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THE THIRRING MODEL FROM THE XXZ HEISENBERG CHAIN SCHWINGER TERMS 
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The propertes of the Thirring model solution obtained from the XXZ Heisenberg chain are computed exactly using the Bethe 
Ansatz. The fermion fields, vector current, axial anomaly and equal-time current commutators are constructed explicitly on the 
lattice and then its continuous limit is obtained. An explicit coupling constant dependence is found for the Schwinger term. This 
result, together with the current correlation behavior and the conformal weights of the fields here, shows that this Thirring model 
solution is new. That is, it is a spin ~ solution not contained in previous families of continuous solutions. 

In spite of  its wide success to solve exactly a large 
set of  interacting QFT ¢2, anomalies are usually out- 
side the scope of  the Bethe Ansatz (BA) and its gen- 
eralizations. In the present note we find the Schwin- 
ger term and investigate related properties of  the 
massless Thirring model using the BA method on the 
lattice. Our starting point is the XXZ  Heisenberg 
model which yields the Thirring model in the contin- 
uum limit through the Jordan-Wigner  transforma- 
tion [41. 

The XXZ Heisenberg hamiltonian for a chain of  N 
spins is given by 

1 ~; 
x x +O'nO'Tt+l H x x z = - ~  2 (~.~,,+, " ' +~f ,05+,)  

n=l 

(1) 

Here a,~ (a = x, y, z; 1 ~< n ~< N) are Pauli matrices act- 
ing at the nth site, 7 is the anisotropy parameter and 
a the lattice spacing. The factor a -  ~ has been intro- 
duced to give mass dimensions to the hamiltonian. 

The Jordan-Wigner  transformation expresses lat- 
tice fermion operators in terms of  spin ½ operators 

N - - I  N 1 

0,, =i"a,7 1-I a7 , 0 ,  + =1  . . . .  tYn+ 17 a j .  (2) 
/=1 /-1 
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They fulfill canonical ant icommutat ion relations. 

{0~, 0;,}=6 ...... {~., 0,~}=0. (3) 

The XXZ hamiltonian ( 1 ) is written in terms of  these 
lattice fermions as [ 4 ] 

H x x z =  [ _ 1 .  , 0,,) -- ~l(0n~)n+ i --Otn+l 
a n=l 

- J  (0,*,o,, - ½ ) ( G + ,  0, ,+,  - ½ ) ] • ( 4 )  

The resulting lattice equations of  motion are 

0o0,, = i  [Hxxz,  0,,] = - ( 1/2a)0, ,+,  - 0,,- ~ ) 

-(id/a)O,,[1-O*,_,G 1 --~)~n+10n+l] • ( 5 )  

It is convenient to consider the 0n as Kogut -  
Susskind fermions. That is, we set 

gJl (m)  = ( 2 a ) - ' / 2 0 2  .... 

g-'2 ( m ) =  (2a)  -1/2 02,,,+ i (6) 

for the two components of  the fermion. 
After a trivial phase redefinition ~--, 

exp ( -  2iAxo)gJ, the cont inuum limit for the hamil- 
tonian follows straightforward: 

Hxxz = f (ix [ - i( 'P~ 0,. ~/2 + ~rY~ 0~: ~'/1 ) lim 
a~O d 

- 2g~l* 7J~ ~, ~u21 =HTM (7) 

and for the equations of  motion 
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i~T=gT"L,  5 v , (8) 

where x =  na, g=-- - 2 A  is the Thirring coupling con- 
stant and the Dirac matrix representation used here 
reads 

7o-- -0  .3 , 7 l = i a  2 , )25=~2°~21=GI . (9) 

That is, the vector current components  are 

jo  = Tit ~P, + T~ ~P2, J '  = Tl* T2 + T~ ~gtl (10) 

in the cont inuum limit. 
Let us find the lattice version of  this vector cur- 

rent. We define 

Jo(n)  ( 1 /2a)  (¢~¢~,, * = +¢~,,+~0,,+ 1) 

= ( I / 2 a ) [ 1  +½(a~+0 .~+ , ) ]  . (11) 

Then, we get from eq. (4) 

O o J o ( n ) = + ( 1 / 2 a ) [ J l ( n - 1 ) - J , ( n + l ) ]  (12) 

o r  

OoJo(n )+A~J l (n )=O , 

where 

Jl (n) - ( 1 / 2 a )  (0~0,,+ 1 + 0,*,+, 0,,) (13) 

and 

A ~ A ( n ) - ( 1 / 2 a ) [ A ( n + l ) - A ( n - 1 ) ]  . (14) 

Therefore we have an exact conserved vector current 
on the lattice (Jo(n) ,  Jt (n) ). 

Notice that the associated conserved charge is just 
the z-component  of  the total spin. 

1 N 
Q =  E,, Jo (n )=  ~aa .~ a~,+ 2~" (15) 

When a ~ 0  the current conservation equation reads 

OOJo(X ) -'}- f ) l J l  ( x )  = 0  (16) 

as it should be. In the cont inuum limit the present 
lattice construction becomes manifestly relativistic 
invariant as one sees from eqs. (7),  (8) and (16).  

The cont inuum Thirring model usually possesses 
in addition a conserved axial current J ~ ( x ) =  
e,,.J"(x) [5]. 

Its lattice version is not conserved here for a > 0. 
We find from eq. (4) 

OoJ, (n )  +A,.Jo(n)  

x x y v = --  ( A / 8 a 2 )  (o , ,o ' , ,+1  + 0 . n o ' ) , +  J ) (0 .~ -1  - a ~ + 2 )  , 

(17) 

a clearly non-zero result. 
The current-field commutators  on the lattice fol- 

low from eqs. (3),  ( 11 ) and ( 13 ): 

[Jo (n),  0,,,] = - ( 1 /2a )  (5,,,,, +(5 ...... , )0 .... 

[J l (n) ,¢) , , , ]=-- (1 /2a)(c~ , ,mOm+,+6 ...... l~)m I ) .  
(18) 

From eqs. (6),  (18) we find in the continuum limit 
the canonical result 

[Jo(x),  ~ ( y )  ] = - c ~ ( x - y )  ~ ( y ) ,  

[J, (x),  ~P(y) ] = - ~ ( x - y ) ? S g J ( y )  . (19)  

The integrable XXZ chain possesses an abelian 
gauge invariance on the lattice [ 6 ]. That is the gauge 
transformed hamiltonian 

1 A' 
exp( - io~ ,+  ~ a~,+, ) H [ o ~ ] -  4a,,=j 

x • i' i' × [a,,a,,+ ~ + a,,a,,+ 1 +Aa~a~+ l ]  exp (ia,,+ ,a~+, ) 
(20) 

has the same spectrum as the original one [eq. ( 1 ) ] 
for any choice of  the gauge parameters 

o ~ -  ( o ~ ,  % . . . .  , o ~ , . )  . 

Moreover, the effect of  the gauge transformation is 
identical to a twist 

N 

~ =  Z ~s (21) 
/=  I 

in the boundary conditions [2].  That is 
+ 

ax+ l =exp (  _+iqb)a( ,  0 . 7 v +  1 = 0 . 1  . 

Upon the fermionization (2) the gauge trans- 
formed XXZ hamiltonian (20) becomes 

H[a¢] = H [ O ]  

1 .,v 
. 4- i 

+ 2a ~ (a,,O,*,+,O,,+a,,OnO,,+l) , (22) 

where 

a,,-= sin (2c~,,+ ~) +2i  sin2 (c6,+ l ) . (23) 
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In the cont inuum limit this is equivalent to a stan- 
dard U ( 1 )  gauge transformation on the Thirring 
fields ga(x)-- ,ga(x)  exp[ i2(x)  ] which adds an extra 
term to the lagrangian: 

5P[2(x) ] = 5a[0] +i~P(~2) ~U(x), (24) 

where 2' (x) = l i m ( a , / a )  f o r x = 2 n a .  

Therefore, the lattice gauge transformation [eq. 
(20) ] on the XXZ chain becomes a usual U ( 1 ) gauge 
transformation on the (cont inuum)  Thirring field 
~ (x ) .  Notice that 2 (x)  is a c number  time indepen- 
dent function. So, coupling the Thirring model with 
a pure gauge electromagnetic field leaves the physics 
clearly unchanged when N =  oo. 

Let us now consider the current commutators .  At 
equal times we obtain them on the lattice from eqs. 
(11),  (13) and (3),  

[ jO(n),  j1 (m)  ] = ( 1/4a 2 ) (~ ...... +1 - ~  ...... 1 ) 

×(O*,, ,+,O,, , -h.c.)  

= ( i /8a2)  (a ..... + 1 - - 6  . . . . . .  1)  

• .v l' /' × (a,,,a,,,+ ~ + a>,,a>,,+ 1 ) , (25) 

[ J ° (n ) ,  J ° ( m )  ] = 0 ,  (26) 

[ J l ( n ) , J l ( m ) ]  

(1 2 * = / 4 a  ) ( 6  ...... +1¢,,,+2{,b,,, 

- f i  ....... , G*,,+, ~,, ~ - h . c . )  . (27) 

We find that the equal-time commutators  on the 
lattice are operators. The cont inuum limit is a subtle 
point. 

The ETC (25) in the a--,0 limit has the form 

ic~' ( x - y )  (cr;;,{r;,,+ 1 + a~',, a~;,+, ) , (28) 

where x =  2na and y = 2ma.  The vacuum expectation 
value (VEV) of  the operator in the RHS will be o f  
order one even for a--+0 and N - , m .  Its expectation 
value on excited states can differ by contributions of  
order 1 /N from the VEV. Therefore, it is enough to 
compute the VEV and then let N ~ m  and a--+0. 

The expectation value of  the commutators  ( 2 5 ) -  
(27) in the ferromagnetic (bare) vacuum 

1 1 1 
/ 2 = ( 0 ) ® ( 0 ) ® _ . ® ( 0  ) (29 ,  

is clearly zero. £2 is the ground state for A> 1. When 

A < 1 the ground state is antiferromagnetic and it has 
been constructed exactly by Bethe Ansatz ~2 

The eigenvalues E ( A )  of Hxxz [eq. ( 1 ) ] are ex- 
plicitly known for N =  oe (finite N corrections can be 
found in refs. [2,7] ). 

Let us relate the VEV ofeq.  (25) with the ground 
state eigenvalue of  Hxxz. Since the ground state is 
translationally invariant 

( 1 / 2 a ) ( O l e G a , , + l  ' ~' + A a ~ +  10) _ ,, x 3 t -  ~ ) z  Gn + l I 

= N - I E ( A ) .  (30) 

Moreover [ 8 ] 

~JE OH 
oJ - ( 0 1  ~ Io)  

1 N 
- - 2 a ( 0 1  2 a{a, ,+~10)  

n ~  1 

= - ( N / 2 a )  (010"nO'n+ 110) . (31) 

Therefore, 

Z ( p ) / ~ = -  ( 0 l ~ a , ' i + l  +a~ia~;+ j 10> 

= - ( 2 a / N )  [ 1 - A ( O / O A )  ] E ( A ) ,  (32) 

where A = - cos #, 0 < p < zc. 
This completes partial results of  ref. (9).  The 

ground state energy writes for N =  oo within our nor- 
malization ( 1 ) 

E ( A ) = ( N / a ) [ ½ C O S l ~ - 2 ( s i n l x / p ) Y ( l O ]  , (33) 

where [ 10 ] 

Y(/~)= dy 1 -  th (zry/Iz) " (34) 
0 

We find from eqs. ( 3 2 ) - ( 3 4 )  

Z ( ~ )  _ _ 2  s i n 2 ~ - 2 p  y(/~) + 2cos/~ OY (35) 
/z 2 sin/t /~ @ ' 

and now the conimuum limit of  the Schwinger term 
results from eqs. (25 ), (28) and (32) 

[ J ° ( x ) , J ' ( y ) ] = ( i / z O Z ( ~ ) a ' ( x - y ) .  (36) 

The expansion of  Z(/~) around /z= ½~ (where the 
XXZ chain becomes a free model)  reads 

~2 See e.g. ref. [2]. 
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Z( / t )  = 1 -  17 4 _,  (w+ ( / t -  ½~)~+O(/t- ½~) ~ 

(37) 

Let us now consider the space-space commuta tor  
(24).  It can be recast using eq. (2)  as 

[ j l ( n ) , j l ( m ) ]  

= ( i / 8 a 2 ) ( 8  ...... + ~ 6,,, --~n ..... ~6,. ~),  (38) 

where 

S - a ' " ~ ' " + i a  m+2 tx,--~v~ (39) 

Since the AF ground state is invariant under rota- 
tions around the z-axis 

<OlS,.IO) =o.  

Hence, in the N =  oo limit 

[ j l  ( x ) ,  j l  (.12) ] = 0 .  

(40) 

(41) 

We can also compute  the chiral anomaly from eq. 
(17) 

et'"Oi, J , ( x )  

A 
x v l '  I '  = l i m  lim - (Ol(ana , ,+ t  +cr),a+.+l) 

× (a~_i - a ~ + , ) 1 0 )  . (42) 

We know that I 0 ) is invariant under the action of  the 
operator [3,7 ] 

N 

X =  1J a~,  X I 0 ) = 1 0 ) .  (43) 
n =  1 

Since the operator in the RHS ofeq .  (42) anticom- 
mutes with X 

e1'vc~1,J,(x ) = 0  (44) 

(when N =  oe). 
Let us now analyse the obtained results. The space- 

space [eq. (41) ] ETC of  the current vanish as in the 
cont inuum solutions of  the Thirring model [5].  
However, our Schwinger term [eq. (36) ] depends on 
the coupling constant g ( g =  2 cos/ t )  in a non-trivial 
way. This is not the case in the cont inuum solutions 
[ 5 ] where one finds Z-= 1 for all values of  the cou- 
pling. That is, the value we find only when g = 0 .  Let 
us now see that one cannot  explain this fact by as- 
suming that our vector current J~,(x) and the one in 

the cont inuum construction ( ju(x) ofref. [ 5 ] ) differ 
by a coupling dependent normalization. 

9 
J ~ ( x )  - x / Z i / t )  j¢ , (x )  . (45) 

The long-distance behavior of  the equal-time Jo (n)  
correlations is exactly known [ 11 ] 

1 
( O [ J ° ( n ) J ° ( O ) [ O )  = 

. . . . . . . .  8 ( n - - / t ) 2 X  2 

+ higher orders .  (46) 

The cont inuum construction yields [ 5 ] 

( 0 I jo(x) jo(O ) ] O) = - 1 / 2 ~ 2 x  2 . (47) 

We see that both results coincide a t / t=  ½zc. For/t  ¢ ½~ 
the mismatch cannot be explained by a finite renor- 
malization x /Z( / t )  [eq. (45 ) ]  since a look at eq. 
(37) shows that 

Z ( / t ) ¢ l / 4 ( 1 - / t / g )  2 f o r / t ¢  ½~r. (48) 

A further argument follows from the current-field 
commutator .  We see from eqs. (18) that they have 
canonical values in our construction as in the contin- 
uum one [5 ]. 

This excludes a relation like eq. (45).  
Let us now discuss the fermionic field at the light 

of  conformal invariant theory. 
From ref. [ 5 ] one reads its conformal weights 

s = h - f i = ½  , 

x = h + h =  ½ + g ~ / 4 ~  2, (49) 

where gK is Klaiber's coupling constant for the con- 
t inuum Thirring model ( g ¢  gK, in general). 

The conformal weights of  the spin field in the six- 
vertex model or XXZ chain are known from refs. 
[13,141 

x =  1 /8 (1 - / t /T r )  +½ ( 1 - / t / ~ ) .  (50) 

Notice that such conformal weights are not realized 
by physical Bethe Ansatz states [ 14 ]. Moreover, we 
can identify the conformal weights (50) with those 
given by eq. (49).  

Of  course the lattice field ~,, has a lot of  structure 
that disappears in the a = 0  limit. Only its conformal 
properties are identical to the fermion field in ref. [ 5 ]. 
This leads to the following connection between 
couplings: 
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~/z=½ 

+ (gK/2~)X/1 + (gK/2n) 2-  (gK/2~) 2 

o r  

g =  + 2 c o s  

= 2 sin( (½gK)X/1 + (gK/Zn) 2 + (gK/2n)  2) • 

(51) 

(52) 

Notice that near the decoupling point  

g -~ g K + O ( g 2 ) .  (53) 
g~0  

That is, the field •(x) [eq. (16) ] and currents J ,  (x) 
[eqs. ( 11 ), ( 13 ) ] provide a new operatorial solution 
with spin ½ of the massless Thirr ing model not in- 
cluded in previous ones [5]. As conformal model 
(not  as a lagrangian Q F T )  its content  is the same as 
the one of previous cont inuous construction. 

The results exposed in this paper show that 
Schwinger terms (ST) do appear in lattice Bethe An- 
satz constructions. In the coordinate Bethe Ansatz this 
usually is not the case. This is connected with the 

vacuum dependence of such terms. Our derivations 
[eqs. 2 5 ) - ( 4 1  ) ] show explicitly that the ST appear 
only for the physical vacuum and not in the bare one. 

We display for the first t ime in this paper the prop- 
erties of the Thirr ing model solution obtained as con- 
t inuous limit of the XXZ Heisenberg chain. These 
properties obtained through the Bethe Ansatz show 
that a n e w  relativistic solution of the Thirr ing model 
arises in this way. The current ( J , )  and field (~v) op- 
erators cannot be directly connected with the con- 
structions available in the literature. 
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