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A (2 + 1 )-dimensional theory of charged scalar particles coupled to an abehan gauge field with Chern-Slmons term In the 
action is canonically quantlzed in the Coulomb and superaxlal gauges The gauge transformatmn linking these two gauges is shown 
to be singular Then, the superaxial gauge excitations are found to obey fractional statistics We demonstrate that th~s effect does 
not arise when the conventional term - ~FU~Fu~ is present m the actmn 

As is known gauge theories fall into the class of 
constrained systems, the first-class constraints acting 
as independent generators of gauge transformattons 
[ 1 ] In order to quant~ze the theory one must first 
suppress all gauge freedom by brmgmg into the game 
subsidiary (gauge) condttions, whtch together with 
the constraints form a set of second-class constraints 
The classical-quantum transttion is then performed 
by abstracting the equal-time commutators (ETC's) 
from the corresponding Dtrac brackets (DB's), the 
constraints and gauge condmons thereby translating 
into strong operator relattons [2,3] This IS the so 
called Dirac bracket quantlzatlon procedure 
(DBQP) 

We shall call Z and ZG the hypersurfaces defined in 
phase-space (F) by the constraints and gauge condi- 
tmns, respectively As is clear from above, the DBQP 
only makes sense in the physical space F * - Z  c~ ZG 
[2,3] The unconstrained canontcal varmbles span- 
nmg F* will be designated by {q*} and {p*} Gauge 
mvanance demands that a change of gauge, EG--, EG,, 
should merely reduce to a canonical transformation 
in F* Hence, for all regular gauge transformations, 
q* and its canomcal transform (q*', say) will de- 
scribe excitations obeying the same statistics 

On the other hand, ff the gauge transformatton is 
singular q* and q*' may describe exotations obeying 
different statistics The main purpose of this paper is 
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to show that such singular transformations in fact oc- 
curs in the ( (2 + 1 )-dimensional) Chern-Slmons 
theory whose lagrangian density reads [ 4 ] 

0 
L.°= (DuO) (DUO) + ~ eu.~AUO"A ~ , ( 1 ) 

where the fully antisymmetric tensor e u.~ is normal- 
ized such that ~°~2=1, the metric is gOO=_gl~= 
_g22= + l, 0 is a dimensionless parameter and ~de- 
notes the complex conjugate of 0 By assumption, the 
scalar field 0 is minimally coupled to the abehan gauge 
potential A u, t e., DU=0U-lA u 

We shall quantize this model m the Coulomb and 
superaxlal [ 5,6 ] gauges It will be shown, afterwards, 
that the gauge transformation linking these two gauges 
is singular Then, 0 will be seen to verify a bosomc 
equal-time algebra in the Coulomb gauge and a graded 
("anyonlc" [ 7 ] ) equal-time algebra in the superax- 
lal gauge Furthermore, we will demonstrate that the 
absence of the term - lFu.FU~ (FU"=OUA"-O"A u) 
in ( 1 ) ~s at the root of this statistical transmutation 

[7,81 
Within the hamfltontan framework the system un- 

der analysis is fully characterized by the canonical 
hamtltonmn 

Ho = f dEz[pp+ (D'O) (DJO) ] , (2) 

the primary first-class constraint 

P o - r t o ~ 0 ,  (3) 
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the primary second-class constraints (e ~j = coo ) 

0 P , - n , - ~ V A J ~ O ,  l = 1 , 2 ,  (4) 

and the secondary first-class constraint 

So - ~(OP-pO) + 0% + 4 ~  e'+O'AJ (5) 

Here, we have designated by n u, p andfi the momenta 
canonically conjugate to A u, 0 and ~, respectively. Due 
to the presence of the Chern-Slmons term neither A' 
nor n, are gauge mvanant  quantities As usual, the 
sector of  phase space spanned by A o, no can be elim- 
inated from F, no is fixed by the constraint condition 
( 3 ) while A o acts as the Lagrange multiplier of  So and 
will be determined, after gauge fixing, as a function 
of the remaining canonical variables. 

The quanUzation of the system in the Coulomb 
gauge, Z -  O'A' ~ 0, is straightforward The set of con- 
stramts G=P,.~O, t = l ,  2, q/3-So~0,  ~'4--Z~0 is 
second-class and one can, therefore, introduce the 
Dlrac bracket in the standard manner Then, through 
the DBQP one arrives to the following set of ETC's ~ 

[0(x) ,  p(y) ] = l h J ( x - y ) ,  (6a) 

[O(x), O(Y)] = [O(x), ~*(Y)]= [O(x ) ,p t (y )  ] 

=[p(x) ,p(y)]=[p(x) ,p*(y)]=O,  (6b) 

2n 2 O, 
[O(x),A'(y)]= --~-hO(x)e'J~-~J(x-y),  (6c) 

[ O ( x / , ~ , ( y ) l = -  O(xl~(x-y )  (6d) 
Vx ' 

2n 2 _ ~,j OX~(x__y ) 
[p(x) ,A'(y)]= -- - f f-hp(x) Vx (6e) 2 

h O: 
[p(x) ,  n,(y) ] = ~p(x)  ~x  J ( x - y )  , (6f) 

[A'(x) ,  nj(y) ] = 0 ,  (6g) 

[G(x) ,  n:(y) ] = 0  (6h) 

This algebra carries, as it must, the strong operator 
relations C/a= 0, a =  1, 2, 3, 4 

The unconstrained phase space variables spanning 
F* can be easily found Indeed, the second class con- 

~ To slmphfy the notatmn we shall not distinguish between a 
quantum field operator and its classical counterpart 

stramts P,=O, / = 1 ,  2 (see eq (4) )  allow for the 
ehmmauon of nt and n2 m favor ofA 2 and A 1, re- 
specuvely, while the Coulomb condition 0'A'-~ 0 en- 
ables one to cast A' as a purely transversal field This 
together with eq (5) lead to 

0x 
2n2 ~xxJ°(x) (7) A'(x) = - ~ -  E': 

where 

j°(x) =- l( Otpt--pO ) (8) 

One then concludes that the fields A', n,, t = l, 2, can 
be completely eliminated m favor o f G  0 t, p and p,, 
which, according to (6a), (6b), constitute a canom- 
cal basis m F* descrtbmg bosontc excitations 

All Pomcar6 generators can of course be written 
solely in terms of the independent fields In pamcu- 
lar, the hamlltoman (H),  the linear momentum (pk) 
and the angular momentum (J)  operators are given 
by 

H -  f d2x O00(X) 

= f dZx{p(x)p*(x) + [O,O*(x)] [O,O(x)]} 

n2 f dZx d2u d 2 V ~ x _ _ ~  Ot(x)J°(U)J°(V)O(x) 
+ ~ J 

m ~ ( x ~ - u q  
_ O- e jl d2x d2u ~ L ~  

x { [ 0 : ( x )  ]j°(u)O(x)-O*(x)j°(u) [ 0 : ( x )  ]}, 
(9) 

(x: - W ) 
__ n0 fkl f d2xd2u I x - u  I 2 jO(x)jO(u ) 

h~z f (x~-W) o . . . . .  +~_ekjCy j d a x d 2 u  ~ ( S J  (xJo(x-u), ( lO)  

J =  ~ dZx ~JkxJO°k(X) 

= f d2x eJkxJ[ (Ok0*)p*+p(Ok0) ] 

2 hn 
+ ~ Q  - ~ Q ,  (11) 
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where Q= fd2xj ° and we have used (V 2 ) - l d ( x - y )  
= (4~z) - qn ( I x - y  12) + constant The last two terms 
on the right-hand side of (10) can be seen to vanish, 
however, their corresponding integrands make a 
meaningful contribution to 0 °k. In spite of ordering 
problems, we have been able of constructing a set of 
hermltean Polncar6 density operators 0 u~ obeying, as 
they must, the Dirac-Schwanger equation 

[0°°(x), O°°(y) ] 

= - Ih  [o°k(x) + O°k(y) ]O~J(x--y) (12) 

The verification of this last equation is straightfor- 
ward but tedious. 

As first noticed by Hagen [9 ], the operator q~ de- 
velopes a rotational anomaly already at the classical 
level, 

1 
8O(x) - - ~ &o[O(x), J] 

= --&O[¢SkM0kq~+ (izc/O)Q(~] , 

where the infinitesimal rotation is parametrlzed by 
8oo Nevertheless, the presence of this anomaly does 
not alter the fact that the charged field ~ obeys Bose 
statistics [9] This is how the situation looks like in 
the Coulomb gauge 

We now turn into quantlzlng the theory in the fully 
fixed axial gauge (the superaxial gauge) specified by 
the subsidiary conditions [ 5 ] 

AZ(x°,xi,x2)=O, (13a) 

A~ (x °, x 1 , X~o)) = 0 ,  (13b) 

o o X~o~)  o o 1 As(x  , =A (x ,X(o),X~o)) (13C) X(0),  

Here, X ( o ) - ( X ~ o ) 2  ,Xto) ) denotes some arbitrary fixed 
point The subscript "s" identifies the field variables 
belonging to the superaxial gauge; Coulomb gauge 
field variables remain without gauge identification 
The superaxial gauge can be reached from the 
Coulomb gauge via the following operator gauge 
transformation [5] 

A~(x) =AU(x)+OUA(x),  

Os(x)=exp[1A(x)]O(x),  

Ps(X)=p(x) e x p [ - t A ( x ) ] ,  

O ~ ( x ) = O * ( x ) e x p [ - l A ( x ) ] ,  

(14a) 

(14b) 

(14c) 

(14d) 

p~* (x) = exp [ 1A (x) ]p* ( x ) ,  (14e) 

where 

X 2 

A ( X ) =  f dx'2A2(x°,xl,y '2) 
X~0) 

x l  

+ J dx ' lAl (x° ,x ' l ,X~o))  (15) 
x~0) 

The order of factors in (14) is fixed. We emphasize 
that A does not commute with the charged fields and 
that this is due to the fact that A J does not commute 
with ~ and p (see eqs (6c) and (6e))  A straightfor- 
ward calculation shows that 

[A (x), ¢(y) ] = - ~ F(x, Y)0(Y), (16a) 

[A(x) ,p(y)  ] = n-~-h~ F(x ,y )p(y )  , (16b) u 

where 

F ( x , y ) = e ( x i - y  1) 

x -y2 " 

× [ a r c t a n ( l ~ 7 1  )--arctantix--T~_yi i ) ]  

-~(X~o~ _y2)  

× a r c t a n  [X~o)__y2l--arctan iX~o)_YZl 

(17) 

and e(x) is the sign function 
The fields ~s, ~**, Ps and p~* are the unconstrained 

variables spanning the physical space in the super- 
axial gauge formulation of the theory In fact, as it 
happens in the case of the Coulomb gauge, A's, Zr,s, 
l=  1, 2, can be eliminated In terms of q~, ~*, Ps and 
p~* This come about because both terms on the right- 
hand side of (14a) only involve the Coulomb fields 
A', l=  1, 2, whose elimination in terms of the gauge 
lnvarlant operatorj  ° was already carried out in (8) 
As follows from eqs (14), ( 15 ) and (6), the ETC's 
in the superaxial gauge can be found from the corre- 
sponding ones in the Coulomb gauge For the ETC's 
involving only the independent variables one obtains 
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lOs(X), ¢~(y)] 

={exp[(l/O)A(x,y)]-l}fb~(y)fb,(x),  (18a) 

[¢~(x), ¢~(y) ] 

={exp[-( I /O)A(x ,y) l -1}O~(y) fb~(x  ) , (18b) 

[~s(x), Ps(Y) ] = l h t ~ ( x - y )  

+{exp[--(l /O)A(x,y)]--l}p~(y)O~(x ) , (18c) 

[¢~(x), p~(y) ] 

={exp[(x/O)A(x,y)]- l}p~(y)O~(x)  , (18d) 

[p~(x),p~(y) ] 

={exp[( i /O)A(x ,y )] - l }ps (y )p~(x) ,  (18e) 

[p~(x),p~(y) ] 

={exp[ - (x /O)A(x ,y ) ] - l }p~(y )p~(x )  , (18f) 

where 

A(x,y)  = -hz~[F(x,y)  - F ( y ,  x ) ]  (19) 

We mention that the equal-time superaxial algebra 
also carries the constraints (4),  (5)  and the gauge 
conditions [ 13 ] as strong operator relations 

From eqs (6a),  (6b) and (18) follow that the 
structure of  the ETC's  involving only unconstrained 
variables is not preserved under the transformation 
(14) Hence, this transformation is singular (non- 
canonical) Moreover, the ETC's  (18) can be easily 
casted in the form of  graded equal-time commuta-  
tion relations [4 ], 

Os(X)Os(y) - e x p [  (l/O)A(x,y)] O~(y)¢~(s) 

= 0 ,  (20a) 

O~(x)¢~(y)-exp[ - (t/O)A(x,y) ]¢~(y)~ (x) 

= 0 ,  (20b) 

(b~(x )p~(y ) - e x p [  - (l/ O)A(x, y ) ]p~(y ) ~ ( x  ) 

= l h a  ( x - y )  , ( 2 0 c )  

O~(x)p*~(y) - e x p [  (i/O)A(x, y)]P~(y)q)s(X) 

= 0  (20d) 

The excitations described by the field ~ obey, then, 
fractional statistics We strongly emphasize that the 
lack of  commutat ivl ty  ofA j with ~ and p is at the root 

of th lseffec t  (seeeqs (16),  (19) and (20) )  Forar -  
bltrary X(o~, A(x, y)  IS a comphcated function o f x  
and y, as seen from ( 17 ) and (19) Nevertheless, A (x, 
y )  acquires a simple form for some particular super- 
axial gauges For instance, the election X~o)= + ~  
leads to ( -hzO-~A(x,y)=E(x~-yl) (ze+2kzr) ,  
where k is an integer Notice that the singular gauge 
transformation (14) does not remove the lnterac- 
non  Indeed, in terms of  the superaxlal gauge vari- 
ables, the hamlltonian reads 

H= f d2x{p~(x)p~(x) + [0,~* (x) ] [0 ,~ (x )  ] } 

V2 X 2 
4z~ 4 
o2 f dZx f du f dvO*~(x) 

x~o, X~o, 

×j°(x~, u)j°(x ~, v)O~(x) 
X 2 

27~ 2 
- - I ~  ~ d2X f du{[OlOs~(x)]J°(/l,.)Os(X ) 

X~o) 

-fb~(x)J°(x ', u ) [a ,~ (x )  ] } (21) 

We study at last the modifications induced by the 
term - ~F/'"Fu. when added to the lagranglan ( 1 ) 
First to all the introduction of  a dtmenslonal cou- 
pling constant e is now necessary This changes the 
covarlant derivative into DU=O"-leA ~ Further- 
more, 0 also becomes a dimensional parameter 
Within the hamlltonian formahsm the new system is 
completely characterized by the canonical 
hamlltonlan ,2 

H~ = f d 2 z [  ½~,g, - (O/4zc2)zc, e'kAk+ ~F'JF v 

+(02/32ze4)AJAJ+pp+(DJfb)(DJfb)] , (22) 

the primary first-class constraint 

P ; = z ~ o ~ 0 ,  (23) 

and the secondary first-class constraint 

,_ 0 ~':O'A: (24) So =le(~p-pO) + 0% + 4ze~ 5 

The second-class constraints (4) are no longer 
present and, as consequence, the direct connection 

~2 A similar model, but with fermlons instead of scalar fields, 
was presented m ref [ 10] 
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between lr's and A's, estabhshed by these constraints, 
disappears This ts the main  effect provoked by the 
addit ion of the term l ~ , ~ v  The theory ts then 
quantlzed m the Coulomb gauge As far as the ETC's 
are concerned, the essential dtfference wtth the pre- 
vious case ts that (6c),  (6e),  (6g), (6h) are, respec- 
tively, replaced by 

[fb(x),A'(y)] = 0 ,  (25a) 

[p(x),A'(y)]=O, (25b) 

[A'(x), ztj(y)] =lf/(6j-0~702Jx)6(x-y) , (25c) 

[n,(x), ~AY)] 
kt k j kJ k t lhO (~ OxOx-E O x O x ' ~ o .  . 

- 4ztz ~, '~2~ j o t x - y )  (25d) 

Hence, the operator A (x) ,  performing the transi t ion 
from the Coulomb to the superaxtal gauge, now com- 
mutes with 0 (x ) ,  Or(x),  p(x) and fit(x) implying 
that the c-number  function F(x, y ) = 0  (see eqs 
(16) ) Then, the conclusion is that when - ¼FU"Fu~ 

is present q~s and 0 both describe bosomc excttanons 
(see eqs. (18),  (19) and (20 ) )  

We are indebted to Professor A.J da Silva for many 
d lumlna tmg discussions 
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