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Hard and soft contributions in diffraction: a closer look
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Abstract

Disentangle the hard and soft dynamics in diffractive DIS is one of the main open questions of the strong interactions. We
propose the study of the logarithmic slope inQ2 of the diffractive structure function as a potential observable to discriminate
between the Regge and the QCD-based approaches. Our results indicate that a future experimental analyzes could evidentiate
the leading dynamics atep diffractive processes in the HERA kinematical regime. 2001 Published by Elsevier Science B.V.
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The study of electroproduction at smallx has lead
to the improvement of our understanding of QCD dy-
namics at the interface of perturbative and nonpertur-
bative physics. However, many important problems re-
main at present unsolved. A longstanding puzzle in the
particle physics is the nature of the pomeron. This ob-
ject, with the quantum numbers of the vacuum, was
introduced phenomenologically in the Regge theory
as a simple moving pole in the complex angular mo-
mentum plane, to describe the high-energy behavior
of the total and elastic cross-sections of the hadronic
reactions [1]. Within the framework of the perturba-
tive QCD (pQCD), the pomeron is associated with
the resummation of leading logarithms ins (center
of mass energy squared), and at lowest order, is de-
scribed by the two-gluon exchange [2]. Due to its
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zero color charge the pomeron is associated with dif-
fractive events, characterized by the presence of large
rapidity gaps in the hadronic final state, which are
exponentially suppressed [3]. Diffractive processes in
deep-inelastic scattering (DIS) are of particular inter-
est, because the hard photon in the initial state gives
rise to the hope that, at least in part, the scattering
amplitude can be calculated in pQCD. Moreover, DIS
exhibits the nice feature of having a colorless parti-
cle, the virtual photon, in the initial state. The main
theoretical interest on diffraction is centred around
the interplay between the soft and hard physics. Hard
physics is associated with the well established par-
ton picture and perturbative QCD, and is applicable to
processes for which a large scale is present. Soft dy-
namics on the other hand, linked for example with the
total cross section of hadron scattering, is described by
nonperturbative aspects of QCD. The ability to sepa-
rate clearly the regimes dominated by soft and hard
processes is essential for exploring QCD at both quan-
titative and qualitative level.
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In DIS the partonic fluctuations of the virtual pho-
ton can lead to configurations of different sizes when
analysed in the proton rest frame. The size of the con-
figuration will depend on the relative transverse mo-
mentumkT of the qq pair. The small size configu-
rations are calculated using perturbative QCD and at
small Bjorken scaling variablex (larges) the small-
ness of the cross section (color transparency) is com-
pensated by the large gluon distribution. For large size
configurations one expects to be in the regime of soft
interactions. In the inclusive measurement of diffrac-
tive final states, where the diffractive structure func-
tion is derived, one sums over both small-distance and
large-distance configurations. So far there is no the-
oretical framework which allows one to predict the
relative magnitudes of the “soft” and the “hard” com-
ponents of the diffractive cross section. One possibil-
ity is the analyzes of the energy dependence of the
cross section, since we expect that the “soft” compo-
nent rises weakly with the energy for any fixed mass of
the diffractive system, whereas the “hard” part should
rise faster. As in the diffractive cross section we in-
tegrate over both the perturbative and nonperturbative
regions of the phase space, there is a competition be-
tween these two pieces. At first sight, the large mo-
mentum region seems to be rather subdominant. How-
ever, the large gluon distribution function provides an
enhancement in this region, and in this way weaken-
ing the dominance of the soft nonperturbative region.
As a result, the effective value of the exponentn of the
energy dependence lies between the hard (nhard≈ 1.4)
and the soft (nsoft ≈ 1.12) values [4].

Since the first observation of diffractive DIS at
HERA, several attempts have been made to compare
the data with the Regge and QCD-based models [5,
6]. In general, these models provide a reasonable de-
scription of the present data on the diffractive structure
functionFD

2 , although based on quite distinct frame-
works, demonstrating the inclusive character of this
observable to delimit the interplay of soft and hard
QCD in diffraction. In this letter we propose the an-
alyzes of the logarithmic slope of the diffractive struc-
ture function as a potential observable to clarify the
dynamics in this process. Our analyzes is motivated
by the recent discussions in the literature about the be-
havior of the logarithmic slope of the inclusive struc-
ture functionF2(x,Q

2) as a possible signal of one
new regime of QCD [7]. At the momentep HERA

data on theF2 slope cannot clearly demonstrate the
presence of a new dynamics in its kinematical regime,
but new studies ineA should distinguish the distinct
regimes of QCD [8]. We believe that the experimental
analyzes of the logarithmic slopes ofFD

2 will allow
to discriminate the different contributions to the dy-
namics already in the current HERA kinematical re-
gion.

We study in detail the predictions to this observ-
able considering two distinct approaches: (i) a Regge
inspired model [9,10], where the diffractive produc-
tion is dominated by a nonperturbative pomeron, and
the diffractive structure function is obtained using the
Ingelman–Schlein ansatz [11]; (ii) a pQCD approach
[12] where the diffractive process is modeled as the
scattering of the photon Fock states with the proton
through a gluon ladder exchange (in the proton rest
frame). Before the proper analyzes of the models we
need to define the diffractive processes and the usual
kinematical variables (for a review, see Ref. [2]). The
most important observable at diffractive DIS (DDIS)
is the associated structure functionFD

2 [4]. In this
work we are concerned to thet-integrated structure
function, denotedFD(3)

2 . The main variables used for
the description of DDIS are the total hadronic en-
ergy W of the γ ∗-proton system and the diffractive
produced massM. In the analyzes ofFD

2 , it is con-
venient to use also the variablesβ and xP. In terms
of W andM, one hasβ = Q2/(Q2 +M2) andxP =
(M2 +Q2)/(W2 +Q2), where we have neglected the
proton mass and the momentum transfert . To connect
these variables with the Bjorken scaling variablex,
we remind thatx = Q2/(W2 + Q2), which imme-
diately leads tox = βxP. In the kinematic domain
of the present experimental measurements,xP may
be interpreted as the fraction of the four-momentum
of the proton carried by the diffractive exchange, the
pomeron, if such a picture is invoked. Theβ is the
fraction of the four-momentum of the diffractive ex-
change carried by the parton interacting with the vir-
tual boson.

Diffraction dissociation of virtual photons, observed
at HERA ep collider, furnishes the details on the na-
ture of the pomeron and on its partonic structure.
Capella–Kaidalov–Merino–Tran Thanh Van (CKMT)
proposed a few years ago a model to diffractive DIS
based on Regge theory [9,10] and the Ingelman–
Schlein ansatz, which is based on the intuitive picture



54 M.B. Gay Ducati et al. / Physics Letters B 506 (2001) 52–58

of a pomeron flux associated with the proton beam
and on the conventional partonic description of the
pomeron–photon collision. In this case, deep inelastic
diffractive scattering proceeds in two steps (the Regge
factorization): first a pomeron is emitted from the pro-
ton and then the virtual photon is absorbed by a con-
stituent of the pomeron, in the same way as the par-
tonic structure of the hadrons. In the CKMT model the
structure function of the pomeron,FP(β,Q

2), is asso-
ciated to the deuteron structure function through the
arguments given above. The pomeron is considered as
a Regge pole with a trajectoryαP(t) = αP(0) + α′t
determined from soft processes, in which absorptive
corrections (Regge cuts) are taken into account. Ex-
plicitly, αP = 1.13 andα′

P
= 0.25 GeV−2. The dif-

fractive contribution to DIS is written in the factorized
form:

(1)

FD
2

(
x,Q2, xP, t

) = [gP
pp(t)]2
16π

x
1−2αP(t)
P

FP

(
β,Q2, t

)
,

wheregP
pp(t)= gP

pp(0)exp(Ct) is the pomeron–proton

coupling, with[gP
pp(0)]2 = 23 mb andC = 2.2 GeV−2.

In this approach,FP is determined using Regge factor-
ization and the values of the triple Regge couplings
determined from soft diffraction data. Namely, the
pomeron structure function is obtained fromFp

2 , or
more precisely from the combinationFd

2 = 1
2(F

p
2 +

Fn
2 ), by replacing the reggeon–proton couplings by

the corresponding triple reggeon couplings (see Ref.
[9] for details). The following parametrization of the
deuteron structure functionFd

2 at moderate values of
Q2, based on Regge theory, was introduced:

Fd
2

(
x,Q2) =Ax−∆(Q2)(1− x)n(Q

2)+4

×
(

Q2

Q2 + a

)1+∆(Q2)

(2)

+Bx1−αR (1− x)n(Q
2)

(
Q2

Q2 + b

)αR

,

where 1+ ∆(Q2) is the pomeron intercept, which
depends on the photon virtuality, andαR is the in-
tercept of the secondary reggeon (thef trajectory).
The pomeron structure functionFP is identical toFd

2 ,
given above, except for the following changes in its

parameters:

FP

(
β,Q2, t

)

(3)

= Fd
2

(
x → β;A→ eA,B → fB,n

(
Q2)

→ n
(
Q2) − 2

)
.

The values ofe and f in FP are obtained from
conventional triple reggeon fits to high mass single
diffraction dissociation for soft hadronic processes.
The remaining parameters are given in Refs. [9,
10].

The comparison of the CKMT model with data is
quite satisfactory [9,10]. A remark is that here we
use the pure CKMT model [9] rather than to include
QCD evolution of the initial conditions [10], which
has been used to improve the model at higherQ2.
Such procedure ensures that we take just a pure Regge
model, without contamination from QCD inspired
phenomenology.

On the other hand, the pQCD framework has been
recently used by some authors to describe the diffrac-
tive structure function [13], and their main proper-
ties are very similar. We consider for our analyzes the
Bartels-Wüsthoff model and its further parameteriza-
tion to experimental measurements [12]. The physi-
cal picture is that, in the proton rest frame, diffractive
DIS is described by the interaction of the photon Fock
states (qq̄ and qq̄g configurations) with the proton
through a pomeron exchange, modeled as a two hard
gluon exchange. The corresponding structure function
contains the contribution ofqq̄ production to both the
longitudinal and the transverse polarization of the in-
coming photon and of the production ofqq̄g final
states from transverse photons.

The basic elements of this approach are the pho-
ton light-cone wave function and the non-integrated
gluon distribution (or dipole cross section in the di-
pole formalism). For elementary quark–antiquark fi-
nal state, the wave functions depend on the helici-
ties of the photon and of the (anti)quark. For theqq̄g

system one considers a gluon dipole, where the pair
forms an effective gluon state associated in color to
the emitted gluon and only the transverse photon po-
larization is important. The interaction with the pro-
ton target is modeled by two gluon exchange, where
they couple in all possible combinations to the dipole.
Then the diffractive structure function can be written
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as

FD
2

(
xP, β,Q

2)

∼ β

∫
dt

∫
k2
t d

2kt

(1− β)2

(4)×
∣∣∣∣
∫

d2lt

l2t
DΨ (α, kt )F

(
l2t , k

2
0;xP

)∣∣∣∣
2

,

whereDΨ is a combination of the concerned wave
functions,lt is the transverse momentum of the ex-
changed gluons andF(l2t , k

2
0;xP) defines the pomeron

amplitude (non-integrated gluon distribution). Thek2
0

sets the hadronic scale which splits the regions of
soft and hard QCD. With a suitable ansatz for thelt
dependence of the two-gluon pomeron, or more pre-
cisely the non-integrated gluon distribution, it is pos-
sible to interpolate between the hard region where
the parton model applies and the soft region where
the aligned jet configuration dominates, as empha-
sized in Ref. [14]. Regarding thexP behavior, the
hypothesis is that for small transverse momentum of
the quarks (soft) the energy dependence should be the
same as in hadron–hadron scattering. At higherkt val-
ues one expects the pomeron to be described by the
two-gluon model, i.e., the energy dependence will be
provided by the square of the gluon structure function
of the proton, and consequently a steeper growth. In
this model the diffractive structure function is given
by:

(5)F
D(3)
2 = F

D(3),I
2 + F

D(3),II
2 + F

D(3),III
2 ,

where the (I) and (II) contributions correspond to the
production of a quark–antiquark pair and the produc-
tion of a quark–antiquark–gluon system with trans-
versely polarized photon. The third component (III)
corresponds to the production of a quark–antiquark
pair from a longitudinally polarized photon, which is
a contribution at higher twist (twist-4). Here we de-
sconsider the secondary reggeon contribution domi-
nant at lowβ . In the leading twist transverse con-
tribution to qq̄ production there is no ln(Q2/Q2

0)

enhancement from the phase-space integral, whereas
qq̄g production is of higher order inαs and presents
an αs ln(Q2/Q2

0) dependence. The longitudinal con-
tribution belongs to higher twist and the phase-space
integral gives a ln(Q2/Q2

0) enhancement. In a com-
parison with data, the transverseqq̄, qq̄g production

and the longitudinalqq̄ production dominate in dis-
tinct regions inβ , namely medium, small and large
β , respectively [12]. Theβ spectrum and theQ2-
scaling behavior follow from the evolution of the fi-
nal state partons, and are derived from the light-cone
wave functions of the incoming photon, decoupling
from the dynamics inside the pomeron, while the en-
ergy dependence and the normalizations are free para-
meters.

Before to perform the analyzes of the presented
models, some comments are in order. In the first
extraction of theF2 slope data at HERA, the so-
called Caldwell plot [15], the variablesx and Q2

were strongly correlated due to the poor statistics.
Since a similar situation should be present in the
first studies of the diffractive slope, in this work
we consider a kinematical constraint which relates
the variablesx andQ2, taken from the most recent
global analyzes of the MRST group [16], where the
behavior of the proton structure function slope was
considered. We will address the behavior of theF

D(3)
2

slope without such constraint in a forthcoming paper.
Below, we present our results for the logarithmic
slopes of the diffractive structure function considering
the kinematical constraint.

Starting by the pure CKMT model, we show the
dependence onxP of the logarithmic slope at three
distinct fixed β values in Fig. 1(a). The slope is
ever positive for smallβ = 0.04. For medium and
high β (0.4 and 0.9 values) the slope is negative for
xP < 10−3. Moreover, the CKMT provides a transition
between positive and negative slope values atβ =
0.4. This behavior is consistent since the pomeron
structure function in this model is related to the
nucleon structure functionF2 [Eq. (3)], which presents
that feature due to the scaling violation.

The pQCD model provides a quite different result,
as presented in the Fig. 1(b). The slope is predomi-
nantly positive in almost allβ range, taking negative
values only atβ = 0.9 for the intervalxP < 0.0004.
A remarkable feature is the existence of aβ depen-
dent turn over, which is shifted to greaterxP values
asβ increases. The positive behavior of the slope at
low values ofβ is associated to theqq̄g contribution,
while for intermediateβ theqq̄T state dominate, pro-
ducing an almost constant function onQ2. The high
β behavior is consistent with the H1 measurements, in
the regionxP > 10−3, which prefer a positive slope in
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Fig. 1. ThexP dependence of theQ2-slope at some typical values ofβ for: (a) the pure CKMT model [9]; (b) the pQCD-inspired model [11].
Kinematical constraintQ2 = Q2(x) from the MRST group [13] was used.

Fig. 2. Theβ dependence of theQ2-slope at some typical values ofxP for: (a) the pure CKMT model [9]; (b) the pQCD-inspired model [11].
The kinematical constraintQ2 = Q2(x) from the MRST group [13] was used.

Q2, corresponding to a largeqq̄G contribution in this
region [12].

For both models the slope converges to a flat
behavior at large values ofxP, with different behaviors
at smallxP corresponding to low virtualities (Q2 �
5 GeV2). Indeed, the kinematical constraint implies
that atxP = 10−4 we are probingQ2 ∼ 10−3, which
is far from the current HERA kinematical region.
Confronting the approaches, we conclude that both
models predict a positive slope up toβ ∼ 0.4, with
a steeper decreasing in CKMT. The highβ region
discriminates the behaviors. The pQCD results hold

a positive slope, while CKMT produces negative
values. These come from the fact that the CKMT
approach does not include theqq̄g contribution, which
is dominant in this region for the pQCD model. Since
the Q2-behavior in the CKMT is determined by the
F2 scaling violations, then it only includes at most
the qq̄T ,L contributions. Therefore, the experimental
analyzes in this specific region of the slope should
clarify the dynamics in diffractive DIS.

We also present theQ2-slope as a function of
the variableβ in Fig. 2 for typical values ofxP.
Some of the remarkable features are: (i) the CKMT
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Fig. 3. ThexP-slope versusQ2 for the pQCD approach (BW) [11] and the CKMT model [9]. The Donnachie–Landshoff intercept [14] is also
depicted.

and the pQCD model provide a similar shape (flat
behavior) for the whole interval ofβ at xP � 10−3;
(ii) a noticeable difference between the Regge and the
pQCD-inspired model in the region of small values
of xP (10−4), with the prediction of a turn-over at
β = 0.1 from CKMT while for the pQCD one expects
the turn-over atβ = 0.5. Again, the scaling violations
of F2 drive the behavior of theQ2-slope in CKMT,
which implies positive values of the slope atβ <

0.5 and negative values at larger values. Moreover,
this connection implies the large value of the slope
at smallβ and a similar turnover that one found in
the first measurements of inclusive structure function
slope [15].

In Fig. 3 we show the results ford lnFD
2 /d ln(1/xP)

(or shortly,xP-slope) as a function of the photon vir-
tualityQ2. Indeed, this quantity gives the pomeron in-
tercept and its behavior describes the energy depen-
dence of the diffractive structure function. While the
CKMT model predicts a constant value, without de-

pendence onβ , the pQCD model presents a depen-
dence on theβ value considered. This feature is as-
sociated to the distinct energy dependence of each
term in Eq. (5), which dominates at specific regions
of the phase space. A feature in the result is the
characteristic shape of this slope atβ = 0.9, pro-
viding a clearly hard intercept. In fact a dependence
on β for the pomeron intercept is expected as shown
in Ref. [12]. In principle, the model is only valid
above of the starting pointQ2

0 = 1 GeV2, however
one extrapolated it for lower virtualities for compar-
ison. For completeness we include the soft pomeron
intercept (Donnachie–Landshoff) [17] in the plot. We
verify, therefore, the evident distinction between the
prediction from the CKMT and pQCD based ap-
proaches.

New quantities to distinguish the regimes of QCD
have been argued for future measurements [18]. The
available experimental results seem already allow to
extract information about the slope of the diffractive
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structure function, which we propose to study in this
Letter as a potential source to discriminate between the
hard and soft contribution in diffraction. Considering
two sound models in the literature, we verify that the
results are quite distinct, allowing to characterize the
dynamics in that quantity.

Acknowledgements

This work was partially supported by CNPq and by
PRONEX (Programa de Apoio a Núcleos de Excelên-
cia), Brazil. M.V.T.M. acknowledges the DF-UFPel
for their warm hospitality. M.B.G.D. acknowledges
enlightening discussions with Drs. Carlos Pajares and
Alphonse Capella and the hospitality of the Departa-
mento de Física de Partículas, U. Santiago de Com-
postela, where part of this work was accomplished.
V.P.B.G. thanks FAPERGS and CNPq for support.

References

[1] P.D.B. Collins, Introduction to Regge Theory and High Energy
Physics, Cambridge Univ. Press, 1977.

[2] A. Hebecker, Phys. Rep. 331 (2000) 1.

[3] J.D. Bjorken, Phys. Rev. D 47 (1993) 101.
[4] H1 Collaboration, Z. Phys. C 76 (1997) 613;

ZEUS Collaboration, Eur. Phys. J. C 1 (1998) 81.
[5] E. Predazzi, in: E. Ferreira, F. Cruz, S. Avancini (Eds.), Int.

Workshop on Hadron Physics 98, World Scientific, 1999,
p. 80, hep-ph/9809454.

[6] A.D. Martin, M. Wüsthoff, J. Phys. G 25 (1999) R309.
[7] See, e.g., E. Gotsman et al., Nucl. Phys. B 539 (1999) 535;

M.B. Gay Ducati, V.P. Gonçalves, Phys. Lett. B 487 (2000)
110.

[8] M.B. Gay Ducati, V.P. Gonçalves, Phys. Lett. B 466 (1999)
373.

[9] A. Capella et al., Phys. Lett. B 343 (1995) 403.
[10] A. Capella et al., Phys. Rev. D 53 (1996) 2309.
[11] G. Ingelman, P. Schlein, Phys. Lett. B 152 (1985) 256.
[12] J. Bartels, M. Wüsthoff, J. Phys. G 22 (1996) 929;

J. Bartels et al., Eur. Phys. J. C 7 (1999) 443.
[13] A. Bialas, R. Peschansky, C. Royon, Phys. Rev. D 57 (1998)

6899;
M. Bertini et al., Phys. Lett. B 422 (1998) 238.

[14] J.D. Bjorken, J. Kogut, Phys. Rev. D 8 (1973) 1341.
[15] A. Caldwell, Invited talk, DESY Theory Workshop, DESY,

Hamburg, Germany, October 1997;
J. Breitweg et al., Eur. Phys J. C 7 (1999) 609.

[16] A.D. Martin, R.G. Roberts, W.J. Stirling, R.S. Thorne, Eur.
Phys. J. C 4 (1998) 463.

[17] A. Donnachie, P.V. Landshoff, Phys. Lett. B 296 (1992) 227.
[18] J.A. Crittenden, Open Letter to the Participants of the Interna-

tional Workshop on Diffraction in High-Energy Physics, Dif-
fraction 2000, Cetraro, Italy.


