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Light with Tunable Non-Markovian Phase Imprint
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We introduce a simple and flexible method to generate spatially non-Markovian light with tunable
coherence properties in one and two dimensions. The unusual behavior of this light is demonstrated
experimentally by probing the far field and by recording its diffraction pattern after a double slit: In
both cases we observe, instead of a central intensity maximum, a line- or cross-shaped dark region, whose
width and profile depend on the non-Markovian coherence properties. Because these properties can be
controlled and easily reproduced in experiment, the presented approach lends itself to serving as a test bed
to study and gain a deeper understanding of non-Markovian processes.
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In nature, non-Markovian processes are far more
common than Markovian ones; however, scientists often
prefer to describe the behavior of nature with Markovian
models. This might be the case because Markovian models
are easier to build, and it is significantly easier to combine
them when constructing more complex models. Recently,
however, there has been increasing interest in understanding
the specific impact of non-Markovian behavior on chemical
and biological processes such as electron transfer [1], the
kinetics of protein folding [2], or the ion transport through
membranes [3], to name but a few. In optics, the radiation
dynamics in photonic crystals [4], optical gain in quantum-
well lasers [5], and dephasing processes in coupled
quantum-dot cavities [6] have been experimentally
observed to be governed by non-Markovian behavior.
Characterizing non-Markovian evolutions of quantum
properties at the loss of entanglement has become the
center of extensive theoretical and experimental efforts
[7,8]; it is hoped that this will pave the way for better
read-out mechanisms in quantum computing [9] or even
controlled generation of entangled states [10]. Such quan-
tum phenomena, or their application in logical circuits [11],
are often studied using optical means [7,8]. Furthermore,
the recent suggestion to initialize controlled quantum states
by “optical pumping” [10] opens exciting possibilities for
shaping desired quantum properties, including designed
non-Markovian characteristics, in the optical regime and
then transferring them to other physical systems [12,13].

Non-Markovian light, which might serve as an effective
tool towards these objectives, has been previously generated
by overlaying a light beam with a delayed copy or echo
of itself [14]. An alternative approach employs a micro-
mechanical oscillator as a mirror in order to obtain
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non-Markovian properties from its Brownian movements
[15]. The two methods result in light with non-Markovian
properties in the time domain; they offer only a limited
degree of control and practically no repeatability if the exact
same conditions need to be reproduced. In this Letter we,
therefore, introduce and experimentally demonstrate a
technique to create spatially non-Markovian light to over-
come these limitations. By using a spatial light modulator
(SLM) to imprint a non-Markovian phase pattern (NMP)
onto a coherent light beam, we build an experimental setup
that is simple yet flexible and programmable (and, thus,
easily reproducible) to generate light with the desired spatial
non-Markovian properties in one or two dimensions.
Because of this combination of control over the non-
Markovian properties and rapid experimental realization,
our approach lends itself to serving as a test bed to gain a
deeper understanding of the dynamics of non-Markovian
processes, or even as a building block for experiments
aiming at producing specific entangled states.

Moreover, NMPs in both one and two dimensions can be
generated by algorithms with a tuning parameter that allows
us to scan from strictly periodic to non-Markovian proper-
ties. Looking at the spatial coherence of the wave front
shaped by this means, we observe (depending on the tuning
parameter) a short-range anticorrelation and a mid-range
correlation, yet practically no correlation beyond a specific
distance. Probing this light in two basic experiments,
namely, by recording the far field and diffraction on a
double slit, we demonstrate how the response of this light
differs significantly from the familiar behavior of coherent
or thermal light, or any combination of these two.

In a Markovian process, the probability of a given state
may depend only upon the one state preceding it (relaxed
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condition), not on the sequence of events that occurred
before. Applying the Markov property to the case of a two-
dimensional matrix, the value at each matrix element
should be statistically independent from any other element
with the exception of its immediate neighbors on either
side. As a consequence, the covariance matrix of a pattern
fulfilling the Markov criteria will be (tri)diagonal [16].
However, the Markov condition is violated if the statistical
process generating the pattern has some kind of memory. A
textbook example would be the drawing of distinct balls
from a urn without replacing them, where the probability of
a ball to be drawn depends on the outcome of all previous
drawings. As shown in Fig. 1(a), we use a slightly modified
version of this model to generate one-dimensional NMP:
Starting with a random permutation of L symbols (e.g., for
L =9 the numbers 1-9), the series is continued with a
random permutation of its first s elements (1 <s <L),
such that the tuple of the last L elements again forms a
permutation of L. Then the next s elements in the series are
added in randomly permuted order, and the process is
repeated until the series reaches the desired length. For
our 1D experiments, we combine several such lines (each
statistically independent from the others) to a matrix with
horizontally non-Markovian, yet vertically Markovian
properties.

One convenient method of generating two-dimensional
NMPs is the solving of overlapping Latin squares or,
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FIG. 1 (color online). Generation of non-Markovian patterns
for phase imprint. (a) In one dimension: Generating a series of
overlapping permutations (indicated by colored braces below the
series) of here L = 6 symbols with, e.g., a shift size s = 3. (b) In
two dimensions: Solving overlapping Sudoku puzzles after
shifting the outer 9 x 9 frame by, e.g., s = 4 elements horizon-
tally or vertically.

alternatively, Sudoku puzzles. For this Letter we use
common 9 x 9 Sudoku puzzles with the numbers 1-9 as
symbols. Starting with one correctly solved Sudoku, we
shift its outer frame of size 9 x 9 by s elements either
horizontally or vertically and fill the empty elements to
solve for a valid Sudoku within the new frame position
[Fig. 1(b)]. The frame then is scanned in steps of s elements
over the matrix until the desired dimensions are reached.
The number of L =9 symbols was chosen primarily for
clarity in the reported figures and the familiarity with
regular Sudokus; higher values can be used in both one and
two dimensions, which would thus increase the range of s
and, equally, the resolution of the transition between strictly
period and non-Markovian patterns. In order to emphasize
that the use of Sudoku patterns is but one possibility for
creating two-dimensional NMPs, we refer in the following
to light with such a Sudoku-based non-Markovian phase
imprint as “Sudokulight”.

To translate the NMP to a phase imprint, each element is
assigned a discrete phase level by multiplying the respec-
tive number by 27/ L, and a SLM (Hamamatsu LCOS-SLM
x10468) is programmed with this phase information. The
properties of a plane wave (4 = 808 nm) reflected from
the SLM surface is then probed in the experimental setup
depicted schematically in Fig. 2(a), in which the far field is
recorded with a CCD camera.
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FIG. 2 (color online). Probing the far field of spatially non-
Markovian light. (a) Experimental setup. (b) Numerical (left side)
and experimental (right side) results, averaged over multiple
realizations, for 1D non-Markovian phase imprint with 9
equidistant phase levels. Rows depict the k-space for s
values from 9 (top row) to 1 (bottom row). (c) Central part of
covariance matrix J of the complex field for s = 2 at different
propagation distances z.
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Applying a 1D NMP at the SLM, we observe in the far
field a dark central region [Fig. 2(b)]. Because the phase
levels in the experiment are chosen such that the sum of the
complex field is zero, a small dark region in the center is to
be expected (similar, e.g., to the center of an optical vortex).
However, we note that the dip is significantly larger and
that its width, edge shape, and depth depend on the
parameter s: For s = 1, which generates strictly periodic
patterns, the width reaches from the -1st to the Ist
diffraction order. The width narrows for increasing s until
about half this size for s = 9 = L, which corresponds to a
series of random permutations without overlap or “shared”
elements. Between these two extremes we observe a
transition, where with increasing s the higher diffraction
orders (corresponding to higher spatial frequencies) “wash
out” and build a relative homogeneous noise floor, which is
normally a characteristic of spatially incoherent light. This
transition is not linear, as can be seen in Fig. 2(b); in
particular, for values of s that are divisors of L (e.g., s = 3)
the lower diffraction orders and the central dip appear much
more pronounced.

It is important to note that the value of s does not
influence the number of occurrences of each phase level (all
L phase levels appear equally often), but only restrains to a
higher (for smaller s) or lower (for larger s) degree the
random process determining the sequence in which these
phase levels form the pattern. The smaller the value of s, the
larger the statistical dependence between elements in the
pattern. In the case of s = 1, for instance, the pattern is
completely determined by the first L elements, whereas
for s = L the pattern consists of statistically independent
blocks of permutations with length L, wherein each
element only depends statistically on its neighbors of the
same block. The changes observed in the far field for
varying s, namely, in the width and shape of the dark region
and in the higher spatial frequencies, can therefore be
attributed to the respective changes in the non-Markovian
properties of the phase imprint.

Using the same parameters as in the numerical simu-
lation shown in Fig. 2(b) (left), we calculated the covari-
ance matrix of the complex field at the SLM surface and
after a free-space propagation over distances of 0.1 and
0.5 m [an exemplar for s = 2 is illustrated in Fig. 2(c)].
This covariance matrix, also referred to as the complex
mutual intensity function, or degree of coherence function
[16], reveals the interesting statistics of this light in the x-y
plane, i.e., anticorrelation in the immediate short range and
periodic peaks of high correlation at midrange, which get
weaker at increasing distance from the diagonal (the higher
the ratio s/L, the faster the peak intensity decays).
Interestingly enough, these main features persist even as
the beam propagates and the overall degree of coherence
increases in accordance with the Gaussian Schell model,
causing the broadening of the diagonal for propagation
distances of z = 0.1 and 0.5 m [17].

A similar behavior can be observed for the 2D case,
where the pattern for non-Markovian phase imprint is
generated by solving overlapping Sudoku puzzles. As
depicted in Fig. 3 (top), the far field features a dark cross,
whose width and border shape again depend on the
parameter s. The transition from structured to relative
homogeneous autocorrelation traces of these measurements
[Fig. 3 (bottom)] illustrates the decreasing degree of spatial
coherence for an increasing value of s/L. While the spatial
coherence can thus be tuned by the choice of s, a
comparison with the autocorrelation trace of a uniformly
distributed random phase pattern [using the same nine
discrete phase levels as the Sudokulight; Fig. 3 (bottom,
right column)] makes it clear that even the case s = L is far
from being spatially incoherent.

These coherence characteristics also lead to an unusual
diffraction pattern of Sudokulight in Young’s classical
double slit experiment [18]. The fringe contrast at inter-
ference is commonly used as a measure for the coherence of
light [19]. To test the diffraction of Sudokulight on a double
slit, we therefore employ the experimental setup schemati-
cally shown in Fig. 4(a). A 4f imaging with a magnification
of 1/5 downscales the phase imprint at the plane of the
double slit, such that the size of about five elements in the
NMP corresponds to the 100-um slit width (slit distance
300 um). The diffraction pattern is again recorded with a
CCD camera.

While incoherent light produces a Gaussian-shaped
intensity diffraction pattern perpendicular to the slit ori-
entation, coherent light produces fringes as seen in Fig. 4(c)
(right column). Partially coherent light is known to produce
a linear combination of these two patterns, always with an
intensity maximum at the center. Sudokulight, on the other
hand, features an intensity minimum at the center, not only
for the strictly periodic case s = 1, but for all values of the
tuning parameter s, both in the one-dimensional [Fig. 4(b)]
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FIG. 3 (color online). Sudokulight with 2D non-Markovian
phase imprint. Top row (from left to right) depicts the far field
measured with the setup illustrated in Fig. 2(a) for NMPs with
s = 3,6, and 9, respectively, averaged over 100 realizations.
Bottom row shows the far-field intensity autocorrelation of the
respective measurements. For comparison, the right column
shows the respective results of a uniformly distributed random
nine-level phase pattern imprinted on the beam.
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FIG. 4 (color online). Diffraction of Sudokulight on a double
slit. All results are averaged over 100 realizations with different
NMPs. (a) Experimental setup, employing 4f imaging to
reconstruct the phase imprint in the plane of the double slit with
amagnification of 1/5. (b) Numerical (left side) and experimental
(right side) diffraction patterns for 1D non-Markovian light for
increasing parameter s. Rows depict the intensity of the dif-
fraction pattern integrated along the slit orientation for s =1
(top) to 9 (bottom). (c) Top and bottom rows show the numerical
and experimental diffraction patterns obtained for Sudokulight
with s = 3,6, and 9, respectively (slits oriented vertically). The
right column depicts the diffraction of a plane wave under the
same conditions and scale, showing that the spatial frequency of
the interference fringes is the same for coherent and spatially non-
Markovian light.

and the two-dimensional case [Fig. 4(c), columns 1-3, all
results averaged over 100 realizations with different NMPs
at a fixed value of s]. In the two-dimensional case, it is
important to distinguish between the two pattern orienta-
tions. While the horizontal (perpendicular to the slit
orientation) intensity modulation originates from the dif-
fraction on the double slit, the vertical intensity modulation
is simply the far field of the light along both slits. By
comparing the two orientations in Fig. 4(c), one notes the
appearance of additional vertical fringes due to interference
of the diffracted light, which vanish for higher values of s.
This decreasing fringe contrast for an increasing value of
s/L, which can also be observed in the one-dimensional
case, confirms that the spatial coherence can be tuned with
the parameter s.

We note that the pattern-generation methods used in this
Letter are but two possibilities among many to create
spatially non-Markovian light via a SLM. To give just one
more example, a NMP tiled with nonoverlapping squares
(of width w) that contain a random permutation of numbers
1 to w? produces a donut-shaped intensity pattern in the far
field. In contrast to previous approaches that generate non-
Markovian light in time, the spatial analogue therefore
offers a far greater freedom and flexibility (along with
repeatability) in designing the stochastic and statistical

properties of the light. In addition, this approach of using a
SLM to imprint a non-Markovian phase can be easily
extended to the time domain by rapidly reprogramming
the SLM with a series of patterns that depend on their
predecessors in a non-Markovian fashion. Different non-
Markovian behaviors observed in natural systems can
thus be simulated more accurately with the corresponding
pattern-generation method. Although any rule that corre-
lates a matrix element beyond its immediate neighbor may
produce a NMP, methods with a tuning parameter, such as
the shift size s, allow for a deeper understanding of the
impact of non-Markovian properties on the system of
interest.

In conclusion, the generation of spatially non-Markovian
light with tunable properties, as demonstrated in this Letter
for one and two dimensions, lends itself to serving as test
bed for the study of non-Markovian systems and dynamics.
Light with a non-Markovian phase imprint shows very
unusual behavior even in classical linear experiments, such
as the diffraction on a double slit. Further research is
needed to show how this light interacts with nonlinear
systems. As it maintains its particular spatial coherence
properties when propagating in free space, this light might
well serve as a building block to designing specific, non-
Markovian properties in the optical regime, which could
then be transferred to other physical systems [12,13].
Because of the flexibility in controlling the spatial coher-
ence with the suggested pattern-generation method and the
easy, fast, and reproducible experimental implementation
via a spatial light modulator, the approach presented in this
Letter may become a useful tool in the search for a deeper
understanding of non-Markovian processes.
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