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Improving regular acceleration in the nonlinear interaction 
of particles and waves 

R. Pakter and G. Corso 
lnstituto de Ffsica-Universidade Federal do Rio Grande do Sui, Caixa Postal 15051, 
91501-970 Porto Alegre, RS, Brazil 

(Received 13 February 1995; accepted 27 July 1995) 

In this work one studies the effects arising from the inclusion of a stationary extraordinary mode in 
the resonant interaction of magnetized particles and perpendicularly propagating electrostatic 
waves. It is found that for a stationary mode frequency of the order of the Larmor frequency and 
with a suitably chosen amplitude, one is able to suppress the resonance which drives the weakly 
relativistic dynamics into chaos. Improved regular acceleration of initially low energy particles is 
thus attained. Analytical estimates of the optimal stationary mode amplitude is presented. A detailed 
study of the topological effects due to resonance suppression based on bifurcation analysis is 
performed. The main results are verified with the help of single particle numerical simulations. 
© 1995 American Institute of Physics. 

I. INTRODUCTION 

With the advent of powerful radiation-generation sys­
tems such as free-electron lasers, cyclotrons autoresonance 
masers, gyrotrons and ion-channel lasers, a good deal of ef­
fort has been directed to the study of the interaction of low 
energy particles and large-amplitude waves. I

-
8 Whenever 

wave-particle exchange is likely to occur, particles can be 
highly accelerated, which is of importance in particle accel­
eration and in current drive techniques of controlled thermo­
nuclear research. 

Theoretical models have been developed to investigate 
the interaction of magnetized particles and strong perpen­
dicular waves in cyclotronic systems.6

-
IO In particular, 

Davidson et al. 6 have shown that the nonlinear electron dy­
namics plays an important role in wave-particle coupling. 
They investigated the regular interaction of weakly relativis­
tic particles and ordinarily polarized electromagnetic waves. 
Relativistic mass variation detunes the initially resonant in­
teraction, saturating the energy exchange. The maximum ac­
tion excursion was found to scale with the wave amplitUde 
AI\' as A~3. 

On the other hand, Corso and Rizzat07 have performed 
an analysis based on a Hamiltonian formalism of the regular 
and stochastic dynamics that takes place in a low energy 
cyclotron system as it is perturbed by a perpendicular propa­
gating electrostatic wave. They have found that even for 
small wave amplitudes the low energy electron motion may 
become chaotic, with a subsequent stochastic diffusion of the 
particle beam. They also found that an effective regular par­
ticle acceleration seems to be possible only deep inside the 
weakly relativistic region. 

In the Hamiltonian framework the onset of chaos and 
stochastic diffusion can be weJl understood following the 
Chirikov scenario. I 1,12 Near each of the wave-particle reso­
nances, there appear Kolmogorov-Amold-Moser (KAM) sur­
faces isolating groups of pendulum-like islands surrounded 
by thin stochastic layers. As the wave amplitude increases, 
the islands grow until different groups touch each other, de­
stroying KAM surfaces and causing particles to stochasti-

cally diffuse throughout the phase space. Although the above 
scenario is fairly general, it is not typical of the low energy 
case where the dynamics is dictated by relativistic effects 
and where the major resonance island presents nonpendulum 
behavior. In this case, no homoclinic chaos develops along 
the island boundary since the boundary has a finite rotating 
frequency.13 The onset of chaos for weakly relativistic par­
ticles is mainly due to resonance overlap with the adjacent 
pendulum-like island. 

Keeping all this information in perspective, in this paper 
we will study how one can interfere with the wave-particle 
interaction in order to avoid a premature overlap of the low 
energy island with its adjacent one. If this program can be 
accomplished. the phase space may be regularized, which 
would result in a higher acceleration of particles. We will 
analyze the effects due to the introduction of a stationary 
extraordinary mode in the resonant dynamics of a cyc1o­
tronic system perturbed by transversal electrostatic waves. 
The main idea will be to generate, by means of the stationary 
mode, a resonance that destructively interferes with the 
wave-particle resonance, thereby regularizing the low energy 
region of phase-space. It will be shown that for a judicious 
choice of the stationary mode amplitude the dynamics of 
initially low energy particles can undergo strong modifica­
tions, varying from completely diffuse to regular with highly 
increased acceleration. Numerical results obtained by direct 
integration of the equations of motion will be shown in order 
to test the validity of the method. 

II. MODEL 

Consider a relativistic electron beam immersed in a low 
density, cold, magnetized plasma, with background magnetic 
field given by Bo = B Qz. perturbed both by a transversal elec­
trostatic wave and a stationary extraordinary mode. The vec­
tor potential related to Bo is written as Ao = Boxy. 
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FIG. 1. Maximum action excursion [max vs. the wave amplitude Aw for k= 1 in a log-log graphic. Squares represent values calculated from Eq. (7). The solid 
line is obtained by linear regression. The scaling exponent is found to be a""O.73. 

The electrostatic wave has an amplitude Aw and propa­
gates in the x-direction with wave vector k and frequency 
w". It is assumed to be a magnetized Langmuir wave with 
Debye length sufficiently small that one can consider the 
frequency to be independent of the wave vector. Assuming 
w <S: W co, we have for the wave frequency Wh = w~o 
-:w2-w~O' with wp as the plasma frequency and wco~l.el 
X '0/ me as the nonrelativistic electron cyclotron frequency. 

The stationary extraordinary mode has frequency w x and 
wave vector kxx related to each other by the cold dispersion 
relation. The following expression for the extraordinary 
mode vector potential is assumed: 

eAx ) . ) A 

~=e'[7Jx sin(kxx sm(wxt x mc-

+T/y sin(kxx )cos( wxt)y], 

where e' = E I w x is the mode amplitude, with E the electric 

where energy, momentum, potential vector and scalar poten­
tial are normalized to me2

, me, me21e and elmc2
, respec­

tively. It is readily seen from the Hamiltonian that P y and 
P are constants of motion. As we are considering particles z 
with very low initial energies, we will set P z = 0 and, for 
simplicity, P y = O. Introducing canonical guiding-center vari­
ables, I and 8, related to Cartesian coordinates through 
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field amplitude, and 7Jx and 7Jy are the components of the 
polarization vector. Let us choose the frequency in order to 
satisfy the following relation, w~- w~ ... w;, such that it is 
near the right-hand cut-off frequency. If this is the case, the 
mode is approximately circularly polarized with 
7Jy= -7Jx= 1, and the relation ckxlwx=wplweo<S:l is 
valid. Taking into account the above relation and the fact that 
we will be interested in the low energy particles we can 
safely assume kXrL ~ 1 (with rL as the particle Larmor ra­
dius), which enables one to write A= Ao + Ax as 

;; =Box{ -e sin(wxt)x+[l + e cos(wxt)]y}, 
me 

where e=kxe' / Bo. 
Scaling time and distance to weO and weo/e, the dimen­

sionless particle Hamiltonian is given by 

(1) 

P x= {'ii cos 8, 

x= {'2i sin 8, 

and using the harmonic expansion for Bessel functions, it is 
possible to write the Hamiltonian in the form 
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FIG, 2, Poincare plot for Aw=O.12 and k= 1 with e=O (a) and e=eop =4,632X 10- 2 (b), 

H=~1+21+4el[sin2e cos(wxt)-cos e sin e sin(wxt)] 

+Aw L In(k$I)cos(ne-wht ), (2) 
n= -00 

where the term proportional to 8 2 is discarded. For the 
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unperturbed system (A w = 8 = 0) , e represents the electron 
gyromotion phase, and I the transversal energy pil2. Since 
the differences between the frequencies involved in the 
above system, weo, Wx and Wh, are all of the order of 
w;~ 1, it will be assumed in the following that 
Wh= Wx= WeO (or in adimensional form Wh= Wx= 1). 
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III. ANALYSIS OF THE RESONANCES 

In this section we analyze the resonances in the particle 
motion described by the Hamiltonian (2) derived above. In 
order to make the analysis clearer we will study separately 
the pendulum-like and non-pendulum-like wave-particle 
resonances caused by the electrostatic wave and the station­
ary mode. 

A. Pendulum-like electrostatic wave-particle 
resonances 

Let us by now focus on the perturbations of the particle 
motion due to the electrostatic wave. The appearance of pri­
mary wave-particle resonances is related to each of the har­
monics in the last term of the Hamiltonian (2). Their location 
in phase space can be estimated from d t(n8-t)-O. This 
leads to an approximate expression, valid to zero order, for 
the action at the nth resonance 

n2 -1 
In=-2-' n~2. (3) 

For n = 1 the above relation is no longer valid because for 
small I, terms proportional to Aw cannot be disregarded in 
dl)/,8 leading to several changes in the particles motion. 
This case will be treated in detail in the next sub-section. 

Assuming that the particle trajectory is near to a given 
resonance and that the wave amplitude is small enough that 
contributions of other harmonics can be .safely disregarded, 
the action can be expanded around In and one is able to 
approximate the Hamiltonian expression (2) by a pendulum­
like one 

h(n)([,8)=(G/2)f2-F cos(n8), (4) 

Phys. Plasmas, Vol. 2, No. 11, November 1995 

where [51-In , G=-(1+2In)3/2=-1In3 and 
F= -Awl nCkf2i:.), and a time-removal canonical 
transformation-n 8-t--4n 8, 1-+1 and H--+h(n)=H-I1n 
-has been performed. Analyzing the fixed points in the dy­
namics of the above Hamiltonian we find n hyperbolic points 
and n elliptic points appearing for n()=2m7r, with m~n an 
integer. The character of the points depends on the signal of 
F. 

We can also calculate the maximum action excursion 
around In for particles trapped in the pendulum-like resonant 
island. This quantity, which will be called 
b.I~end 5 I max - In' is relevant in island overlap calculations 
and is found to be 

(5) 

As expected, the maximum action excursion scales as A Ill. w 

B. Non-pendulum-like electrostatic wave-particle 
resonance 

As quoted before, in the low energy case we cannot ne­
glect wave terms even in zeroth order calculation and par­
ticle trajectories significantly differ from a pendular one. To 
see this we analyze the Hamiltonian (2) disregarding the ex­
traordinary mode and taking into account the leading contri­
butions for 1$1. The important term in the summation (2) is 
the one with n = 1. Performing a time-removal canonical 
transformation-8-t-+8, 1--+1 and H-+h(I)=H-I-the 
Hamiltonian assumes the form 

h(l)(I, 8) = ~1 + 21 - 1+ Awll (k fii)cos 8. (6) 

This Hamiltonian has been extensively studied in the limit 
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FIG. 4. Poincare plot for A.-=O.4 and k= 1 with e=O (a) and e="eop '"' 1.544X 10- 1 (b). 

l~ 1 in Ref. 13. Trajectories described by (6) may be either 
trapped or untrapped. Trapped ones present a triangular 
shape instead of the typical pendulum-like one. 

Particles that initially have very low energies (l = 0) will 
evolve in time along the boundary which separates trapped 

4316 Phys. Plasmas, Vol. 2, No. 11. November 1995 

and untrapped trajectories. Analyzing their dynamics one 
concludes that during the very beginning of motion these 
particles will rapidly migrate to 8= 11'/2 generating a bunch 
there. This happens because of the term proportional to 
cos 8 Iii that appears in the equation dt 8= ah( 1)/ ai. The 
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• Initial 

conditions are 1= 10-2 and phases homogeneously distributed over 0< O<21T. 

value of the Hamiltonian along the boundary is h(1)U, fJ) 
= 1, so the maximum action excursion, I';zax, for these par­
ticles can be calculated by the following equation 

~ 1 + 2I'nax - Imax + A J (k ~2Imax) = 1 1 1 w 1 1 , (7) 

which gives the maximum I value on the boundary. 

Phys. Plasmas, Vol. 2, No. 11, November 1995 

In Fig. 1 Ifax vs. the wave amplitude Aw fork= 1 is 
presented in a log-log graphic. The value of k was chosen in 
order to have a dynamics of the relativistic type, which 
means that the agent responsible for the nonpendulum island 
saturation is in fact the relativistic mass variation (the non­
linear term ~ 1 + 2J in the Hamiltonian) and not the roots of 
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J 1 (k .j'Z!). 7 From the figure it can be verified that even for 
not so small amplitudes [Tax scales with Aw as [Tax-A~. 
The value of a was found to be approximately given by 
a=O.73. This value seems to depend only slightly on k, 
since we are deep inside the relativistic regime. 

The analysis made in the previous paragraph is, of 
course, of no physical meaning if we are dealing only with 
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the electrostatic wave perturbation. This is so because even 
for small values of Aw the overlap between the first (n = 1) 
and the second (n = 2) resonant islands is likely to occur, 
invalidating the above analysis. In fact, a condition for reso­
nance overlapping concerning these islands is written as 

(8) 

, I 
I 1\1 

I r 
I (a) t 
I 
t 
I 
I 
I 
I 
I 
I 
I 
f 

\ I , 
\(1 , 

I 
\ 
\ 
\ 

t 

(b) 

------
----, 

0.0 20.0 40.0 60.0 80.0 100.0 
t 

FIG. 6. Bunching dynamics of 250 particles as initial action value 10 is varied for a fixed Aw=0.5. Solid lines correspond to 10= 10- 3, long dashed lines to 
10= 10- 2 and da§hed lines to 10 =4 X 10- 1• Graphics (a), (b) and (c) show the time evolution of the mean action (I), the action variance v /==(l2} - (/)2 and 
the bunching parameter modulus Ibl""l(eiO}L respectively. 
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FIG. 6. (Continued.) 

Isolating flax as a function of Aw in the above expression 
and using it in Eq. (7), we find a closed equation for the 
wave amplitude threshold, Aw.th' above which resonance 
overlapping between the first and second islands occurs. For 
k= 1 we find A w•th =0.135. As expected, the analysis does 
not seem to be valid. However, as will be shown in Sec. IV, 
the introduction of a stationary extraordinary mode reduces 
second island amplitude, preventing the premature overlap 
and improving the regular energization of particles. 

C. Stationary mode-particle resonances 

In order to study the resonances caused by the stationary 
mode, let us take Aw=O and expand the Hamiltonian (2) for 
small e. Considering only first order terms, we have 

ef 
H= -/1 +21+ v'T+2I[cos t-cos(2B-t)J. 

1+21 
(9) 

The only perturbing term that resonantly interacts with the 
particles is the one containing the harmonic 2 B - t. The other 
has no expressive influence in any part of the phase space. 

The stationary wave-particle resonance thus appears for 
dtB~ 112 and is a pendulum-like one, with G= -1123 and 
F=efz/·JI+2Iz in Eq. (4). The same considerations pre­
sented in Sec. III-A concerning pendulum-like resonances, 
with n = 2, are applicable in this case and will not be dis­
cussed again. 

IV. RESONANCE SUPPRESSION 

From what has been discussed, we see that what is 
mainly responsible for the chaotization of low energy dy­
namics is the overlap of the n=2 electrostatic wave reso-

Phys. Plasmas, Vol. 2, No. 11, November 1995 

nance with the n = 1 nonpendulum resonance. Moreover, we 
see that the main contribution of the stationary mode occurs 
at the same location of the phase-space as the one occupied 
by the second resonance. So, in this section, we will analyze 
how we can use the stationary wave-particle resonance to 
destructively interfere with the second electrostatic wave­
particle resonance and find the effects of this resonance sup­
pression. 

Let us begin by analyzing the optimal stationary mode 
amplitude, e op' in order to suppress the second electrostatic 
wave-particle resonance. Comparing the perturbation ampli­
tudes of the electrostatic wave, Eq. (4), and the stationary 
mode, Eq. (9), for 1=12' we can obtain an approximate 
value for eop as 

(10) 

Although at first glance the resonance suppression, as it is 
presented here, seems to lead to a complete cut out of the 
resonance, it actually leads to much more involved effects to 
be discussed next. 

To better understand the effects of the resonance sup­
pression, one can analyze the dynamics of the particles near 
the second resonance by studying the dynamics of the fixed 
points of the island as e is varied. In order to do so, let one 
rewrite the pendulum-like Hamiltonian (4), now taking into 
account the influence of the stationary mode and also keep­
ing linear terms of j = I - 12 in the perturbation. The impor­
tance of the inclusion of linear terms in j will be apparent. 
The Hamiltonian takes the form 
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(II) 

where ai and f3i are the coefficients of the Taylor expansion, 
around 12 , of J 2 (k J2"i) and of II ~ 1 + 21, respectively. The 
equations of motion are given by 

d/== 2[Aw( ao+ aJ) - e(f3o+ f3 1i)]sin(2 0) 

2.0 

1.5 

<I> 

1.0 

0.5 

and 

dtO= Gi + (Awal - ef3I )cos(2 0). 

The fixed points are those which satisfy dtO=dti=o. 
Usual fixed points. From the above equations, one con­

cludes that, similar to the case e = 0, usual pendulum-like 

(a) 

0.0 ~--~--~----~--~----~--~----~--~--~----~ 
0.0 20.0 40.0 60.0 80.0 100.0 

t 

(b) 

10.,'3 

0.0 20.0 40.0 60.0 80.0 100.0 
t 

FIG. 7. Bunching dynamics of 250 particles as wave amplitude Aw is varied for a fixed 10= 10- 2• Solid lines correspond to Aw=0.45 and dashed lines to 
Aw=O.72. Graphics (a), (b) and (c) show the time evolution of the mean action (I}, the action variance V/=([2) - (/}2 and the bunching parameter modulus 
Ibl==l(e iO>!, respectively. 
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FIG. 7. (Continued.) 

fixed points (UFP) appear for 20UFP =m7r and [UFP 

= -S(AwCXl-s{31)/G, where m= 1,2 and s=cos(m7r)=±l. 
In order to analyze their stability, one calculates the matrix 
eigenvalues A UFP of the linearized motion around the UFP's. 
If the eigenvalues are real the surrounding orbits have an 
expanding direction and a contracting direction, thus the UFP 
is hyperbolic. Otherwise, the surrounding orbits circulate 
around the UFP which is therefore elliptic. It is found that 

AUFP= ±2~G(Awcxo-s{3o)s-(AwCXl- e(31)2. (12) 

Unless the stationary mode amplitude is near the optimal one 
(which means A wcxo""'s{3o) the leading term in the square 
root is the leftmost one. So, as· in the pendulum case, the 
stability of the UFP's is governed by the value of s and half 
of them are hyperbolic, half are elliptic. For s small com­
pared to Aw the elliptic ones are those for which s = + 1, 
otherwise the s = - 1 are stable. 

If, on the other hand, 13 is near its optimal value, such 
that the condition 

I I I
(AwCXI-e{31)2\ 

Awcxo- e {3o < G (13) 

is satisfied, AUFP is always imaginary and all the UFP's are 
of the elliptic type irrespective of s value. 

Extra fixed points. A more detailed inspection of the 
equations of motion for [ and 0, reveals that an extra set of 
fixed points, which shall be called EFP, may appear. If the 
condition (13) holds, a different set of real roots of the mo­
tion equations are found for iEFP= -(AwCi!o-s{3o)! 
(Awcxl-e{3l) and 2 OEFP= cos-1[G(Awcxo-e{3o)/(AwCi!] 
-8,81)2]. For increasing 8 these points are initially located 
at the sanIe position occupied by the unstable s = - 1 UFP. 
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Then they start migrating in the direction of the s = + I UFP, 
colliding with them and being extinguished. Analyzing the 
EFP stability one finds that the matrix eigenvalues AEFP are 
always real during the existence interval of the fixed points. 

, The dynamics of the fixed points can be summarized as 
follows. As one varies 8 from very small to very high values 
compared to Aw the UFP's initially present a typical 
pendulum-like behavior where the s = + 1 points are stable 
and the s = - I ones are unstable. During the resonance sup­
pression, the unstable UFP's go stable, originating the un­
stable EFP's (note that at this moment all UFP are stable). 
The latter then travel in the direction of the s = + 1 UFP's, 
colliding with them and being extinguished. In the collision, 
the s = + 1 UFP's become unstable and the scenario turns 
back to the pendulum one, now with exchanged elliptic and 
hyperbolic points. Thus, by suppressing a resonance one is 
not simply turning off a resonance. On the contrary, one is 
stabilizing all major pendulum-like fixed points of the cho­
sen resonant island, interfering in the mechanism of ho­
moclinic intersection and leading to a suppression of chaos 
in the neighborhood. 

Let us now estimate the maximum value of the wave 
amplitude, A:ax , above which we can no longer attain regu­
lar acceleration even for optimal stationary mode amplitude. 
During the resonance suppression the second island does not 
completely disappear (it just changes its shape), so we can 
estimate the maximum [ excursion for a trapped particle, 
I1I~up. When we have 13 = 13 op' terms independent of [ in 
Hamiltonian (11) cancel each other (Awcxo= e op{3o) and the 
equation of the boundary is [= 2(A wCi!1 - eopt:h) cos(2 fJ)!G 
and [=0. Thus, the maximum excursion is given by 
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1

2(Awal-eop/3I)1 
M~up = --'--'---,-----"-"-'--

G 

=16A W ( 2~[JI-J3]- ~:[ 1- (l:~/2)ll, (14) 

where Eq. (10) has been used and the argument of the Bessel 
functions Ji is k -J2i;. Using I1/~up instead of I1/~end in the 
overlapping condition Eq. (8), isolating 1 max and using the 
result in Eq. (7) we find a closed formula to compute 
A :ax . For k = I it is readily found A :ax = 0.68, which leads 
to an energy y~ 1.8, with r as the relativistic factor. 

V. NUMERICAL VERIFICATIONS 

Up to the present point, we have made a number of 
analytical estimates concerning the global behavior of the 
system we are studying. Now, we will verify the accuracy of 
our analytical estimates with a series of numerical integra­
tions of the particle orbits. 

Let us begin by analyzing the behavior of the second 
island as we introduce the stationary extraordinary mode. In 
order to do so we study a small amplitude case, where the 
structure of the islands is not too deformed. In Fig. 2, the 
Poincare plots of the same system are compared without 
[Fig. 2(a)] and with [Fig. 2(b)] the stationary mode for 
A w=0.12. It is readily seen from Fig. 2(b), where 
e = e op = 4.632 X 10- 2, the efficiency of chaos suppression 
in the low energy part of phase-space. 

It should also be noted in Fig. 2(b) the presence of the 
EFP's and the fact that all the UFP's appearing for 
0= (m7r)I2, whatever the value of m, are elliptic points. The 
dynamics of the fixed points is shown in more detail in Fig. 
3. By means of a Newton-Raphson algorithm14,15 the dy­
namical periodic orbits (fixed points in the Poincare plot) are 
followed and their linear stability determined as one varies 
e. Stable periodic orbits are represented by solid lines, while 
unstable ones by dotted lines. One can notice a great agree­
ment between the fixed point dynamics presented in this fig­
ure and that described in Sec. IV. The resonance suppression 
interval (the interval of existence of the EFP's) is approxi­
mately eE[0.041,0.053] which is in good agreement with the 
predicted optimal value. 

Now let us tum to the case of higher wave amplitude, 
where large acceleration of initially low energy particles is 
expected to occur. In Fig. 4, the Poincare plots of a system 
are again compared without [Fig. 4(a)] and with [Fig. 4(b)] 
the stationary mode. Now the amplitude is Aw = 0.4. For 
e = 0 [Fig. 4(a» a completely chaotic phase-space is pre­
sented. All major stable fixed points of both the first and 
second resonant islands have already undergone infinite cas­
cades of periodic doubling and are not present. In fact, no 
structure is apparent anymore. One can expect some rela­
tively fast particle diffusion for this deep stochastic regime. 

On the other hand, in Fig. 4(b), when the stationary 
mode is turned on with an optimal amplitude 
e=eop = 1.544 X lO-1 the Poincare plot is dramatically 
changed. Some stable fixed points of the first two islands are 
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again present. The whole structure of the first nonpendulum 
island is restored, which leads to high regular acceleration of 
initially low energy particles. 

In order to verify the bunching effect and the accelera­
tion that takes place, in Fig. 5 the phase space of 200 par­
ticles after a time t = 45 is shown. Particles initially have low 
energies (/o==I(t=O) = 10- 2) and are uniformly distributed 
over 0< (}<27r. In Fig. 5(a), e = O. A stochastic heating with 
spreading of the beam occurs in this case. For e = e op. Fig. 
5(b), the presence of a bunch with Imax= 1.1 is found. This 
acceleration corresponds to an energy y= 1.78. 

From all comparisons made up to the moment, one may 
be already convinced of the acceleration improvement ob­
tained as the stationary extraordinary mode with an ampli­
tude e op is introduced. Thus, from now on we will focus on 
the analysis of the bunch dynamics that takes place for 
e = eop calculated from Eq. (10). In order to perform this 
analysis, we integrate the trajectory of 250 particles that ini­
tially have the same action value 10 and are uniformly dis­
tributed over 0 < 0< 2 7r and compute the average action 
value (I), the action variance v /= ([2) - (/)2 and the bunch­
ing parameter modulus [b[ == l(e i8)1 as a function of time, 
where < > means average over particles. We recall that the 
bunching parameter is defined such that 0 ~ I b I ~ 1 and it 
assumes its minimum value I b I = 0 when angles are spread 
out (0 uniformly distributed along 0 and 27r) and its maxi. 
mum value Ihl = I when they are all the same (completely 
bunched state). 

First we analyze the bunch dynamics as the initial action 
10 is varied for a fixed value of the wave amplitude Aw. 
Results obtained for Aw=O.5 and three distinct values'of [0 

are presented in Fig. 6. Figures 6(a), 6(b), and 6(c) show the 
time evolutions of (I), v I and I b [, respectively. The presence 
of three different regimes is noted. In the first one, 
[0 = lO - 3 (solid line), the bunching is actually formed in the 
very beginning of the dynamics as can be appreciated in Fig. 
6(c) and it is maintained throughout the integration period 
[Fig. 6(b) and 6(c)] during which it keeps revolving along 
the first island boundary. In this case, particles continuously 
gain and lose energy from the waves in a quasi-periodic fash­
ion with (I) [Fig. 6(a)] presenting peaks of alternating height 
(as A w is decreased, these peaks height differences also de­
crease). Each time that (/)-+0, dtO increases greatly and 
particles spread out, but rapidly bunch again keeping a dy­
namic of the regular type. The second regime with 
10= lO- 2 (long dashed lines) initially has the same charac­
teristics as the previous one with a bunch formation and an 
almost periodic bunch-wave interaction. In fact, in the begin­
ning the time evolution of (I) is very similar in both cases. 
However, as time evolves the bunch starts to spread out si­
multaneously with the onset of particles diffusion, breaking 
the regular acceleration. The interruption of the bunched dy­
namics takes place because particles are not strictly evolving 
along the first island boundary, since lois non vanishing. So, 
unless we are in an ideal case where 10= 0, we may always 
expect an interruption of the bunched dynamics for a given 
time tint. By this point of view, the two regimes are actually 
the same, with the only difference that in first one tint was 
greater than the integration time. Of course, it suffices for an 
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FIG. 8. Maximum action excursion [max VS. the wave amplitude Aw for k= 1 and s=sop in a log-log graphic. Squares represent values obtained by 
numerically integrating particle trajectories and the solid line the ones calculated from Eq. (7). 

improved regular acceleration that tint is of the order of the 
period of the bunch-wave interaction. Finally, for 
Io=4X 10- 1 (dashed lines) we find the third regime where 
no bunching process seems to occur. Particles experience a 
chaotic diffusion from the beginning of their dynamics in 
this case. 

We now analyze the bunch dynamics as the wave ampli­
tude AIV is varied for a fixed value of the initial action Io . As 
before, in Figs. 7(a), 7(b) and 7(c) the time evolutions of (I), 
VI and ibi, respectively, for the case 10 =10- 2 are shown. 
Solid lines represent the case A IV = 0.45 where we identify an 
initial bunching formation with a quasi-periodic bunch dy­
namics throughout the integration period. Comparing these 
results with those presented in Fig. 6 for Aw=O.5 and 
Io= 10-2 (long dashed lines) one realizes that as Aw is in­
creased, tint decreases. This behavior is valid until a certain 
value for the wave amplitude is achieved and above which 
regular acceleration can no longer be attained. Dashed lines 
in Fig. 7 represents such a case. For Aw=0.72 no bunch 
seems to be formed. iVthough Fig. 7(c) shows us that an 
effective bunching occurs for particles angles, Figs. 7(a) and 
7(b) proves that particles are, in fact, undergoing a chaotic 
diffusion process. This value for Aw is in good agreement 
with the analytical calculations done in the last paragraph of 
the previous section, which estimated the maximum wave 
amplitude above which we can no longer attain regular ac­
celeration as A max"'0.68. 

The above analysis on bunch dynamics for optimal sta­
tionary extraordinary mode amplitude s = sop can be sum­
marized as follows. For nonideal cases with Io 1= 0 regular 
dynamics will always present a typical interruption time 
above which bunched dynamics is broken. The interruption 
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time decreases with Aw and increases with Io. Thus, in order 
to impose an effective particle acceleration, it is necessary to 
decrease Io to compensate interruption effects arriving from 
growing wave amplitudes. This cannot proceed beyond 
A w = A max' where regular acceleration is no longer present, 
even for Io=O. 

To conclude the numerical verifications we show in Fig. 
8 the maximum action excursion vs. the wave amplitude for 
the case s = sop, computed by direct integration of the tra­
jectory of an initially low energy particle (/0= 10-2). We 
compare these results with those obtained from Eq. (7) in a 
log-log graphic. A good agreement is obtained. The distur­
bances from the monotonical variation in the numerical data 
are due to bifurcations of secondary chains internal to the 
first island. 13 

VI. FINAL REMARKS AND SUMMARY 

The simulation results presented above indicate that one 
may really improve particle acceleration by introducing a 
stationary extraordinary mode in the nonlinear interaction of 
magnetized particles and perpendicularly propagating elec­
trostatic waves. The presence of smooth longitudinal inho­
mogeneities in the system (caused, for instance, by inhomo­
geneities in the background magnetic field) were not taken 
into account. We believe that the resonance suppression 
would not be qualitatively modified by the inclusion of such 
effects, 'since the formalism is built on the action, which is an 
adiabatic invariant. 

The inclusion of beam-beam interaction in an-particle 
formulation (that seems to be more appropriate if one is deal­
ing with not too tenuous beams) would lead to the onset of 
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Arnold diffusion along the two-dimensional phase-space 
resonances, affecting the regular acceleration. However, the 
rate of particle loss due to Arnold diffusion is very small, 
enabling one to disregard its effect for typical acceleration 
times. 

In conclusion, we have analyzed the effects of introduc­
ing a stationary extraordinary mode in the nonlinear interac­
tion of particles and transversal electrostatic waves. It has 
been found that by suitably choosing the stationary mode 
amplitude, one is able to suppress the resonance responsible 
for the chaotization of low energy dynamics. A detailed 
analysis of the topological effects of the resonance suppres­
sion is done. We present analytical estimates of the optimal 
stationary mode amplitude and the maximum acceleration 
attained. The main results are tested by numerically integrat­
ing particle trajectories. 
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