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The present work revisits the subjects of mixing, saturation, and space-charge effects in

free-electron lasers. Use is made of the compressibility factor, which proves to be a helpful tool in

the related systems of charged beams confined by static magnetic fields. The compressibility

allows to perform analytical estimates of the elapsed time until the onset of mixing, which in turn

allows to estimate the saturated amplitude of the radiation field. In addition, the compressibility

helps to pinpoint space-charge effects and the corresponding transition from Compton to Raman

regimes. VC 2013 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4841375]

I. INTRODUCTION

Free-electron lasers (FELs) are devices designed to effi-

ciently convert the kinetic energy of electron beams into the

energy of coherent electromagnetic modes. Energy is drawn

from the electron beam, as electrons are trapped in the pon-

deromotive well formed by the simultaneous action of the

electromagnetic mode and wiggler field.1–3

FELs are complex systems where electrons not only

interact with the growing electromagnetic modes, but also

among themselves. The regime, where the self-interaction of

the electronic population is negligible, is called Compton re-

gime. If, however, the electronic density is sufficiently high

that the self-interaction is relevant, the dynamical regime is

called Raman regime. Raman regimes involve space-charge

plasma waves, whose resulting forces acting on the elec-

tronic population are comparable to the forces produced by

the ponderomotive potential well.4–8

Space-charge effects in Raman regimes have been

largely reported in the literature. Emphasis is mostly directed

to issues related to instability and saturation levels of the

electromagnetic mode, which are of central importance for

FEL applications.9,10

More complete views of FELs also include careful analy-

sis of particle dynamics, especially in Raman regimes where

collective space-charge effects become more prominent.4

Relaxation in FELs occurs through dynamical mixing. If

the charge is small, the ponderomotive well alone mainly

drives the particle dynamics. In this case, the electronic dis-

tribution is attracted to the bottom of the ponderomotive

well, revolving as a whole around itself in the particle phase-

space.

When the charge increases, electric repulsion offers re-

sistance against the ponderomotive effect. In this case, not

only the relaxation is delayed with respect to Compton

approximations,11 but also the way the system relaxes

reveals new features associated with the presence of density

waves. As far as particle dynamics is concerned, the setting

is relatively similar to the wave-breaking process in the case

of magnetically focused charged beams.12,13 The bunching

action of the ponderomotive force in FELs indeed plays an

equivalent role to the focusing action of the guiding mag-

netic field, and in both cases space-charge effects oppose the

focusing drive.

The purpose of this work is to examine dynamics and

relaxation through analysis of the particle phase-space, both

in Compton and Raman regimes. We shall make use of an

approach which proves effective in the analysis of magnetic

focused beams. The approach is largely based on the com-

pressibility factor,14 whose zeroes indicate the onset of mix-

ing in phase-space. With help of the compressibility, we

shall obtain an approximate, semi-analytical way, to calcu-

late not only the time for the onset of mixing and subsequent

relaxation but also the saturated amplitude of the radiation

field. The approach also helps to identify the presence of

space-charge effects in Raman regimes, as the compressibil-

ity develops characteristic oscillations in this case.

The paper is organized as follows: in Sec. II, we discuss

the basic physical model; in Sec. III, we produce an analyti-

cal approximation for the resulting set of equations; in Sec.

IV, we investigate the model and compare the analytical

approximation with results from full simulations; and in Sec.

V, we draw our conclusions.

II. THE PHYSICAL MODEL

As mentioned earlier, particles interact with the electro-

magnetic mode and also directly among themselves. This lat-

ter self-interacting part of the dynamics relates to the system

space-charge and the associated electric field.

Let us now briefly discuss the relevant fields and also

the geometry of our system.

Laser and wiggler (w) fields are described by the respec-

tive vector potentials A and Aw, which we write in the form

eA

mc2
¼ aðzÞê exp iðk z� x tÞ þ c:c:; (1)
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eAw

mc2
¼ awê exp i kw zð Þ þ c:c:: (2)

The dimensionless laser amplitude, a¼ a(z), is a slowly

varying function of z, which we occasionally refer to as

“time”. The dimensionless wiggler amplitude aw, on the

other hand, is constant. Parameters k and x are, respectively,

the wavenumber and frequency of the carrier laser mode in

the tenuous medium, and kw is the wavenumber of the wig-

gler field which we assume to be of magnetostatic nature.

The quantities m and e are, respectively, the electron mass

and charge, and c is the speed of light. We adopt circular

polarization both for the laser and wiggler fields, with ê

¼ 1=
ffiffiffi
2
p
ðx̂ þ i ŷÞ as the polarization versor. To simplify the

entire discussion, we assume the laser to fill the cross sec-

tional inner region of a wide pipe and therefore neglect trans-

verse effects. This is why we use the one dimensional

expression Eq. (1).6

As for the space-charge contribution, we consider a thin

electron beam moving at the center of the pipe. The

grounded walls of the pipe absorb exceeding lines of the

electric field generated by the charged particles and allow

periodic boundary conditions to be imposed. The more con-

crete physical picture is of a beam propagating along the z
axis of the coordinate system, with grounded plates located

at x¼6 L/2. Based on this simple sheet beam model,15 we

solve Poisson equation and demand 2p periodicity for the

variable h ¼ kpz� xt, where kp ¼ k þ kw is the wavenumber

of the ponderomotive wave and h is the particle phase in the

ponderomotive potential. Since we are interested in longitu-

dinal instabilities, we consider the beam to be uniform along

the transverse coordinate y. Then, in the limit of large values

of L, the space-charge electric field generated at h by one

particle of unitary charge located at h0, can be represented by

the periodic saw-tooth function

EG
z ðh; h0Þ ¼ Signðh� h0Þ ½p� Absðh� h0Þ�: (3)

This is actually the dimensionless Green’s function for the

electric field, graphically represented in Fig. 1, whose deriva-

tion is deferred to the Appendix. Hence, one can now express

the full electric field at particle phase h in the traditional

Green’s function form

EzðhÞ ¼ g2 1

N

X
j

EG
z ðh; hjÞ � g2hEG

z ðh; hjÞi; (4)

where the summation runs over the total number of macropar-

ticles, N, in the distribution: j¼ 1, 2, 3,…, N. Here, g

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2

p=x
2

q
for fast beams where k � kp, and x2

p

¼ 4pe2n0=mc is the plasma frequency with n0 being the elec-

tron density averaged over the entire cross section of the pipe.

The expression given in Eq. (4) is the one actually used

in the coming simulations. However, a more suitable form,

convenient to handle analytically the space-charge electric

field, can be obtained if one carefully manipulates the dis-

continuous behavior of the Green’s functions as the source

coordinates hj cross h. This alternative form reads

EzðhÞ ¼ pg2 N� � Nþ
N

� �
þ g2ðhhji � hÞ: (5)

N�ðþÞ is the number of particles to the left (right) of coordi-

nate h, N ¼ N� þ Nþ, and hhji is the center of mass of the

distribution inside of the ponderomotive potential.

One sees that the space-charge electric field in Eq. (5) is

essentially determined by two factors: the number of macro-

particles to the right and left of the point where the field is

evaluated, and an explicit dependence on the phase h. The

former term involving the difference in the number of mac-

roparticles is equivalent to terms appearing in charged sheet

models. The latter term explicitly involving the phase differ-

ence assures that the proper periodic conditions on h are sat-

isfied, which is made possible by the truly multidimensional

aspect of the problem. In the context of Fig. 1, for instance,

the first term produces the discontinuous behaviour as one

crosses a single sheet, while the second produces the

adequate slopes to periodically match the solutions.

We shall return to Eq. (5) shortly, but for the present we

write down the full set of equations which should be inte-

grated. The first pair of equations, which describe the dy-

namics of each individual particle, is given by

dhj

dz
¼

vzj

vp
� 1

� �
; (6)

dcj

dz
¼ � aw

2cj

aeihj þ c:c:ð Þ þ vzj
vpEzðhjÞ; (7)

again for j¼ 1, 2, 3,…., N. We take into account only the

space derivative, since we assume that the particle dynamics

is on steady-state regime. The particle relativistic factor, cj,

is given as

cj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ A2

tot

p
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� v2

zj

q ; (8)

with Atot ¼ Aw þ A denoting the total field. Variable

vzj
=c! vzj

is the dimensionless electron velocity in the labo-

ratory frame, vp ¼ x=ckp � k=kp is the dimensionless phase

velocity of the ponderomotive wave, and kpz! z. It should

be noted that the particle phase hj remains constant if theFIG. 1. Profile of the Green’s function EG
z .
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particle velocity, vzj
, is the same as the ponderomotive phase

velocity, vp.

As in Refs. 6, 16, and 17, the stimulated radiation ampli-

tude, a, is governed by the following slowly varying enve-

lope approximation for the wave equation, viz.,

da

dz
¼ g2vp aw

e�ihj

2cj

* +
� ig2vp

1

2cj

* +
a; (9)

with the brackets again indicating an average over the elec-

tron distribution.

This set of nonlinear equations, Eqs. (3)–(9), describes

completely the dynamics of a FEL with a constant wiggler

parameter, aw, taking into account the presence of space-

charge effects.

III. OVERVIEW AND SIMPLIFIED WAVE-PARTICLE
DYNAMICS

In this section, we shall develop a simple semi-

analytical model in order to provide a reasonable footing for

the investigation that we wish to conduct.

Let us consider that the stimulated radiation is amplified

from small values, and that at z¼ 0, particles are distributed

uniformly over the phase h, traveling along the z-axis with a

velocity v0. We take v0 to be in the vicinity of, but not neces-

sarily equal to, the ponderomotive wave phase velocity vp.

There is, therefore, room for a detuning between the radia-

tion and the particle beam. The detuning shall always be cho-

sen to optimize the FEL interaction, maximizing the growth

rate of the stimulated radiation.

During the interaction, the particles become subjected to

the combined action of the ponderomotive and space-charge

forces. The relative magnitude between these two forces

plays a crucial role in the operation regime of the FEL,

which can be the Raman regime, if the space-charge force in-

tensity is comparable to the ponderomotive force, or the

Compton regime, if the space-charge force is smaller than

the ponderomotive one. In any case, as time evolves, the par-

ticle beam undergoes phase-mixing in the phase-space, and

the whole process reaches saturation afterwards.6

As known, the onset of mixing process occurs before the

saturation of the amplified radiation is established. Hence,

we can approximately describe the stimulated mode as ini-

tially evolving according to its linear stage of amplification.

This approximation does not hold at all times, but should

provide a relatively accurate description of the radiation field

up to the initial stages of the mixing process.

In order to describe the particle dynamics we go one

step further, refining the linear approximation and keeping

nonlinearities up to dominant order. This latter step in our

approach creates a slight but necessary contrast with the

case of static magnetic focusing discussed earlier. While

magnetically focused beams move relatively near their

equilibrium engendered by the balance of the static focus-

ing and space-charge forces,18,19 here, particles are never

in equilibrium with the growing laser field. Therefore,

inclusion of nonlinear corrections offers better agreement

with simulations.

A. Nonlinear particle dynamics

To build our semi-analytic model, we start with the rela-

tively less explored particle dynamics as described by Eqs. (6)

and (7). It should be noted that the relativistic factor, cj,

appears in Eq. (6) through the particle velocity vzj . The stimu-

lated radiation grows from small initial conditions and one

can use Eq. (8) to expand the velocity vzj
in terms of the small

variations of the relativistic factor cj and of the radiation am-

plitude itself. For relativistic beams, cj becomes a sensitive

function of vzj
and the corresponding term dominates the

expansion. We point out that the expansion, when inserted in

right-hand-side of Eq. (6), generates a small zero order term

of the form ðv0 � vpÞ=v0, which we define as the detuning �.

If the detuning is absorbed into a redefined h! hþ �z, and

the radiation field is rescaled as a! ae�i�z, the resulting sys-

tem takes the form of a resonant system with v0¼ vp, but with

an extra term i�a added to the right-hand-side of Eq. (6). We

shall adopt these rescalings to describe the simplified system.

In order to have a simpler form, now for Eq. (7), we ap-

proximate cj � cr and vzj
� vp on the right-hand-side, keep-

ing the remaining form of the ponderomotive term intact.

Here, cr is the resonant normalized energy of the electrons.

The electric field, EzðhjÞ, present in the second term on

the right-hand side of Eq. (7), is obtained with the help of the

expression given by Eq. (5). Let us, therefore, carry out the re-

spective calculation in the following approximate way. Up to

the beginning of the mixing process where particles overtake

each other, the particle population also remains approximately

confined within the region �p < hj � þp. The numbers

N�=N and Nþ/N are thus approximate constants. They can be

cast in terms of the uniform initial conditions as

N7=N ¼ jh06pj = 2p, if one uses simple proportionality argu-

ments. The phase h0 denotes the initial position of the particle

which we are keeping track of, and we are assuming that the

particle distribution remains acceptably uniform up to mixing.

Therefore, here we set hhji ! 0 in Eq. (5) for the electric field.

If we now introduce Dc � ð@vzj
=@c2

j Þinjection, then the

simplified equation describing the particle dynamics takes

the form

d2hj

dz2
¼ �Dc

vp
aw ~aðzÞeihjðzÞ þ c:c:
h i

þ 2vpg
2Dccrðh0 � hjðzÞÞ; (10)

which gives the particle phase, hj, with an explicit depend-

ence on the initial particle phase, h0. Here, ~a represents the

linear approximation of the stimulated radiation amplitude,

rescaled as discussed earlier. Once again we note that sub-

script j is dropped from h0 to simplify the notation, but that

each hj evolves from its initial h0 of the uniform distribution.

Deriving Eq. (10) with respect to h0, and defining

@hj=@h0 � C as the compressibility,14 we obtain an evolu-

tion equation with which one can identify the beginning of

the phase-mixing process in the FEL, namely,

d2C

dz2
¼ �Dc

vp
iCðzÞ aw ~aðzÞeihjðzÞ þ c:c:
h i

þ 2vpg
2Dccrð1� CðzÞÞ: (11)
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As we can see, the compressibility C depends on the ini-

tial phase h0 and on z. If Cðz; h0Þ ! 0, particles located in

the vicinity of h0 when z¼ 0, overtake each other at time z
and at the phase coordinate hj ¼ hjðz; h0Þ. Particles coming

from slightly different h0s thus converge to the same h, the

signature of mixing process in phase-space, and soon after-

wards the system relaxes. We should point out that the pres-

ence of zeros of the compressibility is a local feature that

makes explicit mention to the particle phases. This is the rea-

son why, in our particle dynamics approximation, we need

the local expressions given by Eqs. (10) and (11).

B. Linear wave dynamics

In order to solve the local dynamics described by Eqs.

(10) and (11) in closed form, we should determine the evolu-

tion equation for the linearized radiation amplitude ~a ¼ ~aðzÞ.
Let us assume that the particle phase, hj, and normalized par-

ticle energy, cj, can be written as hj ¼ h0 þ dhj and

cj ¼ cr þ dcj, where dhj and dcj are first order perturbations,

respectively. Hence, introducing these into Eqs. (6)–(9) and

making use of the collective variable description developed

in Ref. 6, we obtain the following linearized wave equation,

namely,

d~a

dz
¼ �i

vpg2

2cr

awX � vpg2

2c2
r

awY � i
vpg2

2cr

~a þ i�~a; (12)

where X ¼ hdhj e�ih0i and Y ¼ hdcj e�ih0i are given by

dX

dz
¼ 2

vp
DccrY � i

aw

vp
DA~a; (13)

dY

dz
¼ �v2

pg
2X � 1

2cr

aw ~a: (14)

Here, we introduce DA ¼ ð@vzj
=@A2

totÞinjection and observe the

presence of the detuning in the equation for the rescaled radi-

ation field, Eq. (12).

For given values of aw and v0, the linear set represented

above is unstable in a limited region of the � versus g param-

eter space, as shown in Fig. 2. Not clear in the figure is the

fact that the unstable region extends to increasingly negative

values of � as g ! 0. The figure also displays the curve of

maximum growth rate (dots) with the maximization proce-

dure performed over � at each level g. The maximum growth

rate curve is the one selecting the dominant modes of the

interaction.

To obtain the figure we set aw¼ 0.4, v0¼ 0.99 and,

unless stated otherwise, use these values for aw and v0

throughout the paper, along with a seeding, small initial con-

dition for a: ~aðz ¼ 0Þ ¼ �iaw � 10�5.

The linear equations (12)–(14) derived above can now

be combined with Eqs. (10) and (11) to evaluate the com-

pressibility, C. The compressibility will be used to calculate

the time required for the onset of mixing, which provides a

way to make estimates on the saturated amplitude of the

radiation. The compressibility will also allow to investigate

the presence of space-charge plasma waves in the wave-

particle dynamics.

IV. ANALYSIS OF THE SIMPLIFIED MODEL AND
SIMULATIONS

A. Onset of mixing

To investigate the onset of mixing in the general case of

arbitrary parameters g and �, we follow the behaviour of the

compressibility as a function of the time z and take note of

the earliest instant where, for some h, it goes to zero—we

call it z0. If one now minimizes this time over �, the solid,

slightly wavy line of Fig. 2 is produced. One sees that, for all

practical purposes, both mixing and maximum growth curves

are coincident: the dominant fastest growing modes are also

the ones commanding the mixing process.

A figure is then constructed when we plot z0 as a func-

tion of g, with the proviso that the detuning � is always cho-

sen such that one moves along the curve of maximum

growth rate of the linear instability. As mentioned earlier,

this latter condition selects the dominant mode of the stimu-

lated radiation. All the subsequent analysis performed in the

paper will be restricted to the maximum growth rate curve.

Our results are summarized in Fig. 3, where simulations

(performed with 1 000–5 000 particles) are compared with

the corresponding results of our semi-analytical model. We

see that the agreement is reasonable and that the time for

mixing monotonically decreases as the charge g increases.

Mixing is subsequently accompanied by relaxation. Since

we have a way to calculate the time related to the former, we

now attempt to estimate the amplitude relative to the latter. In

terms of the model, the relaxed amplitude of the laser is sim-

ply estimated as the linear amplitude obtained from the sim-

plified model, evaluated at the mixing onset time z0;

asat
mod � j~aðz ¼ z0Þj. The corresponding relaxed amplitude

arising from the simulations, asat
sim, is calculated as we perform

a time average of the amplitude over a relatively large time

stretch following the onset of mixing. Our choice here is to

perform the average from z0 to 3z0. Results are plotted in Fig.

4 and again indicate good agreement between the two

FIG. 2. Colour graded unstable region in the �, g plane. White represents

stability and the different colours are associated with the magnitude of z0

through the labelling. The large dots represent the parameters for the maxi-

mum growth rate curve, and the full line represents the parameters for mini-

mum time for the onset of mixing.
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approaches. A more judicious look at Fig. 4 actually shows

that the two curves begin to move apart at larger values of the

charge and field. The discrepancy is related with the approxi-

mations leading to Eqs. (10) and (11), and with the assump-

tion of a linear dynamics for the laser field: any small error in

the onset time leads to relatively larger errors in the estimates

of the exponentially growing stimulated radiation. In any

case, we believe that the estimates made here still keep a rea-

sonable balance between accuracy and simplicity.

B. Space-charge effects

We finally discuss the role of space-charge in our model.

To do that, once again we find the compressibility a helpful

tool to look at the subject.

In Fig. 5, we plot C [Eq. (11)] versus z for two instances:

in panel (a), we consider g¼ 0.001 and in panels (b) and (c),

g¼ 0.05. While in panel (a), C simply describes a descend-

ing trajectory to zero following a small growth; in panel (b),

one observes a number of oscillations prior the ultimate

downward path of C. Panel (c) magnifies the plot seen in (b)

and allows to observe more clearly the oscillatory behaviour

of the compressibility. A black dot is placed at the same

coordinate in panels (b) and (c)—a peak of oscillation—to

help, to correlate both panels, and keep track of C. If for the

larger value of g one turns off the space-charge term in Eq.

(7) (and the respective detuning), a figure similar to that of

panel (a) is obtained, which suggests that the oscillations

involve charge-density waves. As the charge increases, there

is one particular critical value for g, gc, where one full oscil-

latory cycle is added to the initial pattern represented in

panel (a). We consider one cycle to be fully added, when the

next cycle is about to appear in the C versus z plot.

In the case aw¼ 0.4, we are investigating

gcðaw ¼ 0:4Þ � 0:0074. This implies in jasat
modj � 0:0025,

which yields approximately a unitary ratio of the pondero-

motive to the space-charge terms in Eq. (7). For larger values

of g the ratio decreases, and for smaller values, it increases.

At the transition both terms are thus comparable, and from

then on space-charge terms can no longer be discarded.
FIG. 4. Saturated amplitudes of the stimulated laser field, again obtained

from the semi-analytical model (crosses) and simulations (filled circles).

FIG. 3. Behavior of z0 versus g both from the semi-analytical model

(crosses) and simulation (circles).

FIG. 5. Behavior of C versus z for a small g, g¼ 0.001 in panel (a), and a

large g, g¼ 0.05 in panels (b) and (c). Panel (c) magnifies the view of panel

(b) to clearly display the corresponding oscillatory cycles, absent when the

charge is small.
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In Fig. 6, we extend the analysis of gc to other values of

aw. A number of points obtained from simulations are super-

posed to the solid line obtained with the semi-analytical

model, from which a general concurrence of results is

observed. The case aw¼ 1 has been briefly discussed in Ref.

6. For vp¼ 0.99, the chosen value of g to illustrate

space-charge effects reads 0.04, which is indeed already in

the space-charge region obtained with the present analysis

gcðaw ¼ 1:0Þ � 0:025.

The final topic we wish to discuss is on the structure of

the particle phase-space. Returning to aw¼ 0.4 we compare

two cases: g ¼ 0:001 < gc illustrating the Compton regime,

and g ¼ 0:05 > gc representing the Raman regime. The

Compton case is displayed in panel (a) of Fig. 7, and the

Raman case in panel (b) of the same figure.

Both snapshots are taken immediately after the onset of

mixing. In the Compton case, relaxation proceeds as the par-

ticle distribution mostly revolves as a whole around itself in

phase-space.4

In the Raman case, however, relaxation is better

described in terms of jets emanating from the core of the par-

ticle distribution, as in core-halo systems.20 Jets are formed

by charge density piling up, which creates regions of singular

acceleration. Jets are not actually absent in the Compton re-

gime, but due to low amount of charge, they are overshad-

owed by the ponderomotive acceleration.

Even though the ponderomotive well is not stationary,

the dynamics at low and high values of g, respectively, bear

some resemblance to the dynamics of fast and slow wave-

breaking in magnetostatically confined beams. We recall that

fast wave-breaking occurs when magnetic focusing is strong

and waves break in less than an oscillatory cycle, with slow

wave-breaking occurring only after a series of oscillatory

cycles.13,21

V. CONCLUSIONS

In the present paper, we have investigated dynamics and

relaxation in free-electron lasers, with the help of tools

which proved useful in similar systems. The analysis has

been mainly performed with the help of the compressibility,

whose zeroes indicate the onset of mixing in the particle

phase-space. The compressibility has recently been used to

investigate properties of magnetostatically confined relativis-

tic beams,14 and in the present situation it not only allows to

analytically determine the onset of mixing, but also to esti-

mate the relaxed amplitude of the radiation field.

All the quantities analytically obtained with the com-

pressibility compare well with the wave-particle simulations

performed in the work.

The compressibility also offers a way to look at space-

charge effects. As one examines plots of C versus z for vari-

ous values of g, one finds out that when g is small, C drops

to zero from its initial value C¼ 1 without executing full os-

cillatory cycles. This is the pattern also seen, even for larger

values of g, if space-charge terms are turned off in Eq. (7).

On the other hand, when g is large, C drops to zero only after

a number of full oscillatory cycles. For given values of aw

and vp, there is thus a critical value of g where one full cycle

is just added to the initial low charge pattern. As illustrated

in the text, at this point, the magnitude of the space-charge

and ponderomotive terms in Eq. (7) become comparable.

Larger (smaller) values of g increase (decrease) the ratio of

the space-charge term to the ponderomotive term.

Relevant effects due to thermal effects and the trans-

verse structure of the stimulated radiation are neglected in

our model and should be investigated in the near future. In

particular, a recent work on thermal effects suggests that

even very small temperatures can be used to control the mix-

ing time.14

FIG. 6. Behavior of gc versus aw. Semi-analytical model in solid line, and

simulations represented by filled squares. The curve can be seen as the inter-

face between the Compton (below) and Raman (above) regions.

FIG. 7. Snapshots of the particle phase-space as obtained from numerical

simulations. In (a), g¼ 0.001 < gc; and in (b), g¼ 0.05> gc.
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APPENDIX: GREEN’S FUNCTION FOR THE SPACE
CHARGE FIELD

Recalling our set of dimensionless variables and the defi-

nition of h, we start by writing the dimensionless Green’s

equation for the space-charge potential in the convenient form

r2Gðh; xÞ ¼ �2p
L

2

� �
dðh� h0Þ dðxÞ; (A1)

with r2 � @2

@h2 þ ð 1
kp
Þ2 @2

@x2. Once G is found, the longitudinal

component of the full electric field based on Gauss law

can be written as in Eq. (5). The multiplicative constant

g measures the magnitude of charge effects, and

EG
z ¼ �@G=@h.

Considering grounded plates at x¼6 L/2, we expand

the solution of Eq. (A1) in an orthogonal basis as

GðhÞ ¼
X1
n¼1

GnðhÞ cos
ð2nþ 1Þpx

L

� �
; (A2)

alongside with the expansion

dðxÞ ¼ 2

L

X1
n¼0

cos
ð2nþ 1Þpx

L

� �
: (A3)

From Eqs. (A2) and (A3), it follows:

@2

@h2
� ð2nþ 1Þp

kpL

 !2
2
4

3
5GnðhÞ ¼ �2pdðh� h0Þ: (A4)

Solutions of Eq. (A4) for h 6¼ h0 have exponential form

and must be matched across h0. In addition, we demand peri-

odicity with Gnðh¼�pÞ ¼ Gnðh¼ pÞ and @Gnðh¼�pÞ=@h
¼ @Gnðh¼ pÞ=@h.

Algebraic work is required at this point, and solutions

can be obtained. If we take only n¼ 0 in the summation, and

consider large values of L, the result for the corresponding

electric field EG
z is represented by Eq. (4). Inclusion of higher

values of n only causes slight and smooth curvatures on the

otherwise straight lines of the n¼ 0 approximation.
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