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RESUMO

Recentemente, houve um aumento rápido na criação e disponibilidade de repositórios de
dados, o que foi percebido nas áreas de Mineração de Dados e Aprendizagem de Máquina. Este
fato deve-se principalmente à rápida criação de tais dados em redes sociais. Uma grande parte
destes dados é feita de texto, e a informação armazenada neles pode descrever desde perfis de
usuários a temas comuns em documentos como política, esportes e ciência, informação bastante
útil para várias aplicações. Como muitos destes dados são criados em fluxos, é desejável a cria-
ção de algoritmos com capacidade de atuar em grande escala e também de forma on-line, já que
tarefas como organização e exploração de grandes coleções de dados seriam beneficiadas por
eles. Nesta dissertação um modelo probabilístico, on-line e incremental é apresentado, como
um esforço em resolver o problema apresentado. O algoritmo possui o nome DV-INBC e é uma
extensão ao algoritmo INBC. As duas principais características do DV-INBC são: a necessidade
de apenas uma iteração pelos dados de treino para criar um modelo que os represente; não é
necessário saber o vocabulário dos dados a priori. Logo, pouco conhecimento sobre o fluxo de
dados é necessário. Para avaliar a performance do algoritmo, são apresentados testes usando
datasets populares.

Palavras-chave: Topic Modeling, Classificação de Documentos, Aprendizado Incremental,
Aprendizado On-line.



ABSTRACT

Recently the fields of Data Mining and Machine Learning have seen a rapid increase in the
creation and availability of data repositories. This is mainly due to its rapid creation in social
networks. Also, a large part of those data is made of text documents. The information stored in
such texts can range from a description of a user profile to common textual topics such as poli-
tics, sports and science, information very useful for many applications. Besides, since many of
this data are created in streams, scalable and on-line algorithms are desired, because tasks like
organization and exploration of large document collections would be benefited by them. In this
thesis an incremental, on-line and probabilistic model for document classification is presented,
as an effort of tackling this problem. The algorithm is called DV-INBC and is an extension to
the INBC algorithm. The two main characteristics of DV-INBC are: only a single scan over
the data is necessary to create a model of it; the data vocabulary need not to be known a priori.
Therefore, little knowledge about the data stream is needed. To assess its performance, tests
using well known datasets are presented.

Keywords: Topic modeling. document classification. incremental learning. online learning.
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1 INTRODUCTION

The field of Data Mining has seen rapid advances in recent years, due to the availability of
different kinds of data, which is particularly true for the case of text, where the web and social
networks have enabled the rapid creation of large data repositories. The increasing amount of
text data available from different applications has created a need for advances in algorithmic
design which can learn interesting patterns from the data in a dynamic and scalable way (AG-
GARWAL; ZHAI, 2012). As our collective knowledge continues to be digitized and stored
in the form of news, blogs, Web pages, scientific articles, books and many other types of me-
dia, computational tools to organize, search and understand such vast amounts of data are thus
needed (BLEI, 2012).

In the case of text data, whether mining a text stream or a collection, the task of document
classification and retrieval needs useful representations of the information contained in each
document, and the fact that such information is originally available in an unstructured way mo-
tivates the research and design of algorithms capable of solving such problems (SRIVASTAVA;
SALAKHUTDINOV; HINTON, 2013). Also, web applications (e.g. social networks) can re-
sult in a continuous stream of large volumes of text data, due to the simultaneous input of text
from a wide variety of users. Such text data are more challenging to process, for they need to
be processed in the context of a one-pass constraint, meaning that sometimes it may be difficult
to store the data offline for processing and that the mining task should be performed as the data
arrive (AGGARWAL; ZHAI, 2012).

A type of algorithms for discovering the main themes that pervade a collection of documents
are the Topic Models. Those algorithms can organize the document collection according to the
discovered themes. Also, they can be applied to massive collections of documents or even docu-
ment streams (BLEI, 2012). The Topic Modeling area integrates soft clustering with dimension
reduction. Documents are associated with a number of latent topics, which correspond to both
document clusters and compact representations identified from a collection. Each document is
assigned to each topic with different weights, which specify the degree of membership in each
cluster. The original feature representation plays a key role in defining the topics and in identi-
fying which topics are present in each document. The result is an understandable representation
of documents that is useful for analyzing themes in documents (AGGARWAL; ZHAI, 2012).

Motivated by the need of algorithms capable of processing document streams and/or large
collections, this work presents an approach to categorize documents that can be used on such
scenarios: DV-INBC, which means Dynamic Vocabulary Incremental Naive Bayes Clustering.
The method needs only information about the number of classes in the document collection,
building the vocabulary dynamically as more data come in. The representation of each class
in the model is a mixture of Multinomial distributions, following a similar approach of many
Topic Model techniques. DV-INBC is an incremental, online and probabilistic algorithm that
extends the INBC model presented in (ENGEL, 2009). Those characteristics of DV-INBC make
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it a suitable model for categorizing document streams and processing document collections as
a continuous flow of data, as can be seen by the experiments presented in this thesis.

1.1 Main Contributions

The main contribution of this work is the development of a new algorithm for document
classification, which is called DV-INBC, and its evaluation on popular datasets for this task.
The results show that the model is promising although there are still improvements to be made.
Also, the online algorithm presented in this thesis can be useful in scenarios where the data size
is too big to be passed over many times as other techniques do, as well as in situations where
there is a continuous document stream to be processed.

1.2 Structure of this text

Chapter 2 presents some Topic Model techniques for representing themes in document col-
lections, and the classic Naive Bayes algorithm as an algorithm for document classification.

Chapter 3 presents the INBC algorithm and its main characteristics, which is the main basis
of DV-INBC.

Chapter 4 presents the main topic of this thesis, the DV-INBC model. It shows the details
of the model and its training and classification procedures.

Chapter 5 shows experiments made on popular document classification datasets and an anal-
ysis of the performance achieved by DV-INBC on those tests. The chapter is divided in two dif-
ferent tasks, on which DV-INBC has its performance compared to recent methods and to other
popular algorithms for a simpler comparison.

Finally, Chapter 6 concludes this thesis with an analysis of the performance of DV-INBC
and also presents some future works.
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2 BACKGROUND

This chapter presents some Topic Model approaches to represent themes in document col-
lections and techniques for classification of text data. Topic Model techniques are a set of
algorithms to discover and annotate large collections of documents with thematic information.
They use statistical methods to analyse the words of original texts to discover themes, how they
are connected and how they change over time (BLEI, 2012). Also this chapter presents the
classical Naive Bayes classification algorithm for text data, which was used in this thesis.

All of the techniques in this chapter use the bag-of-words (BOW) model to represent doc-
uments. In this representation, the order of the words in each document is ignored, and only
their frequency1 is kept. Also, it balances computational efficiency while retaining document
content, resulting in a vector representation that can be analyzed by many Machine Learning
techniques. However, since in BOW vectors each dimension corresponds to a different term in
the vocabulary, those vectors can have a large number of dimensions. Since it is desirable to
keep only the semantic space related to the topics in the document collection (which usually
is much smaller than the vocabulary space), topic model techniques can be used to this end
(AGGARWAL; ZHAI, 2012).

2.1 Latent Semantic Indexing (LSI)

The first methods for document retrieval and indexing used simple term-matching to select
the most relevant documents to the query provided by the user. However, the main problem
with this approach is that, often, the documents returned by the term-by-term comparison search
engine would not be relevant for the user, due to synonymy2. Besides, documents that could be
relevant would not be returned by the same reason. Therefore, even if a document was relevant
to the user, it was not returned as a result by the engine if it did not contain the exact same words
provided in the search query. The solution would be to find the latent semantics of the terms in
the query and in each document. The Latent Semantic Indexing (LSI) method (DEERWESTER
et al., 1990) was designed to overcome this problem, projecting the corpus onto a semantic
space where it is easier to find semantically related terms, even when they were graphically
different.

In LSI, a corpus is represented by a term-by-document matrix X, where each document d
is represented as collumn vector Xd and each row in X, Tv, denotes a term v of the corpus
vocabulary. Each entry (v, d) in X is, therefore, the frequency of term v in document d.

To find the latent semantics of the corpus, LSI performs a Singular Value Decomposition
(SVD) over X, maintaining only its K largest singular values. The decomposition of X is then

1Frequency in the statistical sense, which means the number of occurrences of a specific event.
2The property of different words having the same meaning.



18

defined as

X̂ = ÛΣ̂V̂ T = [U1 · · ·UK ] ·


σ1

. . .

σK

 ·

V1

T

...
VK

T

 (2.1)

where Û and V̂ are orthonormal matrices, Σ̂ is diagonal and X̂ is an approximation to the
original matrixX .

The decomposition in (2.1) produces the rank-K matrix X̂ with the best least-squares-fit
to X . Also, X̂ can be viewed as a smoothed version of X , which is achieved by discovering
the latent semantic space formed by the documents (AGGARWAL; ZHAI, 2012). In this K-
dimensional space, each dimension is interpreted as a latent topic. The choice ofK is important
because it adjusts the amount of admissible error in the model: a large value can assimilate noise
as a latent semantics and a small value can miss important features in the data (DEERWESTER
et al., 1990).

A document d in term spaceXd can be represented using the latent semantic space as

Xd = Û · Σ̂ · X̂d (2.2)

and, similarly, each term v can be represented by the K-dimensional vector T̂v given by

Tv = V̂ · Σ̂ · T̂v. (2.3)

The similarity between documents can be measured through their representations in the new
semantic space using, for instance, the inner product between their projections. This can also be
used to cluster or categorize documents. Term similarity can also be measured in an analogous
manner.

When performing a document retrieval task, it is necessary to represent a query q using the
latent semantic space to compare it with other documents and select the most similar ones. The
representation is derived from (2.2), by consideringXd as the query q:

q̂ = Σ̂−1 · ÛT · q. (2.4)

To handle changes in the corpus, some modifications to the original algorithm need to be
applied. A simple way is to represent the new documents using the SVD decomposition from
the previous set of documents. This is a very efficient method, since it is not necessary to
recompute the SVD. However, as more documents are added, there is no guarantee that the
semantics space still represents the corpus adequately, thus an update to the decomposition is
necessary either periodically or at every new document (AGGARWAL; ZHAI, 2012).
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2.2 Probabilistic Latent Semantic Indexing (PLSI)

Following similar concepts to LSI, Probabilistic Latent Semantic Analysis (PLSI) (HOF-
MANN, ) uses a semantic space to represent the document collection. The main difference is
that its approach is probabilistic, defining a generative model for the document collection.

PLSI organizes a collection composed by a set D of N documents, described by a vocabu-
laryW ofM possible words as aN×M term-document matrix with elementsNij = n(di, wj),
where n(di, wj) ∈ N indicates how many times termwj occurred in document di. Also, a Multi-
nomial probability distribution over a latent variable z ∈ Z = z1, · · · , zK is associated with
each document of the collection, defining the probability of each topic for each document. The
joint probability model for words and documents is defined in (HOFMANN, ) as

P (d, w) = P (d) · P (w|d), (2.5)

where
P (w|d) =

∑
z∈Z

P (w|z) · P (z|d). (2.6)

The generative process defined in PLSI for a token (a word) w in document d can be de-
scribed as:

• sample a document d from a Multinomial distribution P (d);

• sample a topic k ∈ 1, · · · , K based on the topic distribution P (z = k|d)

• sample a word v for token w based on P (w = v|z = k).

This process assumes that the probability distribution of terms conditioned on documents P (w|d)

is a convex combination of the topic-specific term distributions P (w = v|z = k) (AGGAR-
WAL; ZHAI, 2012).

(HOFMANN, ) also defines the joint probability P (d, w), in an equivalent manner, as

P (d, w) =
∑
z∈Z

P (z) · P (d|z) · P (w|z), (2.7)

which models documents and terms in a symmetric manner, conditioned on the topic z. This
formulation associates to each observation (d, w) the unobservable topic variable z and is based
on a statistical model called the aspect model, which is the main basis of PLSI (HOFMANN,
). Also, this formulation helps to see the method as a probabilistic analogue to LSI, where
matrices V̂ and Û function as the distributions P (d|z) and P (w|z), acting as the projections of
documents and terms into the latent semantic space. Also, the distribution P (z) is similar to the
diagonal matrix Σ̂ in LSI, that acts as the weight of each topic in the collection.

During training, to estimate the model parameters P (d), P (z|d) and P (w|z), the EM al-
gorithm (DEMPSTER; LAIRD; RUBIN, 1977) is used, maximizing the log-likelihood of the
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training data, defined as

L =
M∑
d=1

∑
w∈W

n(d, w) · log
∑
z∈Z

P (w|z) · P (z|d). (2.8)

The expectation step of EM computes the posterior of the latent variable z based on the current
parameters:

p′(z = k|d, w = v) =
p(d) · p(z = k|d) · p(w = v|z = k)∑
k∈Z p(d) · p(z = k|d) · p(w = v|z = k)

, (2.9)

which must iterate over all possible words v ∈ W . The maximization step updates all parame-
ters after knowing the latent variables by using the previous stage posteriors:

p′(w = v|z) ∝
∑
d∈D

n(d, v) · p′(z = k|d, w = v), (2.10)

p′(z = k|d) ∝
∑
v∈D

n(d, v) · p′(z = k|d, w = v), (2.11)

and
p′(d) ∝

∑
v∈W

n(d, v). (2.12)

In all equations, p′(·) indicates the new value for that parameter.

However, according to (BLEI; NG; JORDAN, 2003), PLSI has a great risk of overfitting,
because the number of parameters in the model grows linearly with the size of the corpus: for
a document collection of size N , a set of K topics and a vocabulary of M words, there is
K · N + K · M parameters to adjust. Therefore, some techniques have to be used in order
to speed up training and reduce the risk of overfitting. (HOFMANN, ) suggests to use an
alternative heuristic approach for training, called a “tempered” version of EM. Nevertheless,
the model still can get overfitted to the training data.

2.3 Latent Dirichlet Alocation (LDA)

Latent Dirichlet Alocation (LDA) (BLEI; NG; JORDAN, 2003) is a probabilistic gener-
ative model for documents, greatly reducing the number of parameters to be adjusted (when
compared to PLSI) and providing a clearly-defined form of assigning probabilities for arbitrary
documents outside the training set (AGGARWAL; ZHAI, 2012).

LDA improves over the two major problems of PLSI, which are:

• a linear growth in the number of parameters, with the size of the corpus (leading to over-
fitting) and;
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• the lack of clarity on how to assign probabilities to documents outside the training set,
since the topic probability distributions P (z|d) are learned only for the training docu-
ments.

In LDA, documents are represented as mixtures over a set of k latent topics. Each topic is
defined as a Multinomial distributionM(βk) parameterized by a βk vector, over a vocabulary
of size V . In (BLEI; NG; JORDAN, 2003), this distribution is represented as a k × V matrix β
(where V is the vocabulary size) and βij = p(wj|zi) .

Each document has its own probability distribution over topics, defined as another Multi-
nomial distributionM(θd) parameterized by a θd vector, drawn from a Dirichlet distribution
parameterized by an α vector. The α vector and the β matrix are the only corpus-level param-
eters, the θd vectors are sampled once for each document and all others are sampled repeatedly
for each word therein.

Considering the d-th document w with N words, the generative process of LDA is defined
as:

• sample a θd vector from a Dirichlet distribution Dir(α)

• for each word wdn in the document, sample a topic zdn from M(θd) and then sample
word wdn from the multinomial probability distributionM(βk) conditioned on the topic
zdn.

For the d-th document, the joint probability of a topic mixture θd, a set of N topics zd, and
a set of N words wd is given by:

p(θd, zd,wd|α,β) = p(θd|α) ·
N∏
n=1

p(zdn|θd) · p(wdn|zdn,β), (2.13)

where p(zdn|θd) is simply θid for the unique i such that the i-th position of the zdn vector is
1. Summing over all possible values of the z variable and integrating over θd the marginal
distribution of a single document is:

p(wd|α,β) =

∫
p(θd|α) ·

(
N∏
n=1

∑
zdn

p(zdn|θd) · p(wn|zdn,β)

)
dθd. (2.14)

Finally, the probability of a corpus D with M documents is obtained by multiplying over all
documents:

p(D|α,β) =
M∏
d=1

∫
p(θd|α) ·

(
N∏
n=1

∑
zdn

p(zdn|θd) · p(wn|zdn,β)

)
dθ. (2.15)

The main difference between LDA and a simple Dirichlet-multinomial clustering model
regards the number of topics that a document can be associated to. In LDA, after sampling a



22

Dirichlet distribution for the corpus, a Multinomial distribution is sampled for each word in each
document, which allows a single document to be associated with different topics. Conceptually,
this means that a single document is composed of words that were gererated by different topics,
which is very similar to what really happens on texts. On the other hand, a simple Dirichlet-
multinomial model samples a single Multinomial distribution for each document, which as-
sumes that each document was generated by repeatedly sampling words from a distribution
conditioned on the topic variable, i.e. from only one topic at a time (BLEI; NG; JORDAN,
2003).

However, according to (AGGARWAL; ZHAI, 2012), LDA has the disadvantage of learning
broad topics. In a situation where a concept has a number of aspects to it and each of the aspects
co-occurs frequently with the main concept, LDA will favor a topic that includes the concept
and all of its aspects. It will further favor adding other concepts to the same topic if they share
the same aspects. As this process continues, the topics become more diffuse. When sharper
topics are desired, a hierarchical topic model may be more appropriate.

To compute the posterior probability of the topic structure of the model given an observed
document, the following equation must be solved:

p(θd, zd|wd,α,βd) =
p(θd, zd,wd|α,βd)

p(wd|α,βd)
. (2.16)

However, the denominator p(wd|α,βd) is intractable to compute. This is due to two facts:

• the exponentially large number of possible topic structures that could generate the current
document and;

• the coupling between the θd and β variables, when marginalizing over the latent topics.

Those two problems can be seen when (2.14) is rewritten in terms of all the model parame-
ters:

p(wd|α,β) =
Γ(
∑

iα)∏
i Γ(αi)

∫ ( k∏
i=1

θαi−1
di

)(
N∏
n=1

k∑
i=1

V∏
j=1

(θdiβij)
wn

j

)
dθd, (2.17)

where Γ(·) is the Gamma function, used in the Dirichlet distribution from which the θd vectors
are sampled from:

p(θd|α) =
Γ(
∑k

i=1 αi)∏k
i=1 Γ(αi)

θ1
αi−1 . . .θk

αk−1. (2.18)

To train an LDA model, its parameters must be optimized to maximize the probability of
generating the training data. However, direct optimization of those parameters is intractable, due
to the two problems mentioned above. To deal with this situation, variational approaches as well
as sampling techniques3 are used (AGGARWAL; ZHAI, 2012). A wide variety of approximate

3Variational approaches and sampling techniques are usually applied to estimate the value of integrals in
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inference algorithms can be considered for LDA, including Laplace approximation, variational
approximation and Markov chain Monte Carlo (BLEI; NG; JORDAN, 2003).

In (BLEI; NG; JORDAN, 2003) it is presented a variational inference method for LDA,
which uses the EM algorithm. In this method, the relations between θ andβ that are problematic
are eliminated, which translates into a simpler graphical model, shown in Figure 2.1. The
variational distribution used to approximate the true posterior distribution of LDA has the form,
for a single document:

q(θ, z|γ,φ) = q(θ|γ) ·
N∏
n=1

q(zn|φn), (2.19)

where the Dirichlet paramter γ and the Multinomial parameters (φ1, · · · , φN) are the free vari-
ational parameters.

Figure 2.1: A graphical model representation of the variational distribution used to approximate
the posterior in the LDA model. Adapted from (BLEI; NG; JORDAN, 2003).

The optimal parameters γ∗ and φ∗ for a single document are obtained by an iterative fixed-
point method, using the following pair of equations:

φni ∝ βiwn · exp {Eq[log(θi)|γ]} (2.20)

and

γi = αi +
N∑
n=1

φni, (2.21)

where Eq[log(θi)|γ] = Ψ(γi)−Ψ(
∑K

j=1 γj) and Ψ(·) is the first derivative of the log Γ function,
which, as stated in (BLEI; NG; JORDAN, 2003), can be computed via Taylor approximations.

Bayesian inference or approximate the value of the marginal data likelihood, which can be analytically intractable,
depending on the model. A variational method yields an analytical approximation but usually requires more work
to derive the set of equations that iteratively update the parameters, while a sampling technique yields an approxi-
mate numerical solution, albeit being easier to find the sampling equations.
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Each φni is defined as proportional to βiwn · exp {Eq[log(θi)|γ]} because they should be nor-
malized so

∑
i φni = 1 is true.

Equation (2.21) updates the Dirichlet topic parameter γ and is a posterior Dirichlet, given
the expected observations taken under the variational distribution E[zn|φn]. The update per-
formed in (2.20) essentially uses Bayes’s theorem, p(zn|wn) ∝ p(wn|zn)p(zn), where p(zn) is
approximated by the exponential of the expected value of its logarithm under the variational
distribution.

The E-step of the EM algorithm consists on finding the optimal parameters γ∗ and φ∗ for all
documents. On the M-step, the parameters α and β are found, by maximizing the lower bound
on the log-likelihood of the data, using the variational distribution (2.19). The update process
for the β parameter is

βij ∝
M∑
d=1

N∑
n=1

φ∗dniwdn
j (2.22)

which is much simpler than the one used to update α, that uses a Newton-Rhapson algorithm
to determine the optimal α. The complete training algorithm for training an LDA model can be
found in (BLEI; NG; JORDAN, 2003).

Since the vocabulary size of the corpus is much larger than the set of different words found
in a document, when optimizing the model parameters, the β matrix can have some words with
a probability equal to zero. This problem can be solved by placing a Dirichlet prior over β and
assuming that it is a random matrix, with each row independently sampled from an exchange-
able Dirichlet distribution with parameter η. This leaves the model with two hyperparameters:
α and η. The resulting smoothed LDA model is shown in Figure 2.2, and the complete varia-
tional training algorithm can be found in (BLEI; NG; JORDAN, 2003).

As a consequence of such smoothing, the variational equations also need to be changed,
with the addition of another parameter, λ:

q(β, z,θ|λ, φ, γ) =
K∏
i=1

Dir(βi|γi)
M∏
d=1

qd(θd, zd|φd, γd), (2.23)

where qd(θ, z|φ, γ) is the variational distribution defined in (2.19). The update equations for
parameters φ and γ stay the same, and a new one for λ is derived:

λij = η +
M∑
d=1

Nd∑
n=1

φ∗dniw
j
dn. (2.24)

There are some improvements over the traditional LDA model regarding online capabilities
and inference algorithms for training. An online variational training method for LDA is pre-
sented in (HOFFMAN; BACH; BLEI, ), allowing the model to fit a fixed number of topics to
document streams. In (WANG; PAISLEY; BLEI, ) an online approach for LDA is presented,
where Hierarchical Dirichlet Processes are used to decide the optimal number of topics to fit
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(a)

(b)

Figure 2.2: The two versions of the LDA model: (a) shows the original model, with no smooth-
ing on the multinomial β matrix and (b) depicts the smoothed model, with a Dirichlet distribu-
tion Dir(η) as a prior on the multinomial. Adapted from (BLEI; NG; JORDAN, 2003).

during runtime.

2.4 Naive Bayes

The Naive Bayes classifier is a highly practical method. It is applied to learning tasks where
each instancex is described by a conjunction of attribute values and where the instance label can
take on any value from a finite set of labels V . It is a supervised learning method (MITCHELL,
1997).

The method assigns the most probable label vMAP , given the attribute values a1, a2, · · · , an
that describe x.

vMAP = arg max
vj∈V

P (vj|a1, a2, · · · , an). (2.25)

Following the Bayes therorem, (2.25) can be rewritten as

vMAP = arg max
vj∈V

P (a1, a2, · · · , an|vj) · P (vj)

P (a1, a2, · · · , an|vj)
, (2.26)



26

which is equivalent to

vMAP = arg max
vj∈V

P (a1, a2, · · · , an|vj) · P (vj). (2.27)

The two terms in (2.27) can easily be estimated from the training data. To learn the value of
P (vj), it is possible to simply count the frequency of each target value vj in the training set. Be-
sides, since the Naive Bayes classifier is based on the simplifying assumption that the attribute
values are conditionally independent given the instance label, the probability of observing the
conjunction a1, a2, · · · , an can be modelled as the product of the probabilities for the individual
attributes:

P (a1, a2, · · · , an|vj) =
∏
i

P (ai|vj). (2.28)

Finally, by substituting (2.28) into (2.26) the approach used by the Naive Bayes classifier
can be defined as

vNB = arg max
vj∈V

P (vj)
∏
i

P (ai|vj), (2.29)

where vNB denotes the output value of the classifier.
If using this classifier for text, each data instance x would be a document, where each

attribute ai would indicate the frequency of a word inside that document. Finally, the label vj
would be the topic associated to each document of the collection and could be estimated in the
same manner.

2.5 Conclusions

This chapter presented four approaches that can be used in document classification and topic
modeling: Latent Semantic Indexing (LSI), Probabilistic Latent Semantic Indexing (PLSI),
Latent Dirichlet Alocation (LDA) and the Naive Bayes classifier. The first three methods are
used to identify the latent topics of a document collection and are all unsupervised methods,
finding a latent space to represent the original data. This means that by setting a total number of
K topics to find, the algorithms yield a subspace of that same amount of dimensions, allowing
to use those new representations to train another classifier to learn how to categorize documents
of that same collection.

The Naive Bayes classifier is a traditional method used in categorization problems and has
a very simple model. It uses the assumption that the set of attributes of a data point x is
conditionally independent, given the label of the point. It allows a fast computation of the model
parameters by iterating only once over the training data and adjusting its two main parameters,
that indicate the prior probability of each class and the probability of each word inside each
class.
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3 THE INCREMENTAL NAIVE BAYES CLUSTERING ALGORITHM

The Incremental Naive Bayes Clustering (INBC) algorithm was initially presented in (EN-
GEL, 2009) and is based on a probabilistic framework, using a mixture of Gaussian distributions
to describe a data stream. INBC follows an unsupervised incremental learning paradigm, where
each data point is just instantaneously available to the learning system. In this situation, it is
necessary to take into account the instantaneous data to update the model of the environment,
since after its use the point is unavailable. Also, since INBC adopts an incremental mixture
distribution model, it dynamically controls the number of mixture components that represent
the so far presented data.

3.1 The probabilistic framework of INBC

Considering an input data vector x ∈ Rd, in INBC it is assumed that its probability density
can be modeled by a linear combination of M component probability densities p(x|j)

p(x) =
M∑
j=1

p(x|j) · p(j), (3.1)

where each coefficient p(j) is called a mixing parameter. Each of those parameters is related to
the prior probability of its respective component generating x.

The “naive” assumption followed by INBC means that each attribute of the data points
are all conditionally independent, given component j. This means that the probability of the
conjunction of attributes in each component distribution is the product of the probabilities of
each one, individually. Therefore, the probability of the j-th mixture component generating the
data vector x = (x1, · · · , xi, · · · , xd) is computed as the product p(x|j) =

∏d
i p(xi|j).

Each component density p(xi|j) is modeled by a unidimensional normal Gaussian distribu-
tion function, of the form

p(xi|j) =
1√

2πσji2
exp

{
−(xi − µji)2

σ2
ji

}
, (3.2)

where µji is the i-th component from the j-th Gaussian mean and σ2
ji is the i-th component from

the j-th Gaussian variance. The posterior probability of each component is given by

p(j|x) =
p(x|j)p(j)∑M
j=1 p(x|j)p(j)

. (3.3)
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3.2 Component management

A new component of the mixture is created if the input vector x matches the novelty criterion

defined as
p(xi|j) <

τnov√
2πσji2

∀i,∀j, (3.4)

where τnov is a fraction of the maximum value of the likelihood function. The criterion follows
a minimum likelihood approach, that all components from x must fulfill. This criterion defines
that the x vector must minimally fit at least one mixture component. If the likelihood p(xi|j) of
at least one attribute of the vector x is greater than the threshold defined by the novelty criterion,
the model parameters are updated, and no new component is created. The novelty criterion is
therefore evaluated as false.

When the data point x is not considered a “novelty” by INBC, the model parameters are up-
dated by an online version of the EM algorithm. The estimation (E) step is done by computing
the posterior probability of each component membership for the data point, which is obtained
by (3.3). The result can be used to estimate new values for the model parameters, in the maxi-

mization (M) step. Each new value for the mean µjinew, variance σ2
ji
new and prior probability

of each component p(j)new are obtained by the following equations

µji
new =

∑N
n=1 p

old(j|xn) · xin∑N
n=1 p

old(j|xn)
, (3.5)

σ2
ji
new

=

∑N
n=1 p

old(j|xn) · (xin − µjinew)2∑N
n=1 p

old(j|xn)
(3.6)

and

p(j)new =
1

N
·
N∑
n=1

pold(j|xn), (3.7)

where N is the number of data points presented so far.

The model update process can be written using a set of accumulator variables, in order to
simplify the procedure. At every new data point, INBC updates the spj variable, adding to its
value the posterior probability of the j-th component

t∑
n=1

p(j|xn) = p(j|xt) +
t−1∑
n=1

p(j|xn) (3.8)

which can be divided in the new and old values of spj:

spj
new = p(j|xt) + spj

old (3.9)
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also, spjnew can be used to compute p(j)new

p(j)new =
1

t
·

t∑
n=1

p(j|xn) =
1

t
· spjnew, (3.10)

where the current number of presented data points t can be written as t =
∑M

j=1 spj and there-
fore the final form of equation (3.10) is:

p(j)new =
spj

new∑M
j=1 spj

new
(3.11)

Another accumulator, used in the update of the mean µjnew of each component, is called
spxji

new, and is computed for each attribute of the data vectors. Its values are the sum of
products of posterior probabilities for component j by the respective values of attribute i for all
points presented so far. The current data point xt contributes to this sum with the product of its
posterior probability to the component j by the value of its attribute i, as written in the equation
below:

spxji
new = p(j|xt) · xit + spxji

old. (3.12)

Then, using spj and spxji each attribute of the mean of each component of the mixture is
updated as:

µji
new =

p(j|xt)xit +
∑t−1

n=1 p(j|xn)xi
n

p(j|xt) +
∑t−1

n=1 p(j|xn)
=
spxji

new

spjnew
. (3.13)

Finally, to update the attributes of the variance of each component, equation (3.6) is used.
However, it can be rewritten using an accumulator as well:

σ2
ji
new

=
p(j|xt)(xit − µnewji )2 +

∑t−1
n=1 p(j|xn)(xi

n − µji)2

p(j|xt) +
∑t−1

n=1 p(j|xn)
=
spsnewji

spnewj

(3.14)

If the novelty criterion considers the data point x a “novelty”, a new componentM is created,
as a Gaussian distribution centered at x and with the baseline variance σb2. This variance is
computed as a user-defined fraction of the overall variance of each attribute of the input, before
training

σbi
2 = δi [max(xi)−min(xi)]

2 . (3.15)

The initialization of the parameters of the new component is done following the equations
below.

µM,i = xi ∀i (3.16)

σ2
M,i = σ2

bi ∀i (3.17)
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spM = 1, (3.18)

spxM = 0, (3.19)

spsM = 0 (3.20)

and
p(M) =

1∑M
j=1 spj

. (3.21)

Besides creating new components as needed, INBC has a mechanism to identify and remove
spurious ones. For this end, every component has an age attribute which is used together with
its sp accumulator. A spurious component is defined as one that has an age attribute greater
than an agemin parameter and an sp value less than an spmin threshold. If, for any component
in the model those two conditions are true, it is removed. Every component starts with agej = 1

and at every new data vector this value is increased by 1.
The INBC algorithm for every new data point x is presented in Algorithm 1.

3.3 Conclusion

This chapter presented the INBC algorithm, which is the basis of this thesis. It is an algo-
rithm capable of grouping streaming data into clusters, defined by a Gaussian distribution. The
resulting model is therefore a Gaussian mixture, which can be used to perform a probabilistic
classification of data into its clusters. The main characteristics of INBC, which are its capability
of changing its inner structure (adding and removing clusters) in an online setting make it an
attractive model to the task that this thesis approaches, the categorization of document streams.
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Algorithm 1 INBC algorithm
input: a new data vector x
{Computes the likelihood of x to all components}
for j = 1 to M :
p(x|j) =

∏d
i=1 p(xi|j)

end for
{Checks the novelty criterion}
if p(xi|j) < τnov√

2πσji2
∀i, ∀j:

{Creates a new component}
µM,i = xi ∀i
σ2
M,i = σ2

bi ∀i
spM = 1

spsM = 0

spxM = 0

p(M) = 1∑M
j=1 spj

agej = 1

end if
for j = 1 to M :
p(j|x) = p(x|j)p(j)∑M

j=1 p(x|j)p(j)
end for
{Updates components parameters}
spnewj = spj

old + p(j|x)

spxji
new = spxji

old + p(j|x) · xi
spsji

new = spsji
old + p(j|x) · (xi − µji)2

µnewji =
spxji

new

spjnew

σ2
ji
new

=
spsji

new

spjnew

p(j)new =
spj
N

agej = agej + 1

{Removes any spurious component}
for j = 1 to M :

if agej > agemin and spj < spmin :
{Removes component j}

end if
end for
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4 DYNAMIC VOCABULARY INBC: DV-INBC

The Dynamic Vocabulary INBC is an extension to the INBC algorithm, allowing its vocab-
ulary to grow as new documents are processed. It is based on the probabilistic framework of
INBC, with the major differences being the type of probability distribution used to model the
data and the similarity criterion between components and data vectors. Also, DV-INBC is an
incremental model that adapts its structure to better represent the data flow as new points are
presented to it.

To represent each topic in the document collection, a different model for each one is created.
Then, documents of that topic are presented to the respective model and clusters are generated
and adjusted to learn sub-topics. At any moment, for each topic, there will be a configuration
of clusters that best represent the document collection at that point. The whole training process
will be presented in details in this chapter.

4.1 The model

Each input document dn is represented by a BOW (bag-of-words) vector. In this repre-
sentation, each dimension of the vector is related to a different word of the vocabulary used
to represent that document. Usually, a single vocabulary is used to represent all documents,
which makes those vectors very sparse i.e. have many zeroes. DV-INBC assumes a dynamic
vocabulary, therefore each new document is represented by a vector of the form

dn =
(
fdnw1 , · · · , fdnwi

, · · · , fdnw|Vn|

)
, (4.1)

where fdnwi
is the frequency for word wi inside document dn, and |Vn| is the size of Vn, the

vocabulary found in document dn (the set of different words found inside dn). The different vo-
cabulary sizes found in each document are a consequence of the fact that each text can approach
different themes, and so it is not expected to find the exact same vocabulary in all documents.
Also, the same theme may be approached by different words.

A DV-INBC model is composed by a set of clusters, defined by centroids of the kind

cj =
(
fjw1 , · · · , fjwi

, · · · , fjw|Vj |

)
, (4.2)

where fjwi
is the frequency of word wi inside cluster j and |Vj| is the amount of different words

found in that cluster i.e. its vocabulary. As documents are presented, the centroid of each cluster
is adapted by adding new words or updating the frequency of the old ones.

The word frequencies in each cluster are used to define Multinomial distributions, parame-
terized by a vector of the kind

θj = (θj1, · · · , θji, · · · , θj|Vj |), (4.3)
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where θji is the probability of sampling word wi from cluster j. To compute each θji, the
following equation is used

θji =
fjwi

| cj |
, (4.4)

where fjwi
is the frequency of word wi inside cluster j and |cj| =

∑|Vj |
i=1 fjwi

, which is the size

of cluster j. The summation
∑|Vj |

i=1 θji = 1, for all clusters.

As in INBC, the probability of observing a vector dn is a linear combination of component
densities, weighted by the priors of each one. In DV-INBC, the likelihood for a particular
document dn given a cluster j, p(dn|j), follows a Naive Bayes approach. However, since
the model does not assume a fixed and unique vocabulary for clusters and documents, some
modifications to compute it were made. The process is explained in details in section 4.3. Also,
in an analogous way, as INBC learned a Gaussian mixture from the data flow, a DV-INBC
model learns a Multinomial mixture, where each component is a cluster.

4.2 DV-INBC as a Generative Model

During training, DV-INBC learns a Multinomial mixture by creating and adapting clusters
as probability distribution over words, to represent document topics. Therefore, it can also be
presented as a generative model of documents, creating them from what it has learned. To this
end, the steps below should be followed:

• choose a model i.e. a topic;

• for each word, choose a cluster inside the model and generate a word from it.

The generative process of DV-INBC assumes that each document has words sampled from
only one topic: just one model is sampled and then it generates all the words of the document.
This approach has a lower representative power than PLSI and LDA, since a real document can
have words from many topics (although it is expected to find more words from the main subject
of that document). DV-INBC follows this assumption because it was based on the INBC model,
which has a very similar generative model as can be seen in (3.1). Therefore, since DV-INBC
extends INBC, this limitation is an expected consequence.

When compared to DV-INBC, it can be seen that LDA has a more adequate way of repre-
senting topics by using a Bayesian approach to learn them. When compared to PLSI, DV-INBC
uses a different representation of topics, since it does not associate a Multinomial distribution
to each document (which was a major cause of overfitting in that model). However, by sam-
pling a single topic to generate each document, DV-INBC follows an approach than can be very
limiting.
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The probability of a document dn in a DV-INBC model m is computed as

p(dn)m =

mM∑
j=1

p(dn|j) · p(j), (4.5)

where mM is the number of clusters inside the m-th model, p(j) is the prior probability of
cluster j inside model m and p(dn|j) is the j-th cluster likelihood. The computation of both
values is explained in the following section.

4.3 The learning process

The learning process creates, deletes and updates clusters. For every new document dn, its
similarity to all current clusters is computed. As in INBC, if all clusters evaluate the current
document as something new i.e. a novelty, a new cluster N is created with a Multinomial distri-
bution over vocabulary Vn (found in document dn) and represented by a centroid cN , which is
initially set to the bag-of-words representation of dn, as in (4.1). The values of the Multinomial
distribution are computed following (4.4).

The criterion to evaluate a document as a novelty is based on the Jensen-Shannon distance
(FUGLEDE; TOPSOE, )

DJS(P || Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q ||M), (4.6)

where P and Q are two probability distributions over a common set of possible qualitative
values and M is a mean distribution, defined as M = (P+Q)

2
. The Jensen-Shannon distance is a

symmetric version of the Kullback-Leibler divergence (DKL) (KULLBACK; LEIBLER, 1951)

DKL(P || Q) =
∑
i

P (i) · lnP (i)

Q(i)
, (4.7)

which measures the information loss when using a distribution Q to represent data that was
sampled from another distribution P .

The Kullback-Leibler measure is called a divergence because it is sensitive to the distri-
bution taken as reference, which means that DKL(P || Q) 6= DKL(Q || P ). Moreover, its
resulting values are contained in the interval [0,∞), which does not give a strong idea of how
far the word probability distribution found in dn is from a cluster j to decide whether dn is a
novelty or not. On the other hand, the Jensen-Shannon is a symmetric divergence (and therefore
a distance) and has values contained on the interval [0, ln 2]. Those two characteristics were the
reason to use this distance as the basis for the novelty criterion in DV-INBC, allowing a better
control of how close a document can be from a distribution to be assimilated by it.

To use the Jensen-Shannon distance, both P and Q have to be probability distributions over
the same set of possible values. Since in DV-INBC clusters and documents can have different
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vocabularies, it is necessary to create a vocabulary to compute that distance. For this end, a
fraction δ of the set of most frequent words inside cluster j, V top

j , and the whole vocabulary
found in document dn, Vn, are used. Therefore, the common vocabulary used to compute the
distance is defined as

Vj
c = Vn ∪ V top

j . (4.8)

Besides, two Multinomial distributions should be made for the comparison: one to represent
dn, P c

dn
; and another to represent a cluster cj , P c

j . The probability of word wi, ∀wi ∈ Vjc in P c
dn

is computed as

pcdn(wi) =
fdnwi

+ 1

| dn | + | Vjc |
, (4.9)

where |dn| =
∑|Vjc|

i=1 fdnwi
. The equivalent for P c

j is

pcj(wi) =
fjwi

+ 1

| ctopj | + | Vjc |
, (4.10)

where | ctopj |=
∑|Vj |

i=1 fjwi
. In this situation, it is necessary to perform a smoothing process over

the values of all probabilities, since by using Vjc it is not guaranteed that both cluster j and
document dn contain the same set of words. For that end, the Laplacian smoothing technique
was chosen, as can be seen in Equations 4.9 and 4.10.

Finally, using (4.8), (4.9) and (4.10) the novelty criterion of DV-INBC is applied by com-
paring the value of DJS(P c

dn
|| P c

j ) to a fraction of the maximum value assumed by the DJS

distance, to decide whether dn is a novelty or should be assimilated by an existing cluster. The
novelty criterion is

DJS(P c
dn || P

c
j ) > τ · ln 2, (4.11)

where τ is a hyperparameter. If at least one component evaluates the novelty criterion as False,
no new component is created and the most similar cluster is updated using the words from dn.

By using Vjc, the likelihood of the current document for a given cluster j is

p(dn|j) =

|Vn|∏
i=1

pcj(wi)
fnwi . (4.12)

After checking whether another cluster should be created, the model update process begins.
Considering the most similar cluster (i.e. the one with the smallest DJS distance) as s, the
update process creates another vocabulary for that cluster, V new

s , joining its current vocabulary
V old
s to the vocabulary from dn, Vn

V new
s = V old

s ∪ Vn. (4.13)
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Also, a new centroid cnews is created for s

cnews = (fnewsw1
, · · · , fnewswi

, · · · , fnewsw|V new
j

|
), (4.14)

with a dimensionality equal to |V new
s |, adding more dimensions to the corresponding new words

with their respective frequencies. The frequency of each word fnewswi
is updated in the following

manner: if a word already existing in cluster cs occurred again in dn, its value is incremented,
otherwise, it is kept the same, as is shown below

fnewswi
=


fswi

+ fdnwi
, if wi ∈ V old

j ∩ Vn
fdnwi

, if wi ∈ Vn \ V old
j

fswi
, otherwise

. (4.15)

Finally, the parameter vector θs of the Multinomial distribution for component s is updated as
well, by the following equation

θnewsi =
fnewswi

| csnew |
. (4.16)

After checking the novelty of the current document or updating the current model, the pos-
terior probability of each cluster j for dn is computed by

p(j|dn) =
p(dn|j)p(j)∑N
j=1 p(dn|j)p(j)

, (4.17)

and is used to update the sp accumulator of each component, which in turn is used to update
the prior probability of each cluster p(j) as in the INBC model. Also as in INBC, the sp
accumulator is evaluated in conjunction to the age attribute of each component to decide which
cluster(s) should be removed. Accumulators such as sps and spx do not exist in DV-INBC,
since their usages were related to the update of Gaussian distributions parameters, which are
not used in this model. The DV-INBC algorithm is presented in Algorithm 2.

4.4 The classification process

To categorize a classification document dncl, a fraction δ of the most frequent words inside
each cluster j, V top

j , is used to create a classification vocabulary Vjcl,

Vj
cl = Vn

cl ∪ Vjtop, (4.18)

which is obtained by joining Vjtop with the vocabulary of document dncl, Vncl. This is similar
to the process to compute the similarity of documents and clusters used during training. The
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probability of each word wi inside this vocabulary is then computed as

pj
cl(wi) =

fjwi
+ 1

| cj | + | Vjcl |
. (4.19)

Using (4.5), the probability of a document for the m-th DV-INBC model p(dcl)m is com-
puted using (4.19) for the likelihood of each cluster. Then, to decide the class l of the document,
the largest value among all is chosen, using the following equation:

l = arg max
m∈M

p(dcl)m. (4.20)

4.5 Conclusion

This chapter presented the DV-INBC algorithm, which extends the INBC method presented
in Section 3. It maintains the main capabilities of INBC and changes the distribution used
to model the data: from a Gaussian to a Multinomial distribution. The resulting model is,
therefore, a mixture of Multinomial distributions.

The main differences between the two models are the usage of a single model per class,
resulting in a set of DV-INBC models for a dataset. Also, since the probability distribution
of each cluster has changed, the similarity criterion used also needed to be altered, and now
the Jensen-Shannon distance is used. The other parts of the algorithm are still very similar to
INBC. Also, since DV-INBC is based on INBC, a set of limitations were inherited, regarding
the representation of topics and the process for generating documents.

On the following chapter, the performance of DV-INBC will be tested, using popular datasets
and compared to recent methods, as well as popular ones.
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Algorithm 2 DV-INBC
input: document dn
{Computes the similarity and likelihood of dn to all components}

for j = 1 to N :

V top
j = the δ · |cj| top most frequent words from cluster j

V c = Vn ∪ V top
j

pcdn(wi) =
fdnwi

+1

|dn|+|V c| ,∀wi ∈ V
c

pcj(wi) =
fjwi

+1

|ctopj |+|V c| ,∀wi ∈ V
c

M =
(P c

dn
+P c

j )

2

DJS(P c
dn
|| P c

j ) = 1
2
DKL(P c

dn
||M) + 1

2
DKL(P c

j ||M)

p(dn|j) =
∏|Vn|

i=1 p
c
j(wi)

fnwi

end for
{Checks the novelty criterion for all clusters}

if DJS(P c
dn
|| P c

j ) > τ · ln(2), ∀j:
{If the novelty criterion is evaluated as true, creates a new component N}

cN = dn

VN = Vn

θNi =
fdnwi

|cN |

spN = 1

p(N) = 1∑N
j=1 spj

ageN = 1

end if
{Updates cluster with smallest DJS distance, according to (4.15)}

V new
s = V old

s ∪ Vn
cnews = (fnewsw1

, · · · , fnewswi
, · · · , fnewsw|V new

s |
)

θnewsi =
fnew
swi

|csnew|

{Computes the posterior probability of each cluster}

p(j|dn) = p(dn|j)p(j)∑N
j=1 p(dn|j)p(j)

, ∀j
{Updates the variables associated to all the clusters}

spj = spj + p(j|dn),∀j
p(j) =

spj
N
,∀j

agej = agej + 1, ∀j
{Checks if there are any spurious clusters}

for j = 1 to N :

if spuriousj = True :

{Removes component j from the model}

end if
end for
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5 CLASSIFICATION OF DOCUMENTS USING DV-INBC

This chapter presents experiments using DV-INBC on popular datasets used for topic clas-
sification and sentiment analysis. The results obtained with DV-INBC are compared to other
recent models and the performance of the model is compared to other popular and recent meth-
ods.

The chapter is divided in two sections: the first presents experiments on topic classification
datasets and the last one the result obtained in a sentiment analysis task. For all experiments,
the statistics for the values of the Jensen-Shannon divergence computed while using that dataset
(for each model) are presented, to better understand the behaviour of this metric as well as to
assess its usage in DV-INBC.

5.1 Classification of topics

This task is presented to evaluate the performance of DV-INBC when categorizing the main
topic of text documents. Due to the classification method that is used by DV-INBC, in here
three single-label datasets are presented: 20 Newsgroups1, Reuters-R8 and WebKB2.

5.1.1 20 Newsgroups

The 20 Newsgroups dataset is a collection of approximately 20,000 posts taken from Usenet
groups. There are 20 classes in this dataset, representing different topics, almost evenly sepa-
rated. Table 5.1 shows the different existing classes in the dataset, and how many documents
there are in each one.

The 20 Newsgroups dataset is available in several formats. In this thesis, the by-date Mat-
lab/Octave version3 (which has 11,269 files in the training set and 7,505 files in the test one) was
used. The by-date version means that the dataset was split by ordering all instances by the time
of posting, making a training set composed of examples that precede all the ones found in the
test set. This version was used to compare the results of DV-INBC to other recent approaches.

The agemin = 10 and spmin = 2.5 parameters were fixed, and τ and δ were found by grid
search, using a validation set composed by 5% of the training set, i.e from the original training
set composed of 11,269 documents, a fraction of 5% was taken to create a validation set, on
which parameter estimation was conducted. During validation, it was observed that for lower
values of the τ parameter, the performance of the model was much worse than for larger ones
(achieving accuracy values smaller than 5%). For each particular value of τ , changes in the δ
parameter had a different impact: when considering the lower values of τ , the model performed
better with extreme values of δ, while values located in the middle region made a worse perfor-

1The 20 Newsgroups dataset can be downloaded from http://qwone.com/~jason/20Newsgroups/
2The Reuters-R8 and WebKB datasets can be downloaded from http://web.ist.utl.pt/acardoso/datasets/
3This version can be downloaded from http://qwone.com/~jason/20Newsgroups/20news-bydate-matlab.tgz
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Table 5.1: The 20 Newsgroups dataset documents per class in the original training set.

Class name Number of documents
comp.graphics 480

comp.os.ms-windows.misc 581
comp.sys.ibm.pc.hardware 572

comp.sys.mac.hardware 587
comp.windows.x 575

rec.autos 592
rec.motorcycles 582

rec.sport.baseball 592
rec.sport.hockey 596

sci.crypt 594
sci.electronics 598

sci.med 594
sci.space 591

misc.forsale 594
talk.politics.misc 593
talk.politics.guns 599

talk.politics.mideast 545
talk.religion.misc 564

alt.atheism 464
soc.religion.christian 376

mance. Still, the results were very poor. Those values are presented in Table 5.2, as a function
of each parameter combination.

Table 5.2: The error rate of DV-INBC on the 20 Newsgroups dataset during the validation phase
(%).

HH
HHHHτ

δ
0.25 0.5 0.75 1.0

0.25 75.7 93.63 96.63 51.59
0.5 12.76 12.23 11.87 11.52
0.75 12.76 12.23 11.87 11.52

For τ ≥ 0.5, the performance increased as δ was increased as well, achieving the best result
with δ = 1.0. In that situation, both τ = 0.5 and τ = 0.75 yielded the same and best results for
validation.

Finally, after performing the grid search, it was decided to choose randomly between the two
mentioned best results to train DV-INBC with the full training set. The parameter set chosen
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was τ = 0.5 and δ = 1.0. Using this set of parameters, DV-INBC achieved an error rate of
21.61% over the 20 Newsgroups dataset. The amount of clusters inside each DV-INBC model
was the same and equal to one.

Table 5.3 presents a comparison with other recent results. The work from (LAROCHELLE
et al., 2012) adapts a Restricted Boltzman Machine (RBM) (SMOLENSKY, 1986)(HINTON,
2002) to perform classification and assesses its performance on several tasks, among which is
document classification using the 20 Newsgroups dataset. Essentially, an RBM is an undirected
graphical model with binary variables. To better use an RBM for classification, a hybrid training
objective was created mixing both generative and discriminative objectives. To represent each
document, a fixed vocabulary composed by the 5,000 most frequent words of the training part
of the dataset was used. The method presented in (DAUPHIN; BENGIO, 2013) uses an RBM
as well, following a two-phase training: first the RBM is trained and then the adjusted model
is used to initialize the hidden layer of a Multilayer Perceptron (MLP) (BISHOP, 2006) neural
network, which is finally used to perform the document classification task. In this approach, a
fixed vocabulary composed by all the 61,188 words from the training dataset was used. Both
works use a binary representation for documents, considering only the occurence of words and
not their frequency.

Table 5.3: Comparison of results on the 20 Newsgroups dataset.

Method Error rate (%)
ClassRBM (Larochelle et al. 2012) 23.8
RBM-MLP (Dauphin and Bengio 2013) 20.5
DV-INBC 21.61

The Jensen-Shannon divergence values computed for each document for all classes of the
dataset (during the whole training) is shown in Figures 5.1 - 5.4. On all images, it can be noted
that the value of the distance increases as more words were added to the vocabulary of the only
cluster instantiated inside each model. This is expected since by increasing the vocabulary of
the cluster, it increases the chance of becoming more different for future documents. Therefore,
the value of the distance is higher as more documents are used. The mean value and the standard
deviation of the Jensen-Shannon distance for each class is shown in Table 5.4.

5.1.2 Reuters-R8

The Reuters-R8 dataset is a modified version of the traditional Reuters-21578 dataset, which
is composed by newswire articles from Reuters agency, which were manually classified into
many categories by personel from that company and had multi-label instances. The modified
R8 version was originally presented in (CARDOSO-CACHOPO, 2007), and was created by
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Table 5.4: Mean value and standard deviation of the Jensen-Shannon distance computed for
each class in the 20 Newsgroups dataset

Class Mean value
comp.graphics 0.22± 0.058
comp.os.ms-windows.misc 0.19± 0.057
comp.sys.ibm.pc.hardware 0.18± 0.044
comp.sys.mac.hardware 0.21± 0.048
comp.windows.x 0.18± 0.05
rec.autos 0.24± 0.028
rec.motorcycles 0.14± 0.04
rec.sport.baseball 0.19± 0.052
rec.sport.hockey 0.19± 0.039
sci.crypt 0.2± 0.047
sci.electronics 0.2± 0.051
sci.med 0.25± 0.043
sci.space 0.19± 0.052
misc.forsale 0.19± 0.051
talk.politics.misc 0.20± 0.038
talk.politics.guns 0.24± 0.057
talk.politics.mideast 0.21± 0.055
talk.religion.misc 0.24± 0.06
alt.atheism 0.22± 0.059
soc.religion.christian 0.20± 0.052

only considering documents with a single topic and the classes which still had at least one train
and one test example after that modification. Table 5.5 presents all the categories present in
Reuters-R8 dataset with the amount of documents for each class.

To evaluate DV-INBC, among the many versions available for this dataset on its website,
the all-terms version was the chosen one. In this version, as stated on the page of the dataset,
the following pre-processing was applied:

• all TAB, NEWLINE and RETURN characters were substituted by SPACE;

• only letters were kept, and all other characters were turn into SPACE;

• all letters were turn to lowercase;

• multiple spaces were substituted by a single one;

• the title/subject of the document is simply added in the beggining of the text of the docu-
ment.

A validation phase was performed to find the best parameters to this dataset, and for that a
random subset composed by 60% of all training documents was used, i.e. it was created another
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Table 5.5: The Reuters-R8 dataset classes.

Class name Number of documents
earn 2,840
aqc 1,596

trade 251
ship 108
grain 41
crude 253

interest 190
money-fx 206

set for parameter estimation, composed by 60% of the original training set, and parameter
estimation was tested on the remaining 40%. The experiments have shown that lower values
of τ yielded worse results, with an unstable behavior on that situation. For τ ≥ 0.5 a better
performance was achieved, which was improved as the value of δ was also increased. This
behavior is presented in Table 5.6.

Table 5.6: The error rate of DV-INBC on the Reuters-R8 dataset, during the validation phase
(%).

HHH
HHHτ

δ
0.25 0.5 0.75 1.0

0.25 95.26 63.73 95.31 94.63
0.5 44.9 36.12 31.66 27.2
0.75 44.9 36.12 31.66 27.2

The best performance was obtained with two parameter sets: τ = 0.5 and δ = 1.0 and
τ = 0.75 with δ = 1.0. To select the set of parameters for the final evaluation, a random
choice was made among all the parameter sets that gave the best performance, and the chosen
set was τ = 0.75 and δ = 1.0. Finally, using this set of parameters, the final models had an
accuracy level of 79.3% and each one had a unique cluster inside. Other algorithms were tested
on this dataset to compare how DV-INBC performs against other popular (although not recent)
approaches, and their results are presented in Table 5.7.

Table 5.8 presents the mean values of the Jensen-Shannon divergence for this experiments,
and Figures 5.5 and 5.6 shows the values of the divergence during training, for all classes of
the dataset. As in the previous experiment, the behavior of the distance is to increase as more
documents are used for training, which makes the vocabulary of the clusters more different from
the ones of each document. This again is an expected behavior and tends to increase the value
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Table 5.7: Comparison of results on the Reuters-R8 dataset.

Method Accuracy (%)
SVM (Linear kernel) 94.93
Naive Bayes 95.39
DV-INBC 79.3

of the distance.

Table 5.8: Mean value and standard deviation of the Jensen-Shannon distance computed for
each class in the Reuters-R8 dataset

Class Mean value
earn 0.31± 0.058
acq 0.26± 0.053
trade 0.17± 0.051
ship 0.11± 0.033
grain 0.86± 0.028
crude 0.17± 0.048
interest 0.16± 0.045
money-fx 0.15± 0.048

5.1.3 WebKB

This dataset is composed by webpages collected by the World Wide Knowledge Base (Web-
>Kb) project of the CMU text learning group. The webpages were originally taken from com-
puter science departments of various universities in 1997 and manually classified into seven
classes, which indicates the type of content for that page: student, faculty, staff, department,
course, project, and other. For each class, the collection contains pages from four universities:
Cornell, Texas, Washington, Wisconsin and other many pages collected from other universities.

As informed on the page of the dataset, the version that was used on this thesis (called
stemmed) had three classes removed (department, staff and other), and underwent the same
pre-processing that was used on the Reuters-R8 dataset (as explained in 5.1.4), plus removal
of words less than three characters long, stopwords and the application of a stemmer. Finally,
before conducting the experiments of this thesis, it was noted that the dataset still had empty
documents in the training set, which were then removed. Table 5.9 shows the final set of classes
in the dataset with the number of documents in each one.

In the validation phase, following the same approach of the previous experiment, a random
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Table 5.9: The WebKB dataset classes.

Class name Number of documents
student 1085
faculty 745
project 335
course 620

subset 60% of the original training set was used for training, and the remaining documents
were used for validation. To find the best parameter set for all the models, a grid search was
applied. Since this dataset was heavily pre-processed, the data had less noise, and therefore
the performance of DV-INBC was much better, even in the worst situations. The model had
its best performance with parameters τ = 0.25 and δ = 0.75. It was noted that larger values
for τ yielded a lower performance for DV-INBC, when observing the value of δ on which its
performance was the best one, a behavior that was different from the ones observed in the other
experiments, when by increasing the value of τ the result was always improved or stayed the
same. This can be explained by the increased quality of the pre-processed data, which now has
a more different vocabulary for each subtopic in each class. Besides, the vocabulary is more
informative of the document class due to the stopword removal and stemming processes that
were applied. The values achieved during the validation phase are shown in Table 5.10.

Table 5.10: The error rate of DV-INBC on the WebKB dataset, during the validation phase (%).

HHH
HHHτ

δ
0.25 0.5 0.75 1.0

0.25 19.74 27.01 16.24 29.53
0.5 19.74 18.76 18.49 17.95
0.75 19.74 18.76 18.49 17.95

Finally, the best parameter set of the previous phase was used to perform the final evaluation
of DV-INBC over the dataset, and the accuracy level achieved was 83.87%. As in the previous
experiment, other popular algorithms were applied to compare the performance of DV-INBC. In
this dataset, the number of clusters inside each model was different, and Table 5.11 shows how
many clusters each model created. Finally, Table 5.12 shows the results obtained by DV-INBC
and by the other methods on this dataset.

Figure 5.7 shows the mean values of the Jensen-Shannon divergence and the standard devia-
tion of the distance obtained during training, for all classes of the dataset. Table 5.13 shows the
mean value and standard deviation of the divergence inside each class, computed after training.
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Table 5.11: Clusters by class created in the WebKB dataset.

Class Number of clusters
student 3
faculty 3
project 2
course 4

Table 5.12: Comparison of results on the WebKB dataset.

Method Accuracy (%)
SVM (Linear kernel) 86.98
Naive Bayes 84.02
DV-INBC 83.87

Figure 5.7 shows that during training the clusters created tend to get similar causing an
increase in the mean value of the distance (a similar behavior was observed in the other exper-
iments, but in that situation only one cluster was created). When a new cluster is created, the
Jensen-Shannon distance achieves a smaller value, and as the training continues, its mean value
continues to grow. This is also observed by analysing the value of the standard deviation of the
distance: it peaks everytime a cluster is created, indicating that, at that moment, the difference
among the values of the distance was higher; and gets smaller the moments between creation
of clusters. This shows that when a cluster is created, its distance to the current document is
much smaller when compared to the other clusters, resulting in a higher standard deviation and
a smaller value for the mean.

Table 5.13: Mean value and standard deviation of the Jensen-Shannon distance computed for
each class in the Reuters-R8 dataset

Class Mean value
student 0.14± 0.026
faculty 0.14± 0.024
project 0.13± 0.027
course 0.14± 0.023
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5.1.4 Evaluating the use of priors on the classification

After performing the topic classification experiments, it was noted the poor performance
of DV-INBC on the Reuters-R8 dataset, an experiment where the method had a much worse
performance than a traditional Naive Bayes algorithm. A major difference between those two
models is the use of prior probabilities in the classification, which helps improve performance
in datasets where there is a large difference among the number of documents in each class.

To evaluate how this information impacts on the performance of DV-INBC, the best models
for all datasets used in the topic classification tasks were tested again, now using the prior
probabilities of each class. For this, a small change to the classification process of DV-INBC
was necessary, yielding the following:

l = arg max
m∈M

p(m) · p(dcl)m, (5.1)

where p(m) is the prior probability of the class represented by the m-th DV-INBC model,
computed as

p(m) =
| Dm |
| D |

, (5.2)

whereDm is the set of all documents of classm in the training set andD is the set of all training
documents.

Table 5.14 show the results of using prior probabilities for each class on the datasets.

Table 5.14: The effect of class priors in the categorization performance of DV-INBC

Datset Accuracy without priors (%) Accuracy with priors (%)
Reuters-R8 79.3 87.8
WebKB 83.87 84.16
20 Newsgroups 78.39 78.39

As could be observed, the performance of DV-INBC on the Reuters-R8 dataset had a larger
improvement than in the other ones, increased by 8.5%, which is still 7.59% lower than the
performance of a Naive Bayes algorithm on the same dataset. In the other datasets, the im-
provement was much smaller or even null. This is due to the other datasets having a more equal
distribution of classes, with the less skewed distribution being the one of the 20 Newsgroups
dataset, where the improvement was null.
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5.2 Sentiment classification

For this task, the IMDB dataset was used. It was initially presented in (MAAS et al., 2011)
and is a large repository of highly polar reviews about movies4. It is composed by a training
set of 25,000 documents and a test set with the same amount of documents. There are only two
classes, good and bad.

The IMDB dataset is composed by reviews taken from the Internet Movie Database web-
site5, where users post analysis and opinions from TV shows (e.g. movies, series, etc). When
analysing the sentiment of the review (i.e. its polarity) a simple analysis of a bag of unigrams
may not give a good performance, although a better result can be achieved by using bigrams, as
shown in (WANG; MANNING, 2012). This means that when classifying movie reviews based
on a bag-of-words model, while using unigrams, it is expected to have a worse performance
than other approaches that use bigrams or that can utilize the word order to have a better seman-
tic representation, as the technique presented in (JOHNSON; ZHANG, 2014). For instance,
although the two following sentences have very similar bag-of-words vectors, they completely
differ in meaning: "I like this movie" and "I didn’t like this movie".

Table 5.15 shows two random items of the IMDB dataset, one from each class and, as can
be seen, the document size can vary greatly, as well as the type of language and vocabulary
used on each class. Also, as mentioned before, a simple analysis of the vocabulary used in the
review does not make clear its polarity.

Regarding the training of DV-INBC, the two following parameters were used with values
agemin = 10 and spmin = 2.5. Also, a grid search was performed to find the best values for τ
and δ parameters. For that reason, a smaller set was used for training (with 2,500 documents
per class) and an also smaller one for validation (with 1,250 documents per class). Both subsets
were randomly created from the original training set.

The difference between the best and worst results in the validation phase was small when
compared to the datasets used in the document classification task, with accuracy values ranging
from around 50% to 81%. However, the behavior of DV-INBC was more unstable in this dataset.
The best results were obtained with two different combinations of parameter values: τ = 0.75

and δ = 0.25 and τ = 0.5 with δ = 0.25. For all values of τ , extreme values of δ gave the same
or better results than values located in the middle region. The values from the validation phase
are shown in Table 5.16.

After performing the validation phase, the set of parameters used to train the model using
the full training set was chosen randomly from the parameters that yielded the same result in
that phase. The parameter set chosen was τ = 0.75 and δ = 0.25, and the result obtained was
an error rate of 18.53%. Each DV-INBC model created only one cluster.

Table 5.17 compares the results from this work to others reported by (LE; MIKOLOV,

4The dataset can be downloaded from http://ai.stanford.edu/~amaas/data/sentiment/
5http://www.imdb.com/
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Table 5.15: Two random exaples from the IMDB dataset

Example of a positive review
I’m a male, not given to women’s movies, but this is really a well done special story. I have
no personal love for Jane Fonda as a person but she does one Hell of a fine job, while
DeNiro is his usual superb self. Everything is so well done: acting, directing, visuals,
settings, photography, casting. If you can enjoy a story of real people and real love - this
is a winner.
Example of a negative review
or anyone who was praying for the sight of Al Cliver wrestling a naked, 7ft tall black guy
into a full nelson, your film has arrived! Film starlet Laura Crawford (Ursula Buchfell-
ner) is kidnapped by a group who demand the ransom of $6 million to be delivered to their
island hideaway. What they don’t count on is rugged Vietnam vet Peter Weston (Cliver)
being hired by a film producer to save the girl. And what they really didn’t count on
was a local tribe that likes to offer up young women to their monster cannibal god with
bloodshot bug eyes.<br /><br />Pretty much the same filming set up as CANNIBALS,
this one fares a bit better when it comes to entertainment value, thanks mostly a hilari-
ous dub track and the impossibly goofy monster with the bulging eyes (Franco confirms
they were split ping pong balls on the disc’s interview). Franco gets a strong EuroCult
supporting cast including Gisela Hahn (CONTAMINATION) and Werner Pochath (whose
death is one of the most head-scratching things I ever seen as a guy who is totally not
him is shown - in close up - trying to be him). The film features tons of nudity and the
gore (Tempra paint variety) is there. The highlight for me was the world’s slowly fistfight
between Cliver and Antonio de Cabo in the splashing waves. Sadly, ol’ Jess pads this one
out to an astonishing (and, at times, agonizing) 1 hour and 40 minutes when it should
have run 80 minutes tops. <br /><br />For the most part, the Severin DVD looks pretty
nice but there are some odd ghosting images going on during some of the darker scenes.
Also, one long section of dialog is in Spanish with no subs (they are an option, but only
when you listen to the French track). Franco gives a nice 16- minute interview about the
film and has much more pleasant things to say about Buchfellner than his CANNIBALS
star Sabrina Siani.

Table 5.16: The error rate of DV-INBC on the IMDB dataset, during the validation phase (%).

HHHH
HHτ
δ

0.25 0.5 0.75 1.0

0.25 21.48 49.68 49.36 23.72
0.5 18.08 49.32 21.84 20.72
0.75 18.08 18.32 18.16 18.16

2014), which, at the time of writing this text, are the best published ones. Also the same
table shows results from other methods. The work from (MAAS et al., 2011) uses an SVM
trained with inputs represented by LDA features, with words as vectors (by using the relation
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of each one to each topic in the collection). The approach used in (WANG; MANNING, 2012)
also uses an SVM, trained with bag of bigrams, and shows that it is better to use bigrams to
perform sentiment analysis. Also, it shows that for smaller texts, probabilistic methods such
as the Multinomial Naive Bayes can be better than discriminative ones, as an SVM. However,
the same can not be said in the case of longer texts, a scenario where an SVM has a better
performance. The seq2-bown-CNN method (JOHNSON; ZHANG, 2014) uses a Convolutional
Neural Network (CNN) (LECUN et al., ) with two sequential convolutional layers and another
convolutional layer with a bag-of-words input, representing the entire document. Finally, the
Paragraph Vector technique presented in (LE; MIKOLOV, 2014) uses a different representation,
using vector representation for words that are semantically related, i.e. vectors representing
similar words are closer than those which represent words with very different meanings. It is a
semi-supervised technique that learns vector representations of variable pieces of texts, such as
sentences and documents, and uses those to train a logistic regression for the classification task.

Table 5.17: Comparison of results on the IMDB dataset.

Method Error rate (%)
SVM (with LDA features) (Maas et al. 2011) 32.58
NBSVM-bi (Wang and Manning 2012) 8.72
seq2-bown-CNN (Johnson and Zhang 2014) 7.67
Paragraph Vector (Le and Mikolov 2014) 7.42
DV-INBC 18.53

Figure 5.8 shows the mean values of the Jensen-Shannon divergence and the standard de-
viation of the distance obtained during training, for all classes of the dataset. As in the other
experiments where only one cluster was created by class, it can be seen that the mean value of
the distance always increases, as more words are added to the vocabulary of each cluster. Ta-
ble 5.18 shows the mean value and standard deviation of the Jensen-Shannon divergence inside
each class, computed after training.

Table 5.18: Mean value and standard deviation of the Jensen-Shannon distance computed for
each class in the IMDB dataset

Class Mean value
positive 0.31± 0.04
negative 0.32± 0.04
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5.3 Conclusions

This chapter presented an assessment of the performance of DV-INBC on two different
tasks: topic classification and sentiment analysis. The first was the main focus of the model
and therefore three experiments were made, while in the last task only one test was conducted.
For topic classification, the datasets were 20 Newsgroups, Reuters-R8 and WebKB, and for
sentiment analysis the chosen dataset was IMDB.

It was observed that the model had competitive performance to the state of the art on the
20 Newsgroups dataset, and regular to worse performances on two other topic classification
datasets. On the IMDB dataset, the performance was much worse than the best recent result that
it was compared to. This behavior can be explained by the fact that the the task of sentiment
analysis depends of the word order on each document, since the semantics of the text strongly
dependends on it. On the other hand, the 20 Newsgroups dataset is commonly used in topic
classification tasks, where word order is not very important to achieve a good performance,
and a simple bag-of-words model is enough in most of cases. Since DV-INBC uses the bag-
of-words model to represent documents, it was expected a worse performance on the IMDB
dataset. However it is worth mentioning that the error rate achieved by DV-INBC was smaller
than the one of the method used in (MAAS et al., 2011), which used features extracted from
an LDA model to describe each document. This difference of performances between the two
methods can be explained by the fact that DV-INBC uses a separate model for each class, which
allows it to better represent each one, while LDA uses a single model for all classes, representing
them using the topic space found by the algorithm. The two other methods presented in Table
5.17 either maintain word order or use bigrams to represent each text, two approaches that can
improve performance.

On the other two datasets, Reuters-R8 and WebKB, the performance of DV-INBC was com-
pared to two popular algorithms, SVM and Naive Bayes, and it could be observed a great
difference of performances from the first dataset to the last. In Reuters-R8, the performance
of DV-INBC was worse than an SVM and a Naive Bayes. This can be explained by the fact
that a Naive Bayes method uses a complete vocabulary to describe each class, using even the
words that did not occur in that class. However, DV-INBC uses only an approximation of that
vocabulary, which is improved at every new document by incrementing the vocabulary of each
model. This means that, at any time, if a union of the vocabularies of each cluster inside a
model was made, an approximation of the complete vocabulary of that class would be obtained.
Also, the Reuters-R8 dataset has a very skewed class distribution, with many more documents
in only one class than in all the others. Since Naive Bayes uses this information jointly with
the full vocabulary of each class, by modeling it as prior probabilities, it is expected to have a
better performance in that situation. This was proved by repeating the experiments using that
information during classification.

Finally, in the WebKB dataset DV-INBC had an equivalent performance to a Naive Bayes
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algorithm, achieving almost the same accuracy value. However, it is worth mentioning that
DV-INBC used less information for that and also created clusters inside each model that help
separate the different subtopics related to each main topic.

The experiments have also shown that the two main parameters of DV-INBC have very
different impacts on the performance of the model. The τ parameter seems to have a higher
effect on the performance, changing indiretly the quantity of clusters created during training. If
it is set to a small value, many clusters are created and otherwise a smaller number of clusters
(or even a single one) are instantiated.

On the other hand, the δ parameter was ineffective or had an unstable behavior for some
values of τ , suggesting that its influence on DV-INBC should be revised or maybe the param-
eter should be exchanged by another one. This parameter was introduced to observe how the
feature selection performed by DV-INBC when comparing the similarity of a cluster and a doc-
ument could impact on the performance of the model, and it was expected to find a subset of
the most frequent words inside each cluster that could give a good comparison. As the exper-
iments have presented, the quality of the comparison has a stronger relation to the quality of
the data and not with the amount of words used in the comparison. When tested against no
pre-processed datasets (as was the case with 20 Newsgroups and Reuters-R8), the best results
were obtained with a single cluster per model and using the entire vocabulary of each cluster for
the comparison. This behavior can be explained by the fact that in those datasets there are still
stopwords in the documents and therefore more words are needed to understand the real topic
of each text, which tend to be less frequent. This means that a larger portion of the vocabulary
is needed for the comparison. This behavior was not observed in the WebKB dataset, due to the
pre-processing applied. Therefore, a smaller portion of the vocabulary could be used to achieve
a good result. Nevertheless, the results show that a selection of the most frequent words is not
robust enough to be further used, and so this part of DV-INBC should to be redesigned.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.1: The mean value of the Jensen-Shannon distance, computed for each document
during training on the 20 Newsgroups dataset, for classes (a) comp.graphics, (b) comp.os.ms-
windows.misc, (c) comp.sys.ibm.pc.hardware, (d) comp.sys.mac.hardware, (e) comp.windows.x
and (f) rec.autos. In all images, the horizontal line is the overall mean value for the distance,
computed after training.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.2: The mean value of the Jensen-Shannon distance, computed for each docu-
ment during training on the 20 Newsgroups dataset, for classes (a) rec.motorcycles, (b)
rec.sport.baseball, (c) rec.sport.hockey, (d) sci.crypt, (e) sci.electronics and (f) sci.med. In all
images, the horizontal line is the overall mean value for the distance, computed after training.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.3: The mean value of the Jensen-Shannon distance, computed for each document
during training on the 20 Newsgroups dataset, for classes (a) sci.space, (b) misc.forsale, (c)
talk.politics.misc, (d) talk.politics.guns, (e) talk.politics.mideast and (f) talk.religion.misc. In all
images, the horizontal line is the overall mean value for the distance, computed after training.
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(a) (b)

Figure 5.4: The mean value of the Jensen-Shannon distance, computed for each docu-
ment during training on the 20 Newsgroups dataset, for classes (a) alt.atheism and (b)
soc.religion.christian. In all images, the horizontal line is the overall mean value for the dis-
tance, computed after training.
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(a) (b)

(c) (d)

(e) (f)

Figure 5.5: The mean value of the Jensen-Shannon distance, computed for each document
during training on the Reuters-R8 dataset, for classes (a) earn, (b) acq, (c) trade, (d) ship, (e)
grain and (f) crude. In all images, the horizontal line is the overall mean value for the distance,
computed after training.
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(a) (b)

Figure 5.6: The mean value of the Jensen-Shannon distance, computed for each document
during training on the Reuters-R8 dataset, for classes (a) interest and (b) money-fx. In all images,
the horizontal line is the overall mean value for the distance, computed after training.
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(a) (b)

(c) (d)

Figure 5.7: The mean value of the Jensen-Shannon distance, computed for each document dur-
ing training for all classes of the WebKB dataset: (a) is the performance on class student, (b)
shows class faculty, (c) is class project and (d) indicates class course. In all images, the hori-
zontal line is the overall mean value for the distance, computed after training; and the thinner
line at the bottom indicates the mean standard deviation of the distance, computed among all
clusters for each document.
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(a) (b)

Figure 5.8: The mean value of the Jensen-Shannon distance, computed for each document
during training for all classes of the IMDB dataset: (a) is the performance on class positive and
(b) indicates the behaviour of DV-INBC on class negative. In all images, the horizontal line is
the overall mean value for the distance, computed after training.
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6 CONCLUSIONS AND FUTURE WORKS

6.1 Conclusions

This thesis presented a probabilistic and incremental method to categorize streams of docu-
ments, called DV-INBC. The main characteristics of DV-INBC are:

It only needs a single pass over the training data to complete its training For a given set of
parameters, the best DV-INBC model is built without needing to iterate repeatedly over
the training dataset.

Little knowledge of the data stream is needed to do training Only the number of classes on
the dataset is needed. Neither the vocabulary to represent all documents is needed, be-
cause DV-INBC builds it as the documents are read from the dataset.

To assess the performance of DV-INBC on document categorization tasks, a set of experi-
ments were conducted involving two tasks: topic classification and sentiment analysis. It was
observed that, when compared to the state of the art, DV-INBC had a competitive performance
in the topic classification task, when tested against the 20 Newsgroups dataset. However, its
performance was worse on the IMDB dataset, which was used to evaluate its performance on
the sentiment analysis task. The performance is compatible to what is expected for this task,
since the word order is lost when using the bag-of-words model, a piece of information which
is very important for that task.

The experiments have also shown that the δ parameter is not robust enough and therefore
a selection of the most frequent words to represent a cluster is not the best alternative. This
means that other methods to make the comparison between clusters and documents should be
considered. Besides, the τ parameter has an indirect effect on DV-INBC, which makes it dif-
ficult to understand the real impact on the performance when selecting its value. It indirectly
controls the amount of clusters that are created during training, by setting the maximum ad-
missible distance between clusters and documents but the real impact of its value is not clear a
priori.

Also, in the other datasets of the topic classification task, it could be seen that the perfor-
mance of DV-INBC was, at most, equivalent to a conventional Naive Bayes classifier. This was
even more visible when testing the model with the Reuters-R8 dataset, where the performance
of DV-INBC was much worse than a Naive Bayes model. However, it should be noted that
DV-INBC does not use information about the amount of documents of each class, since it was
devised as a model to scan over the training data only once, and therefore it is not known a priori
how many documents are available on each class. This knowledge is represented by a Naive
Bayes classifier as the prior probabilty of each class. As the experiments have presented, if this
information is used by DV-INBC, its performance can greatly increase in situations where the
class distribution is very skewed, as found in the Reuters-R8 dataset.
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Finally, the experiments have shown that the two main characteristics of DV-INBC allow
it to be used in situations where the size of the training data is large (since it does not need
to iterate over it many times) or when the vocabulary of the dataset is not known a priori.
Besides, its main parameters can be estimated by using a subset of the entire training data,
which is a fast operation. DV-INBC had a competitive performance to the state of the art on the
20 Newsgroups dataset; a good performance on the Webkb dataset, with results similar to an
SVM, and performed poorly in the Reuters-R8 dataset; and a performance worse than the state
of the art on the IMDB dataset (which is actually an expected behavior), but still had an error
rate of almost half of a more complex approach, which used LDA features to train an SVM.

6.2 Future Work

More work is needed to allow a clearer notion of the real impact of each configuration
parameter of the model before training. It is also necessary to find another feature selection
method, preferably one capable of identifying occurrence correlations between words inside
a cluster (a situation analogous to finding the principal components of a set of n-dimensional
points), instead of simply choosing the most frequent words, which was concluded that is not
a robust method. Besides, the study of a way of removing the words from the vocabulary of a
cluster that do not contribute to a good identification of the topic of the document or to the topic
of the cluster itself can help improve DV-INBC.

In order to find a better feature selection method, data mining techniques could be used, such
as FP-Growth (HAN; PEI; YIN, ) or other similar method. Topic model techniques adapted to
work on data streams settings could also be studied and adapted to work with DV-INBC. How-
ever, it is important to analyse the execution time of the chosen approach, since the process of
selecting features is performed many times during the runtime of DV-INBC. It is also necessary
to develop an approach that can handle a large amount of data and make a model of it that can
still fit in a reasonable amount of main memory.

To better evaluate the impact of the quality of the data, a pre-processing step could be
attached to DV-INBC, prior to the use of a document to train a model. In this step, processes
like stemming and stopword removal could be applied. However, it should be noted that such
procedures should be optimized to not impose a heavy impact on the computing time. This
additional step could also help understand the real performance of DV-INBC by using only data
with reduced noise for training.
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APPENDIX A RESUMO EM PORTUGUÊS

A.1 Introdução

O campo conhecido como Data Mining obteve recentes avanços ultimamente, devido prin-
cipalmente à disponibilidade de diferentes tipos de dados, o que é particularmente verdadeiro
para o caso de texto, onde tanto a Web como as redes sociais permitiram a rápida criação de
grandes repositórios de dados. A crescente quantidade de dados textuais disponível a partir de
diferentes aplicações criou uma necessidade por avanços em design de algoritmos que consigam
aprender padrões interessantes a partir destes dados de uma forma dinâmica e escalável (AG-
GARWAL; ZHAI, 2012). Conforme nosso conhecimento coletivo continua a ser digitalizado e
armazenado na forma de mídias como notícias, blogs, páginas da Web, artigos científicos, livros
e muitas outras, ferramentas computacionais para organizar, buscar e entender tais quantidades
vastas de dados tornam-se necessárias (BLEI, 2012).

No caso de dados textuais, seja minerando um fluxo de dados ou um conjunto fixo de doc-
umentos, a tarefa de classificação e retorno de documentos precisa de representações úteis para
as informações contidas em tais itens. O fato de que estas informações estão originalmente
disponíveis em uma forma não estruturada motiva a pesquisa e o design de algoritmos para
resolver estes problemas (SRIVASTAVA; SALAKHUTDINOV; HINTON, 2013). Da mesma
forma, aplicações Web (por exemplo, redes sociais) podem criar um fluxo contínuo de grandes
volumes de texto, devido à criação simultânea de texto a partir de uma grande variedade de
usuários. Tais dados são mais desafiadores para o processo de mineração, já que precisam
ser processados no contexto de uma limitação one-pass, o que significa que pode ser difícil
armazená-los offline para retirar informações úteis dos mesmos e que a tarefa de mineração
deve ser realizada conforme os dados chegam (AGGARWAL; ZHAI, 2012).

Uma categoria de algoritmos para descobrir os principais temas que permeiam uma coleção
qualquer de documentos é chamada de Topic Models. Tais algoritmos podem organizar a
coleção de documentos de acordo com os temas descobertos. Da mesma forma, eles podem ser
aplicados sobre coleções com grandes quantidades de dados e também para fluxos de documen-
tos (BLEI, 2012). A área de Topic Modeling integra algoritmos de soft clustering com redução
de dimensionalidade. Documentos são associados a um número de tópicos latentes, os quais
correspondem tanto a clusters de documentos como a representações compactas identificadas
na coleção. Cada documento é atribuído aos tópicos com diferentes pesos, o que especifica o
grau de pertinência em cada cluster. A representação original dos atributos tem um papel chave
na definição dos tópicos e na identificação de quais tópicos estão presentes em cada documento.
O resultado é uma representação compreensível de documentos que é útil para analisar quais
temas estão presentes nos mesmos (AGGARWAL; ZHAI, 2012).
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A.2 Motivação

Motivado pela necessidade de algoritmos capazes de processar fluxos de documentos e/ou
coleções dos mesmos, este trabalho apresenta uma abordagem para categorizar documentos
que pode ser utilizada em tais cenários: DV-INBC, que significa Dynamic Vocabulary Incre-
mental Naive Bayes Clustering. O método necessita apenas de informação sobre a quantidade
de classes na coleção de documentos, construindo o vocabulário de forma dinâmica conforme
os dados chegam. A representação de cada classe no modelo é uma mistura de distribuições
multinomiais, seguindo uma abordagem similar a muitas outras técnicas de Topic Model. O
DV-INBC é um algoritmo incremental, online e probabilístico que estende o modelo INBC ap-
resentado em (ENGEL, 2009). Essas características fazem de DV-INBC um modelo adequado
tanto para categorizar fluxos de documentos como para processar coleções de textos como se
fossem fluxos, o que pode ser observado pelos experimentos apresentados neste trabalho. Além
disso, o algoritmo apresentado pode ser útil em cenários em que o tamanho dos dados é muito
grande para sofrer repetidas iterações como outras técnicas fazem, bem como em situações onde
há um fluxo contínuo de documentos para ser processado.

Portanto, a principal contribuição deste trabalho é o desenvolvimento de um novo algoritmo
para classificação de documentos, chamado DV-INBC, e a sua avaliação em datasets populares
para a tarefa. Os resultados observados nos experimentos mostram que o modelo é promissor,
embora ainda existam melhoramentos a serem feitos.

A.3 Conclusões

Este trabalho apresentou um método probabilístico e incremental para categorização de doc-
umentos, chamado DV-INBC. As principais características do modelo são:

Apenas uma única época sobre os dados de treinamento é necessária para completar o
processo de treinamento Para um dado conjunto de parâmetros, o melhor modelo DV-
INBC é construído sem a necessidade de iterar repetidamente pelo dataset de treinamento.

São necessárias poucas informações sobre os dados de treinamento Só é necessário saber
o número de classes no dataset. Nem o vocabulário para representar os documentos é
preciso, pois DV-INBC o constrói conforme os documentos são lidos.

Para avaliar a performance do DV-INBC em tarefas de categorização de documentos, ex-
perimentos foram realizados envolvendo duas tarefas: classificação de tópicos e análise de sen-
timento. Foi observado que, quando comparado com o estado da arte, DV-INBC teve perfor-
mance competitiva na tarefa de classificação de tópicos, quando foi avaliada sua performance no
dataset 20 Newsgroups. Entretanto, sua performance foi pior quando avaliada sobre o dataset

IMDB, o qual foi utilizado para analisar seu desempenho na tarefa de análise de sentimento.
Nesta tarefa, sua performance é compatível com o que se espera de um modelo baseado em
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bag-of-words, já que a ordem das palavras é uma informação muito importante em análise de
sentimentos.

Os experimentos também mostraram que o parâmetro δ não é robusto o suficiente e que
portanto a seleção das palavras mais frequentes para representar um cluster não é a melhor
alternativa. Isto significa que outros métodos para realizar a comparação entre clusters e doc-
umentos deve ser considerada. Além disto, o parâmetro τ tem uma influência indireta sobre
DV-INBC, o que torna difícil entender o real impacto na performance do modelo ao selecionar
seu valor. Este parâmetro controla indiretamente a quantidade de clusters que é criada durante
o treinamento, através do controle da máxima distância admitida entre clusters e documentos,
entretanto o real impacto de seu valor não é claro a priori.

Da mesma forma, nos outros datasets utilizados para a tarefa de classificação de tópicos,
foi possível observar que a performance do DV-INBC foi, no máximo, equivalente a um classi-
ficador Naive Bayes tradicional. Isto foi mais visível ainda ao testá-lo no dataset Reuters-R8,
onde sua performance foi muito pior que tal classificador. Entretanto, deve ser notado que
DV-INBC não usa informação sobre a quantidade de documentos em cada classe, já que foi
projetado para ler o conjunto de treinamento apenas uma vez, e portanto tal número não é
conhecido a priori. Esta informação é representada em um classificador Naive Bayes como
a probabilidade a priori de cada classe. De acordo com os experimentos, foi observado que
se esta informação é utilizada, a performance do DV-INBC pode melhorar consideravelmente,
principalmente em situações em que a distribuição de documentos por classe é bem enviesada,
tal como no dataset Reuters-R8.

Finalmente, os experimentos mostraram que as duas principas características do DV-INBC
o permitem ser usado em situações onde o tamanho do conjunto de treinamento é grande (já
que não é necessário iterar sobre o mesmo muitas vezes) ou quando não se sabe a priori o
vocabulário do dataset. Além disto, seus principais parâmetros podem ser estimados usando um
subconjunto do dataset original, o que é uma operação rápida. DV-INBC tem uma performance
competitiva com o estado da arte no dataset 20 Newsgroups; uma boa performance no dataset

WebKB, com resultados similares a uma SVM e um desempenho ruim no dataset Reuters-R8;
uma performance pior que o estado da arte foi obtida no dataset IMDB (um comportamento
esperado), ainda assim sua taxa de erro foi quase a metade de outra abordagem mais complexa,
que utilizou atributos obtidos a partir de um modelo LDA para treinar uma SVM.

A.4 Trabalhos futuros

Mais trabalhos são necessários para se atingir uma noção mais clara do real impacto de
cada parâmetro de configuração do modelo. Também é necessário encontrar outro método de
seleção de atributos, preferencialmente algum capaz de identificar a correlação das ocorrências
entre palavras dentro de um cluster (situação análoga a encontrar os componentes principais de
um conjunto de pontos com n dimensões), em vez de simplesmente selecionar as palavras mais
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frequentes, o que foi concluído como sendo um método não robusto. Além disto, o estudo de
uma forma para remover palavras do vocabulário que não contribuem para uma boa identifi-
cação tanto do tópico do documento como do cluster podem ajudar a melhorar o desempenho
do DV-INBC.

Para encontrar um método de seleção de atributos melhor, técnicas de Data Mining podem
ser utilizadas, tais como FP-Growth (HAN; PEI; YIN, ) ou métodos similares. Técnicas de
Topic Model adaptadas para funcionar em cenários de fluxos de dados podem ser estudadas e
adaptadas também para funcionar no DV-INBC. Entretanto, é importante analisar o tempo de
execução da abordagem escolhida, já que o processo de seleção de atributos é realizado muitas
vezes durante a execução do DV-INBC. Da mesma forma é preciso desenvolver uma forma de
lidar com o grande volume de dados e criar um modelo dos mesmos que possa ajustar-se em
uma quantidade razoável de memória principal.

Para melhor avaliar o impacto da qualidade dos dados, um passo de pré-processamento
poderia ser adicionado ao DV-INBC, previamente ao processamento de um documento du-
rante o treinamento. Neste passo, operações como stemming e remoção de stopwords poderiam
ser aplicadas. No entanto, deve ser notado que tais processos devem ser otimizados para não
causarem aumentos significativos no tempo de execução do DV-INBC. Este passo adicional
poderia também ajudar a entender qual a performance real do modelo, utilizando-o somente
sobre dados com pouco ruído.
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