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In the present work, we extend results of a previous paper [Peter et al., Phys. Plasmas 20, 12 3104

(2013)] and develop a semi-analytical model to account for thermal effects on the nonlinear

dynamics of the electron beam in free-electron lasers. We relax the condition of a cold electron

beam but still use the concept of compressibility, now associated with a warm beam model, to

evaluate the time scale for saturation and the peak laser intensity in high-gain regimes. Although

vanishing compressibilites and the associated divergent densities are absent in warm models, a

series of discontinuities in the electron density precede the saturation process. We show that full

wave-particle simulations agree well with the predictions of the model. VC 2014
AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4901241]

I. INTRODUCTION

The presence of velocity spread in the transport of

charged beams affects the overall system performance for

any application where beams interact with ambient wave

modes. Interestingly, not always is the spread detrimental. In

the case of beams with inhomogeneous transverse profiles,

for instance, a coplanar transverse velocity spread may

actually prevent the appearance of strong nonlinear features

like wave-breaking and the undesired associated emittance

growth.1 In most cases, however, fine tuning control between

the beam velocity and the phase-velocities of the relevant

wave modes present in the system is needed. Under these

conditions, the usual requirement for a good quality beam is

that the velocity spread of the beam be much smaller than all

relevant velocity scales of the problem.

Free-electron lasers (FELs) fall in the latter class of

system discussed in the preceding paragraph. Here, the elec-

tron beam interacts with the ponderomotive wave formed by

the amplifying signal and a wiggler field, and a precise

mismatch between the beam velocity and the phase-velocity

of the ponderomotive wave is needed to optimise the interac-

tion.2,3 For an efficient interaction, in this case, one should

avoid velocity spreads larger than the velocity difference

between the beam and ponderomotive wave.4,5

The effects associated with velocity spreads in FELs

have been studied over the years. In the present work, we

investigate the issue by extending previous techniques based

on the concept of compressibility. The compressibility has

been proved useful to determine the transition from laminar

to mixing regimes of cold, or monoenergetic, electron beams

in FELs.6 Compressibility, the inverse of the density func-

tion, vanishes at transition and indicates therefore the forma-

tion of singular fluid densities that foreshadow the onset of

mixing in the phase-space of the electron beam.7 As the elec-

tron beam undergoes mixing, coherence is lost and the

amplifying signals saturates. Based on this set of features, a

cold fluid model was then developed to estimate both the

transition time and the saturated levels. The model was

shown to agree well with wave-particle simulations.

We should like to perform a similar analysis, but now

for a warm beam with a small but finite spread of longitudi-

nal velocities. This poses an initial problem which comes

from the fact that, in principle, even the laminar regime here

requires a kinetic description based on the full phase-space.

What we do to circumvent this difficulty, and still make use

of the more familiar macroscopic fluid quantities like the

compressibility, is to add a pressure term to the cold fluid

model developed earlier. This technique has been applied in

related beam systems1 and revealed nice agreement with full

simulations. We shall see that the agreement is remarkable

in the present analysis as well, provided that the velocity

spread be smaller than the velocity difference between beam

and ponderomotive wave.

Our results show that the presence of infinite densities

ceases to occur when the velocity spread is added, which is

expected since spread is equivalent to the inclusion of tem-

perature and the expanding effects of pressure in the fluid

equations. However, preceding mixing regimes, one still

encounters singularities, now arising from the formation of

discontinuities in the compressibility and density. This is

precisely what has been recently observed in the dynamics

of inhomogeneous magnetically confined warm beams,

where divergent density peaks of cold beams are replaced

with density discontinuities as pressure is added to the sys-

tem.1 The basic program of the present work is then to com-

pare wave-particle and fluid simulations based on the warm

fluid model, as we investigate the role of velocity spreads in

the instability, mixing, and saturation of FELs.

The paper is organized as follows: in Sec. II, we discuss

the basic physical model; in Sec. III, we produce an analyti-

cal approximation for the resulting set of equations, investi-

gate the problem, and compare the analytical approximation

with results from full simulations; and in Sec. IV, we draw

our conclusions.
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II. GOVERNING EQUATIONS

As already mentioned in the Introduction, the physical

model has been developed in a previous paper.6 We do not

intend to cover all the steps again, but we need to see how

the thermal effects come about in the simplified model. We

shall start with a brief review of the governing equations for

the full wave-particle dynamics and then proceed to the dis-

cussion of the appropriate warm fluid simplified model.

A. Full wave-particle equations

Let us first of all recall that particles move in the ponder-

omotive well formed by the laser (A) and wiggler (Aw)

vector potential fields, respectively, given by

eA

mc2
¼ a zð Þê exp i k z� x tð Þ þ c:c: ; (1)

eAw

mc2
¼ awê exp i kw zð Þ þ c:c: : (2)

Variable a¼ a(z) is the slowly varying dimensionless ampli-

tude of the laser, and aw is the dimensionless amplitude of

the wiggler. The carrier’s frequency and wavevector are,

respectively, given by x and k, and kw is the wavevector of

the wiggler; ê denotes the circular polarization versor, m and

e are the electron mass and charge, and c is the speed of

light. We note that the overall dynamics evolves along the

propagation axis z on a steady-state regime.

Each of the N macroparticles in the ponderomotive well

is governed by the pairs of equations

dhj

dz
¼

vzj

vp
� 1

� �
; (3)

dcj

dz
¼ � aw

2cj

aeihj þ c:c:ð Þ þ vzj
vpEz hj

� �
; (4)

for j¼ 1, 2, 3,…N. Variable hj � kpzj � xt with kp � k þ kw

is the particle phase in the ponderomotive well, and cj is the

relativistic factor given as

cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

tot

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

zj

q (5)

with Atot¼AwþA. We take vzj
=c! vzj

as the dimension-

less electron velocity, and vp ¼ x=ckp � k=kp as the dimen-

sionless phase-velocity of the ponderomotive wave. In

Eqs. (3) and (4), variable z denotes the dimensionless spatial

coordinate co-moving with the ponderomotive wave:

kpz ¼ kpðvptÞ ! z.

The electric field Ez(h) arises from space-charge effects

and can be cast in the following appropriate form both for

full simulations and for the upcoming fluid model:

Ez hð Þ ¼ pg2 N� � Nþ
N

� �
þ g2 hhji � h

� �
: (6)

Here, N�ðþÞ is the number of particles to the left (right) of

coordinate h (N ¼ N� þ Nþ), hhji is the center of mass of

the distribution inside of the ponderomotive potential, and

g2 ¼ x2
p=x

2 is the space-charge factor arising from the beam

charge; x2
p ¼ 4pn0e2=mc is the plasma frequency, with n0 as

the average density of particles.

Our final dynamical equation is the one governing the

slowly varying amplitude of the stimulated radiation. It

reads2,8,9

da

dz
¼ g2vp aw

e�ihj

2cj

* +
� ig2vp

1

2cj

* +
a; (7)

with the brackets indicating an average over the electron

distribution.

The set of nonlinear equations (1)–(7) describes the dy-

namics of a FEL with constant wiggler parameters aw and

kw, taking into account the presence of space-charge effects.

The set is generic in the sense that it provides the way to

investigate, within its limits, arbitrary kinetic regimes. In the

previous work, we focused on monoenergetic initial condi-

tions. A simplified fluid model was then derived and

analyzed. We intend to pursuit this kind of strategy, but now

incorporating the effects of an initial spread of longitudinal

velocities.

B. The warm fluid model

If the electron distribution has an initial spread of longi-

tudinal velocities, even the corresponding initial laminar

regime should be described by a kinetic approach. These

regimes are nevertheless well approximated by warm fluid

models,10 provided that the velocity variance of an otherwise

quite arbitrary distribution function remains small.11 As a

matter of fact, it has been shown that nonrelativistic water

bag distributions with constant density over the occupied

phase-space are exactly represented by adiabatic fluid equa-

tions,12 as long as the laminar regimes persists.

Given the simplicity and the reach of water bag distribu-

tions, at this point, we introduce our initial distribution func-

tion for electrons as a uniform water bag lying along the

phase h, with a small half-width Dv0 around an average

injection velocity v0. We point out that due to the smallness

of the velocity width, a very realistic assumption for FELs,13

the connections between the widths in velocity, momentum,

and energy spaces are approximately linear. Under the line-

arity condition, if the phase-space density is a constant in

one representation, it is also constant in the others. With

views at the warm fluid modeling, this is why we decided to

work with the velocity space.

As we build the warm fluid model from the fully kinetic

initial condition introduced in the preceding paragraph, we

observe that not only is the width Dv0 small, but also are

velocity excursions away from their initial values.6 We can

therefore switch from the original variables h and c to the

more recognizable phase-space pair h, _h, with the needed

relation between general small deviations for _h and c from

their respective averages given in the form dc ¼ 2k�1
p cDcd _h

(d _h ¼ ddh=dz), where Dc � @v=@c2.

Within this linear approximation, one recovers all terms

of the fluid equation, Eq. (10) of Ref. 6, with the remarkable
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addition of a term accounting for the velocity spread

effects—details are discussed in the Appendix. The full

equation for the phase is written in the form

@2h
@z2
¼� Dc

vp
aw~a zð Þeih þ c:c:
h i

þ2vpg
2Dccr h0 � hð Þ þ Dv0ð Þ2 @

2h

@h2
0

@h
@h0

� ��4

; (8)

with ~aðzÞ ¼ aðzÞe�i�z and � as the small frequency detuning

associated with the dimensionless velocity mismatch

� � ðv0 � vpÞ=vp. The term proportional to g2 is the approxi-

mation for the space-charge term, developed in the same

mentioned reference under the condition that fluid elements

do not overtake each other.6 We note that the convenient

inclusion of the detuning � into a rescaled laser field allows

to take the initial value of fluid variable _h in the simplified

model as zero.

Equation (8) is the approximate governing equation for

the phase h as obtained and discussed in the Appendix. In

contrast to its form when the spread is neglected, Eq. (8) is

to be viewed as a nonlinear partial differential equation for h
in Lagrangian coordinates h0 and z, the nonlinear differential

coupling generated by the velocity spread. We recall that

according to the Lagrangian representation, the phase h plays

the role of a field variable evolving along the time z from an

initial condition h0: h¼ h(h0, z).14

With basis on Eq. (8), the corpuscular electron popula-

tion has been converted into an averaged charged fluid that

can be analyzed with similar tools as those used in Ref. 6. In

particular, we shall look for singularities in the compressibil-

ity, as those indicate the onset of mixing leading to satura-

tion. The compressibility is defined in the form C � @h=@h0

and allows to express the fluid density in the laminar regime

as n¼ n0/C, with n0 as the unperturbed density. Zeros and

singularities in C are tantamount to singularities in n, which

typically announce the breakdown of laminar fluid regimes.

On a final and essential note before proceeding to the

numerical analysis of the system, we observe that Eq. (8)

needs a¼ a(z) as an input. In that regard, it had been

observed in Ref. 6 that while details of the particle dynamics

leading to saturation must be described with the cold version

of nonlinear equation (8), the exact radiation field closely

follows its linear version up to the onset of mixing.

To calculate a(z), we therefore stick to the linear

approach, which for all practical purposes we base on the

effective warm fluid model developed here. To do that, one

first observes that as the pressure term of Eq. (8) is linearized

and the second derivative @2h=@h2
0 is approximated by the

dominant harmonic �(h� h0)/(2p)2, the resulting effect of

the thermal spread on the longitudinal dynamics is to

“renormalize” the space-charge factor in the electronic

momentum equations, already present in cold beams. As for

the transverse electron dynamics, needed to evaluate the

source terms in Eq. (7), we shall approximate c as its local

velocity average over the electron distribution.

We are therefore making the assumption that the longi-

tudinal pressure term is the one ruling the kinetic effects,

which will be shown shortly to be a reasonably accurate

assumption under the conditions of the present analysis.

Following all these approximative maneuvers, we obtain

the stimulated laser field from a set identical in form to the

linear set obtained in Ref. 6, with the solely difference being

that the space-charge factor of the cold version is replaced

according to the rule g2 ! g�2 � g2 þ Dv2
0=4p2Dccrvp in the

momentum equation. The “renormalized” linear set takes the

form

d~a

dz
¼ �i

vpg2

2cr

awX � vpg2

2c2
r

awY � i
vpg2

2cr

~a þ i�~a; (9)

dX

dz
¼ 2

vp
DccrY � i

aw

vp
DA~a; (10)

dY

dz
¼ �v2

pg
�2X � 1

2cr

aw ~a; (11)

where X � hdhe�ih0i ¼ ð2pÞ�1 Ð 2p
0

dhe�ih0 dh0 and Y �
hdce�ih0i ¼ ð2pÞ�1 Ð 2p

0
dce�ih0 dh0 are the bunching factors

for the warm fluid version of the electron beam.

The linear set is then solved to produce a linearly grow-

ing field a(z) whose growth rate is maximized by a conven-

ient choice of the detuning �, a critical parameter for

optimization.

In Fig. 1, we briefly depict a comparison of the maxi-

mizing detuning as a function of the spread Dv0, both from

the full simulations and from the simplified warm fluid

model. It is seen that despite the approximation based on the

smallness of the velocity spread used for the warm fluid

model, both results agree well. As a matter of fact, slight

deviations can be observed from Dv0¼ 0.001 on, but those

do not affect the general adequacy of the model within the

range we are interested in. In this paper, we restrict our range

up to the limit ðDv0Þmax � � � 0:002, where the spread

becomes comparable to the maximizing velocity mismatch,

as suggested by Fig. 1, and the interaction efficiency dimin-

ishes. We observe that under condition � > Dv0, we can also

see our system as in a hydrodynamical regime.15 The hydro-

dynamical regime therefore survives until Dv0 � �, beyond

which it becomes kinetic. The transition is not sharply

defined, but with help of the linear dispersion relation one

can solve for the corresponding Dv0 satisfying the previous

FIG. 1. The detuning � for the maximum growth rate versus the spread Dv0.

Solid line obtained from the semi-analytical model and filled squares from

simulations.
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similarity condition. In an approximative way, calculating

the maximizing � in terms of g with help of the cold beam

dispersion relation, we can estimate the transition value for

Dv0 directly in terms of the space-charge factor. The expres-

sion is extensive, but if one consults its graphical representa-

tion offered by Fig. 2 in Ref. 6, one sees that the transition

can be identified by the characteristic spread Dv0 � 0:0015,

which agrees with the magnitudes discussed above. As one

reduces the spread, the beam gradually tends to the cold

limit.

Finally, the growth rate is obtained from simulations

through a linear fitting for the numerically obtained

logðjaðzÞjÞ. In terms of magnitude, it falls close—within a

range of 6%—from calculations involving different kinds of

distribution function.13

Considering the importance of space-charge effects in

many current devices,16 in all cases investigated in this

paper, we take g¼ 0.03, unless otherwise stated, which pla-

ces the system in a high-gain Raman regime,2,17,18 vp¼ 0.99

and a(z¼ 0)¼�iaw� 10�5 with aw¼ 0.4. The number of

macroparticles used in the simulations ranged from

N¼ 2000 to N¼ 10 000.

III. NONLINEAR FEATURES FROM SIMULATIONS AND
MODEL

A. Laminar versus mixing regimes

As a first step in our analysis, we shall determine basic

features of the transition from laminar to mixing regimes of

our system.

When thermal effects are neglected, the transition can

be identified with help of singularities in the electron den-

sity.6 At the transition, the compressibility vanishes and the

density diverges, which reflects the fact that the laminar elec-

tron distribution of cold beams is twisted in a way that one

can no longer establish single fluid variables at the same h.

For sufficiently large values of the space-charge factor g, this

kind of behaviour has been recognized in previous investiga-

tions as similar to wave-breaking processes.6,19–21

Let us now see what happens when Dv06¼ 0.

Figure 2 compares results from simulations and from the

model. In panels (a) and (b), we depict the density, as

obtained from compressibility calculations based on the

model equation, Eq. (8), respectively, for Dv0¼ 0.0002 and

Dv0¼ 0.001. In panels (c) and (d), we plot the respective

phase-spaces.

The key ingredient to fabricate the figures is that the

density plots capture instants where the compressibility and

density are just about to become discontinuous. We denote

these special instants as zb, with b standing for breakdown.

The meaning of this discontinuity is that fronts with different

densities collide at the same phase coordinate. This view is

confirmed as we examine the snapshots of the fully simu-

lated phase-space dynamics in panels (c) and (d). The snap-

shots, revealing fingers that protrude from the lower border

of the electron distribution, are also taken at the precise

instant—nearly the same as in the density counterparts—

where the density (obtained as an integral along the vertical

axis) at both sides of the left boundary of the fingers becomes

discontinuous as well.

Some features are then worthy of note. (i) We first

emphasize the nice agreement between the warm fluid model

and full simulations, both of which producing the discontinu-

ities nearly at the same instant. (ii) As we examine the phase

plots, we conclude that discontinuities are in fact a prelude

to the process of mixing where the contours of the electron

distribution can no longer be described as a single valued

structure. From that moment on, the growing stimulated radi-

ation field tends to saturate. This is seen in Fig. 3, where the

laser amplitude, obtained for Dv0¼ 0.0002, starts to deviate

from the linear growth nearly at the time predicted in panels

(a) and (c) of Fig. 2. (iii) Smaller spreads are associated with

FIG. 2. Comparison of density plots

(a) and (b) and respective phase-spaces

(c) and (d).
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larger discontinuities; in particular, cold electrons beams

produce infinite discontinuities associated with the divergent

densities observed in Ref. 6. (iv) It is known that not all the

electrons of warm beams are active participants in the FEL

interaction. The compressibility may be a useful tool to

investigate the issue since, from what we see here, the active

fraction directly relates to the size of the discontinuities of

the density, the inverse of the compressibility. Indeed, while

large discontinuities are associated with a large active frac-

tion, small discontinuities associate with small fractions in

the protruding fingers. Although we still lack a more precise

quantitative analysis here, we note that in the case of panels

(a) and (c), where densities disturbances are large, all par-

ticles at the density peak are captured in the rotating finger.

On the other hand, in the case of panels (b) and (d), where

disturbances are small, an equivalently small fraction of

electrons forms the finger.

All in all, we conclude that saturation in systems with

thermal spread is signaled by the presence of discontinuities

in the compressibility factor, or, alternatively, in the density

of the electronic fluid. These discontinuities are seen to

appear as the laminar regimes breakdown and give place to

mixing and saturation.

B. Time span for the laminar regime

As seen in Subsection III A, the laminar regime extends

up to the point where the fluid description based on single

valued contours breaks down. From that point on, mixing

sets in and the stimulated mode ceases to grow. The break-

down time zb is a critical time scale for our problem and in

both simulations and model we search for it as the first

instants where for some value of h either the compressibility

of the warm fluid model or the density in the full simulations

develop discontinuites.

The result of the comparison is displayed in Fig. 4 and

shows reasonable agreement between model and simulations

as already suggested by the discussion of the subsection III

A. We see that the breakdown time does not actually depend

too heavily on the spread Dv0, exactly as it had been revealed

in Ref. 1. In fact, since we are investigating a hydrodynamic

regime where the gap between the ponderomotive wave

velocity and the beam velocity is larger than the velocity

spread, the dynamics en route to the breakdown point

depends weakly on Dv0. The crucial feature here is the way

the breakdown takes place, as commented earlier. When the

breakdown point is reached, the small compressibility of

Eq. (8) generates a large contribution of the thermal term

and a resulting change on the density profile as compared

with the cold beam case. In general we see that the break-

down time zb is associated with density discontinuities of

warm beams, the discontinuities evolving into divergences

as Dv0 goes to zero.

C. Saturation peak of the stimulated radiation

Once one has the breakdown time, which marks the

onset of the saturation process for the FEL interaction, one

can estimate the intensity of the first peak of radiation. The

approach employed here is based on what has been observed

in Ref. 6. In that cited paper, as already discussed earlier, it

has been seen that the stimulated field grows much like its

linear approximation, the deviation first appearing close to

the first peak where the exact field saturates.

Given this relative accuracy of the linear approximation

up to breakdown, we adopt the following strategy: we let the

full linear system evolve up to zb and freeze the bunching

factors X and Y at that time, in an attempt to emulate the

saturated state. From this point on, we accompany the newly

acquired oscillatory motion of the laser amplitude and cap-

ture its first maximum.

The comparison of simulation and model can be found

in Table I. A graphical representation for the model can also

be seen as the dashed curve of Fig. 3 where we indicate the

FIG. 3. Amplitude of the stimulated radiation against time: full simulations

represented by the solid line, approximate model based on estimated values

for the bunching factors represented by the dotted line. Circle (triangle) indi-

cates the breakdown time according to the model (full simulations);

Dv0¼ 0.0002.

FIG. 4. Plots of zb versus the spread Dv0, both from full simulations (filled

squares) and model (stars).

TABLE I. Comparison of full simulations and analytical estimates for the

first peak of the laser amplitude.

Dv0 apeak
simul apeak

model

0.0002 0.026 0.028

0.0006 0.023 0.019

0.0011 0.019 0.014

0.0015 0.015 0.012

0.0020 0.012 0.009
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modeled (circle) and fully simulated (triangle) breakdown

times.

The hypotheses of linearity and of a strictly constant

bunching in the mixing phase introduce additional approxi-

mations to the model, but in spite of these the table still

reveals a reasonable agreement between simulations and

model.

Considering the simplicity of the steps adopted here to

estimate the peak, we believe that the table serves its

purposes.

D. Role of space-charge

Up to the present point, we have been using a fixed, and

large, value for the space-charge factor g in our analysis:

g¼ 0.03. We would like to conclude our analysis with a brief

but more extended view on the role of space-charge in the

system dynamics. The discussion is based on panels (a) and

(b) of Fig. 5. Panel (a) represents the size of the density dis-

continuity as a function of g, and panel (b) represents the

breakdown time zb also as a function of g. Both figures are

generated with the semi-analytical model, which was already

seen to agree very well with full simulations. To evaluate the

density discontinuities in a quick and reliable way, we uni-

formly partition the horizontal (h) axis of the density plots

into a large number of discrete elements and select the one

with the largest density variation at the breakdown time.

Partitions with 100 to 150 elements produce similar results.

Again, this agrees with the jump in density obtained when

we perform integrations of the phase-space density along the

vertical axis. Note that the jump appears as we move across

the left vertical boundaries of the protruding fingers of the

phase-space plots, as for instance seen in Figs. 2(c) and 2(d).

From Fig. 5, we first notice that divergences are sup-

pressed in thermal cases, as already commented along the

text. We also observe that discontinuities tend to increase

with g, the expected behavior when thermal effects become

relatively small, with the beam looking gradually more like a

cold one. Also, smaller spreads are associated with larger

discontinuities.

Panel (b) reveals richer behavior. First of all, smaller

values of g are associated with slower dynamics and larger

breakdown times, the expected result arising from shallower

ponderomotive wells. At larger value of g, region of hydro-

dynamical regimes, zb, is quite insensitive to the spread. This

is what we commented earlier when we discussed the rela-

tive constancy of zb against the spread, seen in Fig. 4.

However, when we abandon the hydrodynamical regimes at

small g’s, the spread can no longer be considered a small

term, acquiring a noticeable effect on the breakdown time.

Panel (b) complements the information gained earlier in the

text, when we focused attention on the hydrodynamical

regimes.

IV. CONCLUSIONS

In the present paper, we developed a nonlinear model to

investigate the effects of longitudinal thermal spreads on the

dynamics and relaxation of free-electron lasers. The analysis

was based on the concept of the compressibility, a quantity

directly associated with the electron density in the laminar

regime. Compressibility was discussed in a previous paper

where cold beams were examined and duly adapted here to

deal with warm beams.

Spatial discontinuities of the compressibility were

shown to signal the transition from laminar to mixing

regimes. This feature was examined with an approximate set

of nonlinear fluid equations, in a similar fashion to what has

been recently done in the case of magnetically confined

warm beams. Once again we observed that the transition in

warm beams is preceded by discontinuities in the electron

densities, rather than the density divergences seen in cold

cases. The discontinuities were shown to be associated with

the singular behavior of the lower boundary of the electronic

distribution.

We made use of an initial water bag distribution for the

electron population, which sets the system in an adiabatic

regime during the laminar phase. Comparison between water

bag and Maxwellian distributions has been made in similar

systems showing good agreement between both.11 Also, the

magnitude of growth rates calculated here are comparable to

those obtained for instabilities of Maxwellian distributions in

the same physical setting. The agreement observed in those

two instances suggests that the adiabatic approach is of rele-

vance in the present matter.

We detect the breakdown time in simulations as the

instant where the lower border of the distribution starts to

twist around itself. This particular criterium, appropriate

to sharply defined electron distributions, can be adapted to

more general cases. One possibility is to pinpoint the onset

FIG. 5. Effect of space-charge on the density discontinuities (a) and on the

breakdown time (b). Crosses represent Dv0¼ 0.0002 and filled squares

Dv0¼ 0.0004.
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of mixing through the abrupt growth of the beam emittance,

which has already been done in related systems.1

One also observes that our approximation on the connection

between momentum and velocity is limited by the magnitude of

the initial velocity spread Dv0. However, given the narrow

spreads in FELs,13 the linear connection is fairly accurate.

As we mention along the work, the present strategy

based on the compressibility suggests a way to estimate the

fraction of the electron population actively participating in

the FEL interaction. Figure 2 indeed showed that large and

small discontinuities are, respectively, related to large and

small fractions of participants: the larger the discontinuity,

the larger the number of particles in the protruding finger.

This issue and others, like the effects involved with the dif-

fraction of the stimulated signal, are of relevance for the

optimisation and efficiency of the FEL interaction. They

shall be further studied in coming works as the appropriate

quantitative analysis is developed.
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APPENDIX: DERIVATION OF THE NONLINEAR WARM
FLUID MODEL

Considering the phase-space h, _h, the electronic density

n¼ n(h, z) can be expressed in terms of the electronic distri-

bution function f ¼ f ðh; _h; zÞ in the form

nðh; tÞ ¼
ð

f ðh; _h; zÞd _h: (A1)

Neglecting the effects of collisions, the electronic distribu-

tion function must satisfy the Vlasov equation

@f

@z
þ _h

@f

@h
þ €h

@f

@ _h
¼ 0: (A2)

Taking the first-order moment of the Vlasov equation

(
Ð

f _hd _h) for a water bag distribution of half-width Dh0, we

obtain

@ _h
@z
þ _h

@ _h
@h

 !
þ 1

mn

@p

@h

� �
� €h ¼ 0; (A3)

where the pressure p for a unidimensional problem is written

as12

p ¼ m
D _h

2

3n2
0

 !
n3: (A4)

In Eq. (A3), we can identify the thermal contribution to the

system dynamics as

@2h
@z2

� �
ther
¼ � 1

mn

@p

@h

� �
; (A5)

which according to the equalities involving the compressibil-

ity C � @h=@h0 ¼ n0=n, takes the form

@2h
@z2

� �
ther
¼ �Dv2

0

@dh
@h0

þ 1

� ��4
@2dh

@h2
0

; (A6)

if we define dh � h� h0 and apply our normalization

scheme.

The fluid equation, with term (A6) added, is the one

introduced by Eq. (8) and used in the paper.

1E. G. Souza, A. Endler, F. B. Rizzato, and R. Pakter, Phys. Rev. Lett. 109,

075003 (2012).
2R. Bonifacio, F. Casagrande, G. Cerchoni, L. de Salvo Souza, P. Pierini,

and N. Piovella, Riv. del Nuovo Cimento 13, 1 (1990).
3H. P. Freund and T. M. Antonsen, Principles of Free-Electron Lasers
(Chapman and Hall, London, 1996).

4T. C. Marshall, Free-Electron Lasers (Macmillan Publishing Company,

New York, 1985).
5C. Brau, Free-Electron Lasers (Academic Press, London, 1990).
6E. Peter, A. Endler, F. B. Rizzato, and A. Serbeto, Phys. Plasmas 20,

123104 (2013).
7O. A. Anderson, Part. Accel. 21, 197 (1987).
8F. B. Rizzato, Phys. Rev. A 14, 1629 (1990); G. I. de Oliveira, F. B.

Rizzato, and A. C. Chian, Phys. Rev. E 52, 2025 (1995).
9J. T. Mendonça, Theory of Photon Acceleration (IOP Publishing, Bristol,

2001).
10R. C. Davidson and H. Qin, Physics of Intense Charged Particle Beams in

High Energy Accelerators (World Scientific, Singapore, 2001).
11C. Chen, F. B. Rizzato, and R. Pakter, in Proceedings of IPAC, edited by

C. Petit-Jean-Genaz (CERN, San Sebasti�an, Spain, 2011), p. 694.
12T. P. Coffey, Phys. Fluids 14, 1402 (1971).
13A. Chakhmachi and B. Maraghechi, Phys. Plasmas 16, 043110 (2009).
14R. M. G. M. Trines, Phys. Rev. E 79, 056406 (2009).
15K. V. Lotov and I. V. Timofeev, “Transition regime of the one-

dimensional two-stream instability,” e-print arXiv:1408.2349v1

(2014).
16G. Marcus, E. Hemsing, and J. Rosenzweig, Phys. Rev. Spec. Top. Accel.

Beams 14, 080702 (2011).
17P. Sprangle, C.-M. Tange, and W. M. Manheimer, Phys. Rev. A 21, 302

(1979).
18L. F. Monteiro, A. Serbeto, K. H. Tsui, J. T. Mendonça, and R. M. O.

Galv~ao, Phys. Plasmas 20, 073101 (2013).
19J. M. Dawson, Phys. Rev. 113, 383 (1959).
20F. B. Rizzato, R. Pakter, and Y. Levin, Phys. Plasmas 14, 110701

(2007).
21E. G. Souza, A. Endler, R. Pakter, F. B. Rizzato, and R. P. Nunes, Appl.

Phys. Lett. 96, 141503 (2010).

113104-7 Peter, Endler, and Rizzato Phys. Plasmas 21, 113104 (2014)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

143.54.42.15 On: Tue, 03 Feb 2015 15:11:08

http://dx.doi.org/10.1103/PhysRevLett.109.075003
http://dx.doi.org/10.1007/BF02770850
http://dx.doi.org/10.1063/1.4841375
http://dx.doi.org/10.1103/PhysRevA.41.1629
http://dx.doi.org/10.1103/PhysRevE.52.2025
http://dx.doi.org/10.1063/1.1693620
http://dx.doi.org/10.1063/1.3106684
http://dx.doi.org/10.1103/PhysRevE.79.056406
http://arxiv.org/abs/1408.2349v1
http://dx.doi.org/10.1103/PhysRevSTAB.14.080702
http://dx.doi.org/10.1103/PhysRevSTAB.14.080702
http://dx.doi.org/10.1103/PhysRevA.21.302
http://dx.doi.org/10.1063/1.4811475
http://dx.doi.org/10.1103/PhysRev.113.383
http://dx.doi.org/10.1063/1.2802072
http://dx.doi.org/10.1063/1.3385393
http://dx.doi.org/10.1063/1.3385393

