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The effective nonrelativistic potential VT describing the fermion-fermion interaction in the Maxwell-Chern-Simons theory is 
derived to the lowest order in perturbation theory. As expected, VT is not invariant under parity and time-reversal transforma- 
tions. The quantum dynamics generated by Vr becomes exactly solvable at the limits where either the Maxwell or the Chern- 
Simons terms disappear; in neither case electron-electron bound states show up. However, numerical calculations indicate that 
fermion-fermion bound states do exist in the general case. 

Mot iva ted  by recent discussions [1] about  the 
consistency of  the nonrelat ivis t ic  l imit  of  certain rel- 
at ivist ically invariant  quan tum field theories, we 
consider  in this let ter  the problem of  de termining  the 
effective e lec t ron-e lec t ron  low energy potent ial  aris- 
ing from the Maxwe l l -Che rn -S imons  (MCS)  the- 
ory. We shall also investigate whether  this potent ial  
defines a physically sensible and nontr ivial  quantum 
dynamics.  In part icular,  the existence of  e lec t ron-  
electron bound  states is one of  our  main  concerns in 
this work. 

As known [ 2 ], the MCS theory is a (2 + l ) -dimen-  
sional model  describing the coupling of  charged fer- 
ta lons (~, ~)  of  mass m and electric charge e to the 
gauge field potent ial  A~ via the lagrangian density 

~6-6~  1 #Y I ,uvot - ~aFu~F + ~0~ Fu~A . 

1 
- 2--22 (OuAU) (O.A ") + li(r/uOuV 

-- ½ i ( O u q ) y ~ v - e ( z 7 , A ~ ¢ - r n ~ ¢  , ( 1 ) 

where F , ,  = O~A,-  GA, ,  0 >/0 is the topological  mass, 
2 is a gauge paramete r  and a is a dimensionless  real 
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pa ramete r  (0 ~< a ~< 1 ) enabling us to modula te  the in- 
tensity of  the Maxwell term. Throughout  this paper  
we use natural  units ( c - - h = l ) .  Our  metr ic  is 

g o o = - g l ~  = -g22 = l ,  while for the y matr ices  we 
adopt  the representat ion 7° = o3, 71 = ia~, 72 = itr2; ai, 
i =  1, 2, 3, are the Pauli  spin matrices.  Nei ther  par i ty  
nor t ime-reversal  are, separately,  symmetr ies  of  the 
model.  

The contr ibut ion of  order  e 2 to the elastic scatter- 
ing ampl i tude  e -  + e -  ~ e -  + e -  (M611er scattering ) 
is given by 

/ / f i -  / / d i r e c t  / ' / e x c h a n g e  
- -  , / r t  fi - -  , /rt  fi , (2)  

where 

_ e  2 
~/rt//directfi "~- 2n 6(3)(p~1 + P ' 2 - P l - - P 2 )  

× [~(+)(p]  )y~ 'v(-)(pl  ) ]D~,~(k) 

× [~< +)(p~ )~v(-) (p:) ]. (3)  

Here, p l ,  P2 (P~, P~ ) are the on-shell two-momenta  
of  the init ial  ( f inal)  electrons, k - p ' t  - P l  =P2 --P'2 is 
the transferred momentum and Du~(k) designates the 
free photon  propagator .  One can easily check that  
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- i  ( 0 k p ) k~,k, 
O u , ( k ) -  ak2~2/a e ~ , - i  -a ~u~p ~5 - i 2  k4 , 

(4) 

where P , , ~ - g u v - k u k v / k  2. Notice that Du~(k)= 
D,u ( -  k) and, moreover, that all terms of the form 
k~,k~ in D~,, do not contribute to the amplitude, since 
the photon propagator is contracted into conserved 
currents. The amplitude jl~xchange follows by ex- 
changing in ~/¢~rec~ the quantum numbers of the elec- 
trons in the outgoing channel. 

The two-component spinor v ( - ) (p) (z7 ~ + ) (p) )  de- 
scribes a free electron of two-momentum p and en- 
ergy pO= + (pZ+m2)l/2 in the initial (final) state 
and, therefore, obeys the free Dirac equation 
(yVp~- rn ) v ( - ) (p) = 0 or, equivalently, 

Hv( -  ) (p ) = p°v~- ) (p ) , (5) 

where 

H = - - a 2 p l  + a l p 2 + m a  3 . (6) 

The solution of eq. (5) is found to be 

v ( - ) ( P ) - \  2pO J p 2 - i p l  (7) o 

l p ° + m J  

Our normalization is v ~- )* (p)v ~ - ~ (p) = 1, which in 
turns implies that 

~< + >(p)v<- ) ( p ) = v ( -  ~ (p)v<- ) (p ) 

m 
= v (-)*(p)y°v<-~(p) = + ~ .  

The computation of ~d~r~c'n , in eq. (3), is now 
straightforward and yields 

~/direct ~ ie d(3) 
..... n - - ~ (P', +P'2--P~-P2) 

a e 0 e 
× k2q-O2/a ma ak2+O2/a 

2i0 e ) + 
m a k 2 ( a k 2 + O 2 / a )  ( k × p )  , (8) 

where only zero- and first-order terms in IP l /m  have 
been retained. Furthermore, we designated by 
P =  ½ (P~-P2), the relative linear momentum of the 

incoming electrons in the center of mass frame of 
reference. 

The first term in the large parentheses of  (8) is the 
expected repulsive two-dimensional Yukawa poten- 
tial, slightly modified by the presence of the parame- 
ter a. Its Fourier transform is found to read 

V ¥ ( a , r ) =  e f 
eik-r 

(2~) 2 d2kak2+O2/a 

- 2zcaKo , (9) 

where K0 is the modified Bessel function, r is the rel- 
ative distance between electrons and r=  [rl. Of  
course, V¥ diverges logarithmically as the topological 
mass approaches zero (the Coulomb limit). The sec- 
ond term in the large parentheses of (8) describes an 
attractive Yukawa potential which disappears in the 
limit of  vanishing topological mass. For O>ma 
(0< ma)  the combined action of these two potentials 
is seen to be attractive (repulsive), whereas for 0= ma 
their action mutually cancels. After computing the 
Fourier transform of the third term in the large pa- 
rentheses of (8) one arrives at 

V L(a , r )=  e I [ Or Kl (Or) ]  
7rmO r e 1 -  L . ( l O ) a x ,a /A 

The presence of the orbital angular momentum 
L - r × p  in the right-hand side of  this last equation 
should be noticed. It implies that VL is odd under 
parity and time-reversal transformations. Therefore, 
space- and time-inversion do not leave the total 
potential, 

(0) 
V x ( a , r ) -  1 - ~ a  a V ¥ ( a , r ) + V L ( a , r ) ,  (11) 

invariant. 
We address next to the problem of quantizing the 

two-dimensional nonrelativistic motion of two dis- 
tinguishable particles, of equal mass rn (reduced mass 
½m), interacting through the potential VT. After- 
wards, it will be properly taken into account that the 
particles one is dealing with are indistinguishable 
fermions. 

In polar coordinates r, ~, the position representa- 
tion of the operator L is known to be - i  0/00; the 
normalized eigenfunctions and eigenvalues of L 
being, respectively, x/(1/2rr)  e it°,/=0, + 1, +2 . . . . .  
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The hamiltonian describing the relative quantum dy- 
namics of the two-body system, then, reads 

~ = ~ o  +eVT(a,r) , 

where 

1 ( 3  2 1 0 )  1 02 
~ o = - - -  + -  m ~ r O-r mr 2 O(~ 2 

is the free hamiltonian. The bound states of ~g(, re- 
ferred to as ~u,t(r, ~), will be common eigenstates of 

and L, i.e., ~,t(r, q)=R~l(r) e I~. Here, R~(r) is 
the nth normalizable eigenfunction of the radial 
hamiltonian ~t and we shall call E,¢ the correspond- 
ing eigenvalue. Hence, 

1 (02R.I 1 ORal\ eft 
 Ro,= - + ; + v ,  Ro, 

= E,,IR,a, ( 12 ) 

where U7 ft, 

12 
u~fr(a, r ) =  - -  +eV-~°(a, r) 

m r  2 

12 0 ~Ko(Or~ 
=-- / / 

mr 2 

l 1 e2_~r2 [ _ Or K,(Or' l -S ,, a , , j  (13) 
g0 

denotes the / th  partial wave effective potential. Of 
course, V~t~(a, r) has been read off directly from 
(10) and ( 11 ) after the replacement L-,I. As for the 
scattering states, we start by recalling that a plane 
wave of momentum k, pointing along the direction 
~=0, can be decomposed into circular waves as fol- 
lows: e ir'k = z.t=x'+°°-o~ itJt(kr) e i/¢. Here, k= [k[ and Jt 
denotes the Bessel function of integer order. Simi- 
larly, the outgoing scattering state defined by 

~ +  ) (r) = E  ~ +  ) (r), with E =  kZ/m, admits the 
partial wave decomposition 

1 +o~ 
~ + ) ( r )  = ~--z~n t=~_~ itl2t (k; r) e i~ , (14) 

where t2t(k; r) verifies the Lippmann-Schwinger ra- 
dial integral equation 

Or(k; r)=JAkr) 
oo 

[ dr' r'G~t)(r, r')eV~l)(a, r')12/(k; r') +2~z 
0 

(15) 

and G~l)(r, r') designates the/ th component of the 
resolvent (r[ (E+ i~-  o%) - ~ I r ' ) .  A simple calcula- 
tion shows that 

G~ l) (r, r') = - ¼ imJl(kr< )HI I)(kr> ) , 

where r< (r>) is the smaller (the larger) o f r  and r' 
and Ht ~ ) is the Hankel function of integer order. 

Before embarking into the problem of solving (12) 
and/or ( 15 ) for the general case, represented by the 
potential ( 11 ), we analyze some limiting situations 
which are tractable by analytic means. As seen from 
( 1 ), for a =  1, 0=0 the MCS theory reduces to QED3 
and, correspondingly, the potential V-r collapses into 
the repulsive Coulomb potential, Vc=- (e /2 zO  
×ln(r/ro), where ro is an infrared regulator. The log- 
arithmic potential in two space dimensions has been 
widely studied in the past [ 3-5 ]. In the repulsive case 
the energy spectrum is continuous, while bound states 
only show up in the attractive case. The interesting 
thing in connection with the Coulomb potential in 
two dimensions is that the s-wave hamiltonian ~=o 
only becomes essentially self-adjoint, on its natural 
domain of functions, after an appropriate extension 

[31. 
We are chiefly interested in the limit a=0 ,  0¢0, 

where the Maxwell term disappears and the MCS 
theory degenerates into the Chern-Simons (CS) the- 
ory. Formal developments indicate that, in this case, 
composite fields obeying fractional statistics can be 
constructed [6-8 ]. One can readily check that the 
potential VSrt) now reduces to 

e (1  l l )  (16) V g ) ( a = O , r ) = - - ~ m  ~rf i (r )+-~ • 

For arriving at this last equation we have considered 
as equivalents the distributions fi2 (r) and (1/2~r) 
×fi(r),  which is strictly true if one is restricted to 
work with single-valued functions. The delta poten- 
tial in (16) only acts on the s-wave. Indeed, by re- 
placing (16) into ( 15 ) one finds, for the s-wave, the 
algebraic relation 
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ie 2 
I2o(k;r)=Jo(kr)+ ~H~')(kr).Qo(k;O),  (17) 

whereas the 14:0 partial waves are required to verify 
the integral equation 

,Q/(k; r) 

=Jl(kr)+ ~-~lH}~)(kr) Jl(kr')g21(k; r') 
o 

ie2 
+ ~-~lJl(kr) , H}')(kr')g21(k; r') . (18) 

r 

As usual, the expression giving the scattering ampli- 
tudef (k ,  ~) in terms of the phase shifts (6t(k)),  

i +~ 
f(k, O l _ -  2x/~,=~oo(e2ia'~k)-l)ei;°, (19) 

is derived by studying the asymptotic behavior 
(r- ,oo) of T~+~(r). Presently, 

ie 2 
e2i6°(/") = 1 -t- ~ -Qo(k ;  0) (20) 

and 

ie ,I  
e2ia'(k)= 1 + ~ - Jt(kr)g21(k;r), (21) 

o 

i f / ¢ 0 .  From (18) one obtains s%(k; 0 ) = 0  for all 
l¢0 ,  as required by the single-valuedness of 
T~+~(r) (see eq. (14) ). On the other hand, for e 2 a 
finite and nonvanishing positive constant, eq. (17) 
turns out to be inconsistent. In fact, after controlling 
the logarithmic singularity in H~ ~) by means of the 
ultraviolet cutoffA one finds [ 1 ] 

_ _  e2 
.Qo(k; 0 )={1  ~ 0  [izt+ 2 l n ( k ) l } - '  . (22) 

Obviously, £2o (k; 0) --,0 as A--, oo. When this result is 
fed back into (17) one obtains, in view ofJ~(0) = l, 
12o(k; 0 ) =  l va 0, which is contradictory. As pointed 
out in ref. [1 ], the lack of self-adjointness of ~=0 is 
at the root of this difficulty. The self-adjoint exten- 
sion of Yt~=o, required to render the theory consistent, 
has been shown [ 1 ] to be equivalent to the introduc- 
tion of the renormalized coupling constant g2, 

g2(M) - In , (23) e2(A) 2~r0 

where M is a subtraction point and the bare coupling 
constant e 2 is taken to be cutoff dependent. Instead 
of (22) one can, then, write 

e2g20(k ; 0 ) = [ g 2 ~  ) 1 ln(M'] ~ ] i  -1 
F£b \ T / -  ~ j  • 

(24) 

In words, as A ~ ,  e2(A)-,O and 12o (k; 0; A ) - , ~  in 
such a way that the product e2g2o(k; 0) remains fi- 
nite. The immediate consequence is that only s-wave 
scattering takes place, as seen from (17) and (18). 
From (17) and (24) also follows that 12o(k; r) has a 
pole located on the positive imaginary axis of the k- 
complex plane. Therefore, this pole signalizes for a 
bound state whose energy can be corroborated to be 

m \ g- / 

The corresponding bound state eigenfunction is found 
by computing the residue of £2o(k; r) at the pole and 
reads 

5v. = ~  Ko(x/--mEB r) . 

Hence, ,~=o has been extended so as to remain self- 
adjoint with respect to square integrable functions 
that are not finite at the origin. We emphasize that 
the attractive character of the delta potential in (16) 
bears no relation whatsoever with the sign of the cou- 
pling constant e 2. 

We now recall that the particles we are dealing with 
are fermions. The scattering amplitude for indistin- 
guishable particles verifying Fermi-Dirac statistics 
(f(k, •)) is constructed from f (k ,  (~) as follows: 

f(k,  ~)=f(k ,  O) - f (k ,  O+n). After taking into ac- 
count eq. (19) one, then, arrives to 

2i f(k, 0)=  - ~ , ~  (e 2'~'~*,- l) e"°. (2S) 

We, therefore, conclude that, within the present for- 
mulation of the quantum dynamics, the electrons re- 
main free. 

We shall next investigate whether an alternative 
formulation of the problem might lead to solutions 
showing the existence of an effective electron-elec- 
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tron interaction. As before, we start by regulating the 
troublesome s-wave in order fo r f (k ,  0) - f ( k ,  ¢+ n) 
to be a mathematically sound operation. After arriv- 
ing at (25) the regulator is removed, but this time the 
coupling constant is not renormalized. Then, all waves 
contributing to f (k ,  ¢~) do interact. From eqs. (13) 
and (16), and since only the s-wave is affected by the 
delta interaction, follows that the lth partial wave ef- 
fective potential is now given by 

UT~(a=O,r) = 1 v2(l ) l = + 1 , + 3 ,  (26) 
mr 2 , . . . . .  , 

where v2(l)=-12-od and a-e2/On.  We, then, focus 
on solving the radial Schr6dinger equation 

1 d (rdf2t (k;r)~+(k2 vZ(l)'~f2,(k;r)= 0 (27)  
r dr \ dr ] \ r: ] 

As we already mentioned, for l¢  0 single-valuedness 
requires ~t (lv, 0 ) = O. On the other hand, bound states 
are to be described by normalizable wave functions, 
namely, f~  dr rl~t(k; r) 12<~,  while scattering 
states must verify the asymptotic condition 

g2/(k; r ) - - , _ / 2  lim ei&(k) 
r~zo 

× c o s [ k r -  ½nl- ~n+6t(k) ] , (28) 

as seen from eq. (18). For negative values of l, 
v: ( l ) >  0, both terms contributing to U~ fr are repul- 
sive and, therefore, only scattering states will be ob- 
served. The solution to eq. (27), verifying the 
boundary conditions, is 

Or(k; r) = e  iat(k) J,(o(kr) . (29) 

By comparing eqs. (28) and (29) one easily finds 
that 

( j  o) 
6z=½nlll 1 -  1 + ~  < 0 .  (30) 

The lack of dependence of 0r on k is not a surprise, 
since (27) is an almost free SchrSdinger equation. 
Furthermore, notice that for I11 >> a,  6t(k) = - ¼na 
= - e 2/4n = constant, implying that the phases of  all 
these partial waves are shifted by the same amount. 
For positive values of l, and such that u 2 (l) > 0, the 
effective potential is still repulsive, although that part 

of V~ -° ( a=0 ,  r) contributing to U~ rf is now attrac- 
tive (see eqs. ( 13 ) and ( 16 ) ). Hence, the solution to 
eq. (27) is again given by (29), but for the phase 
shifts one obtains 

Finally, for l> 0 but with g 2 < 0 the effective potential 
becomes attractive and we can entertain the possibil- 
ity of an electron-electron bound state. To investi- 
gate the existence of bound states, we replace in (27) 
k=ix  and u ( l )= ip ( l ) .  The only normalizable solu- 
tion to the differential equation thus obtained is 
Hi~ ) ( ixr) ,  since 

H~pl)(ixr)~N/i:xre-~r+""/2-i~/4 

as r ~  oo. However, at the origin, 

n/2 

l i m H ~ l ) ( i x r ) ~ 2 i ( ~ s i n [ p l n ( ½ x r ) ] ,  (32) 
r~o \slnn rip/ 

the function does not vanish but rather oscillates with 
ever increasing frequency as r~0 .  The behavior of 
H[p~)(ixr) at the origin shows that, as it happens in 
three space dimensions [ 9 ], the attractive 1/r  2 po- 
tential does not define a consistent quantum me- 
chanical problem. This inconsistency is also present 
in the scattering solutions which are found to read 

12t(k; r) = ½e ia' [H!p l )(kr) +H} d) (kr) l ,  

with 

6~=[ip(l)+ll.½n, (33) 

violating the reality of the phase shifts. The consis- 
tency of the whole approach demands, then, the elim- 
ination of this sector, which can be done by restrict- 
ing a to be less than 1 or, what amounts to the same 
thing, 0> e2/n. To summarize: there exists an alter- 
native formulation of the quantum dynamics gener- 
ated by the CS potential according to which the elec- 
trons interact. However, no bound state of the two 
electron system exists. 

We return now to the general problem defined by 
(12) and ( 13 ). In terms of if-= O/a and of the dimen- 
sionless quantities y=-Or/a, a, f l - m / O  and %~- 
mE,~/O 2, eq. (12) can be casted as follows: 
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02Rnl 1 3R,,~] ~ 
T "q- Y --'~-Y,] -- u~ffRnl "}" ~nl = O, (34)  

where 

l 2 
-e~" -- ½a(1  -- /~)/% ( y )  Ut (a, y) = y-  

od 
- y-5 [ 1 - y K ~ ( y ) ] .  (35)  

A rough analysis based on the uncertainty principle 

leads to the condi t ion 

(Ay)  2 I 07rrl >_-1 (36) 

for the existence of bound  states. A numerical  study 
of the potential U~n- shows that this condit ion is ver- 

ified for several values of a and//. In particular, it can 
be seen to hold for some values of a and fl within the 
region a/f l<< 1, where the field theoretical perturba- 
tive approximation is justified. We are gratefully in- 
debted to Professor J. Lyra for helping us in numeri-  
cally solving eq. (34) for /=1 ,  a = l ,  c~=500 and 
fl= 105. The ground state eigenvalue was found to be 

e o ~ = -  1.19+ 10 -3. A thorough study of the eigen- 
value structure, as well as of the modifications of the 

effective potential  induced by radiative corrections, 
will be presented elsewhere. 

We then conclude that the Chern-S imons  term 
alone is unable to form "Cooper pairs". The presence 
of the Maxwell term provides an stabilizing mecha- 
nism allowing for the existence of "Cooper pairs". 
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