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A (2 + 1)-dimensional theory of charged scalar particles coupled to an abehan gauge field with Chern-Simons term 1n the
action 1s canonically quantized in the Coulomb and superaxial gauges The gauge transformation linking these two gauges 1s shown
to be singular Then, the superaxial gauge excitations are found to obey fractional statistics We demonstrate that this effect does
not arise when the conventional term — { F#*F,, 1s present 1n the action

As 1s known gauge theories fall into the class of
constrained systems, the first-class constraints acting
as independent generators of gauge transformations
[1] In order to quantize the theory one must first
suppress all gauge freedom by bringing into the game
subsidiary (gauge) conditions, which together with
the constraints form a set of second-class constraints
The classical-quantum transition 1s then performed
by abstracting the equal-time commutators (ETC’s)
from the corresponding Dirac brackets (DB’s), the
constraints and gauge conditions thereby translating
nto strong operator relations [2,3] This 1s the so
called Dirac bracket quantization procedure
(DBQP)

We shall call Z and Z; the hypersurfaces defined in
phase-space (I") by the constraints and gauge condi-
tions, respectively As1s clear from above, the DBQP
only makes sense 1n the physical space [*=XnZg
[2,3] The unconstrained canonical variables span-
ning I'™* will be designated by {¢*} and {p*} Gauge
invariance demands that a change of gauge, Zg—Zg,
should merely reduce to a canonical transformation
in I'™* Hence, for all regular gauge transformations,
g* and 1ts canonical transform (g*', say) will de-
scribe excitations obeying the same statistics

On the other hand, if the gauge transformation 1s
singular g* and ¢*' may describe excitations obeying
different statistics The main purpose of this paper 1s
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to show that such singular transformations in fact oc-
curs 1n the ((2+1)-dimensional) Chern-Simons
theory whose lagrangian density reads [4]

P=(D,8)(D#0) + 7 € d 04 (1)

where the fully antisymmetric tensor ¢%** 1s normal-
1zed such that €°'?=1, the metric 15 g%¥=~g'' =
—g?2=+1, 61s a dimensionless parameter and ¢ de-
notes the complex conjugate of ¢ By assumption, the
scalar field ¢ 1s minimally coupled to the abelian gauge
potential A%, 1 e., D*¥=0#—14#

We shall quantize this model 1n the Coulomb and
superaxial [5,6] gauges It will be shown, afterwards,
that the gauge transformation linking these two gauges
1s singular Then, ¢ will be seen to verify a bosonic
equal-time algebra 1n the Coulomb gauge and a graded
(“anyonic” [7]) equal-time algebra 1n the superax-
1al gauge Furthermore, we will demonstrate that the
absence of the term — {F, F'*" (F*'=0"4"-0"4*)
in (1) 1s at the root of this statistical transmutation
[7.8]

Within the hamiltonian framework the system un-
der analysis 1s fully characterized by the canonical
hamiltonian

Ho= [ @z (p+ (D9) (D)1, )
the primary first-class constraint

Py=ny=0, (3)
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the primary second-class constraints (€"=¢%)

0 i,
P,Eﬂ,-—mfjAij, l=l,2, (4)

and the secondary first-class constraint
Sozl(éﬁ—p¢)+6’1t,+%G‘JG’A’ (5)

Here, we have designated by ., p and p the momenta
canonically conjugateto 4, ¢ and ¢, respectively. Due
to the presence of the Chern-Simons term neither A4*
nor n, are gauge 1nvariant quantities As usual, the
sector of phase space spanned by A%, 7, can be ehim-
mated from I', my 15 fixed by the constraint condition
(3) while 4% acts as the Lagrange multiplier of Sy and
will be determined, after gauge fixing, as a function
of the remaining canonical variables.

The quantization of the system in the Coulomb
gauge, y=0'4'~0, 1s straightforward The set of con-
straints w,=P,~0, 1=1, 2, w3=8,~0, y,=x=0 1s
second-class and one can, therefore, introduce the
Dirac bracket 1in the standard manner Then, through
the DBQP one arrives to the following set of ETC’s #!

[6(x), p(¥) ] =1A(x—y), (6a)
[o(x), 00 1=[0(x), 0T (¥)1=[0(x), ' (¥)]
=[p(x),p(¥)1=[p(x),p"(»)]=0, (6b)

2 2
[6(x), 4'(0)] = %hmx)e"%a(x—y) (60
[oG). M= F00) Frox-p).  (6)

((x), A'(3) ] = — 3—fzp(x)e'f 9

5(x y), (6¢)

) oF
[p(x), m(¥)]== p(x) 5(x y), (6f)
[A'(x), m,(y)]=0, (6g)
[7(x), ;,(y)]=0 (6h)

This algebra carries, as 1t must, the strong operator
relations v,=0,a=1, 2,3, 4

The unconstrained phase space variables spanning
I'™* can be easily found Indeed, the second class con-

#1 To simphfy the notation we shall not distingwish between a
quantum field operator and 1ts classical counterpart
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straints P,=0, 1=1, 2 (see eq (4)) allow for the
elimination of #, and 7, 1n favor of 42 and A, re-
spectively, while the Coulomb condition 9’4’ ~0 en-
ables one to cast A’ as a purely transversal field This
together witheq (5) lead to

2n* | 0F
A== e ), %)
where
1°(x)=1(¢"p"—pp) (8)

One then concludes that the fields A*, &, 1=1, 2, can
be completely eliminated 1n favor of ¢, ¢', p and pT,
which, according to (6a), (6b), constitute a canoni-
cal basis in I'* describing bosonic excitations

All Poincaré generators can of course be written
solely 1n terms of the independent fields In particu-
lar, the hamiltonian (H), the inear momentum (P¥)
and the angular momentum (J) operators are given
by

HEJ d2x 6% (x)

=j d2xlp(x)pt(x) + 9,6 (x) ] [0,0(x) ]}

+”—2jd2xd2ud2u Lt ) ) () (%)
i G 0Ty

lx—
_E,zj 2y g2y = HD
ks d*x d*u a—al?

X{[0,¢(x) ) (u)o(x)—0"(x),%(u) [8,0(x) ]},
(%)

pr= j &x a°k<x)=j d2x[ (8591 )pT +p(3%0) ]

o [ xS o0 w)

(X—w')

Ly kffdzxd2 L 0(x)d(x—u), (10)
6 |x—u|

J= J d?x e*x/0%(x)

=j Ax e*x/[ (0%¢T)pT+p(8%9) ]

n hn
%QZ—% , (11)



Volume 230, number 1,2

where Q= [d?x ° and we have used (V2) ~!5(x—p)
=(4rm) 'In(|x—y|?)+constant The last two terms
on the right-hand side of (10) can be seen to vanish,
however, their corresponding integrands make a
meaningful contribution to §%. In spite of ordering
problems, we have been able of constructing a set of
hermitean Poincaré density operators 8#” obeying, as
they must, the Dirac-Schwinger equation

[0%°(x), 6%(»)]
= —12[0%(x) +0%(») 1850 (x~y) (12)

The venfication of this last equation 1s straightfor-
ward but tedious.

As first noticed by Hagen [9], the operator ¢ de-
velopes a rotational anomaly already at the classical
level,

89(x)= - + 8w[9(x), /]

= —Ba)[ef"x’(')k¢+ (17[/0)Q¢] >

where the infinitesimal rotation 1s parametrized by
dw Nevertheless, the presence of this anomaly does
not alter the fact that the charged field ¢ obeys Bose
statistics [9] This 1s how the situation looks like 1n
the Coulomb gauge

We now turn into quantizing the theory 1n the fully
fixed axial gauge (the superaxial gauge) specified by
the subsidiary conditions [5]

A3(x% x', x*) =0, (13a)
Ad(x% x', xt0y) =0, (13b)
Ag(xo,x%o),x%O))on(xo,x{o),xfo)) (13c)

Here, x(0,= (X{0),X70y ) denotes some arbitrary fixed
point The subscript “‘s” identifies the field variables
belonging to the superaxial gauge; Coulomb gauge
field variables remain without gauge 1dentification
The superaxial gauge can be reached from the
Coulomb gauge via the following operator gauge
transformation [5]

AL (x)=A*(x)+0*4(x) , (14a)
¢s(x)=exp[14(x) ]o(x) , (14b)
ps(x)=p(x) exp[—14(x)], (14c)
9l(x)=¢"(x) exp[-14(x)], (14d)
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{(x)=exp[14(x)1p*(x), (14e)
where
x2
A(x)= j dx'2A4%(x% x', x'?)
*To)
+ J dx't AT (x% xY, x%)) (15)
*{oy

The order of factors in (14) 1s fixed. We emphasize
that 4 does not commute with the charged fields and
that this 1s due to the fact that 4’ does not commute
with ¢ and p (seeeqs (6¢) and (6e)) A straightfor-
ward calculation shows that

[4(),00)) == 5 Flx,)00) (162)

[A(x),p(y)]=7—z§F(x,y)p(y), (16b)

where

F(x,y)=e(x'-y")
2_ 42 2 .2
X arctan(ﬁ—h—)—arctan(%)]
fxt=y'l [x" =y

—€(xfo, —¥?)

1,1 [T
X[arctan(——————i y 5 )—arctan(———go) y2 )]
[X%0) =71 X0y —=Y°I
(17)

and e(x) 1s the sign function

The fields ¢, ¢!, p, and p{ are the unconstrained
variables spanning the physical space in the super-
axial gauge formulation of the theory In fact, as 1t
happens 1n the case of the Coulomb gauge, A;, 7,
1=1, 2, can be eliminated 1n terms of ¢, ¢!, p, and
pl This come about because both terms on the right-
hand side of (14a) only involve the Coulomb fields
A' 1=1, 2, whose ehmination 1n terms of the gauge
invariant operator j° was already carried out in (8)
As follows from eqs (14), (15) and (6), the ETC’s
1n the superaxial gauge can be found from the corre-
sponding ones 1n the Coulomb gauge For the ETC’s
involving only the independent variables one obtains
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[4:(x), 6:(»)]

={exp[(1/0)4(xy) ] - 1}6(y)ds(x) , (18a)
[9s(x), 91(y)]

={exp[ - (1/0)4(x,y)1 - 1}pl(y)(x), (18Db)
[¢s(x), p(¥) ] =1Ad(x—y)
+{exp[—(1/0)4(x, ¥) ] = 1}ps(y)ds(x) , (18c)
[4s(x), P1(¥)]
={exp[(1/0)4(x,y)] - 1}pl(y)os(x),  (18d)
[ps(x), ps(¥) ]
={exp[(1/6)4(x,y) ] - 1}p.(y)ps(x) , (18e)
[ps(x), pI(y)]

={exp[ - (1/0)4(x,y) 1 - 1}pl(y)ps(x), (18f)
where

A(x,y)=—hn[F(x,y)—F(y,x)] (19)

We mention that the equal-time superaxial algebra
also carries the constraints (4), (5) and the gauge
conditions [13] as strong operator relations

From eqs (6a), (6b) and (18) follow that the
structure of the ETC’s involving only unconstrained
variables 1s not preserved under the transformation
(14) Hence, this transformation 1s singular (non-
canonical) Moreover, the ETC’s (18) can be easily
casted in the form of graded equal-time commuta-
tion relations [4],

o(x) 0 (y) —exp[ (1/0)A(x,y) |95 (¥) 05 (s)

=0, (20a)
9:(x)pI(y) —exp[— (1/0)4(x,y) |91 (y) ¢, (x)

=0, (20b)
¢s(x)ps(y) —exp[ — (1/0)4(x, y) |p.(y) S (x)

=170(x—y) , (20c)
05 (x)pl(y) —exp[(1/0)4(x,y) 1pi(y)os(x)

=0 (20d)

The excitations described by the field ¢, obey, then,
fractional statistics We strongly emphasize that the
lack of commutativity of 4’ with ¢ and p1s at the root
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of this effect (seeeqs (16), (19) and (20)) Forar-
bitrary x,, 4(x, y) 1s a complicated function of x
and y, as seen from (17) and (19) Nevertheless, 4(x,
y) acquires a ssmple form for some particular super-
axial gauges For instance, the election x}y, =+co
leads to (—#An)~'d(xy)=e(x'—p")(n+2kn),
where k 1s an integer Notice that the singular gauge
transformation (14) does not remove the interac-
tion Indeed, 1n terms of the superaxial gauge vari-
ables, the hamiltonian reads

H= | xip, (001 (0)+ [8,61(0) [a.6u() )
—%szx J du J dvel(x)

2 2
*10) *{o)

X700x!, u)y®(x', v)ps(x)

“g;ﬁfdzx J du{[9,0!(x) 1)°(x', u),(x)

2
*(0)

—0(x)%(x", u) [8,19,(x) I} (21)

We study at last the modifications induced by the
term — jF#*F,, when added to the lagrangian (1)
First to all the introduction of a dimensional cou-
pling constant ¢ 1s now necessary This changes the
covariant derivative into D#=0*—1e4* Further-
more, € also becomes a dimensional parameter
Within the hamiltonian formalism the new system 1s
completely characterized by the canonical
hamiltonian #2

6=f d’z[inn, — (0/4n?)m e 4%+ s FvFY

+(02/32n*) A4’ +pp+ (D/g) (D/g) ], (22)

the primary first-class constraint

0=7y =0, (23)
and the secondary first-class constraint
Sy =1e(gp—po) + d'm, + 4#2—2-6'!3'/1/ (24)

The second-class constraints (4) are no longer
present and, as consequence, the direct connection

#2 A stmilar model, but with fermions instead of scalar fields,
was presented inref [10]
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between #’s and A’s, established by these constraints,
disappears This 1s the main effect provoked by the
addition of the term —{F*”F,, The theory 1s then
quantized 1n the Coulomb gauge As far as the ETC’s
are concerned, the essential difference with the pre-
vious case 1s that (6¢), (6e), (6g), (6h) are, respec-
tively, replaced by

[p(x), A'(y)]=0, (25a)
[p(x),A'(y)]=0, (25b)
[A’(x),n,(y)]=1fz(6}— alégi‘)é(x—y), (25¢)

[m(x), ;(y)]

10 (€959 —eMak
= 4_7z2< v >(5(x—y) (25d)

Hence, the operator 4 (x), performing the transition
from the Coulomb to the superaxial gauge, now com-
mutes with ¢(x), ¢T(x), p(x) and p*(x) implying
that the c-number function F(x, y)=0 (see eqs

(16)) Then, the conclusion 1s that when — {F**F,
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1s present ¢, and ¢ both describe bosonic excitations
(seeeqs. (18), (19) and (20))

We are indebted to Professor A.J da Silva for many
tlluminating discussions
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