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High-harmonic generation in a quantum electron gas trapped in a nonparabolic and anisotropic well
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Fernando Haas†

Physics Institute, Federal University of Rio Grande do Sul, Avenida Bento Gonçalves 9500, CEP 91501-970, Porto Alegre, RS, Brazil
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An effective self-consistent model is derived and used to study the dynamics of an electron gas confined in a
nonparabolic and anisotropic quantum well. This approach is based on the equations of quantum hydrodynamics,
which incorporate quantum and nonlinear effects in an approximate fashion. The effective model consists of a set
of six coupled differential equations (dynamical system) for the electric dipole and the size of the electron gas.
Using this model we show that: (i) high harmonic generation is related to the appearance of chaos in the phase
space, as attested to by related Poincaré sections; (ii) higher order harmonics can be excited efficiently and with
relatively weak driving fields by making use of chirped electromagnetic waves.
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I. INTRODUCTION

Current technology allows the manipulation and control of
the electron dynamics in small devices of nanometric size, such
as semiconductor quantum dots and quantum wells. These
devices have attracted considerable attention in the last few
decades, particularly in view of their potential use for quantum
computing [1].

When the confining potential well is perfectly parabolic, the
electron response is dominated by the Kohn mode [2,3], i.e.,
a rigid oscillation of the electron density at the characteristic
frequency of the parabolic well. For nonparabolic confinement
the situation is much more complex. When the excitation is
small (linear response), the Kohn mode may still be dominat-
ing. However, for larger excitation energies, the electrons may
explore the anharmonic regions of the confining potential; in
that case, the frequency spectrum of such nonlinear response
becomes much more intricate, with the appearance of second-
and higher-order harmonics. In addition to the effect of the
anharmonicity of the confinement, the interparticle Coulomb
interactions also contribute to the complexity of the spectral
response. At a mathematical level, this complexity arises
because the center-of-mass and internal degrees of freedom
can no longer be separated, as was shown in several studies
that use powerful exact methods to model the quantum electron
dynamics [4,5].

However, exact approaches are necessarily limited to a
very small number of particles. Although such few- or even
single-electron systems can nowadays be realized in the
laboratory, in most practical situations a great many electrons
are involved [6,7]. In that case self-consistent effects—arising
from the Coulomb interactions between all the electrons—
play a crucial role on the dynamics. Several theoretical and
computational studies, which treat the many-body dynamics in
an approximate way, have investigated the linear and nonlinear
electron response. The methods of choice are the Hartree-Fock
equations [8], density functional theory (DFT) [9], or phase-
space methods based on Wigner functions [10].
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Even the above-cited methods can be computationally too
costly for very large systems. A possible alternative relies on
quantum hydrodynamics (QHD) [11,12], an approach that was
successfully used in the past to model the electron dynamics
in molecular systems [13], metallic nanoparticles [14–17] and
thin films [18], and semiconductor quantum wells [19]. In
Ref. [18] the validity of the QHD method was studied and
compared to DFT results. More recently, we used a QHD
approach to investigate high-harmonic generation in metallic
nanoparticles excited with ultrafast laser pulses [20].

The QHD model can be further simplified by means of a
variational approach [16] that expresses the QHD equations in
terms of a Lagrangian density. With this method, it is possible
to obtain a system of ordinary differential equations for a
set of macroscopic quantities, such as the center of mass
and the size of the electron gas. Although simple, the final
equations still capture some of the most prominent features of
the electron dynamics, namely: (i) the self-consistent Coulomb
interaction, (ii) quantum effects to lowest order, (iii) exchange
and correlation effects in a DFT fashion, and (iv) the geometry
of the confining well.

Here, we will use this approach to study the collective
dynamics of an electron gas confined in a semiconductor
quantum well. The simplicity of the model allows one to
carry out a large number of simulations, so that the electron
dynamics can be fully characterized. Our main focus will
be on the effect of the anharmonicity and the anisotropy of
the potential well on the electron response. We will see that,
when increasing the anharmonic component of the confining
potential, the electron dynamics becomes more and more
complex and eventually fully chaotic. The anisotropy of the
confinement and the magnitude of the Coulomb effects (i.e.,
the number of trapped electrons) also play an important role
in this transition. We will finally show that the appearance of
chaotic behavior is accompanied by the presence of higher-
order harmonics in the electron response.

II. QHD MODEL

The set of QHD equations for the electron density n(r,t),
the electron mean velocity u(r,t), and the Hartree potential
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JÉRÔME HURST et al. PHYSICAL REVIEW B 93, 205402 (2016)

VH (r,t) reads as

∂n

∂t
+ ∇· (nu) = 0, (1)

∂u
∂t

+ u ·∇u =∇VH − ∇Vconf − ∇VX

− ∇P

n
+ 1

2
∇

(∇2√n√
n

)
, (2)

�VH = 4πn, (3)

where the first equation above represents conservation of mass,
the second represents conservation of momentum, and the third
is Poisson’s equation for the self-consistent Hartree potential
VH . In Eq. (2), Vconf(r,t) is the potential of the confining well,
VX is the exchange potential (see below), and P (r,t) is the
Fermi pressure of a degenerated electron gas (we will make
the assumption that the system’s temperature is always much
lower than the Fermi temperature)

P = 1
5 (3π2)2/3n5/3. (4)

The last term in Eq. (2) is the so-called Bohm potential, which
incorporates quantum effects to the lowest order. The Bohm
potential is related to the so-called von Weizsäcker term in
Thomas-Fermi theory and orbital-free DFT [21].

The above equations are written in “semiconductor” atomic
units (au). These are formally identical to standard au, but
the electron mass me is replaced by the effective mass
m∗ = 0.067me and the vacuum dielectric constant ε0 by
its effective counterpart ε∗ = 13ε0. In this system of units,
lengths are normalized to an effective Bohr radius a∗ =
4πε∗�

2/(m∗e2) = 10.3 nm, energy to an effective Hartree
energy E∗

H = �
2/(m∗a∗2) = 10.8 meV, frequency to ω∗ =

E∗
H /� = 2π × 2.63 THz, and time to τ∗ = 1/ω∗ = 0.061 ps.

These units will be used throughout this paper unless otherwise
specified.

The confining potential is given by the sum of a harmonic
and an anharmonic (but isotropic) part, whose relative strength
is measured by the parameter ζ � 0:

Vconf = 1

2
(kxx

2 + kyy
2 + kzz

2) + ζ (x2 + y2 + z2)2. (5)

We chose this specific form for the anharmonic part of the
confinement, so that it can be captured by the single parameter
ζ . The elastic constants ki of the harmonic potential in Eq. (5)
are normalized to k∗ ≡ ω∗ 2m∗ = 1.64 × 10−5J/m2.

As in DFT, exchange effects can be modeled by a density-
dependent effective potential

VX[n(r,t)] = − 1

π
(3π2n)1/3 + β

[
2

∇2n

n4/3
− 4

3

(∇n)2

n7/3

]
, (6)

where the first term is the local density approximation (LDA)
and the other two terms constitute a gradient correction. The
prefactor β is a free parameter that we set equal to β =
0.005, which is a best-fit frequently used in atomic-structure
calculations [16,22].

The QHD equations (1)–(3) can be represented, without
further approximations, by a Lagrangian density L(n,θ,VH ),
where the function θ (r,t) is related to the mean velocity,
u = ∇θ . The expression for the Lagrangian density is as

follows:

L =n

[
1

2
(∇θ )2+ ∂θ

∂t

]
+ 1

8n
(∇n)2 + 3

10
(3π2)2/3n5/3

− 3

4π
(3π2)1/3n4/3 − β

(∇n)2

n4/3
+ nVconf − nVH

− 1

8π
(∇VH )2. (7)

By taking the standard Euler-Lagrange equations with respect
to the three fields n, θ , and VH , one recovers exactly the QHD
equations (1)–(3).

In order to derive a tractable system of equations, one needs
to specify a particular ansatz for the electron density. Here, we
take a Gaussian shape, which is a reasonable choice, as it is
the exact ground state solution when one neglects Coulomb
interactions and the anharmonic part of the confinement. Thus
we write:

n(r,t) = A

σxσyσz

exp

(
− 1

2
ρ2

)
, (8)

where the prefactor A = N/(2π )3/2 is obtained by fixing the
total number of particles N = ∫

nd r , and ρ is a displaced
position variable

ρ(x,y,z,t) =
√

1

σ 2
x

(x − dx)2 + 1

σ 2
y

(y − dy)2 + 1

σ 2
z

(z − dz)2.

(9)
Here, di(t) and σi(t) are time-dependant variables that repre-
sent, respectively, the center of mass and the size of the electron
gas in each Cartesian direction.

We now need to express the other variables (θ and VH )
in terms of the electron density. The mean velocity u can be
obtained exactly from the continuity equation (1). Its Cartesian
components are:

ui = σ̇i

σi

(ri − di) + ḋi , (10)

where i = {x,y,z} and ri = (x,y,z) and a dot stands for
differentiation with respect to time. From the above expression
we obtain

θ =
∑

i

(
σ̇i

2σi

(ri − di)
2 + ḋi(ri − di)

)
. (11)

For the self-consistent Hartree potential, we take the
expression

VH = −4π

√
π

2

A

(σxσyσz)1/3

erf(ρ/
√

2)

ρ
, (12)

where erf is the error function. This expression constitutes
an approximate solution of Poisson’s equation (3), which
becomes exact in the radially symmetric case (σx = σy = σz).

Substituting the above expression for n, θ , and VH into the
Lagrangian density (7) and integrating over the entire space,
we obtain the following Lagrangian function:

L[di,σi,ḋi ,σ̇i] = 1

N

∫
Ld r = 1

2

∑
i

(
σ̇i

2+ḋi
2)−U (di,σi),

(13)
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where U (di,σi) = Ud (di) + Uσ (σi) + Udσ (di,σi). The differ-
ent potential terms read as:

Ud =1

2

∑
i

kid
2
i , (14)

Uσ =1

2

∑
i

kiσ
2
i +

(∑
i

1

σ 2
i

)

×
(

1

8
+ α1N [σxσyσz]

1/3− α2 β

[
σxσyσz

N

]1/3)

+ α3

[
N

σxσyσz

]2/3

− α4

[
N

σxσyσz

]1/3

, (15)

Udσ =ζ

⎡
⎣∑

i

(
3σ 4

i + 6d2
i σ 2

i + d4
i

)+ ∑
i �=k

(
σ 2

i +d2
i

)(
σ 2

k +d2
k

)⎤⎦,

(16)

and represent, respectively, the dipole motion (Ud ), the
breathing motion (Uσ ), and the coupling between the dipole
and breathing dynamics (Udσ ). Note that such coupling
disappears for purely harmonic confinement (ζ = 0). The
various coefficient appearing in Eqs. (14)–(16) are given by:

α1 = 2π

3
√

2
(2π )−3/2 ≈ 0.0940,

α2 =9

4

√
3π ≈ 6.9075,

α3 = 9

50

√
3

5
(3π2)2/3 1

2π
≈ 0.2124,

α4 =9
√

3

32π

(3π2)1/3

√
2π

≈ 0.1914.

Finally, the equations of motion of the system can be obtained
from the Euler-Lagrange equations for L, and read as:

d̈i = −∂Ud

∂di

− ∂Udσ

∂di

, σ̈i = −∂Uσ

∂σi

− ∂Udσ

∂σi

. (17)

As expected, in the case of harmonic confinement (ζ = 0) the
dipole and breathing modes are completely decoupled (Kohn’s
theorem [2,3]).

We have thus reduced the complex problem of the dynamics
of a multielectron system to a relatively simple system of six
coupled differential equations for the center of mass and size
of the electron gas, which can be solved on a desktop computer
using standard methods (e.g., Runge-Kutta). As noted in
the introduction, this approximate system still incorporates
such important effects as Coulomb interactions, quantum and
exchange effects, as well as the effects of the geometry of
the confining trap (anharmonicity and anisotropy). Also, no
assumptions of linearity were made, so that Eq. (17) can be
used to study the nonlinear response of the electron gas.

Finally, we point out that it is difficult to estimate the
accuracy of our Gaussian ansatz, because the approximation
does not depend on the smallness of a certain parameter.
Nevertheless, in a previous work [19] we checked the va-
lidity of this approach by performing numerical simulations

of the corresponding Wigner-Poisson equations (which are
equivalent to time-dependent DFT). The conclusion was that,
even when the density profile deviates considerably from a
Gaussian function, the results of the reduced model are still
rather accurate for global quantities such as the oscillation
frequencies.

III. GROUND STATE AND LINEAR REGIME

Stationary states are obtained by setting d̈i = σ̈i = 0. For
the dipole mode, the solutions are clearly di = 0. For the
breathing mode, the equations of motions are those of a
fictitious particle evolving in the external potential Uσ + Udσ .
The equilibrium solution σ

(0)
i corresponds to the minimum of

such potential and can be found by setting its first derivative
to zero:

∂(Uσ + Udσ )

∂σi

∣∣∣∣
di=0

= kiσi − 2

σ 3
i

[
1

8
+ γ2V

1/3

]
+ q

γ2

3

[
V 1/3

σi

]

− 2γ1

3

[
V −2/3

σi

]
+ γ3

3

[
V −1/3

σi

]

+ ζ

⎡
⎣12σ 3

i + 4σi

⎛
⎝∑

j �=i

σ 2
j

⎞
⎠

⎤
⎦ = 0,

(18)

where V = σxσyσz is the electron gas volume, q = ∑
i σ

−2
i ,

and the following additional parameters were defined γ1 =
α3N

2/3, γ2 = α1N − α2βN−1/3, and γ3 = α4N
1/3.

In the most general case, it is not possible to obtain
analytical solutions for the ground state and one has to resort
to numerical methods. However, an analytical solution can be
found in the case of isotropic confinement (kx = ky = kz ≡ k)
and in the limit of a large number of particles (N � 1).
We found that the size of the electron gas scales as a
power of the number of electrons N . The exponent varies
according to whether the anharmonic part of the potential
is included or not: σ (0) = ( α1

k
N )1/3 for ζ = 0 (harmonic)

and σ (0) = ( α1
20ζ

N )1/5 for ζ �= 0 (anharmonic). As expected,
for harmonic confinement the volume increases as the total
number of particles. For the anharmonic case, the increase
with N is slower, reflecting the fact that the anharmonic
term tends to further confine the electrons. Note that in this
case the exponent is always 1/5, irrespective of the value
of ζ . These results were confirmed by numerical simulations
of the isotropic case obtained without making the large-N
approximation (Fig. 1). Note that the analytical solution is
more accurate for ζ = 0.1 than for ζ = 1. This is because it is
actually valid when the ratio N/ζ is large. Therefore, at given
N , it is a better approximation for small ζ .

Having found the ground state, it is possible to compute
the linear response frequencies of the system. In the most
general case, there are six such frequencies, three of which
correspond to the dipole (center-of-mass) modes �d and three
corresponding to the breathing modes �σ . These frequencies
are obtained by finding the eigenvalues of the Hessian matrix
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FIG. 1. Volume V = σxσyσz = σ (0) 3 of the electron gas as a
function of the number of electrons N for an isotropic confinement
and different values of the anharmonicity parameter ζ . The solid
lines are solutions of Eq. (18), whereas the dashed lines are analytical
solutions obtained in the N → ∞ limit.

constructed out of the second derivatives of the potential

H =
(
Hσ 0
0 Hd

)
, (19)

where

Hσ = ∂2U

∂σi∂σj

∣∣∣∣
di=0,σi=σ

(0)
i

,

Hd = ∂2U

∂di∂dj

∣∣∣∣
di=0,σi=σ

(0)
i

are symmetric (Hσ ) and diagonal (Hd ) 3 × 3 matrices.
In the following, we concentrate on the effect of the an-

harmonicity and focus on the case ζ = 0.05. The numerically
computed linear frequencies are given in Table I for different
confinements (isotropic and anisotropic) and different numbers
of particles. For an isotropic case (kx = ky = kz = 1) we
obtain, as expected, a single value for the dipole frequency
that is three times degenerate, but two values for the breathing

TABLE I. Dipole (�d ) and breathing (�σ ) frequencies for various
numbers of particles N and different geometries of the confinement.
The anharmonicity constant is ζ = 0.05 everywhere.

N kx ky kz �σ /ω∗ �d/ω
∗

1 3 2 3.21 3.69 4.19 1.43 1.73 1.99
20 1 1 2 3.17 3.32 3.76 1.46 (×2) 1.75

1 1 1 3.14 3.34 (×2) 1.46 (×3)

1 3 2 3.63 4.15 4.64 1.60 2.10 1.87
50 1 1 2 3.55 3.88 4.25 1.63 (×2) 1.89

1 1 1 3.51 3.90 (×2) 1.65 (×3)

1 3 2 4.00 4.61 5.07 1.76 2.00 2.23
100 1 1 2 3.92 4.38 4.70 1.79 (×2) 2.03

1 1 1 3.89 4.40 (×2) 1.81 (×3)
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V
(t)

,σ
(t)

0 1 2
ω /Ωσ

(d)
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0 2 4 6 8 10
Time (a.u)

0.9995

1

1.0005

1.001

V
(t)

,σ
(t)

V(t) / V(t=0)
σx(t) / σz(t)

0 1 2
ω / Ωσ

(nd)

10-5

10-3

Isotropic excitation

Constant volume excitation
(a)

(b)

FIG. 2. Simulations of the two breathing modes in the linear
regime for an isotropic case kx = ky = kz = 1 with N = 50 and
ζ = 0.1. Top panel (a): degenerate mode with constant volume V (t)
(red dashed curve) and varying aspect ratio σx/σz (blue continuous
curve); bottom panel (b): nondegenerate mode with constant aspect
ratio and oscillating volume. The insets show the Fourier transforms
of the oscillating quantities, which peak at the expected degenerate
(�(d)

σ ) and nondegenerate (�(nd)
σ ) frequencies.

frequencies, one of which is twice degenerate. These two
breathing frequencies correspond to two distinguished modes.
In the nondegenerate mode the volume V (t) of the electron
gas oscillates, whereas the aspect ratios σi/σj remain constant.
This mode preserves the spherical symmetry of the equilibrium
state and can be excited by perturbing the three σi in the
same way. In contrast, for the twice-degenerate mode the
volume stays constant whereas the ratios σi/σj oscillate at
the corresponding frequency.

These modes are shown in Fig. 2. In the figure, we
show numerical simulations of the full system obtained
by perturbing the stationary ground state by a very small
amount δi : σi(t = 0) = σ

(0)
i + δi . In all cases, the dipole

mode is not excited, i.e., di(t = 0) = 0. In the top panel,
we only excited the twice-degenerate mode by choosing the
perturbations δi such that the volume is invariant: As expected,
the volume stays constant during the linear evolution, while
the various σi oscillate. In the bottom panel, we only excited
the nondegenerate mode by taking δx = δy = δz: Here, the
volume oscillates while the ratio σx(t)/σz(t) remain constant.

In the case of isotropic confinement (kx = ky = kz ≡ k),
analytical expressions for the dipole frequency �d and for
the degenerate (�(d)

σ ) and nondegenerate (�(nd)
σ ) breathing

frequencies can be found in the large N limit. For harmonic
confinement (ζ = 0), one obtains the following expressions
(which are actually exact for all values of N ):

�d =
√

k, �(nd)
σ =

√
3k, �(d)

σ =
√

6k, (20)

205402-4



HIGH-HARMONIC GENERATION IN A QUANTUM . . . PHYSICAL REVIEW B 93, 205402 (2016)

10 100 1000
N

0

2

4

6

8

10

ζ=0.1
ζ=1.0

10 100 1000
N

0

2

4

6

8

10

Ω
d / 

 ω
*

10 100 1000
N

0

2

4

6

8

10

(a) (b) (c)

k⊥ / kz = 5 k⊥ / kz = 1 k⊥ / kz = 0.2

FIG. 3. Dipole frequencies �dz
(solid lines) and �d⊥ (dashed

lines) as a function of the number of electrons N for two values of
the anharmonicity parameter, ζ = 0.1 (blue) and ζ = 1 (red). The
left panel (a) corresponds to a cigar-shaped trap with k⊥ > kz; the
middle panel (b) to an isotropic trap (k⊥ = kz); and the right panel
(c) to a pancake shaped trap (k⊥ < kz). In the isotropic case (b) the
longitudinal (z) and transverse (⊥) dipoles coincide and the dotted
lines represent the analytical expressions of Eq. (21).

whereas for anharmonic confinement (ζ > 0) in the large N

limit:

�d = [(20ζ )3/2α1N ]1/5, �(nd)
σ = 5[(20ζ )3/2α1N ]1/5,

�(d)
σ = 34

5
[(20ζ )3/2α1N ]1/5. (21)

Note that the presence of an anharmonic part in the confining
potential introduces a dependence on the number of particles
N in the frequencies.

In Fig. 3, we show the dependence of the dipole frequency
with the geometry of the trap (characterized by the parameter
k⊥/kz, where k⊥ ≡ kx = ky) and the number of electrons. Note
that when k⊥/kz � 1 the trap is “pancake shaped,” while in
the opposite case k⊥/kz � 1 it is “cigar shaped”; k⊥/kz = 1
denotes an isotropic trap.

For an isotropic confinement (Fig. 3, middle panel) the
analytical expressions (dotted lines) match closely the nu-
merical results for N � 1. The anharmonicity introduces
a dependence of the dipole frequency with the number of
electrons, with higher frequencies corresponding to larger N .
The same trend is observed for a cigar-shaped trap (left panel)
and a pancake-shaped trap (right panel). In these anisotropic
traps, the longitudinal (parallel to z) and transverse (⊥) dipole
frequencies of course do not coincide, but both still grow
with N .

IV. NONLINEAR REGIME AND HARMONIC
GENERATION

In the previous sections, we characterized the linear
response of the electron dynamics by studying the eigenvalues
of the linearized system of equations. Physically, the linear

response corresponds to a weak excitation of the system and
results in one or a few lines in the frequency spectrum. In
order to trigger high harmonic generation (HHG), it is often
necessary to probe the nonlinear response regime, typically by
increasing the excitation.

A. HHG and Poincaré sections

In a first set of simulations in the nonlinear regime, we
show that HHG is accompanied by some typical signatures
of deterministic chaos in the dynamics. Here, we use Poincaré
sections as evidence of chaotic behavior. We also point out that
this type of study is feasible because our reduced mathematical
model is a system of ordinary differential equations, which can
be analyzed with the usual methods of classical Hamiltonian
mechanics.

The method of Poincaré sections consists in choosing a
two-dimensional cross section (i.e., a plane) of the entire phase
space (which, in our case, is six dimensional) and recording the
position on such plane each time that the representative point
of the system crosses it. If the system is chaotic, then there
is no correlation between the various points on the Poincaré
section, and some finite 2D regions of the plane will be covered
uniformly. In contrast, if the system is regular, i.e., periodic, the
representative point of the system will pass through the same
point after some time, and the Poincaré section will consist of
isolated points or 1D lines on the plane.

In our case, we choose the (dx,dy) plane for the Poincaré
section. Such plane divides the electron trap in two identical
regions. In the forthcoming simulations we take N = 50
electrons and an anisotropic trap characterized by k⊥ = 5 and
kz = 1. We perturb the stationary ground state by suddenly
changing the position and velocity of the dipole variable, i.e.,
by setting the following initial conditions at t = 0: di = δ,
ḋx = −ḋy = δ, and ḋz = 0, with the perturbation amplitude
δ varying between 0.01 and 3, and σi(t = 0) = σ

(0)
i . The

corresponding Poincaré sections are shown in Fig. 4. For
δ = 0.01 the system is clearly regular, as the Poincaré section
is basically an ellipse (this is due to the choice of the
initial condition). By increasing δ, the central phase-space
region starts filling up, first partially and in a regular way
[Figs. 4(b) and 4(c)] and then completely for δ = 3 [Fig. 4(d)].
The homogeneous coverage of a finite phase-space area is a
signature of chaotic behavior.

It is interesting to check how the onset of chaos with
increasing perturbation correlates with the frequency spectrum
of the total power radiated by the electron gas. At large
distances, the electron gas can be viewed as an electric dipole
of charge −Ne and displacement dz(t) oscillating along the z

axis. In this case we can apply the Larmor formula [23] for the
total radiated power: P (t) = e2/(6πε0c

3)|d̈z(t)|2. The dipole
power spectrum P (ω) is shown in Fig. 5 for the same cases as
in Fig. 4. As expected, the spectrum displays a single line at
the dipole frequency when the excitation is weak (δ = 0.01).
Higher order harmonics start appearing at larger values of δ

and are at the origin of the multiperiodic motion observed
in the corresponding Poincaré sections. Finally, for δ = 3 the
spectrum is nearly continuous, in agreement with the chaotic
dynamics observed in Fig. 4. To sum up, the situation can be
described as follows. At one extreme (low excitation), there is
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of the initial excitation: δ = 0.01 (a), 0.1 (b), 1 (c), and 3 (d). The
simulations were performed for an anisotropic trap with k⊥ = 5,
kz = 1, N = 50, and ζ = 0.01.

only one mode and the Poincaré section is completely regular
[Figs. 4(a) and 5(a)]; at the other extreme (large excitation),
the spectrum is continuous and the Poincaré section is ergodic
[Figs. 4(d) and 5(d)]. In between, the motion is quasiperiodic,
with several peaks appearing in the power spectrum.
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The same transition to chaos accompanied by HHG was
observed for a case where we keep the excitation constant
(δ = 1) and increase the anharmonicity parameter from ζ = 0
to ζ = 0.1 (Figs. 6 and 7). This can be explained by noting that,
in order to observe some chaotic dynamics, the presence of an
anharmonic term in the confinement is necessary—a purely
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FIG. 7. Power spectrum of the dipole P (ω) for different values
of the anharmonicity parameter ζ , for the same case as in Fig. 6.
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harmonic oscillator is always integrable. A finite value of ζ

introduces some coupling between the dipole and the breathing
motions, which enlarges the available phase space and allows
chaotic behavior. This chaotic behavior is displayed only when
the system explores the nonparabolic regions of the confining
trap. This can be achieved either by increasing the initial
excitation (Figs. 4 and 5) or by increasing the anharmonicity
of the trap (Figs. 6 and 7). Finally, we note that a certain
degree of anisotropy (k⊥ = 5kz in our case) was also required
to observed such irregular motion.

B. HHG and resonant excitation

So far, we used a simple excitation for our nonlinear system,
namely an initial velocity imparted on the dipole variables
ḋi(t = 0). In reality, the electron dynamics is usually triggered
by electromagnetic (laser) pulses. In order to simulate this
scenario, we assume that the confined electron gas is excited
via an oscillating electric field directed along the z axis, E =
Ez(t)ez. It can be shown that the effect of the field can be
included simply by adding a term −eEzdz to the Lagrangian L.
We consider three cases here: (i) an excitation at a nonresonant
frequency, (ii) an excitation at a resonant frequency, and (iii)
an excitation with chirp (autoresonance). Note that the dipole
linear resonant frequency is in the terahertz domain.

The results are shown in Fig. 8. For the first two cases,
the excitation has the form Ez(t) = E0 cos(ω0t), where E0 is
the electric field amplitude of the electromagnetic wave. In all
cases shown here, we took the same amplitude E0 = 0.01 au,
corresponding to E0 = 1.05 × 104 V/m in SI units, which
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FIG. 8. Laser excitation of the dipole response, for a trap with
parameters: k⊥ = 5, kz = 1, N = 50, ζ = 0.01. The amplitude of the
excitation is E0 = 1.05 × 104 V/m. We show the dipole amplitude
dz(t) (a), the absorbed energy (b), and the power spectrum P (ω) (c),
for three cases: nonresonant excitation at constant frequency (green
curves), resonant excitation at constant frequency (black), and chirped
excitation (red).

can be easily reached experimentally. In the first case (green
curves on the figure), ω0 = 0.8�dz

differs from the linear
response frequency �dz

. Being out of resonance, the system
stays close to the linear regime: The oscillation amplitude
remains small [Fig. 8(a)] and only a small amount of energy is
absorbed by the electron gas [Fig. 8(b)]. The power spectrum
[Fig. 8(c)] displays four (small) peaks, corresponding to
the laser frequency, the linear response frequency, and the
harmonics �dz

± ω0.
For a resonant excitation ω0 = �dz

(black curves), the os-
cillation amplitude and the absorbed energy initially increase,
but then decrease again after some time. This is because
the effective force acting on the dipole is not harmonic and
the resonant frequency actually depends on the amplitude of
the oscillations. When the amplitude grows and the system
reaches the nonlinear regime, the fixed external frequency no
longer matches the instantaneous resonant frequency (which
differs from �dz

in the nonlinear regime). The resulting
power spectrum displays two lines corresponding to the linear
frequency and the first harmonic.

Finally, we use an oscillating field with a chirped frequency:
Ez(t) = E0 cos (ω0t + α

2 t2), where α is the rate of variation
of the laser frequency. This type of forcing is known as
autoresonance [24] and was applied in the past to many physi-
cal systems [25,26]. Autoresonance occurs when a classical
nonlinear oscillator is externally excited by an oscillating
field with slowly varying frequency. For |α| � ω2

0 (adiabatic
process) and E0 above a certain threshold, the instantaneous
oscillator frequency becomes “locked” to the instantaneous
excitation frequency, so that the resonance condition is always
satisfied. In that case, the amplitude of the oscillations grows
indefinitely and without saturation, until of course some other
effect becomes dominant. Usually the threshold behaves as
Eth

0 ∼ |α|3/4, so that the amplitude can be arbitrarily small
provided that the external frequency varies slowly enough [24].

In an earlier study, using the autoresonant technique
in conjunction with a phase-space model of the electron
dynamics, we showed that it is possible to efficiently extract
the electrons from a Gaussian-shaped quantum well [10]. More
recently, autoresonant excitation was used to trigger HHG in
metallic nanoparticles [20]. We now show that it can be very
effective also for the systems considered here, namely quantum
dots and quantum wells.

In order for autoresonance to work, the excitation fre-
quency, which varies linearly in time as ω(t) = ω0 + αt ,
must cross at some point the resonant dipole frequency
�dz

= 20.07 THz. Therefore, for this simulation we chose
ω0 = 18.45 THz and a chirp rate α = 3.03 THz/ns. The
resonant frequency is crossed around t ≈ 0.55 ns, after which
the autoresonant process starts being effective, as can be
seen in Fig. 8. It is clear from Fig. 8 that the autoresonant
excitation allows one to increase phenomenally the amplitude
of the dipole oscillations and consequently the absorbed
energy, which is roughly three times as large compared to
the nonchirped case. We stress that the excitation amplitude
is the same for all cases. The power spectrum [Fig. 8(c)]
displays several peaks for higher order harmonics (up to the
third harmonic), with the first harmonic being roughly a factor
of ten smaller that the linear mode. We also note that these
spectral lines are unusually broad. This is probably due to the
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FIG. 9. Poincaré sections in the (dz,ḋz) plane for the three cases
of Fig. 8: nonresonant (a), resonant (b), and chirped excitation (c).

chirped excitation, which sweeps several frequencies around
each harmonic. The important point is that, using a rather weak
excitation (E0 = 1.05 × 104 V/m in the present case, which
could be made even weaker by reducing the chirp rate α), one
can induce significant energy absorption by the electron gas,
accompanied by HHG at remarkably high levels.

Finally, in Fig. 9 we show the Poincaré sections for the
three cases of nonresonant, resonant, and chirped excitation.
Note that the relevant section here is not the (dx,dy) plane as
before, because the dynamics now takes place essentially in
the z direction (due to the fact that the forcing is along z).
Instead, the relevant phase-space section is the plane (dz,ḋz),
which is shown in Fig. 9. We note that the phase-space portraits
become increasingly complex going from the nonresonant (a)
to the chirped case (c). Nevertheless, even in the resonant
and chirped excitation regimes, some regularities remain
compared to the Poincaré sections of Sec. IV A. This is

due to the fundamental difference between an autonomous
system endowed with an initial condition (Figs. 4–7) and a
time-dependent driven system (Figs. 8 and 9). The response
of a driven system is generally dominated by the drive, which
is what we see in Fig. 8, where the amplitude of the response
changes dramatically for the three cases. All in all, although
the driven (resonant and chirped) systems explore uniformly
a large fraction of the phase space [see Figs. 9(b) and 9(c)],
they are less chaotic. This can also be seen from the difference
between the power spectra, for instance comparing Fig. 5(d)
with Fig. 8(c) (red line). In the latter case, although many
harmonics are present, the spectrum is more regular than in
the former.

V. CONCLUSIONS

HHG is a highly topical research area with many potential
applications [27]; most notably it is a prerequisite for the
generation of attosecond laser pulses [28]. In this paper, our
aim was to explore the possibility of HHG using nanometric
systems containing many electrons, such as semiconductor
quantum dots and wells. With this purpose in mind, we
constructed an effective model in the form of a dynamical
system made of six coupled differential equations for the center
of mass and the size of the electron gas. This effective model
results from the application of a variational method to the
equations of quantum hydrodynamics.

The model was later applied to the dynamics of an electron
gas in a nonparabolic and anisotropic well. Two main results
were obtained. First, we showed that harmonic generation is
accompanied by dynamical chaos in the equations of motion.
The onset of chaos was quantified by the appearance of ergodic
regions in some Poincaré sections.

Second, we demonstrated that HHG can be efficiently
achieved by exciting the system with a chirped laser pulse.
This process, known as classical autoresonance, is capable
of bringing the electrons into a strongly nonlinear regime,
leading to the generation of high harmonics. Crucially, the
autoresonance technique works well for relatively modest
driving fields and does not require any fine tuning of the laser
pulse. The present results complete and extend to three spatial
dimensions our earlier findings that HHG can be triggered with
similar techniques in systems of metallic nanoparticles [20].
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