r1, r1', error 

7: bne r2, r2', error 

8: st [r1], r2 

9: st [r1' + offset], r2' 

Fig. 3.4: VAR3 technique (AZAMBUJA, 2011a). 
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3.1.5 Drawbacks of data-flow techniques 

The data-flow techniques duplicate the data and instructions in the code. Replicas are 
assigned to the registers used by the application. The main difference among these 
techniques consists of the location where checkers are inserted. Table 3.1 shows the 
average execution time, code size, and data error detection rate for tests with the state-of-
the-art data-flow techniques using a set of applications2 running on the miniMIPS 
processor3 (HANGOUT, 2009). As one can see, the execution time varies from 1.63x 
(EDDI) to 2.54x (VAR2), and the code size ranges from 1.73x (EDDI) to 2.48x (VAR2). 
The percentage of errors affecting the data-flow detected goes from 91.7% (EDDI) to 
96.3% (VAR2). One can notice that the current data-flow techniques detect most of the 
errors affecting the data-flow. However, the overheads they imply to the application are 
high. New approaches to reduce such overheads are necessary. 

Table 3.1: State-of-the-art data-flow techniques 

technique execution time code size data error detection 

EDDI 1.63x 1.73x 91.7% 

VAR1 2.42x 2.35x 96.1% 

VAR2 2.54x 2.48x 96.3% 

VAR3 1.83x 1.90x 95.3% 

3.2 Control-flow techniques 

Control-flow techniques are designed to protect the program flow, i.e., to protect 
against incorrect branches. Such techniques divide the code into basic blocks. A basic 
block (BB) is a branch-free sequence of instructions, i.e., a portion of code that is always 
executed in sequence. There only can be a branch instruction at the end of the basic block. 
Furthermore, there are no branches to the basic block, except, possibly, to the first 
instruction. For each basic block, a signature is assigned. The signature is attributed to a 
global register at the beginning of the basic block. Checkers are inserted into the code to 
verify if the signature register contains the expected value. If it does not, it means there 
was an incorrect branch and an error is reported. The main control-flow techniques 
present in the literature are described below. 

3.2.1 CCA 

McFearin (1995) proposed a control-flow technique called Control-Flow Checking 
Using Assertions (CCA). CCA divides the code into basic blocks, referred by them as 
Branch Free Interval (BFI), and assigns two identifiers for each basic block, the Branch 
Free Interval Identifier (BID) and the Control Flow Identifier (CFID). CCA requires 
three registers to be implemented, one for BID and two for CFID. BID represents the BB, 
and it has a unique value for each BB. The BB’s BID is attributed to the BID register at 
the beginning of the basic block and checked at the end. CFID is used to check if the BBs 
are executed in the correct order. It indicates the possible next BBs. CFID works with two 

                                                 
2 The set of applications consists of bubble sort, Dijkstra's algorithm, matrix 
multiplication, run-length encoding, summation, TETRA encryption algorithm. Details 
about them in the appendix C. 
3 More details about the miniMIPS processor in the appendix B.1. 
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queue elements, and that is why it requires two registers. At the beginning of the program 
execution, the queue contains only the CFID of the first BB. When it enters in a BB, the 
next BB’s CFID is enqueued. And before exiting the basic block, the queue is dequeued, 
and the dequeued element is checked with the expected CFID. Fig. 3.5 summarizes the 
explained above. It is important to notice that BBs B and C share a common parent; 
therefore, they have the same CFID. A control-flow error is detected for any of the 
following cases: 

 The BID register differs from the BB’s BID: an illegal branch has occurred 
from the previous BB to the middle of the current one. It will be detected at 
the end of the current basic block 

 Trying to enqueue when the queue is full: it happens due to an illegal branch 
from the middle of the previous BB to the beginning of the current one 

 Trying to dequeue an empty queue: an illegal branch from the end of the 
previous BB to the middle of the current BB 

 The dequeued CFID differs from the expected one: it means there was a 
branch to another BB, different from the expected ones. 

 

Fig. 3.5: Example of CCA technique (ALKHALIFA, 1999). 

CCA can detect most control-flow errors, but it cannot detect errors affecting the 
branches used as checkers by the technique. Furthermore, when two parents have a 
common child, all the children have the same CFID. For example, if parent A has C and 
D as children, and parent B has D and E as children, all C, D, and E, have the same CFID. 
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So if an illegal branch occurs, from A to E or from B to C, it will not be detected. Besides, 
CCA presents high overheads. Instructions to enqueue, dequeue, check the queue 
integrity, check the CFID, assign and check the BID, are quite costing. Actually, it could 
also increase the probability of error due to the increased program size (ALKHALIFA, 
1999). 

3.2.2 ECCA 

Enhanced Control-flow Checking Using Assertions (ECCA) is the successor of CCA 
(ALKHALIFA, 1999). It divides the code into blocks that are collections of consecutive 
basic blocks with a single entry and exit. A unique prime number is assigned for each 
block as the block identifier (BID). At the beginning of the block, a global variable id is 
updated using the following equation: 

Eq.	3.1 	 ←
∙ 2

 And, at the end of the block, the variable is updated using the equation below. The 
NEXT component of the equation is the product of all possible subsequent blocks. 

Eq.	3.2 	 ←

ECCA combines the CCA’s BID and CFID in one signature. Although ECCA seems 
to present lower overheads, the equations to update id are quite complex, and they are 
implemented using several instructions at the assembly level. 

3.2.3 CFCSS 

Oh (2002b) proposed Control-flow Checking by Software Signatures (CFCSS). It is a 
control-flow technique that updates signature register G at runtime. Firstly, the program 
is divided into basic blocks, and for each basic block, a random signature is assigned. 
When the execution pass from one BB (let us call BB1) to another BB (let us call BB2), 
a new G is generated based on an XOR function f that uses the signatures of the BB1 and 
BB2, as shown in Eq. 3.3: 

Eq.	3.3 	 ≡ , ⊕

where G is the signature register that, at first, contains the BB1’s signature, and dd is a 
value to update G to the new signature (the BB2’s signature). The dd, defined in Eq. 3.4, 
is given by the XOR operation between the signatures of BB1 (ss) and BB2 (sd): 

Eq.	3.4 	 ⊕

If a branch is correctly taken, G is updated to the correct signature. In Fig. 3.6, during 
the execution of BB1, G is equal to signature s1. It is updated to s2 when entering BB2 by 
using Eq. 3.3. If an illegal branch from BB1 to BB4 occurs, G is updated to an incorrect 
value. To detect errors, branches to check G with the expected signature are placed at the 
beginning of the basic block, right after updating G. 
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Fig. 3.6: Signature update during correct and illegal branch. 

The presented method can detect most control-flow errors. However, when a basic 
block has more than one predecessor, the predecessors’ signatures must be the same so G 
can be correctly updated to the new signature in any case. If this method is used, the same 
problem that occurs with CCA can happen with CFCSS, i.e., if BB1 and BB2 share a 
common successor (BB4), and each one has an independent successor (BB3 and BB5, 
respectively), as shown in Fig 3.7, an illegal branch from BB1 to BB5, or from BB2 to 
BB3, cannot be detected. 

 

Fig. 3.7: Basic blocks sharing a common successor. 

To avoid this problem, a runtime adjusting signature D is used. After G is transformed 
by Eq. 3.3 at the beginning of BB4, G is also updated by an XOR operation between the 
just transformed G and D. The value of D is defined in the predecessors BBs. Fig. 3.8 
illustrates how D is used. The d4 is calculated using Eq. 3.4, where ss is randomly picked 
among the predecessors. In the example, d4 = s1 � s4. For this reason, D is set to zero in 
BB1 because G has the correct signature after the first update. On the other hand, D, in 
BB2, needs to be set to s1 � s2. Thus, G has the correct value after the two updates: G = 
(G � d4) � D = (s2 �	s1	�	s4 	�	 s1	�	s2 	 	s4.	The	not	shared	successors	do	not	need	
to	use	D.	In	this	case,	G	can	be	updated	using	only	Eq.	3.3.	 
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Fig. 3.8: Update of D when BBs share a successor. 

Although that the introduction of the runtime adjusting signature solve the problem 
cited above, the same problem can still happen if multiple basic blocks share multiple 
successors, as shown in Fig. 3.9. BB5 has three predecessors, BB1, BB2, and BB3, and 
BB6 has two predecessors, BB2 and BB3. Since there is only one runtime adjusting 
signature D, both BB5 and BB6 have to use the same value for D. Thus, if D is calculated 
for BB5, BB6 has to use the same D to update G. Thus, if an illegal branch occurs from 
BB1 to BB6, it will not be detected. 

 

Fig. 3.9: Undetected illegal branch. 

3.2.4 YACCA 

Goloubeva (2003) introduced a new control-flow technique called YACCA, acronym 
for Yet Another Control-Flow Checking using Assertions. The code is divided into basic 
blocks, and a unique signature is assigned for each basic block. Like ECCA, a global 
variable is updated at the beginning and end of the basic blocks. At the beginning, the 
global variable is used to control if the transition from previous basic block to the current 
one is valid. And at the end, the global variable is updated to the BB’s signature. However, 
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unlike ECCA the basic block transitions are not controlled by checking if the current BB 
signature is multiple of the previous ones. Actually, it checks if the global variable 
contains the signature of a predecessor BB. In order to avoid adding multiple checkers 
for each basic block since a basic block can have many predecessors, a global variable 
ERR_CODE is defined as follows: 

Eq.	3.5 	 ERR_CODE = (code != BB1) &&(code != BB2) && (...) && (code != 
BBN)

where BB1, BB2, ..., BBN are the signatures of the previous basic blocks, and code is the 
global variable that contains the current signature. If ERR_CODE is 1, an incorrect 
transition has occurred. 

The equation to update the global variable code is presented below (Eq. 3.6). M1 
represents a constant defined only by the signatures of the previous basic blocks. And M2 
is a constant based on the previous BBs’ signatures further the current BB signature. This 
method avoids the aliasing effect presented by CFCSS when multiple BBs share multiple 
previous BBs. Furthermore, the runtime adjusting signature is not necessary. 

Eq.	3.6 	 code = (code & M1) � M2 

In addition, another rule proposed by Rebaudengo (1999) integrated to the technique. 
It aims at detecting incorrect decisions of conditional branches. For this, the branch 
instruction is repeated at the beginning of both target basic blocks to detect if the same 
test produces different results, which means that an error has occurred. This method is 
better discussed in section 2.3.1 with the original technique. 

YACCA is capable of detecting most of the faults affecting the control-flow. 
Furthermore, it avoids the aliasing presented by CFCSS when multiple basic blocks share 
multiple predecessors. However, the technique present a high overhead in performance, 
mainly due to the method to detect erroneous transitions between basic blocks. It requires 
as many instructions as the number of predecessors the basic block has to determine 
ERR_CODE, besides another instruction to check the ERR_CODE value. 

3.2.5 CEDA 

Control flow Error Detection through Assertions (CEDA) is an efficient control-flow 
technique (VEMU, 2011). It divides the code into basic blocks. For each BB, two 
signatures are assigned. One is the basic block’s signature, called Node Signature (NS), 
and the other is a transition signature, called Node Exit Signature (NES). Only one 
signature register S is necessary for implementing CEDA. At the beginning of the basic 
block, S is updated to the BB's NS and at the end, before exiting the BB, S is updated to 
the BB's NES. The basic blocks are classified in two types: A and X, which are used to 
define the operation to update S to the BB's NS. A basic block is of type A if it has multiple 
predecessors and at least one of its predecessors has multiple successors. Otherwise, the 
basic block is of type X. The possible equations to update S when entering in a BB are: 

Eq.	3.7 	 S = S AND d1(BBi), if BBi is of type A 

Eq.	3.8 	 S = S XOR d1(BBi), if BBi is of type X 

where BBi is the current basic block, and d1 is a constant to update S to the current NS. 
The equation to update S to NES, before exiting the BB, is presented bellow. The constant 
d2 is used for this. 

Eq.	3.9 	 S = S XOR d2(BBi) 
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Furthermore, the same rule proposed by Rebaudengo (1999), and used by YACCA, 
is implemented in CEDA. It aims at detecting incorrect decision of conditional branches. 
The branches are retested at both true and false destinations. However, CEDA does not 
implement it to the basic blocks that have multiple predecessors. 

There is a new concept introduced in CEDA, the networks. A network is a set of basic 
blocks that share a common predecessor. Each basic block belongs to one and only one 
network. And the network predecessors are the predecessor basic blocks of a network. It 
is a group composed of all the basic blocks that are predecessors of any basic block of a 
network. Furthermore, there is the related signature set, which is a set containing all the 
BBs’ NES of the network predecessors, plus the NS of the BBs of type A in the current 
network. 

The signatures in CEDA are divided into upper and lower half. The upper half of NS 
and NES are related to the network. For each network, the signatures contained in the 
related signatures set have the upper half assigned the same unique value. The remaining 
NS and NES have a unique and independent value assigned to their upper halves. The 
upper half signature is never masked, so it can detect any illegal branch, except for those 
between basic blocks belonging to the same related signature set. In order to detect such 
errors, the lower half is used, and it is assigned based on the following rules, considering 
the signatures as binary numbers: 

 Since signatures in the same related signature set have the same upper half, 
the lower half cannot be equal, with exception of the NES signatures that 
belong to basic blocks that share a common successor of type X. In these cases, 
the entire signature (upper and lower half) must be equal 

 Let set of zeros of a signature be all the zeros in the lower half. The positions 
of the zeros must also be taken into account. Considering BB1 as a basic block 
of type A, and BB2 as being a predecessor of BB1, the set of zeros of BB2's 
NES must be contained in the set of zeros of BB1's NS, but they cannot be 
equal. It makes possible the transition from BB2 to BB1 since the set of zeros 
of BB1's NS is masked by the AND operation from Eq. 3.7 

 Considering BB1 as a basic block of type A that belongs to a network Net, and 
BB2 a basic block that is not a predecessor of BB1, but that belongs to the 
network predecessors of Net. The set of zeros of BB2's NES cannot be 
contained in the set of zeros of BB1's NS. Thus, an illegal branch to the 
beginning of a basic block of type A (from BB2 to BB1) will not be masked. 

CEDA is an efficient control-flow technique when compared to previous control-flow 
techniques because it presents error detection rates similar to YACCA and performance 
overhead similar to CFCSS. However, when a program has many small basic blocks, i.e., 
basic blocks with just a few instructions, the overhead introduced by CEDA is high. 

3.2.6 HETA 

HETA, acronym for Hybrid Error-Detection Technique Using Assertions, is a hybrid 
control-flow technique that mixes SIHFT techniques and hardware techniques 
(AZAMBUJA, 2013). The software part of HETA is based on CEDA. It also classifies 
basic blocks into types A and X and add them to networks. But instead of using two 
signatures, HETA uses three signatures: 

 Node Ingress Signature (NIS): a signature for entering the basic block 
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 Node Signature (NS): the basic block signature. It is defined by XOR 
operations of all instructions contained in the basic block and the memory 
address of its first instruction 

 Node Exit Signature (NES): a signature for exiting the basic block. 

The aim of NIS and NES is to detect illegal branches between different basic blocks. 
It follows the same idea of CEDA. The NS is used to detect illegal branches inside a basic 
block. A global predetermined register S is used to store the current signature. The update 
of S from NIS to NS and from NS to NES follows the equation 2.10. The invariant is a 
constant necessary to update S to its next value. 

Eq.	3.10 	 S = S XOR invariant(BBi) 

To update S from NES to NIS, the possible equations are: 

Eq.	3.11 	 S = S AND invariant(BBi), if BBi is of type A 

Eq.	3.12 	 S = S XOR invariant (BBi), if BBi is of type X 

When the basic block is of type X, NIS and NS can be combined for optimization 
because the updating of S to NS is subsequent to its updating to NIS. 

Another novelty of HETA is related to the upper and lower halves of the signatures. 
HETA reserves the maximum number of bits to the lower half, i.e., the upper half, which 
is related to the networks, receives the minimum number of bits possible, 
log2(#networks). Thus, the probability of bits being masked is lower since the upper half 
is never masked and there are more bits to represent the lower half. 

The NS cannot detect illegal branches inside a basic block by itself only. It needs 
assistance of a watchdog. The watchdog reads the memory address and data buses. When 
a basic block starts, the internal register W of the watchdog is reset. The beginning of the 
basic block is determined by the watchdog using the XOR operation that updates S. 
Register W is updated by performing XOR operation on the instructions coming from the 
memory. Checkers to determine if S contains the correct value are done by performing 
store operations of S to a predetermined memory address. The watchdog compares if S 
and W have different values to determine if an error has occurred.  Illegal branches inside 
of a basic block would also be detected because, in such cases, the watchdog would 
perform XOR operation on some instructions twice, or it would just skip some 
instructions, which would result in a W different from S. 

Furthermore, the rule proposed by Rebaudengo (1999) to detect incorrect decisions in 
conditional branches, which is implemented by CEDA, is not implemented by HETA. 
Azambuja implements it in a particular technique called Inverted Branches 
(AZAMBUJA, 2011c). Anyhow, the author proposes the use of both techniques together 
to improve the protection of the control-flow. 

HETA presents very high detection rates. It is even capable of detecting illegal 
branches inside a basic block due to the help of a watchdog. Such errors are impossible 
to be detected by software-only techniques. However, the use of an extra signature 
increases the performance and memory overheads, when compared to CEDA, because it 
needs an extra instruction to update S in every basic block of type A. The power 
consumption is increased due to the additional hardware. Also, the additional hardware 
affects the portability of the technique to various platforms (GOLOUBEVA, 2003). And, 
as the author stated, the watchdog needs access to the memory buses. Some processors 
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that use on-chip embedded cache memories may not be accessible by the watchdog. It 
would make impossible the implementation of this technique. 

3.2.7 Drawbacks of control-flow techniques 

Control-flow techniques assign signatures and checkers to basic blocks. The main 
difference among these techniques is the way the signatures are attributed and updated. 
Table 3.2 shows the overheads for CFCC, ECCA, and YACCA. One can notice that 
ECCA presents significant higher overheads when compared to CFCSS and YACCA. 

Table 3.2: Overheads of CFCSS, ECCA and YACCA. 

Program 
Code size Execution time 

CFCSS ECCA YACCA CFCSS ECCA YACCA

Matrix multiplication 

5th order elliptical wave filter

Kalman filter 

LZW data compression 

2.61x 

1.24x 

1.64x 

3.38x 

4.08x

1.53x

2.82x

6.30x

1.91x 

1.29x 

2.17x 

4.96x 

1.35x 

1.07x 

1.17x 

1.85x 

1.99x 

1.20x 

1.68x 

4.26x 

1.47x 

1.10x 

1.56x 

3.54x 

Source: (GOLOUBEVA, 2003). 

Vemu (2011) compared CEDA with CFCSS and YACCA. Only three types of 
control-flow faults were injected: (1) branch deletion, jump instruction was replaced by 
nop instruction, (2) branch creation, the value in the PC corresponding to any instruction 
was corrupted, and (3) corrupting the target address of branch instruction. As can be 
noticed, CFCSS and CEDA present the lower performance overhead, and YACCA and 
CEDA present lower percentage of undetected faults. Thus, CEDA is the best state-of-
the-art software-only control-flow technique. 

Table 3.3: Percentage of undetected faults (%UF) and performance overhead (%PO) for 
CFCSS, YACCA, and CEDA. 

Benchmarks 
CFCSS YACCA CEDA 

%UF %PO %UF %PO %UF %PO 

parser 

gzip 

ammp 

twolf 

equake 

4.6 

3.4 

4.7 

2.8 

2.8 

14.36

57.7 

4.45 

7.5 

18.81

1.0 

0.7 

0.3 

0.6 

0.5 

33.9 

84.32

78.97

39.8 

33.9

1.1 

0.6 

0.2 

0.6 

0.5 

13.79 

57.8

3.15

9.8 

17.9

Source: (VEMU, 2011). 

The overheads presented by control-flow techniques are lower than the ones presented 
by data-flow techniques. However, there is still room to reduce such overheads. 
Furthermore, the use of selective hardening is not well explored in control-flow 
techniques. 

3.3 Combined data-flow and control-flow techniques 

Some SIHFT techniques combine characteristic of both data-flow and control-flow 
techniques. Usually, such techniques are composed of transformation rules. Part of these 
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rules aim at protecting the control-flow, and the other part aim at protecting the data-flow. 
The combined data and control-flow techniques can be understood as an independent 
data-flow technique and an independent control-flow technique applied together. Some 
optimizations are possible when the protection of both techniques overlaps. In the 
following subsections, some combined data-flow and control-flow techniques are 
presented. 

3.3.1 Transformation rules by Rebaudengo 

Transformation rules in a high-level language have been proposed by Rebaudengo 
(1999), and, lately, implemented by Cheynet (2000). They consist of rules that modify 
the program code, introducing data and code redundancy. Since the rules are applied in 
the high-level code, they are independent of the processor architecture. However, the 
compiler optimization flags have to be disabled to avoid that the redundant code, inserted 
by the technique, is removed by the compiler. 

The first three rules of Rebaudengo aim at protecting the data. They consist of 
duplicating the variables and inserting checkers right after the variables are read. The 
rules are: 

 Rule #1: every variable x must be duplicated: let x1 and x2 be the names of the 
two copies 

 Rule #2: every write operation performed on x must be performed on x1 and x2 

 Rule #3: after each read operation on x, the two copies x1 and x2 must be checked 
for consistency, and an error detection procedure should be activated if an 
inconsistency is detected. 

Fig. 3.10 shows an example of how these rules are applied. The original code is 
presented at left, and the code modified by the rules is presented at right. The original 
instructions can be seen at lines 1 and 4. The replicas are showed at lines 2 and 5. Checkers 
are inserted after the variables are read, at lines 3 and 6. These rules are the same of 
VAR1, but in this case, they are implemented in a high-level language. The same rules 
discussed above must be applied to the parameters passed to a procedure. Fig. 3.11 shows 
an example of it. The return value is also duplicated. To do so, the return variable and its 
copy are passed as reference to the procedure. 

original code modified code

1: a = b; 

 

 

1: a1 = b1; 

2: a2 = b2; 

3: if (b1 != b2) error(); 

4: a = b + c; 

 

 

4: a1 = b1 + c1; 

5: a2 = b2 + c2; 

6: if ((b1 != b2) || (c1 != c2)) error(); 

Fig. 3.10: Transformation rules by Rebaudengo to protect the data. 
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original code modified code

res = search(a); 

... 

int search (int p) 

{ 

int q; 

... 

q = p + 1; 

... 

return(1); 

} 

search(a1, a2, &res1, &res2); 

... 

int search (int p1, int p2, 
int *r1, int *r2) 

{ 

int q1, q2; 

... 

q1 = p1 + 1; 

q2 = p2 + 1; 

if (p1 != p2) error(); 

... 

*r1 = 1; 

*r2 = 1; 

return; 

} 

Fig. 3.11: Transformation rules by Rebaudengo to protect the data in procedures. 

Other five rules have been proposed to protect the control-flow. Firstly, the code is 
divided into basic blocks. Then the following rules are inserted to check if all the 
instructions in a basic block were all executed in sequence. 

 Rule #4: an integer value ki is associated with every basic block i in the code 

 Rule #5: a global execution check flag (ecf) variable is defined; a statement 
assigning to ecf the value of ki is introduced at the very beginning of every basic 
block i; a test on the value of ecf is also introduced at the end of the basic block. 

Fig. 3.12 provides an example of how rules #4 and #5 are applied. If there is an illegal 
branch from one basic block to another, the different ecf value will signalize the error. 
However, if the illegal branch goes to the beginning of the other basic block, to exactly 
the instruction that assigns the signature, the error will not be detected. 

original code modified code 

/* basic block beginning */ 

 

... 

 

/* basic block end */ 

/* basic block beginning #371 */ 

ecf = 371; 

... 

If (ecf != 371) error(); 

/*basic block end */ 

Fig. 3.12: Transformation rules by Rebaudengo to protect the control-flow. 

Furthermore, to detect errors affecting the branch decisions, which cannot be detected 
by signatures, another rule is proposed: 

 Rule #6: for every test statement the test is repeated at the beginning of the target 
basic block of both the true and false clauses. If the two versions of the test 
produce different results, an error is signaled. 
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An example of how rule #6 is applied to the code can be seen in Fig. 3.13. At the 
beginning of each basic block, a condition opposite to the valid one is inserted to check 
if the branch was correctly taken. 

original code modified code

if (condition) 

{ 

/* BB 1 */ 

... 

} 

else 

{ 

/* BB 2 */ 

... 

} 

if (condition) 

{ 

/* BB 1 */ 

if (!condition) error(); 

... 

} 

else 

{ 

/* BB 2 */ 

if (condition) error(); 

... 

} 

Fig. 3.13: Transformation rules by Rebaudengo to protect branch decisions. 

The last two rules are used to protect procedures against control-flow errors. Such 
rules are presented as follows: 

 Rule #7: an integer value kj is associated with any procedure j in the code 

 Rule #8: immediately before every procedure return statement, the value kj is 
assigned to ecf; a test of ecf is also introduced after any call to the procedure. 

These rules detect illegal branches to a procedure, erroneous target address of the 
function calls, and errors affecting the register that contains the return address. An 
example of rules #7 and #8 is presented in Fig. 3.14. 

original code modified code 

... 

ret = my_proc(a); 

/* procedure call */ 

... 

 

/* procedure definition */ 

int my_proc(int a) 

{ 

/* procedure body */ 

... 

return (0); 

} 

... 

/* call of procedure #790 /* 

ret = my_proc(a); 

if (ecf != 790) error(); 

... 

/* procedure definition */ 

int my_proc(int a) 

{ 

/* procedure body */ 

... 

ecf = 790; 

return (0); 

} 

Fig. 3.14: Transformation rules by Rebaudengo to protect the control in procedures. 
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The transformation rules by Rebaudengo present very high overheads. First of all, 
protecting in the high-level language produces higher overheads than protecting in the 
low-level (CHIELLE, 2014), (RESTREPO-CALLE, 2011). The deactivation of the flags 
to optimize the code during compilation significantly reduces the performance. 
Furthermore, besides the duplication, checkers are inserted to verify every single read for 
every variable. The overheads it causes are clearly very high because, for most of the 
instructions in the code, two other instructions are added, one to duplicate and the other 
to check the variables. If the instruction reads two variables, the checker needs to test both 
variables. This more complex checker is converted to assembly in more than one 
instruction, which makes the overheads even higher. Therefore, performing checkings 
every time a variable is read is very costly. Additionally, the signatures for control-flow 
protection can easily be masked because they are assigned for each basic block and not 
updated from one basic block to the other. 

3.3.2 Transformation rules by Nicolescu 

Nicolescu (2003) proposed new transformation rules to modify the high-level code, 
specifically in C language, and provide reliability to it. The rules are partially based on 
(REBAUDENGO, 1999). There are rules to protect the data-flow and rules to protect the 
control-flow. The rules to protect the data-flow duplicate all variables and perform, on 
their replicas, the same operations performed on the original variable. Checkers are 
inserted to verify only the final variables, which are variables that do not take part in the 
calculation of any other variable. For example, in Fig. 3.15 (a), variables c and b are used 
to compose variable a; therefore, c and b are considered intermediary variables. In the 
following instruction, a and b are used to define variable d. Since a is used to define the 
value of another variable, it is also an intermediary variable. On the other hand, variable 
d is not used by any other variable, so it is a final variable, and it will have its value 
checked with its replica. The rules proposed by Nicolescu to protect the data-flow are: 

 Identification of the relations among the variables 

 Classification of the variables according to their role in the program: intermediary 
variable or final variable 

 Every variable x must be duplicated: let x1 and x2 be the names of the two copies 

 Every operation performed on x must be performed on x1 and x2 

 After each write operation on the final variables, the two copies x1 and x2 must 
be checked for consistency, and an error detection procedure is activated if an 
inconsistency is detected. 

One can see the application of these rules in Fig. 3.15. All variables are duplicated, 
and the operation is replicated to the copies. Since d is the only final variable in this code, 
a checker is inserted to verify only d. The value of d1 is compared with the value of d2 
after a write operation on them. If they have the same value, the program execution 
continues normally. Otherwise, an error detection procedure is called. 
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Fig. 3.15: Transformation rules to protect the data (NICOLESCU, 2003). 

For the protection of the control-flow, the code is divided into basic blocks, and for 
each basic block, a Boolean flag is assigned. The flag takes the value zero if the BB is 
active, and one otherwise. It is updated by incremented modulo 2 at both beginning and 
end of the basic block. Thus, the value is always one or zero. Furthermore, an integer is 
associated with every basic block. A global signature variable is assigned based on the 
Boolean flag and the associated integer. The control-flow rules are presented as follows: 

 A boolean flag status_block is associated with every basic block i in the code; 1 
for the inactive state and 0 for the active state 

 An integer value ki is associated with every basic block i in the code 

 A global execution check flag (gef) variable is defined 

 A statement assigning to gef the value of (ki & (status_block = status_block + 1) 
mod 2) is introduced at the beginning of every basic block i; a test on the value of 
gef is also introduced at the end of the basic block. 

Fig. 3.16 shows an example of how the control-flow rules are applied. The 
status_block flag is updated at the beginning of the basic block, and the gef is updated 
right after. At the end, gef is compared with the basic block integer signature. If they are 
different, the error procedure is called. In theory, it should avoid masking errors when an 
illegal branch goes to the beginning of the basic block because, in this case, status_block 
would be updated to one, which would make gef different from the expected signature i, 
and it would be detected at the end of the basic block. However, when compiled, the 
update at the beginning of the basic block is divided in two assembly instructions, one to 
update status_block and another to update gef. If the illegal branch goes to the second 
instruction, the error would not be detected. 
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Fig. 3.16: Transformation rules to protect the control-flow (NICOLESCU, 2003). 

The incorrect branch decisions cannot be detected by the control-flow rules described 
above. Thus, Nicolescu implements Rebaudengo's rule to protect that. The branches are 
retested at both true and false destinations of the branches. This transformation can be 
seen in Fig. 3.17. 

 

Fig. 3.17: Transformation to protect branch decisions (NICOLESCU, 2003). 

Furthermore, a ctrl_branch flag is assigned to every procedure in the program. The 
value is assigned at the beginning of each procedure. Checkers are inserted before and 
after the procedure call. The rules are presented bellow, and their application is illustrate 
in Fig. 3.18. 

 A flag ctrl_branch is defined in the program 

 An integer value kj is associated with any procedure j in the code 

 At the beginning of every procedure, the value kj is assigned to ctrl_branch; a test 
on the value of ctrl_branch is introduced before and after every call to the 
procedure. 
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Fig. 3.18: Transformation rules to protect procedures (NICOLESCU, 2003). 

The transformation rules by Nicolescu present high overheads. They are implemented 
in the high-level language, which makes necessary to deactivate the optimizations 
performed by the compiler. The rules to protect the data are less costly than Rebaudengo's 
since they only check the final variables. On the other hand, the control-flow techniques 
are more costly. The protection of procedures needs extra instructions, two checkers 
instead of one, and the value of ctrl_branch is also assigned after the return from the 
procedure. Furthermore, the basic blocks' signatures use two variables, one for the 
signature and another for the status_flag. When compiled, the operation to update 
status_flag and assign the new value to the signature variable gef is converted in two 
instructions. Besides being slower than Rebaudengo's by using two instructions instead 
of one, it will still not detect an illegal branch if it jumps to the instruction that assigns 
the signature variable. 

3.3.3 SWIFT 

Software Implemented Fault Tolerance (SWIFT) is an SIHFT technique proposed by 
Reis (2005b) that aims at protecting the data-flow and the control-flow of a running 
application. It is based on two techniques, one data-flow technique (EDDI) and one 
control-flow technique (CFCSS). The union of these two techniques, together with a set 
of optimizations that have been made, was named SWIFT. 

The transformation rules to protect the data are very similar to EDDI, but there are 
two differences: (1) the authors assume that the memory is protected by some ECC. Thus, 
it is not necessary to duplicate the data in memory. Since there is no replicated data in 
memory, the loads for the replicas are done from the same memory position that for the 
originals. Furthermore, it is not necessary to duplicate store instructions. (2) Checkers to 
verify registers used by branch instructions are removed. The authors justify that by 
saying its protection is redundant with the control-flow technique. As follows, one can 
understand the transformation rules to protect the data: 

 Every register in the program must be duplicated 

 The same operation performed on a register must be performed on its replica, with 
the exception of stores 
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 Checkers are inserted before storing register values in memory. The variable is 
compared with its replica. If they are different, an error is signaled. 

For protecting the processor against control-flow errors, CFCSS is implemented by 
SWIFT. However, it does not protect against incorrect branch decisions. A modification 
of the implemented CFCSS has been proposed to extend the fault coverage to such cases. 
It consists of a dynamic equivalent of a runtime adjusting signature for all basic blocks. 
The target basic block is assigned to the runtime adjusting signature before the branch 
instruction. The runtime adjusting signature is checked after the branch by comparing it 
with the general signature register (GSR). For optimization purpose, the checkings are 
done only in basic blocks with store instructions. If it is possible to ensure that only stores 
that should be executed are executed and that they write the right data, the application 
runs correctly. 

One can see the transformation rules applied by SWIFT in Fig. 3.19. Instruction 1 and 
2 are replicas applied by the transformation rules to protect the data. Instruction 3 
computes the runtime signature (RTS) to the target basic block by performing an XOR 
operation using the current basic block’s signature and the target basic block’s signature. 
Instruction 4 does the same as instruction 3, but in the case the branch is not taken. 
Instruction 5 updates the GSR to the new basic block’s signature. Instructions 6 and 7 are 
used to detect mismatches in the signature. They are included only in basic blocks that 
contain store instructions. And instructions 8-10 implement data-flow rules to check the 
registers before their values are stored in the memory. 

 

Fig. 3.19: Transformation rules (REIS, 2005b). 

SWIFT is an efficient SIHFT technique when compared to previous software 
techniques to protect both data-flow and control-flow. It presents performance 
improvements. However, the control-flow part of SWIFT uses two signatures 
transformations per basic block, GSR and RTS, and it increases the overheads in time and 
performance. 

3.3.4 Transformation rules by Azambuja 

Transformation rules in software were combined with a watchdog in order to cover 
errors not detectable by SIHFT techniques. This hybrid technique was proposed by 
(AZAMBUJA, 2011b). It consists of the data-flow technique VAR1, plus two control-
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flow techniques, the Inverted Branches and a modified version of CCA that works 
together with a watchdog, which is connected to the memory bus. The rules to protect the 
data are: 

 Rule #1: variables must be duplicated 

 Rule #2: write operations performed on a variable must also be performed on its 
replica 

 Rule #3: before each read on a variable, its value and the value of its replica must 
be checked for consistency. 

Furthermore, there is the rule for the Inverted Branches technique, which aims at 
detecting incorrect branch decisions. It is presented below: 

 Rule #4: every branch instruction is replicated on both destination addresses. 

A modified version of CCA was implemented to work with the watchdog. It aims at 
detecting two types of illegal branches: (1) to the beginning of a basic block and (2) to 
the same basic block. The same concepts introduced in CCA using BID to identify the 
basic blocks and CFID in a queue to protect the transitions between basic blocks is used 
here. However, the queue management, which is a task that significantly increases the 
overheads, is performed by the watchdog. To inform the watchdog about the BID or to 
tell when to enqueue or dequeue CFID, store instructions to predetermined memory 
addresses are used. An example of how the code changes by this modified CCA is 
presented in Fig. 3.20. The target address of the branch at line 1 is modified to keep the 
correctness of the program. Stores to send the BID to the watchdog are inserted at the 
beginning of the basic blocks (lines 2 and 6). CFID is enqueued at lines 3 and 7, also 
beginning of the basic blocks, right after sending the BID. And CFID is dequeued at the 
end of the basic blocks (lines 5 and 10). The enqueuing and dequeuing of CFID is also 
done using store instructions. 

XOR operations are done in real-time by the watchdog to detect illegal branches inside 
the same basic blocks. The executed instructions of a basic block are xored and compared 
to the expected value for that basic block. If they differ, an illegal branch inside of the 
basic block has occurred. Fig. 3.21 shows how this technique is applied. At the beginning 
of each basic block, a store operation to a predetermined memory address signalizes the 
watchdog to reset its internal register that contains the result of the XOR operations of 
the executed instructions. During the execution, the executed instructions are xored and 
stored in the watchdog's internal register. At the end of the basic block, another store 
instruction to a predetermined memory address signalizes the watchdog to check its 
register with the expected value for that basic block. 
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1: beq r1, r2, 8 1: beq r1, r2, 6 

 

 

4: add r2, r3, 1 

 

2: send BID

3: enqueue CFID 

4: add r2, r3, 1 

5: dequeue CFID 

 

 

8: add r2, r3, 4 

9: st [r1], r2 

 

6: send BID 

7: enqueue CFID 

8: add r2, r3, 4 

9: st [r1], r2 

10: dequeue CFID 

11: jmp end 11: jmp end 

Fig. 3.20: Example of the modified CCA proposed by (AZAMBUJA, 2011b). 

 

1: beq r1, r2, 8 1: beq r1, r2, 5 

 

3: add r2, r3, 1 

 

2: reset XOR

3: add r2, r3, 1 

4: check XOR 

 

6: add r2, r3, 4 

7: st [r1], r2 

 

5: reset XOR 

6: add r2, r3, 4 

7: st [r1], r2 

8: check XOR 

9: jmp end 9: jmp end 

Fig. 3.21: Technique to detect illegal branches inside basic blocks by (AZAMBUJA, 
2011b). 

The transformation rules by Azambuja present very high detection rates. It is capable 
of detecting errors inside a basic block, which is impossible to detect by software-only 
techniques. Although the high overhead, to enqueue and dequeue that CCA presents, was 
moved to the watchdog, it still presents significant overheads. The modified CCA uses 
two signatures, so in every basic block, three instructions are inserted: one to send BID 
to the watchdog; one to enqueue CFID; and one to dequeue CFID. Furthermore, other 
two instructions to detect illegal branches inside a basic block are also included in all 
basic blocks. For programs with small basic blocks, the overheads it causes are very high. 
Some of the flaws presented by CCA are also presented in this technique. When two basic 
blocks have a common successor, all the successors have the same CFID. For example, 
if basic block A has C and D as successors, and basic block B has D and E as successors, 
all C, D, and E have the same CFID. Thus, illegal branches from A to E or from B to C 
will not be detected. This problem was later corrected when Azambuja replaced the 
modified CCA by HETA. Anyhow, the overheads are the same. Furthermore, the 
technique to detect data errors is VAR1. This technique presents very high overheads 
because, before each read on a variable, a checker is inserted to check the variable with 
its replica. In addition, the power consumption due to the additional hardware is 
increased. The additional hardware also affects the portability of the technique to other 
platforms because it needs access to the memory buses. Some processors that use on-chip 
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embedded cache memories may not be accessible by the watchdog and, thus, the 
technique could not be implemented. 

3.3.5 Drawbacks of combined data-flow and control-flow techniques 

The combined data-flow and control-flow techniques are nothing more than a data-
flow technique and a control-flow technique applied together. Therefore, the same 
comments for data-flow and control-flow techniques can be extended to the combined 
data-flow and control-flow techniques. With regards to the presented techniques, SWIFT 
is by far the one with the lower overheads. It is mainly due to its data part, which 
implements EDDI and uses checkers only before stores. The control-flow part is 
complemented by CFCSS, a control-flow technique that has low overheads, but not the 
highest fault coverage. The advantage of SWIFT over EDDI + CFCSS consists in the fact 
that the redundant protection of branches is removed. However, the overheads are still 
high. Another approach to reducing more the overheads is essential. 

3.4 Selective hardening 

A recent approach to reduce overheads caused by SIHFT techniques consists of 
applying them selectively. Only selected portions of the application are protected, not the 
entire application. Few works based on selective hardening aim to guarantee application-
level correctness in multimedia applications (CONG, 2011), (SUDARAM, 2008). For 
multimedia applications, some errors can be tolerated since they will not be noticed by 
the user (YEH, 2009). However, in critical systems, correctness is required. A recent work 
on this field was proposed by (RESTREPO-CALLE, 2013). In this work, subset of the 
registers used by the application were protected by data-flow techniques and evaluated.  

With regards to data-flow techniques, the selective hardening is applied to registers, 
i.e., the most critical subset of used registers is protected. For control-flow techniques, 
selected basic blocks are protected. In the literature, (VEMU, 2011) states that the number 
of checkers in the code can be reduced to decrease overheads. On the other hand, it 
increases the latency of the error detection. The selective hardening also brings flexibility 
to SIHFT techniques due to the new range of possibilities in which a code can be 
hardened. It can bring reliability given a maximum time overhead, or reduce overheads 
given a minimum fault coverage, for example. 

Furthermore, portions of code can be selectively hardened. For example, an 
application that is not critical in general, but that has few critical subroutines. These 
critical subroutines could be hardened, while the rest of the application is left unhardened. 
It would increase the reliability of the application when compared to the unhardened, and 
it would reduce the overheads when compared to hardening the entire application. This 
type of selectiveness is application-dependent, so a study on the target application must 
be performed. It is not part of this work, which focuses on selective hardening for data-
flow and control-flow techniques. A state-of-the-art selective technique is presented as 
follows. 

3.4.1 Selective SWIFT-R 

S-SWIFT-R stands for Selective Software Implemented Fault Tolerance – Recovery. 
It is a selective hardening technique proposed by Restrepo-Calle (2013). It is based on 
the software recovery technique SWIFT-R (REIS, 2007), which is based on the software 
detection technique SWIFT (REIS, 2005b). Later, Restrepo-Calle (2016) proposed a 
selective hybrid technique combining S-SWIFT-R with a hardware Selective Triple 
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Modular Redundancy (S-TMR). Some registers were protected by TMR in order to 
reduce the overheads caused by SWIFT-R. On the other hand, it was necessary to modify 
the underlying hardware, which increased the area and power consumption, as the author 
stated. 

SWIFT-R triplicates the registers and instructions, and it inserts software majority 
voters to identify and correct errors. Its aim is to protect the register file. S-SWIFT applies 
SWIFT-R selectively, i.e., a selected set of registers is triplicated, instead of all used 
registers. Fig. 3.22 shows examples of a code hardened by S-SWIFT-R. Several versions 
where different sets of registers have been protected are presented. The version that all 
used registers are protected (s0 and s1) is equivalent to SWIFT-R. In the version that s0 
is protected, copies of s0 are created after it is loaded from the memory. Then, the ADD 
operation is replicated to the copies. Finally, a voter is inserted before s0 is stored. In the 
version where only s1 is protected, copies of s1 are created, and two voters are inserted. 
The first voter (line 5) is due to the use of s1 by the ADD operation (line 6) to define a 
new value to s0, which is stored after. And the second voter is due to the use of s1 to 
address the memory in the STORE operation. No instruction is replicated since no new 
value is attributed to s1. 

# unhardened protected: s0 protected: s1 protected: s0, s1

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

LOAD s0, 00 

 

LOAD s1, 2A 

 

 

ADD s0, s1 

 

 

 

 

STORE s0, (s1) 

LOAD s0, 00 

Create s0 copies 

LOAD s1, 2A 

 

 

ADD s0, s1 

ADD s0', s1' 

ADD s0'', s1'' 

Voter for s0 

 

STORE s0, (s1) 

LOAD s0, 00 

 

LOAD s1, 2A 

Create s1 copies 

Voter for s1 

ADD s0, s1 

 

 

 

Voter for s1 

STORE s0, (s1) 

LOAD s0, 00 

Create s0 copies 

LOAD s1, 2A 

Create s1 copies 

 

ADD s0, s1 

ADD s0', s1' 

ADD s0'', s1'' 

Voter for s0 

Voter for s1 

STORE s0, (s1) 

Fig. 3.22: Example of a code hardened by S-SWIFT-R (RESTREPO-CALLE, 2016). 

Fig. 3.23 shows the code size and execution time overheads for a Finite Impulse 
Response (FIR) filter implemented using five registers for the PicoBlaze soft-core 
processor. Each possible set of registers was protected using S-SWIFT-R. The horizontal 
axis presents the names of the registers protected in that version. The code overhead varies 
from 1.01x to 2.67x, and the execution time ranges from 1.01x to 2.53x. 
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Fig. 3.23: Code size and execution time overheads for an FIR hardened by S-SWIFT-R 
(RESTREPO-CALLE, 2016). 

The fault coverages of several versions of an FIR hardened by S-SWIFT-R are 
presented in Fig. 3.24. The fault coverage is indicated by unACE. SDC (Silent Data 
Corruption) indicates the faults that caused errors in the output. And Hang represents the 
faults that caused abnormal program termination or infinite loop. As one can see, the 
unhardened version presents around 74% of fault coverage. Meanwhile, the one with all 
registers hardened (SWIFT-R) reached 92% of fault coverage. The S-SWIFT-R goes 
from 82% to 92%. An interesting example can be seen by the protection of register 2 and 
3. It achieves 89.6% of fault coverage with a cost of 1.89x in the execution time and 1.93x 
in the code size. Depending on the case, it could be a better solution than SWIFT-R. 

 

Fig. 3.24: Fault coverage for an FIR using S-SWIFT-R (RESTREPO-CALLE, 2016). 
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S-SWIFT-R reduces the overheads when compared to the standard SWIFT-R. 
However, since it triplicates instead of duplicating the registers, it causes higher 
overheads. Furthermore, the selective hardening is only applied to registers. Therefore, it 
is only a selective data-flow technique. The selective hardening for control-flow 
techniques is, so far, limited to removing checkers from basic blocks. A new approach 
for selective hardening of control-flow techniques that explores better the basic block 
protection is necessary. 
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4 METHODOLOGIES AND METRICS 

The subjects of this chapter are the methodologies for hardening applications with 
SIHFT techniques and the fault injection utilized in this work. Furthermore, the metrics 
to evaluate and compare the proposed techniques are introduced. 

The concept of fault, error, and failure was already defined in a previous chapter. 
Nevertheless, to elucidate the discussion of this chapter, Fig. 4.1 shows a fault and its 
possible effects on a processor hardened by SIHFT techniques. If the fault is masked, the 
application runs correctly. In case of error, this error can be detected or undetected. An 
error detected would possibly cause a failure if it were not detected, but it is also possible 
that this error would not produce a failure. Finally, an undetected error causes necessarily 
a failure; otherwise, it would be a masked fault. 

 

Fig. 4.1: Fault, error, and failure in processors hardened by SIHFT techniques. 

4.1 Hardening methodology 

The SIHFT techniques are automatically applied to the assembly code of unhardened 
applications using the CFT-tool (CHIELLE, 2012).4 For this, the code in a high-level 
language is compiled and assembled, generating, respectively, the assembly code and the 
executable. Sometimes, the CFT-tool needs additional information not available in the 
assembly code. Thus, it is necessary to provide the disassembly file to the tool. The entire 
process is illustrated in Fig. 4.2. CFT-tool reads the assembly code and the disassembly 
file, and, based on some configuration files, creates a new assembly code hardened by the 
selected SIHFT techniques. The configuration files contain information about the 
processor architecture and organization the SIHFT techniques. Finally, the hardened 
assembly can be assembled to generate a hardened executable. 

                                                 
4 Details about the CFT-tool are available in the appendix A. 



   

 

70 

 

Fig. 4.2: Steps to protect an application using CFT-tool. 

After the process described above, the hardened application is ready to run on the 
target processor. In this stage, the execution time and code size can be extracted. It is also 
possible to evaluate the application’s fault coverage by performing a fault injection 
campaign. The methodology for fault injection utilized in this work is described as 
follows. 

4.2 Fault injection methodology 

It would be infeasible to acquire the large amount of information about fault coverage 
necessary for this work only from radiation experiments. Thus, most of the tests were 
performed through simulation. Anyhow, radiation tests were done in selected cases to 
confirm the results obtained by simulation. The simulated fault injections at logical level 
using the hardware description (HDL) of the processor. The radiation experiments 
utilized a hard-core processor embedded in an All Programmable SoC. Details about the 
simulated fault injection and the radiation experiments are presented below. 

4.2.1 Fault injection by logical simulation 

Faults are injected by forcing a bit flip at RTL level in the processor's internal signals 
using ModelSim (MENTOR GRAPHICS, 2012), a simulation tool. For this, it is 
necessary the processor’s hardware description. A total of 10,000 faults is injected per 
version of each application5. Only one fault is injected per execution. It can affect any of 
the processor’s internal signals. The fault duration is set to one clock cycle in order to 
force its effect to hit the clock barrier of the flip-flops and, thus, increase the probability 
of error. A golden execution (with no injected faults) is executed. All the PC values during 
the execution are saved. Also, the portion of the memory that contains the program output 
is saved. Then, the program is submitted to faults, and the values of the PC and the 
memory results of the program under test are compared with the gold results. The error 
is signaled when the result stored in the memory differs from the expected one. The effect 
of a fault can be classified as: 

 Correct: the fault had no effect on the program output, i.e., the result is 
correct 

                                                 
5 Applications with more than 98% of fault coverage may have up to 40,000 faults 
injected. 
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 Data-flow error: it occurs when the fault affects the output, but the PC is 
correct during the execution. It is also known as Silent Data Corruption 
(SDC). If the error is detected by a fault detection technique, it is classified 
as detected data-flow error. Otherwise, it is an undetected data-flow error 

 Control-flow error: the output and PC are incorrect. It is a detected control-
flow error if detected, and an undetected control-flow error if not. 

The sum of data-flow errors and control-flow errors for a fault injection campaign 
gives the total of errors. The sum of detected data-flow errors and detected control-flow 
errors provides the total of errors detected. The processor utilized in the fault injections 
by logical simulation was miniMIPS (HANGOUT, 2009).6 

4.2.2 Radiation tests with neutrons and heavy ions 

Radiation tests were used to validate the fault injection campaigns by simulation. 
They were performed with neutrons and heavy ions. During the tests with neutrons, all 
the board was irradiated. During the tests with heavy ions, only the processor was 
irradiated. For the test with heavy ions, it was necessary to decapsulate the chip to allow 
the ions to hit the sensitive parts of the processor. In both cases, the board was exposed 
to air at room temperature. 

The setup, shown in Fig. 4.3, consists of a board, computer, USB net switch, cables 
for communication, and cables for power supply. The computer is connected to the board 
by two USB cables. One is used to program the board, and the other is used to receive the 
output from the board. The board’s power supply is connected to the USB net switch, 
which is connected by USB to the computer. It is used to control when the power supply 
is available to the board. 

 

Fig. 4.3: Setup for radiation tests. 

The board utilized in the tests was a ZedBoard™. It is a low-cost development board 
for the Xilinx Zynq®-7000 All Programmable SoC, XC7Z020-CLG484 part, which 
offers high configurability, stimulates strong interest in the scientific community, and is 
highly present in the market. The board is composed of two main parts: a Processing 
System (PS) that contains a dual-core ARM® Cortex-A9 processor7, and Programmable 
Logic (PL) (AVNET, 2015)8. The PL section is ideal for implementing high-speed logic, 
arithmetic, and data processing subsystems, while the PS supports software routines and 

                                                 
6 More information about the miniMIPS processor is available in the appendix B.1. 
7 Details about the ARM Cortex-A9 processor are available in the appendix B.2. 
8 More information about the ZedBoard™ is available in the appendix B.3. 
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operating systems. The proposed analysis is based only on the PS part of the board. The 
PL part is not used at any moment during the experiment. One only ARM core was 
utilized. It ran a target application that sends the output by UART to the computer and, 
then, restarts its execution. The computer was running a monitoring application that 
listens to the COM port connected to the board's UART and classifies the output as: 

 Correct: the output of the program is correct 

 Detected: an error was detected and reported 

 Undetected error: the output is incorrect, and no error was reported by the 
fault detection technique 

 Timeout: no output was produced until a time limit. 

Depending on the output, different actions are taken: 

 No action: for correct outputs 

 Soft reset: the fault tolerance technique applied to the target application has 
detected an error. It calls the error subroutine that reports the error and restarts 
the application by software 

 Hard reset: it happens when timeout, undetected errors, or consecutive 
detected errors are reported. The monitoring application performs a power 
cycle on the board and, then, reprograms it. 

When consecutive detected errors are reported, they are accounted as only one 
detected error because it affected a region that was not corrected by the soft reset. 
Furthermore, the hard reset presents a delay in which the processor is still running and, 
possibly, producing output. For that reason, any output, since the hard reset is started until 
it is concluded, is ignored. 

4.3 Metrics 

Applications are hardened using the proposed techniques and some state-of-the-art 
techniques. For comparison purpose, the following parameters are utilized, in this work, 
to evaluate the quality of the proposed and state-of-the-art techniques: 

 Execution time: it expresses the time that an application takes to execute. 
The execution time of a hardened application is presented normalized by the 
execution time of the equivalent unhardened application, as shown in Eq. 4.1. 
Tnormalized represents the normalized execution time of the hardened 
application, Thardened is the absolute execution time of the hardened 
application, and Tunhardened is the absolute execution time of the unhardened 
application. For example, if the unhardened application runs in 5 ms and the 
hardened one runs in 10 ms, the hardened one is expressed as being 2x the 
execution time of the unhardened 

Eq.	4.1 	 ℎ
ℎ

 Code size: it refers to the total of bytes a program occupies in disk. As the 
execution time, the code size of a hardened application is also normalized by 
the unhardened application, as one can see in Eq. 4.2. Mnormalized represents 
the normalized code size of the hardened application, Mhardened is the absolute 
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code size of the hardened application, and Munhardened is the absolute execution 
time of the unhardened application 

Eq.	4.2 	 ℎ
ℎ

 Error detection rate: let Eundetected be the number of undetected errors that 
led to an incorrect output (system failure), Edetected the number of detected 
errors in executions with an incorrect output, and Etotal the sum of Edetected and 
Eundetected, i.e., the total number of executions with an incorrect output. The 
error detection rate (EdetectionRate) is the percentage of errors with incorrect 
output detected by the fault tolerance technique out of the total number of 
errors with incorrect output. It is given by the Eq. 4.3 

Eq.	4.3 	

 Fault coverage: it is the sum of Edetected and the number of correct executions 
(Xcorrect), divided by the total number of executions (Xtotal). The fault coverage 
is expressed in percentage, and it is given by Eq. 4.4. It can also be expressed 
as one minus Eundetected, divided by the total number of executions 

Eq.	4.4 	 1 	

 Mean Work To Failure (MWTF) (REIS, 2005a): the MWTF, given by Eq. 
4.5, is an overall quality metric. It captures the tradeoff between reliability 
and performance, once that the more time an application needs to run, the 
higher is the probability that it is hit by a particle and, consequently, affected 
by a fault. Some of the parameters are the Average Vulnerability Factor 
(AVF), which is used to measure microarchitectural structure's susceptibility 
to transient faults (MUKHERJEE, 2003), and the raw error rate, which is 
determined by the circuit technology (MARTINEZ-ALVAREZ, 2012). The 
AVF can be calculated analytically, or it can be estimated statistically by fault 
injection campaigns. In our case, the AVF is estimated as the sum of data-
flow and control-flow errors (SDCs + Hangs) out of the total of faults injected 
(equivalent to 1-Fcoverage). Furthermore, the MWTF of a hardened application 
is normalized by MWTF of the unhardened application, as shown in Eq. 4.6. 

Eq.	4.5 	
 

	

Eq.	4.6 	 ℎ
ℎ

 

During the evaluation, the parameters are presented per benchmark. Also, the average 
results are included. In order to avoid biased results, the average the data of a specific 
parameter of each application is divided by the highest value of that parameter for that 
application. Thus, the highest value for each application is always 1. Then, a harmonic 
mean is performed using these normalized values. Finally, in order to put the data back 
to the normal representation, the harmonic mean of the normalized values is multiplied 
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by the harmonic mean of the highest values of that parameter for each application. Eq. 
4.7 shows how the mean is calculated. 

Eq.	4.7 	
ℎ

∙ ℎ 	

Where: 

 x is a parameter of the evaluated SIHFT technique (or combination of SIHFT 
techniques) 

 AVGx is the average value of x 

 xi is the value of x for the evaluated SIHFT technique and case-study 
application i 

 maxi is the highest value of x for case-study application i (including all SIHFT 
techniques) 

 harmean is the harmonic mean. 

The harmonic mean was selected instead of other averages (arithmetic or geometric 
mean) because the average results are not biased by extreme values. Thus, it better 
represents populations with outliers. In this work, the term average is always referring to 
the Eq. 4.7, except if explicitly said. 
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5 PROPOSED TECHNIQUES 

This chapter introduces the proposed SIHFT techniques that aim at reducing 
overheads and keeping a similar level of fault coverage of state-of-the-art SIHFT 
techniques. Firstly, a set of data-flow techniques based on general building rules is 
presented. They evaluate the influence of checkers in the fault coverage and overheads. 
The aim is to reduce overheads by reducing the number of checkers without losing 
reliability. Then, a control-flow technique with similar fault coverage and lower 
overheads than state-of-the-art techniques is introduced. The aim of this control-flow 
technique is to complement the proposed data-flow techniques in order to protect the data-
flow and the control-flow of the target application running on a COTS processor. 

5.1 Data-flow techniques based on rules 

Data-flow techniques are based on replicating information and verifying if the 
original information matches the replica. Spare registers are assigned as replicas of the 
used registers (for detection techniques, one spare register per used register). The replicas 
perform the same instructions as the original registers do. Finally, checkers are inserted 
in the code to compare the original register with its replica. Since the code is entirely 
replicated and many checkers are inserted, it is clear that the overheads introduced by 
data-flow techniques are high. As a first approach, what can be done to reduce such 
overheads is listed as follows. 

 Reducing the number of instruction duplication: if the memory is 
protected by some ECC, it is possible to remove the duplication of the stores. 
It also removes the need to duplicate the data in memory 

 Reducing the number of checkers: considering that the errors will probably 
propagate and can be detected later, it is possible to remove checkers from 
the hardened code. 

In order to reduce the overheads caused by data-flow techniques, the proposed data-
flow techniques focus on reducing duplication and number of checkers. The aim is to 
evaluate the trade-off between reliability and overheads and find the point that the 
insertion of checkers saturates the reliability and only increases the overheads. 

5.1.1 Methodology and implementation 

A set of rules for data-flow protection is proposed. They consist of three different 
types of rules: global, duplication, and checking rules, as one can see in Table 5.1. The 
global rule states that every register used by the application must have a spare register 
assigned as a replica. The global rule is implemented by all techniques. Duplication rules 
regard how the instructions are duplicated. They are only applicable to instructions that 
perform write operations in registers or memory. Therefore, branch instructions are not 
considered in this case. 

There are two types of duplication rules: D1 and D2. Each technique must implement 
one and only one duplication rule. D1 duplicates all instructions, including stores, which 
allow the use of unhardened memories because the original value and its replica can be 
stored in different memory positions. D2 duplicates all instructions, except stores. The 
last one is adequate when the memory is hardened because the data in memory do not 
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need to be duplicated. Thus, the overhead caused by duplicating the code and the number 
of memory accesses are reduced. 

Checking rules indicate when a register is compared to its replica. Thus, it is possible 
to verify if an error has occurred (when the register and its replica have different values). 
Techniques can have more than one checking rule. Theoretically, the more checkers are 
included in one technique, the more reliability is achieved. On the other hand, the 
overheads are higher. For this reason, a technique using all checking rules was not 
proposed. The overheads would be higher than the state-of-the-art data-flow techniques, 
and it would go against of this work proposal. Checking rule C1 states that a checker must 
be placed before a register is read by an instruction (excluding loads, stores, and 
branches). The checker compares the register value with the value of its replica to detect 
a possible error. For C2 rule, a checker is inserted right after a write operation is 
performed on a register. When C3 is implemented, the register that contains the address 
in load instructions has to be checked before the load is performed. C4 and C5 insert 
checkers before stores. C4 checks the register that contains the datum, and C5 checks the 
register that contains the address. Finally, C6 is responsible for checking the registers 
used by branch instructions (conditional or not). 

Table 5.1: Rules for data-flow techniques 

Global Rules 
(valid for all techniques) 

G1 
every register used in the program must have a spare register 

assigned as replica 

Duplication Rules 
(perform the same operation on the register's replica) 

D1 all instructions 

D2 all instructions, except stores

Checking Rules 
(compare the register with its replica) 

C1 
before every read on a register 

(except load/store and branch/jump instructions) 

C2 after every write on a register 

C3 the register that contains the address (before loads) 

C4 the register that contains the datum (before stores) 

C5 the register that contains the address (before stores) 

C6 before branches or jumps 

 
Based on the rules, seventeen techniques have been implemented. They are listed in 

Table 5.2. Each technique consists of a combination of rules. Global rule G1 and one 
duplicating rule (D1 or D2) are mandatory. Only one duplication rule can be used per 
technique. The checking rules are optional. Three techniques (VAR1, VAR2, and VAR3) 
belong to Azambuja (2011a), VAR4 is equivalent to EDDI, and VAR4++ is similar, but 
not equal, to the data part of SWIFT. The only difference is with regards to the duplication 
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of load instructions. VAR4++ duplicates the load instructions, and the data part of SWIFT 
performs a move from the original register to its copy after each load. VAR0 and VAR0+ 
do not implement any checking rule. Therefore, they are not capable of detecting errors. 
They are implemented to show the minimum overhead for each duplication rule when all 
the used registers are duplicated. VAR1+ and VAR1++ are variations of VAR1. They use 
a different duplication rule, and VAR1++ implements fewer checking rules. The same 
can be said about VAR2+ and VAR2++ in comparison to VAR2, and VAR3+ and 
VAR3++ concerning VAR3. They have a different duplication rule, and VAR2++ and 
VAR3++ use fewer checking rules than VAR2 and VAR3, respectively. By removing 
more checking rules, we get to VAR4 and VAR5, and by applying the same explanation 
stated above, we get techniques VAR4+, VAR4++, VAR5+, and VAR5++. 

Table 5.2: Data-flow techniques and rules 

Technique Duplication Rule Checking Rules 

VAR0 D1 None 

VAR0+ D2 None 

VAR1 D1 C1, C3, C4, C5, C6 

VAR1+ D2 C1, C3, C4, C5, C6 

VAR1++ D2 C1, C3, C4, C5 

VAR2 D1 C2, C4, C5, C6 

VAR2+ D2 C2, C4, C5, C6 

VAR2++ D2 C2, C4, C5 

VAR3 D1 C3, C4, C5, C6 

VAR3+ D2 C3, C4, C5, C6 

VAR3++ D2 C3, C4, C5 

VAR4 D1 C4, C5, C6 

VAR4+ D2 C4, C5, C6 

VAR4++ D2 C4, C5 

VAR5 D1 C4, C6 

VAR5+ D2 C4, C6 

VAR5++ D2 C4 

 
Table 5.3 exemplifies how the different techniques are applied to the unhardened 

code. In this regard, it was used a piece of code that permits to see the application of all 
rules. It consists of five instructions: two loads, one add, one store, and one branch. The 
original code is formatted as normal text, the duplications are in italics, and the checkers 
are bold. Techniques that use D1 have no plus sign in the name, and other ones, with one 
(+) or two (++) plus signs, use D2. Techniques that have D1 as duplication rule, such as 
VAR0, have all instructions that perform write operations in registers or memory (all 
instructions except branches) replicated to the registers replicas. Techniques using D2, 
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such as VAR0+, only duplicate the instructions that perform write operations in registers, 
i.e., all instructions but branches and stores are duplicated. 

With regards to the checking rules, VAR1 and VAR1+ use almost all the checking 
rules, with the exception of C2. The first and the second checkers are due to C3, and the 
third one is due to C1. The fourth and fifth checkers are related to C4 and C5, respectively. 
And the sixth and the seventh are due to C6. It is important to mention that if a register is 
used twice by an instruction, it will only be checked once. This optimization is applied 
because there is no point in checking the same register twice in a row. It would only 
increase even more the overheads without providing more reliability. VAR1++ has the 
same checking rules of VAR1 and VAR1+, with the exception of C6. VAR2 and VAR2+ 
implement all the checking rules but C1 and C3. The first three checkers are related to 
C2. The fourth and the fifth are due to C4 and C5, respectively. And the last two are 
because of C6. VAR2++ implements the same checking rules as VAR2 and VAR2+, with 
the exception of C6. VAR3 and VAR3+ use C3, C4, C5, and C6. The first and second 
checkers are due to C3, the fourth and the fifth are due to C4 and C5, respectively, and 
the last two checkers are due to C6. VAR3++ implements the same checking rules of 
VAR3 and VAR3+, except for C6. VAR4 and VAR4+ use checking rules C4, C5, and 
C6, and VAR4++ uses C4 and C5. Finally, VAR5 and VAR5+ use C4 and C6, and 
VAR5++ uses only checking rule C4, which checks the register that contains the datum 
in store instructions. 

Let us see an example using VAR3. Firstly, we must assign replicas to all registers 
used by the application. In this regard, registers $12, $13, $14, $15, and $16 are assigned 
as replica of registers $2, $3, $4, $5, and $6, respectively. VAR3 uses duplication rule 
D1. The duplications are inserted in lines 3, 7, 11, and 16 (lines in italics). And the 
checking rules are C3, C4, C5, and C6. Thus, checkers have to be inserted before loads, 
verifying the register that contains the address (C3), before stores, checking the registers 
that contain the datum and the address (C4 and C5), and before branches, checking the 
registers used by the respective branch (C6). At the first and fifth lines, there are checkers 
regarding C3. At lines 13 and 14, checkings are made respecting C4 and C5, respectively. 
C6 is applied at lines 17 and 18. Now, if we look at VAR4++, the duplication rule is D2. 
So all the instructions, except branches and stores are duplicated. Duplications appear at 
lines 3, 7, and 11 (in italics). The checking rules consist of C4 and C5. They are applied 
at lines 13 and 14, respectively (bold). If we compare VAR3 and VAR4++, we can see 
that VAR4++ clearly present a lower overhead, but at a cost of fewer checking 
instructions. Thus, it is important to find out if such techniques with fewer checkers can 
provide similar reliability than the ones with more checkers. 
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Table 5.3: Examples of VAR data-flow techniques for the miniMIPS processor 

# Unhardened VAR0 VAR0+ VAR1 VAR1+ VAR1++ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
lw $4,0($2) 
 
 
 
lw $5,4($2) 
 
 
 
add $3,$3,1 
 
 
 
 
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,1000($12) 
 
 
lw $5,4($2) 
lw $15,1004($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
 
 
sw $4,0($5) 
sw $14,1000($15)
 
 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
 
 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
 
 
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14,1000($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15,1004($12) 
 
bne $3,$13,err 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
sw $14, 1000($15)
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14,0($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15,4($12) 
 
bne $3,$13,err 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14,0($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15,4($12) 
 
bne $3,$13,err 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

# VAR2 VAR2+ VAR2++ VAR3 VAR3+ VAR3++ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
lw $4,0($2) 
lw $14, 1000($12) 
bne $4,$14,err 
 
lw $5,4($2) 
lw $15, 1004($12) 
bne $5,$15,err 
 
add $3,$3,1 
add $13,$13,1 
bne $3,$13,err 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
sw $14, 1000($15) 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
bne $4,$14,err 
 
lw $5,4($2) 
lw $15,4($12) 
bne $5,$15,err 
 
add $3,$3,1 
add $13,$13,1 
bne $3,$13,err 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
bne $4,$14,err
 
lw $5,4($2) 
lw $15,4($12) 
bne $5,$15,err
 
add $3,$3,1 
add $13,$13,1 
bne $3,$13,err
bne $4,$14,err
bne $5,$15,err
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14, 1000($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15, 1004($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
sw $14, 1000($15)
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14,0($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

bne $2,$12,err 
lw $4,0($2) 
lw $14,0($12) 
 
bne $2,$12,err 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

# VAR4 VAR4+ VAR4++ VAR5 VAR5+ VAR5++ 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

 
lw $4,0($2) 
lw $14, 1000($12) 
 
 
lw $5,4($2) 
lw $15, 1004($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
sw $14, 1000($15) 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
 
 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
bne $5,$15,err 
sw $4,0($5) 
 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
 
 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err
bne $5,$15,err
sw $4,0($5) 
 
 
 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14, 1000($12) 
 
 
lw $5,4($2) 
lw $15, 1004($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
 
sw $4,0($5) 
sw $14, 1000($15)
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
 
 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
 
sw $4,0($5) 
 
bne $3,$13,err 
bne $6,$16,err 
ble $3,$6,loop 

 
lw $4,0($2) 
lw $14,0($12) 
 
 
lw $5,4($2) 
lw $15,4($12) 
 
 
add $3,$3,1 
add $13,$13,1 
 
bne $4,$14,err 
 
sw $4,0($5) 
 
 
 
ble $3,$6,loop 
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5.1.2 Fault injection results in the miniMIPS processor 

To evaluate how much the different techniques impact in the overheads and fault 
coverage, we hardened nine case-study applications with the proposed data-flow 
techniques, tested the overheads, and submitted them to a fault injection campaign. The 
case-study applications consist of a bubble sort (BS), the Dijkstra's algorithm (DA), a 
recursive depth-first search (rDFS), a sequential depth-first search (sDFS), a matrix 
multiplication (MM), the run length encoding (RLE), a summation (SUM), the TETRA 
encryption algorithm (TEA2), and the Tower of Hanoi (TH)9. A total of 162 versions was 
evaluated (9 unhardened and 153 hardened). 

Fig. 5.1 shows the averages execution time, code size, MWTF, and fault coverage for 
all VAR techniques. The fault coverage is presented in percentage (right axis). The other 
parameters are normalized by the unhardened application (left axis). The horizontal axis 
identifies the data-flow technique. For example, 3++ means that the data-flow technique 
VAR3++ was utilized. As one can see, the average minimum execution time is 1.32x, and 
the average minimum code size is 1.29x when hardening with a data-flow technique that 
implements duplication rule D1 (see VAR0). If D2 is used as the duplication rule, the 
average minimum execution time is 1.24x, and the average minimum code size is 1.23x 
(see VAR0+). 

Techniques VAR1, VAR1+, VAR1++, VAR2, VAR2+, and VAR2++, present a high 
fault coverage for data-flow techniques, but very high overheads. Similar fault coverages 
can be obtained by techniques VAR3 and VAR3+ with the advantage of considerably 
lower overheads. It shows that after a certain point, checking instructions get saturated. 
Considering only the baseline techniques, VAR3 presents the best results since it has a 
similar fault coverage to VAR1 and VAR2 and lower overheads. VAR4 has lower 
overheads than VAR3, but it does not achieve the fault coverage. By changing the 
VAR3’s duplication rule from D1 to D2, we get VAR3+. This change reduces the average 
execution time from 1.85x to 1.77x, and the average code size from 1.74x to 1.68x, and 
it keeps a similar fault coverage rate to VAR3. Comparing VAR4++ to VAR3, we can 
see a significant reduction in the overheads. The execution time went from 1.85x to 1.42x, 
and the code size dropped from 1.77x to 1.48x, with a loss of around 2% in the fault 
coverage. Although the lower fault coverage, VAR4++ can be a better solution when 
constraints are more restrictive or when using the technique combined with a control-
flow technique. It is important to notice that the unhardened applications have 
nonnegligible fault coverages due to the masked faults and fault injection methodology. 
Actually, their fault coverage ranges from 81% to 89% depending on the application. The 
contribution of fault tolerance techniques is better evaluated by looking at how much the 
fault tolerance technique reduced the distance to 100% of fault coverage. This is one of 
the MWTF’s parameters. 

                                                 
9 More information about the case-study applications is available in appendix C. 
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Fig. 5.1: Average results for the VAR techniques. The execution time, code size, and 
MWTF are normalized by the unhardened applications (left axis). The fault coverage is 
presented in percentage (right axis). 

Fig 5.2 presents the execution time, code size, MWTF, and fault coverage for the 
bubble sort (BS). The duplication rule D1 increases the execution time to 1.33x and the 
code size to 1.37x (VAR0), while duplication rule D2 increases the execution time to 
1.25x and the code size to 1.30x (VAR0+). Considering only the VAR techniques that 
implement some checking rule (VAR1 to VAR5++), the execution time, code size, and 
fault coverage range, respectively, from 1.36x to 2.62x, from 1.40x to 2.58x, and from 
90.7% to 92.6%, which is similar to the average results. 

 
Fig. 5.2: Results for the bubble sort (BS) hardened by the VAR techniques. The execution 
time, code size, and MWTF are normalized by the unhardened application (left axis). The 
fault coverage is presented in percentage (right axis). 

Fig. 5.3 shows the execution time, code size, MWTF, and fault coverage for the 
Dijkstra’s algorithm (DA) when protected by VAR. The execution time ranges from 
1.28x to 2.52x, the code size goes from 1.46x to 2.69x, and the fault coverage ranges from 
90.5% to 92.7%, when checking rules are implemented. Duplication rules D1 and D2 
cause a respective execution time of 1.24x and 1.16x, and a code size of 1.38x and 1.28x. 
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Fig. 5.3: Results for the Dijkstra’s algorithm (DA) hardened by the VAR techniques. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

The recursive depth-first search presents a high fault coverage when protected by 
VAR technique that implements checking rule C6, as shown in Fig. 5.4. On the other 
hand, when this rule is not applied (VAR1++, VAR2++, VAR3++, VAR4++, and 
VAR5++), the application suffers a significant drop in the fault coverage. In recursive 
applications, the number of errors causing wrong, but legal branches is higher due to 
many condition tests and returns from subroutines. An error affecting a register used by 
such instructions may not be detected if C6 is not implemented. The drop in fault coverage 
for VAR1++, VAR2++, and VAR3++ is lower than VAR4++ and VAR5++ because the 
first ones implement more checking rules, which increases the probability of checking 
the registers used by branches or returns in other points of the code. The fault coverage 
can reach more than 92%. The execution time and code size range from 1.26x to 2.16x, 
and from 1.08x to 1.25x, respectively, when checking rules are implemented. VAR0 and 
VAR0+ have an execution time of 1.26x and 1.20x and a code size of 1.08x and 1.07, 
respectively. 

 
Fig. 5.4: Results for the recursive depth-first search (rDFS) hardened by the VAR 
techniques. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

Fig. 5.5 presents the execution time, code size, MWTF, and fault coverage for the 
sequential depth-first search (sDFS). Although a lower execution time, code size, and 
fault coverage, the behavior of these parameters is similar to rDFS. Furthermore, sDFS 
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has a higher percentage of branch instructions10, which explains why techniques that do 
not implement checking rule C6 present lower fault coverage. Considering all the 
techniques, the fault coverage can reach up to almost 91.6%. The execution time and code 
size of techniques implementing checking rules range from 1.18x to 2.03x, and from 
1.05x to 1.17x, respectively. For this application, duplication rules D1 and D2 have 
similar execution time and code size (due to few number of store instructions), which are 
1.18x and 1.05x, respectively. 

 
Fig. 5.5: Results for the sequential depth-first search (sDFS) hardened by the VAR 
techniques. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

The matrix multiplication (MM) has data processing and load/store instructions. The 
VAR techniques that check both load and store instructions are VAR1 to VAR3++. As a 
result, they provide a higher fault coverage for this application, as one can see in Fig. 5.6. 
The execution time, code size, and fault coverage of VAR techniques that implement 
checking rules range, respectively, from 1.30x to 2.61x, from 1.42x to 2.63x, and from 
87.7% to more than 92.5%. VAR0 and VAR0+ present an execution time of 1.29x and 
1.24, and a code size of 1.40x and 1.31x, respectively. 

 
Fig. 5.6: Results for the matrix multiplication (MM) hardened by the VAR techniques. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

                                                 
10 Further information about the benchmarks is available in the appendix C. 
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Fig. 5.7 shows the results for the run-length encoding (RLE). RLE has the greatest 
number of instructions, which explains the higher code size overhead. The execution time 
varies from 1.29x to 2.44x, the code size ranges from 1.49x to 2.99x, and the fault 
coverage goes from 90.2% to almost 92%, when checking rules are implemented. The 
minimum execution time and code size when using duplication rule D1 are 1.27x and 
1.35x, respectively. When using D2, the minimum execution time is 1.19x, and the 
minimum code size is 1.24x. 

 
Fig. 5.7: Results for the run length encoding (RLE) hardened by the VAR techniques. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

Summation (SUM) is a small and heavily loop-based application, and the single 
output depends on the entire program execution. Thus, an error affecting the program at 
any time will very likely propagate to the output, which consists of a store instruction that 
is checked by all techniques implementing checkers. That increases the chance of 
detecting an error, which is shown by the high fault coverage (from 90.8% to 92.3%) 
presented in Fig. 5.8. The execution time and code size range, respectively, from 1.40x 
to 2.47x, and from 1.15x to 1.55x, when implementing checking rules. VAR0 and VAR0+ 
present execution time of 1.33x and 1.20x, and code size of 1.14x and 1.10x, respectively. 

 
Fig. 5.8: Results for the summation (SUM) hardened by the VAR techniques. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

The TETRA encryption algorithm has many load/store instructions. Once the store 
instructions are hardened by all VAR techniques implementing checking rules, the 
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probability of detecting an error increases. In addition, there are very few branches or 
jumps that rely on registers to get the target address. It corroborates to explain why the 
techniques present similar fault coverages (from 91.8% to more than 92.6%), as one can 
see in Fig. 5.9. The execution time ranges from 1.42x to 2.61x, and the code size varies 
from 1.41x to 2.43x when implementing checking rules. Duplication rule D1 causes an 
execution time of 1.38x and code size of 1.29x, and D2 causes an execution time of 1.29x 
and code size of 1.20x. 

 
Fig. 5.9: Results for the TETRA encryption algorithm (TEA2) hardened by the VAR 
techniques. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

The Tower of Hanoi has just a few conditional branches. On the other hand, it has 
many subroutine calls, and consequently many returns. If checking rule C6 is not 
implemented, the return register will not be checked, and an error affecting this register 
will not be detected. That explains why techniques that do not implement C6 have lower 
fault coverage, which goes from 88% to more than 92%. The execution time and code 
size of VAR techniques implementing checking rules range from 1.58x to 2.96x, and 
from 1.38x to 2.10x, respectively, as shown in Fig. 5.10. 

 
Fig. 5.10: Results for the Tower of Hanoi (TH) hardened by the VAR techniques. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

The memory accesses caused by load or store instructions are presented in Fig. 5.11. 
All the techniques that implement duplication rule D1 present twice the memory accesses 
of the unhardened application because they duplicate all load and store instructions. On 
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the other hand, when duplication rule D2 is used, only the load instructions are duplicate. 
Thus, the number of memory accesses can be define as twice the number of loads, plus 
the number of stores of the unhardened code. So the relation between the number of 
memory accesses of techniques using D2 and the number of memory accesses of the 
corresponding unhardened application depends on the application. Anyhow, it will 
always range from the same number of memory accesses of the unhardened application 
(when there are no load instructions) to twice the number of memory accesses (when there 
are loads, but there are no store instructions). 

 

Fig. 5.11: Memory accesses for duplication rules D1 and D2 for the nine case-study 
applications and average (harmonic mean). 

SIHFT techniques are cheaper than hardware-based ones, but they present 
performance and memory overheads. The proposed set of rules and VAR techniques 
evaluated the execution time, code size, MWTF, and fault coverage. As one can see, it 
was possible to reduce the overheads and keep similar fault coverage. For loop-based 
applications, the implementation of checking rule C6 is very implement to improve the 
fault coverage.11 Based on the results, the following items were enumerated as the most 
points where checkers are important: 

1. Before stores (checking rules C4 and C5): store instructions are the final 
point before sending the results to the memory. The protection of the 
registers used by store instructions is fundamental to increase the fault 
coverage 

2. Before branches or jumps (checking rule C6): checking registers used by 
branches or jumps increases the fault coverage, mainly in applications in 
which the average number of executions of the basic blocks is high 

3. Before loads (checking rule C3): it was observed that checking the register 
used as address by loads increases, in general, a little the fault coverage. 
Thus, checking rule C3 could be not necessary. However, in applications that 
make significant use of sequences of load/stores in which there is a high data 
dependency, i.e., the following calculations depends on the previous 
calculations (which is the case of the matrix multiplication), checking rule 
C3 increases significantly the fault coverage. This rule could be replaced by 

                                                 
11 It is possible to find the loop-based applications by the relation between the average 
number of times a BB is executed (Table C.4) and the execution time (Table C.5). 

1.00

1.25

1.50

1.75

2.00

BS DA rDFS sDFS MM RLE SUM TEA2 TH AVG

Memory Accesses D1 D2

n
o
rm

al
iz
e
d
 b
y 
th
e 

u
n
h
ar
d
en

ed
 a
p
p
lic
at
io
n



   

 

87 

a rule checking the data register after the load, but it would cause a higher 
execution time due to data dependency in the pipeline. 

The other rules increased a lot the overheads and did not increase the fault coverage 
when compared to applications hardened by rules C3 to C6. Furthermore, it is possible to 
notice that the MWTF is lower, or not much higher, than unhardened application in many 
cases. This is explained by the high overheads imposed by VAR techniques (mainly 
VAR1 to VAR2++), and because they only protect the data-flow12. Thus, the control-flow 
is left uncovered, and errors affecting it are not detected. Therefore, it may be a better 
option to leave a code unhardened than to protect only with a data-flow technique. 
However, if a control-flow is applied together with a data-flow technique, both data-flow 
and control-flow will be protected, and that may increase the application’s MWTF. The 
use of data-flow techniques together with control-flow techniques is evaluated in section 
5.3. 

5.2 Control-flow technique 

In order to complement the data-flow techniques and promote a protection of both 
data-flow and control-flow, we introduce a technique called SETA (Software-only Error-
detection Technique using Assertions) to detect control-flow errors in processors with no 
modification or addition of extra hardware. The penalties in performance and memory 
caused by SETA are lower than other control-flow techniques. SETA is based on HETA 
and CEDA. These techniques use runtime signatures to detect errors affecting the control-
flow of a running application. HETA uses an extra signature, which increases the 
overheads. Also, it makes use of a watchdog to help in the detection, which requires extra 
power. And, as the author stated, the watchdog needs access to the memory buses. Some 
processors that use on-chip embedded cache memories may not be accessible by the 
watchdog, which makes impossible to implement this technique in the target ARM 
processor. Furthermore, both CEDA and HETA are concerned about the error detection 
rate they achieve, but not about the overheads they cause. Aiming at providing similar 
error detection rate as CEDA with lower overheads, SETA is proposed. The technique 
uses signatures calculated a priori and processed during runtime. The program code is 
divided into basic blocks (BB),  and signatures are assigned to the basic blocks. 

5.2.1 Methodology and implementation 

Two Basic Block Types (BBT) are defined: A and X. A basic block is of type A if it 
has multiple predecessors, and at least one of its predecessors has multiple successors. 
And it is of type X if it is not of type A. Then, the basic blocks are grouped into networks. 
Basic blocks sharing a common predecessor belong to the same network. An example is 
shown in Fig. 5.12. 

                                                 
12 The next chapter presents an analysis trying to reduce even more such overheads caused 
by data-flow techniques by selectively hardening the registers used by the application. 
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Fig. 5.12: Representation of a program flow. Basic blocks (circles) classified as of type 
A or X, and grouped into networks (dashed rectangles). The arrows indicate the valid 
directions that a basic block can take. 

Every basic block has two different signatures: a Node Ingress Signature (NIS), for 
when entering the basic block, and a Node Exit Signature (NES), for when exiting the 
basic block. The NIS represents the current basic blocks, and the NES is used to identify 
the successor network and the valid successor basic blocks. 

The signatures are divided in two parts: an upper half and a lower half, as shown in 
Table 5.4. The upper half identifies the network, and the lower half identifies the basic 
block. The NIS’ upper half identifies the network that the basic block belongs to. The 
lower half has a random number assigned if the BB is of type X. If the BB is of type A, 
the lower half is calculated by the AND operation of the lower halves of all predecessor 
BBs’ NES. The NES’ upper half identifies the successor network, and the lower half has 
a random number. Table 5.5 summarizes it. If a BB of type X has multiple predecessors, 
all its predecessors must have the same NES. The size of these "halves" is, actually, 
variable per application in order to maximize the basic block identifier (lower half) and, 
thus, avoid aliasing. The upper half receives the minimum number of bits it needs to 
represent all the networks, i.e., the first integer greater or equal to log2(N+1), where N is 
the total number of networks. Let us define it as ceil(log2(N+1)). The remaining bits are 
used by the lower half. The networks are sequentially identified, from 0 to N-1. The 
identifier N is reserved for what we call ghost network. It is used as successor network of 
the basic blocks that have no successors. Thus, it invalidates any transition (caused by a 
fault) from such BBs to another BB. 

Table 5.4: Signature division. 

Upper half Lower half 

01000100 010010111101010010111101 

  variable per application 

Table 5.5: Role of each half in the signatures 
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Signature Upper half Lower half 

NIS Identifies the BB's network BB's signature 1 

NES Identifies the successor network BB's signature 2 

 
At runtime, a signature register S is updated according to the conditions presented in 

Table 5.6 to keep track of the program execution. The operation to update S can be an 
XOR or an AND. It is performed with S and an invariant value, as shown by Eqs. 5.1 and 
5.2. 

Table 5.6: Signature update 

BB Type NIS NES 

A AND XOR 

X XOR XOR 

 
Eq.	5.1 	 S ← S XOR invariant 

Eq.	5.2 	 S ← S AND invariant 

The invariant is a constant that will make S have the expected signature during a 
correct execution. Its calculation is described as follows. From NIS to NES (inside a BB), 
the NES invariant to update S depends only on the BB’s signatures. The invariant is the 
result of an XOR operation of the BB’s NIS and NES. From NES to NIS (BBs transition), 
the NIS invariant relies on the predecessor BBs’ NES, and on the NIS and type of the 
current BB. If the BB is of type X, there are two possible ways to calculate the invariant: 

 The BB has no predecessors (starting BB): in this case, the NIS invariant 
is equal to the BB’s NIS 

 The BB has predecessors: the NIS invariant is the result of an XOR 
operation with any predecessor NES and the BB’s NIS. 

If the BB is of type A, the NIS invariant is divided into upper and lower half (like the 
signatures) for its calculation. The upper half is filled with ones (the equivalent in 
unsigned integer is 2ceil(log

2
(N+1))-1). The lower half of the NIS invariant is equal to the 

lower half of the BB’s NIS. The classification of basic blocks into types and networks 
ensures that there will not be invalid transitions, except for the following case: the starting 
BB has itself as successor. Consequently, it is also its predecessor. In this case, a constant 
is loaded to S at the beginning of the BB to keep the execution consistent. 

Checkers are inserted in the basic blocks to verify if S contains the expected signature 
for that basic block. The more checkers, the lower is the latency to detect errors. On the 
other hand, the higher is the overhead. The maximum number of checkers in SETA 
matches the number of basic blocks since only one checker is needed per basic block. 
Table 5.7 shows an example of SETA for the miniMIPS processor. An unhardened 
portion of code is shown in the left side, and, in the right side, there is the same code 
protected by SETA. The instructions inserted by SETA are in italics (signature updates) 
or bold (checkers). The first XOR (xori) is to update the signature to the basic block's 
NIS. The instructions li and bne are used to compare the signature register $7 with the 
expected signature for that basic block. Finally, the last XOR is used to update the 
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signature to the expected NES. Since new instructions are inserted, it is clear that the 
execution time and the code size will increase. 

Table 5.7: Example of SETA control-flow technique for the miniMIPS processor 

# Unhardened code Code hardened by SETA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

jal  dfs 

 

la $2,$result 

lw  $4,0($6) 

sw $6,4($2) 

sw $4,0($2) 

 

 

 

j loop 

jal dfs 

xori $7,$7,41407 

la $2,$result 

lw $4,0($6) 

sw $6,4($2) 

sw $4,0($2) 

li $8,41407 

bne $7,$8,error 

xori $7,$7,29184 

j loop 

 
The main differences from CEDA to SETA are: 

 Removed inverted branches check. CEDA inserts branches at both possible 
targets of each branch to check it was taken correctly. SETA does not 
implement it because the fault coverage it provides is negligible compared to 
the overheads it causes. It only detects errors affecting the decision of a 
branch when the registers and the comparison are correct, but the branch takes 
the wrong direction. 

 Removed extra instructions used to avoid aliasing. SETA does not need to 
insert instructions to "clear" the signature, as it is done in CEDA because the 
signature values are assigned in a different way. The upper half is 
deterministic, and the lower half is randomly determined. Thus, the signature 
register can always be directly updated, which reduces the overheads. SETA 
avoid aliasing by varying the size of the "halves", trying to maximize the size 
of the lower half. 

5.2.2 Fault injection results in the miniMIPS processor 

Firstly, we compared SETA with CEDA. Fig. 5.10 shows the execution time, code 
size, MWTF, and fault coverage of both techniques for all benchmarks. The average 
(AVG) is also included. The execution time, code size, and MWTF are presented 
normalized by the equivalent unhardened application (left axis). The fault coverage is 
expressed in percentage (right axis). The results show that both techniques present fault 
coverage around of 94% on average. 
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Fig. 5.10: Comparison between CEDA and proposed SETA techniques. The execution 
time, code size, and MWTF are presented normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

In all case-study applications, one can notice an improvement of the MWTF from 
CEDA to SETA, as shown in Fig. 5.11. It is due to the reduction of the execution time. 
The sequential depth-first search (sDFS) and the recursive depth-first search have very 
high overheads when protected by control-flow techniques. These applications have small 
basic blocks that are executed many times, which makes the addition of signature updates 
and checkers more noticeable in the execution time. The inverted branches check makes 
CEDA way more costly in such cases. 

 

Fig. 5.11: Comparison between SETA and CEDA. The results obtained with SETA are 
normalized by the ones obtained with CEDA. 

Fig. 5.12 shows the average results for each technique. The execution time, code size, 
and MWTF are presented normalized by the unhardened applications (left axis). Fault 
coverage and error detection rates are showed in percentage (right axis). The horizontal 
axis presents the techniques. When CEDA and SETA have one checker per basic block, 
the fault coverage and error detection of both techniques are similar. One can notice that 
even the techniques have been designed to detect control-flow errors, they are capable of 
detecting more than half of the data-flow errors. The advantages of SETA are due to its 
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reduced overheads. SETA is 11.0% faster and occupies 10.3% fewer memory positions 
than CEDA. Once SETA runs faster than CEDA, the application protected by SETA has 
a lower chance of being hit by an energized particle that causes a bit flip. And since both 
have similar fault coverage, SETA is more reliable than CEDA. That is reason why while 
SETA's MWTF is 1.74x, while CEDA's is 1.60x.  

 

Fig. 5.12: Comparison between CEDA and SETA. The average results are presented. The 
execution time, code size, and MWTF are normalized by the unhardened applications 
(left axis). The fault coverage and error detection rates are presented in percentage (right 
axis). 

5.3 Combined data-flow and control-flow techniques 

Once the aim is to protect both the data-flow and the control-flow of a running 
application, SETA was combined with some of the proposed data-flow VAR techniques 
(3, 3+, 3++, 4, 4+, 4++, 5, 5+, and 5++). VAR0 and VAR0+ are not evaluated in this 
section because they do not detect errors. They are just used to evaluate the overhead that 
the duplication rules cause. The remaining VAR techniques (1, 1+, 1++, 2, 2+, and 2++) 
are also not included in this section because they have similar data error detection rate to 
VAR3 and VAR3+, but higher overheads. All the case-study applications are evaluated 
considering all the combinations of a VAR technique and SETA in terms of execution 
time, code size, MWTF, and fault coverage. As well as the previous sections, the fault 
coverage is provided by fault injection simulation. Nevertheless, some selected cases are 
also submitted to radiation experimements in order to validate the simulated fault 
injection. 

5.3.1 Methodology and implementation 

The code is hardened by one VAR technique and SETA. Firstly, a VAR technique is 
applied to the unhardened code, and then SETA is applied to this code hardened by VAR. 
The VAR techniques are implemented as discussed in 5.1.1, and SETA is implemented 
as explained in 5.2.1. The only consideration is with regards to the checkers inserted by 
VAR when applying SETA. SETA counts the checkers as instructions, but they are not 
considered ends of basic blocks. Thus, the unhardened code and the code hardened by 
VAR have the same basic blocks division, and SETA is applied evenly to both codes, as 
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one can see in Table 5.8. The table presents four versions of a code, an unhardened and 
three others hardened by SETA, VAR3, and VAR3 and SETA. The original code is 
formatted as normal text, the code inserted by VAR3 is shown in italics, and the code 
inserted by SETA is bold. We can notice that SETA ignores the checkers inserted by 
VAR3 when dividing the code into basic blocks. Thus, the signature updates and checkers 
are inserted as in the unhardened code. 

Table 5.8: Example of VAR3 and SETA techniques for the miniMIPS processor 

# 
Unhardened 

code 
Code hardened 

by SETA 
Code hardened 

by VAR3 
Code hardened by 
VAR3 and SETA 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

jal  dfs 

 

la $2,$result 

 

 

lw  $4,0($6) 

 

 

 

sw $6,4($2) 

 

 

 

sw $4,0($2) 

 

 

 

 

j loop 

jal dfs 

xori $7,$7,41407 

la $2,$result 

 

 

lw $4,0($6) 

 

 

 

sw $6,4($2) 

 

 

 

sw $4,0($2) 

 

li $8,41407 

bne $7,$8,error 

xori $7,$7,29184 

j loop 

jal  dfs 

 

la $2,$result 

la $12,$result 

bne $6,$16,error 

lw  $4,0($6) 

lw  $14,1000($16) 

bne $6,$16,error 

bne $2,$12,error 

sw $6,4($2) 

sw $16,1004($12) 

bne $4,$14,error 

bne $2,$12,error 

sw $4,0($2) 

sw $14,1000($12) 

 

 

 

j loop 

jal  dfs 

xori $7,$7,41407 

la $2,$result 

la $12,$result 

bne $6,$16,error 

lw  $4,0($6) 

lw  $14,1000($16) 

bne $6,$16,error 

bne $2,$12,error 

sw $6,4($2) 

sw $16,1004($12) 

bne $4,$14,error 

bne $2,$12,error 

sw $4,0($2) 

sw $14,1000($12) 

li $8,41407 

bne $7,$8,error 

xori $7,$7,29184 

j loop 

 
If SETA considered the VAR checkers as ends of basic blocks, the code hardened by 

VAR would have a considerably higher number of basic blocks than the unhardened code, 
which would result in a significant increase in the overheads in execution time and code 
size when SETA is applied. 

5.3.2 Fault injection results in the miniMIPS processor 

Fig. 5.13 presents the average results (AVG) for combining the VAR techniques with 
SETA. The execution time, code size, and MWTF are expressed normalized by the 
corresponding unhardened application (left axis). The fault coverage is presented in 
percentage (right axis). The horizontal axis identifies the data-flow technique. For 
example, 3++ means that the data-flow technique VAR3++ and the control-flow 
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technique SETA have been applied. We can see that the overheads in performance and 
memory introduced by the data-flow techniques for the target applications and processor 
are higher than the ones presented by the control-flow techniques. It is justified by the 
insertion of redundancy and checkers in the entire code, instruction by instruction, and 
not by dividing into basic blocks. The execution time ranges from 1.74x to 2.20x, and the 
code size ranges from 1.68x a 1.95x. However, one can notice an increase of up to 5.19x 
in the MWTF when VAR3+ and SETA are applied. All the data-flow techniques, when 
combined with SETA, present a significant increase in the MWTF. It is clear from the 
chart that techniques VAR3++, VAR4++, and VAR5++ have inferior MWTF. These 
three techniques share a common feature, they do not implement checking rule C6. This 
rule states that registers must be checked before they are used by branches or jumps. All 
the other VAR techniques implement C6, and they have higher MWTF. Therefore, 
checking registers before they are used by branches or jumps is important to provide 
reliability to the application. An error affecting a register used by a branch would not be 
detected by either SETA or CEDA, because it would be a valid basic block transition. 
The inverted branches check implemented by CEDA is also incapable of detecting such 
errors because the redundant branch would have the same decision of the original one. It 
was observed in Chielle (2016) that almost the totality errors causing wrong, but legal 
branches are due to an incorrect value in a register used during the branch comparison. 

 

Fig. 5.13: Average results for combining VAR and SETA. The execution time, code size, 
and MWTF are normalized by the unhardened application (left axis). The fault coverage 
is presented in percentage (right axis). 

In Fig. 5.14, the results for the bubble sort (BS) are presented. They are very similar 
to the average results. Therefore, the same conclusions from the average results can be 
applied to the BS. The execution time ranges from 1.65x to 2.20x, the code size goes from 
1.89x to 2.31x, and the MWTF reaches up to 5.45x when VAR4+ is selected. 
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Fig. 5.14: Results of combining VAR and SETA for the bubble sort (BS). The execution 
time, code size, and MWTF are normalized by the unhardened application (left axis). The 
fault coverage is presented in percentage (right axis). 

Fig. 5.15 shows the execution time, code size, MWTF, and fault coverage for the 
Dijkstra’s algorithm (DA) when protected by VAR and SETA. The execution time ranges 
from 1.52x to 1.93x, the code size goes from 1.76x to 2.25x, and the MWTF reaches up 
to 6.39x when VAR3++ is selected. 

 

Fig. 5.15: Results of combining VAR and SETA for the Dijkstra’s algorithm (DA). The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

The recursive depth-first search presents high fault coverage when protected by SETA 
and a VAR technique that implements checking rule C6, as shown in Fig. 5.16. On the 
other hand, when this rule is not applied, the application suffers a considerable drop in 
the fault coverage, which can be seen by the lower MWTF presented by VAR3++, 
VAR4++, and VAR5++ (3.28x, 1.74x, and 1.78x, respectively). In recursive applications, 
the number of errors causing wrong, but legal branches is very high due to many 
condition tests and returns from subroutines. An error affecting a register used by such 
instructions is not detected if C6 is not implemented. The highest MWTF is 5.85x, 
achieved when VAR4+ and SETA are applied. The execution time and code size range 
from 1.88x to 2.37x, and from 1.21x to 1.29x, respectively. 
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Fig. 5.16: Results of combining VAR and SETA for the recursive depth-first search 
(rDFS). The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

Fig. 5.17 presents the execution time, code size, MWTF, and fault coverage for the 
sequential depth-first search (sDFS). The MWTF is inferior to rDFS, mainly due to the 
higher execution time overhead. And although sDFS has a similar percentage of 
arithmetic, load/store, and branch instructions to rDFS, the percentage of branches is a 
little higher13. It explains why techniques that do not implement checking rule C6 
(VAR3++, VAR4++, and VAR5++) present lower MWTF. The highest MWTF for this 
application is achieved by VAR5 and SETA (4.11x), and the execution time and code 
size range from 2.03x to 2.46x, and from 1.17x to 1.22x, respectively. 

 

Fig. 5.17: Results of combining VAR and SETA for the sequential depth-first search 
(sDFS). The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

The matrix multiplication (MM) has data processing and load/store instructions. The 
only VAR techniques that check both load and store instructions are VAR3, VAR3+, and 
VAR3++. As a result, they provide a higher fault coverage for this application, as one can 
see in Fig. 5.18. It results in an MWTF of up to 6.46x when MM is protected by VAR3+ 

                                                 
13 More information about the benchmarks is available in the appendix C. 
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and SETA. The execution time ranges from 1.50x to 1.81x, and the code size varies from 
1.88x to 2.31x. 

 

Fig. 5.18: Results of combining VAR and SETA for the matrix multiplication (MM). The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Fig. 5.19 shows the results for the run-length encoding (RLE). RLE is the largest code, 
it explains why its code size overhead is higher when compared to the execution time 
overhead. The execution time varies from 1.60x to 2.09x, and the code size ranges from 
1.90x to 2.61x. The MWTF reaches up to 6.30x. 

 

Fig. 5.19: Results of combining VAR and SETA for the run-length encoding (RLE). The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Summation (SUM) is the smallest code, and its code is well-balanced regarding the 
types of instructions (arithmetic, load/store, and branch). However, its execution is 
heavily loop-based, and the single output depends on the entire program execution. Thus, 
an error affecting the program at any time during the execution will very likely propagate 
to the program output. The program output is a store instruction that is checked by all 
techniques. That is why all the techniques present a high fault coverage, as one can see in 
Fig. 5.20. The MWTF of techniques that do not protect the branches (VAR3++, VAR4++, 
and VAR5++) is compensated by their lower execution time. The execution time and 
code size range, respectively, from 1.77x to 2.37x, and from 1.39x to 1.58x. 
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Fig. 5.20: Results of combining VAR and SETA for the summation (SUM). The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

The TETRA encryption algorithm is, by far, the case-study application with the 
highest average number of instructions per basic block. Furthermore, it is a code heavily 
based on load/store instructions. That is why all techniques perform well in detecting 
errors and providing fault coverage, once the store instructions are hardened. In addition, 
there are very few branches or jumps that rely on registers to get the target address. Fig. 
5.21 presents the average results for each combined technique. The hardened application 
achieves up to 7.87x when VAR5+ and SETA are applied. The execution time ranges 
from 1.52x to 1.92x, and the code size varies from 1.57x to 2.06x. 

 

Fig. 5.21: Results of combining VAR and SETA for the TETRA encryption algorithm 
(TEA2). The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

The Tower of Hanoi is a high arithmetic, load/store application, with just a few 
conditional branches. On the other hand, it has many subroutine calls, and consequently 
many returns. A return instruction consists of a jump and a register containing the return 
address. If this register contains a wrong value, the return will go to the wrong position, 
and that may cause an incorrect execution. Once again, checking rule C6 is essential to 
improve the fault coverage and MWTF, which reaches up to 6.20x with VAR5 and SETA. 
The execution time and code size range from 2.15x to 2.72x, and from 1.64x to 1.95x, 
respectively, as shown in Fig. 5.22. 
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Fig. 5.22: Results of combining VAR and SETA for the Tower of Hanoi (TH). The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Fig. 5.23 presents the average execution time, code size, MWTF, and fault coverage 
for some combinations of VAR techniques with SETA, and for an improved version of 
the state-of-the-art SWIFT technique. We used the original data-flow part of SWIFT and 
replaced the control-flow part, which is a modified version of CFCSS technique, by 
CEDA because CEDA achieves and extends the capabilities of detecting errors of the 
control-flow part of SWIFT with very similar overheads. The proposed techniques follow 
the same representation of previous charts, and the state-of-the-art technique is 
represented by the name SoA. Its execution time, code size, MWTF, and fault coverage 
are, respectively, 1.99x, 1.87x, 2.85x, and 97.30%. VAR3+, SETA presents the highest 
MWTF (5.19x), and fault coverage (98.62%), with a higher execution time (2.11x) and 
little higher code size (1.90x). If the aim is reliability, then VAR3+, SETA should be 
chosen. If the execution time cannot be higher than SoA, then VAR5 can replace it (once 
it has an execution time of 1.97x) and improve significantly the reliability (the MWTF is 
4.88x). If the code size is the constraint, VAR3+, SETA could replace SoA with little 
increase in the code size, from 1.87x to 1.90x. Another option is to use VAR4, SETA, 
which presents a code size of 1.86x, with an execution time of 2.05x and MWTF of 5.14x. 
Finally, if the reliability achieved by SoA is enough, it is possible to reduce the overheads 
by replacing SoA by VAR4++, SETA or VAR5+, SETA. The first presents 1.82x of 
execution time, 1.74x of code size, and 2.89x of MWTF. And the second presents an 
execution time of 1.88x, a code size of 1.68x, and an MWTF of 4.01x. If CEDA is used 
with another state-of-the-art data-flow technique, it can provide a fault coverage similar 
fault to the proposed techniques. However, the overheads will be higher than any 
combination of VAR with SETA. Therefore, its MWTF will be lower. 
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Fig. 5.23: Average results for combining VAR and SETA vs. state-of-the-art (SoA) 
techniques. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

5.3.3 Radiation test results in the ARM Cortex-A9 processor 

Radiation test is considered one of the approaches more close to the real application 
environment to measure the reliability of new fault tolerant techniques. However, 
contrarily to the simulations carried out in previous section an exhaustive evaluation of 
every combination is not feasible with radiation due to limited beam time.  Therefore, we 
used the fault injection campaigns as a guideline to select the most suitable combination 
of SIHFT techniques based on MWTF. 

5.3.3.1 Test with neutrons 

Experiments were performed at Los Alamos National Laboratory’s (LANL) Los 
Alamos Neutron Science Center (LANSCE) Irradiation of Chips and Electronics House 
II, Los Alamos, US, in order to validate the fault injection campaign by simulation. As 
mentioned in (VIOLANTE, 2007), LANSCE provides a white neutron source that 
emulates the energy spectrum of the atmospheric neutron flux. The relationship between 
neutron energy and modern devices cross section is still an open question. Nevertheless, 
LANSCE beam has been empirically demonstrated to be suitable to mimic terrestrial 
radiation environment (VIOLANTE, 2007). 

The setup is the one presented in section 4.2.2. It consists of a board, computer, USB 
net switch, cables for communication, and cables for power supply. The neutron flux was 
approximately 1.5x106 n/(cm².s) for energies above 10 MeV. The beam was focused on 
a spot with a diameter of 2 inches plus 1 inch of penumbra, which provided uniform 
irradiation of the device without directly affecting nearby board power control circuitry. 
Irradiation was performed at room temperature with normal incidence and nominal 
voltages. 

Two versions of case-study Tower of Hanoi (30 elements in the stack) have been 
tested, one unhardened and the other hardened by VAR4++ and SETA techniques. Table 
5.9 summarizes the data from the neutron experiment. The unhardened version was 
executed for 100 minutes under the beam, receiving a total fluence of 9.0x109 n/cm² in 
average. The hardened version was executed for 730 minutes under the beam, receiving 
a total fluence of 6.57x1010 n/cm² in average. We observed 6 incorrect executions out of 
1557, which results in an SER of 3.854x10-3 and a cross section of 6.67x 10-10 cm² for the 
unhardened application. In the hardened version, we observed 5 undetected errors that 
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lead to incorrect output on a total of 4872 executions, which results in an SER of 
1.026x10-3 and a cross section of 7.61x10-11 cm². The detection techniques were capable 
of detecting 90.9% of the errors affecting the processor. That is the reason why we can 
see a reduction of the SER by 3.76 and of the cross-section by one order of magnitude 
when hardening using VAR4++ and SETA. However, the execution time of the hardened 
case-study application used in ARM is 2.33x, and the code size is 2.13x compared to the 
unhardened application. That results in an MWTF of 1.61x for the hardened application. 

Table 5.9: Summary of radiation test with neutrons on the ARM Cortex-A9 processor 
(VAR4++ and SETA) 

BB Type Unhardened 
Hardened by 

VAR4++ and SETA 
Flux 1.5x106 n/(cm².s) 1.5x106 n/(cm².s) 

Time of exposure 100 min 720 min 

Fluence 9.0x109 n/cm² 6.57x1010 n/cm² 

SER 3.854x10-3 1.026x10-3 

Cross-section 6.67x10-10 cm² 7.61x10-11 cm² 

Executions 1557 4872 

Execution time 3.85 s 9.00 s 

Code size 472 B 1004 B 

MWTF 1.00x 1.61x 

 
The MWTF obtained by simulation on the miniMIPS processor for the Tower of 

Hanoi hardened by VAR4++ and SETA was 2.68x. The same benchmark, but running on 
the ARM Cortex-A9 processor and tested under neutrons reached an MWTF of 1.61x. A 
factor that influenced in this difference is the different processor used in both tests. Thus, 
the final code and the processor architecture are not the same. Anyhow, it is noticeable 
an increase of the MWTF from the unhardened to the hardened version. 

5.3.3.2 Test with heavy ions 

Heavy ions experiments were conducted at Laboratório Aberto de Física Nuclear of 
the Universidade de São Paulo (LAFN-USP), Brazil (AGUIAR, 2014). The ion beams 
were produced and accelerated by the São Paulo 8UD Pelletron Accelerator. Aiming to 
achieve a very low particle flux in the range from 102 to 105 particles.cm-2.s-1, as 
recommended by the European Space Agency (ESA) for SEU tests (ESA, 2014). A 
standard Rutherford scattering setup using a gold foil was used. The experiment was 
performed in air. A silicon barrier detector was mounted inside the vacuum chamber at 
an angle of 45º to monitor the beam intensity. In front of the detector, it was mounted a 
collimator with a diameter of 4 mm, defining a solid angle of about 0.085 msr. The SEU 
events were observed irradiating 16O beams, scattered by an 184 µg/cm² gold target, with 
an energy of 51 MeV (effective energy of 41 MeV), which provided a Linear Energy 
Transfer (LET) of 5 MeV/mg/cm² and penetration in Si of 29 µm. To achieve the desired 
particle flow, the DUT was positioned at a scattering angle of 15º, resulting in an average 
flux of 584.44 particles.cm-2.s-1. Finally, the DUT was also positioned in a way that the 
center of the beams was focused in the PS part.  
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The package of the device was thinned to allow that irradiated particles penetrate the 
active region of the silicon.  Fig. 5.24(a) shows the chip surface without its package. It is 
possible to distinguish between the PS and the PL part. Fig. 5.24(b) shows a microscopic 
section of the chip performed to evaluate the energy loss of the heavy ions after passing 
the passive layers. The passive layers consist of eleven copper metallization layers 
separated by dielectric layers. The total thickness of the passive layers is 12.87 µm. To 
estimate the energy loss of the heavy ions, it was assumed a total thickness of the copper 
metallization layers of 7.87 µm, and a total thickness of the dielectric layers of 5.0 µm. 

 

Fig. 5.24: (a) View of the surface of the XC7Z020-CLG484 device, and (b) 
Microscopic section of the XC7Z020-CLG484 device. 

The setup is the one presented in section 4.2.2. It consists of a board, computer, USB 
net switch, cables for communication, and cables for power supply. Only one ARM core 
was utilized during the test, data and instruction L1 caches were enabled, and L2 was 
disabled. The processor was running a target application that sends the output by UART 
to the computer and, then, restarts its execution. The computer was running a monitoring 
application that listens to the COM port connected to the board UART and classifies the 
output. In case of error in the ARM processor, the processor is reset.  

 Two versions of a Tower of Hanoi (20 elements in the stack) have been tested, 
one unhardened, and the other hardened by VAR3+ and SETA techniques. Table 5.10 
summarizes the parameters utilized in the radiation test with heavy ions. The unhardened 
version was 92 minutes under radiation, receiving a total fluence of 3.23x106 part/cm² in 
average. The hardened version was 91 minutes under radiation, receiving a total fluence 
of 3.19x106 part/cm² in average. We observed an SER of 5.43x10-3 and a cross section of 
9.30x10-6 cm² for the unhardened application. For the hardened version, we observed an 
SER of 1.47x10-3 and a cross section of 2.51x10-6 cm². One can see a reduction of the 
SER and cross section by a factor of 3.71 when hardening using VAR3+ and SETA. 
However, the execution time of the hardened case-study application is 2.62 times, and the 
code size is 3.95 times the unhardened application for the ARM processor. That results 
in a normalized MWTF of 1.66x for the hardened application. 
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Table 5.10: Summary of radiation test with heavy ions on the ARM Cortex-A9 
processor (VAR3+ and SETA) 

BB Type Unhardened 
Hardened by 

VAR3+ and SETA 
Flux 5.84x102 part/(cm².s) 5.84x102 part/(cm².s) 

Time of exposure 92 min 91 min 

Fluence 3.23x106 part/cm² 3.19x106 part/cm² 

SER 5.43x10-3 1.47x10-3 

Cross section 9.30x10-6 cm² 2.51x10-6 cm² 

Execution time 6.08 x10-2 s 1.59 x10-1 s 

Code size 252 B 996 B 

MWTF 1.00x 1.66x 

 
Although the results obtained from simulated fault injection cannot be directly 

compared with the ones obtained from the radiation experiment, it is possible to notice 
that the MWTF of the hardened version in the radiation experiment was not very high, 
only 1.66x. There are many factors that influenced the lower MWTF of the radiation test. 
One of the major causes is the presence of cache memories. The experiments show that 
ARM caches are very sensitive to radiation and prone to faults that become errors. 
Another concern is that simulation model does not include microarchitectural registers. 

Data-flow technique VAR3+ implements duplication rule D2, which does not create 
redundancy in the main memory and, consequently, in the cache memories. Therefore, a 
fault affecting the L1 cache (enabled in the heavy ion experiment) is not detected by 
VAR3+. Anyhow, it is important to mention that the fault injection method must not be 
used to replace radiation because it cannot reproduce the complexity of the radiation flux 
and the complete hardware architecture implementation. The fault injection simulator was 
designed only for comparing the increase of reliability offered by different SIHFT 
techniques, but not to get estimations of absolute reliability values. 

Another test with heavy ions comparing VAR3 and SETA with the unhardened 
application was performed. The same configuration utilized, including the same 
benchmark (a Tower of Hanoi with 20 elements in the stack). However, it is not possible 
to directly compare the results of this experiment with the previous one because the beam 
does not cover the entire chip. Therefore, we cannot ensure that particles are hitting the 
same area. Table 5.11 summarizes the parameters utilized in the radiation test with heavy 
ion. The unhardened version was 88.5 minutes under radiation, receiving a total fluence 
of 3.10x106 part/cm² in average. The hardened version was 179.8 minutes under radiation, 
receiving a total fluence of 6.30x106 part/cm² in average. We observed an SER of 
5.35x10-4 and a cross section of 1.22x10-5 cm² for the unhardened application. For the 
hardened version, we observed an SER of 1.38x10-4 and a cross section of 1.11x10-6 cm². 
One can see a reduction of the SER by a factor of 3.88 and a reduction of the cross section 
by a factor of 11.03 when hardening using VAR3 and SETA. However, the execution 
time of the hardened case-study application is 2.69x for the ARM processor. As a 
consequence, the hardened application presents an MWTF of 1.64x. 
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Table 5.11: Summary of radiation test with heavy ions on the ARM Cortex-A9 
processor (VAR3 and SETA) 

BB Type Unhardened 
Hardened by 

VAR3 and SETA 
Flux 5.84x102 part/(cm².s) 5.84x102 part/(cm².s) 

Time of exposure 88.5 min 179.8 min 

Fluence 3.10x106 part/cm² 6.30x106 part/cm² 

SER 5.35x10-4 1.38x10-4 

Cross section 1.22x10-5 cm² 1.11x10-6 cm² 

Execution time 6.08 x10-2 s 1.64 x10-1 s 

Code size 252 B 1020 B 

MWTF 1.00x 1.66x 

 

5.4 Summary 

In this chapter we proposed new data-flow and control-flow techniques. The goal of 
providing similar reliability of state-of-the-art techniques with lower overheads was 
achieved. In addition, it was possible to improve the reliability by keeping a similar fault 
coverage and reducing overheads when compared to state-of-the-art techniques. We 
discussed the importance of checking registers used by store, load, and branch 
instructions. Furthermore, the variations of VAR techniques open a set possibilities for 
hardening an application depending on different constraints due to their differents levels 
of reliability and overheads. 
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6 PROPOSED SELECTIVE HARDENING 

Selective implementations using one of the proposed data-flow techniques plus the 
proposed control-flow technique are introduced in this chapter. Firstly, the selective 
hardening is performed with a data-flow technique through the selection of which register 
will be hardened. Then, the selective data-flow technique is complemented by a control-
flow technique (with no selective hardening). After that, the selectiveness is implemented 
in the control-flow technique in two ways: (1) removing checkers from selected basic 
blocks and (2) removing the entire protection of selected basic blocks. These two 
approaches are tested individually and with a data-flow technique. Finally, the selective 
hardening is applied in both data-flow and control-flow techniques. By applying the 
techniques selectively, it is possible to lower even more the overheads. The aim is to find 
the point with minimum overheads where the fault coverage is still similar to applying 
the techniques completely. Furthermore, finding the best trade-off between reliability and 
performance is a point of interest. 

6.1 Selective data-flow technique 

Data-flow techniques duplicate all the registers used by an application, which may 
cause significant overheads. Thus, the use of data-flow techniques may be infeasible if 
the application has performance or memory constraints. Furthermore, sometimes the 
application uses many registers, not leaving enough for duplicating all used registers. In 
such cases, a subset of the used registers can be hardened. It will present lower overheads 
than hardening all registers, which can meet the application constraints and provide some 
reliability. Nevertheless, the registers cannot be randomly selected. A random selection 
of registers may provide a lower reliability than a smarter approach based on the 
application behavior. Therefore, the method to select registers is of great importance and 
will affect the application reliability. 

6.1.1 Methodology and implementation 

In order to improve the trade-off between reliability and overheads, every register 
must be analyzed. However, testing all the possible subset of used registers is infeasible 
due to its exponential property. Eq. 6.1 demonstrates that the number of possible subsets 
C of an application depends on the number of used registers n. It is given by the 
summation from 0 to n of the Newton's binomial with n and i as coefficients, where i is 
the summation variable. This equation is equivalent to 2n. 

Eq.	6.1 	 : →
!

! !
2  

A metric to define the criticality of registers was proposed by Restrepo-Calle (2015). 
It analyzes the application dynamically, evaluating the registers’ effective lifetime, 
functional dependencies, and their use in branch instructions. As result, the metric 
provides a list of registers ranked by their criticality. Thus, there are no need for 
exhaustive tests. This work protects registers following this metric. As follows, we 
present a brief explanation of the main topics of this metrics: 
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 Dynamic code analysis: it consists of using dynamic measurements for the 
computation algorithms during runtime. This kind of assessment does not 
represent any inconvenience in the usual design flow of embedded systems, 
and alternatively, improves significantly the accuracy of the estimations 

 Lifetime: the register lifetime represents the time when useful data in present 
in the register. Any fault occurring to the register during that time destroys 
the data integrity. Therefore, the higher the lifetime, the longer the register 
is prone to faults. The lifetime is expressed as the sum of clock cycles of all 
the register living intervals during the program execution 

 Living interval: a living interval starts with a write operation and ends with 
the last read operation before the next write operation in the same register 

 Effective lifetime: it is an improved evaluation of the register lifetime. 
Registers with the same lifetime, but with a different number of living 
intervals have a different effective lifetime. The more living intervals a 
register has, the lower is its effective lifetime. That is a very important 
consideration that takes into account characteristics of the pipeline 

 Weight in conditional branches: errors affecting registers used by branch 
instructions may lead the application control to take an incorrect path. That 
is the reason to give more attention to branch instructions 

 Functional dependencies: this criterion is the count of functional 
dependencies among registers. Registers having a lot of descendants are 
more sensitive to the whole application because an error affecting it has a 
higher chance of propagating to other registers and the application output. In 
Restrepo-Calle (2015), only the direct descendants were considered 

 Criticality: it is the score that each register receives based on its effective 
lifetime, weight in conditional branches, and functional dependencies. The 
registers are then ranked by their criticality. The higher the value, the more 
critical the register. 

The criticality, as well as its components for each case-study application of this 
thesis work, are listed and discussed in the appendix C, which presents the benchmarks. 

VAR3+ was selected as the data-flow technique for the selective hardening due to 
its high fault coverage and MWTF when applied together with SETA. VAR4 is also a 
good candidate because it presented a slightly lower MWTF with lower overheads. 
However, it means that it has a lower fault coverage too. And since the overheads of 
VAR3+ are higher, it means that the selective hardening of this technique will reduce 
more the overheads. That in addition to the fact that VAR3+ has a higher fault coverage 
makes it is the best candidate to improve the reliability with the selective hardening. The 
selective VAR3+ technique will be referred as S-VAR from now on. The methodology is 
similar to the one presented in section 3.4.1. However, the registers are hardened based 
on the ranking provided by the metric for criticality cited above. Table 6.1 shows 
examples of S-VAR when different numbers of registers are hardened. The original code 
is presented as normal text, and the code inserted by S-VAR is bold. Note that the S-VAR 
with all registers hardened is equivalent to VAR3+. In order to apply the selective 
hardening in the applications, we used features of the CFT-tool that allow us to indicate 
which registers must be hardened, and which are their priorities to be hardened. There are 
built-in static metrics for criticality in the tool, but once Restrepo-Calle (2015)’s metric 
is dynamic, it was necessary to calculate the registers criticality for each case-study 
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application before hand. Then, we inform CFT-tool of the registers that must have a 
higher priority to be hardened through a customized option to select registers. 

Table 6.1: Example of a selective data-flow technique (S-VAR) 

# 
Unhardened 

code 
Hardened by 
S-VAR ($2) 

Hardened by 
S-VAR ($2,$6) 

Hardened by 
S-VAR ($2,$4,$6) 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

la $2,$result 

 

 

lw  $4,0($6) 

 

sll $4,$4,2 

 

 

 

sw $6,4($2) 

 

 

sw $4,0($2) 

la $2,$result 

la $12,$result 

 

lw  $4,0($6) 

 

sll $4,$4,2 

 

 

bne $2,$12,error 

sw $6,4($2) 

 

bne $2,$12,error 

sw $4,0($2) 

la $2,$result 

la $12,$result 

bne $6,$16,error 

lw  $4,0($6) 

 

sll $4,$4,2 

 

bne $6,$16,error 

bne $2,$12,error 

sw $6,4($2) 

 

bne $2,$12,error 

sw $4,0($2) 

la $2,$result 

la $12,$result 

bne $6,$16,error 

lw  $4,0($6) 

lw  $14,0($16) 

sll $4,$4,2 

sll $14,$14,2 

bne $6,$16,error 

bne $2,$12,error 

sw $6,4($2) 

bne $4,$14,error 

bne $2,$12,error 

sw $4,0($2) 

 

6.1.2 Fault injection results in the miniMIPS processor 

Figs. 6.1 to 6.9 present the execution time, code size, MWTF, and fault coverage for 
all benchmarks hardened with S-VAR. The horizontal axis represents the percentage of 
registers hardened by S-VAR, where 0% is equivalent to the unhardened application, and 
100% is equivalent to VAR3+. The execution time, code size, and MWTF are normalized 
by the unhardened application. The fault coverage is presented in percentage. Although 
the case-study applications have a different behavior and use a different number of 
registers, they all present similar results. The fault coverage saturates after a certain 
percentage of registers is hardened. This percentage depends on the application, but in 
general, the more registers an application have, the lower is the percentage to saturate the 
fault coverage. The number of more critical registers does not vary much, which means 
that if there are more used registers, the percentage of critical ones is lower than the 
average. Furthermore, the overheads roughly follow the behavior of the fault coverage, 
which explains why the MWTF does not change much with the increase of protection. 
Any difference can also be explained by the fact the metric for criticality, although good, 
is not perfect. As stated in the previous chapter, data-flow techniques are not enough for 
protecting an application. The use combined with a control-flow technique is necessary. 
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Fig. 6.1: Results for the bubble sort (BS) hardened by the S-VAR technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.2: Results for the Dijkstra’s algorithm (DA) hardened by the S-VAR technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.3: Results for the recursive depth-first search (rDFS) hardened by the S-VAR 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.4: Results for the sequential depth-first search (sDFS) hardened by the S-VAR 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.5: Results for the matrix multiplication (MM) hardened by the S-VAR technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.6: Results for the run length encoding (RLE) hardened by the S-VAR technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.7: Results for the summation (SUM) hardened by the S-VAR technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.8: Results for the TETRA encryption algorithm (TEA2) hardened by the S-VAR 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.9: Results for the Tower of Hanoi (TH) hardened by the S-VAR technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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In Fig. 6.10 we can see the highest MWTF achieved for each application and the 
average results. In summary, the MWTF stays a little higher than 1.0, and the higher the 
fault coverage, the higher the overheads. The execution time, code size, and MWTF are 
normalized by the equivalent unhardened application, and the fault coverage is presented 
in percentage. 

 

Fig. 6.10: Highest MWTF for the benchmarks hardened by the S-VAR technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Fig. 6.11 to 6.19 present the execution time, code size, MWTF, and fault coverage 
for all the benchmarks (one per chart) hardened by S-VAR and SETA. The execution 
time, code size, and MWTF are normalized by the corresponding unhardened application. 
It is possible to notice that the same behavior observed with S-VAR only can be seen with 
the addition of SETA. However, the fault coverage saturates much later (with a higher 
percentage of registers hardened). It means that the small increase in the fault coverage 
that a not very critical register provides is still enough to compensate the additional 
overheads. Furthermore, the MWTF is considerably higher than S-VAR because both 
data-flow and control-flow are hardened, as also observed in the previous chapter. 

 

Fig. 6.11: Results for the bubble sort (BS) hardened by S-VAR and SETA. The execution 
time, code size, and MWTF are normalized by the unhardened application (left axis). The 
fault coverage is presented in percentage (right axis). 
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Fig. 6.12: Results for the Dijkstra’s algorithm (DA) hardened by S-VAR and SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.13: Results for the recursive depth-first search (rDFS) hardened by S-VAR and 
SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.14: Results for the sequential depth-first search (sDFS) hardened by S-VAR and 
SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.15: Results for the matrix multiplication (MM) hardened by S-VAR and SETA. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.16: Results for the run length encoding (RLE) hardened by S-VAR and SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.17: Results for the summation (SUM) hardened by S-VAR and SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.18: Results for the TETRA encryption algorithm (TEA2) hardened by S-VAR and 
SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.19: Results for the Tower of Hanoi (TH) hardened by S-VAR and SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

In Fig. 6.20 one can see the highest MWTF achieved for each application and the 
average results. The execution time, code size, and MWTF are normalized by the 
equivalent unhardened application, and the fault coverage is presented in percentage. The 
average MWTF achieved by S-VAR and SETA is a little higher than when no selective 
hardening is implemented (VAR3+ and SETA). The reason is that VAR3+ is one of the 
cases of S-VAR, so the highest MWTF of S-VAR will never be lower than VAR3+. 
Furthermore, some cases of S-VAR near but lower than 100% achieve higher MWTF 
than when 100% of the registers are hardened. Thus, S-VAR increases the MWTF of 
VAR3+. 
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Fig. 6.20: Highest MWTF for the benchmarks hardened by S-VAR and SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

In conclusion about selective data-flow techniques, it is noticeable that a higher 
MWTF is reached near to 100% of registers hardened. Therefore, it is recommendable to 
protect the most registers possible, respecting possible constraints, to increase the fault 
coverage and MWTF. In addition, it is clear that the use of a control-flow technique 
together with a data-flow technique is key to the improvement of the reliability. 

6.2 Selective control-flow technique 

The selective hardening on control-flow techniques is applied to the basic blocks. 
Selected basic blocks are hardened with the control-flow technique while the others will 
lack protection in some manner, which depends on the selective hardening method 
implemented. 

6.2.1 Methodology and implementation 

As SETA showed to be a superior control-flow technique, the selective hardening on 
control-flow techniques is implemented using this technique. Regarding the selective 
hardening methods, there are two approaches, one cited by Vemu (2011), but with no 
implementation or evaluation, and another proposed in this work. Table 6.2 summarizes 
these approaches. In addition, they are explained as follow. 

 SETA-C (SETA minus Checkers): consists of removing checkers from the 
basic blocks, as stated in (VEMU, 2011). All the basic blocks are protected by 
SETA with signatures. However, not all of them receive a checker. Basic 
blocks with more connections (predecessors and successors) have a higher 
priority to receive a checker. If an error occurs in a basic block with no 
checker, it can be detected in a subsequent basic block since the error will 
propagate. It presents lower overheads than the standard SETA 

 S-SETA (Selective SETA): is a new selective method. It consists of 
completely ignoring some basic blocks. The ignored basic blocks receive no 
signatures or checkers. Thus, it is possible to provide overheads even lower 
than only removing checkers. This selective hardening method of SETA is 
better explained below. 

Table 6.2: Example of a selective data-flow technique (S-VAR) 
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S-SETA SETA-C 

 Protect only selected basic 
blocks with signatures and 
checkers 

 
 Other basic blocks are 

ignored 

 Protect all basic blocks with 
signatures 

 
 Only insert checkers in 

selected basic blocks 

 

6.2.1.1 S-SETA 

S-SETA ignores some basic blocks in order to reduce costs. This method was named 
as tunnel effect. It creates the effect of a tunnel between the predecessors and successors 
of ignored basic blocks. Thus, S-SETA does not see ignored BBs and does not protect 
them. The criterion used to select the basic blocks to be hardened is the basic block size. 
Larger basic blocks have higher priority to be selected and, thus, hardened. The size was 
selected as the criterion based on the following assumption:  

 Small basic blocks are quickly executed and uses fewer memory positions. 
Therefore, the chance of being affected by a fault is lower. If they are executed 
just a few times, they would not be very sensitive, so its protection is not very 
important. On the other hand, if they are frequently executed, their 
susceptibility to faults increase due to their increased time of exposure, but the 
insertion of protection in such small basic blocks would cause significant 
performance degradation. 

SETA-C could have implemented the same criterion to select the basic blocks to 
receive checkers, but it would have the two following consequences: 

1. The execution time of the applications hardened by SETA-C would decrease. 
However, the reduction would be around 50% smaller than for S-SETA 
because SETA-C removes only checkers, while S-SETA removes all the 
basic block protection 

2. The error detection rate would decrease if the size was the criterion when 
compared with the number of connections. Once SETA-C protects all the 
basic blocks, the errors are propagated to the following basic blocks. Thus, if 
the basic blocks with more connections receive checkers, the chance of 
detecting an error increases, once the chance of executing a basic block with 
a checker also increases. 

Fig. 6.21 shows how the tunnel effect is applied to a program. Fig. 6.21(a) presents 
the default program flow where all the basic blocks are hardened. If the protection is 
reduced to 70%, as shown in Fig. 6.21(c), basic blocks 1, 4, 8, and 9 are removed. The 
successors of BB 1 are attributed to its predecessor, BB 0. The successors of BB 2 now 
are BBs 3, 5, and 6, once BB 4 was removed. BBs 5 and 6 now point to BBs 2 and 7 
instead of BB 1. Furthermore, BB 8 was removed. Therefore, BB 9 has no longer a 
successor. Following the same idea, Fig. 6.21(b), Fig 6.21(d) and Fig. 6.21(e) show how 
S-SETA sees the program flow for hardening 80%, 30%, and 20% of the basic blocks, 
respectively. 
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Fig. 6.21: Example of tunnel effect (S-SETA) (a) protecting 100% of BBs, equivalent to 
SETA, (b) protecting 80%, (c) protecting 70%, (d) protecting 30%, and (e) protecting 
20% of BBs. 

6.2.2 Fault injection results in the miniMIPS processor 

Fig. 6.22 shows the execution time, code size, MWTF, and fault coverage for the 
bubble sort (BS) hardened by S-SETA. The horizontal axis represents the percentage of 
basic blocks hardened. When 0% of the basic blocks are hardened, S-SETA is equivalent 
to the unhardened application, and when 100% are hardened, S-SETA is equivalent to 
SETA. One can notice that for a low percentage of basic blocks hardened, S-SETA does 
not increase much the fault coverage and MWTF. It happens because there is not enough 
protection for the application to detect control-flow errors. However, from half of basic 
blocks hardened on, it is possible to notice an increase of the MWTF when compared to 
SETA. That is explained by a similar fault coverage and a lower execution time. 

 

Fig. 6.22: Results for the bubble sort (BS) hardened by the S-SETA technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

With regards to SETA-C hardening BS, shown in Fig. 6.23, it is possible to notice a 
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that the selective hardening is only related with where checkers are inserted. Therefore, 
there is a chance that an error in basic block will be detected by a later checker. On the 
other hand, the overheads caused by SETA-C are higher because there are signature 
updates in all basic blocks. 

 

Fig. 6.23: Results for the bubble sort (BS) hardened by the SETA-C technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Fig. 6.24 compares the S-SETA with SETA-C for the bubble sort (BS). SETA-C 
reaches a high MWTF with fewer basic blocks protected. However, it does not mean that 
SETA-C is a better option for implementations with low overhead because it always 
presents higher overheads than S-SETA. For example, SETA-C 10% has similar 
overheads to S-SETA 50%. Therefore, S-SETA is a better option for meeting overhead 
constraints. Furthermore, S-SETA presents similar fault coverage with lower overheads, 
and, in consequence, higher MWTF. With the percentage of basic blocks getting near to 
100%, S-SETA and SETA-C start to converge to SETA. 

 

Fig. 6.24: Comparison between S-SETA and SETA-C for the bubble sort (BS). The 
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

Similar results to BS can be found for the Dijkstra’s algorithm (DA). Fig. 6.25 and 
6.26 present, respectively, the execution time, code size, MWTF, and fault coverage for 
DA. The fault coverage is presented in percentage, and the other parameters are showed 
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normalized by the unhardened application. The MWTF when hardening with S-SETA 
increases after a certain percentage of basic blocks is hardened. When hardening with 
SETA-C, the MWTF is constant. Similarly to BS, S-SETA reaches a higher MWTF when 
it achieves similar fault coverage, as one can see by the comparison presented in Fig. 
6.27. Note: SETA-C 0% presents overheads higher than 1.0 because all basic blocks have 
signature updates, even so that no checker is inserted. This case would never be 
implemented in real cases because it would be better to use the unhardened application 
instead. 

 

Fig. 6.25: Results for the Dijkstra’s algorithm (DA) hardened by the S-SETA technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.26: Results for the Dijkstra’s algorithm (DA) hardened by the SETA-C technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.27: Comparison between S-SETA and SETA-C for the Dijkstra’s algorithm (DA). 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

Fig. 6.28 presents the execution time, code size, MWTF, and fault coverage for the 
recursive depth-first search (rDFS) hardened by S-SETA. As one can see, S-SETA 
reaches high fault coverage with low overheads when 20% of the basic blocks are 
hardened. The MWTF reduces with the increase of the protection because the additional 
gain in fault coverage is very low if compared to the increase of the execution time. When 
compared to SETA-C, presented in Fig. 6.29, it is possible to notice that exceptionally 
for this application, the MWTF of SETA-C increases for a greater percentage of basic 
blocks hardened if compared to S-SETA. It is due the way each technique select the most 
critical basic blocks. S-SETA selects based on the BB size, and SETA-C selects based on 
the number of connections the BB have. It means, for this application, that the number of 
connections is not a major factor to define which basic block should receive a checker. 
Furthermore, the MWTF is not constant because the execution time increases more than 
most other case-study applications with no additional fault coverage. That explain the 
earlier convergence of SETA-C to SETA. 

 

Fig. 6.28: Results for the recursive depth-first search (rDFS) hardened by the S-SETA 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.29: Results for the recursive depth-first search (rDFS) hardened by the SETA-C 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

Fig. 6.30 shows the comparison between S-SETA and SETA-C for rDFS. The 
execution time, code size, MWTF, and fault coverage of S-SETA are normalized by the 
respective parameters of SETA-C. For 20% of the basic blocks hardened, there is a peak 
in the difference of the MWTF because SETA-C still does not provide an increase in the 
fault coverage. From that point on, we can see a slight advantage of S-SETA, due to its 
lower execution time overhead and similar fault coverage. 

 

Fig. 6.30: Comparison between S-SETA and SETA-C for the recursive depth-first search 
(rDFS). The results obtained with S-SETA are normalized by the ones obtained with 
SETA-C. 
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we can see an earlier increase of the MWTF. The two largest basic blocks are in the 
beginning and end of the application, and both are very interactive, mainly the last one. 
Thus, many errors are detected when these two large basic blocks are hardened (S-SETA 
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20%) by the interaction of them through the tunnel effect with very low overheads 
(execution time of 1.02x and code size of 1.03x). 

 

Fig. 6.31: Results for the sequential depth-first search (sDFS) hardened by the S-SETA 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.32: Results for the sequential depth-first search (sDFS) hardened by the SETA-C 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

The comparison between S-SETA and SETA-C for the sDFS presented in Fig. 6.33 
shows a higher MWTF for S-SETA from 20% on. The techniques converge to SETA near 
100%, which is why they have similar MWTF near that point. It is important to notice 
that the significantly lower overhead of S-SETA is the factor responsible for improving 
the MWTF. 
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Fig. 6.33: Comparison between S-SETA and SETA-C for the sequential depth-first search 
(sDFS). The results obtained with S-SETA are normalized by the ones obtained with 
SETA-C. 

The matrix multiplication (MM) has a basic block configuration (number of basic 
blocks, average size of the basic blocks, and percentage of basic blocks of one type) 
similar to the bubble sort. Therefore, in this case, we can also see a later increase in the 
MWTF for MM hardened by S-SETA, as shown in Fig. 6.34. When SETA-C is 
implemented (Fig. 6.35), one can notice the same configuration of all applications, an 
almost constant MWTF. 

 

Fig. 6.34: Results for the matrix multiplication (MM) hardened by the S-SETA technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.35: Results for the matrix multiplication (MM) hardened by the SETA-C technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

We can see by the comparison between S-SETA and SETA-C for MM in Fig. 6.36 
that while S-SETA does not increase the fault coverage, SETA-C has a higher MWTF, 
although the higher overheads. However, from 60% of the basic blocks hardened on, S-
SETA provides a higher MWTF until both techniques converge to SETA. 

 

Fig. 6.36: Comparison between S-SETA and SETA-C for the matrix multiplication 
(MM). The results obtained with S-SETA are normalized by the ones obtained with 
SETA-C. 

The run length encoding (RLE) is the application with the greatest number of basic 
blocks. It means that for the same percentage of basic blocks hardened, a greater absolute 
number of basic blocks was hardened. That explains why since 10% of the basic blocks 
hardened, both S-SETA (Fig. 6.37) and SETA-C (Fig. 6.38) reach a high fault coverage 
and MWTF. Once both approaches reach similar high MWTF, the comparison between 
them (presented in Fig. 6.39) does not vary much from 1.0.  
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Fig. 6.37: Results for the run length encoding (RLE) hardened by the S-SETA technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.38: Results for the run length encoding (RLE) hardened by the SETA-C technique. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.39: Comparison between S-SETA and SETA-C for the run length encoding (RLE). 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 
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Although the summation (SUM) has a very different basic block configuration than 
BS and MM, it has a similar execution property. It consists of a loop controlled by a value 
stored in a register. Furthermore, it has very few basic blocks, so a higher percentage need 
to be hardened (in comparison to other benchmarks) in order to protect a greater number 
of basic blocks. Fig. 6.40 presents the execution time, code size, MWTF, and fault 
coverage for SUM hardened by S-SETA. And Fig. 6.41 presents the same parameters for 
SUM hardened by SETA-C. In the comparison between both selective hardening 
approaches (Fig. 6.42), one can notice a punctual higher execution time for S-SETA. It 
would not happen if the method to select the basic blocks were the same. However, there 
is a difference in the implementation that justify this result. S-SETA selects the basic 
blocks by their size. SETA-C select the basic block with more connections (predecessors 
and successors). This difference explains punctual higher execution time of S-SETA. 

 

Fig. 6.40: Results for the summation (SUM) hardened by the S-SETA technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.41: Results for the summation (SUM) hardened by the SETA-C technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.42: Comparison between S-SETA and SETA-C for the summation (SUM). The 
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

Fig. 6.43 and Fig. 6.44 show the execution time, code size, MWTF, and fault coverage 
for the TETRA encryption algorithm hardened, respectively, by S-SETA and SETA-C. 
We can see that both approaches present the expected behavior. S-SETA increases the 
MWTF after a certain percentage of basic blocks is hardened, while SETA-C keeps a 
constant MWTF. We can see in the comparison presented in Fig. 6.45 that after S-SETA 
increases the MWTF, both approaches converge to SETA.  

 

Fig. 6.43: Results for the TETRA encryption algorithm (TEA2) hardened by the S-SETA 
technique. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.44: Results for the TETRA encryption algorithm (TEA2) hardened by the SETA-
C technique. The execution time, code size, and MWTF are normalized by the 
unhardened application (left axis). The fault coverage is presented in percentage (right 
axis). 

 

Fig. 6.45: Comparison between S-SETA and SETA-C for the TETRA encryption 
algorithm (TEA2). The results obtained with S-SETA are normalized by the ones 
obtained with SETA-C. 

Fig. 6.46 shows that S-SETA when hardening a Tower of Hanoi (TH) achieves a high 
fault coverage with a small percentage of basic blocks hardened (S-SETA 10%). Due to 
its negligible execution time overhead, the MWTF reaches the maximum value. With the 
increase in the percentage of basic blocks hardened, the fault coverage increases, but it is 
not enough to compensate the increase in the overheads, and that reduces the MWTF, 
converging to SETA. In Fig. 6.47, one can see the standard behavior of SETA-C, which 
presents an almost constant MWTF. In the comparison between S-SETA and SETA-C 
for TH, S-SETA always presents higher MWTF than SETA-C, being higher for a lower 
percentage due to the lower overhead and converging to SETA with the increase of the 
percentage of basic blocks hardened, as one can see in Fig. 6.48. 
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Fig. 6.46: Results for the Tower of Hanoi (TH) hardened by the S-SETA technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.47: Results for the Tower of Hanoi (TH) hardened by the SETA-C technique. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.48: Comparison between S-SETA and SETA-C for the Tower of Hanoi (TH). The 
results obtained with S-SETA are normalized by the ones obtained with SETA-C. 
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Fig. 6.49 shows the highest MWTF with its respective execution time, code size, and 
fault coverage for each application hardened either by S-SETA or SETA-C. The 
execution time, code size, and MWTF is presented normalized by the unhardened 
application, and the fault coverage is showed in percentage. As one can notice, for most 
of the applications, S-SETA reaches a higher MWTF. And for the other ones, the 
difference between the MWTF of S-SETA and SETA-C is small. Anyhow, it is necessary 
to test the selective hardening for control-flow techniques with a data-flow technique, 
which is discussed below. 

 

Fig. 6.49: Highest MWTF for the benchmarks hardened by the S-SETA or SETA-C. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

Although the overheads, fault coverage, and MWTF of using VAR3+, and S-SETA 
or SETA-C are higher than only using a selective control-flow technique, the behavior 
for each application and selective hardening approach is similar. Thus, the same 
conclusions from using only S-SETA or SETA-C can be extended to VAR3+, S-SETA, 
and VAR3+, SETA-C. Figs. 6.50 to 6.76 present the results for all benchmarks hardened 
by VAR3+, S-SETA or VAR3+, SETA-C, and also the comparison between both 
selective hardening approaches applied together with VAR3+. 

 

Fig. 6.50: Results for the bubble sort (BS) hardened by VAR3+ and S-SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.51: Results for the bubble sort (BS) hardened by VAR3+ and SETA-C. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.52: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the BS. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.53: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and S-SETA. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.54: Results for the Dijkstra’s algorithm (DA) hardened by VAR3+ and SETA-C. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.55: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the DA. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.56: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and S-
SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.57: Results for the recursive depth-first search (rDFS) hardened by VAR3+ and 
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.58: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the rDFS. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.59: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and 
S-SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.60: Results for the sequential depth-first search (sDFS) hardened by VAR3+ and 
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.61: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the sDFS. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.62: Results for the matrix multiplication (MM) hardened by VAR3+ and S-SETA. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.63: Results for the matrix multiplication (MM) hardened by VAR3+ and SETA-C. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.64: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the MM. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.65: Results for the run length encoding (RLE) hardened by VAR3+ and S-SETA. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.66: Results for the run length encoding (RLE) hardened by VAR3+ and SETA-C. 
The execution time, code size, and MWTF are normalized by the unhardened application 
(left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.67: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the RLE. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.68: Results for the summation (SUM) hardened by VAR3+ and S-SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.69: Results for the summation (SUM) hardened by VAR3+ and SETA-C. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.70: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the SUM. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.71: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and 
S-SETA. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.72: Results for the TETRA encryption algorithm (TEA2) hardened by VAR3+ and 
SETA-C. The execution time, code size, and MWTF are normalized by the unhardened 
application (left axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.73: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for TEA2. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

 

Fig. 6.74: Results for the Tower of Hanoi (TH) hardened by VAR3+ and S-SETA. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 
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Fig. 6.75: Results for the Tower of Hanoi (TH) hardened by VAR3+ and SETA-C. The 
execution time, code size, and MWTF are normalized by the unhardened application (left 
axis). The fault coverage is presented in percentage (right axis). 

 

Fig. 6.76: Comparison between (VAR3+, S-SETA) and (VAR3+, SETA-C) for the TH. 
The results obtained with S-SETA are normalized by the ones obtained with SETA-C. 

Fig. 6.77 shows the highest MWTF with its respective execution time, code size, and 
fault coverage for each application hardened by either VAR3+, S-SETA or VAR3+, 
SETA-C. The execution time, code size, and MWTF are presented normalized by the 
unhardened application, and the fault coverage is showed in percentage. As one can 
notice, VAR3+, S-SETA usually reaches a higher MWTF. For the other applications, the 
difference between the MWTF of VAR3+, S-SETA, and VAR3+, SETA-C is small. We 
can see a significant increase in the fault coverage and MWTF when a data-flow 
technique is applied together with S-SETA or SETA-C. 
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Fig. 6.77: Highest MWTF for the benchmarks hardened by (VAR3+, S-SETA) or 
(VAR3+, SETA-C). The execution time, code size, and MWTF are normalized by the 
unhardened application (left axis). The fault coverage is presented in percentage (right 
axis). 

S-SETA presents better gains in the MWTF. On the other hand, SETA-C keeps the 
fault coverage high for a lower percentage of basic blocks with checkers. Nevertheless, it 
does not mean that SETA-C can provide reliability with lower overheads. Actually, it is 
the opposite. S-SETA presents significantly lower overheads than SETA-C. For example, 
sDFS hardened by SETA-C 10% presents 1.42x of execution time, while S-SETA 70% 
presents 1.32x. Thus, S-SETA is a better solution to meet time or energy constraints. 
Furthermore, it achieves a general higher MWTF due to its similar fault coverage and 
lower overheads. It is possible to combine S-SETA with SETA-C, S-SETA would select 
the basic blocks that will be hardened, and then, SETA-C would select which of the 
hardened basic blocks should receive a checker. This combination is an interesting 
approach to be evaluated in future work. 

Table 6.3 presents selected data from all the selective hardening approaches presented 
above. The data selected respect some specific constraints. However, it is necessary 
cautiousness when using these results. It is important to take into account that these results 
are for the miniMIPS processor using a specific fault injection methodology. Adjusts may 
be necessary depending the target processor and the real rate of upsets over time affecting 
the system. Furthermore, it does not give the best options for every scenario, we just point 
out some selected cases. For example, when using VAR3+ with S-SETA, it may be 
necessary to protect around 40% of the basic blocks to achieve a fault coverage of at least 
98%. The X means that the constraint is unachievable. For example, for many 
applications, it is not possible to reach more than 92% of fault coverage with only data-
flow techniques. 
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Table 6.3: Summary of selective hardening. Fault coverage (FC) showed in percentage, 
execution time (ET) presented normalized by the unhardened application. 

S-VAR (% of hardened registers) 

LIMIT BS DA rDFS sDFS MM RLE SUM TEA2 TH 
FC 88% 23% 0% 44% 67% 46% 13% 40% 63% 36% 
FC 90% 31% 57% 56% 67% 46% 38% 60% 75% 64% 
FC 92% 46% 71% X X X 63% X 75% X 
ET 1.25x 23% 43% 33% 50% 38% 38% 40% 38% 18% 
ET 1.50x 23% 57% 44% 67% 38% 38% 40% 50% 45% 
ET 1.75x 38% 100% 78% 100% 58% 75% 40% 100% 55% 

S-VAR, SETA (% of hardened registers) 

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH 
FC 94% 0% 0% 11% 17% 38% 0% 20% 63% 9% 
FC 96% 31% 29% 56% 67% 46% 25% 60% 63% 27% 
FC 98% 46% 71% 67% 83% 54% 50% 80% 75% 91% 
ET 1.4x 23% 43% X X 38% 38% 20% 50% X 
ET 1.7x 23% 57% 11% X 46% 38% 40% 50% 18% 
ET 2.0x 77% 100% 33% 50% 100% 75% 40% 100% 36% 

S-SETA (% of BBs hardened) 

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH 
FC 90% 40% 20% 20% 20% 60% 10% 50% 50% 20% 
FC 92% 50% 30% 20% 40% X 10% 60% X 90% 
FC 94% 50% 60% 80% X X 10% 80% X X 
ET 1.1x 40% 50% 30% 20% 50% 10% 10% 100% 30% 
ET 1.2x 60% 70% 50% 50% 100% 20% 10% 100% 40% 
ET 1.3x 100% 100% 60% 60% 100% 100% 50% 100% 60% 

SETA-C (% of BBs with checkers) 

limit BS DA RDFS SDFS MM RLE SUM TEA2 TH 
FC 90% 10% 10% 30% 10% 10% 10% 20% 30% 10% 
FC 92% 10% 10% 30% 10% X 10% 20% X 50% 
FC 94% 20% 10% X X X 10% 70% X X 
ET 1.1x 0% 10% X X 10% X X 100% X 
ET 1.2x 40% 60% X X 100% 20% 10% 100% X 
ET 1.3x 100% 100% 20% 0% 100% 100% 50% 100% 30% 

VAR3+, S-SETA (% of BBs hardened) 

 BS DA RDFS SDFS MM RLE SUM TEA2 TH 
FC 92% 0% 0% 20% 20% 10% 10% 30% 0% 10% 
FC 95% 40% 20% 20% 20% 50% 10% 50% 50% 10% 
FC 98% 40% 40% 20% 40% 50% 10% 60% 50% 10% 
ET 1.7x X 30% X 20% 70% X X X X 
ET 1.9x 30% 100% 40% 50% 100% 30% X 100% X 
ET 2.1x 100% 100% 60% 80% 100% 100% 40% 100% 20% 

VAR3+, SETA-C (% of BBs with checkers) 

 BS DA RDFS SDFS MM RLE SUM TEA2 TH 
FC 92% 0% 0% 10% 10% 10% 0% 20% 0% 10% 
FC 95% 10% 10% 30% 10% 10% 10% 20% 20% 10% 
FC 98% 10% 10% 30% 30% 10% 10% 30% 20% 10% 
ET 1.7x 0% 10% X X 70% X X X X 
ET 1.9x 40% 100% 0% 0% 100% 20% X 100% X 
ET 2.1x 100% 100% 50% 20% 100% 100% 50% 100% X 
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Based on the results, we present some conclusions: 

 We observed that the applications can reach a maximum fault coverage of 
around 98-99%. However, it is very complicated to predict the fault coverage 
for each level of selective hardening by online analyzing the code. There are 
too many variables that influence on that. Any change in one of the following 
items may cause a significant chance in the fault coverage and overheads 

o It depends on what task the application performs 
o It depends on how the application was implemented 
o It depends on how it was compiled 

 An application compiled with no optimizations will have few 
registers that perform most of the calculations. These registers 
are much more critical than the others because they are much 
more utilized. On the other hand, it means that the overheads 
when protecting them are higher 
 The same application compiled with optimizations would have 

completely different results, with a more distributed use of 
registers 
 If the application was implemented in assembly, the fault 

coverage and overheads will depend on how the application 
was implemented 

 One characteristic that was possible to observe regards the checking rule C6 
and was discussed in the previous chapter. When the average number of times 
that the basic blocks are executed is high, there is a higher chance of errors 
affecting branches due to upsets in the registers used by these branches. 
Therefore, the checking rule C6 increases significantly the fault coverage in 
such cases. 

The difficulty in finding patterns in the code due to the high number of parameters 
and the high variability they cause in the overheads and fault coverage of a selectively 
hardened application makes interesting the search for other approaches to find the best 
trade-offs between fault coverage and overheads when using selective hardening. In the 
following section, we introduce a method to extrapolate the results using a small set of 
results as input, and provide an accurate overall picture of the application reliability and 
overheads. 

6.3 Selective data-flow technique and selective control-flow technique 

The use of selective hardening is possible to be done at the same time in both data 
and control-flow techniques. Thus, it would be possible to get even better trade-offs 
between reliability and performance than only applying selective hardening to one of the 
techniques. However, it is difficult to find patters to use in the selective hardening because 
the application is highly variable due to the many parameters that influence its fault 
coverage and overheads. Furthermore, exploring all the possibilities for every application 
is infeasible, mainly due to the need to perform fault injection campaigns in all possible 
selective hardened versions. The test of each version takes from several hours to weeks 
in the RTL level, depending on the application. This means that testing all possibilities 
for selective hardening would take from weeks to years. A less time-consuming manner 
to find the points of interest, or at least to indicate the most promising areas, can speed up 
the time needed to protect and evaluate an application. 
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6.3.1 Methodology and implementation 

An extrapolation of the results was performed using a linear interpolation of four 
hyperbolic tangent regressions. Each hyperbolic tangent (like the one in Eq. 6.2) 
represents one extreme of the S-VAR, S-SETA combination. Firstly, let us define these 
four extremes: 

 S-VAR(x), S-SETA(0): all the results with no basic block hardened and 
variable hardening of the registers 

 S-VAR(x), S-SETA(1): all the results with all basic blocks hardened and 
variable hardening of the registers 

 S-VAR(0), S-SETA(x): all the results with no register hardened and variable 
hardening of the basic blocks 

 S-VAR(1), S-SETA(x): all the results with all registers hardened and variable 
hardening of the basic blocks. 

For example, when S-SETA is 0 (has no basic block hardened), x is the percentage 
of registers hardened, and y the fault coverage. Then, we fit Eq. 6.2 with the data from 
fault injection with respect to S-VAR(x), S-SETA(0). The same process is done for the 
other three extremes. Finally, the four equations are linearly interpolated in order to get a 
surface of fault coverages for all possible variation of the number of registers hardened 
or basic blocks hardened. 

Eq.	6.2 	 ∙ ℎ ∙  

The method for extrapolating the results was implemented in the Matlab. The 
function fit was used with the Levenberg-Marquardt algorithm to fit the fault coverage 
obtained from simulation in the Eq. 6.2. Fig. 6.78 shows an example using the data from 
the extreme S-VAR(x), S-SETA(1) of the bubble sort (BS). 

 

Fig. 6.78: Estimated fault coverages for BS hardened by S-VAR, S-SETA. 
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All the four extremes defined in the beginning of this subsection are fitted with the 
same procedure described above. Then, the four curves generated are linearly interpolated 
to create a surface of fault coverage. The Matlab function fit is used with the parameter 
linearinterp to create the surface. 

It is possible to notice that the Eq. 6.2 is very suitable for fitting the fault coverage of 
selective hardening methodologies. And as for the fault coverage, Eq. 6.2 showed very 
suitable to fit the execution time too. Although the execution time can be found in a short 
time, we decided to use the same equation to fit and extrapolate it. The advantage of 
extrapolating also the execution time is observed in the reduction of the time to generate 
all the possible selective hardened versions, added to the time to compile them all, and, 
finally, the time to execute the many versions and get all the execution times. 

Finally, with the surfaces of fault coverage and execution time, it is possible to 
calculate the MWTF, which is our metric of reliability. All the results are presented in the 
next subsection and validated in the following subsection. 

6.3.2 Fault injection results in the miniMIPS processor 

Fig. 6.79 presents the estimated fault coverage for the bubble sort (BS). The 
horizontal axes indicate the level of protection of S-VAR and S-SETA, where 0 represents 
no protection, and 1 represents 100% of protection. The red dots are the results obtained 
from fault injections. They are used as inputs for the method. The estimation shows some 
differences for the simulated values, mainly for low level of protection. However, for 
most level of protection, the estimation is quite approximate. 

The same method was used to extrapolate the execution time. Fig. 6.80 presents the 
surface with the estimated execution times for the bubble sort (BS). The red dots indicate 
the real values used as input. The gathering of the execution time is not as time consuming 
as the fault coverage. The application just needs to be hardened by the possibilities of 
selective hardening and, then, the execution time of all created versions have to be 
extracted. Anyhow, the estimation is very approximate to real values since the increasing 
of the execution time with the increasing of the level of protection is more predictable. 
Thus, it can also be used to speed up this process, and there will be no need to create all 
the possibilities of selective hardening and get all the execution times. 

Fig. 6.81 presents the MWTFs for the bubble sort (BS), which were calculated using 
the estimated values. Although there are some differences in the values of the highest 
MWTFs, the estimation shows correctly the area where such MWTFs are. Using the 
estimation, it is possible to find quickly points with high MWTF. The same results for 
each benchmark are presented from Fig. 6.82 to Fig. 6.105. We can see in all cases that 
although the method does not provide a precise magnitude in the estimations, it points the 
regions that present the highest MWTF. In general, the highest estimated MWTF is when 
100% of registers are hardened and around 80% of basic blocks are hardened. These 
results match the ones from the previous sections of this chapter. 
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Fig. 6.79: Estimated fault coverages for BS hardened by S-VAR, S-SETA. 

 

Fig. 6.80: Estimated execution times for BS hardened by S-VAR, S-SETA. 
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Fig. 6.81: MWTF for BS hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 

 

Fig. 6.82: Estimated fault coverages for DA hardened by S-VAR, S-SETA. 
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Fig. 6.83: Estimated execution times for DA hardened by S-VAR, S-SETA. 

 

Fig. 6.84: MWTF for DA hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 
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Fig. 6.85: Estimated fault coverages for rDFS hardened by S-VAR, S-SETA. 

 

Fig. 6.86: Estimated execution times for rDFS hardened by S-VAR, S-SETA. 
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Fig. 6.87: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 

 

Fig. 6.88: Estimated fault coverages for sDFS hardened by S-VAR, S-SETA. 
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Fig. 6.89: Estimated execution times for sDFS hardened by S-VAR, S-SETA. 

 

Fig. 6.90: MWTF for sDFS hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 
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Fig. 6.91: Estimated fault coverages for MM hardened by S-VAR, S-SETA. 

 

Fig. 6.92: Estimated execution times for MM hardened by S-VAR, S-SETA. 
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Fig. 6.93: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 

 

Fig. 6.94: Estimated fault coverages for RLE hardened by S-VAR, S-SETA. 
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Fig. 6.95: Estimated execution times for RLE hardened by S-VAR, S-SETA. 

 

Fig. 6.96: MWTF for RLE hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 
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Fig. 6.97: Estimated fault coverages for SUM hardened by S-VAR, S-SETA. 

 

Fig. 6.98: Estimated execution times for SUM hardened by S-VAR, S-SETA. 
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Fig. 6.99: MWTF for SUM hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 

 

Fig. 6.100: Estimated fault coverages for TEA2 hardened by S-VAR, S-SETA. 
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Fig. 6.101: Estimated execution times for TEA2 hardened by S-VAR, S-SETA. 

 

Fig. 6.102: MWTF for TEA2 hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 
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Fig. 6.103: Estimated fault coverages for TH hardened by S-VAR, S-SETA. 

 

Fig. 6.104: Estimated execution times for TH hardened by S-VAR, S-SETA. 
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Fig. 6.105: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. 

In conclusion, we can say that the highest MWTF are reached near 100% of registers 
hardened by S-VAR and 80% of the basic blocks hardened by S-SETA. Nevertheless, 
due to the imprecision in the magnitude of the estimated values, it is not possible to find 
the highest fault coverage for a given maximum execution time, or the lowest execution 
time for a given minimum fault coverage. A more precise method is necessary in this 
regard. 

6.3.3 Validation 

Three case-study applications were used to validate the model to extrapolate the 
results due to the different surfaces they produced (rDFS, MM, TH). For the rDFS, three 
points tested. They were not included in the model inputs. One can see that the results 
presented from Figs. 6.106 to 6.109 match very well with the results predicted by the 
model. The test dots are the green dots, and the red dots are the model inputs. There is 
one extra charting presenting the execution time from another perspective to show the 
test points that are under the surface. The mean and maximum deviations in the fault 
coverage from the estimated results to the simulated points are of 0.4% and 0.6%, 
respectively. And the mean and maximum deviations in the execution time are of 3.0% 
and 4.7%, respectively.  For the MM, four points were tested, as showed from Figs. 6.10 
to 6.112. Once again, the results match very well the model. The mean deviation in the 
fault coverage is of 1.3%, and in the execution time is of 2.2%. The maximum deviation 
is of 3.6% in the fault coverage and 5.5% in the execution time at S-VAR(0.46), S-
SETA(0.5). For the TH, presented from Figs. 6.113 to 6.115, two points were tested, S-
VAR(0.91), S-SETA(0.7) and S-VAR(0.82), S-SETA(0.6). Their deviations were, 
respectively, of 0.0% and 0.6% in the fault coverage, and of 1.5% and 0.2% in the 
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execution time. Therefore, we conclude that the model can extrapolate the results with a 
good precision, providing accurate predictions of fault coverage, execution time, and 
MWTF, and pointing the areas with higher MWTF. 

 
Fig. 6.106: Validation of model for estimating the fault coverages of rDFS hardened by 

S-VAR, S-SETA. Green dots are the validation points. 

 

Fig. 6.107: Validation of model for estimating the execution time of rDFS hardened by 
S-VAR, S-SETA. Green dots are the validation points. 
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Fig. 6.108: Validation of model for estimating the execution time of rDFS hardened by 
S-VAR, S-SETA. Green dots are the validation points. View from another perspective. 

 

Fig. 6.109: MWTF for rDFS hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. Green dots are the validation points. 
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Fig. 6.110: Validation of model for estimating the fault coverages of MM hardened by 
S-VAR, S-SETA. Green dots are the validation points. 

 

Fig. 6.111: Validation of model for estimating the execution time of MM hardened by 
S-VAR, S-SETA. Green dots are the validation points. 
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Fig. 6.112: MWTF for MM hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. Green dots are the validation points. 

 

Fig. 6.113: Validation of model for estimating the fault coverages of TH hardened by S-
VAR, S-SETA. Green dots are the validation points. 
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Fig. 6.114: Validation of model for estimating the execution time of TH hardened by S-
VAR, S-SETA. Green dots are the validation points. View from another perspective. 

 

Fig. 6.115: MWTF for TH hardened by S-VAR, S-SETA based on estimated fault 
coverage and execution time. Green dots are the validation points. 
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6.3.4 Reducing number of points for fitting model 

Depending on the fault injection platform, the simulation of around 40 cases per 
application may be time-consuming. Thus, we decided to test the fitting model using 
fewer input points to discover if it still produces an accurate surface. For this, three 
applications that present different set of surfaces were selected. They are the recursive 
depth-first search (rDFS), the matrix multiplication (MM), and the Tower of Hanoi (TH). 
For each of these applications, the three following cases with a different number of points 
were evaluated: 

 Original: all the simulated points are used as input. The rDFS, MM, and TH 
have 38, 46, and 42 points, respectively 

 Half: roughly half of the simulated points are used as input. The rDFS, MM, 
and TH use 18, 22, and 20 points, respectively 

 Minimum: each of the four curves needs a minimum of 4 points as input. 
Thus, the minimum number of points for the fitting model is 12 (4 points are 
shared by two curves). 

Figs. 6.116 to 6.124 show the fault coverage, execution time, and MWTF, for the 
rDFS with a different number of input points for the fitting method. It is possible to notice 
that the curves, and consequently the surface, get smoother with fewer input points. 
Nevertheless, the surfaces of fault coverage, execution time, and MWTF, for the 
approaches with original, half, and minimum number of points are similar. Figs. 6.125 to 
6.133 present the results for MM, and Figs. 6.134 to 6.142 show the results for TH. The 
fault coverage, execution time, and MWTF for the Tower of Hanoi using a different 
number of input points are very similar. For the matrix multiplication, one aspect must be 
pointed out. The fault coverage surface starts to drop nearer to S-VAR(1), S-SETA(1), 
mainly in the S-SETA axis. The same can be said of the execution time, but in this case, 
it is more noticeable in the S-VAR axis. This difference result is better seen in the charts 
of MWTF. With regards to the original approach, the half approach reduces the area of 
high MWTF in the S-SETA axis, and the minimum approach reduces this area in both S-
VAR and S-SETA axes. Anyhow, the results are still accurate for most coordinates. 

The test points used to validate the method were also added in this section in order 
to make able the calculation of the deviations from the values predicted by the method to 
the values obtained by simulation. Table 6.3 presents the mean and maximum deviations 
in the fault coverage (FC) and execution time (ET) for the rDFS, MM, and TH, with the 
three cases with a different number of input points. It is possible to notice that the 
deviations do not chance much when using fewer input points. It means that for the 
current precision of the model, the use of the minimum number of points as input is 
enough to provide accurate estimations of the fault coverage and execution time. In 
addition, the half approach could be used to reinforce the estimations predicted by the 
minimum approach. Another thing that is worth commenting is the higher deviations 
presented by the matrix multiplication. It happens due to inconsistencies added by the 
interpolation. That creates invalid behaviors in the surface of fault coverages in the case 
of the matrix multiplication, which reduces the accuracy of the model. The replacement 
of the linear interpolation to connect the four fitted curves by a method that avoid these 
invalid behaviors would solve this issue. This subject is discussed in the future works. 
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Table 6.3: Mean and maximum deviations in the fault coverage (FC) and execution time 
(ET) for the rDFS, MM, and TH with different numbers of input points to the method to 

estimate the results 

benchmark case 
# of input 

points 
mean dev. 

(FC) 
max dev. 

(FC) 
mean dev. 

(ET) 
max dev. 

(ET) 

rDFS 

original 

half 

minimum 

38 

18 

12 

0.4% 

0.4% 

0.2% 

0.6% 

0.4% 

0.5% 

3.0% 

3.6% 

2.7% 

4.7% 

6.1% 

3.7% 

MM 

original 

half 

minimum 

46 

22 

12 

1.3% 

1.5% 

1.8% 

3.6% 

3.3% 

4.4% 

2.2% 

1.6% 

3.5% 

5.5% 

4.1% 

8.9% 

TH 

original 

half 

minimum 

42 

20 

12 

0.3% 

0.3% 

0.3% 

0.6% 

0.4% 

0.5% 

0.9% 

1.3% 

2.0% 

1.5% 

1.7% 

2.4% 

 

 

 

Fig. 6.116: Fault coverage for rDFS (38 points). The red dots are the input points and 
the green dots are the validation points. 
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Fig. 6.117: Fault coverage for rDFS (18 points). The red dots are the input points and 
the green dots are the validation points. 

 

Fig. 6.118: Fault coverage for rDFS (12 points). The red dots are the input points and 
the green dots are the validation points. 
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Fig. 6.119: Execution time for rDFS (38 points). The red dots are the input points and 
the green dots are the validation points. 

 

Fig. 6.120: Execution time for rDFS (18 points). The red dots are the input points and 
the green dots are the validation points. 
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Fig. 6.121: Execution time for rDFS (12 points). The red dots are the input points and 
the green dots are the validation points. 

 

Fig. 6.122: MWTF for rDFS (38 points). The red dots are the input points and the green 
dots are the validation points. 
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Fig. 6.123: MWTF for rDFS (18 points). The red dots are the input points and the green 
dots are the validation points. 

 

Fig. 6.124: MWTF for rDFS (12 points). The red dots are the input points and the green 
dots are the validation points. 
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Fig. 6.125: Fault coverage for MM (46 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.126: Fault coverage for MM (22 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.127: Fault coverage for MM (12 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.128: Execution time for MM (46 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.129: Execution time for MM (22 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.130: Execution time for MM (12 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.131: MWTF for MM (46 points). The red dots are the input points and the green 
dots are the validation points. 

 

Fig. 6.132: MWTF for MM (22 points). The red dots are the input points and the green 
dots are the validation points. 
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Fig. 6.133: MWTF for MM (12 points). The red dots are the input points and the green 
dots are the validation points. 

 

Fig. 6.134: Fault coverage for TH (42 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.135: Fault coverage for TH (20 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.136: Fault coverage for TH (12 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.137: Execution time for TH (42 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.138: Execution time for TH (20 points). The red dots are the input points and the 
green dots are the validation points. 
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Fig. 6.139: Execution time for TH (12 points). The red dots are the input points and the 
green dots are the validation points. 

 

Fig. 6.140: MWTF for TH (42 points). The red dots are the input points and the green 
dots are the validation points. 
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Fig. 6.141: MWTF for TH (20 points). The red dots are the input points and the green 
dots are the validation points. 

 

Fig. 6.142: MWTF for TH (12 points). The red dots are the input points and the green 
dots are the validation points. 
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6.4 Summary 

In this chapter, we proposed and applied selective hardening methods to data-flow 
and control-flow techniques. The selective hardening of data-flow techniques consists of 
selecting the registers to be hardened. Considering S-VAR, SETA, we observed that the 
more registers are hardened, the higher the reliability, even when normalizing the results 
by the execution time (which is higher for when more registers are hardened). 
Nevertheless, it is important to notice that the reliability increases more for hardening the 
most critical registers than the extra reliability provided by the subsequent registers (based 
on the rank of criticality). There are two justifications for that: (1) the most critical 
registers are more critical; therefore, it increases more the fault coverage when hardened; 
and (2) the more registers are hardened, the more the protections of the registers overlap. 
In summary, it means that it is still possible to achieve high fault coverages when 
hardening fewer registers. 

With regards to selective hardening on control-flow techniques, we compared two 
approaches: SETA-C and S-SETA. SETA-C provides high reliability even when few 
basic blocks are selected. That is justified because SETA-C protects all basic blocks and 
select which basic blocks will receive checkers. Thus, a fault affecting a basic block may 
propagate and may be detected in one of the following basic blocks. The downside is that 
SETA-C does not reduce very much the overheads. In some cases, hardening 70% of the 
basic blocks with S-SETA presents lower overheads than hardening 10% of the basic 
blocks with SETA-C. S-SETA implements a new method for selecting the basic blocks 
when basic blocks are completely ignored. It does not improve the reliability when very 
few basic blocks are hardened. However, it achieves very high MWTF when more than 
half of the basic blocks are hardened. And that is mainly due to its extreme lower 
overheads. 

Finally, to evaluate all the possibilities of using selective hardening with both data-
flow techniques and control-flow techniques, and helping designers to get a global picture 
of the reliability for an application, a model to extrapolate the simulated results was 
proposed. The model showed accuracy estimating the fault coverage, execution time, and 
MWTF, and pointing the areas of higher MWTF, even when fewer points are used as 
input to the model. 
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7 CONCLUDING REMARKS 

This chapter concludes the thesis. Firstly, the conclusions of the work are drawn. 
Then, a list of published works developed during the Ph.D. is presented. 

7.1 Conclusions 

This work presented a study to reduce the execution time and memory overheads 
without losing reliability. In this way, a set of data-flow techniques based on general 
building rules called VAR techniques was proposed. They include and extend previous 
data-flow techniques due to the general building rules. With the general building rules, a 
complete analysis of the data-flow techniques based on redundancy was possible. By 
following the MWTF results, it was shown that may be not worth to protect an application 
with only data-flow techniques because the drawbacks caused by the overheads may 
overcome the reliability provided by the technique. Nevertheless, data-flow techniques 
area meant to be used together with control-flow techniques. In this situation, the benefits 
provided by SIHFT techniques are clear, once that the MWTF achieved by combining 
data-flow and control-flow techniques is much higher than the unhardened application. 
In addition, the highest MWTF is achieved by a new data-flow technique (VAR3+) when 
combined with SETA. 

SETA is a new control-flow technique that is 11.0% faster and occupies 10.3% fewer 
memory positions with similar fault coverage of a state-of-the-art technique. When using 
one of the most promising VAR data-flow techniques with SETA, a similar fault coverage 
to techniques present in the literature is achieved, with reduction of the overheads. In such 
scenario, the hardened applications reached an average MWTF of 5.17x. 

A step further on reducing overheads or increasing the MWTF is the use of selective 
hardening. It can significantly reduce the overheads with none or small loss in fault 
coverage. Regarding the data-flow techniques, the selective hardening was implemented 
in order to find which registers should and which should not be hardened based on their 
criticality. One can notice that it is possible to achieve similar fault coverage hardening 
fewer registers than hardening all used ones. This information is very useful in many 
applications that do not have enough available registers to be assigned as replicas because 
high reliability can be achieved only hardening the most critical registers. Anyhow, the 
highest MWTF were achieved when most registers are hardened. Therefore, if there are 
enough unused registers, and the overheads still meet the application constraints, it is 
recommendable the protection of all registers. 

Concerning selective hardening on control-flow techniques, two methods were 
evaluated using SETA. One hardening all basic blocks, but removing checkers from the 
least critical ones (called SETA-C), and another hardening only selected basic blocks and 
ignoring the remaining (called S-SETA). The last method is a novelty of this work. Both 
selective hardening methods can improve the MWTF of SETA by reducing the 
overheads. This improvement is more notable in S-SETA due to its significantly lower 
overheads. The highest MWTFs are usually achieved starting from 60% of basic blocks 
hardened on when using S-SETA. The results converge to SETA near to 100% of basic 
blocks hardened. 
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In summary, the two main contributions of the proposed SIHFT techniques and 
selective hardening methods are: (1) it was possible to reduce significantly the overheads 
with a small reduction in the fault coverage, which can bring reliability to applications 
with restrict time or energy constraints; and (2) it was possible to keep similar fault 
coverage of state-of-the-art SIHFT techniques and reduce the overheads. In other words, 
it means an increase in the reliability, because the application with the same fault coverage 
will be exposed for a shorter time. 

Finally, it was proposed a method to extrapolate the fault coverage and execution 
time, and estimate the results achievable by the combination of selective data-flow and 
selective control-flow techniques. The method gives estimated results with high accuracy, 
which can significantly speed up a project since only a few cases need to be tested, instead 
of testing all possibilities, in order to find the best combination of selective data-flow 
technique and selective control-flow technique that suit the application requirements. 

7.2 Future work 

This work evaluated and improved SIHFT techniques. Nevertheless, there are some 
points that were not investigated in this work that could contribute to the improvement of 
SIHFT techniques. They are listed and discussed as follows: 

 Selection of basic blocks: the criteria utilized in this work to select basic blocks 
were based on assumptions. Therefore, the evaluation of different criteria to select 
basic blocks could improve the selective control-flow techniques, or at least, 
provide data that support the assumptions 

 S-SETA-C: two different approaches for selective hardening on control-flow 
techniques were tested. The results show the advantages of the proposed 
approach. However, it is possible to use both approaches together. Selecting the 
basic blocks that will be hardened using S-SETA, and then, removing checkers 
from some of the selected basic blocks, as in SETA-C, resulting in the S-SETA-
C control-flow technique. This combined approach could improve the selective 
control-flow techniques 

 Extrapolation method: the method to extrapolate the results using curve fitting 
on hyperbolic tangents matches very well the results. However, the linear 
interpolation of the four hyperbolic tangents may not be the best method to find a 
surface of fault coverage for S-VAR and S-SETA. Some method that can keep 
better the hyperbolic tangent characteristic of the curves could improve the 
method’s precision. Furthermore, a generalization of the four 2D hyperbolic 
tangent equations in one single 3D general equation with a regression method that 
can fit the results in this equation is desirable 

 Reset and rollback: this work proposed and improved software detection 
techniques. Any system with detection techniques needs a method to return to a 
safe state. It could be achieved by resetting the processing and restarting the 
application, or returning a previously saved state (rollback). This was not in the 
scope of this work, but it is crucial for using the proposed SIHFT techniques (or 
any detection technique) in real world applications 

 Other SIHFT techniques: the data-flow techniques are based on replicating data 
and instructions and comparing the original values with their replicas. Other ways 
of hardening the data-flow that not the ones based on replication and comparison 
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must be investigated. They may provide reliability with very low overheads, or 
could be used to complement the current SIHFT techniques, as by improving the 
fault coverage, or as allowing a more aggressive use of selective hardening 
methods. 

7.3 Publications 

7.3.1 Book chapters 

Overhead Reduction in Data-flow Software-Based Fault Tolerance Techniques. 
E. Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. FPGAs and Parallel Architectures 
for Aerospace Applications, part V, pp. 279-291. Springer International Publishing AG, 
Cham, part V, ch. 18, pp. 279-291, Jan. 2016. DOI 10.1007/978-3-319-14352-1_18. 

7.3.2 Journals 

Reliability on ARM Processors against Soft Errors through SIHFT Techniques. 
E. Chielle et al. IEEE Transactions on Nuclear Science, 2016. (accepted) 

Analyzing the Impact of Radiation-induced Failures in Programmable SoCs. L. 
A. Tambara, P. Rech, E. Chielle, J. Tonfat, and F. L. Kastensmidt. IEEE Transactions on 
Nuclear Science, 2016. (accepted) 

S-SETA: Selective Software-Only Error-Detection Technique Using Assertions. 
E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, S. Cuenca-Asensi, L. A. Tambara, P. 
Rech, and H. Quinn. IEEE Transactions on Nuclear Science, vol. 62, no. 6, pp. 3088-
3095, Dec. 2015. DOI 10.1109/TNS.2015.2484842. 

Application-Based Analysis of Register File Criticality for Reliability 
Assessment in Embedded Microprocessors. F. Restrepo-Calle, S. Cuenca-Asensi, A. 
Martinez-Alvarez, E. Chielle, and F. L. Kastensmidt. Journal of Electronic Testing, vol. 
31, no. 2, pp. 139-150, Apr. 2015. DOI 10.1007/s10836-015-5513-9. 

Evaluating Selective Redundancy in Data-Flow Software-Based Techniques. E. 
Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt. IEEE 
Transactions on Nuclear Science, vol. 6, no. 4, pp. 2768-2775, Aug. 2013. DOI 
10.1109/TNS.2013.2266917. 

7.3.3 Conferences 

Hybrid Soft Error Mitigation Techniques for COTS Processor-based Systems. 
E. Chielle et al. Latin-American Test Symposium (LATS 2015), Foz do Iguaçu, Brazil. 

Reliability on ARM Processors against Soft Errors by a Purely Software 
Approach. E. Chielle, F. Rosa, G. S. Rodrigues, F. L. Kastensmidt, R. Reis, and S. 
Cuenca-Asensi. Conference on Radiation Effects on Components and Systems 
(RADECS 2015), Moscow, Russia. DOI 10.1109/RADECS.2015.7365660. 

Analyzing the Failure Impact of Using Hard- and Soft-cores in All 
Programmable SoC under Neutron-induced Upsets. L. A. Tambara, P. Rech, E. 
Chielle, and F. L. Kastensmidt. Conference on Radiation Effects on Components and 
Systems (RADECS 2015), Moscow, Russia. DOI 10.1109/RADECS.2015.7365586. 

Selective Software Techniques to Detect Neutron-induced Soft Errors in 
Processors with Minimum Overhead. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, 
S. Cuenca-Asensi, L. A. Tambara, P. Rech, and H. Quinn. IEEE Nuclear and Space 
Radiation Effects Conference (NSREC 2015), Boston, USA. 
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Reducing Performance Degradation in Software Detection Techniques on 
Embedded Processors. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, and S. Cuenca-
Asensi. Military and Aerospace Programmable Logic Devices (MAPLD 2015), San 
Diego, USA. 

Software Error-Detection Techniques with Reduced Overheads on Embedded 
Processors. E. Chielle, G. S. Rodrigues, F. L. Kastensmidt, and S. Cuenca-Asensi. 
Simpósio Sul de Microeletrônica (SIM 2015), Santa Maria, Brazil. 

Tuning Software-based Fault-tolerance Techniques for Power Optimization. E. 
Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. 24th IEEE International Workshop on 
Power and Timing Modeling, Optimization and Simulation (PATMOS 2014), Palma de 
Mallorca, Spain. DOI 10.1109/PATMOS.2014.6951871. 

Tuning Software-based Fault-tolerance Techniques for Soft-core Processors. E. 
Chielle, F. L. Kastensmidt, and S. Cuenca-Asensi. FPGAs for Aerospace Applications 
(FASA 2014). Munich, Germany. 

Efficient metric for register file criticality in processor-based systems. F. 
Restrepo-Calle, S. Cuenca-Asensi, A. Martinez-Alvarez, E. Chielle, and F. L. 
Kastensmidt. 15th IEEE Latin American Test Workshop (LATW 2014), pp. 1-6. 
Fortaleza, Brazil. DOI 10.1109/LATW.2014.6841922. 

Evaluating Software-Based Fault Detection Techniques Applied at Different 
Programming Abstraction Levels. E. Chielle, J. R. Azambuja, and F. L. Kastensmidt. 
10th Workshop on Silicon Errors in Logic – System Effects (SELSE 2014). Stanford, 
USA. 

Comparing Software-Based Fault Detection Techniques Applied at Different 
Abstraction Levels. E. Chielle, D. H. Grehs, J. R. Azambuja, and F. L. Kastensmidt. 
Radiation Effects on Components and Systems (RADECS 2013). Oxford, UK. DOI 
10.1109/RADECS.2013.6937383. 

Evaluating the Effectiveness of a Diversity TMR Scheme under Neutrons. L. A. 
Tambara, J. R. Azambuja, E. Chielle, F. Almeida, G. L. Nazar, P. Rech, M. S. 
Lubaszewski, F. L. Kastensmidt, and C. Frost. Radiation Effects on Components and 
Systems (RADECS 2013). Oxford, UK. DOI 10.1109/RADECS.2013.6937382. 

Improving error detection with selective redundancy in software-based 
techniques. E. Chielle, J. R. Azambuja, R. S. Barth, and F. L. Kastensmidt. 14th IEEE 
Latin American Test Workshop (LATW 2013). Cordoba, Argentina. DOI 
10.1109/LATW.2013.6562659. 

Evaluating Selective Redundancy in Data-flow Software-based Techniques. E. 
Chielle, J. R. Azambuja, R. S. Barth, F. Almeida, and F. L. Kastensmidt. Radiation and 
its Effects on Components and Systems (RADECS 2012). Biarritz, France. 

Single-Event-Induced Charge Sharing Effects in TMR with Different Levels of 
Granularity. F. Almeida, F. L. Kastensmidt, S. Pagliarini, L. Entrena, A. Lindoso, E. S. 
Millan, E. Chielle, L. Naviner, and J. F. Naviner. Radiation and its Effects on Components 
and Systems (RADECS 2012). Biarritz, France. 

Soft Error Rate Reduction by Using Configurable SET Temporal Filtering. J. 
E. Souza, F. L. Kastensmidt, F. Almeida, and E. Chielle. Radiation and its Effects on 
Components and Systems (RADECS 2012). Biarritz, France. 
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Soft-Error Probability Due to SET in Clock Tree Networks. R. Chipana, E. 
Chielle, F. L. Kastensmidt, J. Tonfat, and R. Reis. IEEE Computer Society Annual 
Symposium on VLSI (ISVLSI 2012), Amherst, USA. DOI 10.1109/ISVLSI.2012.39. 
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APPENDIX A <CFT-TOOL> 

CFT-tool (Configurable Fault-Tolerant tool) is a configurable tool that applies SIHFT 
techniques to the assembly code of target applications (CHIELLE, 2012). Its 
configurability comes from two aspects: 

 Processor: the target processor is informed by configuration files that 
describe the processor architecture and organization. Thus, different 
processors can be targeted by modifying the configuration files 

 Techniques: a set of data-flow and control-flow SIHFT techniques is 
available in the CFT-tool. It is possible to select the techniques, the order that 
they are applied, and the registers and basic blocks that shall be hardened. 

Fig. A.1 shows the steps that a program pass until a hardened executable is created. 
The code in high-level language is compiled, generating the equivalent assembly code. 
After, the code is assembled, creating the executable, which is, then, disassembled. CFT-
tool reads the assembly code, the disassembly, and the configuration files about the target 
processor and techniques. The assembly is the base code to create the hardened 
application. The code from subroutines presents in libraries, which is not present in the 
assembly code, is extracted from the disassembly. Information about the processor, such 
as the instruction set, register file, is read from the configuration files about the processor. 
And the configuration files about the techniques informs the selected techniques, and how 
they shall be applied. Then, CFT-tool creates a new assembly code hardened by the 
selected techniques. The hardened assembly is assembled, creating the hardened 
executable, which is ready to use. 

 

Fig. A.1: Steps to protect a code using the CFT-tool. 

A.1 Configuration 

CFT-tool is independent of the processor architecture and organization. Considering 
that the SIHFT techniques are applied by CFT-tool to the assembly code of the target 
application and that the assembly code is architecture dependent, it is necessary to provide 
information about the processor to the tool. All instructions, registers, as well as many 
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other vital characteristics of the processor, must be informed in order to CFT-tool work 
properly. 

In this regard, there is a set of configuration files that describe the processor 
architecture and organization. One of these files contains general configurations. For 
example, the label format as showed in Fig. A.2; the mnemonic of instruction to check if 
two values are different (Fig. A.3); if there is the implementation of the branch delay 
slot14 informing how many instructions are reordered (Fig. A.4); or the mnemonics of the 
logically inverse conditional branches, as showed in Fig. A.5. 

 

Fig. A.2: Example of label format configuration. 

 

Fig. A.3: The branch not equal must be informed because it is necessary for the 
implementation of checkers. 

 

Fig. A.4: Number of instructions reordered by the branch delay slot. 

 

Fig. A.5: Configuration informing the logically inverse conditional branches. 

Another configuration file contains information about the instructions, such as 
mnemonic, format, and type. Fig. A.6 presents an example of an instruction format, ins 
indicates where the mnemonic is placed, rd concerns to a destination register, rs refers to 
the source register, and offset is the memory offset with regards to rs. 

 

Fig. A.6: Example of an instruction format. 

The instructions are organized in groups. Fig. 3.8 presents the configuration of a 
group of instructions. The tag [GROUP] marks the start of a group, while 
{INSTRUCTIONS} indicates the mnemonics, {FORMAT} identifies the format of these 
instructions in the assembly code, and {TYPE} points the type of the instructions (arithmetic, in 
the example). 

                                                 
14 Branch delay slot is a feature of the pipeline present in some processors, in which the 
instructions immediately before branches are shifted down (to after the branch) in order 
to increase performance because the processor will always execute the instructions 
subsequent to branches. 
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Fig. A.7: Example of a group of instructions. 

CFT-tool recognizes instruction overload, i.e., instructions with the same mneumonic 
but slightly different features. For example, an add instruction that sum two registers and 
another add that sum a register with an immediate. Fig. A.8 shows another group of 
instructions containing instructions with the same mnemonic of Fig. A.7. By comparing 
both figures, it is possible to notice that the format in both cases is different. One has two 
registers, and the other has one register and one immediate. 

 

Fig. A.8: Example of a group with overloaded instructions with regards to Fig. A.7. 

As well as the instructions, the registers are configured in groups. In Fig. A.9, one 
can see an example of a group of registers. This group contains the registers $2 to $15. 
They are readable and writable, and can be accessed from any part of the code due to their 
type (global). 

 

Fig. A.9: Example of a group of registers. 

There is also a configuration file to make CFT-tool able to understand the 
disassembled code. This file identifies the equivalent configurations of the assembly code 
in the disassembly. For example, Fig. A.10 shows the configuration for the label format; 
Fig. A.11, the instruction format; and Fig. A.12, the equivalent name of each register in 
the disassembly and the assembly.  

 

Fig. A.10: Example of a label format in the disassembly. 
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Fig. A.11: Example of the instruction format in the disassembly. 

 

Fig. A.12: Equivalent names of the registers in the disassembly (left) and in the 
assembly (right). 

There are many other configurations, but they are not in the scope of this work. We 
just wanted to illustrate how CFT-tool works. 

A.2 Parameters 

It is possible to select and configure the SIHFT techniques that shall be applied to the 
code with configuration files. In addition, there is also another option, the use of command 
line parameters when running the CFT-tool. Table A.1 presents some of the parameters 
that can be passed to the tool. 

Table C.1: Some parameters of CFT-tool 

parameter description 

assemblyFilename 

techniques 

targetProcessor 
 

selectedRegisters 

priorityMode 

offset 

setaHigherPriority 

the filename of the assembly code of the target application 

the SIHFT techniques that shall be applied 

the target processor. It works for the processors already 
configured 

the registers that shall be hardened 

indicates the criterium to rank the registers 

offset in memory between original data and replica 

reserves registers to guarantee the implementation of SETA 

 
CFT-tool is a very complex hardening tool that is in constant improvement, with the 

add of new techniques and features. Its use was vital for the development of this work. 
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APPENDIX B <DEVICES> 

This appendix presents information about the target processors (miniMIPS and ARM 
Cortex-A9) and talks about the ZedBoard, a low-cost implementation of the Xilinx 
Zynq®-7000 All Programmable SoC, which has a dual-core ARM Cortex-A9 embedded. 

B.1 miniMIPS 

miniMIPS is a 32-bit processor core based on MIPS I architecture. It implements a 
total of 52 instructions, all with 32 bits of length, and it has a pipeline of 5 stages. All 
miniMIPS instructions take five cycles to be executed, and the peak throughput is one 
instruction per cycle (HANGOUT, 2009). 

Fig. B.1 shows the register set. It is composed of 32 registers of 32 bits. They are 
general purpose registers and are accessible at any part of the program. Register $0 cannot 
be written (its value is the constant zero). And register $31 receives by default the return 
address during subroutine calls. 

 

Fig. B.1: miniMIPS register set. 

Branch instructions are an important issue for the SIHFT techniques. The way the 
comparisons and branches are performed may affect the overheads and how checkers are 
inserted. The miniMIPS processor do the comparison and the branch in the same 
instruction. Fig. B.2 presents an example of instruction bne (branch not equal) that 
compares two registers ($2 and $3) and takes, or not, the branch to target address 
depending on the result of the comparison. 

bne $2, $3, target 
Fig. B.2: Comparison and branch in the miniMIPS processor. 

In this work, the miniMIPS was simulated at RTL level using a hardware description 
(VHDL) of the processor. The target application has to be in the COE format to be 
executed by the processor. The COE contains the binary code that is loaded into the 
memory. It is obtained by translating from the disassembly. 
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Fig. B.3: Transformations to run an application on the miniMIPS processor 

B.2 ARM Cortex-A9 

The ARM Cortex-A9 is a 32-bit processor core that implements the ARMv7-A 
architecture. It is an out-of-order superscalar processor, with 32 kB L1 instruction and 
data caches, 512 KB L2 cache, and speculating 8-stages pipeline (ARM, 2009). There is 
also a 256 KB L3 cache, also known OCM (on-chip memory), which is DRAM memory 
shared among all processors and other devices in the board in which the processor we 
utilized is embedded. 

In the application level, the architecture ARMv7-A has thirteen general-purpose 
registers, R0 to R12, and three 32-bit registers with special uses, SP (stack pointer), LR 
(link register), and PC (program counter), that can also be called R13, R14, and R15, 
respectively. The processor uses SP to point the active stack and LR to hold the return 
link information of subroutine calls (ARM, 2014). Furthermore, there are 32 64-bit 
registers for SIMD/floating-point (D0 to D31), which can also be referred as 16 128-bit 
registers in dual view. Other sets of registers, mainly for control, are also available. 

In general, the ARM Cortex-A9 processor uses two instructions to compare and take, 
or not, a branch. Table B.1 presents the instructions used to perform comparisons. They 
can compare two registers or one register and one immediate. 

Table B.1: Instruction to compare in the ARM Cortex-A9 processor 

Instruction Mnemonic Notes 

Compare Negative CMN Set flags. Like ADD but with no destination register.

Compare CMP Set flags. Like SUB but with no destination register.

 

Fig. B.4. shows an example using the instruction cmp. It compares two registers and 
set internal flags accordingly. 

cmp r2, r3 

high level language 

compiler 

assembler 

disassembler 

translator 

assembly 

executable 

disassembly 

COE 
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Fig. B.4: Example of comparison in the ARM Cortex-A9 processor. 

The branches are taken or not depending on the flags. Fig. B.5 shows an example of 
a branch instruction called bne (branch not equal). It will take, or not, the branch to target 
depending on the values of the flags, set by a previous comparison. 

bne target 
Fig. B.5: Example of branch in the ARM Cortex-A9 processor. 

In this work, a hardcore version of the ARM Cortex-A9 processor embedded in a 
ZedBoard is utilized. The standard binary executable is used. The code in high-level 
language is compiled and assembled in order to be executed. Information about the 
ZedBoard is presented as follows. 

B.3 ZedBoard 

ZedBoard is a low-cost development board for the Xilinx Zynq®-7000 All 
Programmable SoC. It has a dual-core ARM Cortex-A9 processor and 85,000 Serie-7 
Programmable Logic cells (AVNET, 2014). Each core has an individual L1 cache. 
Caches L2 and L3 are shared between the cores, and L3 cache is also shared with other 
devices in the board. Fig. B.6 presents the ZedBoard block diagram with its features. They 
consist of: 

 Xilinx® XC7Z020-1CLG484C Zynq-7000 AP SoC 
o Primary configuration = QSPI Flash 
o Auxiliary configuration options 

 Cascaded JTAG 
 SD Card 

 Memory 
o 512 MB DDR3 (128M x 32) 
o 256 Mb QSPI Flash 

 Interfaces 
o USB-JTAG Programming using Digilent SMT1-equivalent circuit 

 Accesses PL JTAG 
 PS JTAG pins connected through PS Pmod 

o 10/100/1G Ethernet 
o USB OTG 2.0 
o SD Card 
o USB 2.0 FS USB-UART bridge 
o Five Digilent Pmod™ compatible headers (2x6) (1 PS, 4 PL) 
o One LPC FMC 
o One AMS Header 
o Two Reset Buttons (1 PS, 1 PL) 
o Seven Push Buttons (2 PS, 5 PL) 
o Eight dip/slide switches (PL) 
o Nine User LEDs (1 PS, 8 PL) 
o DONE LED (PL) 

 On-board Oscillators 
o 33.333 MHz (PS) 
o 100 MHz (PL) 

 Display/Audio 
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o HDMI Output 
o VGA (12-bit Color) 
o 128x32 OLED Display 
o Audio Line-in, Line-out, headphone, microphone 

 Power 
o On/Off Switch 
o 12V @ 5A AC/DC regulator 

 

Fig. B.6: ZedBoard block diagram (AVNET, 2015). 

The use of ZedBoard in this work regards with the radiation tests because it is possible 
to program remotely the board to run applications on the embedded ARM Cortex-A9 
processor. Thus, the proposed software-based techniques can be tested. 
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APPENDIX C <BENCHMARKS> 

Nine applications were selected as benchmarks in this work. They consist of a bubble 
sort (BS), the Dijkstra's algorithm (DA), a recursive depth-first search (rDFS), a 
sequential depth-first search (sDFS), a matrix multiplication (MM), the run-length 
encoding (RLE), a summation (SUM), the TETRA encryption algorithm (TEA2), and a 
Tower of Hanoi (TH). Table C.1 shows a summary, for each application, regarding the 
instructions present in the code. Branches are all the branches, jumps, and subroutine 
calls; load/stores are the load and stores; and arithmetics are the remaining instructions, 
such as add, sub, etc. 

Table C.1: Summary of instructions for each benchmark 

benchmark instructions arithmetics load/stores branches 

BS 

DA 

rDFS 

sDFS 

MM 

RLE 

SUM 

TEA2 

TH 

144 

310 

38 

26 

171 

459 

24 

115 

75 

70 (48.6%) 

158 (51.0%) 

16 (42.1%) 

10 (38.5%) 

87 (50.9%) 

176 (38.3%) 

8 (33.3%) 

38 (33.0%) 

38 (50.7%) 

48 (33.3%) 

122 (39.4%) 

10 (26.3%) 

6 (23.1%) 

55 (32.2%) 

232 (50.5%) 

10 (41.7%) 

69 (60.0%) 

27 (36.0%) 

26 (18.1%) 

30 (9.7%) 

12 (31.6%) 

10 (38.5%) 

29 (17.0%) 

51 (11.1%) 

6 (25.0%) 

8 (7.0%) 

10 (13.3%) 

 
In Table C.2, one can see a more detailed division, for each benchmark, of the 

instructions present in the code. In comparison to Table C.1, the no operations (nops) 
have been separated from arithmetics and included in a new column. Loads and stores 
have been divided. And subroutine calls, unconditional branches (jumps), and conditional 
branches have been partitioned in the respective following categories: calls, jumps, and 
branches. 

Table C.3 presents the basic block division of each application. The table includes 
the number of basic blocks, the average number of instructions per BB, the number of 
basic blocks of types X and A, and the average number of successors and predecessors 
per BB. Table C.4 complements Table C.3 with additional information, which includes 
the number of networks that an application has, the average number of basic blocks in the 
predecessor network (predNet)15, and the average number of times a BB is executed. 

 

 

                                                 
15 predNet is the predecessor network. It contains the predecessor of the BBs of a given 
network. 
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Table C.2: Detailed division of instructions for each benchmark 

benchmark nops arithmetics loads stores branches jumps calls 

BS 
 

DA 
 

rDFS 
 

sDFS 
 

MM 
 

RLE 
 

SUM 
 

TEA2 
 

TH 
 

0 
(0.0%) 

1 
(0.3%) 

3 
(7.9%) 

2 
(7.7%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

0 
(0.0%) 

5 
(6.7%) 

70 
(48.6%) 

157 
(50.6%) 

13 
(34.2%) 

8 
(30.8%) 

87 
(50.9%) 

176 
(38.3%) 

8 
(33.3%) 

38 
(33.0%) 

33 
(44.0%) 

28 
(19.4%) 

67 
(21.6%) 

6 
(15.8%) 

4 
(15.4%) 

28 
(16.4%) 

143 
(31.2%) 

5 
(20.8%) 

43 
(37.4%) 

14 
(18.7%) 

20 
(13.9%) 

55 
(17.7%) 

4 
(10.5%) 

2 
(7.7%) 

27 
(15.8%) 

89 
(19.4%) 

5 
(20.8%) 

26 
(22.6%) 

13 
(17.3%) 

15 
(10.4%) 

14 
(4.5%) 

3 
(7.9%) 

3 
(11.5%) 

15 
(8.8%) 

26 
(5.7%) 

1 
(4.2%) 

1 
(0.9%) 

1 
(1.3%) 

10 
(6.9%) 

15 
(4.8%) 

6 
(15.8%) 

6 
(23.1%) 

12 
(7.0%) 

24 
(5.2%) 

5 
(20.8%) 

6 
(5.2%) 

4 
(5.3%) 

1 
(0.7%) 

1 
(0.3%) 

3 
(7.9%) 

1 
(3.8%) 

2 
(1.2%) 

1 
(0.2%) 

0 
(0.0%) 

1 
(0.9%) 

5 
(6.7%) 

 

Table C.3: Overall information about the basic blocks for each benchmark 

benchmark 
# 

BBs 
avg. # 

instructions 
type X type A 

avg. # 
successors 

avg. # 
predecessors

BS 

DA 

rDFS 

sDFS 

MM 

RLE 

SUM 

TEA2 

TH 

29 

39 

12 

11 

32 

67 

7 

9 

12 

4.97 

7.95 

3.17 

2.36 

5.34 

6.85 

3.43 

12.78 

6.25 

18 (62.1%) 

33 (84.6%) 

9 (75.0%) 

11 (100.0%) 

22 (68.8%) 

58 (86.6%) 

7 (100.0%) 

9 (100.0%) 

11 (91.7%) 

11 (37.9%) 

6 (15.4%) 

3 (25.0%) 

0 (0.0%) 

10 (31.3%) 

9 (13.4%) 

0 (0.0%) 

0 (0.0%) 

1 (8.3%) 

1.48 

1.36 

1.92 

1.27 

1.47 

1.39 

1.00 

1.11 

1.25 

1.48 

1.36 

1.92 

1.27 

1.47 

1.39 

1.00 

1.11 

1.25 
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Table C.4: Additional information about the basic blocks for each benchmark 

benchmark 
# 

networks 
avg. # BBs 
in predNet 

avg. # times a 
BB is executed 

BS 

DA 

rDFS 

sDFS 

MM 

RLE 

SUM 

TEA2 

TH 

18 

25 

7 

8 

20 

41 

6 

8 

9 

0.66 

0.87 

0.75 

0.91 

0.72 

0.88 

0.71 

0.89 

0.92 

8.00 

23.69 

5.92 

5.36 

4.28 

27.01 

286.43 

7.89 

767.67 

 

Not all faults affecting the unhardened application will result in failures. Actually, 
the masking rate is for the miniMIPS processor considering the fault injection 
methodology utilized. Table C.5 presents the fault coverage, as well as the execution time 
and code size, of the unhardened applications. It is clear that the error detection rate of 
unhardened applications is zero. Thus, the fault coverage is equivalent to the masking 
rate. 

Table C.5: Execution time, code size, and fault coverage of the unhardened applications 

benchmark execution time code size fault coverage 

BS 

DA 

rDFS 

sDFS 

MM 

RLE 

SUM 

TEA2 

TH 

195.5 

872.5 

24.50 

16.25 

161.0 

1316.0 

1262.0 

154.0 

4729.0 

1156 

2364 

1820 

1764 

1308 

3080 

536 

1096 

876 

87.36% 

88.80% 

84.41% 

84.71% 

84.50% 

87.73% 

85.95% 

83.10% 

81.24% 

 

C.1 Bubble sort 

Bubble sort (BS) is a sorting algorithm that compares the value of adjacent positions 
and may swap them if necessary. In this algorithm, there are many loops, branches, and 
registers used to determine the execution flow. 
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Table C.6 shows a dynamic evaluation of the registers usage for the bubble sort. It 
illustrates the number of times each register was used either as destination or source 
register during the program execution. 

Table C.6: Dynamic evaluation of the registers usage for the bubble sort 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
fp 
31 

total 

0 
1111 
354 
80 
4 
3 
5 
6 
5 
1 
3 
2 
2 

1576 

122 
1110 
353 
82 
4 
5 
15 
10 
15 
1 
7 

766 
2 

2492 

122 
2221 
707 
162 
8 
8 

20 
16 
20 
2 

10 
768 
4 

4068 

 
Table C.7 shows the effective lifetime (EL), weight in conditional branches (WCB), 

functional dependencies (FD), the criticality and the rank of criticality of the registers 
used by the bubble sort. The register $0 was not evaluated using Restrepo-Calle (2015) 
metric for criticality because it has the constant zero and cannot be modified. Thus, fault 
injection could not be performed directly in this register. We decided to set the register 
$0 as the one with the highest criticality by default (when it is utilized) because this 
register zero showed to increase the fault coverage with very low overheads (CHIELLE, 
2013). The bubble sort was compiled with no optimizations. For that reason, most of the 
calculations are performed using few registers. These registers the most sensitive ones, 
which is indicate by their high criticality. On the other hand, once they are the most used 
registers, they cause higher overheads when hardened. 

Table C.7: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the bubble sort 

register EL WCB FD criticality rank 

2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
fp 
31 

4.25E-01 
2.28E-01 
2.37E-01 
9.84E-01 
1.82E-02 
1.33E-02 
1.14E-02 
1.46E-02 
1.70E-02 
1.50E-03 
9.94E-01 
1.98E-02 

2.40E-02 
0.00E+00 
0.00E+00 
0.00E+00 
6.44E-04 
0.00E+00 
1.50E-03 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

5.36E-03 
9.03E-03 
9.06E-04 
1.92E-04 
2.74E-06 
3.24E-05 
0.00E+00 
4.02E-04 
3.18E-05 
1.56E-04 
2.22E-02 
0.00E+00 

1.50E-01 
7.84E-02 
7.87E-02 
3.25E-01 
6.24E-03 
4.40E-03 
4.25E-03 
4.95E-03 
5.61E-03 
5.47E-04 
3.35E-01 
6.52E-03 

3 
5 
4 
2 
7 
10 
11 
9 
8 
12 
1 
6 

 
Tables C.8 and C.9 presents detailed information about the basic block division of 

the bubble sort. Table C.8 includes the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
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basic block was executed. Table C.9 shows the BBs in the predecessor network of each 
network. 

Table C.8: Detailed information about the basic blocks of the bubble sort 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 

10 
3 
3 
1 
1 
4 
1 
13 
24 
4 
7 
5 
1 
1 
4 
5 
12 
3 
6 
3 
6 
2 
3 
4 
8 
1 
6 
1 
2 

X 
X 
X 
X 
X 
X 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 
A 
A 
A 
A 
A 
A 
X 
A 
A 
A 
A 
X 
X 

14 
2 

3, 4 
11 
5 

6, 7 
10 

8, 9 
9 
5 
2 
13 
 

13 
15, 22 
16, 17 
17, 16 
18, 19 
19, 18 
20, 21 
21, 20 

1 
23, 28 
24, 25 
25, 24 
26, 21 
27, 26 

21 
23 

 
21 

1, 10 
2 
2 

4, 9 
5 
5 
7 

7, 8 
6 
3 
 

11, 13 
0 
14 

15, 16 
15, 16 
17, 18 
17, 18 
19, 20 

19, 20, 25, 27 
14 

22, 28 
23, 24 
23, 24 
25, 26 

26 
22 

17 
16 
15 
14 
14 
13 
12 
12 
11 
11 
10 
9 
8 
7 
6 
5 
4 
4 
3 
3 
2 
2 
5 
1 
0 
0 
2 
2 
1 

1 
1 

11 
1 

10 
55 
10 
45 
32 
45 
10 
1 
0 
1 
1 
1 
2 
1 
2 
1 
0 
1 
0 
0 
0 
0 
0 
0 
0 

Table C.9: BBs in the predecessor network for each network of the bubble sort 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 

23 
22 

25, 19 
17 
15 
14 
0 
11 

 
3 
6 
7 
5 

4, 9 
2 

1, 10 
21 
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C.2 Dijkstra’s algorithm 

Dijkstra's algorithm (DA) is an algorithm proposed by Edsger W. Dijkstra (1959) to 
find the shortest path between nodes in a graph. It selects the unvisited node with the 
shortest distance to the origin. It is done iteratively, always selecting the current shortest 
path, until finding the destination, or failing. 

Table C.10 illustrates a dynamic evaluation of the registers usage for the Dijkstra’s 
algorithm. It shows the number of times each register was used either as destination or 
source register during the program execution. 

Table C.11 shows the effective lifetime (EL), weight in conditional branches (WCB), 
functional dependencies (FD), the criticality and the rank of criticality of the registers 
used by the Dijkstra’s algorithm. As the bubble sort, it is compiled with no optimizations, 
which concentrates the calculations in few registers. One thing that is important to notice 
is the high criticality of the register $31. It is used just a few times during the program 
execution. However, the register lifetime is huge because it is written in the beginning of 
the application and read in the end. 

Table C.12 presents the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
basic block was executed. And Table C.13 shows the BBs in the predecessor network of 
each network. 

Table C.10: Dynamic evaluation of the registers usage for the Dijkstra’s algorithm 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
4 
sp 
fp 
31 

total 

0 
5379 
1466 
110 
6 
4 
2 

6967 

338 
5378 
1936 
110 
12 

2786 
2 

10562 

338 
10757 
3402 
220 
18 

2790 
4 

17529 

 

Table C.11: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the Dijkstra’s algorithm 

register EL WCB FD criticality rank 

2 
3 
4 
sp 
fp 
31 

3.24E-01 
3.07E-01 
4.04E-02 
1.06E-03 
9.99E-01 
9.99E-01 

2.57E-02 
1.01E-02 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

3.85E-03 
6.94E-03 
5.06E-04 
7.94E-05 
1.46E-02 
0.00E+00 

1.17E-01 
1.07E-01 
1.35E-02 
2.65E-04 
3.35E-01 
3.30E-01 

3 
4 
5 
6 
1 
2 
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Table C.12: Detailed information about the basic blocks of the Dijkstra’s algorithm 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 

18 
3 
1 
31 
1 
3 
1 
16 
14 
3 
6 
1 
29 
2 
1 
10 
30 
5 
6 
1 
3 
1 
3 
1 
15 
7 
10 
1 
17 
3 
6 
1 
32 
4 
9 
6 
6 
2 
1 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 
X 
A 
A 
X 
X 
X 
X 
X 
X 
A 
X 
X 
X 
A 
A 
X 
X 
X 
X 
X 

1 
2, 3 

4 
1 
5 

6, 7 
8 
5 

9, 10 
12 

11, 12 
12 
13 

14, 15 
34 

16, 21 
17, 18 

20 
19, 20 

20 
21 
22 

23, 24 
13 

25, 33 
26, 28 
27, 28 

33 
29, 30 

32 
31, 32 

32 
33 
22 
36 
0 
38 
36 
38 

35 
0, 3 

1 
1 
2 

4, 7 
5 
5 
6 
8 
8 
10 

9, 10, 11 
12, 23 

13 
13 
15 
16 
16 
18 

17, 18, 19 
15, 20 
21, 33 

22 
22 
24 
25 
26 

25, 26 
28 
28 
30 

29, 30, 31 
24, 27, 32 

14 
 

34, 37 
 

36, 38 

24 
23 
22 
22 
21 
20 
19 
19 
18 
17 
17 
16 
16 
15 
14 
14 
13 
12 
12 
11 
11 
13 
10 
9 
9 
8 
7 
7 
7 
6 
6 
5 
5 
8 
4 
3 
2 
1 
0 

1 
101 

1 
100 

1 
11 
1 

10 
1 
1 
0 
0 
1 

11 
1 

10 
10 
2 
8 
0 

10 
10 
110 
10 
100 
100 
91 
91 
9 
1 
8 
0 
9 

100 
1 
1 
1 
0 
1 

 

Table C.13: BBs in the predecessor network for each network of the Dijkstra’s 
algorithm 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7

36 
 

34, 37 
 

14 
29, 30 

28 
25
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8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 

24, 27, 32 
22 

21, 33 
17, 18 

16 
15, 20 

13 
12, 23 
9, 10 

8 
6 
5 

4, 7 
2 
1 

0, 3 
35 

 

C.3 Recursive depth-first search 

Two different versions of a depth-first search were implemented. They both perform 
the same task, but in a different way, one sequential (sDFS) and another recursive (rDFS). 
While rDFS uses many recursive subroutine calls, sDFS uses many loops. Thus, it is 
possible to compare if the use of recursion may affect the reliability. 

The rDFS was implemented in assembly with the aim of maximizing performance 
by distributing the calculation among the registers and avoiding transferring unnecessary 
data to the memory. Table C.14 illustrates a dynamic evaluation of the registers usage for 
the recursive depth-first search. It shows the number of times each register was used either 
as destination or source register during the program execution. The criticalities of the 
registers used by the rDFS, showed in Table C.15, were more distributed than the 
applications compiled with no optimizations exactly because the calculations were more 
distributed. We can see that the intuitive thought that the most used registers are more 
sensitive is true. On the other hand, it also means that the protection of the most sensitive 
registers causes higher overheads. Finally, Table C.16 presents the number of instructions 
per BB, type, successors, predecessors, the network to which the BB belongs, and the 
number of times that the basic block was executed. And Table C.17 shows the BBs in the 
predecessor network of each network. 

Table C.14: Dynamic evaluation of the registers usage for the recursive depth-first 
search 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

2 
3 
4 
5 
6 
7 
8 
sp 
31 

total 

2 
1 
28 
14 
1 
28 
14 
0 
27 
115 

16 
27 
53 
28 
2 
42 
27 
1 
27 
223 

18 
28 
81 
42 
3 

70 
41 
1 

54 
338 
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Table C.15: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the rDFS 

register EL WCB FD criticality rank 

2 
3 
4 
5 
6 
7 
8 
sp 
31 

6.99E-01 
7.24E-01 
9.09E-01 
2.90E-01 
2.64E-01 
6.10E-01 
2.21E-01 
8.79E-03 
6.38E-01 

0.00E+00 
0.00E+00 
0.00E+00 
2.46E-02 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

4.95E-03 
2.00E-04 
9.62E-03 
4.95E-03 
5.27E-04 
8.68E-03 
2.00E-04 
5.27E-04 
0.00E+00 

2.32E-01 
2.39E-01 
3.03E-01 
1.05E-01 
8.72E-02 
2.04E-01 
7.31E-02 
3.07E-03 
2.11E-01 

3 
2 
1 
6 
7 
5 
8 
9 
4 

 

Table C.16: Detailed information about the basic blocks of the recursive depth-first 
search 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

1 
2 
4 
2 
1 
5 
3 
5 
3 
6 
5 
1 

X 
X 
X 
X 
X 
X 
A 
X 
A 
X 
A 
X 

1, 2 
6, 8, 10 

3, 4 
6, 8, 10 

5, 7 
0 

6, 8, 10 
0 

6, 8, 10 
0 
11 
11 

5, 7, 9 
0 
0 
2 
2 
4 

1, 3, 6, 8 
4 

1, 3, 6, 8 
 

1, 3, 6, 8 
10, 11 

6 
5 
5 
4 
4 
3 
2 
3 
2 
1 
2 
0 

14 
0 

14 
1 

13 
7 
7 
6 
6 
1 
1 
1 

 

Table C.17: BBs in the predecessor network for each network of the recursive depth-
first search 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 

10 
 

1, 3 
4 
2 
0 

5, 7, 9 

C.4 Sequential depth-first search 

The sequential depth-first search (sDFS) is the nonrecursive version of the depth-first 
search. Table C.18 illustrates a dynamic evaluation of the registers usage for the 
sequential depth-first search. It shows the number of times each register was used either 
as destination or source register during the program execution. Table C.19 shows the 
criticality of the registers used by the sDFS. This application was implemented in 
assembly with the aim of maximizing performance by distributing calculations among 
the registers (as the rDFS). Therefore, we can see a more distributed criticality among the 
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registers. It is also possible to notice that the registers $31, although little used, has high 
criticality due to its high effective lifetime. Table C.20 presents the number of instructions 
per BB, type, successors, predecessors, the network to which the BB belongs, and the 
number of times that the basic block was executed. And Table C.21 shows the BBs in the 
predecessor network of each network. 

Table C.18: Dynamic evaluation of the registers usage for the sequential depth-first 
search 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

2 
3 
4 
5 
6 
31 

total 

2 
1 
43 
14 
1 
1 
62 

16 
27 
71 
27 
2 
1 

144 

18 
28 
114 
41 
3 
2 

206 

 

Table C.19: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the sDFS 

register EL WCB FD criticality rank 

2 
3 
4 
5 
6 
31 

2.35E-01 
3.53E-01 
4.71E-01 
1.47E-01 
2.35E-01 
6.18E-01 

0.00E+00 
0.00E+00 
2.94E-02 
0.00E+00 
0.00E+00 
0.00E+00 

1.05E-02 
4.65E-04 
4.42E-03 
4.65E-04 
7.47E-04 
0.00E+00 

3.10E-01 
3.18E-01 
2.80E-01 
1.12E-01 
6.44E-03 
3.14E-01 

3 
1 
4 
5 
6 
2 

 

Table C.20: Detailed information about the basic blocks of the sequential depth-first 
search 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 

1 
1 
5 
2 
1 
2 
2 
2 
4 
5 
1 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 

1 
2, 7 
3, 4 

9 
5, 6 

1 
1 
9 
0 
10 
10 

8 
0, 5, 6 

1 
2 
2 
4 
4 
1 
 

3, 7 
9, 10 

7 
6 
5 
4 
4 
3 
3 
5 
2 
1 
0 

1 
14 
14 
1 

13 
7 
6 
0 
1 
1 
1 
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Table C.21: BBs in the predecessor network for each network of the sequential depth-
first search 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 

9 
3, 7 

 
4 
2 
1 

0, 5, 6 
8 

C.5 Matrix multiplication 

The matrix multiplication (MM) has a large amount of data processing within few 
loops. It is ideal to verify the coverage of data-flow techniques since there are few 
branches in the code. The version we used was compiled with no optimizations. 

Table C.22 illustrates a dynamic evaluation of the registers usage for the matrix 
multiplication. It shows the number of times each register was used either as destination 
or source register during the program execution. Table C.23 shows the criticality of the 
registers used by MM. As stated in section C.1, register $0 set as the most critical by 
default. Table C.24 presents the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
basic block was executed. And Table C.25 shows the BBs in the predecessor network of 
each network. 

Table C.22: Dynamic evaluation of the registers usage for the matrix multiplication 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
fp 
31 

total 

0 
925 
386 
33 
35 
33 
8 
10 
8 
2 
3 
2 
3 

1448 

74 
923 
492 
37 
35 
37 
26 
16 
26 
2 
7 

480 
3 

2158 

74 
1848 
878 
70 
70 
70 
34 
26 
34 
4 

10 
482 
6 

3606 
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Table C.23: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the MM 

register EL WCB FD criticality Rank 

2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
fp 
31 

3.24E-01 
3.90E-01 
2.07E-01 
5.59E-01 
3.92E-01 
2.72E-02 
2.25E-02 
3.03E-02 
3.56E-02 
1.83E-03 
9.95E-01 
4.08E-02 

1.41E-02 
0.00E+00 
0.00E+00 
0.00E+00 
1.05E-03 
0.00E+00 
3.14E-03 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

6.37E-03 
1.32E-02 
1.10E-03 
1.80E-04 
8.01E-04 
6.73E-05 
0.00E+00 
6.70E-04 
5.84E-05 
1.86E-04 
1.46E-02 
0.00E+00 

1.14E-01 
1.33E-01 
6.85E-02 
1.85E-01 
1.30E-01 
8.99E-03 
8.45E-03 
1.02E-02 
1.18E-02 
6.65E-04 
3.33E-01 
1.35E-02 

5 
3 
6 
2 
4 

10 
11 
9 
8 

12 
1 
7 

 

Table C.24: Detailed information about the basic blocks of the matrix multiplication 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

10 
6 
10 
3 
1 
1 
3 
1 
1 
3 
1 
50 
4 
4 
5 
1 
1 
4 
5 
12 
3 
6 
3 
6 
2 
3 
4 
8 
1 
6 
1 
2 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
A 
A 
A 
A 
A 
A 
X 
A 
A 
A 
A 
X 
X 

17 
17 
3 

4, 5 
14 
6 

7, 8 
13 
9 

10, 11 
12 
9 
6 
3 
16 
 

16 
18, 25 
19, 20 
20, 19 
21, 22 
22, 21 
23, 24 
24, 23 
1, 2 

26, 31 
27, 28 
28, 27 
29, 24 
30, 29 

24 
26 

 
24 
24 

2, 13 
3 
3 

5, 12 
6 
6 

8, 11 
9 
9 
10 
7 
4 
 

14, 16 
0, 1 
17 

18, 19 
18, 19 
20, 21 
20, 21 
22, 23 

22, 23, 28, 30 
17 

25, 31 
26, 27 
26, 27 
28, 29 

29 
25 

19 
18 
18 
17 
16 
16 
15 
14 
14 
13 
12 
12 
11 
10 
9 
8 
7 
6 
5 
4 
4 
3 
3 
2 
2 
5 
1 
0 
0 
2 
2 
1 

1 
1 
1 
4 
1 
3 

12 
3 
9 

36 
9 

27 
9 
3 
1 
0 
1 
2 
2 
4 
2 
2 
2 
0 
2 
0 
0 
0 
0 
0 
0 
0 
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Table C.25: BBs in the predecessor network for each network of the MM 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 

26 
25 

28, 22 
20 
18 
17 
0, 1 
14 

 
4 
7 
10 
9 

8, 11 
6 

5, 12 
3 

2, 13 
24 

 

 

C.6 Run length encoding 

Run-length encoding (RLE) is an algorithm for lossless data compression in which a 
homogeneous sequence of data are stored as a single datum and a count (CHEN, 2010). 
RLE is useful for simple graphics images, i.e., images of large scale with identically 
valued pixels (WANG, 1997). 

Table C.26 illustrates a dynamic evaluation of the registers usage for the run length 
encoding. It shows the number of times each register was used either as destination or 
source register during the program execution. Table C.27 shows the criticality of the 
registers used by the RLE. This application was compiled with no optimizations. For that 
reason, we can see few registers with high criticality (similar as showed to the Dijkstra’s 
algorithm). Table C.28 presents the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
basic block was executed. And Table C.29 shows the BBs in the predecessor network of 
each network. 

Table C.26: Dynamic evaluation of the registers usage for the run length encoding 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
4 
5 
sp 
fp 
31 

total 

0 
7495 
1142 
206 
60 
6 
4 
2 

8915 

1251 
7495 
1241 
209 
119 
12 

4748 
2 

15077 

1251 
14990 
2383 
415 
179 
18 

4752 
4 

23992 
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Table C.27: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the RLE 

register EL WCB FD criticality rank 

2 
3 
4 
5 
sp 
fp 
31 

3.71E-01 
1.91E-01 
7.29E-02 
3.80E-02 
4.47E-04 
9.99E-01 
9.99E-01 

3.15E-02 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

9.20E-04 
2.88E-03 
2.63E-04 
1.23E-04 
5.27E-05 
2.01E-02 
0.00E+00 

1.33E-01 
6.40E-02 
2.41E-02 
1.26E-02 
1.65E-04 
3.36E-01 
3.30E-01 

3 
4 
5 
6 
7 
1 
2 

 

Table C.28: Detailed information about the basic blocks of the run length encoding 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

9 
1 
3 
1 
9 
1 
4 
1 
23 
3 
3 
1 
12 
2 
4 
15 
12 
3 
4 
3 
4 
1 
14 
3 
5 
3 
20 
1 
4 
1 
13 
15 
11 
19 
4 
13 
2 
6 
3 
20 
1 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
A 
X 
X 
A 
A 
X 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 
X 

1, 61 
2 

3, 4 
5 
2 
6 

7, 8 
9 
6 
10 

11, 12 
15 

13, 14 
14 
10 

16, 56 
17 

18, 48 
19, 23 
20, 23 
21, 22 

23 
18 

24, 37 
25, 31 
26, 27 

34 
28 

29, 30 
34 
28 

32, 33 
33 
34 

35, 36 
52 
52 

38, 44 
39, 40 

47 
41 

63 
0 

1, 4 
2 
2 
3 

5, 8 
6 
6 
7 

9, 14 
10 
10 
12 

12, 13 
11 
15 

16, 54, 55 
17, 22 

18 
19 
20 
20 

18, 19, 21 
23 
24 
25 
25 

27, 30 
28 
28 
24 
31 

31, 32 
26, 29, 33 

34 
34 
23 
37 
38 
38 

40 
39 
38 
37 
37 
36 
35 
34 
34 
33 
32 
31 
31 
30 
30 
29 
28 
28 
27 
26 
26 
25 
25 
26 
24 
23 
22 
22 
21 
20 
20 
23 
19 
19 
18 
17 
17 
24 
16 
15 
15 

1 
1 

257 
1 

256 
1 

61 
1 

60 
1 

256 
1 

255 
2 

255 
1 
1 

31 
36 
35 
28 
0 

28 
8 
1 
0 
0 
0 
0 
0 
0 
1 
0 
1 
1 
0 
1 
7 
5 
0 
5 
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41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 
66 

4 
1 
13 
15 
11 
19 
5 
3 
18 
9 
4 
4 
12 
4 
3 
3 
3 
18 
9 
3 
1 
5 
7 
6 
1 
1 

X 
X 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 
X 
A 
X 
A 
X 
X 
X 
A 
X 
X 
X 
X 
X 
X 

42, 43 
47 
41 

45, 46 
46 
47 
52 

49, 50 
51 
51 
52 

53, 54 
54 

55, 17 
56, 17 
57, 60 
58, 59 

60 
60 
62 
62 
64 
0 
66 
64 
66

40, 43 
41 
41 
37 
44 

44, 45 
39, 42, 46 

17 
48 
48 

49, 50 
35, 36, 47, 51 

52 
52, 53 

54 
15, 55 

56 
57 
57 

56, 58, 59 
0 

60, 61 
 

62, 65 
 

64, 66

14 
13 
13 
16 
12 
12 
11 
27 
10 
10 
9 
8 
7 
7 

28 
28 
6 
5 
5 
6 

39 
4 
3 
2 
1 
0

16 
5 

11 
2 
0 
2 
7 

23 
0 

23 
23 
31 
30 
31 
1 
1 
0 
0 
0 
1 
0 
1 
1 
1 
0 
1 

 

Table C.29: BBs in the predecessor network for each network of the run length 
encoding 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 

64 
 

62, 65 
 

60, 61 
57 

56, 58, 59 
52 

35, 36, 47, 51 
49, 50 

48 
39, 42, 46 

44 
41 

40, 43 
38 
37 
34 

26, 29, 33 
31 
28 

27, 30 
25 
24 
23 
20 
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26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 

18, 21 
17, 22 
54, 15 

11 
12 
10 

9, 14 
7 
6 

5, 8 
3 
2 

1, 4 
0 
63 

 

C.7 Summation 

Summation (SUM) is the definite integral of a continuous function (KOUBA, 1999). 
In this work, it was implemented the summation given by the equation C.1. It is the sum 
of a sequence of numeric values. The version we implemented was compiled with no 
optimizations. 

Eq.	C.1 	  

Table C.30 illustrates a dynamic evaluation of the registers usage for the summation. 
It shows the number of times each register was used either as destination or source register 
during the program execution. Table C.31 shows the criticality of the registers used by 
the summation. Table C.32 presents the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
basic block was executed. And Table C.33 shows the BBs in the predecessor network of 
each network. 

Table C.30: Dynamic evaluation of the registers usage for the summation 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
sp 
fp 

total 

0 
6003 
1000 

3 
2 

7008 

1004 
6002 
1000 

5 
6005 

14016 

1004 
12005 
2000 

8 
6007 

21024 

 

Table C.31: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the summation 

register EL WCB FD criticality rank 

2 
3 
sp 
fp 

3.33E-01 
6.66E-02 
1.33E-04 
1.00E+00 

3.33E-02 
0.00E+00 
0.00E+00 
0.00E+00 

0.00E+00 
4.03E-03 
2.20E-05 
1.28E-02 

1.21E-01 
2.33E-02 
5.12E-05 
3.34E-01 

2 
3 
4 
1 
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Table C.32: Detailed information about the basic blocks of the summation 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 

5 
3 
1 
8 
5 
1 
1 

X 
X 
X 
X 
X 
X 
X 

1 
2, 3 

4 
1 
6 
 
6 

 
0, 3 

1 
1 
2 
 

4, 6 

5 
4 
3 
3 
2 
1 
0 

1 
1001 

1 
1000 

1 
0 
1 

 

Table C.33: BBs in the predecessor network for each network of the summation 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 

4 
 

2 
1 

0, 3 
 

 

C.8 TETRA encryption algorithm 

The Terrestrial Trunked Radio (TETRA) is a European standard designed for 
emergency, transport and military services (WURSTER, 2013). The TETRA Encryption 
Algorithm is an algorithm used to provide confidentiality to the TETRA air interface. 
This encryption algorithm protects against eavesdropping as well as protection of 
signaling (PARKINSON, 2001). In this work, the second version of the TETRA 
Encryption Algorithm (TEA2) was implemented. It was compiled with no optimizations. 

Table C.34 illustrates a dynamic evaluation of the registers usage for the TETRA 
encryption algorithm. It shows the number of times each register was used either as 
destination or source register during the program execution. Table C.35 presents the 
criticality of the registers used by the TEA2. Table C.36 presents the number of 
instructions per BB, type, successors, predecessors, the network to which the BB belongs, 
and the number of times that the basic block was executed. And Table C.37 shows the 
BBs in the predecessor network of each network. 

Table C.34: Dynamic evaluation of the registers usage for the TETRA encryption 
algorithm 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

0 
2 
3 
4 
5 
sp 
fp 
31 

total 

0 
799 
290 
129 
1 
6 
4 
2 

1231 

36 
798 
290 
129 
1 
12 
738 
2 

2006 

36 
1597 
580 
258 
2 

18 
742 
4 

3237 
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Table C.35: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the TEA2 

register EL WCB FD criticality rank 

2 
3 
4 
5 
sp 
fp 
31 

3.55E-01 
3.69E-01 
3.35E-01 
1.91E-03 
4.10E-03 
9.93E-01 
9.82E-01 

9.02E-03 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

6.26E-03 
9.29E-03 
0.00E+00 
0.00E+00 
4.47E-04 
2.15E-02 
0.00E+00 

1.22E-01 
1.25E-01 
1.11E-01 
6.31E-04 
1.50E-03 
3.35E-01 
3.24E-01 

4 
3 
5 
7 
6 
1 
2 

 

Table C.36: Detailed information about the basic blocks of the TETRA encryption 
algorithm 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 

32 
3 
1 
40 
11 
20 
6 
1 
1 

X 
X 
X 
X 
X 
X 
X 
X 
X 

1 
2, 3 

4 
1 
6 
0 
8 
6 
8 

5 
0, 3 

1 
1 
2 
 

4, 7 
 

6, 8 

7 
6 
5 
5 
4 
3 
2 
1 
0 

1 
33 
1 

32 
1 
1 
1 
0 
1 

 

Table C.37: BBs in the predecessor network for each network of the TETRA encryption 
algorithm 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 

6 
 

4, 7 
 

2 
1 

0, 3 
5 

 

C.9 Tower of Hanoi 

Tower of Hanoi (TH) is a mathematical puzzle. It consists of disks piled up in 
ascending order of size from top to down. The aim is to move from one stack to another 
using an auxiliary stack. It has been done respecting the following statements: 

 Only one disk can be moved each time. It has to be on top of a stack and goes 
to the top of another stack; 

 A larger disk cannot be on top of a smaller one; 
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The TH was implemented in assembly to maximize the performance and avoid that 
intermediary calculations are stored in the memory. Table C.38 illustrates a dynamic 
evaluation of the registers usage for the Tower of Hanoi. It shows the number of times 
each register was used either as destination or source register during the program 
execution. Table C.39 shows the criticality of the registers used by the Tower of Hanoi. 
One can notice that since the work was better distributed among the registers, the 
criticality also was. Register $7 was the most used one. However, the metric says it is one 
of the least critical. It happens because register $7 has many living intervals with very 
short lifetimes, which makes its data to be often overwritten. Thus, an error in this register 
will quickly disappear. 

Table C.40 presents the number of instructions per BB, type, successors, 
predecessors, the network to which the BB belongs, and the number of times that the 
basic block was executed. And Table C.41 shows the BBs in the predecessor network of 
each network. 

Table C.38: Dynamic evaluation of the registers usage for the Tower of Hanoi 

register 
# times used 
as destination 

# times used 
as source 

total # 
times used 

2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
31 

total 

4093 
3070 
3070 
4093 
2047 
9212 
1023 
2050 
2047 

0 
5116 

35821 

16369 
4095 
4094 
4094 
4094 

11259 
1023 
7165 
4092 

1 
5116 

61402 

20462 
7165 
7164 
8187 
6141 

20471 
2046 
9215 
6139 

1 
10232 
97223 

 

Table C.39: Effective lifetime (EL), weight in conditional branches (WCB), functional 
dependencies (FD), and criticality of the registers used by the Tower of Hanoi 

register EL WCB FD criticality rank 

2 
3 
4 
5 
6 
7 
8 
9 
10 
sp 
31 

9.45E-01 
5.45E-01 
6.27E-01 
6.36E-01 
9.73E-01 
1.73E-01 
2.45E-01 
2.55E-01 
9.72E-01 
1.60E-04 
3.18E-01 

0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
2.73E-02 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 
0.00E+00 

1.25E-02 
1.29E-03 
2.05E-03 
3.52E-03 
0.00E+00 
4.56E-03 
0.00E+00 
3.11E-03 
9.54E-04 
2.77E-06 
0.00E+00 

3.16E-01 
1.80E-01 
2.08E-01 
2.11E-01 
3.30E-01 
5.85E-02 
8.10E-02 
8.50E-02 
3.21E-01 
5.37E-05 
1.05E-01 

3 
6 
5 
4 
1 

10 
9 
8 
2 

11 
7 
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Table C.40: Detailed information about the basic blocks of the Tower of Hanoi 

BB 
# 

instructions 
type successors predecessors network 

# times 
executed 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 

15 
6 
1 
6 
7 
1 
12 
7 
3 
9 
7 
1 

X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
X 
A 

5 
2 
2 
9 
8 

6, 11 
5 
4 
3 
5 
11 

1, 7, 10

 
11 

1, 2 
8 
7 

0, 6, 9 
5 
11 
4 
3 
11 

5, 10

8 
7 
6 
5 
4 
3 
2 
7 
1 
0 
7 
2

1 
1 
1 

1023 
1023 
2047 
1023 
1023 
1023 
1023 
1023 

1 

 

Table C.41: BBs in the predecessor network for each network of the Tower of Hanoi 

network 
BBs in the 
predNet 

0 
1 
2 
3 
4 
5 
6 
7 
8 

3 
4 

5, 10 
0, 6, 9 

7 
8 
1 
11 
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