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Abstract

The modifications induced in the calculation of the cross section of the diffractive processγ γ → J/� J/�, when the gluon
propagator is changed are analyzed. Instead of the usual perturbative gluon propagator, alternative forms obtained using non-
perturbative methods like Dyson–Schwinger equations are used to consider in a more consistent way the contributions of the
infrared region. The result shows a reduction in the differential cross-section for low momentum transfer once compared with
the perturbative result, to be confirmed with future experimental results from TESLA.
 2001 Elsevier Science B.V.
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The description of the diffractive processes in high
energy physics is still an open question. In the high
energy limit, those processes are usually described
by a pomeron exchange [1], whose nature remains
one of the most intriguing phenomena in Quantum
Chromodynamics (QCD). Its properties were first de-
scribed by the Regge theory [2] and used to explain
the features of total hadronic cross-sections and dif-
ferential cross-sections at small transverse momenta
(the soft pomeron), whose properties relied on the
non-perturbative sector of the QCD. In high energy
QCD, the pomeron corresponds to the sum of gluonic
ladder diagrams, with reggeized gluons in the verti-
cal lines, described by the Balitskiı̌–Fadin–Kuraev–
Lipatov (BFKL) equation (the hard pomeron) [3]. Al-
though the BFKL equation is infrared finite, there are
difficulties to control contributions from the infrared
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region, reflecting in the fact that the BFKL approach
does not give the same results as the Regge theory for
the soft pomeron. Since perturbative QCD can only be
applied when all momenta are sufficiently large [1], in
a region of low momentum transfer we can expect an
overlap of the effects from the soft and hard sectors.

In an experimental procedure to test the hard po-
meron, the observables should have some particular
properties: the virtuality of the gluons in the ladders
must be sufficiently large to enable the use of a
perturbative expansion and the hard scale is provided
by the coupling of the ladder to the incoming particles
or by the momentum of the gluons in the ladder.

Due to the requirements above, measurements in
hadron–hadron and lepton–hadron colliders are lim-
ited. Kwiecínski and Motyka [4] argued that these dif-
ficulties can be avoided in the case of the production
of massive vector mesons from two photon reactions
at TESLA [5]. The exclusive processγ γ → J/� J/�
(see Fig. 1) can test the exchange of the pomeron
in arbitrary momentum transfer since the hard scale
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Fig. 1. The processγ γ → J/� J/� with the exchange of the QCD
pomeron.

is given by the (large) mass of the quark charm, for
both sides of the diagram, instead of the gluon mo-
menta in the ladder. However, in the infrared region
(low momentum transfer) where the soft pomeron is
more important, we expect non-perturbative effects
will play a crucial role in the description of these
processes. To estimate these soft effects, in this let-
ter we propose as a first step the replacement of the
usual perturbative gluon propagator by distinct ones
that include non-perturbative effects, considering the
soft pomeron as the exchange of two non-perturbative
gluons. This model for the pomeron was used suc-
cessfully to describe another soft processes as the
elastic proton–proton scattering using the gluon prop-
agator from Dyson–Schwinger equations (DSE) [6]
or from lattice field theory (LFT) [7] and the elastic
electro-production of vector mesons [8]. The modified
propagators can be obtained through different ways:
DSE [9] and numerical simulations in lattice field the-
ory [10], for example.

The Letter is organized as follows. First, we present
the model to calculate theγ γ → J/� J/� process us-
ing the approach of the Ref. [4]. Next, the main fea-
tures of the employed non-perturbative gluon propa-
gators are reviewed and then, we perform the calcu-
lation of the differential cross section,dσ/dt in the
two gluon approximation with a modified gluon prop-

agator, and finally present the conclusions and discuss
some possible future developments.

The differential cross section for theγ γ → J/�
J/� obtained in the BFKL approach, is given by [4]

(1)
dσ

dt
= 1

16π

∣∣A(s, t)
∣∣2,

where

�mA(s, t)

(2)=
∫

d2k
π

Φ0(k
2,Q2)Φ(x,k,Q)

[(k + Q/2)2 + s0][(k − Q/2)2 + s0]
and k ± Q/2 is the transverse momentum of the
exchanged gluons;s = W2 is the total center of mass
energy of theγ γ system;t = −Q2 is the square of the
transverse part of the momentum transfer (see Fig. 1);
x = m2

J/�/W
2, with mJ/� the J/� mass ands0 is a

parameter related to the employed gluon propagator
(we will discuss about this point below).

The impact factor for the transitionγ J/� is
Φ0(k

2,Q2), which is induced by two gluons (see
Fig. 2) and in a non-relativistic approximation [12] is

(3)

Φ0
(
k2,Q2) = C

2

√
αem αs

(
µ2)[ 1

q̄2 − 1

m2
J/�/4+ k2

]
.

In the above formula,

(4)C = qc
8

3
πmJ/�fJ/�,

where qC = 2/3 is the charm quark charge;fJ/�
is a parameter that characterizes the light-cone wave
function of the charmonium and considered here with
value 0.38 GeV [4];αem is the electromagnetic cou-
pling constant;αS(µ2) = 12π/(25 ln(µ2/Λ2)) is the
strong running coupling constant in the one loop ap-
proximation (the QCD scale isΛ = 0.23 GeV),q̄2 =
(m2

J/� +Q2)/4 andµ2 = k2 +Q2/4+ (mJ/�/2)2.

The functionΦ(x,k,Q2) obeys the BFKL equation
in the leading ln(1/x) approximation [3]

Φ(x,k,Q)=Φ0
(
k2,Q2)

+ 3α(µ2)

2π2

1∫
x

dx ′

x ′

∫
d2k′ 1

k2
0 + s0

(5)

× [
R(k1,k2,Q)Φ(x ′,k′,Q)

− V (k1,k2,Q)Φ(x ′,k,Q)
]
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Fig. 2. The contributing Feynman diagrams for the form factorΦ0.

wherek0 = k′ − k, k1,2 = Q/2 ± k, k′
1,2 = Q/2 ± k′

and

(6)

R(k1,k2,Q)= k2
1

k′2
1 + s0

+ k2
2

k′2
2 + s0

−Q2 k2
0 + s0

(k′2
1 + s0)(k′2

2 + s0)
,

(7)V (k1,k2,Q)= k2
1

k′2
1 + k2

0 + 2s0
+ k2

2

k′2
2 + k2

0 + 2s0
.

The following gluon propagator is used in Ref. [4]:

(8)D(k) = 1

k2 + s0
,

based on the original paper of Balitskiı̌ and Lipa-
tov [3], where the parameters0 (which plays the role
of a gluon mass) is generated using the Higgs mech-
anism. In [4], the parameters0 is used to measure
the magnitude of the infrared contributions to the
cross sections. To scan these contributions, we will
consider the following procedure: instead of the full
BFKL pomeron we take the two gluon exchange and
replace the perturbative gluon propagator by a non-
perturbative one which includes the infrared contribu-
tions.

The choice of the non-perturbative gluon propaga-
tors can be justified by the fact that they include in-

frared effects and then, they can be used in a more nat-
ural way to describe processes in which the infrared
contributions play an important role.

Before the use of the non-perturbative propagators,
we will resume the main features of the methods to
calculate the gluon propagator and discuss its distinct
forms.

The research of the infrared safe form of the gluon
propagator has a long history [13]. The main trouble
with the usual perturbative propagator is its divergence
in the infrared region, more specifically, its pole
at k2 = 0. Then, obtain an infrared safe functional
form for the gluon propagator several methods, both
numerical and analytical are used: Dyson–Schwinger
equations, lattice field theory and renormalization
group methods. These frameworks give a number
of solutions with different behaviors in the infrared
and ultraviolet regions, which depend on the gauge
considered and the approximations selected, and that
we will discuss separately in the following.

The Dyson–Schwinger equations (DSE) [9] are an
infinite tower of coupled integral equations among
the Green functions of a field theory. For example,
in QCD, the DSE for the quark self-energy involves
the DSE for the quark and gluon propagators and
the DSE for the quark vertex, and so on. In order to
solve this system of equations, we must truncate it
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at some number of external legs and make an ansatz
for the omitted part of the equations (normally using
a Slavnov–Taylor identity). For example, in the case
of DSE for the gluon propagator, we can restrict the
number of external lines in the Green functions to
three lines (no four gluon vertices), refuse the ghost
propagator contributions and use the usual quark-
gluon and three gluon vertices, resulting in a system
with simplified equations for the gluon and the quark
propagators. The solutions found in the literature (for
the gluonic case) are very sensitive to the choice
of the ansatz, to the choice of the gauge (Landau,
Feynman, axial) and to the method used to solve the
reduced set of equations, giving different behaviors in
the infrared region: infinite, finite (zero and non-zero).
Some examples of the gluon propagator obtained with
this technique are summarized below.

• Cornwall [14] used a gauge independent resumma-
tion of Feynman diagrams (known as pinch tech-
nique) to obtain a special set of DSEs, whose so-
lution presents an effective gluon mass. In [14] its
value was determined asmeff

g = 500± 200 MeV.
The main feature of this solution is a dynamically
generated mass term in the propagator. Another re-
markable feature of this solution is the correct ul-
traviolet behavior, according to the renormalization
group.

• Häbel et al. [15] used an alternative approach to cal-
culate the Green functions for QCD. In the pertur-
bation theory, the DSEs are solved by iteration, gen-
erating a power series for the propagators and ver-
tices. In [15], the principle of perturbation theory is
maintained but some ansatz in the functional form
of non-perturbative expression of the Green func-
tions are made, which results in a simplified set of
DSEs. This set yields the following solution for the
gluon propagator:

(9)DH

(
k2) = k2

k4 + b4 ,

whereb is a parameter to be determined. Note that
the propagator vanishes atk2 = 0 and is finite when
k2 → ∞. Similar behavior was found by Gribov
and Zwanziger [17] using another arguments.

• Gorbar and Natale [16] calculated the QCD vacuum
energy as a function of the dynamical quark and
gluon propagators using the effective potential for
composite operators and using the operator product

expansion (OPE) to relate the gluon and quark prop-
agator with respectives condensates. The OPE gives
the high energy behavior of the gluon polarization
tensorΠ , which is related with the gluon propaga-
tor through (in the Landau gauge)

(10)Dµν
(
k2) = − i

k2 −Π(k2)

(
gµν − kµkν

k2

)
.

In [16] the authors use the following ansatz for the
gluon tensor polarization (the momentum is in the
Euclidean space),

(11)

Π
(
K2) = µ2

g θ
(
χµ2

g −K2) + µ4
g

K2
θ
(
K2 − χµ2

g

)
,

where

(12)µ2
g =

(
34Nπ2

9(N2 − 1)

〈
αs

π
GµνGµν

〉)1/2

,

andN is the number of colors (N = 3, in this case),
〈(αs/π)GµνGµν〉 � 0.01 GeV4 is the gluon con-
densate [18], resulting inµg = 0.61149 GeV. The
variational parameterχ is determined numerically
in [16] asχ = 0.966797.

We are aware of the use of the Lattice Field Theory
(LFT) (for instance, see [10]) as a non-perturbative
method based on first principles, to make predictions
about the infrared sector of QCD. However, LFT is
not completely free of approximations. A lattice is
characterized by two parameters: its size (number of
points) and the separation between the points, and,
due to the computational limitations, it is impossible
to simulate an infinite lattice with an infinitesimal
separation. Then a finite (and small) lattice with
a given separation is used, introducing the called
finite size and separation effects. Additional problems
are the fermion duplication, solved by the quenched
approximation and the phenomena of Gribov copies.
Similarly to the DSE approach, the final result is also
gauge dependent. In a recent paper, Alexandrou et
al. [11] studied the gluon propagator with the lattice
method in the Laplacian gauge—which is free of
Gribov copies—and found that the best fit to the
numerical results is obtained with the Cornwall’s
propagator.

Having presented the features of the non-perturbati-
ve gluon propagators, we will employ them in a mod-
ified model to describe the processγ γ → J/� J/�
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Fig. 3. The differential cross-section of the processγ γ → J/� J/� using the gluon propagators of Lipatov et al. (Eq. (8), parameters0) [4]
and Häbel et al. (Eq. (9), parameterb).

in the infrared region, using the propagators obtained
using the DSE approach, specially the Gorbar–Natale
one [16] and the Häbel one [15].

As seen above, there are several different forms for
the gluon propagator in the infrared region, neverthe-
less, these propagators can be tested in phenomeno-
logical applications.

The most current model to describe the diffrac-
tive processes through non-perturbative gluons is the
Landshoff–Nachtmann one [19]. In this model, the
pomeron consists of two non-perturbative gluons,
whose usual properties are modified by QCD vacuum
effects. This description of the pomeron is very sim-
ple, since we don’t include the multi-gluon exchange
effects, described by the BFKL equation [3]. A con-
sequence of this simplicity is the independence of
the total cross-sections on the energy. Another prob-
lem is the fact that the model is based on an Abelian
gauge theory, contrary to the non-abelian character of
the QCD. Notwithstanding this, the LN model for the
pomeron, in connection with the Cornwall’s propaga-
tor, was used to describe the elasticpp scattering [6]
and elastic production of vector mesons [8] with good
agreement with experimental results.

Here we use the model of two non-perturbative glu-
ons for the pomeron for the processγ γ → J/� J/� ,

and we consider the following approximations: first,
we employ the Eq. (8) to identify the gluon propaga-
tor in the amplitude (Eq. (2)), and then we approx-
imate the pomeron as two non-perturbative gluons.
With these assumptions, the amplitude is given by:

(2)⇒ �mA(0)(s, t)

=
∫

d2k
π

[
Φ0

(
k2,Q2)]2D

[
(k − Q/2)2

]

(13)×D
[
(k + Q/2)2

]
,

whereD(k2) is the non-perturbative propagator.
First, we substitute in the Eq. (13) the Häbel propa-

gator (Eq. (9)) and vary the parameterb. This para-
meter is not determined in the works that proposed
this propagator and we choose freely the values that
give a result near to the one obtained in [4]. Later, the
results are compared with the propagator used in [4]
(Eq. (8)), including the pure perturbative case (corre-
sponding tos0 = 0) as well as the pure massive case
with a gluon mass similar to the one found by Corn-
wall [14], s0 = 0.6 GeV2, since, in principle, we have
freedom to set any value for it. As it can be seen in the
results displayed in the Fig. 3, the differential cross-
section is sensitive to the choice of the propagator, but
the global behavior is quite similar. The decrease of
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Fig. 4. The differential cross-section of the processγ γ → J/� J/� using the gluon propagators of Lipatov et al. (Eq. (8), parameters0) [4]
and Gorbar and Natale (Eq. (10)) with the parameters obtained in [16].

the cross section with both modified propagators is one
order of magnitude or less, depending of the parame-
ter involved and its value. When we compare the result
of the perturbative case with the result of Eq. (8) with
parameters0 = 0.6 GeV2 in |t| = 5.0 GeV2, the cross-
section decreases five times while for the Häbel prop-
agator withb = 0.6 GeV2 at the same|t| value, the
cross-section is two times smaller. The overall behav-
ior is a significative decrease in the cross-section with
both propagators. A remarkable feature is the simi-
larity of the results from different propagators when
s0 = 0.1 GeV2, b = 0.6 GeV2 and s0 = 0.6 GeV2,
b = 1.0 GeV2. The result is also compatible with the
fact that the Häbel propagator tends to the perturbative
one when the parameterb goes to zero.

In the next step we use the same strategy as above
in the case of the Gorbar–Natale propagator, Eq. (10),
but we can not vary freely the parameters since thatµg

andχ depend on the value of the gluon condensate,
experimentally obtained. For this reason, we use the
values forµg andχ calculated in [16]. The result is
shown in Fig. 4 in comparison with the perturbative
propagator, and is quite similar to the Häbel propaga-
tor: with the choice of the parameters above the non-
perturbative propagator gives a result near the pertur-
bative one with a massive term withs0 = 0.1 GeV2.

When this non-perturbative propagator is employed
the decrease of the cross-section in|t| = 0.5 GeV2 is
around 40%.

In the previous works in which the non-perturbative
gluon propagators are used [6–8], the running cou-
pling constant is frozen at some value whenQ2 → 0.
In the above results, we use a running coupling con-
stant with ak2 dependence whenQ2 goes to zero. In
order to test the sensitivity of the cross-section with re-
spect the choice of the coupling constant we computed
the same observable, but now with a coupling constant
with the above requirement, following the result from
Cornwall [14]

(14)αC
s (Q

2)= 12π

25 ln
(Q2+4µ2

g

Λ2

)
for the case of the Gorbar–Natale propagator. In Fig. 5
we shown the results, where the change of the coupling
constant increases considerably the differential cross
section (approximately two orders of magnitude) and
modifies crucially the slope in the low values oft .

The results obtained show that the behavior of the
cross-section could be quite different (we obtain a de-
crease of one order of magnitude) once we change
the gluon propagator. However, without experimen-
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Fig. 5. Comparison between the results for differential cross-section obtained with a running coupling constant and frozen coupling with the
Gorbar–Natale propagator [16].

tal results expected in TESLA, we cannot restrict rea-
sonably the choice of the propagator and the parame-
ters for this process. The comparison with another dif-
fractive process calculation obtained through the same
methods could be employed, for example, the elastic
pp(p̄p) scattering or elastic photo-production of vec-
tor mesons, which we will soon consider.

Someone can argue against the use of the non-
perturbative propagator in a perturbative calculation,
but we only consider the first term in the perturbative
expansion and the calculation of the form factor for
the transition photon–vector-meson is calculated in
a non-perturbative manner, therefore our calculation
is valid in the kinematical region of interest. More
clearly, we are only interested in an estimation of
the effects in the infrared region. We can see that
with a particular choice of the parameters, the result
with a bare gluon mass [4] and the another one, with
a non-perturbative propagator, is very similar (see
Figs. 3 and 4). It is well known that a massive gauge
field theory like massive Yang–Mills presents several
problems (see [20] for a review and use of this theory
to describe diffractive phenomena) as well as the non-
perturbative propagators but in the infrared region the

last one seems to be a better choice than the former to
describe diffractive processes.

From our results, we can see that these effects in the
region |t| � 2 GeV2 diminish the differential cross-
section for the distinct propagators once compared
with the pure perturbative result. The goal of this
work is to analyze the effects in the cross-section of
the processγ γ → J/� J/� in the infrared region
induced with the replacement of the usual gluon
propagator by a distinct one, obtained from non-
perturbative methods, which is more consistent in
the kinematical region of interest. We show that the
differential cross-section is reduced in comparison
with the pure perturbative result in the very low
momentum transfer regime with a running coupling
constant. However, we should only be able to select
which is the propagator that describes better the
process once experimental results are provided.

Acknowledgements

The authors thank A.A. Natale for clarifying dis-
cussions. W.K.S. thanks Magno V.T. Machado and



266 M.B. Gay Ducati, W.K. Sauter / Physics Letters B 521 (2001) 259–266

L. Motyka for helpful suggestions in the early stages
of the work. This work was partially financed by CNPq
and by PRONEX (Programa de Apoio a Núcleos de
Excelência), Brazil.

References

[1] J.R. Forshaw, D.A. Ross, Quantum Chromodynamics and the
Pomeron, Cambridge Univ. Press, 1997.

[2] P.D.B. Collins, Introduction to Regge Theory and High Energy
Physics, Cambridge Univ. Press, 1977.

[3] E.A. Kuraev, L.N. Lipatov, V.S. Fadin, Sov. Phys. JETP 45
(1977) 199;
L.N. Lipatov, in: A.H. Mueller (Ed.), Perturbative QCD, World
Scientific, Singapore, 1989, p. 441, and references therein;
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