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Abstract 
This work reviews the developments of Boundary Element Method 
formulations to solve several types of plate bending problems, 
including non-linear bending. The formulation is developed and 
solved using the standard BEM procedure, and different integration 
approaches were discussed and tested. Object oriented implementa-
tion issues are commented. Results were obtained for linear and 
non-linear elastic bending as well as buckling of selected cases of 
thick plates, including cases of step variation in thickness under 
large displacements regime. 
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1 INTRODUCTION 

Traced back to early 1980’s, the development of general boundary element approaches for thick 
plate bending analysis took almost fifteen years to be fully established. This was partly due to the 
numerical and mathematical difficulties that have been preventing a more general use of the 
boundary element method (BEM) to complex problems like dynamical and non-linear problems, 
but also intrinsically related to the complex nature of plate/shell equations, arguably some of the 
most challenging among the usual structural theories. The first work on the application of the BEM 
to moderately thick plates was published in 1982 (van der Weeën, 1982). In spite of several other 
published works on the matter during the last decades, there are still few works dealing with non-
linear bending (Vilmann, 1990) (Xiao-Yan et al., 1990)(Marczak, 2004)(Supriyono, 2006), contact 
problems, anisotropic material, and variable thickness problems (di Pisa, 2005), to name a few 
                                                
1 Much of the work presented here was developed or started its development during the 1990s during the collabo-
ration of the author with Prof. Clóvis S. de Barcellos, and has been under continuous improvement since then. 
The present review not only summarizes an important research branch of boundary element methods, but also 
recognizes the pioneering vision of Prof. Barcellos in encouraging a whole generation of then young researchers to 
pursuit challenging problems, and solve them under well posed formulations. 
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shear deformable plate research topics solved by the BEM. Characteristics of the BEM in plate 
bending analysis like the absence of locking and the high accuracy moments and shear forces are 
among the advantages that justify further works on the subject. 
 This work collects the relevant boundary element equations for linear and non-linear bending as 
well as buckling analysis of moderately thick plates. The plate models account for the shear influ-
ence by using the Mindlin and the Reissner first order plate theories. A unified integral formulation 
for the plate models is extended to the differential operators found in von Kármán equations in 
order to consider geometrically non-linear effects. The integral formulation for membrane-bending 
coupling is also developed, leading to an integral equation system that describes large displacement 
bending problems. The linearization of these equations leads to an eigenproblem which can be used 
for the linear elastic stability analysis. Yet another special case of these equations leads to a linear 
system corresponding to the boundary value problem of static bending of plates. The direct bound-
ary element method was used to obtain an approximate solution of the integral equation system. 
The proposed formulation was tested using constant, linear and quadratic elements for non-linear 
benchmark cases, and up to quartic elements for linear tests. 
 Most of the present work started back in 1990 in a research group at Federal University of San-
ta Catarina, Brazil. At the time, improvements on van der Wëeen’s work (1992) on Reissner’s plate 
were done and extended to linear bending of Mindlin’s plate model (de Barcellos & Monken e Sil-
va1, 1989)(de Barcellos & Westphal Jr., 1992) (Westphal Jr. & de Barcellos, 1990), buckling (Mar-
czak, 1995b, 1995c), higher order elements (Marczak, 1995a). Later non-linear bending was also 
explored at Federal University of Rio Grande do Sul ((Marczak, 1996) (Marczak & Creus, 2002). 
Meanwhile, plastic bending of Reissner’s plate were solved at Federal University of Rio de Janeiro 
(Karam & Telles, 1988), while other groups kept developing the method for thin plates (Costa Jr. 
& Brebbia, 1985) (Chaves et al., 1999) 
 The integral formulation presented herein is condensed to account for a general boundary inte-
gral equation framework of elastic analysis of moderately thick plates. The numerical examples 
presents novel figures for a selection of benchmarks, and compare the h convergence rates for 
boundary elements ranging from constant up to quartic degree with several progenitors of now re-
nowned finite elements. Results comparing three singular integration schemes also provide a useful 
set of reference results to assess other numerical formulations. BEM results for thick plate buckling 
and non-linear bending of plates with varying thickness seem to be original in the BEM context as 
well. 

 
2 NAVIER EQUATIONS FOR FOSD PLATE THEORIES  

The displacement field usually employed in the first order shear deformation (FOSD) theories, like 
the Mindlin (1951) plate theory, in conjunction with the 2D elasticity (membrane) equations, is 
based in the following expansions for the displacements 2:  

                                                
2 Index notation is used throughout this work. Greek indexes range from 1 to 2 while the Latin ones range from 1 
to 3. Upper indexes l and n refer to linear and non-linear parts, respectively, while m and f indicate in-plane and 
bending terms, respectively. 
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Where v and u are the membrane and plate displacements, respectively (i.e. v!  and u3  are the in 

plane and out of plane translations, respectively, while u  are the plate rotations). All variables are 
referred to the plates's middle surface. The Reissner's plate model (Reissner, 1944, 1945) also leads 
to eqs.(1) when the mean value of the displacements is taken across the thickness. Substituting 
eqs.(1) in the finite deformations strain tensor and neglecting the thickness extensibility, the strain-
displacement relations are obtained. When these are used in the generalized Hooke's law and inte-
grated through the thickness leads to the constitutive equations of the problem:  
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where 2/ (1 )C Eh= !" , 3 2/12(1 )D Eh= !" , 2 2 212 / h! = " and h  is the plate thickness, while   
2  is the shear correction factor used to weight the values of the transverse shear stress 3!" . The 

equilibrium equations are obtained from the Principle of Virtual Work and written in terms of re-
sultant stress:  
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where N!"  are the in-plane (membrane) forces, Q!  are the shear forces and M!"  are the bending 

moments. The symbols f!  and 3q  stand for the in-plane and transverse loadings, respectively, 

while m!  are the distributed moments. The boundary conditions associated to eqs.(3) are of three 

types, namely, in-plane ( l! ), out of plane ( 3t ) and binaries ( t! ), given by:  
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where u!  is the portion of the boundary where the Dirichlet boundary conditions are imposed, 

whereas t!  is the portion where the Neumann boundary conditions are specified, and n is the 
outward vector normal to the boundary. Aiming an unified numerical implementation for both 
plate models the expression for the moments is rewritten with an additional term (Westphal Jr. et 
al., 1998):  
 

, , , 3
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where 2/ (1 )fm = ! "! #  for the Reissner's plate model and 0fm =  for the Mindlin's model. It is 

convenient to distinguish the linear and the non-linear parts:  
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The Navier equations are found by substituting the above equations for N, M, and Q in eqs.(3), 
and transferring all the non-linear terms to the loading terms, leading to the following general form:  
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Where mL is the differential operator of the linear membrane equilibrium problem, f L  is the line-
ar bending operator, 1 2{ }m Tv v=u  are the in-plane displacements and 1 2 3{ }f Tu u u=u  are the 
plate displacements. The membrane-bending coupling is implicit in the corresponding pseudo-
loadings   ˆmq  and ˆf q , because m nq  needs the derivatives of the transverse displacement in its evalua-

tion, and  f nq  uses the membrane stresses (see definitions for the non-linear parts):   
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The complete expressions of the terms used in Eqs.(8) and (9) are given by:  
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where ( ) ( )1 / 1! = +! "!  and 2 / ( )x x
! !

= " " "# . Equations (8) describe an in-plane elastic prob-

lem coupled to a moderately thick plate elastic bending problem due to the consideration of large 
displacement terms. 

 
3 NUMERICAL IMPLEMENTATION  

By means of the weighted residual method, the following Somigliana identities are obtained for 
eqs.(8), using the steps detailed in Marczak (1998, 2004):  
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for the membrane and the bending problem, respectively. The non-integral terms mv  and fv i  
were included to account for concentrated loads inside the domain (Kamiya & Sawaki, 1985). The 
symbols p and q denote source (collocation) and field points, respectively (lower case indicates 
boundary points and upper case indicates domain points). The corresponding displacement ( m ijU  

and f ijU ) and traction ( m ijT  and f ijT ) fundamental solutions can be found elsewhere (de Barcellos 

& Westphal Jr., 1992)(Westphal et al., 2001). Eqs.(10) and (11) can be particularized for internal 
points by making mC!" !"= #  and f ij ijC = ! . They require the evaluation of the derivatives of the 

transverse displacement which are present in the nonlinear membrane forces of the last integrals of 
both. These terms are partially resposible for the membrane-bending coupling. In that non-linear 
form, eqs.(10-11) were first derived by the author (Marczak, 1998), while its linear form unifying 
both the Mindlin and the Reissner plate models were first published earlier (de Barcellos & West-
phal Jr., 1992). This form uses a factor that specifies which thick plate model is being used, and has 
been adopted by many researches since then. 
 In domain methods like finite elements, it is typical to employ the derivatives of the shape func-
tions, i.e. , ,i i iu u

! !
= " , where i!  are the shape functions. This approach is sometimes criticized in 

BEM articles because it holds a strong dependence of the domain cells shape functions. One should 
note that, in spite of being very simple, this approach may generate poor results when the global 
shape function is not able to represent accurately the displacement fields. Besides, the use of con-
stant domain cells is not possible as all derivatives are null. 
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 The use of the derivative boundary integral equations associated to eqs.(10-11) is far more accu-
rate than to assume an a priori interpolatory form for the displacements derivatives. Hence a more 
rigorous solution can be obtained by differentiation of these integral equations with respect to the 
coordinates ( )x P! . The procedure leads to six additional integral equations for ,v !"  and 3,u !

. As-

suming that the derivatives fields are required only at internal points, the differentiation of the 
boundary integrals in eqs.(10-11) under the integration sign is straightforward as their kernels be-
come all regular. However, the differentiation of the domain integrals must be treated by means of 
the Leibnitz formula (Bui, 1978). The formal derivation of such derivative integral equations pro-
duce the so called convective terms which must be added to the final expressions for , ( )v P

!"  and 

3, ( )u P
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, resulting:  
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where a negative sign was added to all the integrals as the derivatives are taken with respect to   
( )x P!  and (Marczak, 2004) 
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are the aforementioned convective terms. Eqs. (12-13) are truly hypersingular derivative integral 
equations and, as such, one can expect the same convergence properties of any equilibrium equa-
tions written in its strong form. 
Using the traditional collocation process, eqs.(10), (11), (12) and (13) lead to the following set of 
algebraic equations: 
 
 



R.J. Marczak / Revisiting Some Developments of Boundary Elements for Thick Plates in Brazil   955 

Latin American Journal of Solids and Structures 12 (2015) 948-979 
 

• Membrane (2D elasticity) problem:  
 

m m m m m m= +H u G t B f+  (14) 
 
• Bending problem:  

 

3
f f f f f f= + +H u G t Bu f  (15) 

 
• In-plane displacements derivatives:  
 

m m! ! ! !
! + = + +u H u G t B f  (16) 

 
• Transverse displacement derivatives:  
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T
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3.1 Non-linear Bending 

All types of B matrices refer to the membrane-bending coupling, given by the last integral in 
eqs.(10-13). Equations (14-17) must be solved by an iterative procedure. Figure 1 exemplifies a ge-
neric k-th iteration. The convergence was verified against the norm of the curvature error, i.e. 

( ) ( )3, 3, 1k k
u u

! ! "
" , since it showed to be dominant in numerical experiments. 

 The steps 4 and 8 in Fig.1 assume the application of eqs.(16) e (17). Nevertheless, they are very 
difficult to extend to other applications. For instance, the inclusion of material non-linearities or 
thermal effects would imply in new integral terms and possibly new convective terms, resulting in a 
very cumbersome, application specific numerical implementation. 
 Anticipating the use of discontinuous domain cells - whose physical nodes never rest on the 
boundary - eqs.(16-17) will be quasi-singular at most, and a finite difference scheme can be used 
instead of the true derivatives of the displacements. Finally, it is worth to mention that a full up-
date of the displacement derivatives enables convergence only for mild nonlinearities, so that a re-
laxation factor must be employed at the end of each iteration to stabilize the process: 
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1. Estimate ( ) 13 !ku  . 

2. Evaluate nN"#  using eq.(7) and assemble Bm . 
3. Solve the membrane BVP – eq.(14). 
4. Evaluate #u  at internal points using eq.(16). 

5. Evaluate the total force "#N  through eq.(6)  using the results of steps 2 and 4. 

6. Assemble Bf . 
7. Solve the bending BVP – eq.(15). 
8. Solve eq.(17) to obtain a new estimate ( )k3u  for the curvatures. 

9. Return to step 2 if ( ) ( ) $>! !133 kk uu .  
 

Figure 1: General algorithm to solve non-linear problems described by eqs. (14-17). 
 
The resulting systems of equations for each class of problem (membrane, bending and displacement 
derivatives) are summarized below. 

 
3.2 Linear Bending 

The equations here are obviously decoupled, and eq.(15) becomes: 
 

.f f f f f= +H u G t f   
  

Collecting plate displacements and tractions in a vector x results:  
 

f f f=A x f   
 
3.3 Linearized Stabil ity 

In this case, although there is a coupling between the bending and the plane problems, the latter is 
parameterized by an in-plane load factor ! = "N N , so that the only remaining unknown of the 
membrane problem is !. Therefore the system of equations for buckling problems are derived as 
particularization of the equations for non-linear bending. Since there is no other loadings, eqs.(15) 
and (17) are rewritten and regrouped as  
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When combined, the above equations result the eigenproblem: 
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The smallest eigenvalue 1/! gives the critical load, while the eigenvectors !3  can be inserted in 

(15) to retrieve their extensions fx  which represent the displacement and traction pattern for each 
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buckling load. Of note is the fact that in BEM, stability problems does not result in a generalized 
eigenproblem like in FEM, but a classical one encompassing one single matrix. The corresponding 
displacements for internal points are obtained through the bending Somigliana identity particular-
ized for null transverse loading. 

 
3.4 Numerical Integration 

Concerning numerical integration of the singular and quasi-singular kernels found in the present 
formulation, during the early stages of this work in the 1990s, most of the results obtained by the 
present formulation used to rely on the integration of singular kernels by rigid body movement 
(RBM) imposition or Kutt's quadrature (Kutt, 1975), while weakly singular kernels were integrated 
with Telles' cubic transformation (Telles, 1987). Even considering the limitations of both, the re-
sults were very good. However, the RBM method always depend on the quality of the integration 
over the adjunct part of the boundary (although it always guarantees the fulfillment of equilibrium) 
while Kutt's quadrature is very difficult to be used with curved elements. During early 2000, the 
authors greatly improved the quality and the extentensibility of the formulation by deriving the 
asymptotic expansions of the relevant kernels for 2D elasticity and thick plates and implemented 
the direct method (Guiggiani et al. 1992) (Guiggiani, 1998) to evaluate all strongly singular inte-
grals.  The efficiency of this approach in regularizing the singular integrals is demonstrated in Mar-
czak & Creus (2002). 

 
4 IMPLEMENTATION ISSUES  

The continued development of BEM codes has naturally lead to a demand for extensibility and 
reusability of the codes (or part of them) without demanding the costs associated to the develop-
ment of new software or due to unwanted changes in source codes successfully tested and used. The 
present work was developed under an object-oriented architecture used as a general numerical 
framework for the development of computer programs based on boundary integral equation meth-
ods. A number of classes were developed to automatize ordinary tasks like collocation procedures, 
numerical integration, degrees of freedom mapping, among several others. The framework is also 
capable of handling an arbitrary number of subregions. The design was able to successfully unlink 
the so-called domain classes (those containing elements, nodes, loads, etc.) from the analysis classes 
(linear, non-linear, static, transient etc.). 
    A description of the OO philosophy will not be covered herein. It is supposed a basic knowledge 
in OO programming as well as its fundamental aspects (classes and objects, inheritance and poly-
morphism). Classes hierarchy and relationship will be illustrated following Rumbaugh notation. 
    The OO design used herein (mcBEM) is focused primarily on the solution of boundary value 
problems by means of boundary integral equation methods. The mcBEM library started as a re-
search project centered on applying OO programming to develop flexible, modular, and reusable 
software components for solving differential equations by the BEM. The version presented here 
represent an extended version of the previous one  (Marczak 2004b) which has been successfully 
used to solve a variety of BEM problems, and fits better to standard implementations of the meth-
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od, including non-linear applications. The underlying idea in its design is that different applications 
share a common mathematical and numerical structure, and more importantly, storage (model) 
classes do not perform any solution step. The library provides a complete set of auxiliary and model 
classes, as well as a basic set of analysis classes. To create an application, the analyst assembles the 
code by collecting the objects necessary to perform the solution. The programming work is limited 
to implement the new analysis classes deriving them from any of the existing ones, in case they are 
not provided. In the presently proposed OO architecture, a tentative organization was advised for 
the analysis classes (and their descendents) in such a way that the most important analysis tasks 
are logically grouped regarding the differential equation point of view. In this way, the analyst is 
able to assemble a code according to the problem to be solved: linear or nonlinear, static or dynam-
ic, type of resulting system of equations, solution strategy and so forth. A brief description of some 
important auxiliary, model and analysis classes used to generate the results of the present work is 
given below. 
 
Class mcGeometricPartition: The construction of any domain partition (boundary elements or do-
main cells) is based in a composition of geometric and physical partitions (see fig.2). The mcGe-
ometricPartition class implements the topology of the partition. It is composed basically by a list of 
points and the associated shape functions. This approach enables the implementation of less con-
ventional geometric mappings, like cubic splines and Bézier curves. Methods for evaluation of Jaco-
bians, dimension of the normalized space, mapping to or from the normalized space, etc. are pro-
vided. From this superclass other classes used to define lines, areas and volumes descend. For ex-
ample, mc1DGeometricPartition and mc2DGeometricPartition are used to define lines and areas, 
respectively. 
 
Class mcPhysicalPartition: Similar to mcGeometricPartition, but in this case the object has the 
connectivity composed by a list of physical nodes. Examples of its descendents are the 
mc1DPhysicalPartition and mc2DPhysicalPartition classes, used to implement physical interpola-
tions on lines and areas respectively.  
 
Other classes like mcDOF and mcDOFSet encapsulate data for a single degree of freedom and for a 
list of mcDOF objects. The user can assemble a particular set of variables according to the problem 
to be solved. For use with the BEM, this class generally encapsulates properties for primal and dual 
variables, and their derivatives as well. 
 
Class mcFundSolution: This class was designed to encapsulate data and methods necessary to de-
scribe the type of differential equation, which governs a BEM subregion, as well as a corresponding 
set of fundamental solution tensors. Once known what is the differential equation is to be solved, 
the associated mcFundSolution object keeps track of how many and which are the primal and dual 
DOFs, the order of the system of differential equations, and so forth. Examples of these methods 
are: 
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• Matrix Tensor(char* id, mcCoord& q, Vector& n): Evaluates a fundamental tensor (T,U, etc.) 
using the current load point. 
 

• Matrix Limit(int ns, char* id, Vector& N, Vector& T, Matrix& Shape, Matrix& dShape): Eval-
uates the asymptotic expansions of a tensor to be used in singular integrations. 
 

• Matrix Jump(Vector& ang, char* id): Evaluates the free terms of a tensor. The most common 
case are the geometric factors. Other types of jump terms can be considered as well. 
 

• mcArray getSingType(char* id): Returns an array of codes corresponding to the type and severi-
ty of the singularity of each component of a tensor. 
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Figure 2: Illustration of the composition of two-dimensional 
domain partitions using geometric and physical partitions. 

 
The analysis of the problem itself is performed by a set of five superclasses aggregated by the ana-
lyst, depending on the type of the problem and solution desired. Many of the ideas adopted here 
were adapted from a previous work on finite elements (McKeena, 1997). This approach is quite 
flexible as it enables the user to group each of these five major classes according to the specific 
needs of an application. If necessary, one can implement a new class by deriving it from any of the 
superclasses and limiting the coding task to those analysis steps not provided by the library. 
 
Class mcSolutionAlgorithm: This superclass is the responsible for orchestrating the major solution 
steps. Its main task is to coordinate the assembly of the right and left hand sides of the resulting 
system of equations, and to trigger its solution. This is accomplished by invoking the proper meth-
ods for each type of analysis. In most linear problems, these calls are executed just once, but in 
nonlinear or transient problems the operation must be repeated until convergence is achieved. In 
the present work, two main subclasses are derived: mcBEMEigenvalueSolAlgo and mcBEMEquilib-
riumSolAlgo. Two examples of static problems were used to generate the results of the present 
work, namely the main subclasses mcBEMLinear and mcBEMLargeDisp, for elastic linear and ge-
ometrically nonlinear problems, respectively. Three methods compose the basic interface of mcSolu-
tionAlgorithm objects, as described below: 
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• int solveCurrentStep():Controls the assembly of left and right hand sides of the system of equa-
tions for the current time and load steps. In the BEM subclasses, this is generally related to the 
solution of the associated boundary value problem (BVP). Figure 3 shows a typical implementation 
of the solveCurrentStep member for linear problems. Its counterpart for nonlinear cases is illustrat-
ed in fig.4. 
 

• int postProcessCurrentStep():Performs the post-processing of the current step. For example, in 
BEM applications the evaluation of the remaining variables at internal points is carried out using 
this method. 

  
int mcBEMLinear::solveCurrentStep() {

  theAssembler->formBVPTangent();
  theAssembler->formBVPUnbalance();
  theConstraint->applyConstraints();
  theSysOfEqs->solve();
  theAssembler->updateBVPDOF(theSysOfEqs->getX());

  return 0;

}
 

 

Figure 3: Code fragment of the solveCurrentStep member for linear applications. 

 
int mcBEMLargeDisp::solveCurrentStep() {

  do {

    theAssembler->formBVPTangent();
    theAssembler->formBVPUnbalance();
    theConstraint->applyConstraints();
    theSysOfEqs->solve();
    theAssembler->updateBVPDOF(theSysOfEqs->getX());
    theAssembler->evaluateInternalPoints();
    theAssembler->evaluateGradients();

    // Evaluate the error ...

  } while (error > tol);

  return 0;
}

 
 

Figure 4: Code fragment of the solveCurrentStep member for non-linear applications. 
 
Class mcAssembler: An object mcAssembler provides the methods necessary to form the system of 
equations. It is responsible for accessing the boundary elements and domain cells, and for adding 
their contributions to the global system of equations. Its major subclass is the mcBEMIncremen-
talAssembler class, from which others like mcBEMStaticAssembler (for static problems), 
mcBEMTransientAssembler (for transient problems) and mcBEMEigenvalueAssembler (for 
eigenproblems) descend. Figure 12 shows the basic hierarchy. 
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Similar classes can be easily implemented for finite elements. In the current framework, all BEM 
applications are based on the solution of the boundary value problem and possibly a corresponding 
domain value problem. It is assumed that even in nonlinear problems, the nonlinear contributions 
can be included in the right hand side of the system of equations. As a consequence, the relevant 
methods are those responsible for the assembly of the final solution system of equations. Some of 
the relevant methods currently implemented are described below. 
 
• int formBVPTangent():Responsible for the assembly of the left hand side of the BVP system of 
equations. In the BEM, this is generally accomplished by imposing the boundary conditions and 
grouping the contributions of the matrices H and G during the collocation process. It is worth to 
note that, unlike most FEM formulations, part of the right hand side is evaluated during this 
phase. 
 

• int formBVPUnbalance():Here the assembly of the right hand side of the system is finished by 
adding the domain contributions, such as domain loadings and nonlinear terms. This method is not 
used in pure boundary value problems. 
 
As an example, the basic code of the method formBVPTangent is listed in figs.5. It is worth to 
point out that, besides their simplicity, these members remain the same for linear and nonlinear 
applications, provided the nonlinear terms are handled by a member formBVPUnbalance. 

 

 
 

Figure 5: Code fragment of the formBVPTangent member for linear static applications. 

 
Class mcAnalysis: This is the analysis superclass of the present OO design. A mcAnalysis object is 
actually an aggregation of the analysis objects described above. In spite of the fact that it does not 
perform any explicit calculation, the mcAnalysis class defines which type of problem will be solved 

1:  int mcBEMStaticAssembler::formBVPTangent() {

2:   theSOE->reset(theConstraint->getNumberOfBVPDOFs());
3:   while (SR) {                // Loop over the subregions:
4:     mcBElementITR BE (theModel->getBElementsSharing(*SR));
5:     mcNodeITR ND (theModel->getBVPCollocationPointsFor(*SR));
6:     while (BE) {              // Loop over the elements:
7:       while (ND) {            // Loop over the collocation nodes:
8:         SR->getFundSolution().setLoadPoint(coor);
9:         sing_node = theModel->detectSingularNode(*SR,*BE,*ND);
10:        BE->formMatrix(H,"T",sing_node);
11:        BE->formMatrix(G,"U",sing_node);
12:        theConstraint->applyBC(*BE, *ND, H, G);
13:        ND ++;
14:      }
15:      BE ++;
16:    }
17:    SR ++;
18:  }

19:  return 0;

20: }
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and how. It is also responsible for checking the validity of the objects in the aggregation so that it 
makes sense. A single virtual method called analyze() triggers the analysis execution. The computa-
tional model is constantly checked to verify if another analysis is necessary. Figure 6 shows some 
examples of analysis subclasses derived in the present work. 
 

 
mcAnalysis

mcBEMStaticAnalysis mcBEMTransientAnalysis mcBEMEigenvalueAnalysis  
 

Figure 6: The two major hierarchy levels of the mcAnalysis class. 

 
The classes introduced in this work can be used in an stand-alone fashion as tools incorporated to 
other computer codes. But the advantages of the suggested approach become more evident when all 
the major classes are connected to generate a given application. Figure 7 depicts a diagram of a 
complete application, showing the relationship between the major classes. Although other variations 
are possible, this basic framework has been proving to be sufficiently general for most cases. 
 One of the main goals of the OO design proposed in this work is to enable the analyst to write a 
few programming lines to built a basic BEM code, and yet be able to customize the code for other 
applications with little additional programming effort. Thus, even more complex analysis would be 
straightforward reusing the relevant objects. For example, if the analyst were interested in a linear 
elastic analysis, then the code fragment shown in fig.19 would suffice. Note that the solution of, say, 
a linear static plate bending or a steady state heat conduction problem would use the same code 
(the inherent differences are hidden in the subregion objects). But if the interest is to solve the 
same problem using a dynamic transient analysis, it is necessary to change only lines 4, 5 and 10 in 
the original code of fig.19 according to fig.20. 
        A comparison of the codes shown in figs.8 and 9 helps to illustrate the uncoupling of the 
analysis classes from the model classes. This uncoupling was one of the goals aimed by the present 
OO design from the outset. Once the analysis subclasses are adequately designed, this uncoupling is 
always achieved since the type of analysis can be changed without modifying the model classes. In 
essence, a new analysis will possibly differ from the previous one by needing another solution algo-
rithm, a different matrix assembly sequence, another system of equations type/solver, etc. This is 
evident in figs.8-9 because the lines 6-9 remained unchanged after switching from a linear elastic 
analysis to a transient dynamic analysis. 
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Figure 7: Minimal class diagram of a complete application code. 
 
 
 

1. mcDomain  theDomain;

2. theDomain.readInputFile("2Dproblem.dat");
3. theDomain.setCurrentLoadCase(theDomain.getDefaultLoadCase());

4. mcBEMLinear            theSolAlgo;
5. mcBEMStaticAssembler   theAssembler;
6. mcBEMModelHandler      theModel;
7. mcBEMConstraintHandler theConstraint;
8. mcDenseNonSymLS        theSolver;
9. mcDenseNonSymLSOE      theSysOfEqs(theSolver);
10. mcBEMStaticAnalysis    theAnalysis(theDomain,theSolAlgo,
                                       theAssembler,theModel,
                                       theConstraint,theSysOfEqs);

11. theAnalysis.analyse();
 

 

Figure 8: Code for a BEM linear elastic analysis. 
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1. mcDomain  theDomain;

2. theDomain.readInputFile("2Dproblem.dat");
3. theDomain.setCurrentLoadCase(theDomain.getDefaultLoadCase());

4. mcBEMTransientSolAlgo  theSolAlgo;
5. mcBEMNewmark           theAssembler;
6. mcBEMModelHandler      theModel;
7. mcBEMConstraintHandler theConstraint;
8. mcDenseNonSymLS        theSolver;
9. mcDenseNonSymLSOE      theSysOfEqs(theSolver);
10. mcBEMTransientAnalysis theAnalysis(theDomain,theSolAlgo,
                                       theAssembler,theModel,
                                       theConstraint,theSysOfEqs);

11. theAnalysis.analyse();
 

 

Figure 9: Code for a BEM transient dynamic analysis. 

 
Finally, another interesting feature of the present class library is the ability to integrate any alge-
braic type of integrand and handle singular integrals. The former can be accomplished by using 
fully template-based definitions. This leads to the concept of numerical integration of objects, which 
would allow a member function of an arbitrary object to be integrated (provided it overloads the 
basic algebraic operations) as a Riemann sum:  
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where Result is of the same type of Object. Since the aforementioned Telles' transformation was 
chosen here as a primary method to integrate weakly singular integrals, while the direct method 
was used for the strongly singular ones, only Gaussian stations and weights need to be used.  
 A proposed mcQuadrature class was developed to assist numerical integration in BEM (Mar-
czak, 2006). Being the class fully template based, the user do not need to take care of the algebraic 
type of the integrand. In addition, the members invoked to perform the numerical integration re-
main the same regardless the regularity of the kernel. The user specifies the dimension of the inte-
gration domain, the order of the quadrature and the rule to be used. The current integrand is de-
fined by pointers to functions, enabling the integration of any kernel provided it is defined in a 
standalone subroutine or in an object member function. Since the mcQuadrature object is informed 
of the subroutine by pointers, there is no need to recompile the code when the integrand is changed. 
In addition, a single object can be reused as many times as necessary. These features fit particularly 
well to BEM applications, as shown in the generic code of fig.10. This piece of code is used to gen-
erate the global system of equations and any domain loads were disregarded for simplicity's sake. 
Following a classical BEM implementation two loops are used, one run through the boundary collo-
cation points, and another for the boundary elements. Inside these loops, a member called formMa-
trix (lines 8-9) integrates a general kernel of the form ( ) ( )Jqqp NA , , where  A is a fundamental 
solution tensor. The second argument in the formMatrix call indicates which one to use (”T” for the 
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traction fundamental solution T etc.). The member applyBC invoked in line 10 enforces the bound-
ary conditions to generate the final system of equations. 
 Unfortunately, not all fundamental solution tensors behave with the same degree of singularity 
for all its components. For instance, in the traction fundamental solution of the Mindlin plate mod-
el all the components are either regular or weakly singular except for  12T  and 21T  which are 
strongly singular. In such cases, a single call to the NIntegrate member function in order to inte-
grate the whole (matrix) kernel at once would not work properly. 

 
1:   be = BEMModel->getBElements();
2:   nd = BEMModel->getBVPCollocationPoints();
3:   while (be) {              // Loop over the elements:
4:     while (nd) {            // Loop over the collocation nodes:
5:       fundamental_solution = be.current->getFundSol();
6:       fundamental_solution.setLoadPoint(nd.coor());
7:       sing_node = BEMModel->detectSingularNode(*be,*nd);
8:       be->formMatrix(H,"T",sing_node);
9:       be->formMatrix(G,"U",sing_node);
10:      theConstraint->applyBC(*be, *nd, H, G);
11:      nd ++;
12:    }
13:    be ++;
14:  }

 
 

Figure 10: Code excerpt showing the integration and assembly of typical BEM matrices. 

 
In such cases, the formMatrix member of fig.10 has to be implemented in a more elaborate way. 
Figure 7 illustrates an excerpt of an actual code, where each entry of ( )qp,A  is verified against its 
singularity type, and then a suitable type of quadrature is chosen for each component. Object 
member functions may have limited visibility or be vulnerable to changes. Since it is interesting to 
require little commonality between the present class design and the code under development, func-
tion wrappers can be used to fit the proposed class into independently developed parts. When using 
a function wrapper, any changes in the interface of the user's class is reflected only in the definition 
of its corresponding function wrapper. Other parts of the program are not affected by the change. 
This is the approach suggested here, particularly for BEM codes like the one shown in fig. 11. Lines 
2 and 3 of the code are used to wrap an independent (boundary element class) member function 
which evaluates BEM matrices. 
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 1: int mcBElement::formMatrix(Matrix& A, char* id, int const sing) {

 2: typedef Matrix (mcBElement::*mcBEInt3)(char*, double, double, double);
 3: mcBEInt3 integrand;

 4:  mcBESubregion*  SR = &this->getOwner();
 5:  mcFundSolution* FS = &SR->getFundSolution();

          Initialization:
 6:  mcArray typ   = this->getOwner().getFundSolution().getSingType(id);
 7:  integrand = &(mcBElement::elemMatrix);
 8:  mcQuadrature<Matrix> Integrator(ncoor, nip);

          Set the initial number of integration points:
 9:  ngp(i) = SR->estimateNIP(i);
10:  Integrator.setOrder(ngp(REGULAR),ngp(REGULAR),ngp(REGULAR));

11:  switch (sing) {

               The collocation point is outside the current boundary element:
12:    case 0:
13:       A = Integrator.BEMIntegrate(*this,integrand, id);
14:       break;

              The collocation point belongs to the current boundary element:
15:    default: {
16:       for (int i=1; i<= nrows; i++)
17:         for (int k=1; k<= nrows; k++) {

18:           Integrator.setOrder(ngp(REGULAR),ngp(REGULAR),ngp(REGULAR));

                              Check the type of singularity for each entry of the integrand:
19:           switch (typ(i,k)) {

                                  Regular entries – Use the standart Gauss-Legendre quadrature:
20:             default : {
21:               Integrator.setType(REGULAR,REGULAR,REGULAR);
22:             } break;

                                  Weakly singular entries – Use the Telles’ transformation [22]:
23:             case WEAK: {
24:               Integrator.setOrder(ngp(WEAK),ngp(WEAK),ngp(WEAK));
25:               Integrator.setType(WEAK,WEAK,WEAK);
26:             } break;

                                    Strongly singular entries – Use the direct method [11]:
27:              case STRONG: {
28:                Integrator.setOrder(ngp(STRONG),ngp(STRONG),ngp(STRONG));
29:                A(i,j) += F1(i,j) * CorrTerm1 + F2(i,j) * CorrTerm2;
30:              } break;

31:           }
32:           A(i,j) += Integrator.BEMIntegrate(*this,integrand,id)(i,j);
33:         }
34:    }
35:    break;
36:  }

          Add the Cij terms for the singular elements:
37:  if (sing) this->addJumpTerm(A, id, sing, angle);

38:  return 0;
39: }

 
 

Figure 11: Code showing a more elaborate integration procedure to handle different singularities in BEM matrices. 
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5 RESULTS 

The numerical examples presented in this section represent a selection of benchmarks typically used 
to show the quality of the results in several plate formulations. Results are presented for three 
groups of problems: linear bending, buckling, and non-linear bending. They not only allow a verifi-
cation of the accuracy of the BEM scheme described in section 3, but also compare the h conver-
gence rates for boundary elements ranging from constant up to quartic degree with several progeni-
tors of now renowned finite elements. To the authors’ knowledge, this has never been published for 
plate problems in the open literature. Another important class of results shown herein compares all 
three singular integration schemes developed, and they provide a useful set of reference results for 
comparison with other numerical formulations, therefore extensive use of tabular results was also 
made. BEM results for thick plate buckling is another kind of result seldom presented in the litera-
ture. The results for non-linear bending of plates with varying thickness seem to be original in the 
BEM context as well. 
 Unless specified otherwise, the results presented herein employ the Mindlin's model with the 
following non-dimensional data: Young modulus 63.0 10 ,E = !   Poisson coefficient 0.30! = , shear 
correction factor 2 2 /12! = " , lateral loading (when applicable) 3 1000q = , lateral dimension of 
square plates or radius of circular plates 1.0a = . It is well known that the FOSD plate theories 
enable the imposition of two types of boundary conditions: hard support (which prescribes the 
transverse displacement, the normal rotation and the tangential moment) and soft support (which 
prescribes the transverse displacement, and both the normal and tangential moments). Each set of 
boundary conditions leads to different results, and this difference becomes more significant as the 
plate thickness is increased (Arnold & Falk, 1989). The soft and the hard boundary conditions are 
herein indicated by SS1 and SS2, respectively (if not indicated, SS1 b.c. is assumed). 

 
5.1 Results for Linear Bending Problems 

This section show numerical results for thin and thick square plates. Square thin plate cases have 
the results normalized with the Navier solution (Timoshenko & Woinowski-Krieger, 1970): 

max Navier/w w w=  where maxw  is the centre deflection of the plate. Tests were performed using 2 
boundary elements per side of square plates and per quadrant of circular plates in order to assess 
the p-convergence rate of the constant up to quartic elements, seldom found in the literature. These 
plots are shown in fig.12, all obtained with the RBM technique to integrate the singular kernels. 
Clamped plates result in a system of equations where the contributions of the H matrix are can-
celled by the null displacement boundary conditions, while supported plates have the G matrix 
made null by the zero traction boundary conditions. Because the weakly singular integrals in the G 
matrix are more easily integrated than the strongly singular ones present in the H matrix, it is 
common to find slightly better results for clamped plates (for the same mesh). 
 For thick plate applications, the performance of the present formulation was analyzed by vary-
ing the ratio h/a of square plates from 0.05 to 0.25, the center deflection being used as the compari-
son parameter again. Despite of the large number of proposed finite elements for the Mindlin plate 
model, the number of analytical or semi-analytical counterpart solutions available is surprisingly 
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small when compared to the Reissner model. Furthermore, some confusion about the inherent dif-
ferences of these plate models still persist among many researchers, making the selection of reliable 
results for normalization even more difficult (Wang et al., 2001). In the present case, the values of 
central displacement are normalized in the following form: 4 3

max /w w qa Eh= , where q is the dis-
tributed load. 
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Figure 12: p-convergence rates for plates under uniform loading. (a) square plate. (b) circular plate. 
 
Figure 13 compares linear, quadratic, cubic and quartic elements of the present implementation 
with several precursor finite elements now found in commercial software for the maximum normal-
ized displacement of a clampled thin square plate obatined with RBM. It is clear why the addtional 
mathematical complexity of integral equation methods pays off when it comes to accuracy of the 
results. Similar curves were obtained for boundary forces and moments. 
 Figure 14 compares the influence of the three integration methods used on the central displace-
ment of a thin supported square plate under lateral loading. A single quadrilateral domain cell was 
used to integrate the loading. Thin plate ( / 0.015h a = ) was considered. The results show that 
Kutt's quadrature delivers results with the same level of accuracy than the RBM. They also indi-
cate that there is no significant accuracy improvement for any of the approaches when the constant 
element is used. On the other hand, the convergence of the direct method seems faster than Kutt's 
quadrature for linear elements, as shown in Fig. 14b. Figure 14c shows the convergence for quadrat-
ic elements, both the rigid body technique and the direct method providing similar accuracy level. 
However, the accuracy of the linear and quadratic element can be further improved by optimizing 
the offset of the end nodes, since these are discontinuous elements. 
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Figure 13: Comparison of convergence curves for several numerical formulations. 

Clamped square plate under uniform loading. Solid symbols refer to the present results. 

 
Tables 1 and 2 present results of normalized central displacement, obtained earlier by the authors 
using RBM and Kutt's quadrature. They remain excellent reference results. Results in Table 1 re-
fers to clamped square plate under uniform loading while Table 2 refers to SS1-supported square 
plate under uniform loading. Present results are compared to the works of (Yuan & Miller,  1988) 
and (Deshmukh & Archer, 1973), reportedly still some of the best numerical benchmarks for thick 
plates. Similar results were obtained for concentrated loading, but the distributed loading repre-
sents a more harsh test to the method, as it has to be integrated using domain cells or converted to 
the boundary, whenever possible. 
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Figure 14: Convergence curves for thin square plates under uniform loading using RBM technique, Kutt’s 

quadrature or the direct method to integrate singular kernels. (a) Constant BE. (b) Linear BE. (c) Quadratic BE. 
 
The present results for SS2-supported square plates under uniform distributed load were normalized 
against the results of Lee et al. (2002). Figure 15 presents the convergence curves for / 0.1h a =
and 0.2 . Both cases show very good agreement, producing errors smaller than 1% regardless the 
mesh used. Further results are compared with other solutions in Table 3, where the values of cen-
tral displacement are normalized as above. The other results considered in Tab. 3 include series 
solutions for the Mindlin (Salerno & Goldberg, 1960) (Lee et al., 2002) and for the Reissner (Wang 
et al., 2001) plate models, finite differences solution for the Reissner model (Craig, 1987) and a fi-
nite element solution using a higher order plate model (Kant & Hinton, 1980). Two BEM solutions 
are also included, both for the Reissner’s model (Katsikadelis & Yotis, 1993) (Long et al., 1988).  
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 h/a 
 0.05 0.10 0.15 0.20 0.25 
Yuan & Miller[yuan88] 0.01417 0.01618 0.01939 0.02371 0.02913 
Deshmukh & Archer[des73] 0.01451 0.01643 - 0.02366 - 

Present – Linear (6"6 mesh) 0.01453 0.01648 0.01957 0.02378 0.02009 

Present – Quadratic (3"3 mesh) 0.01451 0.01645 0.01953 0.02373 0.02904 
 

Table 1: Numerical results for clamped square plates under uniform loading. 
 
 

 h/a 
 0.05 0.10 0.15 0.20   0.25 
Yuan & Miller[yuan88] 0.04650 0.05019 0.05480 0.06018 0.06683 
Deshmukh & Archer[des73] 0.04677 0.05009 - 0.05900 - 
Present – Linear (6"6 mesh) 0.04535 0.04882 0.05367 0.05954 0.06631 
Present – Quadratic (3"3 mesh) 0.04578 0.04942 0.05432 0.06014 0.06684 

 

Table 2: Numerical results for SS-1 supported square plates under uniform loading. 
 

 
 h/a 
 0.05 0.10 0.15 0.20 
Salerno & Goldberg [1960] (Mindlin) 0.04486 0.04632 0.04676 0.05360 
Wang et al. [wang01] (Reissner) 0.04488 0.04630 0.04870 0.05220 
Lee et al. [lee01] (Mindlin) 0.04488 0.04663 0.04958 0.05355 
Kant & Hinton [kant80] (Higher order model) -- 0.04663 -- 0.05351 
Craig [craig87] (Reissner) 0.04492 0.04683 0.05183 0.05353 
Katsikadelis & Yotis [kats93] (Reissner) 0.04487 0.04634 -- 0.05221 
Long et al.[long88] (Reissner) 0.04458 0.04612 -- 0.05220 

Present – Linear (6"6 mesh) 0.04493 0.04668 0.04959 0.05366 

Present – Quadratic (3"3 mesh) 0.04497 0.04672 0.04961 0.05368 
 

Table 3: Numerical results for SS2-supported square plates under uniform loading. 

 
The results presented in Tables 1-3 were obtained using RBM technique to integrate the singular 
kernels. Similar results were obtained for very thick plates using the direct method, presented in 
Fig.15, and normalized against the analytical results of Lee et al. (2002) for the Reissner’s plate 
model. Therefore we used a shear correction factor 2 5 / 6! = , due to the lack of a modern analytical 
solution for thick Mindlin plates, and a 6"6 mesh.  
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 Figure 16 shows the shear force along the side of clamped square plate under uniform load, using 
quadratic elements. It is interesting to note how well the effect is captured in spite of the coarse 
mesh used. 
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Figure 15. Convergence curves for thick square plates under uniform loading using 

the direct method to integrate singular kernels. (a) h/a = 0.15. (b) h/a = 0.20. 
 
 

5.2 Results for Elastic Stabil ity Problems 

The performance of the proposed formulation for buckling of supported square plates are presented 
in Tables 4 (axial compression) and 5 (biaxial compression) and compared with some other refer-
ences. These results are presented in the form of buckling coefficient 2

cr /N a D! = " , where Ncr is 
the critical compression load. The mesh chosen is 6"6 constant boundary elements and domain 
cells. In spite of using only constant elements the results are good. 
 The typical quality of the eigenvectors obtained is illustrated in Figure 17, which shows a ren-
derized view of the first buckling mode of a square plate under pure shear. 
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Figure 16. Shear force along the side of a clamped, uniformly loaded square plate. 

The continuous line refers do the analytical solution and the symbols to the present results. 
 
 

 h/a 
 0.001 0.01 0.05 0.1 

3D elasticity (Dawe & Roufaeil, 1982) 4.000 - 3.911 3.741 

Rayleigh-Ritz (Dawe & Roufaeil, 1982) 4.000 - 3.929 3.731 

FE - 9LE (Cheung et al., 1986) - 8"8 mesh - 4.100 - 3.758 

FE - 36LE (Cheung et al., 1986) - 2"2 mesh - 3.998 - 3.732 

BE – Present work (6"6 mesh) 3.9671 3.9646 3.8977 3.7694 
 

Table 4: Numerical results for critical load factor of supported square plates 
under axial compression. Constant boundary elements and domain cells. 

 
 

 h/a 
 0.01 0.1 
FE - 8LE (Cheung et al., 1986) - 8"8 mesh 2.030 1.880 
FE - 17LE (Cheung et al., 1986) - 3"3 mesh 2.000 1.870 
BE – Present work (6"6 mesh) 1.9841 1.8818 

 

Table 5: Numerical results for critical load factor of supported square plates 
under biaxial compression. Constant boundary elements and domain cells. 
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Figure 17. First buckling mode of a clamped square plate under pure shear. Result generated 
using 6"6 constant domain cells inside the domain, and 26 constant boundary elements. 

 

5.3 Results for Non-linear Bending Problems 

In the results presented in this section, the load and the maximum displacement are normalized 
with the plate thickness: 4 4/R qa Eh=  and max /r u h= , where a is the lateral dimension of the 
plate. Most results refer to linear boundary elements (BE1), whereas both constant (DC0) and line-
ar (DC1) domain cells were used to discretize the domain. 
Table 6 compares the present results with some other numerical solutions. Worth to note is the 
results of Xiao-Yan et al. (1990), a rare BEM large displacement solution for thick plates. The re-
sults of the proposed formulation are presented bor both types of supports for completeness sake. 
Table 7 analyzes the same case with two opposite sides supported and the two others clamped. A 
load " displacement curve obtained for supported square plates is shown in fig.18. 

 
 R 

 0.9158 4.579 6.868 9.158 

Rayleigh-Ritz (Azizian & Dawe, 1985)  0.04053 0.1929 0.2750 0.3467 

FSM (Azizian & Dawe, 1985) 0.04205 0.1950 0.2776 0.3494 

BEM (Xiao-Yan et al., 1990) 0.04090 0.1942 0.2767 0.3489 

Present work (SS2) BE1/DC0 0.04200 0.1969 0.2775 0.3464 

Present work (SS2) BE1/DC1 0.04199 0.1958 0.2753 0.3425 

Present work (SS1) BE1/DC0 0.04428 0.2056 0.2878 0.3573 

Present work (SS1) BE1/DC1 0.04426 0.2041 0.2849 0.3534 
 

Table 6: Numerical results for non-linear bending of SS1 square plates under uniform load. 
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 R 
 0.9158 4.579 6.868 9.158 

Rayleigh-Ritz (Azizian & Dawe, 1985) 0.01915 0.09513 0.1416 0.1867 
FSM (Xiao-Yan et al., 1990) 0.01991 0.09883 0.1469 0.1936 
BEM [xiao90] 0.01991 0.09840 0.1455 0.1904 
Present work BE1/DC0 0.02020 0.1002 0.1488 0.1957 
Present work BE1/DC1 0.02020 0.1001 0.1485 0.1952 

 

Table 7: Numerical results for non-linear bending of SS2 square plates under uniform load. 
 
Finally, in order to show results for a subregion case, the plate with step variation in thickness de-
picted in Fig.18 was analyzed with 16 quadratic elements and one single domain cell for each subre-
gion. The results are compared against a quadratic FE solution (mesh 20"20 elements) obtained 
with a commercial software for the rotations in Fig.19. The agreement is good even considering the 
use of constant cells. 

 
 )(constante020,=h

020,=h 0150,=h
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Figure 18. Two subregion non-linear plate bending example under uniform load. 

 

 
 

x!

0.00 0.50 1.00 1.50 2.00

Position along the longer axis

-50.00

-40.00

-30.00

-20.00

-10.00

0.00

10.00

20.00

30.00

40.00

50.00
Numeric solution - 20 x 20 FE
Present work - linear BE / constant DC

h1

h2

h1

h2

 
 

Figure 19. Non-linear results for non-null rotation along the central line for the case illustrated in Fig.18. 
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6 CONCLUSIONS 

The present work presented a compilation of the relevant integral equations for linear and geomet-
rically non-linear bending, as well as elastic stability of moderately thick plates. The hypersingular 
derivative integral equations for the displacement field were presented, including the corresponding 
convective terms. The equations were solved using the standard BEM procedure, and different inte-
gration approaches were discussed and tested. Object oriented implementation issues are comment-
ed aiming a simple, extensible, and reusable research platform architecture. Results were obtained 
for linear and non-linear elastic bending of selected cases of thick plates under transverse loading. 
From the results presented it is clear that the application of the BEM for linear bending problems 
leads to exceptionally good results, even for very coarse meshes. The results shown herein cast an 
interesting set of benchmarks for comparison with similar methods. 
 This works summarizes more than 15 years of development and application of the boundary 
element method for the analysis of thick plates. A work which started shy in early 1990s and result-
ed in a solid research line for several years. This work later derived to other branches of computa-
tional mechanics like structural optimization and Green Functions, but most of this achievements 
would not be reached without the vision and bold scientific talent of Prof. Clóvis S. de Barcellos. 
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