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Abstract

The behavior of the structure function at high energies (high densities) is directly associated to the gluon distribution. In this
Letter we analyze the asymptotic behavior of the structure function at very high densities considering a leading and a higher
twist relation between these two quantities. We verify that (a) if the leading twist relation between the structure function and
the gluon distribution is used, we recover the black disc limit, and (b) a softer behavior is predicted if a higher twist relation
betweenF2 andxG is considered. While the first behavior is well-established by the current high density approaches, the higher
twist behavior is a new result. In both cases, theF2 structure function unitarizes and the Froissart boundary is not violated in
the asymptotic regime of high density QCD. 2001 Published by Elsevier Science B.V.
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1. Introduction

The physics of high-density QCD has become an
increasingly active subject of research, both from ex-
perimental and theoretical points of view. In deep in-
elastic scattering (DIS) the parton high density regime
corresponds to the smallx region and represents the
challenge of studying the interface between the per-
turbative and nonperturbative QCD, with the pecu-
liar feature that this transition is taken in a kinemat-
ical region where the strong coupling constantαs is
small. By the domain of perturbative QCD we mean

E-mail addresses: gay@if.ufrgs.br (M.B. Gay Ducati),
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the region where the parton picture has been devel-
oped and the separation between the short and long
distance contributions (the collinear factorization) is
made possible by the use of the operator product
expansion (OPE). The Dokshitzer–Gribov–Lipatov–
Altarelli–Parisi (DGLAP) equations [1] are the evolu-
tion equations in this kinematical region. These equa-
tions are valid at leading twist, i.e., at a large value of
the photon virtualityQ2, where a subclass of all pos-
sible Feynman graphs are dominant and the hard co-
efficient function is connected to the proton by only
two parton lines (for more details see, e.g., Ref. [2]).
For small values ofQ2, this picture has corrections
predicted by the OPE that contribute at relative order
O(1/Q2) and beyond[O( 1

Q2 )
n, n = 2,3, . . .]. These

are commonly called higher twist corrections.
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In the limit of small values ofx (< 10−2), on
the other hand, one expects to see new features
inside the nucleon: the density of gluons and quarks
become very high and an associated new dynamical
effect is expected to stop the further growth of the
structure functions. In particular, for a fixed hard scale
Q2 � Λ2

QCD, the OPE eventually breaks down at
sufficiently smallx [3]. Ultimately, the physics in the
region of high parton densities will be described by
nonperturbative methods, which is still waiting for a
satisfactory solution in QCD. However, the transition
from the moderatex region towards the smallx limit
may possibly be accessible in perturbation theory, and,
hence, allows us to test the ideas about the onset of
nonperturbative dynamics.

At this moment, there are several approaches in
the literature that propose distinct evolution equations
for the description of the gluon distribution in high
density limit [5–8]. In general these evolution equa-
tions resum a class of higher twist diagrams domi-
nant in this kinematical region that contain powers of

the functionκ(x,Q2) ≡ 3π2αsA

2Q2
xg(x,Q2)

πR2
A

, which repre-

sents the probability of gluon–gluon interaction inside
the parton cascade. Moreover, these equations match
(a) the DLA limit of the DGLAP evolution equation
in the limit of low parton densities(κ → 0); (b) the
GLR equation and the Glauber–Mueller formula as
first terms of the high density effects. The main dif-
ferences between these approaches occurs in the limit
of very large densities, where all powers ofκ should
be resummed. Although the complete demonstration
of the equivalence between these formulations in the
region of largeκ is still an open question, some steps
in this direction were given recently [9,10].

Our goal in this Letter is not to demonstrate the
equivalence between the distinct approaches, but to
analyze the relation between the gluon distribution
xG and theF2 structure function in the asymptotic
regime of very high densities (energies). In general,
a leading twist relation is used to relate these quantities
and the solutions of the evolution equations used
as input in the calculations. However, as discussed
above, the high density approaches resum a class of
higher twist diagrams, which implies that we should
careful in our predictions for the quantities which
would be measured. Here we study the behavior of
F2, predicted by a leading and a higher twist relation,

at large densities, where analytical calculations are
possible. In this regime we expect the blackness of
the cross section, as predicted by Gribov many years
ago [11]. We verify that this behavior is recovered
by the current high density approaches, if a leading
twist relation betweenF2 andxG is used. However,
a softer behavior is obtained when we consider that
this relation is modified by the higher twist terms
associated to the high density, demonstrating the
importance of this contribution. In both cases, the
Froissart boundary is not violated.

The Letter is organized as follows: in the next
section we briefly review the derivation of the leading
and higher twist relations betweenF2 and xG, as
well as the black disc limit. After, in Section 3, we
derive the asymptotic solution of the AGL equation at
fixed and runningαs and compare this solution with
the predictions of the McLerran–Venugopalan high
density approach. Finally, in Section 4, we present our
results and conclusions.

2. The F2 structure function and the black disc
limit

We start from the space–time picture of theep
processes [11]. The deep inelastic scatteringep →
e + X is characterized by a large electron energy loss
ν (in the target rest frame) and an invariant momentum
transferq2 ≡ −Q2 between the incoming and outgo-
ing electron such thatx = Q2/2mNν is fixed. In terms
of Fock states we then view theep scattering as fol-
lows: the electron emits a photon (|e〉 → |eγ 〉) with
Eγ = ν and p2

tγ ≈ Q2, after the photon splits into
a qq (|eγ 〉 → |eqq̄〉) and typically travels a distance
lc ≈ 1/mNx, referred as the coherence length, before
interacting in the nucleon. For smallx (larges, where√

s is γ ∗p center-of-mass energy), the photon con-
verts to a quark pair at a large distance before it in-
teracts to the target. Consequently, the space–time pic-
ture of the DIS in the target rest frame can be viewed
as the decay of the virtual photon at high energy (small
x) into a quark–antiquark pair long before the interac-
tion with the target. Theqq̄ pair subsequently interacts
with the target. In the smallx region, wherex � 1

2mR
,

theqq̄ pair crosses the target with fixed transverse dis-
tancert between the quarks. Following Gribov [11],
we may write a double dispersion relation for the for-
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wardγ ∗p elastic amplitudeA, related to the total cross
section by the optical theorem (ImA = sσ (s,Q2)),
and obtain for fixeds

σ
(
s,Q2)

=
∑
q

∫
dM2

M2 + Q2

dM ′2

M ′2 + Q2

(1)× ρ
(
s,M2,M ′2)1

s
ImAqq̄+p

(
s,M2,M ′2),

whereM andM ′ are the invariant masses of the in-
coming and outgoingqq̄ pair. If we assume that the
forward qq̄ + p scattering does not change the mo-
mentum of the quarks thenAqq̄+p is proportional to
δ(M2 − M ′2), and (1) becomes

σ
(
s,Q2) =

∑
q

∫
dM2

(M2 + Q2)2

(2)× ρ
(
s,M2)σqq̄+p

(
s,M2),

where the spectral functionρ(s,M2) is the density
of qq̄ states, which may be expressed in terms of
the γ ∗ → qq̄ matrix element [12]. Using thatM2 =
(k2

t + m2
q)/[z(1 − z)], wherekt and z are the trans-

verse and longitudinal momentum components of the
quark with massmq , we can express the integral over
the massM of the qq̄ in terms of a two-dimensional
integral overz andkt . Instead ofkt , it is useful to work
with the transverse coordinatert (impact parameter
representation), which is the variable Fourier conju-
gate tokt , resulting [13]

F2
(
x,Q2) = Q2

4παem
σ
(
s,Q2)

(3)

= Q2

4παem

∫
dz

∫
d2rt

π

× |Ψ (z, rt )|2σqq̄(z, rt ),

where

|Ψ (z, rt )|2

(4)

= 6αem

(2π)2

nf∑
i

e2
i

{[
z2 + (1− z)2]ε2K1(εrt )

2

+ m2
i K0(εrt )

2}.
The photon wave functionΨ (z, rt ) is simply the
Fourier transform of the matrix element for the tran-
sitionγ ∗ → qq̄. Moreover,αem is the electromagnetic

coupling constant,ε2 = z(1 − z)Q2 + m2
i , mi is the

quark mass,nf is the number of active flavors,e2
f is

the square of the parton charge (in units ofe), K0,1
are the modified Bessel functions andz is the fraction
of the photon’s light-cone momentum carried by one
of the quarks of the pair. In the leading log(1/x) ap-
proximation we can neglect the change ofz during the
interaction and describe the cross sectionσqq̄(z,4/r2

t )

as a function of the variablex. Considering only light
quarks (i = u,d, s) F2 can be expressed by [14]

(5)F2
(
x,Q2) = 1

4π3

∑
u,d,s

e2
i

1/Q2
0∫

1/Q2

d2rt

πr4
t

σqq̄ (x, rt ).

Using thatσqq̄ = CF

CA
(3αs(

4
r2
t

)/4)π2r2
t xG(x, 4

r2
t

) [14],

wherexG(x, 4
r2
t

) is the nucleon gluon distribution, we
get

(6)F2
(
x,Q2) = 2αs

9π

Q2∫

Q2
0

dQ2

Q2 xG
(
x,Q2).

The above expression explicit the direct dependence
of the F2 structure function with the behavior of the
gluon distribution, which is related to the QCD dy-
namics at high energies. In the linear regime, where
the high densities can be disregarded, the smallx be-
havior of the gluon distribution is given by the solu-
tions of the DGLAP [1] and/or BFKL [4] evolution
equations. The common feature of these equations is
the steep increase ofxG asx decreases. This steep in-
crease cannot persist down to arbitrary low values of
x since it violates a fundamental principle of quantum
theory, i.e., the unitarity. In the context of relativistic
quantum field theory of the strong interactions, unitar-
ity implies that the cross section cannot increase with
increasing energys above log2 s: the Froissart’s theo-
rem [15]. In the next section we will consider the mod-
ifications in the behavior of the gluon distribution as-
sociated to the high density effects. The presence of
a high parton density implies a slow growth ofxG at
high energies, and consequently from Eq. (6), of the
structure function. However, Eq. (6) is a leading twist
relation which will eventually breaks down when we
consider the higher twist terms in the evolution.

We now consider that the relation between the struc-
ture function and the gluon distribution is modified
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by the particular type of higher twist terms associated
with the high density corrections (see also [16] for a
similar calculation in the infinite momentum frame).
In general, the higher twist contributions should be
significant at smallx andQ2, implying large pertur-
bative corrections to the conventional leading twist re-
lations in this kinematical region. We estimated these
corrections considering thes-channel unitarity con-
straint in the interaction cross section of the quark–
antiquark pair with the target [17]. In this case the
structure function is given by

F2
(
x,Q2) = 1

2π3

∑
f=u,d,s

e2
f

1/Q2
0∫

1/Q2

d2rt

πr4
t

∫
d2bt

(7)× {
1− e− 1

2σqq̄ (x,4/r2
t )S(bt )

}
.

A similar expression was used in Ref. [18] for a
phenomenological analysis of theep process, where
the geometrical structure of the collision (the�bt

dependence) was disregarded andxg ∝ x−λ (λ > 0)
was assumed, resulting a very good description of the
HERA data. The main point of the above expression is
that this resums a large class of higher twist terms, as
demonstrated in Ref. [19].

The use of a Gaussian parameterization for the
nucleon profile functionS(bt ) = 1

πR2 e
−b2/R2

, where
R is the spatial gluon distribution inside the proton
[20], simplifies the calculations. We obtain that theF2
structure function can be written as [17]

F2
(
x,Q2) = R2

2π2

∑
u,d,s

ε2
i

1/Q2
0∫

1/Q2

d2rt

πr4
t

(8)

× {
C + ln

(
κq

(
x, r2

t

)) + E1
(
κq

(
x, r2

t

))}
,

where κq = 4/9κG = (2αs/3R2)πr2
t xGN(x,1/r2

t ).
This equation allows to estimate the high density
corrections to the structure function in the DLA limit.
Expanding Eq. (8) for smallκq , the first term (Born
term) will correspond to the usual DGLAP equation in
the smallx region [Eq. (6)].

Before we discuss the dynamics for the gluon dis-
tribution at high densities, it is important to consider
a general property of the structure function (i.e., the
cross section): the black disc limit. As shown before,

when the coherence lengthlc considerably exceeds the
diameter of a target which is at rest, the virtual pho-
ton transforms into hadron components well before the
target, which implies that the smallx physics probes
the interaction of various hadron wave packets with a
target. The geometrical limit for the cross section of
virtual photon scattering off a nucleon target follows
from the assumption that a target is black for the dom-
inant hadron components in the wave function of the
virtual photon. An identical assumption is often used
to deduct the Froissart limit of hadron–hadron interac-
tions at high energies.

Under the assumption that the interaction is black,
we can estimate the total cross section (2) using
the following approximations:ρ(s,M2) ∝ M2 and
σqq̄+p(s,M

2) = πR2. Consequently, we can get
σ(s,M2) ∝ R2 ln[(M2

max+Q2)/(M2
min +Q2)]. Using

thatM2
min ≈ 4m2

pi whereasM2
max∝ s, results that

(9)F2
(
x,Q2) ∝ Q2R2 ln

1

x
,

which is the black disc limit for theF2 structure
function. This bound, derived from a geometrical
analysis, represents the maximum value allowed for
the cross sections at high energies (high densities). In
the next sections we will analyze the predictions of the
high density approaches for the asymptotic behavior
of F2 and verify if this bound is saturated or a softer
behavior is predicted.

3. The AGL high density approach

About seventeen years ago, Gribov, Levin, and
Ryskin (GLR) [5] performed a detailed study of the
high density limit of QCD in the double logarithmic
approximation (DLA). They argued that the physical
processes of interaction and recombination of partons
become important in the parton cascade at a large
value of the parton density, and that these high density
corrections could be expressed in a new evolution
equation — the GLR equation. Some years ago an
eikonal approach to the high density corrections was
proposed in the literature by Ayala, Gay Ducati,
and Levin (AGL) [6,17] which improves the GLR
approach. This approach address the high density
regime from the region where perturbative QCD is
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valid by summing corrections to the linear DGLAP
evolution equation.

As we are only interested in the solutions of the
AGL equation, we refer the original papers [6,17] for
details in its derivation. Here we only present the AGL
equation, which is given by

∂2x G(x,Q2)

∂y ∂ε
= 2Q2R2

π2

(10)× {
C + ln

[
κG

(
x,Q2)] + E1

[
κG

(
x,Q2)]},

whereC is the Euler constant,E1 is the exponential
function and the functionκG is defined by

(11)κG

(
x,Q2) ≡ αsNcπ

2Q2R2xG
(
x,Q2),

and represents the probability of gluon–gluon interac-
tion inside the parton cascade. Using the above defi-
nition for κG we can rewrite the expression (10) in a
more convenient form (for fixedαs )

∂2kG(y, ε)

∂y ∂ε
+ ∂kG(y, ε)

∂y

= αsNc

π

{
C + ln

[
κG

(
x,Q2)] + E1

[
κG

(
x,Q2)]}

(12)≡ F(κG).

Analyzing the structure of Eq. (12) we see that it
has a solution which depends only ony. In [6] it was
shown that this solution is the asymptotic solution of
the AGL equation. In this case we have that at large
values of densities the asymptotic solution is given by

(13)k
asymp
G (y) = αsNc

π
y.

Substituting the definition ofκG [Eq. (11)] in the
above solution, in the asymptotic regime the behavior
of the gluon distribution is given by (at fixedαs )

(14)xG
(
x,Q2) = 2NcQ

2R2

3π2
ln

1

x
.

Therefore, the gluon distribution does not saturate at
small values ofx, but is linearly proportional to lns
(s ≈ 1/x). However, this behavior is softer than pre-
dicted by the DGLAP equation (xG ∝ exp[√ln(1/x)])
and the BFKL equation (xG ∝ x−λ, λ > 0). We obtain
that the gluon distribution presents a partial saturation
in its behavior.

The analyzes above was made at leading order, con-
sidering a fixed coupling constantαs . One question is

the possible modifications in the asymptotic behavior
associated to next-to-leading order corrections as, for
instance, the running ofαs . In order to answer this
question we need to extend the Refs. [6,17] for run-
ning coupling constant, as we will do in the following.

Since the QCD coupling constant is given by
αs(Q

2) = 4π/(β0ε), whereβ0 = 11− 2/3nf (nf is
the number of flavors) andε = lnQ2/Λ2

QCD, the re-
lation between the gluon distribution and the function
κG can be expressed by

(15)xG
(
x,Q2) = 2Q2R2

Ncπ

β0

4π
εκG

(
x,Q2).

Using this result in Eq. (10) we obtain that the AGL
equation with runningαs is given by

∂2kG(y, ε)

∂y ∂ε
+

(
1

ε
+ 1

)
∂kG(y, ε)

∂y

= Ncαs(Q
2)

π

{
C + ln

[
κG

(
x,Q2)]

+ E1
[
κG

(
x,Q2)]}

(16)≡ H(κG).

The AGL equation at fixedαs is a direct consequence
of the above equation in the limit of largeε. Moreover,
this equation also has a solution which depends only
ony. In this case we have

(17)
∂k

asymp
G (y, ε)

∂y
= ε

1+ ε
H(κG)

with the solution

(18)

k
asymp
G (y)∫

k
asymp
G (y=y0)

dκ ′
G

H(κ ′
G)

= ε

1+ ε
(y − y0).

Consequently, the asymptotic behavior of the gluon
distribution is given by

(19)xG
(
x,Q2) = ε

1+ ε

2NcQ
2R2

3π2
ln

1

x
.

As expected at large values ofε (Q2) this solution
reduces to the solution at fixedαs . The main difference
is the behavior at small values ofε, where the prefactor
in (19) is important. However, the partial saturation of
the gluon distribution is not modified by the running
of αs . It agrees with the result that the unitarity
corrections are expected to be relevant before the next
to leading order corrections [3].
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Before we present our results and conclusions in the
next section, let us discuss the generality of the above
results for the gluon distribution by the comparison
with the predictions of other high density approach. In
contrast to the AGL formalism, the approach proposed
by McLerran, Venugopalan and collaborators (MV-
JKLW approach) [7,21] address the high density
regime from the nonperturbative region by developing
an effective Lagrangian approach to a very dense
system. In Ref. [22] the authors have considered the
DLA limit of the functional evolution equation derived
from this approach, obtaining an equation similar, but
not identical, to the AGL equation (we refer [22] for
details). One of the main results of this work was the
solution of the proposed equation for large values of
densities (largeκ), which is given by

(20)xG
(
x,Q2) = Nc(Nc − 1)π

2
R2Q2 ln

1

x
.

The remarkable feature of this solution is the sameQ2

andx dependence of the AGL equation in the asymp-
totic regime. The difference in the prefactors is a func-
tion of the distinct normalizations and approximations
used in the two approaches.

4. The asymptotic behavior of F2

The main conclusion of our analysis in the previous
section was the universality of thex andQ2 depen-
dence of the gluon distribution (the partial saturation)
in the asymptotic regime of the high density QCD. In
this section we will consider the consequences of the
partial saturation in the behavior of the structure func-
tion, which is experimentally measured.

Using the solution of the AGL equation in the
asymptotic regime [Eq. (14)] as input in Eq. (6) we
get

(21)F2
(
x,Q2) ≈ αs

π3
R2Q2 ln

1

x
.

We see that the partial saturation of the gluon distri-
bution implies that theF2 structure function does not
saturate at small values ofx, but is linearly propor-
tional to lns. Basically, we verify that the AGL ap-
proach, as well as the MV-JKLW approach maximizes
the prediction for theF2 structure function in the as-
ymptotic regime of very high densities, resulting in the

black disc prediction, when the leading twist relation
[Eq. (6)] is used.

We now consider that the relation between the
structure function and the gluon distribution is given
by Eq. (8). In the asymptotic regime (largeκq ) we
obtain

(22)

F2
(
x,Q2) ≈ R2

2π2

∑
u,d,s

ε2
i

1/Q2
0∫

1/Q2

d2rt

πr4
t

ln
(
κq

(
x, r2

t

))
.

Using the asymptotic solution of the AGL equation we
can determineκq = 4/9κG at large values of densities,
and so

(23)

F2
(
x,Q2) ≈ R2

2π2

∑
u,d,s

ε2
i

1/Q2
0∫

1/Q2

d2rt

πr4
t

ln

[
4αs

3
ln

1

x

]
.

Therefore, considering the contribution of the higher
twist terms in the relation between the structure func-
tion and the gluon distribution, we predict the follow-
ing asymptotic behavior for the structure function

(24)F2
(
x,Q2) ≈ R2Q2

3π2 ln

[
4αs

3
ln

1

x

]
.

We see that the inclusion of the higher twist terms
implies a softer dependence ofF2 with the energy
than obtained using the leading twist relation. In
contrast with the leading twist prediction, in this case
the black disc limit is not maximized. However, in
both cases the structure function does not violate
the Froissart boundary in the asymptotic regime of
high density QCD. The demonstration of the behavior
(24) using the other approaches for hdQCD is an
important open question. In particular, the analyzes
of the predictions forF2 obtained in Ref. [16] in the
infinite momentum frame for the very high density
regime would be a important check of our results.
Our study demonstrates the importance of the correct
connection (leading or higher twist relation) between
the gluon distribution and the observables when we
are analyzing the interface between perturbative and
nonperturbative QCD.

From the results for the structure function in the
asymptotic regime we can see that this regime is
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characterized by the identity

(25)
dF2(x,Q

2)

d lnQ2 = F2
(
x,Q2),

which is an important signature of the asymptotic
regime of high density QCD. This regime should be
reached for the case of an interaction with nuclei at
smaller parton densities than in a nucleon, sinceκA =
A1/3 × κN , whereκN is given by the expression (11).

5. Conclusions

In this Letter we have analyzed the description of
the F2 structure function in the regime of very high
densities, assuming first that the leading twist relation
betweenF2 andxG is valid and second that this re-
lation is modified by the higher twist terms associ-
ated to the high density corrections. In the first case
we have obtained that the correspondingF2 struc-
ture function is linearly proportional toQ2R2 ln(1/x),
which agrees with the results predicted in the black
disc limit. This result is not high density approach de-
pendent. In the second case a softer behavior is ob-
tained. In both cases, theF2 structure function unita-
rizes and, as expected by construction, the black disc
boundary is not violated in the asymptotic regime of
high density QCD. We verify that when the parton
density is such that the proton becomes black and the
interaction probability is unity, the structure function
becomes proportional toQ2 and a soft energy depen-
dence is predicted. As a by product, we have derived
the AGL equation for runningαs and obtained a sig-
nature for the asymptotic regime of QCD.

Our main conclusion is that we should be careful
to relate the gluon distribution with the observables
(for instance,F2, Fc

2 , heavy quark production, etc.) in
the high density limit, since besides the behavior of
the gluon distribution, also the relation between these
quantities must be modified from the usual leading
twist expressions.
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