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“To attain knowledge, add things every day.
To attain wisdom, remove things every day.”
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ABSTRACT

The school timetabling is a classic optimization problem that has been extensively
studied due to its practical and theoretical importance. It consists in scheduling a
set of class-teacher meetings in a prefixed period of time, satisfying requirements of
different types. Given the combinatorial nature of this problem, solving medium and
large instances of timetabling to optimality is a challenging task. When resources
are tight, it is often difficult to find even a feasible solution. Several techniques have
been developed in the scientific literature to tackle the high school timetabling prob-
lem, however, robust solvers do not exist yet. Since the use of exact methods, such
as mathematical programming techniques, is considered impracticable to solve large
real world instances, metaheuristics and hybrid metaheuristics are the most used
solution approaches. In this research we develop techniques that combine mathe-
matical programming and heuristics, so-called matheuristics, to solve efficiently and
in a robust way some variants of the high school timetabling problem. Although
we pay special attention to problems arising in Brazilian institutions, the proposed
methods can also be applied to problems from different countries.

Keywords: High school timetabling. mathematical programming. meta-heuristics.
matheuristics. fix-and-optimize.



Uma abordagem mateheurística para resolver o problema de geração de
quadros de horários escolares do ensino médio.

RESUMO

A geração de quadros de horários escolares é um problema clássico de otimização
que tem sido largamente estudado devido a sua importâncias prática e teórica. O
problema consiste em alocar um conjunto de aulas entre professor-turma em perío-
dos de tempo pré-determinados, satisfazendo diferentes tipos de requisitos. Devido
a natureza combinatória do problema, a resolução de instâncias médias e grandes
torna-se uma tarefa desafiadora. Quando recursos são escassos, mesmo uma solução
factível pode ser difícil de ser encontrada. Várias técnicas tem sido propostas na
literatura científica para resolver o problema de geração de quadros de horários esco-
lares, no entanto, métodos robustos ainda não existem. Visto que o uso de métodos
exatos, como por exemplo, técnicas de programação matemática, não podem ser uti-
lizados na prática, para resolver instâncias grandes da realidade, meta-heurísticas e
meta-heurísticas híbridas são usadas com frequência como abordagens de resolução.
Nesta pequisa, são desenvolvidas técnicas que combinam programação matemática
e heurísticas, denominadas mateheurísticas, para resolver de maneira eficiente e
robusta algumas variações de problemas de geração de quadros de horários esco-
lares. Embora neste trabalho sejam abordados problemas encontrados no contexto
de instituições brasileiras, os métodos propostos também podem ser aplicados em
problemas similares oriundo de outros países.

Palavras-chave: geração de quadros de horários escolares . programação matemática
. meta-heurísticas . mateheurísticas . fixar-e-otimizar .
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1 INTRODUCTION

A common task to all educational institutions is to provide an assignment
of classes that combines teachers, students, rooms and periods (or timeslots) to
achieve a feasible timetable, satisfying personal, pedagogical and organizational re-
quirements.

Usually, requirements are separated into hard and soft ones. By hard require-
ments we mean those that must be satisfied, while soft requirements are those that
may be violated, but should be satisfied whenever possible. Soft requirements can
have different levels of importance and are often conflicting with each other such
that it may be impossible to satisfy all of them at the same time. Typically, the
quality of a solution is associated directly to the satisfaction of soft requirements.
The more soft requirements are satisfied, the better a solution is considered.

Quality is a critical solution attribute because, once the timetable is estab-
lished, it will determine the use of physical resources and the daily routine of hun-
dreds, possibly thousands, of people for a long period that usually is about one
year. Due to repetition, even minor issues can turn into major problems in the
course of time, affecting directly the quality of teachers’ work, and the learning
and health of students. Concerning the last issue, many studies agree that carrying
overloaded school bags can lead to several health risks as back pain, fallings and,
at long-term, irreversible postural changes (CHANSIRINUKOR et al., 2001; KIST-
NER; FIEBERT; ROACH, 2012; KISTNER et al., 2013). Although this is rarely
considered in the construction of a schedule, when a timetabling solution allows two
or more subjects with heavy books on the same day it will contribute to students
to have these sort of injuries. Therefore, a high quality timetabling is essential for
a proper operation of any educational institution.

In spite of its relevance, in many institutions this problem is solved manu-
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ally in a process that can take weeks, even if carried out by an expert timetabler
(MOURA; SCARAFICCI, 2010). Due to its difficulty, the automation of this task
is becoming more common, and nowadays it is mandatory in medium and large
institutions.

Educational timetabling problems have many variants proposed in the lit-
erature, and the set of objectives and requirements depends mostly on the con-
text of the application, the institution and the place where it is located (POST
et al., 2011; DREXL; SALEWSKI, 1997). Although the problem diversity, ed-
ucational timetabling problems are commonly comprised in three classes: school
timetabling, course timetabling, and examination timetabling (SCHAERF, 1999b).
In both school and course timetabling the aim is to build a weekly schedule. How-
ever, in the school timetabling a set of classes must be assigned to timeslots, whereas
in course timetabling a set of university courses must be scheduled avoiding overlaps
of course lectures that have common students. Finally, in the examination problem
a set of exams must be spread in a time horizon avoiding overlaps for the students.

In our present study we focus on the school timetabling problem. This prob-
lem first appeared in the scientific literature in the 60’s (GOTLIEB, 1962) and since
then it has gained increasing attention. The most basic variant of the problem is to
schedule a set of class-teacher events (or meetings) in such a way that no teacher
(nor class) is required in more than one lesson at a timepoint. This basic problem
can be solved in polynomial time by a min-cost network flow algorithm (WERRA,
1971). However, in real-world applications, teachers can be unavailable in some pe-
riods. If this constraint is taken into account, the resulting timetabling problem is
NP-complete (EVEN; ITAI; SHAMIR, 1975).

In fact, the most real-world timetabling problems come to light as combina-
torial optimization problems that fall in the NP-Hard class. For this reason, many
researchers around the world have investigated these problems and several differ-
ent techniques have been developed. The most active research groups are located
in the United Kingdom, Brazil, Italy, Canada, Denmark, Germany, Greece, Italy,
Netherlands and Australia. Although these groups share similar interests, they have
focused more on solving specific problem variants from their country. As a result,
most of the works reported in the literature consider application-dependent (often
unavailable) test cases, what makes it difficult to compare results among the differ-
ent solution approaches (SCHAERF; GASPERO, 2001). In Brazil, for example, it
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is common that a teacher works in more than one school, having several jobs. In
order to allow this possibility, it is important to schedule the lessons in each school
in the minimal number of days. Furthermore, it is required to avoid idle periods
between lessons in a teachers’ schedule and satisfy pedagogical demands or personal
preferences, like a teacher requesting double lessons. This set of requirements defines
a problem arising in a typical Brazilian school and, not necessarily, reflects exactly
the same problem found in other countries.

As an attempt to overcome these issues, along the last editions of interna-
tional conferences on the Practice and Theory of Automated Timetabling (PATAT),
a group of high school timetabling researchers has developed a XML based format,
called XHSTT, to express problems from different countries in a unified way (POST
et al., 2010; POST et al., 2011). Despite the verboseness of the XHSTT for-
mat, it has gained widespread acceptance by the research community and, re-
cently, its use was promoted in the Third International Timetabling Competition
(ITC2011) (POST et al., 2013). At the time of writing this chapter, there were
around 50 instances available on the website dedicated to XHSTT format, although
some of them are deprecated (Benchmarking Project, 2015). Problems that can be
represented int the XHSTT format are normally refered as Generalized High School
Timetabling Problem, hereafter denoted as GHSTP.

In this research we develop techniques that combine mathematical program-
ming and (meta)heuristics, so called matheuristics, to solve efficiently and in a robust
way two variants of the high school timetabling problem further defined as HSTP
and HSTP+. Although we pay special attention to problems arising in Brazilian in-
stitutions, the proposed methods can be generalized for similar problems originated
from other countries.

1.1 Research Contributions

The research performed in this thesis have led to the following major contri-
butions:

• An initial investigation evaluated the performance of state-of-the-art MIP
solvers applied in instances of the HSTP. The experimental results demon-
strated empirically that MIP solvers can be used for providing high quality
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solutions for small instances of the problem. The study also revealed that
among the soft requirements, the idle times constraint is the one that most
aggregates complexity into the resolution process. In addition, a novel MIP
model that is better suitable for solving small instances was proposed and
compared with the previously proposed model from the literature. During the
experimental evaluations, one new optimal solution and two new best com-
puted solutions were found for a well-known set of instances of the HSTP.

• A novel approach was proposed for solving the HSTP by exploring class,
teacher and day decompositions through a fix-and-optimize heuristic combined
with a variable neighborhood descent method. In addition, a simple construc-
tion procedure was proposed for quickly generating feasible initial solutions.
Experimental results demonstrated that this novel approach is able to provide
high quality feasible solutions in a smaller computational time when compared
with results obtained by a state-of-the-art MIP solver. Furthermore, by apply-
ing the proposed approach, new best known solutions were found for several
instances quoted in the literature. Among these new results, better solutions
were found to four out of five HSTP instances from the first round of the Third
International Timetabling Competition (held in 2011).

• A column generation approach was proposed for producing lower bounds to the
HSTP by using a novel multicommodity flow representation. In comparison
with the previous state-of-the-art approach, the experimental results show
that the proposed approach is able to produce the same tight lower bounds,
albeit with two significant advantages: i) the method is simpler; ii) and it is
five times faster on average. During the experimental evaluations, best known
lower bounds were found for all instances considered in the first round of the
Third International Timetabling Competition.

• A new high School Timetabling Problem referred as HSTP+ originated from 33
real-world Brazilian instances is introduced. The HSTP+ is defined formally
through a MIP formulation and a XHSTT model. In addition, the fix-and-
optimize algorithm was adapted and evaluated in comparison with a state-of-
the-art MIP solver, as well as two state-of-the-art local search based solvers
designed for solving the GHSTP. The experimental evaluation, supported by
statistical analysis, provided strong evidence that the fix-and-optimize ap-
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proach is also suitable for solving the HSTP+, outperforming the compared
methods.

1.2 Publications

Along this research, a number of papers have been published in peer-reviewed
conferences and journals. Additionally, we present in the list below, papers that
either were submitted or are in preparation for submission:

1. DORNELES, Á. P.; ARAÚJO, O. C. B.; BURIOL, L. S. The impact of com-
pactness requirements on the resolution of high school timetabling problem.
In: SIMPOSIO BRASILEIRO DE PESQUISA OPERACIONAL. 44,
2012. Anais... Rio de Janeiro, Brazil: Sociedade Brasileira de Pesquisa Op-
eracional, 2012. p. 3336–3347.

2. DORNELES, Á. P.; ARAÚJO, O. C. B.; BURIOL, L. S. A fix-and-optimize
heuristic for the high school timetabling problem.Computers & Operations
Research, Elsevier, Oxford, England, v. 52, p. 29–38, 2014.

3. DORNELES, Á. P.; ARAÚJO, O. C. B.; BURIOL, L. S. A column generation
approach to the high school timetabling modeled as a multicommodity flow
problem. European Journal of Operational Research, Elsevier, Berlin,
Germany, 2015. (Submitted).

4. DORNELES, Á. P.; ARAÚJO, O. C. B.; LANDA-SILVA, D.; BURIOL, L. S.
Solving large high school timetabling problems in Brazil by using fix-and-
optimize and local branching. European Journal of Operational Re-
search, Elsevier, Berlin, Germany, 2016. (Submitted).

Each one of these papers is presented as a chapter in this dissertation.

1.3 Outline of the Thesis

This dissertation is organized in seven chapters. Chapter 2 presents a liter-
ature review on timetabling resolution, state-of-the-art approaches and methods of
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combinatorial optimization. Chapter 3 presents an initial investigation to the first
problem tackled in this study (HSTP), where we formally define the problem and
compare mixed-integer programming formulations through empirical experiments on
a well-known set of instances. Chapter 4 presents a fix-and-optimize heuristic and
experimental results for it considering synthetic and real-world instances used in the
Third International Timetabling Competition. Chapter 5 presents a column gener-
ation approach for producing tight lower bounds for HSTP. Chapter 6 introduces
a new problem (HSTP+) and describes a new benchmark intance set composed by
several real-world instances. The models and methods presented in previous chapter
are expanded in this chapter for tackling the new problem and several experiments
are carried out in order to strenghten the conclusions we draw in previous chapters.
Finally, Chapter 7 presents our major conclusions, the limitations of this research,
and some perspectives for future work.
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2 LITERATURE REVIEW

In this chapter we present a brief review on combinatorial optimization meth-
ods. Next, we describe main approaches on timetabling resolution and, finally, we
discuss the literature.

2.1 Combinatorial Optimization Methods

Combinatorial optimization problems are applied to several real-world ap-
plications, e.g., assignment, networking, routing, scheduling, timetabling, cutting,
packing, etc. However, these kind of problems are often NP-Hard and challenging
because no efficient algorithm is known for solving them. The available methods
for solving this class of problems can be split into two categories: exact and ap-
proximate methods. Exact methods are able to find a solution with optimality
guarantee. A class of exact methods that had obtained significant success are the
Integer Programming based methods. Some methods in this class are: Branch-And-
Bound, Branch-And-Cut and Branch-And-Price (NEMHAUSER; WOLSEY, 1988).
However, when applied on large or complex instances, it is well-known that exact
methods might be very time-consuming. Usually, in this case, researchers sacrifice
the optimality to achieve good/feasible solutions in polynomial time, resorting to
approximate methods.

When an approximate method is required, heuristics and meta-heuristics are
often used. According to Blum and Roli (2003) there are two main classes of meta-
heuristic methods: single-solution and population-based methods. The first class
comprises local-search based algorithms like Simulated Annealing (KIRKPATRICK;
GELATT; VECCHI, 1983), Tabu Search (GLOVER, 1986), GRASP (FEO; RE-
SENDE, 1989), Variable Neighborhood Search (MLADENOVIĆ; HANSEN, 1997),
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Iterated Local Search (LOURENÇO; MARTIN; STÜTZLE, 2003) and Late Accep-
tance Hill-Climbing (BURKE; BYKOV, 2012). The second class deals with multiple
solutions during the search, often, combining them. Some representative examples
are Genetic Algorithms (HOLLAND, 1975) and Scatter Search (MARTÍ; LAGUNA;
GLOVER, 2006).

Despite the fact that it is very common to combine metaheuristics in a hy-
brid method, recent approaches combine exact and heuristic methods to exploit si-
multaneously the advantages of these methods (DUMITRESCU; STÜTZLE, 2003;
PUCHINGER; RAIDL, 2005; RAIDL, 2006; JOURDAN; BASSEUR; TALBI, 2009).
According to Puchinger and Raidl (2005) there are two ways to combine these meth-
ods: collaborative and integrative combinations.

In a collaborative combination the methods exchange information, but none
is contained into another. They may be arranged to execute sequentially, in parallel
or in intertwined mode. Whereas in an integrative combination, an exact method is
embedded within a heuristic method or vice-versa.

Specially, in this study, we are interested in a class of methods resulting from
the combination between mathematical programming and meta-heuristics called
matheuristics. This class have been successfully applied to solve several real-world
optimization problems (MANIEZZO; STÜTZLE; VOSS, 2009). Some of them are
Local Branching, Relaxation Induced Neighborhood Search and Fix-And-Optimize.

2.1.1 Local Branching

Local Branching is a method proposed by Fischetti and Lodi (2003) to solve
general MIP problems that are composed mainly by binary variables. The method
works similarly as local search but the neighborhoods are generated by changing a
MIP model through the introduction of invalid linear inequalities called local branch-
ing cuts. Each neighborhood defines a subproblem that is solved by using any general
purpose MIP solver available. Although the method is designed to provide exact so-
lutions, the main goal of local branching is to achieve good solutions in early stages
of the search. Thus, it can be used as a heuristic method when short time limit is
provided.

Let us consider the general MIP problem at following to explain the local
branching framework:
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Minimize cTx

Subject to Ax≥ b

xj ≥ 0 ∀j ∈G,x integer

xj ≥ 0 ∀j ∈ C

xj ∈ {0,1} ∀j ∈B 6= ∅

The index set of variables is split into three sets G,C and B defining, respec-
tively, integer, continuous and binary variables. Given a feasible reference solution x̄
and a parameter k ∈N∗ we can define a kOPT neighborhood N(x̄,k) of x̄ comprising
the set of feasible solutions of the MIP problem that satisfies the additional local
branching constraint:

∆(x, x̄) :=
∑
j∈S

(1−xj) +
∑

j∈B\S
xj ≤ k where S = {j ∈B|x̄= 1} (2.1)

Terms in the left-side of (2.1) counts the number of binary variables flipping
from 1 to 0 and from 0 to 1 regarding the reference solution x̄. In other words,
∆(x, x̄) represents the Hamming Distance between x and x̄.

The local branching constraint is used within an enumerative scheme for
solving MIP subproblems. In fact, considering an incumbent solution x̄, the so-
lution space of the current branching node can be partitioned using the following
disjunctive constraints:

∆(x, x̄)≤ k (left-branch) or ∆(x, x̄)≥ k+ 1 (right-branch) (2.2)

The value of k must be chosen in such way to make the left-branch neighbor-
hood sufficiently small to be explored quickly and large enough to contain improved
solutions. Typically, this value is strongly related to the problem instance size, the
problem formulation, and the performance of MIP solver used.

The basic overall local branching algorithm is presented in the pseudo-code
of Figure 2.1. Function localBranching() receives as input an initial feasible so-
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lution x′ and the parameter k. In the inner loop several subproblems are generated
by adding local branching constraints while the reference solution x̄ is improved.
The function solveMIP() solve the current MIP subproblem to optimality using
an objective cutoff based on the objective value of x̄. If it is able to find a better
solution than x̄ a new solution is returned, otherwise x̄ is returned.

When the solution cannot be improved anymore in the main loop, then the
remaining problem is solved at line 8. This last resolution is possibly very difficult
since it will provide the optimal solution or state the optimality of the reference
solution. In the last line, the best (optimal) solution found is finally returned.

Figure 2.1 – Pseudo-code of the basic local branching method

Algorithm localBranching (x′,k)

1: repeat
2: x̄← x′

3: add local branching constraint ∆(x, x̄)≤ k
4: x′← solveMIP(x̄)

5: remove previously added local branching constraint ∆(x, x̄)≤ k
6: add local branching constraint ∆(x, x̄)≥ k+ 1
7: until x′ is not better than x̄
8: x̄← solveMIP(x̄)

9: return x̄

Source: Figure created by author.

Fischetti and Lodi (2003) proposed several extensions in order to improve
the performance of this basic local branching scheme: (i) imposing a node time
limit to left-branchings; (ii) introducing diversification and intensification strategies
that change the value of k systematically along the search to overcome often very
time-demanding subproblems; (iii) proposing a method to manage initial infeasible
solutions, and (iv) adapting the branching procedure to work with general integer
variables. In Hansen, MladenoviĆ and UroŠeviĆ (2006) it was proposed a strategy
that embed local branching as a local search procedure within a VNS procedure
whose neighborhoods are arranged sequentially from small to large values of k.
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2.1.2 Relaxation Induced Neighborhood Search

The Relaxation Induced Neighborhood Search (RINS) was introduced by
Danna and Rothberg (2005) as a method to improve the incumbent solution x̄

of a general MIP problem P within a branch-and-bound scheme. The basic idea
is to build a subproblem smaller then P by exploiting information of the linear
programming (LP) solutions of the branch-and-bound tree nodes. Specifically, the
subproblem corresponds to the neighborhood of x̄ which is created by fixing variables
having the same values in the incumbent solution and in the relaxed solution.

The overall method is outlined in the Figure 2.2. The function RINS receives
three input parameters: an incumbent feasible solution x̄ of P , a relaxed solution x̂
of P whose objective value is better than the objective value of x̄, and a time limit
value TL.

Figure 2.2 – Outline of the RINS algorithm

Algorithm RINS (x̄, x̂, TL)

1: Fix the variables with the same value in both x̄ and x̂
2: Add a cut-off based on the objective value of x̄
3: Solve the resulting MIP subproblem within the time limit TL

4: Return an improved solution if found.

Source: Figure created by author.

Note that the RINS method can fail to obtain an improved solution if either
the subproblem is infeasible or is not able to find a solution within the imposed time
limit. This last issue usually happens when the resulting subproblem is large and/or
difficult to solve.

Since each node of the branch-and-bound tree provides different relaxed LP
solutions, the RINS method can be invoked several times in order to explore different
neighborhoods.

2.1.3 Fix-And-Optimize

The fix-and-optimize heuristic was proposed independently by Gintner, Kliewer
and Suhl (2005) and by Pochet and Wolsey (2006). In the latter, the method was
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called exchange, designed to improve the relax-and-fix heuristic (WOLSEY, 1998).
However, the name fix-and-optimize used by the former was adopted in the liter-
ature. The fix-and-optimize heuristic iteratively decomposes a MIP problem into
smaller subproblems. In each iteration of the algorithm, a decomposition process is
applied with the aim of fixing most of the decision variables at their value in the
current solution. Since the resulting subproblem is composed only by a small group
of “free” variables to be optimized, each subproblem can be solved relatively fast by
a MIP solver, when compared with the full model. The solution obtained in each
iteration becomes the current solution in case it improves the objective value. In
further iterations of the algorithm, a different group of variables is systematically
selected to be optimized. This process is repeated until a termination condition is
satisfied.

2.2 School Timetabling Decisions

There are two basic decisions to tackle when building a timetabling:

• Resource Assignment: consists in assigning human and physical resources
as teachers, classes and rooms to events.

• Timeslot Assignment: consists in assigning a given amount of timeslots to
each event.

While the timeslot assignment is a mandatory decision in every school, in
many ones the resource assignment is previously done by the school board. Particu-
larly in this study we focus in the development of techniques for solving timetabling
problems in which the resource assignement is previously provided.

2.3 Timetabling Approaches

Due to its great practical importance, the timetabling problem has been
intensively investigated since 1960 (GOTLIEB, 1962). The first computational
attempts in solving the problem were inspired in the human way of solving it.
This was usually done through constructive methods combined with backtrack-
ing procedures (PAPOULIAS, 1980; SCHMIDT; STRÖHLEIN, 1980; GANS, 1981;
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JUNGINGER, 1986). In the beginning, the challenge was to find a feasible solu-
tion. Afterwards, variants of the problem were modeled by Integer Programming
(TILLETT, 1975; TRIPATHY, 1984), but only small instances could be solved
to optimality. Moreover, reduced instances to graph coloring and network flow
problems were solved by techniques designed for these problems (NEUFELD; TAR-
TAR, 1974; OSTERMANN; WERRA, 1982; WERRA, 1985). In the late 90’s,
Schaerf (1999b) classified educational timetabling problems into three groups: course
timetabling, examination timetabling, and school timetabling. Each one of these
groups has several variants of the problem proposed in the literature. We refer the
reader to the survey of Schaerf (1999b) which presents in a comprehensive struc-
ture the main variants of the timetabling problem, its formulations and solution
approaches. Since the early 90’s, metaheuristics have been successfully applied to
timetabling problems. Among them are Simulated Annealing (ABRAMSON, 1991;
COLORNI; DORIGO, 1998; AVELLA et al., 2007; ZHANG et al., 2010), Tabu
Search (COSTA, 1994; SCHAERF, 1999a; SANTOS; OCHI; SOUZA, 2005), and
Genetic Algorithms (CALDEIRA; ROSA, 1997). Other advanced techniques used
are Hyper-Heuristics (BURKE; KENDALL; SOUBEIGA, 2003), Column Gener-
ation (PAPOUTSIS C. VALOUXIS, 2003), and Constraint Programming (VAL-
OUXIS; HOUSOS, 2003; MARTE, 2007).

We refer the reader to a recent survey presented by Pillay (2014) where
an wide review is made and comprises several works on the high school timetabling
problem. In the next sections, we focus on the literature regarding school timetabling
in Brazil, as well as the literature related to the XHSTT format and matheuristic
approaches applied on timetabling.

2.3.1 Brazilian High School Timetabling

The most noteworthy problem variant regarding school timetabling in Brazil-
ian institutions was first defined by Souza and Maculan (2000). This problem com-
prises the most common requirements found in a typical Brazilian school. Here
we denote this problem as HSTP. Souza and Maculan (2000) presented a MIP for-
mulation for the HSTP, as well as an instance set that became a basic testbed
used until nowadays. Their computational results for HSTP had shown that to
solve the testbed instances with a general purpose MIP solver was impracticable.
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Thus, Souza, Ochi and Maculan (2004) proposed an hybrid meta-heuristic (GTS-II)
method to solve the testbed instances. The GTS-II uses a greedy randomized con-
structive heuristic to build an initial solution that later is refined by a Tabu Search.
Since the Tabu Search also includes infeasible solutions in the search space, it is
equipped with a procedure called Intraclasses-Interclasses that is invoked eventually
in an attempt to retrieve the current solution feasibility. In this study, GTS-II is
compared only with some of its variants.

In the work of Santos, Ochi and Souza (2005) a Tabu Search with diversifi-
cation strategies (TSTR) is proposed to solve HSTP. Their experiments show that
TSTR significantly outperforms GTS-II. In addition, the authors show empirically
that the proposed diversification strategy can improve the robustness of TSTR.
Another attempt to solve the HSTP, using graph coloring, is proposed by Bello,
Rangel and Boeres (2008), however the results obtained by this approach were not
compared against the state-of-the-art methods. More recently, Santos et al. (2012)
proposed and applied a cut and column generation algorithm providing, for the first
time, strong lower bounds for HSTP instances. That work is considered a landmark
because it established a reliable base to evaluate heuristically generated solutions.

Apart from the HSTP, another few timetabling variants were reported but
no computational comparison was performed with previous methods. Filho and
Lorena (2001) used a Constructive Genetic Algorithm to solve four semi-artificial
instances of two public-schools considering the following soft constraints for teach-
ers: avoid undesirable and idle periods. Whereas in Moura and Scaraficci (2010) the
authors use a classical GRASP procedure combined with a path-relinking improve-
ment phase. They solve three instances of different schools for a more constrained
Brazilian timetabling problem that, in addition to HSTP, we can highlight the fol-
lowing requirements: some teachers must teach lessons simultaneously in different
classes and lessons in undesirable periods or days should be avoided. In Poulsen and
Bandeira (2013), a MIP model and a heuristic approach are proposed for solving a
problem more constrained than HSTP. Both approaches are compared using seven
real-world instances originated from Brazilian schools. In that work, the proposed
heuristic is a three-phase algorithm based on a divide-and-conquer strategy. The
first phase consists in generating an initial feasible solution by solving a MIP model
fulfilled only with hard requirements. By using the initial solution, phases two and
three iteratively create several subproblems that are optimized using a MIP solver
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until a stop condition is met. Each subproblem comprises only of a given number
of classes. Each subproblem is built by choosing randomly n classes from one single
teacher, also chosen randomly. By using this heuristic procedure, the authors were
able to provide better results than a MIP solver for 4 out of 7 instances evaluated.

2.3.2 XHSTT format

Along the last editions of international conferences on the Practice and The-
ory of Automated Timetabling (PATAT), a group of high school timetabling re-
searchers has developed a XML based format, called XHSTT, to express problems
from different countries in an unified way (POST et al., 2010; POST et al., 2011).
Despite the verboseness of the XHSTT format, it has gained widespread acceptance
by the research community and, recently, its use was promoted in the Third Inter-
national Timetabling Competition (ITC2011) (POST et al., 2013). Problems that
can represented in the XHSTT format are denoted here as Generalized High School
Timetabling Problem (GHSTP). The objective of the GHSTP is to minimize the
number of violations of hard and soft constraints.

The XHSTT format is composed by three basic entities: times, resources
and events. Times represent discrete timeslots in a week where events can take
place. Resources represent entities that participate in one or more events. Typically,
resources are teachers, classes, students, and rooms. Events represent meetings
between resources. Each event has a duration that indicates the number of times
that are needed to be assigned to the event. Usually, a given set of resources or
timeslots are pre-assigned to events. Entities can be organized in several groups.

Additionally, the format allows to represent a set of constraints that a solution
should satisfy. Each constraint shares some common properties such as a weight, a
cost function, a boolean flag indicating if the constraint is hard or soft, as well as
the entities to which the constraint is applied. A constraint can be defined for an
individual entity or for groups of entities. Table 2.1 shows a brief description of 15
different constraints that are available in the current version of the XHSTT format.
A detailed description of each constraint is described in Kingston (2014a).
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Table 2.1 – Overview of the constraints supported by the XHSTT format.

Constraint type Description

AssignResource Event resource should be assigned a resource
AssignTime Event should be assigned a time
SplitEvents Event should split into a constrained number of sub-events
DistributeSplitEvents Event should split into sub-events of constrained durations
PreferResources Event resource assignment should come from resource group
PreferTimes Event time assignment should come from time group
AvoidSplitAssignments Set of event resources should be assigned the same resource
SpreadEvents Set of events should be spread evenly through the cycle
LinkEvents Set of events should be assigned the same time
AvoidClashes Resource’s timetable should not have clashes
AvoidUnavailable Times Resource should not be busy at unavailable times
LimitIdle Times Resource’s timetable should not have idle times
ClusterBusyTimes Resource should be busy on a limited number of days
LimitBusyTimes Resource should be busy a limited number of times each day
LimitWorkload Resource’s total workload should be limited

Source: (POST et al., 2013).

2.3.3 The Third International Timetabling Competition 2011

The main goal of the Third International Timetabling Competition 2011
(ITC-2011) was stimulating the research in real-world high school timetabling prob-
lems, as well as to encourage the use of the XHSTT format by the research commu-
nity.

The ITC-2011 was split in three rounds. In the first round the competitors
were invited to submit solutions for a benchmark set composed of 21 instances in
which a subset is composed by instances of HSTP. Since the first round aimed to
obtain all-time best solutions, the submitted solutions could be obtained with any
technique, using any resources, without any time limit. In the second round a set
of hidden instances was used and a time limit of 1000 seconds was imposed. During
this round, only free third party tools were permitted, i.e. , commercial software
such as CPLEX and Gurobi are excluded. Finally, in the third round the same
rules of the first round were used but considering the hidden instances of the second
round.
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2.3.4 GOAL Team solvers

Among the finalists of the ITC-2011, the GOAL Team won the competition
with the GOAL solver. This solver is designed as a hybrid approach that combines
a Simulated Annealing followed by an Iterated Local Search procedure (FONSECA
et al., 2012). In addition, this solver uses seven neighborhood structures that are
interchanged along the search according to a given set of probabilities. Some vari-
ations of this solver are also presented by the same team in (FONSECA; BRITO;
SANTOS, 2012; BRITO et al., 2012). More recently, (FONSECA; SANTOS, 2014)
studied several approaches based on Variable Neighborhood Search (VNS). Among
them, the Skewed VNS version, refered here as SVNS solver, provided the best per-
formance on the whole. Both solvers, GOAL and SVNS, were kindly provided by
their authors and are evaluated in this thesis in Chapter 6.

2.3.5 Matheuristic approaches

Regarding the educational timetabling problems, there are a few studies in
the literature exploring matheuristics. To the best of our knowledge, there are a few
publications related to course timetabling (BURKE et al., 2010; GUNAWAN; NG;
POH, 2012) and, specifically, applied to school timetabling, apart from Poulsen
and Bandeira (2013), only the work of Avella et al. (2007) used this approach.
In that work, the authors proposed a two-phase algorithm applied to an Italian
school whose problem is similar to HSTP. The first phase of the algorithm is a
simulated annealing (SA) algorithm. While the second phase consists in a very large-
scale neighborhood search that decomposes the problem into subproblems which are
solved independently by a MIP solver. In each subproblem all teachers remain fixed
with exception of a pair of randomly chosen teachers. This second phase can be
classified as a fix-and-optimize approach.

2.3.6 Discussion

A brief literature review reveals that most of the works adopt metaheuristic
and hybrid methods as solution approaches for solving the high school timetable
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problem. Despite some exceptions, works that use exact methods, as mathemat-
ical programming techniques, in general, are considered very time-consuming and
impracticable for most real applications. However, since in the last years several im-
provements have been made in mixed integer programming solvers (LODI, 2010), we
believe that this conclusion deserves to be revalidated. To the best of our knowledge,
the literature related to matheuristics applied on timetabling is almost inexistent,
what turns this approach a promising direction in the timetabling research.

Although the majority of the proposed techniques were able to successfully
solve the problem for which they were developed, these results cannot be generalized
because the studied problem is either too specific or evaluated by using a too small
dataset. With the introduction of the XHSTT format, theses issues tend to be mini-
mized along the time, however, current techniques proposed to solve this generalized
problem are still in their childhood. Even the winner technique of the ITC-2011 was
not able to produce final feasible solutions for several instances with known feasi-
ble solution in the competition. Although the timetabler may perform adjustments
by hand to fix an infeasible solution, there are three main serious drawbacks: (i)
the adjustment is made through a lazy negotiation process that, often, generates
dissatisfaction among those involved; (ii) adjustments by hand usually degenerates
significantly the solution quality. As result, decreasing the benefit provided by the
software assistance (iii) the timetabler might not be able to fix the solution.
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3 INTRODUCTION TO HSTP

The main goal of this chapter is to introduce the High School Timetabling
Problem (HSTP) that was first defined by Souza and Maculan (2000). Also, we are
particularly interested in evaluating the performance of MIP solvers when applied
to instances of HSTP. In addition to a new MIP model, in this chapter we per-
form experiments to compare our model with the most recent compact formulation
proposed by Santos et al. (2012).

3.1 Problem definition and modeling

The HSTP comes from the Brazilian High School System. The goal of the
problem is to build a weekly timetabling. The week is organized as a set of days D,
and each day is split into a set of periods P . Let C be a set of classes and T a set of
teachers. A class c ∈ C is a group of students that follow the same course and have
full availability. A timeslot is a pair, composed of a day and a class period (d,p),
with d ∈D and p ∈ P , wherein all periods have the same duration. Teachers t ∈ T
may be unavailable in some timeslots.

The main input for the problem is a set of events E that should be scheduled.
Typically, an event is a meeting between class and teacher to address a particular
subject in a given number of lessons (workload) in a given room. Particularly in
the Brazilian context, a class, a teacher and a room are pre-assigned to each event
e ∈ E. In addition, each event defines how lessons are distributed over a week by
requesting an amount of double lessons, restricting the daily limit of lessons, and
defining whether lessons taught on the same day are consecutive or not.

A feasible timetable has a timeslot assigned to each lesson of events satisfying
the hard requirements H1-H6 below:
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H1 The workload defined in each event must be satisfied.
H2 A teacher cannot be scheduled to more than one lesson in a given period.
H3 Lessons cannot be taught to the same class in the same period.
H4 A teacher cannot be scheduled to a period in which she/he is unavailable.
H5 The maximum number of daily lessons of each event must be respected.
H6 Lessons from the same event must be consecutive when scheduled for the same

day, in case it is required by the event.

Besides feasibility regarding hard constraints, as many as possible of the soft
requirements S1-S3 stated below should be satisfied:

S1 Avoid teachers’ idle periods.
S2 Minimize the number of working days for teachers. In this context, working

day means a day that the teacher has at least one lesson assigned to her/him.
S3 Provide the number of double lessons requested by each event.

3.1.1 Problem Formulation

In this subsection we present a MIP formulation for the HSTP adapted from
the compact formulation proposed by Santos et al. (2012) considering all the hard
and soft requirements mentioned above. The notation used in the problem formu-
lation is presented in Table 3.1.

Our formulation, hereafter denoted as M1, is novel in three aspects. Firstly,
we modified the previous formulation to simplify its presentation replacing each pre-
assigned encounters between teacher/class by a set of events. Secondly, we included
the hard requirement H6, which had not been considered in previous studies on
HSTP and is further required in Chapter 4. Finally, we proposed a new formulation
for the idle times requirement that is faster when solving small instances of this
problem.
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Table 3.1 – Notation used for the HSTP model.

Symbol Definition
Sets
d ∈D days of week. D = {1,2, ..., |D|}.
p ∈ P periods of a day. P = {1, ..., |P |}.
P ′ P without the last two periods of a day. P ′ = {1, ..., |P |−2}.
t ∈ T set of teachers.
c ∈ C set of classes.
e ∈ E set of events.
Et set of events assigned to teacher t.
Ec set of events assigned to class c.
U set of tuples (m,n) for m ∈ P ′,n ∈ P : n≥m+ 2.
Q set of tuples (m,n) for m ∈ P ′,n ∈ P : n≥m.
SGe set of timeslots on which event e can start a double lesson (SGe =

{(d,p) : d ∈D,p ∈ P and p < |P |,Vedp+Ved,p+1 = 2}). The parame-
ter Vedp is defined below.

Parameters
ωt cost of each idle period of teacher t.
γt cost of each working day of teacher t.
δe cost of each double lesson of event e not taught sequentially.
Re workload of event e.
Le maximum daily number of lessons of event e.
Vedp binary parameter that indicates whether the teacher assigned to

event e is available in the timeslot (d,p).
MGe minimum amount of double lessons required by event e.

Variables
xedp binary variable that indicates whether event e is scheduled to times-

lot (d,p).
ytd binary variable that indicates whether at least one lesson is assigned

to teacher t on day d.
gedp binary variable that indicates whether event e has a double lesson

starting at timeslot (d,p).
Ge integer variable that indicates the number of double lessons remain-

ing to reach MGe.
bedp binary variable that indicates whether event e has a lesson at times-

lot (d,p) and not at timeslot (d,p−1).
ztdmn binary variable that indicates whether the teacher t has idle periods

on day d between periods m and n.

Source: created by author.
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Minimize
∑
t∈T

∑
d∈D

∑
(m,n)∈U

ωt(n−m−1)ztdmn+
∑
t∈T

∑
d∈D

γtytd+
∑
e∈E

δeGe (3.1)

Subject to

∑
d∈D

∑
p∈P

xedp =Re ∀e (3.2)

∑
p∈P

xedp ≤ Le ∀e,d (3.3)

xedp ≤ Vedp ∀e,d,p (3.4)∑
e∈Et

xedp ≤ ytd ∀t,d,p (3.5)

∑
e∈Et

∑
p∈P

xedp ≥ ytd ∀t,d (3.6)

∑
e∈Ec

xedp ≤ 1 ∀c,d,p (3.7)

bedp ≥ xedp−xedp−1 ∀e,d,p : p > 1 (3.8)∑
p∈P :p>1

bedp+xed1 ≤ 1 ∀e,d (3.9)

gedp ≤ xedp ∀e,(d,p) ∈ SGe (3.10)

gedp ≤ xedp+1 ∀e,(d,p) ∈ SGe (3.11)

Ge ≥MGe−
∑

(d,p)∈SGe

gedp ∀e (3.12)

∑
d∈D

ytd ≥max
{⌈∑

e∈Et
Re

|P |

⌉
,max
e∈Et

{⌈
Re
Le

⌉}}
∀t (3.13)

∑
(m,n)∈Q

ztdmn = ytd ∀t,d,m ∈ P ′ (3.14)

∑
(m,n)∈U

ztdmn ≤ ytd ∀t,d,n ∈ P : n≥ 3 (3.15)

ztdpp ≤ 1 +
∑
e∈Et

(
xedp+1−xedp

)
∀t,d,p ∈ P ′ (3.16)

ztdmm+1 ≤ 1−
∑
e∈Et

xedn ∀t,d,(m,n) ∈ U (3.17)

ztdmn ≤
∑
e∈Et

xedn ∀t,d,(m,n) ∈ U (3.18)

xedp,gedp, bedp ∈ {0,1},Ge ≥ 0 ∀e,d,p (3.19)

ytd, ztdmn ∈ {0,1} ∀t,d,(m,n) ∈Q (3.20)
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The objective function of the problem formulation consists of three weighted
parts related to the soft requirements S1, S2 and S3, respectively. Regarding the
soft requirement S1, the penalization is proportional to the number of idle periods.

Constraint set (3.2) ensures that the workload of each event is fully sched-
uled. Constraint set (3.3) provides a daily limit of lessons for each event. Constraint
set (3.4) ensures that the lessons of an event are scheduled in available periods. Con-
straint sets (3.5) and (3.7) ensure that teacher and class are scheduled to only one
lesson at a time. Constraint sets (3.5) and (3.6) identify the working days of teach-
ers. Constraint sets (3.8) and (3.9) ensure that the lessons of an event are scheduled
sequentially according to requirement H6. Constraint sets (3.10) and (3.11) en-
force double lessons when the variable gedp is equal to one. Constraint set (3.12)
determines Ge, the number of double lessons remaining to reach MGe. Since Ge
accounts for the objective function, the sum in the right side of the inequality tends
to increase, and thus the establishment of double lessons is promoted.

Constraint set (3.13) is a cut proposed by Souza (2000) that defines a mini-
mum number of working days for each teacher and makes the formulation stronger.

Constraint sets (3.14)-(3.18) determine the number of idle periods in a solu-
tion. To explain these constraints, it is useful to consider an idle periods graph as
shown in Figure 3.1. In this graph the vertices p1,p2,p3,p4 and p5 are periods on a
day d of a teacher t. There are two types of arcs: idle period arcs, with (m,n) ∈ U
that are penalized in the objective function, and auxiliary arcs, with (m,n) ∈Q\U .
In Figure 3.1 the idle period arcs are drawn as solid lines and the auxiliary arcs
are drawn as dashed lines. Note that each arc corresponds directly to a binary
variable ztdmn such that m is the tail and n is the head node of the arc. For exam-
ple, variable ztd13 corresponds to the arc (p1,p3). The underlying idea is to ensure
that the idle period arcs are properly activated to compute the cost of idle periods.
Constraint sets (3.14) and (3.15) ensure that there is exactly one arc leaving and
reaching each period that can be the beginning or end of an idle period, respectively.
Constraint set (3.16) states that an auxiliary arc (m,m) must be active only in two
situations: when the teacher has no lesson in period m, or when the teacher has a
lesson in periods m and m+ 1. Constraint set (3.17) states that an auxiliary arc
(m,m+1) must be active only when the last lesson on a working day of the teacher
occurs at period m. Constraint set (3.18) states that an idle period arc (m,n) can
be active only when the teacher has a lesson in period n.
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Figure 3.1 – Idle periods graph.

 p1  p2  p3 p4 p5

Source: Figure created by author.

Figure 3.2 presents only the activated arcs in the idle periods graph consider-
ing two allocation scenarios for a teacher. In scenario (a) there are two idle periods,
p2 and p3, that are identified by the arc (p1,p4). In scenario (b) there are no idle
periods. Thus, only auxiliary arcs are activated.

Figure 3.2 – Examples of allocation scenarios. The gray cells indicate periods in which a

lesson occurs.

 p1  p2  p3 p4

(a) two idle periods

p5  p1  p2  p3 p4

(b) no idle periods

p5

Source: Figure created by author.

3.2 Computational Experiments

In this section we present an experimental evaluation of the model M1 de-
scribed previously in this chapter. The goal of our experiments is to answer the
following questions:

i) How suitable is solving the HSTP by using a MIP solver?

ii) How the results obtained by solving the model M1 compare with the results
obtained by solving the compact MIP model proposed by Santos et al. (2012)?

iii) Which soft requirement most impacts in the resolution of model M1?

In order to answer these questions we used the HSTP instances presented in
Table 3.2. The first two columns present the instance identifier name. Since their
names are long, we use the identifiers for referencing them along the text. Columns
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|D| and |P | show the number of days and periods, respectively, while columns |T |,
|C| and |E| present the number of teachers, classes and events, respectively. Finally,
columns ∑e∈EMGe and ∑e∈ERe present the total of required double lessons and
the total workload, respectively.

Table 3.2 – Main characteristics of HSTP instances.

Id Name |D| |P | |T | |C| |E| ∑e∈EMGe
∑
e∈ERe

1 Inst1 5 5 8 3 21 21 75
2 Inst2 5 5 14 6 63 29 150
3 Inst3 5 5 16 8 69 4 200
4 Inst4 5 5 23 12 127 66 300
5 Inst5 5 5 31 13 119 71 325
6 Inst6 5 5 30 14 140 63 350
7 Inst7 5 5 33 20 205 84 500

Source: created by author.

For solving the models we used the mixed integer programming solver CPLEX
12.1 with default settings. The reported results were computed on a Desktop-PC
equipped with an Intel Core i5-2300 processor clocked at 2.8 GHz, 4 GB of RAM,
running a 64 bits Linux operating system. The parameters γt, ωt and δe were set to
9, 3 and 1, respectively. These values are the same used by previous works on this
problem.

Results presented in tables 3.3 and 3.4 are reported with a time limit of 60
minutes. Column time shows the running time of the solver in minutes. Column
obj shows the value of the objective function. Column gap presents the percent
deviation between the obtained solution and the lower bound computed by the
solver. Columns rows and cols present, respectively, the number of constraints and
variables after the pre-processing phase of the solver. Column nodes shows the
number of explored nodes through the whole search. Finally, column root shows the
time in seconds for solving the linear relaxation at the root node. Best results are
shown in bold.

Table 3.3 presents a comparison between the model M1 and the compact
model proposed by Santos et al. (2012) (M2). Although the model M1 produced
the best results for most of the instances, results from model M2 were better on
average. While the model M1 performed better on small size instances, the model
M2 obtained more best results when solving large instances. Note that the number
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of rows and columns forM1 is strictly greater when compared to the modelM2. This
difference is mainly due to the distinct formulation of the idle periods requirement.
Finally, the model M1 was faster concerning the resolution of the linear relaxation
when compared with M2.

Table 3.3 – Comparison results between models M1 and M2

M1 M2

inst time gap obj rows cols nodes root time gap obj rows cols nodes root

1 60.0 6.40 202 1491 1099 273744 0.1 60.0 6.44 202 1191 811 313263 0.1
2 41.0 0.00 333 3210 2889 36614 0.6 60.0 2.06 340 2700 2304 90890 0.8
3 60.0 2.82 426 2229 2296 125094 0.3 60.0 2.82 426 1665 1720 93516 0.5
4 60.0 1.38 652 3491 3906 20599 1.1 60.0 1.68 654 3075 3250 24697 1.6
5 60.0 5.62 801 7299 6277 8099 3.4 60.0 4.67 793 5979 4882 5227 4.1
6 60.0 5.14 778 7300 6704 4170 3.6 60.0 8.55 807 6196 5372 1407 5.5
7 60.0 20.65 1259 8962 9034 524 8.8 60.0 13.51 1155 7937 7549 514 12.6

Avg. 57.3 6.00 636 4854 4600 66977 2.6 60.0 5.68 625 4106 3698 75644 3.6

Source: created by author.

Table 3.4 presents the results obtained by model M1 disregarding, respec-
tively, the requirements S1, S2 and S3. The results reported for M1 \ S1 shows that
disregarding the minimization of idle periods allows the solver to reach optimal solu-
tions for all HSTP instances within 1 hour. The results reported for M1 \ S2 shows
that disregarding the minimization of working days for teachers allows the solver to
reach optimal solutions for the majority of the instances. Finally, disregarding the
satisfaction of double lessons not significantly affects the resolution.
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Table 3.4 – Results for model M1 disregarding separately a soft requirement

M1 \ S1 M1 \ S2 M1 \ S3

inst time obj gap time obj gap time obj gap

1 0.0 189 0.00 0.1 0 0.00 60.0 201 5.97
2 0.1 333 0.00 0.1 0 0.00 6.7 333 0.00
3 0.1 414 0.00 0.5 0 0.00 60.0 426 2.82
4 1.9 643 0.00 4.4 4 0.00 60.0 648 1.39
5 13.4 756 0.00 10.9 0 0.00 60.0 762 0.79
6 13.9 738 0.00 2.1 0 0.00 60.0 765 3.53
7 54.6 999 0.00 60.0 33 100.00 60.0 1041 4.03

Avg. 12.0 582 0.00 11.1 5 14.29 52.4 597 2.65

Source: created by author.

3.3 Conclusions

In this chapter we presented a well-known variant to the High School Timetabling
denoted as HTSP. The HSTP is formally defined through a novel MIP model ob-
tained through reformulation of the idle times requirement. The experimenal results
conducted in this chapter demonstrated that both model M1 and M2 performed
similarly on solving HSTP. However, the former was best suitable for solving small
instances. This property will be exploited for solving subproblems in the next chap-
ter.

In addition, we performed computational experiments to evaluate the impact
of soft requirements in the resolution process by a MIP solver. The obtained re-
sults show empirically that the idle periods requirement (S1) is the one that most
significantly difficults the resolution of model M1 by CPLEX.
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4 A FIX-AND-OPTIMIZE APPROACH

In the previous chapter we showed that a general purpose MIP solver is
better suitable for solving small instances of the HSTP. In this chapter we propose
a matheuristic approach that can be used for solving medium and large instances of
the HSTP. Section 4.1 presents a fix-and-optimize heuristic combined with a variable
neighborhood descent method and three different types of decompositions for the
HSTP. Section 4.2 presents a set of experiments to evaluate the proposed method
in comparison with previous results reported in the literature. Finally, Section 4.3
presents the main conclusions of this chapter.

4.1 Proposed fix-and-optimize heuristic combined with a variable neigh-
borhood descent strategy

In the model M1 proposed in the previous chapter, the variable set xedp is the
most important one, since other decision variables depend on it. This means that if
the values of xedp variables are set, then the values of the remaining ones are easily
inferred. This property indicates that the fix-and-optimize heuristic could succeed
in solving the model, since fixing binary variables to integer values has only two
possibilities. In the fix-and-optimize heuristic, the way we choose the fixed variables
as well as the number of fixed variables impacts directly on the performance of the
algorithm and on quality of the final solution. Thus, the decomposition operation
must vary in type and size. In this work we propose three types of decomposition:

• Class Decomposition (CD): a certain number of classes are free to be optimized.
• Teacher Decomposition (TD): a certain number of teachers are free to be op-

timized.
• Day Decomposition (DD): a certain number of days are free to be optimized.
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Note that when a class, teacher or day is free to be optimized it means that
all variables for the events of this class, teacher or day are not fixed.

For each type of decomposition τ we can define a parameter k which defines
the cardinality of the subset of variables that are free to be optimized. For instance,
considering the CD, we can free 1,2,3,..., k classes, such that k ≤ |C|.

The combination of a decomposition type τ ∈ {CD, TD, DD} and a size k
defines different neighborhoods. The tuple (τ ,k) can be used to represent a specific
neighborhood. For instance, a neighborhood (DD,2) of a solution x consists of all
solutions that can be obtained by solving subproblems such that |D| − 2 days are
fixed exactly as in x, but two days are free to be optimized.

Since there are many possible neighborhoods, we explore them through a
variable neighborhood descent (VND) approach (HANSEN; MLADENOVIĆ, 2001).
The VND process implies an iteration over a sequence of neighborhoods N while
better solutions are found using a first improvement selection strategy. Typically
the neighborhoods, (τ,k) ∈ N, are explored by a general purpose MIP solver from
the smaller to the larger ones.

Figure 4.1 presents the behavior of the fix-and-optimize heuristic applied on a
toy instance of the problem. It is composed by three classes (c1, c2, c3), six teachers,
four periods (p1,p2,p3,p4) and only one day. The algorithm begins from a feasible
solution and, at each step, solves a different subproblem. Note that the procedure
begins with the neighborhood (CD,1) and improves the current solution twice. At
iteration 6, the neighborhood is changed to (CD,2) and the algorithm is then able to
improve the solution once again. In the following sections we present further details
of this procedure.

4.1.1 Generating initial feasible solutions

Since the variable fixations described above are based on values of a previous
solution, we need to provide an initial feasible solution to start the fix-and-optimize
algorithm. In order to do so, we solve a feasibility version of the HSTP by disre-
garding the objective function of the MIP model presented in Section 3.1, i.e., all
soft constraints of the problem. This approach allows the algorithm to quickly find
an initial feasible solution.



45

Figure 4.1 – Example of the proposed fix-and-optimize heuristic using N =
((CD,1),(CD,2)). Each table shows an iteration of the algorithm, and each cell shows
a teacher assignment. The shaded cells denote the group of variables that are free to
be optimized, while the remaining ones are fixed with values from the previous solution.
Underlined iterations denote that the current solution was improved in the previous iter-
ation. Note that teachers 1, 3, 5 and 6 have idle periods in the initial solution which are
gradually removed along the iterations.
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Source: Figure created by author.
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4.1.2 The proposed algorithm

The overall algorithm is described in the pseudo-code of Figure 4.2. Function
fixAndOptimize() receives as input a sequence of neighborhoods (N), the overall
time limit (TL), and the time limit for each subproblem (STL).

The algorithm begins by creating an initial feasible solution x∗ (line 1) as
described in Section 4.1.1. If the problem is infeasible it terminates returning no
solution.

The outer loop (lines 5-23) iterates over a sequence of neighborhood struc-
tures N on the same fashion as a VND algorithm. Each neighborhood has a finite
number of subproblems computed by function subproblemCount() (line 6) as de-
scribed in the pseudo-code of Figure 4.3. The number of subproblems, indicated by
s, depends on the type of the decomposition τ and on its size k.

In the inner loop (lines 9-22) the subproblems of the current neighborhood
are explored until noImprov=count, i.e., the algorithm evaluates each subproblem
(within the subproblem time limit STL) of the neighborhood (τ ,k) and is not able
to improve the quality of the current solution, i.e., the level of satisfaction of the
soft constraints.

The function decompose() (line 10) is used to compute the set of variables to
be optimized (R) in the current subproblem according to the pseudo-code presented
in Figure 4.4. The function subsets(S,k,s) returns in lexicographical order the sth

subset of all subsets of S containing exactly k elements.
After that, the subproblem is solved through function solve() which receives

three parameters: the current solution (x∗), the set of variables to be optimized (R),
and the time limit of the subproblem (STL). This function fixes all variables xedp
which do not belong to R to their values in x∗, and starts the solver. If it is able to
find a better solution than x∗, then it is returned. Otherwise, if no better solution is
found within the time limit, or if the subproblem is infeasible, it returns the previous
current solution x∗. Note that subproblems can be infeasible since we add a cutoff
constraint that forces the solver to search only for solutions whose objective value
is less than the objective value of x∗. After the function solve() returns a result,
all variables previously fixed are released.

Whenever a better solution is found it becomes the current solution x∗

(line 13), and variable noImprov is reset. Otherwise, noImprov is incremented.
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The algorithm terminates returning the best solution found when the time limit TL

is reached (lines 18-20). In line 21 the variable s indexes the next subproblem. After
all neighborhoods in the outer loop are explored, the algorithm terminates in line
23 returning the best visited solution x∗.

Figure 4.2 – Pseudo-code of the proposed fix-and-optimize heuristic.

Algorithm fixAndOptimize (N,TL,STL)

1: x∗← GenerateInitialSolution();
2: if x∗ = ∅ then
3: return ∅;
4: end if
5: for all (τ,k) ∈N do
6: count← subproblemCount(τ,k);
7: s ← 1;
8: noImprov← 0;
9: repeat
10: R← decompose(τ,k,s);
11: x← solve(x∗,R,STL);
12: if x is better than x∗ then
13: x∗← x;
14: noImprov← 0;
15: else
16: noImprov++;
17: end if
18: if TL was reached then
19: return x∗;
20: end if
21: s ← (s mod count)+1;
22: until noImprov=count;
23: end for
24: return x∗.

Source: Figure created by author.
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Figure 4.3 – Function that computes the number of subproblems of a neighborhood.

Algorithm subproblemCount (τ,k)

1: switch(τ)
2: case CD
3: count←

(
|C|
k

)
;

4: case TD
5: count←

(
|T |
k

)
;

6: case DD
7: count←

(
|D|
k

)
;

8: end switch
9: return count.

Source: Figure created by author.

Figure 4.4 – Decomposition function.

Algorithm decompose (τ,k,s)

1: switch(τ)
2: case CD
3: R←{xedp : c ∈ subsets(C,k,s), e ∈ Ec,d ∈D,p ∈ P};
4: case TD
5: R←{xedp : t ∈ subsets(T,k,s), e ∈ Et,d ∈D,p ∈ P};
6: case DD
7: R←{xedp : e ∈ E,d ∈ subsets(D,k,s),p ∈ P};
8: end switch
9: return R.

Source: Figure created by author.

4.2 Computational experiments

In this section we present an experimental evaluation for the fix-and-optimize
heuristic proposed in this chapter. The goal of our experiments is to answer the
following questions:

i) Does the proposed algorithm outperform a general purpose MIP solver?
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ii) Which sequence of neighborhoods N provides the best results?

iii) How do our results compare with results of the state-of-the-art methods for
solving the problem?

The subproblems are solved by CPLEX 12.1 (IBM, 2009) with default settings
and the algorithms were implemented in C++ using the compiler g++ 4.6.1. The
experimental results were computed in a Desktop-PC equipped with an Intel Core
i5-2300 processor clocked at 2.8GHz, 4GB of RAM, over a 64 bits Linux operating
system. Along this section, we report results of one run for each tested algorithm,
since they are deterministic. The mathematical model parameters γt, ωt and δe

were set to 9, 3 and 1, respectively. These values are the same used by all previous
works on HSTP of our knowledge.

4.2.1 Dataset

To evaluate the algorithm, we used the instances presented in Table 4.1.
In the table, the first two columns present the instance identifier name. Since
their names are long, we use the identifiers for shortening reference along the text.
Columns |D| and |P | show the number of days and periods, respectively, while
columns |T |, |C| and |E| present the number of teachers, classes and events, re-
spectively. Finally, columns ∑e∈EMGe and ∑e∈ERe present the total number of
required double lessons and the total amount of workload, respectively.

The instances are split into two sets. Instances 1-7 comprise set-1 and are
available from the repository (LABIC, 2008) and to the best of our knowledge they
were used in all previous works on HSTP. Requirement H6 is not considered in
this group of instances. Instances A, D, E, F, G, from set-2, are different versions
of instances 1, 4, 5, 6, 7, respectively. They differ mainly in two aspects: in set-
2, teachers are available in all periods, and requirement H6 is considered. These
modifications made the instances of set-2 more challenging to be included in the
first round of the Third International Timetabling Competition 2011 (ITC-2011)
(ITC, 2011). They are part of the XHSTT-2012 archive 1.

1<http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/>

http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/
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Table 4.1 – Main characteristics of the tested instances.

Id Name |D| |P | |T | |C| |E| ∑e∈EMGe
∑
e∈ERe

1 Inst1 5 5 8 3 21 21 75
2 Inst2 5 5 14 6 63 29 150
3 Inst3 5 5 16 8 69 4 200
4 Inst4 5 5 23 12 127 66 300
5 Inst5 5 5 31 13 119 71 325
6 Inst6 5 5 30 14 140 63 350
7 Inst7 5 5 33 20 205 84 500
A BrazilInstance1 5 5 8 3 21 21 75
D BrazilInstance4 5 5 23 12 127 66 300
E BrazilInstance5 5 5 31 13 119 71 325
F BrazilInstance6 5 5 30 14 140 63 350
G BrazilInstance7 5 5 33 20 205 84 500

Source: created by author.

4.2.2 Initial solutions

Table 4.2 shows the initial feasible solution values obtained by CPLEX ac-
cording to the procedure described in Section 4.1.1. Column LB presents the best
known lower bounds computed for the instances. Lower bounds for instances 1-
7 were provided by Santos et al. (2012), while the remaining lower bounds were
obtained by solving the linear relaxation of the model presented in Section 3.1.1.
Column obj shows the value of the objective function. Column gapL presents the
percentage deviation from the best known lower bound (LB). It is computed by
100∗ (obj−LB)/LB. Column time shows the running times in seconds.

As one can notice, the proposed procedure provides feasible solutions in a
short time, spending just 6 seconds on average. Despite their values begin far from
the lower bound LB, it is important to note that the method provides feasible solu-
tions quickly without burdening the overall total time. As expected, the generation
of initial solutions for instances of set-2 are more time demanding, since the solution
space is larger when all teachers have full availability.
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Table 4.2 – Initial feasible solutions.

Id LB obj gapL (%) time (s)
1 202 612 202.97 0.0
2 333 1089 227.03 0.2
3 423 1172 177.07 0.4
4 652 1598 145.09 0.9
5 762 2369 210.89 0.9
6 756 2299 204.10 1.1
7 1017 2758 171.19 2.9
A 189 567 200.00 0.2
D 621 1658 166.99 10.6
E 756 2109 178.97 10.8
F 738 2247 204.47 12.5
G 999 2776 177.88 31.6

Avg. 620.7 1771.2 188.89 6.0

Source: created by author.

4.2.3 Parameter setting

In this section we describe a set of experiments that supported us to define
a standard parameter setting to be used by the proposed heuristic. Basically, we
aimed to define the sequence of neighborhoods N, the order in which the different
neighborhoods are visited, and a suitable Subproblem Time Limit (STL).

Initially, we tested several neighborhoods composed by a single tuple (τ ,k),
i.e., |N|= 1, with τ ∈ {CD, TD, DD} and with several values for the decomposition
size k. For the neighborhoods involving day decompositions we tested k ∈ {1, ...,5}
and for teacher and classes decompositions we used k ∈ {1, ...,12}. Obviously, the
maximum value for k is set to five for the decomposition DD since all tested instances
have |D| = 5. Considering the decompositions CD and TD the maximum value for
k was chosen in order to keep a good trade-off between performance and solution
quality. These neighborhoods are combined with two different STL values: STL=30
and STL=∞, meaning that the subproblem time limit is 30 seconds in the first case,
and when set to∞ the subproblem runs to optimality, or the overall time limit (TL)
is reached.

Figure 4.5 shows average results, considering all instances, for the gap (plot
in the top), and running times (plot in the bottom) of the different combinations of
neighborhoods and STL values. The gap value of each instance is calculated as the
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percentage deviation of the solution value found to the best known values. For each
combination, the overall time limit (TL) of each run was set to 10 minutes.

Analyzing this figure, it can be observed that class and teacher decompo-
sitions provide better results than day decomposition. This occurs because the
subproblems generated by day decompositions are too large and CPLEX spends a
long time on each subproblem, leading to few solution improvements.

Another observation is related to the STL parameter. All runs with STL=30
spent less time than STL=∞. A suitable setting of this parameter is fundamental
for the overall heuristic performance. If the time available is too short, the solver
rarely solves the subproblem. This can be observed in Figure 4.5 in cases with
STL=30 in class decomposition with k ≥ 8, and for day decomposition with k ≥ 4.
This behavior is expected since the number of free variables increases with k. In
these cases the algorithm often finishes prematurely. Finally, runs with teacher
decomposition were almost not affected by STL since most of the subproblems were
solved within the subproblem time limit.

Unexpectedly, in some situations in which the algorithm finished before the
overall time limit, results using STL=30 were better than with STL=∞ (for instance,
for class decomposition k ≤ 7). In this case, when STL=∞ the algorithm performs
large decreasing steps in the objective function value during the first iterations. As
a side effect some parts of the solution are “frozen” in its local optima discouraging
further interactions with other solution parts.

In summary, considering the overall results for single neighborhoods, we con-
cluded that class and teacher decompositions with small size values (ranging from
1 to 4) might provide a good trade-off between running time and solution quality.
Thus it is reasonable to consider them as strong candidates to take place the first
positions in a sequence of neighborhoods for the VND method.

In order to answer which sequence of neighborhoods N provides the best
results, we evaluated different sequences presented in Table 4.3, producing different
variants (Var) of the algorithm (F1-F10). Each sequence is composed by different
arrangements of teacher and class decompositions where neighborhoods with small
values of k appear first since, as we concluded previously, they produce high quality
solutions in a short time. All variants were tested considering three different values
of parameter STL = {10,30,50}. For each test we report the average gap (gapL)
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Figure 4.5 – Each line in the plots represents a combination of decomposition type and
STL value. The solid lines show results from runs with STL=∞, while dashed lines
show results from runs for STL=30. The x-axis represents the size (k) of each evaluated
decomposition.
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and the number of optimal solutions found (#opt). The overall time limit (TL) of
each run was set to 10 minutes.

Table 4.3 – Results for variants of the fix-and-optimize heuristic.

STL = 10s STL = 30s STL = 50s

Var Sequence of neighborhoods (N) gapL(%) #opt gapL(%) #opt gapL(%) #opt

F1 ((TD,1), ...,(TD,∞)) 3.91 1 3.82 2 3.85 2

F2 ((CD,1), ...,(CD,∞)) 3.36 2 3.32 2 3.22 2

F3 ((TD,2), ...,(TD,∞)) 3.95 1 3.86 2 3.86 2

F4 ((CD,2), ...,(CD,∞)) 3.36 2 3.24 2 3.42 2

F5 ((TD,1),(CD,1), ...,(TD,∞),(CD,∞)) 3.04 3 3.19 3 3.19 3

F6 ((CD,1),(TD,1), ...,(CD,∞),(TD,∞)) 3.04 3 3.13 3 3.23 3

F7 ((TD,2),(CD,2), ...,(TD,∞),(CD,∞)) 2.90 3 2.84 3 3.11 3

F8 ((CD,2),(TD,2), ...,(CD,∞),(TD,∞)) 3.02 4 2.92 4 3.17 3

F9 ((TD,3),(CD,3), ...,(TD,∞),(CD,∞)) 3.42 2 3.68 2 3.61 2

F10 ((CD,3),(TD,3), ...,(CD,∞),(TD,∞)) 6.02 3 7.34 3 8.29 3

Source: created by author.

According to the table, we observed that the algorithm was not significantly
sensitive to changes in the parameter STL. The best results were obtained by vari-
ants F5-F8, which results are quite similar. While the variant F7 achieved the best
average gap among them, the variant F8 found the largest number of optimal so-
lutions. On the whole, the results indicated that variants mixing different types of
decompositions (F5-F10) are better than variants with just one type of decompo-
sition (F1-F4), except for variants F9 and F10. Particularly, these two performed
poorly since the time limit imposed was too short to deal properly with sequences
of neighborhoods starting with large decompositions (k ≥ 3). In fact, according to
our experience, when more time is available, in average, variants F5-F10 are strictly
better than variants F1-F4. We chose the variant F8 using STL=30 as the standard
setting given it obtained a high number of optimal solutions. This variant is used
in the next experiments performed in this work.
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4.2.4 Comparison with CPLEX

In Table 4.4 the results obtained by variant F8 of the proposed fix-and-
optimize heuristic are compared with the results obtained by the general purpose
solver CPLEX (CPX). The labels CPX and F8 are subscripted with the overall
time limit used in the method. Column BKV shows the previous best known
solution values. Whereas the values for instances 1, 2, 3, and 6 were obtained
by Santos et al. (2012), the values for instances 4, 5, and 7 were obtained by
the model M1 proposed in Chapter 3. Finally, results for set-2 were the best
generated solutions reported in the first round of ITC-2011 By the competition
rules, the best known solution could be obtained by any technique, using any re-
sources, without any time limit. The teams had five months to produce these re-
sults. For each method we report the objective value (obj) and the percentage
deviation (gapB) from the best known value (BKV ). Column gapB is computed
by 100 ∗ (obj−BKV )/min(BKV ,obj). Thus, a negative gapB value represents an
improvement over the best known solution value. Improved results are shown in
boldface.

As the table shows, the proposed algorithm was able to find better solutions
than CPLEX spending considerably less computational time. For example, F8(10min)

found, on average, better or equal results than CPX(10h) for all instances, except for
instance 3. In a separate experiment, the variant F8(6h) was also able to find the
optimal result for this instance.

We can also observe that if more time is available, the proposed algorithm
can improve the quality of the solutions even further. For set-1, for example, variant
F8(10min) was able to obtain the best known value for three instances, and two new
best known values (instances 5 and 7) were found. Variant F8(30min) found a new
best known value for instance 6, and improved the previous best known value of in-
stance 7. Variant F8(1h) improved the solution of instance 3. Regarding instances of
set-2, considerable improvements are observed when comparing the proposed algo-
rithm with the best known values and with CPLEX results. Both, our method and
CPLEX, found the best known solution for instance A. For the remaining instances,
CPX(10h) was unable to find the best known solution for any of them, and the gap
ranges from 3.07% up to 80.64%. On the other hand, variant F8(10min) was able to
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improve the best known solutions for all of them. New improvements are obtained
for variants F8(30min) and F8(1h).

In fact, along the development of the fix-and-optimize algorithm, several new
best results were found while testing different configurations of the algorithm. The
next section presents the new best known results for the instances.

4.2.5 New best known results

Table 4.5 presents the best results produced in this study 2. Results shown
in boldface are new best known values. Columns LB and BKV were previously pre-
sented, respectively, in tables 4.2 and 4.4. Column obj presents the objective value
obtained by the proposed fix-and-optimize heuristic. Columns BKV itc and objitc
present the solution evaluation provided by HSEVal validator 3. HSEVal checks the
solution feasibility and also computes the solution value. It was used to evaluate the
solutions of ITC-2011. Note that objitc = obj−LB, as well as BKV itc = BKV−LB.
Some cells are filled with “-” since instances 1 to 7 were not tested in ITC-2011.
Columns gapL and gapB are computed as mentioned, respectively, in Sections 4.2.2
and 4.2.4. Results whose gapL value is zero represent an optimal solution. Finally,
column Variant presents which variant of fix-and-optimize heuristic produced the
best result reported for each instance in column obj.

The solutions achieved by our approach are equal or better in quality when
compared to best known results reported in the literature. Our method was able
to find seven new best values out of the 12 instances analysed. In addition to new
optimal values achieved for instances 5, 6, and 7 we found the optimal results for
all instances in set-1. Moreover, our algorithm was able to improve all solutions for
HSTP instances of the first round of the Third International Timetabling Competi-
tion 2011, except for instance A, where the result matches the previous best known
value. We would like to emphasize that the previous results were obtained by several
techniques, and no time limit was imposed. This clearly illustrates the effectiveness
of our method.

2The solution for each instance whose values are reported in Table 4.5 is available at <www.
inf.ufrgs.br/~apdorneles/timetabling/2013HSFOPTVND>.

3<http://sydney.edu.au/engineering/it/~jeff/hseval.cgi>

www.inf.ufrgs.br/~apdorneles/timetabling/2013HSFOPTVND
www.inf.ufrgs.br/~apdorneles/timetabling/2013HSFOPTVND
http://sydney.edu.au/engineering/it/~jeff/hseval.cgi
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Table 4.5 – New best known results.

Id LB BKV obj BKVitc objitc gapL (%) gapB (%) Variant
1 202 202 202 - - 0.00 0.00 F8(10min)
2 333 333 333 - - 0.00 0.00 F8(10min)
3 423 423 423 - - 0.00 0.00 F10(1h)
4 652 652 652 - - 0.00 0.00 F8(10min)
5 762 764 762 - - 0.00 -0.26 F8(10min)
6 756 760 756 - - 0.00 -0.53 F10(1h)
7 1017 1028 1017 - - 0.00 -1.08 F8(30min)

A 189 200 200 11 11 5.82 0.00 F8(10min)
D 621 665 648 44 27 4.35 -2.62 F8(30min)
E 756 799 776 43 20 2.65 -2.96 F10(1h)
F 738 815 779 77 41 5.56 -4.62 F7(1h)
G 999 1121 1066 122 67 6.71 -5.16 F10(2h)

avg. 620.7 646.8 634.5 2.09 -1.44

Source: created by author.

Table 4.6 presents individually the level of satisfaction regarding soft require-
ments for the best solutions produced in this study. Columns obj and gapL present,
respectively, the objective value and the optimality gap for each instance. Column S1
presents the number of idle periods. Column S2 presents the number of working
days exceeding the minimum number of days defined by constraint set (3.13) from
the problem formulation. Column S3 presents the number of unsatisfied double
lessons. Column H6 presents the number of non-consecutive lessons. We recall that
requirement H6 is not taken into account for instances of set-1.

From Table 4.6, it can be appreciated that virtually all solutions present
some violations of soft requirements, but these are expected and occur even in the
optimal solutions. Among the soft requirements, the minimization of working days
was the only one thoroughly satisfied in all solutions. Regarding the requirement S3,
we can observe a discrepancy when comparing solutions of set-1 and set-2. In set-
1 there is only a single violation for instance 1, while for set-2 several violations
are identified. This difference suggests that considering H6 as a hard requirement
impacts directly in the satisfaction of double lessons. In other words, it is hard to
satisfy simultaneously both the soft requirement S3 and the hard requirement H6.
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Table 4.6 – Soft requirement satisfaction for the best solutions found.

Id obj gapL (%) S1 S2 S3 H6
1 202 0.00 4 0 1 1
2 333 0.00 0 0 0 0
3 423 0.00 3 0 0 20
4 652 0.00 3 0 0 12
5 762 0.00 2 0 0 11
6 756 0.00 6 0 0 26
7 1017 0.00 6 0 0 17
A 200 5.82 3 0 2 0
D 648 4.35 3 0 18 0
E 776 2.65 2 0 14 0
F 779 5.56 7 0 20 0
G 1066 6.71 7 0 46 0

Source: created by author.

4.3 Conclusions

In this chapter, we presented a novel approach for solving a variant of the high
school timetabling problem which explores class, teacher and day decompositions.
We proposed a fix-and-optimize heuristic combined with a variable neighborhood de-
scent method that produces solutions which satisfy all hard constraints, i.e., feasible
solutions. In addition, we proposed a simple construction procedure that quickly
generates feasible initial solutions. The experimental results show that our approach
provides high quality feasible solutions in a smaller computational time when com-
pared with results obtained with the general-purpose integer programming solver
CPLEX. We have improved best known solutions in the case of seven out of 12
instances quoted in the literature. Among these new solutions, three are new op-
timal solutions for classical instances that have been available since 2000. Further,
our method was able to obtain better solutions for four out of five HSTP instances
from the first round of the Third International Timetabling Competition (held in
2011), outperforming the results obtained by state-of-the-art techniques. The re-
sults obtained in this chapter show that the proposed technique is very promising to
solve the HSTP and motivates its use to other variants of this problem. A further
investigation of the fix-and-optimize approach is presented in Chapter 6.
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5 A COLUMN GENERATION APPROACH

In this chapter we propose a column generation algorithm for providing tight
lower bounds for the HSTP. The remainder of this chapter is organized as follows.
Section 5.1 reintroduces the HSTP as a multicommodity flow problem with addi-
tional constraints along with a novel compact MIP formulation. Section 5.2 presents
a Dantzig-Wolf decomposition for the HSTP, a column generation algorithm, and
two speedup strategies. Section 5.3 presents experimental results for the proposed
column generation in comparison with an state-of-the-art approach for the problem.
Finally, Section 5.4 presents our major conclusions.

5.1 Problem Definition and Modelling

The problem considers a set of classes C and a set of teachers T . A class
c ∈ C is a group of students that follow the same course and have full availability.
The goal of the problem is to build a timetable for a week that is usually organized
as a set of days D, and each day is split into a set of periods P . We call as timeslot
a pair composed of a day and class period, (d,p), with d ∈ D and p ∈ P , wherein
all periods have the same duration. Teachers t ∈ T may be unavailable in some
timeslots.

The main input for the problem is a set of events that should be scheduled.
Typically, an event is a meeting between a teacher t and a class c to address a
particular subject in a given room. In this chapter, we denote an event by a pair
(t, c). The parameter Htc determines the workload of an event (t, c), i.e, the number
of lessons that must be taught by the teacher t for the class c. In addition, each
event defines how lessons are distributed in a week by requesting an amount of
double lessons, restricting the daily limit of lessons, and defining whether lessons
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taught in a same day must be consecutive.
A feasible timetable has a timeslot assigned to each lesson of events satisfying

the hard requirements H1-H6 below:

H1 The workload of each event must be satisfied.
H2 A teacher cannot be scheduled to more than one lesson in a given period.
H3 Lessons cannot be taught to the same class in the same period.
H4 A teacher cannot be scheduled to a period in which he/she is unavailable.
H5 The maximum number of daily lessons of each event must be respected.
H6 Two lessons from the same event must be consecutive when scheduled for the

same day, in case it is required by the event.

Besides feasibility regarding hard constraints, as many as possible of the soft
requirements S1-S3 stated below should be satisfied:

S1 Avoid teachers’ idle periods.
S2 Minimize the number of working days for teachers. In this context, working

day means a day that the teacher has at least one lesson assigned to him/her.
S3 Provide the number of double lessons requested by each event.

The HSTP can be modeled as a multicommodity flow problem with additional
constraints, where each teacher is represented by a commodity. It means that deter-
mining a teachers’ schedule is the same as finding a path in an appropriate network
graph. Formally, we represent this network as a directed acyclic graph G = (V,A),
where V is a set of nodes and A is a set of arcs. Although all commodities share
the same set of nodes, including the same source and sink nodes, each commodity
considers only a given subset of arcs At ⊂ A. Figure 5.1 presents an illustration of
the graph G where all types of arcs are shown for a given commodity t. The figure
is composed of days (vertical rounded rectangle) and periods of a day (horizontal
straps). Each day block has vertical shaded rectangles related to the activities of
each class (two classes are considered in the example). Next we describe the types
of arcs of G:

• Lesson arcs are used to indicate which timeslots are assigned to a given teacher
and class. Lessons arcs are usually shared between commodities and have an
unitary capacity associated to ensure they are used only by a single commodity
(teacher) at a time. In addition, for each lesson arc a∈At is associated a label
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Sta that represents the duration (in periods) of the lesson represented by the
arc. Lesson arcs are referred to as single lesson arcs when Sta = 1, and as
double lesson arcs when Sta = 2. In the figure, lesson arcs are all curve arcs
within a day block and within the shaded rectangle related to some class.

• Wt is the set of idle period arcs. These arcs are used to identify the idle periods
for each teacher t. A cost ω is associated to each idle period arc. In the figure,
idle period arcs are all straight arcs within a day block, outside the shaded
rectangles related to classes.

• Sets Q−t and Q+
t are sets of auxiliary arcs called, respectively, as pull-in and

pull-out arcs. While pull-in arcs are all arcs incoming a day block, pull-out
arcs are the ones outgoing a day block.

• Yt is the set of working day arcs. These arcs are used to compute the number
of working days for a teacher t. A cost γ is associated to each working day arc.
In the figure, for each day, the head node of the working day arc corresponds
to the tail node of each pull-in arc to that day.

• Bt is the set of day-off arcs. These arcs are used when a teacher t does not
teaches any lesson in a given day. These are the arcs located in the lower base
of the figure. Their tail nodes are the same of working day arcs.

Each path in the network is composed by a binary flow denoted by the vari-
able xta, where t ∈ T and a ∈At. Each path starts from the source node, alternates
through different types of arcs, ending at the sink node, as shown in Figure 5.2.

Next, we present a mixed integer linear programming formulation for the
HSTP hereafter denoted as F1. For convenience, the complete notation used in the
formulation is presented in Table 5.1.
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Figure 5.1 – Example of a network graph in a toy instance composed by three days,
four periods by day (P1, P2, P3, P4), and two classes (c1, c2). Each day of the week
is represented by a rounded rectangle where lesson arcs and idle period arcs are located.
Inside each, lesson arcs appear in two groups represented by a shaded rectangle, where
each group represents the lesson arcs for classes c1 and c2.
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Figure 5.2 – Example of a feasible schedule for a teacher t represented by a path in the
network. In this example, a teacher works only on days 1 and 3. On day 1, she/he teaches
a single lesson for the class c2 in the period P1, becomes idle in the period P2, and then
gives a double lesson starting in the period P3 for the class c1. On day 3, she/he teaches
a single lesson for class c1 in the period P2 and another one for class c2 in the period P3.
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64

Table 5.1 – Notation used in the compact formulation F1.

Symbol Definition

Sets
d ∈D days of week. D = {1,2, ..., |D|}.
p ∈ P periods of a day. P = {1, ..., |P |}.
t ∈ T set of teachers (commodities).
c ∈ C set of classes.
v ∈ V set of all nodes.
a ∈At set of all arcs of the commodity t (At ⊂A).
a ∈Atcdp set of lesson arcs of the commodity t on class c, day d, and period p.
a ∈A−tv set of all arcs incoming node v for the commodity t.
a ∈A+

tv set of all arcs outgoing node v for the commodity t.
a ∈Q−t set of all pull-in arcs for the commodity t.
a ∈Q+

t set of all pull-out arcs for the commodity t.
a ∈ Yt set of all working day arcs of teacher t.
a ∈Wt set of all idle periods arcs of teacher t.
a ∈Gtc set of all double lesson arcs of teacher t and class c.

Parameters
bv assumes 1 when v is the source, -1 when v is the sink, otherwise 0.
Htc ∈ N number of lessons that teacher t must teach to class c.
Ltc ∈ {1,2} maximum daily number of lessons that teacher t can taught to class c.
Sta ∈ {1,2} duration of arc a for the commodity t.
Mtc ∈ N minimum amount of double lessons required by teacher t on class c.
Y ′t ∈ N minimum amount of working days for teacher t.
h ∈ {0,1} indicates whether requirement H6 is take into account.
δ = 1 cost of each required double lesson not satisfied.
ω = 3 cost for each idle period.
γ = 9 cost for each working day.

Variables
xta ∈ {0,1} indicates whether commodity t uses arc a.
gtc ≥ 0 number of unsatisfied double lessons of class c taught by professor t.

Source: created by author.
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Minimize
∑
t∈T

(
∑
c∈C

δgtc+
∑
a∈Wt

ωxta+
∑
a∈Yt

γxta) (5.1)

Subject to∑
a∈A+

tv

xta−
∑
a∈A−tv

xta = bv ∀t ∈ T,v ∈ V (5.2)

∑
t∈T

∑
a∈Atcdp

xta ≤ 1 ∀c ∈ C,d ∈D,p ∈ P (5.3)

∑
a∈
⋃

d∈D,p∈P Atcdp

Staxta =Htc ∀t ∈ T,c ∈ C (5.4)

∑
a∈
⋃

p∈P Atcdp

Staxta ≤ Ltc ∀t ∈ T,c ∈ C,d ∈D (5.5)

∑
a∈
⋃

p∈P Atcdp

xta ≤ 1 ∀t ∈ T,c ∈ C,d ∈D,h= 1 (5.6)

gtc ≥Mtc−
∑
a∈Gtc

xta ∀t ∈ T,c ∈ C (5.7)

∑
a∈Yt

xta ≥ Y ′t ∀t ∈ T (5.8)

xta ∈ {0,1} ∀t ∈ T,a ∈ At (5.9)

gtc ≥ 0 ∀t ∈ T,c ∈ C (5.10)

The objective function minimizes the violation of soft constraints. The flow
conservation constraint set (5.2) ensures the total inflow equals the total outflow of
each node (except source and sink), considering a given commodity t. Constraint
set (5.3) ensures that the unitary capacity of the lesson arcs be respected. One
can note that a structure of a multicommodity flow problem is represented by the
constraint sets (5.2)-(5.3) and by the first two parts of the objective function (5.1).
This structure is only able to address the requirements H2, H3, H4, S1, and S2. In
order to model the remaining requirements, we included additional constraints and
the last component of the objective function. Constraint set (5.4) ensures that the
workload of each event is attended. Constraint set (5.5) ensures that the maximum
number of daily lessons for each event is satisfied. Constraint set (5.6) ensures that
lessons from the same event are scheduled in sequence by allowing the use of only



66

one arc per day. This constraint is only activated when h= 1. Constraint set (5.7)
computes the number of double lessons occurring in the solution. Constraint set (5.8)
establishes a lower bound for the minimum number of working days for each teacher.

5.1.1 Additional cuts

Although the formulation F1 is suitable for representing the HSTP, due to
the network structure, it eventually allows the construction of unmeaningful paths
that overestimate the cost of sub-optimal solutions. Figure 5.3 illustrates three cases
in which unmeaningful paths could occur.

In Case 1, the flow path crosses through the day component by using a
single node. Since the path does not contain any lesson arc, the working day arc
is used unnecessarily for accessing the day component. In Case 2, the solution cost
is overestimated because an idle period arc is misused. Ideally, an idle arc should
not appear in a path when succeeding a pull-in arc or preceding a pull-out arc. In
Case 3, two single lessons are taught in sequence for the same class, while using a
double lesson arc would be more appropriate. This situation can only occur when
the requirement H6 is not being considered, i.e, h = 0. Otherwise, it is already
avoided by the constraint set (5.6). In order to avoid these cases we can strengthen
our formulation with the addition of some valid cut constraint sets (5.11)-(5.14).
Constraint set (5.11) forbids the Case 1, constraint sets (5.12) and (5.13) forbid the
Case 2, and constraint set (5.14) forbids the Case 3.

Figure 5.3 – Example of three different cases in which unmeaningful paths could be

formed.
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Source: Figure created by author.
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xti+xtj ≤ 1 ∀t ∈ T,v ∈ V,i ∈Q−t ∩A−tv, j ∈Q+
t ∩A+

tv (5.11)

xti+xtj ≤ 1 ∀t ∈ T,v ∈ V,i ∈Q−t ∩A−tv, j ∈Wt∩A+
tv (5.12)

xti+xtj ≤ 1 ∀t ∈ T,v ∈ V,i ∈Q+
t ∩A+

tv, j ∈Wt∩A−tv (5.13)

xti+xtj ≤ 1 ∀t ∈ T,c ∈ C,d ∈D,p ∈ P,i ∈ Atcdp, j ∈ Atcdp+1,

Mtc > 0,p < |P |,Sti = Stj = 1,h= 0 (5.14)

5.2 Column Generation Applied to the HSTP

By applying the Dantzig-Wolfe decomposition principles (DANTZIG;WOLFE,
1960) on the compact formulation F1, we can obtain an alternative formulation for
the HSTP, denoted as Master Problem (MP). In this formulation, stated by (5.15)-
(5.18), let Jt be the set of all possible paths for a teacher t that satisfy all the
hard requirements except H3. For each path j ∈ Jt is associated a non-negative
cost Ktj regarding the satisfaction of soft requirements. In addition, we define a
binary variable λtj that indicates whether the path j is selected by teacher t.

Minimize
∑
t∈T

∑
j∈Jt

Ktjλtj (5.15)

subject to ∑
j∈Jt

λtj = 1 ∀t ∈ T (5.16)

∑
t∈T

∑
j∈Jt

∑
a∈Atcdp

x̄tajλtj ≤ 1 ∀c ∈ C,d ∈D,p ∈ P (5.17)

λtj ∈ {0,1} ∀t ∈ T,j ∈ Jt (5.18)

The objective of the MP, represented by Equation (5.15), is to minimize
the cost of selected paths. Constraint set (5.16) ensures that exactly one path is
selected for each teacher. Constraint set (5.17) ensures that the unitary capacity
of the lesson arcs is respected, where x̄taj indicates whether the arc a is used in
path j of teacher t. By solving the MP, one can obtain an integer optimal solution
to HSTP. However, this may be impracticable given the huge cardinality of Jt in



68

problems faced in real applications. Instead, we propose to solve a linear relaxation
of MP through a column generation approach, with the purpose to achieve tight
lower bounds for the problem.

In a straightforward implementation, a column generation procedure starts
with a master problem fulfilled with a restrict set of columns, hereafter called Re-
stricted Master Problem (RMP). At each iteration, the RMP is solved and its dual
variables are used to price out new columns by solving subproblems. During the
resolution of each subproblem (pricing problem), columns with a negative reduced
cost are added to the RMP. This procedure is repeated until no column with neg-
ative reduced cost is found. Precisely in our case, we consider the RMP stated by
(5.19)-(5.23).

Minimize
∑
t∈T

(
∑
j∈Jt

Ktjλtj + εtzt) (5.19)

subject to ∑
j∈Jt

λtj + zt = 1 ∀t ∈ T (5.20)

∑
t∈T

∑
j∈Jt

∑
a∈Atcdp

x̄tajλtj ≤ 1 ∀c ∈ C,d ∈D,p ∈ P (5.21)

λtj ≥ 0 ∀t ∈ T,j ∈ Jt (5.22)

zt ≥ 0 ∀t ∈ T (5.23)

Note that variables are continuous and their upper bounds are implied by
the constraint set (5.20). Besides, we chose to start the initial set of columns by
introducing an artificial variable zt for each teacher, that is penalized with a high
cost in the objective function. As pointed out by LÜbbecke and Desrosiers (2005),
assigning arbitrarily a too high cost to artificial variables may slowdown the conver-
gence of the column generation. Thus, in order to keep the penalization as low as
possible, we defined the cost of εt according to the Equation (5.24)

εt = δ
∑
c∈C

Mtc+ωmax(0, |P |−2)|D|+γ|D|. (5.24)

The cost εt is equal to the sum of three parts that correspond, respectively,
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to the upper bounds of the costs of the soft constraints S1, S2 and S3. In other
words, εt is a trivial upper bound for the cost of a teacher path (Ktj).

After solving the RMP, the next step consists in a multiple pricing scheme,
where the subproblem Pt is solved for each t ∈ T . Equations (5.25)-(5.33) present
the formulation of Pt:

Minimize Rt =
∑
c∈C

δgtc+
∑
a∈Yt

γxta+
∑
a∈Wt

ωxta

−
∑
c∈C

∑
d∈D

∑
p∈P

∑
a∈Atcdp

σcdpxta−πt (5.25)

Subject to∑
a∈A+

tv

xta−
∑
a∈A−tv

xta = bv ∀v ∈ V (5.26)

∑
a∈
⋃

d∈D,p∈P Atcdp

Staxta =Htc ∀c ∈ C (5.27)

∑
a∈
⋃

p∈P Atcdp

Staxta ≤ Ltc ∀c ∈ C,d ∈D (5.28)

∑
a∈
⋃

p∈P Atcdp

xta ≤ 1 ∀c ∈ C,d ∈D,h= 1 (5.29)

gtc ≥Mtc−
∑
a∈Gtc

xta ∀c ∈ C (5.30)

∑
a∈Yt

xta ≥ Y ′t (5.31)

xta ∈ {0,1} ∀a ∈ At (5.32)

gtc ≥ 0 ∀c ∈ C (5.33)

Assuming πt and σcdp as dual variables associated, respectively, to the con-
straint sets (5.16) and (5.17), the reduced cost Rt is defined by Equation (5.25).
Finally, observe that the remaining constraint sets, namely (5.26)-(5.33) are analo-
gous to the ones presented in F1.
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5.2.1 Speedup Strategies

When comparing the expected computational effort required to solve the
master and pricing problems, it is easy to predict that the bottleneck of the whole
column generation process lies on the resolution of the pricing problem Pt. Apart
from being an integer problem, Pt also has to address the majority of the HSTP
requirements. We resort to a MIP solver for solving it, however, one may note that
even by using a state-of-the-art MIP solver, solving Pt to optimality might still be
time consuming. This is particularly noteworthy with regard to the resolution of
medium and large instances of the problem. Thus, in order to speedup the resolution
of Pt with a MIP solver, we propose two trick strategies described next.

The first strategy is grounded in the principle that any column with negative
reduced cost contributes to improve the objective value of the restricted master
problem. Hence, Pt does not need to be solved exactly in every iteration since
this is mandatory only in the last one. With this in mind, we design our column
generation algorithm to operate in two sequential phases (I and II). In phase I,
instead of solving a subproblem up to optimality, we stop the solver as soon as it
finds a feasible solution proved to be within a given percentual α far from optimal.
When no more solutions with Rt < 0 can be generated using the current value of α,
the algorithm switches to phase II where α is set to zero and, consequently, the
subproblems are solved to optimality.

The second speedup strategy consists in solving a relaxed version of Pt, here-
after denoted by P′t, where the integrality constraints are enforced only for the
variables associated to pull-in and pull-out arcs. In other words, it means that P′t
is able to precisely determine the first and last lesson periods for each working day
of a teacher. However, as consequence of the relaxation, it may be not possible to
identify exactly in which class a lesson should be given, as illustrated in Figure 5.4.

In spite of losing some information, the relaxation decreases considerably
the number of integer variables of the subproblem. While Pt has a large number of
integer variables that depends on the number of events, the P′t, uses only |Q−t ∪Q+

t |×

|D|= 2|P |× |D| binary variables. In practical instances, |D| is typically limited by
6 (Monday to Saturday) and |P | hardly exceeds 20, even in schools holding full-day
programs. In that sense, it is safe to claim that for practical purposes, the number
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Figure 5.4 – Example of a relaxed subproblem solution in a working day. The number
next to arcs represents the respective value flow. We can observe that the integral flows
passing through the pull-in and pull-out arcs determine whether the respective teacher
will teach from period P2 to P3. However, the flow is split into lesson arcs and we cannot
determine for each period whether a lesson should be given either to class c1 or c2.
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Source: Figure created by author.

of integer variables of P′t is constrained between 12|P | and 240 for any real-world
instance.

Finally, it is important to point out that even P′t is less restrict than Pt, as
we show further in the computational results, both problems often find the same
objective value, i.e., R′t . Rt. As a result, the lower bound obtained by the column
generation using P′t is strongly close to the one obtained by using Pt. We refer
the column generation method that uses Pt in the pricing step as Integer Pricing
Column Generation (IPCG), while the version that uses P′t is identified as Relaxed
Pricing Column Generation (RPCG).

5.3 Computational experiments

In this section we present an experimental evaluation for the proposed models
and methods. The problems are solved by CPLEX 12.6.0 (IBM, 2015) with default
settings but using a single core. The algorithms were implemented in C++ using
the compiler g++ 4.6.1. The experimental results were computed in a Desktop-PC
equipped with an Intel Core i5-2300 processor clocked at 2.8GHz, 4GB of RAM, over
a 64 bits Linux operating system. Along this section, we report results of one run
for each tested algorithm, since they are deterministic. The mathematical model
parameters γ, ω, and δ were set to 9, 3, and 1, respectively. To the best of our
knowledge these values are the same used by all previous works in HSTP.
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5.3.1 Dataset

To evaluate the algorithm we used the instances presented in Table 5.2. In
this table, the first two columns present the instance identifier and the name. Since
their names are long, we use the identifiers for shortening reference along the text.
Columns |D| and |P | show the number of days and periods, respectively, while
columns |T |, |C| and |E| present the number of teachers, classes and events, re-
spectively, where E = {(t, c) : t ∈ T,c ∈ C,Htc > 0}. Columns ∑(t,c)∈EMtc and∑

(t,c)∈EHtc present the total double lessons required and the total workload, respec-
tively. Finally, column BKV presents the best known values for these instances, all
of them were obtained in Chapter 4.

The instances are split into two sets. Instances 1-7 comprise set-1 and are
available from the repository (LABIC, 2008) and to our knowledge were used in all
the previous works in HSTP. Requirement (H6) is not considered in this group of
instances. Instances A, D, E, F, G, from set-2, are different versions of instances
1, 4, 5, 6, 7, respectively. They differ mainly in two aspects: in set-2, teachers
are available in all periods, and requirement (H6) is considered. These modifica-
tions made the instances more challenging and were used in the first round of the
Third International Timetabling Competition 2011 (ITC, 2011). They are part of
the XHSTT-2012 archive that is available at <http://www.utwente.nl/ctit/hstt/
archives/XHSTT-2012/>.

The next subsections have the aim of presenting results of the algorithms
and models presented in this work, as well as comparing them with the previous
state-of-the-art results for the problem.

5.3.2 Integer solutions obtained by MIP models

The first experiment aims at comparing results between the model M1 (pre-
sented in Section 3.1) and the flow model F1 proposed in this chapter. Each instance
was run for at most 7200s (2h) for each model. Table 5.3 presents for each instance
and MIP model, the objective value found (obj), the running times (time), the num-
ber of columns (#col) and rows (#row) generated by the respective model, the gap

http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/
http://www.utwente.nl/ctit/hstt/archives/XHSTT-2012/
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Table 5.2 – Main characteristics of the tested instances.

Id Name |D| |P | |T | |C| |E| ∑(t,c)∈EMtc
∑

(t,c)∈EHtc BKV

1 Inst1 5 5 8 3 21 21 75 202
2 Inst2 5 5 14 6 63 29 150 333
3 Inst3 5 5 16 8 69 4 200 423
4 Inst4 5 5 23 12 127 66 300 652
5 Inst5 5 5 31 13 119 71 325 762
6 Inst6 5 5 30 14 140 63 350 756
7 Inst7 5 5 33 20 205 84 500 1017
A BrazilInstance1 5 5 8 3 21 21 75 200
D BrazilInstance4 5 5 23 12 127 66 300 648
E BrazilInstance5 5 5 31 13 119 71 325 776
F BrazilInstance6 5 5 30 14 140 63 350 779
G BrazilInstance7 5 5 33 20 205 84 500 1066

Source: created by author.

provided by CPLEX (gapC) and the gap (gapB) from the best known value calcu-
lated as 100 ∗ (obj−BKV )/min(BKV,obj). The lowest values for each column are
shown in boldface.

From the 12 instances, the flow model was able to find better results in six
instances, and similar results in other two instances. The model M1 found better
results than F1 only in four instances. Although that, on average, M1 found better
gap results. This is mainly due to the results obtained for instance 7 in which
F1 found a solution with an objective cost considerable higher than one found by
the model M1. In addition, the number of columns reported to F1 was higher
than M1 in only three instances. Regarding the number of rows, the model M1

obtained highest reported values in all instances. On the whole, the results of both
models appear to be comparable. However, it can be noted that F1 was able to
proof optimality for two instances, as well as tigther values for gapC in the most of
instances. These results suggest that the relaxation of the flow model may provide
a better lower bound than the relaxation of M1. This hypothesis is evaluated in the
next experiment.
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Table 5.3 – Comparison results between models M1 and F1 with a time limit of 2 hours.

M1 F1

Id obj time #col #row gapC gapB obj time #col #row gapC gapB

1 202 2h 1306 2914 6.44 0.00 202 2h 1163 1187 5.82 0.00
2 340 2h 3100 6855 2.06 2.10 333 196s 3021 2480 0.00 0.00
3 426 2h 2898 6532 2.82 0.71 429 2h 2424 2305 3.50 1.42
4 653 2h 5221 11642 2.14 0.15 652 988s 4174 4081 0.00 0.00
5 782 2h 6349 14057 3.32 2.62 777 2h 6602 6613 2.70 1.97
6 780 2h 6850 15153 5.38 3.17 804 2h 7000 6653 8.02 6.35
7 1043 2h 9155 20242 4.22 2.56 1645 2h 9364 8805 38.81 61.75
A 200 2h 2011 3910 5.50 0.00 200 2h 1566 1513 4.00 0.00
D 735 2h 10132 19008 15.51 13.43 726 2h 7168 7571 12.12 12.04
E 868 2h 10244 19513 12.90 11.86 812 2h 7568 9594 5.36 4.64
F 1174 2h 11530 21772 37.14 50.71 952 2h 8312 10012 20.69 22.21
G 1248 2h 16200 30328 19.95 17.07 1285 2h 11380 14121 19.88 20.54

Avg. 704 2h 7083 14327 9.78 8.70 735 6099 5812 6245 10.08 10.91

Source: created by author.

5.3.3 Lower bounds for the problem

This section aims at presenting and comparing lower bound results provided
by the linear relaxation of F1 (denoted as F′1), the lower bound found by the linear
relaxation of model M1 (denoted as M′1) , and the method IPCG proposed in this
work with α= 0%, i.e., the column generation method without any speedup strategy.
Table 5.4 presents for each instance and method, the lower bound found (LB), the
running times (time) in seconds, and the percentage deviation from the best known
value to the lower bound gapL, which is computed as 100 ∗ (BKV−LB)/LB. Best
results for each column are shown in boldface.

In summary, it can be observed from the results that F′1 is the fastest method
whereas IPCG provides the best lower bounds considering all instances tested. Both
approaches, F′1 and IPCG, present significant improvements in comparison with M′1.
It can be seen that F′1 provides better or equal lower bounds than M′1, using about
four times less time, on average. Although IPCG spent about twice the time of
M′1, the gapL achieved by the former is approximately ten times shorter. When
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comparing IPCG and F′1 the gapL found by IPCG is considerable better, but it takes
longer to run.

Table 5.4 – Comparison results of lower bounds provided by F′1, M′1 and IPCG.

F′1 M′1 IPCG (α= 0%)

Id LB time (s) gapL (%) LB time (s) gapL (%) LB time (s) gapL (%)

1 189 0.1 6.88 189 0.1 6.88 202 11.3 0.00
2 333 0.4 0.00 333 1.1 0.00 333 8.7 0.00
3 414 0.2 2.17 414 0.9 2.17 423 12.0 0.00
4 643 0.8 1.40 639 2.2 2.03 652 10.0 0.00
5 756 2.3 0.79 756 6.8 0.79 762 13.5 0.00
6 738 2.8 2.44 738 9.0 2.44 756 40.5 0.00
7 999 7.8 1.80 999 24.1 1.80 1017 25.5 0.00
A 190 0.1 5.26 189 0.2 5.82 200 6.7 0.00
D 635.5 3.8 1.97 621 14.1 4.35 646 26.4 0.31
E 767.5 3.9 1.11 756 13.8 2.65 775 20.2 0.13
F 754 5.5 3.32 738 23.0 5.56 773 45.2 0.78
G 1023 12.0 4.20 999 77.2 6.71 1039 85.1 2.60

Avg. 620 3.3 2.61 614 14.5 3.43 632 25.4 0.32

Source: created by author.

5.3.4 Parameter testing for the proposed column generation algorithm

In this section we evaluate the performance of different settings and speedup
strategies for the proposed column generation. Table 5.5 presents average results
regarding to IPCG and RPCG with several values for α (presented in Section 5.2.1).
For both methods are reported the total running times (time) in seconds, the total
number of columns generated (#col), the total number of iterations (#iter), and
the percentual of the total time spent in the pricing step (pr). The shortest running
time is shown in boldface. Values shown inside parenthesis next to the columns #col
and #iter present the number of columns/iterations that were inserted/performed
in the phase II of the algorithm. We recall that when α is set to zero, the phase II
is not required to be performed.
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Table 5.5 – Average results for all instances comparing different settings for the proposed

column generation.

IPCG RPCG

α (%) time (s) #col #iter pr (%) time (s) #col #iter pr (%)

0 25.4 33 784 94.7 15.7 33 782 91.7

1 24.8 34 (1) 778 95.1 15.0 34 (1) 781 91.3

2 21.4 35 (1) 780 94.2 13.9 35 (1) 805 90.3

3 19.7 35 (1) 781 93.8 14.0 37 (1) 830 89.6

4 19.4 36 (1) 789 93.7 13.8 38 (1) 847 89.2

5 18.9 36 (1) 795 93.4 14.2 40 (1) 891 88.7

6 19.0 37 (1) 799 93.3 14.6 42 (1) 927 88.2

7 18.5 37 (1) 806 92.9 15.1 45 (1) 942 88.1

8 18.2 38 (1) 798 92.8 15.9 47 (1) 987 (3) 87.3

9 18.0 39 (1) 803 92.8 15.5 47 (1) 996 86.8

10 18.6 40 (1) 822 (1) 92.8 16.9 51 (1) 1039 (1) 86.3

20 24.2 53 (3) 893 (16) 92.6 17.0 58 (1) 1074 (6) 85.8

30 41.5 101 (5) 1027 (69) 93.2 32.7 105 (2) 1441 (27) 85.7

40 44.0 112 (8) 990 (157) 94.2 39.8 129 (5) 1333 (76) 87.4

50 35.0 79 (13) 873 (266) 94.5 31.6 124 (9) 1104 (166) 89.8

60 32.1 65 (17) 830 (350) 94.8 31.4 128 (11) 1082 (225) 90.2

70 35.3 77 (18) 823 (371) 95.2 34.1 144 (11) 1078 (217) 90.6

80 35.9 79 (20) 809 (413) 95.8 32.7 134 (12) 1061 (236) 91.2

90 35.9 77 (23) 827 (464) 95.6 29.6 124 (13) 1043 (259) 91.0

Source: created by author.

We would like to highlight that regardless the use of a relaxed pricing, all
lower bounds generated by RPCG matched exactly the ones obtained by IPCG in
Table 5.4 (we further discuss this topic in the next subsection). Thus, results shown
in Table 5.5 are focussed in presenting their differences in terms of running times
and number of iterations.

From the table, it is noteworthy that RPCG is faster than IPCG when the same
value of α is considered. Both algorithms are affected similarly according to changes
in the parameter α, taking longer when α = 0% and α > 10%. In these cases, the
slowdown is caused due to the quality of columns generated in the pricing step. In
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one hand, when α= 0%, extra computational time is spent to generate high quality
columns by ensuring optimality for each pricing problem. In the other hand, when
α > 10%, although the pricing step runs faster, it adds a higher number of low
quality columns into the master, what increases the number of iterations required
to reach optimality, specially in the phase II.

A suitable setting for α, which provides a good trade-off between quality
and computational effort for generating a column, is comprised with 1%≤ α≤ 10%.
In this range, we found the best overall results achieved by RPCG with α = 4%,
that combines the two acceleration strategies proposed in Section 5.2.1. However,
considering that the speedups for IPCG (α = 9%), RPCG (α = 0%) and RPCG (α =
4%) calculated over IPCG (α = 0%) are, respectively, 1.41, 1.61 and 1.84, it can be
observed that the proposed acceleration strategies are able to improve significantly
the convergence of the column generation even if used exclusively. In fact, the
relaxed pricing strategy can provide a higher speedup than introducing an α > 0%.
When both strategies are used together, the results are slightly better.

5.3.5 Objective values provided by Pt and P′t

In this section, we evaluate empirically the level of approximation provided
by P′t in comparison with Pt. Since P′t is a relaxation of Pt, we can denote the
difference between the optimal reduced cost of these problems by ∆ = Rt−R′t. In
order to measure the magnitude of this difference, we ran IPCG using α= 0%. During
the pricing step, besides solving Pt we also solved P′t for the sake of computing the
value of ∆. We report in Table 5.6, for each instance, the total number of pricing
problems solved (#pricing). Moreover, for the cases of ∆> 0, ∆≤ 1, and ∆> 1, we
report the number of occurrences of each of these cases, and the percentage of these
occurrences considering the total number of pricings solved. Finally, the maximum
and the average values of ∆ are given in the last two columns.

Analyzing the table one may note that, on average, only 13.84% of the pricing
problems solved revealed a difference between Pt and P′t. However, almost 100% of
the differences are, on average, less or equal to one unit cost (see column ∆ ≤ 1).
In addition, among all runnings, only three pricing problems resulted in a difference
higher than one unit cost (see column ∆ > 1). In these rare cases, the value of ∆
still barely surpassed one unit cost.
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As shown in the last column of the table, the average ∆ is only 0.03, thus
meaning that the difference between values computed by P′t and Pt is tiny. In fact,
0.03 corresponds to a value which is about 33 times smaller than the least cost
penalty associated to an unsatisfied double lesson (δ = 1). We attribute to this tiny
difference the fact that lower bounds obtained by IPCG and RPCG are the same, as
mentioned in the previous section.

Table 5.6 – Results presenting the difference (∆) between the reduced costs provided by

Pt and P′t.

Id #pricing ∆> 0 (%) ∆≤ 1 (%) ∆> 1 (%) max(∆) avg(∆)

1 232 51 (21.98) 231 (99.57) 1 (0.43) 1.08 0.06

2 420 37 (8.81) 420 (100.00) 0 (0.00) 0.89 0.02

3 416 5 (1.20) 416 (100.00) 0 (0.00) 0.56 0.00

4 782 66 (8.44) 782 (100.00) 0 (0.00) 1.00 0.02

5 806 74 (9.18) 806 (100.00) 0 (0.00) 0.50 0.01

6 1020 101 (9.90) 1020 (100.00) 0 (0.00) 0.38 0.01

7 1023 114 (11.14) 1023 (100.00) 0 (0.00) 0.61 0.02

A 248 5 (2.02) 248 (100.00) 0 (0.00) 0.83 0.00

D 759 161 (21.21) 758 (99.87) 1 (0.13) 1.18 0.04

E 1023 146 (14.27) 1023 (100.00) 0 (0.00) 0.85 0.03

F 1320 270 (20.45) 1320 (100.00) 0 (0.00) 1.00 0.05

G 1650 619 (37.52) 1649 (99.94) 1 (0.06) 1.12 0.07

Avg. 808 137 (13.84) 808 (99.95) 0.25 (0.05) 0.83 0.03

Source: created by author.

5.3.6 Comparison between the proposed method and a Cut and Column
Generation approach

In this section we compare our column generation method with the approach
proposed by Santos et al. (2012), hereafter referred to as Cut and Column Genera-
tion (CCG). We used their original CCG implementation, which was kindly provided
by the authors. In order to compare both approaches in instances of set-2, we
included the requirement H6 in their implementation. Table 5.7 presents results
for each instance comparing the performance of CGG and RPCG using α = 4%. For
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both methods are reported the total running times (time) in seconds, the total
number of columns generated (#col), and the total number of iterations (#iter)
performed. Column LB presents the lower bound values computed by both meth-
ods, column F′1 presents the lower bound produced by the linear relaxation of the
compact model F1, column gap reports the optimality gap for each instance and
finally, column speedup presents the speedup of RPCG over CCG. Column gap is com-
puted by 100∗ (BKV−LB)/LB. Column speedup is computed by CCG/RPCG. Results
with shortest running time are shown in boldface. Values marked with (*) are new
best lower bounds in comparison with results presented in Table 4.5.

Table 5.7 – Comparison results between the lower bounds provided by the Cut and

Column Generation (CCG) proposed by (SANTOS et al., 2012) and the proposed Relaxed

Pricing Column Generation (RPCG).

CCG RPCG

Id LB F′1 gap (%) time (s) #col #iter time (s) #col #iter speedup

1 202 189 0.00 0.17 351 15 3.26 248 32 0.05
2 333 333 0.00 5.12 960 30 6.34 476 35 0.81
3 423 414 0.00 2.22 916 28 4.24 414 27 0.52
4 652 643 0.00 40.25 1474 44 6.64 735 37 6.06
5 762 756 0.00 34.43 1888 35 11.29 813 28 3.05
6 756 738 0.00 72.25 2102 56 13.37 835 29 5.41
7 1017 999 0.00 395.63 2284 67 16.30 1020 32 24.27
A 200* 190 0.00 0.33 443 19 3.25 232 30 0.10
D 646* 635.5 0.31 50.74 1524 44 14.35 847 40 3.54
E 775* 767.5 0.13 97.30 1918 73 20.36 1184 53 4.78
F 773* 754 0.78 34.49 1865 37 23.53 1338 49 1.47
G 1039* 1023 2.60 451.38 2740 78 42.22 2026 63 10.69

Avg. 631 620 0.32 98.69 1539 44 13.76 847 38 5.06

Source: created by author.

According to the results, besides CCG and IPCG are able to provide the same
lower bounds that are tighter than the ones provided by the relaxation of model F1,
they present a distinct performance according to the instance size. While CCG

achieves short running times on four small instances (1,2,3 and A), RPCG escalates
better, performing faster on the remaining eight medium and large instances. In
addition, our method is approximately 5 times faster than CCG, on average, and



80

particularly in the largest instances, the performance improvement becomes more
preeminent, being about 24 times faster on instance 7, and about 10 times faster on
instance G.

Besides finding optimal bounds for all instances of set-1, we were able to
find new tighter lower bounds for all instances of set-2. These new results allow to
reduce the average optimality gap for theses instances from 2.09%, as presented in
Chapter 4, to 0.32%. Moreover, for the first time, optimality was proved for the
instance A since the lower bound found matched the best known value.

5.4 Conclusions

In this chapter we tackle the HSTP, which is a well-known variant of the
High School Timetabling Problem originated from Brazilian schools. This problem
was considered in the Third International Timetabling Competition held in 2011.
In addition to a novel mathematical programming formulation based on a multi
commodity flow network for the HSTP, we proposed a column generation approach,
using two speedup strategies, for proving strong lower bounds for this problem.

In comparison with the state-of-the-art column generation for HSTP, the
experimental results show that our approach is able to produce the same lower
bounds, albeit with two significant advantages: i) the method is simpler; ii) and it
is five times faster on average. Moreover, we improved best known lower bounds of
5 out of 12 instances from the literature. Among these new results, one is proved
to be optimal (namely Instance A). These results show that the proposed technique
is efficient for producing lower bounds for the HSTP, motivating its use to other
variants of this problem.
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6 HSTP+: EXTENDEDHSTP ANDANOVEL SET

OF BENCHMARK INSTANCES

In this chapter we introduce a new High School Timetabling Problem re-
ferred as HSTP+, originated from 33 real-world Brazilian instances we have col-
lected during this research. We modelled HSTP+ in such a way it makes a bridge
between HSTP and GHSTP, i.e, the problems obey the following relationship:
HSTP ⊂ HSTP+ ⊂ GHSTP. This relationship allows us not only expand and val-
idate the methods proposed for HSTP by using a large instance set, but also gives
us the opportunity to perform a comparison between the methods proposed in this
thesis and the state-of-the-art approaches designed for solving GHSTP. The re-
mainder of this chapter is organized as follows. Firstly, in Section 6.1 we describe
the problem formally through a MIP formulation. Section 6.2 describes how we
converted HSTP+ into GHSTP by using the constraints available in the XHSTT
format. Section 6.3 presents an extensive set of computational experiments in order
to demonstrate empirically the effectiveness of the fix-and-optimize approach ap-
plied on HSTP+. Finally, Section 6.4 presents a summary of the major conclusions
we draw for this chapter.

6.1 Problem definition

In this section we formally define and introduce a compact formulation for
the Extended High School Time Timetabling Problem (HSTP+). The goal of the
problem is to build a timetable for a week organized as a set of days D. Each day
is split into a set of shifts K, and each shift is split into a set of periods P . In this
problem, we call as time slot a tuple composed of a day, a shift, and class period,
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(d,k,p), with d ∈D, k ∈K, and p ∈ P , wherein all periods have the same duration.
For the sake of compactness, in the formulation we refer to timeslots using a single
index s, where each s ∈ S corresponds to a distinct timeslot tuple.

The problem considers three types of resources: a set of classes C, a set of
teachers T and a set of shared rooms R. Both teachers t ∈ T and classes c ∈ C
may be unavailable in a given set of timeslots. The main input for the problem is
a set of events e ∈ E that should be assigned to timeslots. Typically, an event is a
meeting between resources, i.e, a meeting between a teacher and a class to address a
particular subject (e.g. Biology) in a dedicated room. While the majority of events
are composed by at most one resource of each type, events with multiple resources
of the same type are often required.

The parameterWe determines the workload of an event e∈E, i.e., the number
of lessons that need to be distributed in a week. A distinct timeslot s ∈ S must be
assigned for each lesson of an event. In addition, mainly due to pedagogical demands,
several requirements are defined to events in order to impose daily and shift limits
for lessons, and also to ensure a given distribution of lessons along the week.

A feasible solution for an HSTP+ instance must satisfy all the hard require-
ments H1-H7 presented below:

H1 The workload defined in each event must be satisfied.
H2 A teacher cannot be scheduled to more than one lesson in a given timeslot.
H3 Lessons cannot be taught to the same class in the same timeslot.
H4 A teacher cannot be scheduled to a timeslot in which he/she is unavailable.
H5 A class cannot be scheduled to a timeslot in which it is unavailable.
H6 Shared rooms cannot be used by distinct events in the same timeslot.
H7 Avoid idle times in class shifts.

In addition to feasibility, the violation of the soft requirements S1-S4 pre-
sented below should be minimized:

S1 The maximum number of lessons by shift of each event must be respected.
S2 Minimize the number of working shifts for teachers.
S3 Minimize the number of working days for teachers.
S4 Avoid teachers’ idle periods on shifts.

Finally, HSTP+ should take into account the medium requirements M1-M6

presented next:
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M1 The maximum number of daily lessons of each event should be respected.
M2 Event lessons should be consecutive when scheduled on the same day.
M3 Event lessons should not be consecutive when scheduled on the same day.
M4 Events demand a specific distribution of blocks in the week.
M5 Teachers cannot be scheduled to more than a given number of shifts per day.
M6 Some teachers have mandatory working days.

Medium requirements are considered either hard or soft depending on the
instance.

6.1.1 Formulation

In this section we formally define HSTP+ through a MIP formulation. The
full notation is presented in Table 6.1 along with a description of the parameters
and variables defined for the problem. In order to provide a more compact notation
we adopted a different convention for the exponentiation operator. Instead of the
usual meaning, we use exponentiation for removing elements of a given set. Let S
be a set where the order of the elements is important. An operation Sa, with a
positive a, results in a subset of S in which the first a elements are removed. If
a negative exponent is used, the last a elements of S are removed. For example,
assuming S = {1,2,3,4,5}, then S+2 = {3,4,5} and S−2 = {1,2,3}.
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Table 6.1 – Notation used in the HSTP+ model.
Symbol Definition

Sets
d ∈D days of week. D = {1,2, ..., |D|}.
k ∈K shifts of day. K = {1, ..., |K|}.
p ∈ P periods of shift. P = {1, ..., |P |}.
s ∈ S timeslots of week. S = {1, ..., |S|}.
s ∈ Sd timeslots of day d. Sd ⊆ S.
s ∈ Sdk timeslots of shift k on day d. Sdk ⊆ Sd.
t ∈ T set of teachers.
c ∈ C set of classes.
e ∈ E set of events.
r ∈R set of shared rooms.
Et set of events assigned to teacher t.
Ec set of events assigned to class c.
Er set of events assigned to resource r.
Udk set of tuples (m,n) for m ∈ S−2

dk ,n ∈ Sdk : n≥m+ 2.
Qdk set of tuples (m,n) for m ∈ S−2

dk ,n ∈ Sdk : n≥m.
πp set of timeslots where an event can starts a lesson block of size p.
Parameters
ω cost of each idle period of teacher t.
γ cost of each working day/shift of teacher t.
δ cost of each lesson exceeding the limit L′′e of event e.
µ cost of a violation of any medium requirement.
Ftd binary parameter that indicates whether teacher t must work on day d.
Yt maximum daily number of working shifts of teacher t.
We workload of event e.
L′e maximum daily number of lessons of event e.
L′′e maximum number of lessons of event e in a shift.
Gep minimum number of blocks of size p required by event e.
Vts binary parameter that indicates whether the teacher is available in the timeslot s.
Vcs binary parameter that indicates whether the class is available in the timeslot s.
Variables
xes ∈ B active when event e is scheduled to timeslot s.
acs ∈ B active when class c has a lesson at timeslot s and not at timeslot s−1.
bes ∈ B active when event e has a lesson at timeslot s and not at timeslot s−1.
gesp ∈ B active when a block of size p starts at timeslot s for event e.
y′td ∈ B active when at least one lesson is assigned to teacher t on day d.
y′′tdk ∈ B active when at least one lesson is assigned to teacher t on day d and shift k.
ledk ≥ 0 number of lessons of event e exceeding the limit L′′e on day d and shift k.
ztdkmn ∈ B active when teacher t has idle periods on day d, on shift k, between timeslots m and

n.
vM1

ed ≥ 0 number of lessons of event e exceeding L′e on day d.
vM2a

ed ≥ 0 number of nonconsecutive lesson blocks of event e on day d.
v

M2b
edk ≥ 0 assumes 1 when a block of event e is assigned between shifts k and k+ 1 on day d.
vM3

es ≥ 0 assumes 1 when a lesson of event e in the timeslot s precedes other lesson of event e.
vM4

ep ≥ 0 number of blocks of size p remaining to reach the amount Gep required to event e.
vM5

td ≥ 0 number of working shifts exceeding the limit Yt of teacher t.
vM6

td ≥ 0 assumes 1 when no lesson is assigned to teacher t on day d and Ftd = 1.

Source: created by author.
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Minimize (6.1)

δ
∑
e∈E

∑
d∈D

∑
k∈K

ledk +
∑
t∈T

∑
d∈D

(
γy′td+

∑
k∈K

(γy′′tdk+
∑

(m,n)∈Udk

ω(n−m−1)ztdkmn)
)
+

µ
∑
e∈E

( ∑
d∈D

(vM1
ed +vM2a

ed +
∑

k∈K−1
vM2b
edk +

∑
k∈K

∑
s∈S−1

dk

vM3
es )+

∑
p∈P

vM4
ep

)
+µ

∑
t∈T

∑
d∈D

(vM5
td +vM6

td )

Subject to

∑
s∈S

xes =We ∀e ∈ E (6.2)

∑
e∈Et

xes ≤ 1 ∀t ∈ T,s ∈ S (6.3)

∑
e∈Ec

xes ≤ 1 ∀c ∈ C,s ∈ S (6.4)

∑
e∈Er

xes ≤ 1 ∀r ∈R,s ∈ S (6.5)

xes ≤ Vts ∀t ∈ T,e ∈ Et, s ∈ S (6.6)

xes ≤ Vcs ∀c ∈ C,e ∈ Ec, s ∈ S (6.7)∑
e∈Ec

acs ≥
∑
e∈Ec

(xes−xes−1) ∀c ∈ C,d ∈D,k ∈K,s ∈ S+1
dk (6.8)

∑
s∈S+1

dk

acs+
∑
e∈Ec

xei ≤ 1 ∀c ∈ C,d ∈D,k ∈K,i= Sdk1 (6.9)

∑
s∈Sd

xes ≤ L′e+vM1
ed ∀e ∈ E,d ∈D (6.10)

bes ≥ xes−xes−1 ∀e ∈ E,d ∈D,s ∈ S+1
d (6.11)∑

s∈S+1
d

bes+xei ≤ 1 +vM2a
ed ∀e ∈ E,d ∈D,i= Sd11 (6.12)

xei+xei−1 ≤ 1 +vM2b
edk ∀e ∈ E,d ∈D,k ∈K−1, i= Sdk+1,1 (6.13)

xes+xes+1 ≤ 1 +vM3
es ∀e ∈ E,d ∈D,k ∈K,s ∈ S−1

dk (6.14)

gesp ≤ xes+i−1 ∀e ∈ E,p ∈ P,s ∈ πp, i ∈ [p] (6.15)

gesp ≤ 1−xes−1 ∀e ∈ E,d ∈D,k ∈K,p ∈ P,s ∈ πp∩S+1
dk (6.16)

gesp ≤ 1−xes+p ∀e ∈ E,p ∈ P−1, s ∈ πp+1 (6.17)∑
s∈πp

gesp ≥Gep−vM4
ep ∀e ∈ E,p ∈ P (6.18)

∑
p∈P

∑
s∈Sd∩πp

gesp ≤ 1 ∀e ∈ E,d ∈D (6.19)
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∑
e∈Et

xes ≤ y′′tdk ∀t ∈ T,d ∈D,k ∈K,s ∈ Sdk (6.20)

∑
k∈K

y′′tdk ≤ Yt+vM5
td ∀t ∈ T,d ∈D (6.21)

∑
e∈Et

∑
s∈Sd

xes ≥ Ftd−vM6
td ∀t ∈ T,d ∈D (6.22)

∑
s∈Sdk

xes ≤ L′′e + ledk ∀e ∈ E,d ∈D,k ∈K (6.23)

∑
e∈Et

xes ≤ y′td ∀t ∈ T,d ∈D,s ∈ Sd (6.24)

∑
e∈Et

∑
s∈Sd

xes ≥ y′td ∀t ∈ T,d ∈D (6.25)

∑
(m,n)∈Qdk

ztdkmn = 1 ∀t ∈ T,d ∈D,k ∈K,m ∈ S−2
dk (6.26)

∑
(m,n)∈Udk

ztdkmn ≤ y′td ∀t ∈ T,d ∈D,k ∈K,n ∈ S+2
dk (6.27)

ztdkss ≤ 1 +
∑
e∈Et

(xes+1−xes) ∀t ∈ T,d ∈D,k ∈K,s ∈ S−2
dk (6.28)

ztdkmm+1 ≤ 1−
∑
e∈Et

xen ∀t ∈ T,d ∈D,k ∈K,(m,n) ∈ Udk (6.29)

ztdkmn ≤
∑
e∈Et

xen ∀t ∈ T,d ∈D,k ∈K,(m,n) ∈ Udk (6.30)

xes, bes ∈ {0,1} ∀e ∈ E,s ∈ S (6.31)

acs ∈ {0,1} ∀c ∈ C,d ∈D,k ∈K,s ∈ S+1
dk (6.32)

gesp ∈ {0,1} ∀e ∈ E,s ∈ πp,p ∈ P (6.33)

y′td ∈ {0,1} ∀t ∈ T,d ∈D (6.34)

y′′tdk ∈ {0,1} ∀t ∈ T,d ∈D,k ∈K (6.35)

ledk ≥ 0 ∀e ∈ E,d ∈D,k ∈K (6.36)

ztdkmn ∈ {0,1} ∀t ∈ T,d ∈D,k ∈K,(m,n) ∈Qdk (6.37)

vM1
ed ,v

M2a
ed ,vM2b

edk ≥ 0 ∀e ∈ E,d ∈D,k ∈K−1 (6.38)

vM3
es ≥ 0 ∀e ∈ E,d ∈D,k ∈K,s ∈ S−1

dk (6.39)

vM4
ep ≥ 0 ∀e ∈ E,p ∈ P (6.40)

vM5
td ,v

M6
td ≥ 0 ∀t ∈ T,d ∈D (6.41)
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The objective function of the problem is composed by several weighted parts
presented by equation (6.1). While the former minimizes the violations of the soft
requirements S1 to S4, the latter minimizes the violation of the medium requirements
M1 to M6 when they are considered as soft ones in specific instances of the problem.
When medium requirements are considered hard, the corresponding slack variables
v are simply removed from the model.

Constraint set (6.2) ensures that the workload of each event is fully scheduled.
Constraint sets (6.3)-(6.5) ensure that teachers, classes, and shared rooms are sched-
uled to only one lesson at a time, respectively. Constraint sets (6.6) and (6.7) ensure,
respectively, that teacher and classes are scheduled in available periods. Constraint
sets (6.8) and (6.9) ensure that the lessons of a class are scheduled sequentially in
each shift. Constraint set (6.10) ensures the number of daily lessons of each event
is limited by L′e+vM1

ed . Constraint sets (6.11)-(6.13) formulate the requirement M2.
Constraint set (6.11) identifies the block heads of each event. Constraint set (6.12)
ensures the number of daily blocks of each event is limited by 1 +vM2a

ed . Constraint
set (6.13) is necessary to avoid blocks being assigned between shifts. Observe that
i indicates the first timeslot in the shift k+ 1 on day d. Hence, i− 1 indicates the
last timeslot in the previous shift on the same day. Constraint set (6.14) formulates
the requirement M3 by avoiding more than one lesson been assigned to a pair of
timeslots (s,s+ 1) in a given shift.

Constraint sets (6.15)-(6.19) formulate the requirement M4 in conjunction
with constraint sets (6.11)-(6.13). Constraint set (6.15) enforces the formation of
blocks of size p with a head beginning at the timeslot s when the variable gesp is
active for the event e. Constraint sets (6.16)-(6.17) ensure no lesson is assigned
to the timeslots located immediately before and after the block associated to the
variable gesp. Constraint set (6.18) ensures at least Gep− vM4

ep blocks of size p are
established to event e. Constraint set (6.19) ensures no more than one block variable
gesp is active on each day for a given event.

Constraint set (6.20) identifies the working shifts of teachers through the
variable y′′tdk. Constraint set (6.21) ensures the number of working shifts for each
teacher on a given day is limited by Y ′′td+vM5

td . Constraint set (6.22) formulates the
requirement M6 by assigning at least Ftd−vM6

td lessons to a teacher t on each day d.
Constraint set (6.23) ensures the number of lessons of each event in a given shift
is limited by L′′e + ledk. Constraint sets (6.24) and (6.25) identify the working days
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for each teacher through the variable y′td. Constraint sets (6.26)-(6.30) determine
the number of idle periods in a solution using the idle periods graph formulation as
presented in Section 3.1.1.

In order to make the formulation stronger, we also included two cuts derived
from the work of Souza (2000). Constraint sets (6.42) and (6.43) define, respectively,
the minimum number of working days and the minimum number of working shifts
for each teacher. In case the requirement M1 is considered hard then λe = L′e,
otherwise, λe =∞.

∑
d∈D

y′td ≥max
{⌈∑

e∈Et
We

|P ||K|

⌉
,max
e∈Et

{⌈
We

λe

⌉}}
∀t ∈ T (6.42)

∑
d∈D

∑
k∈K

y′′tdk ≥
⌈∑

e∈Et
We

|P |

⌉
∀t ∈ T (6.43)

6.2 Modelling HSTP+ as a XHSTT problem

In this section we describe how we mapped the HSTP+ requirements to the
constraints available in the XHSTT format presented in Section 2.3.2. Table 6.2
shows the problem requirement (Req), the constraint type in the XHSTT format used
to represent the problem requirement, as well as the number of constraints of that
type are required (∀). The remaining columns shows the properties defined inside the
XHSTT constraint. Columns AppliesTo and TimeGroups represents, respectively,
the set of entities and the set of timeslots in which the constraint is applied. Finally,
columns Min, Max, and Du define, respectively, the properties Minimum, Maximum
and Duration. Depending on the type of the constraint, some properties are not
required. We indicate these cases in the table using the symbol “−”. Observe that
most of problem requirements have a direct representation in the XHSTT. Only
the requirements M2 and M4 required multiple constraints to be modelled properly.
A major issue we faced when modelling in the XHSTT format is that some useful
constraint types, as LimitBusyTimes, can be applied to resources but not to events.
In order to overcome this limitation, for each event e ∈E we associated an artificial
resource e ∈ Ê.
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Table 6.2 – Mapping the requirements of HSTP+ to the XHSTT format.

Req Constraint type ∀ AppliesTo TimeGroups Min Max Du

H1 AssignTimes 1 e ∈ E − − − −
H2 AvoidClashes 1 t ∈ T − − − −
H3 AvoidClashes 1 c ∈ C − − − −
H4 AvoidUnavailableTimes t ∈ T t {s} : s ∈ S,Vts = 0 − − −
H5 AvoidUnavailableTimes c ∈ C c {s} : s ∈ S,Vcs = 0 − − −
H6 AvoidClashes 1 r ∈R − − − −
H7 LimitIdleTimes 1 c ∈ C Sdk : d ∈D,k ∈K 0 0 −
M1 LimitBusyTimes i ∈ [|D||P |]−1 e ∈ Ê : L′e = i Sd : d ∈D 0 i −

M2

{ SpreadEvents 1 e ∈ E Sd : d ∈D 0 1 −
PreferTimes i ∈ P+1 e ∈ E :We ≥ i πi − − i

M3 LimitBusyTimes 1 e ∈ Ê {s,s+ 1} : s ∈ π2 0 1 −

M4

{ DistributeEvents p ∈ P,f ∈D e ∈ E :Gep = f − f ∞ p
SpreadEvents 1 e ∈ E Sd : d ∈D 0 1 −
PreferTimes i ∈ P+1 e ∈ E :We ≥ i πi − − i

M5 ClusterBusyTimes d ∈D,i ∈K−1 t ∈ T : Yt = i Sdk : d ∈D,k ∈K 0 i −
M6 ClusterBusyTimes d ∈D t ∈ T : Ftd = 1 Sd 1 1 −
S1 LimitBusyTimes p ∈ P−1 e ∈ Ê : L′′e = p Sdk : d ∈D,k ∈K 0 p −
S2 ClusterBusyTimes 1 t ∈ T Sdk : d ∈D,k ∈K 0 0 −
S3 ClusterBusyTimes 1 t ∈ T Sd : d ∈D 0 0 −
S4 LimitIdleTimes 1 t ∈ T Sdk : d ∈D,k ∈K 0 0 −

Source: created by author.

6.3 Computational results

In this section we present an experimental evaluation on HSTP+. The ex-
periments are design to help us answering the following questions:

i) How important is to use a feasible solution as starting point?

ii) How does the fix-and-optimize heuristic compares to CPLEX and the state-of-
the-art methods?

iii) Are the algorithms able to provide the same performance if we slight change
the instances ?
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6.3.1 Environment

The algorithms were coded in C++ using the compiler g++ 4.9.2. The
mathematical models and subproblems are solved by CPLEX 12.6.2 (IBM, 2015)
with default settings in single core mode. All runs were performed in a server
machine equipped with an IntelR© XeonR© E5-2697 processor clocked at 2.7GHz,
64GB of RAM, running a 64 bits Linux operating system. The mathematical model
parameters ω, γ, δ and µ were set to 3, 9, 100 and 1000, respectively. All statistical
tests were calculated by GNU R 2.15.2 and a significance level set to 5%. In the
experiments that we apply a Student’s t-test, a Shapiro–Wilk test is used to evaluate
the normality of the data. In addition, the version of Students’ t-test we used
assumes that samples have different variances. Moreover, an implicit null hypothesis
indicated by H0 is associated to each alternative hypothesis test proposed in the
next sections. By default, H0 states that there is no significant difference between
the compared results. The initial constructive solutions provided to GOAL and
SVNS solvers were generated by the KHE library version 2014-05-07 (KINGSTON,
2014b).

6.3.2 Datasets

The dataset used in the experiments was provided by an industrial partner
and its main features are presented in Table 6.3. It is composed by 33 instances
originated from several schools, located in the south region of Brazil. In the table,
the instances are sorted in increasing order according to the product |S||E|, i.e, the
number of decision variables. We classified them in three categories according to
their dimensions: small (01 to 11), medium (12 to 21) and large (22 to 33) instances.
This classification matches with the size of the school. For each instance we report
the number of timeslots (|S|), number of days (|D|), number of shifts (|K|), number
of teachers (|T |), number of classes (|C|), number of shared rooms (|R|), number
of events (|E|), and the total number of lessons that need to be scheduled (∑We).
The remaining columns describe the subset of requirements which each instance take
into account. Cells marked with a bullet (•) means that at least one requirement of
that type is considered in the instance.

From the dataset presented in Table 6.3, we refer to three different groups
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of instances: A, B and C. Each one represents a version of the whole dataset. The
group A represents the original version, while groups B and C are versions derived
from A, differing in the amount and in the set of requirements are used. In group A,
all medium requirements are set to hard, while in group B they are set to soft.
Instances from group C are identical to the ones on group A, except we ignore the
requirement H4, i.e, all teachers have full availability. While group A allows us to
evaluate the algorithms in a realistic scenario, groups B and C are useful to stress
the algorithms in worst case conditions and reveal theirs limitations. In group B,
the number of soft requirements is larger than in A and, as a result, the number of
auxiliary variables the model needs to manage is also larger. Similarly, in group B,
by ignoring requirement H4, the number of “free” decision variables increases, what
implies in exploring a larger search space. Together, groups A, B and C accounts a
set of 99 novel test cases we made available in the XHSTT format.
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Table 6.3 – Main characteristics of the dataset.

Id |S| |D| |K| |T | |C| |R| |E|
∑
We H123 H4 H5 H6 H7 M1 M2 M3 M4 M5 M6 S1 S2 S3 S4

01 20 5 1 10 7 0 56 126 • • • • • •
02 20 5 1 11 8 0 64 160 • • • • •
03 20 5 1 32 21 0 74 262 • • • • • • • •
04 25 5 1 15 8 0 64 184 • • • • • • •
05 25 5 1 18 9 0 72 207 • • • • • • •
06 20 5 2 26 6 0 100 120 • • • • • • •
07 60 5 2 21 3 0 37 105 • • • • • • • •
08 25 5 1 22 12 1 108 300 • • • • • • • •
09 30 5 1 20 9 0 93 244 • • • • • • •
10 40 5 2 10 8 0 72 160 • • • • • •
11 40 5 2 15 10 1 77 184 • • • • • • • •

12 25 5 1 26 12 0 144 300 • • • • • •
13 30 5 1 26 12 0 145 303 • • • • • • •
14 60 5 1 30 13 0 151 331 • • • • • • •
15 30 5 1 25 12 0 154 340 • • • • • • •
16 25 5 1 38 21 0 210 525 • • • •
17 60 5 2 25 7 0 104 234 • • • • • • • • •
18 60 5 2 19 7 0 104 234 • • • • • • • • •
19 50 5 2 25 16 4 141 400 • • • • • • • • •
20 50 5 2 27 9 0 153 285 • • • • • • • • •
21 60 5 2 27 10 0 177 321 • • • • • • • • •

22 50 5 2 44 15 1 261 525 • • • • • • • • •
23 50 5 2 48 15 1 261 525 • • • • • • • • •
24 50 5 2 53 15 1 266 532 • • • • • • • • •
25 75 5 3 60 22 16 219 574 • • • • • • • • • • •
26 75 5 3 68 31 15 245 719 • • • • • • • • • •
27 75 5 3 64 31 16 249 749 • • • • • • • • • • •
28 75 5 3 70 36 16 265 764 • • • • • • • • • • •
29 126 6 3 44 20 0 256 780 • • • • • • • • • •
30 126 6 3 45 23 0 294 882 • • • • • • • • • •
31 126 6 3 53 27 0 318 985 • • • • • • • • • •
32 126 6 3 50 30 0 374 1131 • • • • • • • • • •
33 126 6 3 53 30 1 380 1153 • • • • • • • • • • •

Source: created by author.
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6.3.3 Experiments with a general purpose MIP solver

Table 6.4 reports the main results given by CPLEX for instances of the groups
A, B, and C. Column Id displays the identifier of each instance. ColumnsObj and LB
show, respectively, values of the best solution and the best lower bound found by
the solver within a time limit of 10 hours. Column Gap shows the percentage
deviation between the best solution and the best lower bound, hereafter referred as
optimality gap. It is computed as 100× (Obj−LB)/(Obj) and assumes the value
zero when (Obj−LB) = 0, in this case, the solution is guaranteed optimal. Finally,
column Time reports the running time in seconds. Cells marked with “t.l.” indicate
the time limit was reached without proof of optimality. The last row (Avg∗) displays
the average values for the whole instance group. Additionally, we also display average
values corresponding to small (Avgs), medium (Avgm) and, large (Avgl) instances.
Further details are presented in Appendix A.

From the table we see that CPLEX found feasible solutions for all instances
within the time limit. Analyzing the performance according to the dimensions of
the instances, on the whole, it performed better when solving small and medium
instances. Particularly on small instances the solver did very well, finding optimal
solutions for the majority of instances and achieving an optimality gap less than 1%,
on average, in all groups. Regarding medium size instances, CPLEX also obtained
solutions very close to the optimal, with quality comparable to the small ones, except
in instances of group C, where its performance decreased considerably. Finally,
CPLEX provided the worst results when solving large instances. In this category,
the smallest average gap achieved was 13% in group A, while reached up to 24% in
group C, approximately. In contrast to small and medium size instances, on large
instances CPLEX was terminated due to time limit in all runs.

If we focus our analyse on each group separately, a closer comparison shows
that CPLEX performed similarly in groups A and B, while in group C, it performed
twice times worse than both other groups. It means that the modifications we
made in group A for creating the group C turned the instances harder for CPLEX.
In order to support our conclusions, we performed a paired Student’s t-test for
evaluating two hypothesis presented in Table 6.5. From this table we can draw two
main conclusions. In one hand, the p-value obtained to test H1 states that the
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Table 6.4 – Results of CPLEX for all instances with a time limit of 10 hours.

Group A Group B Group C

Id Obj LB Gap Time Obj LB Gap Time Obj LB Gap Time

01 315 315.0 0.0 1 315 315.0 0.0 2 315 315.0 0.0 1
02 360 360.0 0.0 2 360 360.0 0.0 2 360 360.0 0.0 2
03 690 684.0 0.9 t.l. 690 684.0 0.9 t.l. 663 657.0 0.9 t.l.
04 417 414.0 0.7 t.l. 417 414.0 0.7 t.l. 408 405.0 0.7 t.l.
05 528 528.0 0.0 3915 528 528.0 0.0 1297 495 480.6 2.9 t.l.
06 333 333.0 0.0 2 333 333.0 0.0 1 324 324.0 0.0 1
07 387 387.0 0.0 9 387 387.0 0.0 31 351 351.0 0.0 709
08 600 597.0 0.5 t.l. 600 600.0 0.0 2438 576 567.0 1.6 t.l.
09 474 471.0 0.6 t.l. 474 474.0 0.0 20302 441 441.0 0.0 5376
10 282 276.0 2.1 t.l. 282 279.0 1.1 t.l. 282 276.0 2.1 t.l.
11 426 426.0 0.0 13287 426 423.0 0.7 t.l. 405 405.0 0.0 4515
Avgs 437 435.5 0.4 17929 437 436.1 0.3 15279 420 416.5 0.7 17328

12 654 654.0 0.0 3027 654 654.0 0.0 1587 651 630.0 3.2 t.l.
13 648 630.0 2.8 t.l. 645 630.0 2.3 t.l. 618 603.0 2.4 t.l.
14 759 759.0 0.0 834 759 759.0 0.0 716 810 651.6 19.6 t.l.
15 690 613.8 11.0 t.l. 672 613.8 8.7 t.l. 630 612.0 2.9 t.l.
16 1077 1071.0 0.6 t.l. 1077 1071.0 0.6 t.l. 1077 1071.0 0.6 t.l.
17 903 886.4 1.8 t.l. 906 885.8 2.2 t.l. 1035 780.6 24.6 t.l.
18 1089 1089.0 0.0 237 1089 1089.0 0.0 392 1167 881.6 24.5 t.l.
19 783 783.0 0.0 22162 783 780.0 0.4 t.l. 756 736.2 2.6 t.l.
20 540 540.0 0.0 35124 540 540.0 0.0 5547 498 405.0 18.7 t.l.
21 576 541.5 6.0 t.l. 573 546.0 4.7 t.l. 528 454.5 13.9 t.l.

Avgm 771 756.8 2.2 24138 769 756.9 1.9 22424 777 682.5 11.3 t.l.

22 1074 875.7 18.5 t.l. 1170 881.7 24.6 t.l. 1050 807.8 23.1 t.l.
23 1287 1080.8 16.0 t.l. 1323 1086.0 17.9 t.l. 1068 836.5 21.7 t.l.
24 1245 1074.0 13.7 t.l. 1239 1075.1 13.2 t.l. 1137 934.9 17.8 t.l.
25 1374 1069.9 22.1 t.l. 1296 1066.3 17.7 t.l. 1266 1062.6 16.1 t.l.
26 1557 1338.4 14.0 t.l. 1566 1334.2 14.8 t.l. 1557 1338.4 14.0 t.l.
27 1560 1391.0 10.8 t.l. 1539 1388.4 9.8 t.l. 1635 1343.5 17.8 t.l.
28 1509 1320.5 12.5 t.l. 1581 1300.6 17.7 t.l. 1494 1239.3 17.0 t.l.
29 1395 1288.5 7.6 t.l. 1344 1288.8 4.1 t.l. 1332 991.5 25.6 t.l.
30 1951 1713.6 12.2 t.l. 1942 1714.7 11.7 t.l. 1761 1072.8 39.1 t.l.
31 1636 1596.7 2.4 t.l. 1735 1593.9 8.1 t.l. 1476 1189.5 19.4 t.l.
32 1888 1620.2 14.2 t.l. 1951 1631.7 16.4 t.l. 2001 1191.0 40.5 t.l.
33 1921 1684.7 12.3 t.l. 1903 1689.2 11.2 t.l. 1980 1296.6 34.5 t.l.

Avgl 1533 1337.8 13.0 t.l. 1549 1337.6 13.9 t.l. 1479 1108.7 23.9 t.l.

Avg∗ 937 861.0 5.6 26382 942 861.1 5.7 24979 913 748.8 12.4 29776

Source: created by author.
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performance of CPLEX is not significantly affected according to changes in medium
requirements, i.e, its performance is not significantly affected whether requirements
M1-M6 are modelled as hard or soft requirements. In some sense, these results could
be expected since the only difference in modelling a requirement as hard or soft is
the addition of a set of continuous slack variables in the latter case.

Table 6.5 – Paired Student’s t-test performed on CPLEX results.

Hypothesis description p-value Result

H1: Gap of group B is higher than Gap of group A 0.313 Failed
H2: Gap of group C is higher than Gap of group A 0.000 Succeeded

Source: created by author.

In the other hand, the p-value computed to test H2 indicates that the perfor-
mance of CPLEX significantly decreases when the number of free decision variables
increases, i.e, the results suggest that there is a strong correlation of the performance
with the dimensions of the instances. This behavior can be better observed in Fig-
ure 6.1 that shows a linear correlation of 0.85 between the optimality gap (Gap) and
the number of free decisions variables on each instance. Among all instance param-
eters, this is the one that presents the highest linear correlation with the optimality
gap.
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Figure 6.1 – Linear regression for results of CPLEX on all instances.
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Source: Figure created by author.

6.3.4 Experiments with methods for generating initial solutions.

In order to provide an initial feasible solution to start variants of the fix-and-
optimize heuristic, for each instance we disregarded all soft constraints and picked
the first feasible solution found by CPLEX. We hereafter refer to this approach
by CPX0. Table 6.7 displays, for each instance group, the objective value of the
solution (Obj), the optimality gap (Gap), and the running time in seconds (Time).

The results show this approach is quite effective in providing feasible solutions
for the problem at hand. Although the majority of solutions are far from optimal,
feasible solutions for all instances were found quickly, in less than 50 seconds, except
for the instance A23 that took 157 seconds. As expected, the average time to find a
solution increases consistently according to the size of the instances in all groups. If
we compare the results obtained individually for each group, one can observe that
the average running times for groups B and C are shorter than in group A. One may
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conclude the modifications performed on the dataset might turn the factibilization of
the instances easier to CPX0. However, according to the hypothesis tests presented
in Table 6.6, only the solutions of group B were obtained significantly faster than
group A, by spending, on average, 2 seconds approximately. This short running time,
clearly comes at the high cost of violating several medium requirements in instances
of group B. Particularly in this group, the solutions are really poor. Finally, the
results obtained by the two last hypothesis tests, which are presented in Table 6.6,
support the observation that the quality of solutions obtained in groups B and C
are significantly worse than solutions obtained in group A.

Table 6.6 – Paired Student’s t-test performed on CPX0 results.

Hypothesis description p-value Result

H1: Time of group B is less than Time of group A 0.015 Succeeded
H2: Time of group C is less than Time of group A 0.064 Failed
H3: Gap of group B is greater than Gap of group A 0.000 Succeeded
H4: Gap of group C is greater than Gap of group A 0.000 Succeeded

Source: created by author.



98

Table 6.7 – Feasible solutions generated by CPX0.

Group A Group B Group C

Id Obj Gap Time Obj Gap Time Obj Gap Time

01 468 32.7 0 5486 94.3 0 468 32.7 0
02 516 30.2 0 7555 95.2 0 516 30.2 0
03 975 29.8 5 40032 98.3 0 1143 42.5 3
04 534 22.5 1 28549 98.5 0 753 46.2 0
05 615 14.1 1 25621 97.9 0 831 42.2 1
06 612 45.6 0 12684 97.4 0 702 53.8 0
07 477 18.9 0 20474 98.1 0 624 43.7 0
08 918 35.0 0 23915 97.5 0 1179 51.9 0
09 621 24.2 0 6639 92.9 0 954 53.8 0
10 522 47.1 0 28510 99.0 0 522 47.1 0
11 450 5.3 0 25453 98.3 0 672 39.7 0
Avgs 609 27.8 1 20447 97.0 0 760 44.0 1

12 693 5.6 13 37729 98.3 0 1248 49.5 2
13 915 31.1 3 34924 98.2 0 1365 55.8 2
14 798 4.9 4 45807 98.3 0 1389 53.1 2
15 1149 46.6 5 33221 98.2 0 1464 58.2 3
16 2052 47.8 0 3052 64.9 0 2052 47.8 0
17 1392 36.3 2 35473 97.5 0 2013 61.2 1
18 1152 5.5 5 55224 98.0 0 2130 58.6 2
19 846 7.4 4 57861 98.7 0 1278 42.4 2
20 729 25.9 7 41762 98.7 1 1176 65.6 1
21 981 44.8 5 40293 98.6 0 1317 65.5 2
Avgm 1070 25.6 5 38534 94.9 0 1543 55.8 2

22 1479 40.8 49 136788 99.4 7 1674 51.7 37
23 1443 25.1 157 131695 99.2 9 1746 52.1 29
24 1617 33.6 45 129896 99.2 6 1917 51.2 31
25 1728 38.1 17 165595 99.4 2 1827 41.8 24
26 2076 35.5 19 220066 99.4 2 2076 35.5 18
27 2055 32.3 12 213703 99.4 3 2118 36.6 21
28 2463 46.4 12 212201 99.4 2 2442 49.3 19
29 3893 66.9 13 76672 98.3 5 3444 71.2 2
30 4127 58.5 8 65312 97.4 19 3548 69.8 2
31 2644 39.6 13 95486 98.3 5 3315 64.1 2
32 4076 60.2 8 77483 97.9 3 4708 74.7 2
33 2899 41.9 8 86554 98.0 4 3762 65.5 3
Avgl 2541 43.2 30 134287 98.8 6 2714 55.3 16

Avg∗ 1451 32.7 13 67324 97.0 2 1708 51.7 7

Source: created by author.
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In Table 6.8 we report the solutions generated by KHE library that are used
as initial solution by GOAL and SVNS solvers. Columns and rows in this table have
the same meaning than the previous one, but notice that column Obj has a slightly
different format. Since KHE can produce infeasible solutions, the corresponding
objective function value is represented by a pair (Inf / Costs), where Inf and
Costs display, respectively, the number of hard requirements violated and the cost
associated to the violation of soft requirements. The Inf value can be interpreted
as a feasibility distance. Hence, a solution is feasible when Inf = 0, and infeasible
otherwise. In order to compute the optimality gap (Gap), we convert the pair into
a single cost Obj = M ∗ Inf +Costs. This way, infeasible solutions are reasonably
penalized according to the number of infeasibilities. In addition, we report in the
last row (#fea), the number of feasible solutions found by KHE in each group of
instances.

Analyzing the table, it can be seen that the majority of solutions produced by
KHE are infeasible. The percentage of feasibility achieved for groups A, B, and C are,
respectively, 21%, 44% and 45%. Another tendency, clearly observable, is that the
running time increases according to the instance size. We noted that, while solutions
for instances 01 to 28 were produced in less than 1 minute, the solutions for instances
29 to 33 required a significant amount of time, all these surpassing 5 minutes and
reaching up to 17 minutes, approximately, in instance C33. Analyzing instances 29
to 33 in Table 6.3 it can be observed that besides the number of timeslots (|S|),
these instances differ from the others only by requirements M3 and S1. Both these
requirements are also modelled in the XHSTT format by using a LimitBusyTimes
constraint. The slowdown observed in these particular instances, might be related
to the application of the LimitBusyTimes over a set of dummy resources (Ê) we
created for surpassing modelling limitations of the XHSTT format. Possibly, KHE
had some difficulty to tackle a high number of resources that does not behavior like
usual resources.
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Table 6.8 – Initial constructive solutions generated by KHE.

Group A Group B Group C

Id Obj Gap Time Obj Gap Time Obj Gap Time

01 0 / 351 10.3 1 0 / 342 7.9 1 0 / 351 10.3 1
02 0 / 414 13.0 3 0 / 408 11.8 3 0 / 414 13.0 3
03 23 / 957 97.1 6 5 / 5029 93.2 10 6 / 1137 90.8 8
04 12 / 489 96.7 4 0 / 5492 92.5 8 1 / 522 73.4 9
05 12 / 537 95.8 6 0 / 7585 93.0 9 1 / 645 70.8 7
06 0 / 360 7.5 1 0 / 369 9.8 1 0 / 369 12.2 1
07 29 / 459 98.7 9 3 / 16453 98.0 9 6 / 594 94.7 7
08 5 / 648 89.4 12 1 / 4645 89.4 29 3 / 624 84.4 10
09 0 / 504 6.5 8 1 / 513 68.7 9 0 / 483 8.7 8
10 0 / 324 14.8 3 0 / 351 20.5 4 0 / 324 14.8 3
11 7 / 435 94.3 3 0 / 4441 90.5 5 0 / 468 13.5 8
Avgs 8 / 498 56.7 5 0 / 4148 61.4 8 1 / 539 44.2 6

12 16 / 672 96.1 5 1 / 8687 93.2 9 0 / 774 18.6 11
13 11 / 693 94.6 7 3 / 5687 92.7 10 1 / 735 65.2 9
14 28 / 741 97.4 5 1 / 21777 96.7 10 0 / 855 23.8 17
15 0 / 783 21.6 20 0 / 771 20.4 15 0 / 750 18.4 15
16 0 / 1083 1.1 20 0 / 1095 2.2 13 0 / 1083 1.1 21
17 11 / 1077 92.7 27 1 / 6116 87.6 30 0 / 1158 32.6 25
18 33 / 1050 96.8 25 1 / 21140 95.1 29 0 / 1350 34.7 36
19 29 / 801 97.4 27 6 / 17801 96.7 33 5 / 882 87.5 47
20 14 / 642 96.3 8 0 / 9636 94.4 12 0 / 729 44.4 9
21 3 / 693 85.3 26 0 / 2711 79.9 22 0 / 702 35.3 13
Avgm 14 / 823 77.9 17 1 / 9542 75.9 18 0 / 901 36.2 20

22 34 / 1062 97.5 35 4 / 31044 97.5 49 30 / 1020 97.4 34
23 43 / 1161 97.6 28 14 / 31233 97.6 45 30 / 1044 97.3 38
24 33 / 1194 96.9 37 9 / 21194 96.4 46 20 / 1113 95.6 46
25 17 / 1386 94.2 23 0 / 20404 94.8 25 15 / 1344 93.5 23
26 20 / 1674 93.8 35 2 / 17689 93.2 30 20 / 1674 93.8 36
27 30 / 1614 95.6 26 7 / 21635 95.2 22 20 / 1605 93.8 25
28 37 / 2142 96.6 22 1 / 20214 93.9 21 31 / 2169 96.3 18
29 13 / 1407 91.1 322 1 / 1395 46.2 507 23 / 1296 95.9 377
30 18 / 1782 91.3 367 2 / 5785 78.0 408 28 / 1476 96.4 505
31 25 / 1765 94.0 379 7 / 5665 87.4 386 22 / 1557 95.0 612
32 19 / 1849 92.2 498 0 / 1873 12.9 483 24 / 1674 95.4 665
33 17 / 1879 91.1 408 0 / 1933 12.6 532 13 / 1746 91.2 1032
Avgl 25 / 1576 94.3 182 3 / 15005 75.5 213 23 / 1476 95.1 284

Avg∗ 16 / 988 76.8 73 2 / 9730 70.9 86 9 / 989 60.3 111

#fea 7 14 15

Source: created by author.
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According to the statistical tests presented in Table 6.9, in contrast with
the performance observed in CPX0, the KHE required significantly more time for
producing solutions to groups B and C than for group A. However, the extra time
spent on groups B and C only resulted in significant improvements in solution quality
in Group C. As a result, the performance of KHE decreased on Group B.

Table 6.9 – Paired Student’s t-test performed on KHE results.

Hypothesis description p-value Result

H1: Time of group B is greater than Time of group A 0.034 Succeeded
H2: Time of group C is greater than Time of group A 0.035 Succeeded
H3: Gap of group B is less than Gap of group A 0.078 Failed
H4: Gap of group C is less than Gap of group A 0.001 Succeeded

Source: created by author.

In order to compare the results obtained by CPX0 and KHE we performed
an additional set of statistical tests reported in Table 6.10. Concerning feasibility,
CPX0 clearly outperformed KHE since the former produced feasible solutions for
100% of the instances. In addition, CPX0 spent significantly less computational
time than KHE in all groups. Regarding solution quality, each method performed
better in a distinct group of instances. While CPX0 was able to produce better
solutions in Group A, KHE produced better solutions in Group B. Both approaches
provided solutions with comparable quality in Group C.

Finally, the test result of H5 deserves a short discussion. We observed that
even KHE had generated several infeasible solutions in Group B, the overall quality
of these infeasible solutions is higher than the quality of feasible solutions provided
by CPX0 in the same group. This result suggests a limitation of CPX0 when applied
on instances with few hard requirements since, in a less constrained scenario, it is
easier for CPX0 to find a solution that although being feasible has poor quality.
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Table 6.10 – Paired Student’s t-test comparing results obtained by KHE and CPX0.

Hypothesis description p-value Result

H1: CPX0 spent less time than KHE in group A 0.011 Succeeded
H2: CPX0 spent less time than KHE in group B 0.003 Succeeded
H3: CPX0 spent less time than KHE in group C 0.009 Succeeded

H4: Gap of CPX0 is less than Gap of KHE in group A 0.000 Succeeded
H5: Gap of CPX0 is higher than Gap of KHE in group B 0.000 Succeeded
H6: Gap of CPX0 is less than Gap of KHE in group C 0.092 Failed

Source: created by author.

6.3.5 Experiments with local-search based solvers

Here we evaluate two state-of-the-art solvers designed for solving GHSTP.
These solvers, hereafter, referred as GOAL and SVNS are described in Section 2.3.4.
While both solvers use originally KHE as a constructive method, we have observed
in previous experiments, that KHE is outperformed by CPX0 regarding running
time and feasibility. Thus, we are also interested in investigating how these solvers
perform by receiving a feasible initial solution provided by CPX0. For a short
representation, we indicate the results obtained by GOAL and SVNS solvers by
using, respectively, the letters G and S. The method used for providing the initial
solution to each solver is indicated by a subscript letter. The letter K refers to
KHE and the letter C refers to CPX0. One may note that while GK and SK are
hybrid meta-heuristics, when we replace KHE by CPX0, the resulting variants GC
and SC became matheuristic approaches that can be classified as a collaborative
combination arranged in sequential phases. Firstly CPX0 generates a solution and
then it is further improved by SVNS or GOAL solvers.

Table 6.11 displays for each method the average gap computed from 5 runs
in each instance by using different seeds. A time limit of 1 hour was imposed to each
method besides the time required for generating the initial solution. Further details
for GOAL and SVNS solvers are reported, respectively, in appendices B and C.
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Table 6.11 – Comparative results between SVNS and GOAL solvers.

Group A Group B Group C

Id GK SK GC SC GK SK GC SC GK SK GC SC

01 5.41 5.41 5.4 5.41 5.41 5.41 76.21 76.21 5.41 5.41 5.41 5.41
02 4.76 4.76 7.1 6.83 4.76 4.76 11.50 11.11 4.76 4.76 6.69 5.21
03 96.37 96.41 25.8 25.97 96.16 96.71 97.94 98.00 79.16 79.14 34.00 34.59
04 96.68 96.68 13.0 11.88 92.45 92.45 92.71 91.86 73.48 73.39 18.97 18.67
05 95.79 95.79 6.5 5.48 93.02 93.02 95.52 95.01 70.31 70.29 16.13 16.74
06 0.00 0.00 0.0 0.00 0.54 0.00 96.79 96.79 0.55 0.00 1.10 0.00
07 98.59 98.59 8.9 6.11 98.01 98.01 97.12 96.84 94.68 94.68 25.00 25.00
08 89.34 89.34 8.0 6.57 89.29 89.29 91.52 86.57 84.15 84.14 6.34 2.98
09 3.09 1.75 6.1 3.68 3.19 1.74 91.38 91.36 9.03 5.53 10.04 7.31
10 2.54 2.13 3.4 2.13 2.31 1.06 98.39 98.39 2.95 2.13 3.36 2.13
11 93.39 93.39 2.5 1.53 90.47 90.47 97.22 97.15 11.76 10.60 9.76 7.41
Avgs 53.27 53.11 7.9 6.87 52.33 52.08 86.03 85.39 39.66 39.10 12.43 11.40

12 95.83 95.83 2.7 2.15 94.10 93.99 96.17 95.98 15.05 14.98 13.15 12.28
13 94.21 93.64 13.5 11.09 92.56 91.13 94.72 94.13 18.43 34.80 19.86 18.62
14 97.17 97.17 4.0 3.80 96.67 96.55 96.78 97.69 22.37 22.32 20.96 18.89
15 16.90 16.08 19.1 18.09 16.63 16.69 17.43 15.80 14.64 14.79 16.94 14.07
16 0.34 0.28 0.5 0.34 0.39 0.28 0.83 0.34 0.56 0.28 0.56 0.28
17 92.00 91.99 22.7 20.15 87.53 87.51 88.85 85.00 31.02 30.17 31.17 28.44
18 96.72 96.71 5.0 4.07 96.02 95.37 97.00 97.91 35.19 33.36 33.36 29.97
19 96.97 96.97 3.3 2.54 97.02 97.07 97.67 98.41 87.41 87.38 16.47 13.65
20 95.86 95.73 12.5 9.64 94.39 94.02 96.79 96.54 40.00 38.86 31.61 29.47
21 85.23 85.15 19.4 17.50 79.50 79.39 93.32 92.96 29.86 28.33 29.47 27.65
Avgm 77.12 76.95 10.3 8.94 75.48 75.20 77.96 77.48 29.45 30.53 21.35 19.33

22 97.49 97.44 24.2 18.83 97.41 97.41 99.33 99.33 97.40 97.39 21.95 17.66
23 97.44 97.47 22.4 20.26 97.42 97.46 99.14 99.14 97.31 97.30 20.11 17.16
24 96.50 96.84 20.1 16.40 96.20 96.44 99.16 99.16 95.57 95.57 17.12 13.63
25 94.16 94.16 15.1 12.55 94.77 94.76 99.30 99.30 93.50 93.49 16.27 12.98
26 93.52 93.51 13.1 10.56 93.21 93.20 99.32 99.32 93.52 93.52 12.94 10.45
27 95.11 94.96 11.1 8.11 94.86 94.86 99.32 99.32 93.78 93.77 12.74 9.38
28 96.44 96.36 26.9 25.19 93.84 93.83 99.25 99.25 95.74 96.25 29.19 26.68
29 41.44 46.11 32.1 51.93 34.37 18.87 97.96 98.07 15.91 15.69 29.51 27.91
30 74.37 73.23 39.3 48.89 74.52 75.29 96.60 96.76 79.83 79.78 18.87 18.36
31 66.48 68.70 16.1 21.20 69.11 66.38 97.73 97.85 65.57 65.63 20.29 18.95
32 38.61 51.57 35.9 35.02 10.88 10.94 96.92 97.18 21.04 20.44 31.30 29.84
33 26.39 8.47 16.5 21.23 10.04 8.55 96.91 97.24 19.52 19.78 20.75 20.38
Avgl 76.50 76.57 22.7 24.18 72.22 70.67 98.41 98.49 72.39 72.39 20.92 18.61

Avg∗ 68.94 68.87 14.0 13.79 66.58 65.85 88.08 87.76 48.47 48.60 18.22 16.43

Source: created by author.

In order to compare the variants of GOAL and SVNS solvers, we performed
a set of statistical tests presented in Table 6.12. The tests regarding hypothesis H1,
H2, and H3 reveal that there is no significant differences in performance between
variants GK and SK since both solvers provided solutions with similar quality when
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compared in the same group. This results also suggests that the performance gains
of SVNS over GOAL reported by (FONSECA; SANTOS, 2014) are possibly related
to resource assignments.

The variants GC and SC were compared individually in each group by testing
the hypothesis H4, H5, and H6. While in groups A and B no significant differences
can be stated, in Group C the variant SC clearly provided better solutions than GC .
Particularly this last test is the only significant evidence in which a SVNS variant
demonstrated superiority over a GOAL variant. Hence, since in all other tests no
differences were stated, in further tests we only evaluate SVNS variants.

The aim of the last three hypothesis tests is to identify how results obtained
by SVNS variants are impacted due to different initial solutions. We observed that
the initial solution has a strong impact on the quality of the final solutions. In groups
A and C the variant SC clearly outperformed SK by providing feasible solutions far
better. In contrast, in group B the variant SK outperformed SC , however, in this
case the difference observed in the quality of solutions is more moderate. Thus, we
concluded based on the experiments reported here that, since GOAL and SVNS, on
the whole demonstrated similar performance as a local search based heuristic, the
variants that started with a better initial solution provided the best results.

Table 6.12 – Paired Student’s t-test comparing results obtained by GOAL and SVNS.

Hypothesis description p-value Result

H1: Gap of SK 6= Gap of GK in Group A 0.914 Failed
H2: Gap of SK 6= Gap of GK in Group B 0.135 Failed
H3: Gap of SK 6= Gap of GK in Group C 0.797 Failed

H4: Gap of SC 6= Gap of GC in Group A 0.788 Failed
H5: Gap of SC 6= Gap of GC in Group B 0.113 Failed
H6: Gap of SC < Gap of GC in Group C 0.000 Succeeded

H7: Gap of SC < Gap of SK in Group A 0.000 Succeeded
H8: Gap of SC > Gap of SK in Group B 0.001 Succeeded
H9: Gap of SC < Gap of SK in Group C 0.000 Succeeded

Source: created by author.
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6.3.6 Experiments with the fix-and-optimize approach

In this section we present an experimental evaluation for the fix-and-optimize
heuristic proposed in Chapter 4 applied on the model proposed to HSTP+ in Sec-
tion 6.1.1. Our goal is to evaluate the variant F8 presented in Table 4.3 without any
fine-tuning. Table 6.13 presents gap results for two versions of the fix-and-optimize
heuristic: a deterministic version (F8) and a stochastic version (F8). While in the
deterministic version, the subproblems are explored in a lexicographical order, in
the stochastic version the partitions are shuffled when a neighborhood is changed.
The average results reported to F8 were computed from 5 runs performed in each in-
stance by using different seeds. A time limit of 1 hour was imposed for both methods.
Further details for F8 and F8 are reported, respectively, in appendices D and E.

The statistical tests presented in Table 6.14 reveals there is no significant dif-
ference between the deterministic and the stochastic versions of the fix-and-optimize
heuristic. Thus, we proceed with the analysis only with the stochastic version. In
addition, the results obtained to the last two hypothesis also indicates that the fix-
and-optimize heuristic is impacted by the changes we made on group A once the
achieved solutions for groups B and C are significantly worse than solutions of group
A. The worst results of fix-and-optimize heuristic occurred in group B. Possibly it
was due to the poor quality of the initial solution provided by CPX0, as observed
in previous experiments.
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Table 6.13 – Comparison results between fix-and-optimize variants F8 and F8.

Group A Group B Group C

Id F8 F8 F8 F8 F8 F8

01 0.00 0.00 0.00 0.00 0.00 0.00
02 0.00 0.00 0.00 0.00 0.00 0.00
03 4.60 8.58 5.79 6.86 13.44 9.95
04 0.72 0.72 0.72 0.86 0.74 1.03
05 0.00 0.00 0.00 0.11 2.32 1.72
06 0.00 0.00 0.00 0.00 0.00 0.00
07 0.00 0.00 0.00 0.00 0.00 0.00
08 0.50 0.50 0.00 0.40 1.56 2.07
09 1.26 1.63 1.86 1.50 1.34 0.54
10 2.13 2.13 1.06 1.06 2.13 2.13
11 0.00 0.00 0.70 0.70 0.00 0.00
Avgs 0.84 1.23 0.92 1.05 1.96 1.59

12 0.46 0.37 0.46 0.37 2.33 2.33
13 4.55 3.85 76.32 76.31 6.94 7.88
14 1.56 0.39 0.78 0.55 8.35 7.50
15 3.49 4.21 4.39 3.76 2.86 1.64
16 0.56 0.50 0.83 0.45 0.56 0.50
17 2.81 3.45 4.44 3.44 10.59 11.44
18 1.63 0.49 0.00 0.98 14.33 11.49
19 0.00 0.00 56.18 0.54 3.76 3.00
20 4.76 2.60 3.74 2.17 11.76 10.36
21 6.48 6.09 6.19 5.41 14.41 8.95
Avgm 2.63 2.19 15.33 9.40 7.59 6.51

22 11.01 12.61 11.21 12.48 12.29 12.46
23 10.60 11.39 51.17 54.69 12.86 13.41
24 11.39 10.73 50.46 32.81 10.71 9.72
25 10.84 10.08 12.88 10.52 11.67 11.23
26 8.21 9.77 8.87 8.94 8.21 9.77
27 6.89 7.30 74.73 74.68 7.66 8.31
28 8.87 10.06 11.34 10.39 10.20 11.73
29 4.56 4.21 5.99 5.58 13.26 12.01
30 7.62 7.17 8.01 7.50 12.99 14.04
31 6.51 6.68 5.85 7.72 14.18 15.82
32 11.37 10.37 8.33 9.03 16.24 19.01
33 9.33 8.80 8.64 7.68 19.06 19.33
Avgl 8.93 9.10 21.46 20.17 12.44 13.07

Avg∗ 4.32 4.38 12.76 10.53 7.48 7.25

Source: created by author.
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Table 6.14 – Paired Student’s t-test comparing results of fix-and-optimize variants.
Hypothesis description p-value Result
H1: Gap of F8 6= Gap of F8 in Group A 0.744 Failed
H2: Gap of F8 6= Gap of F8 in Group B 0.216 Failed
H3: Gap of F8 6= Gap of F8 in Group C 0.410 Failed
H4: Gap of F8 in Group B > Gap of F8 in Group A 0.032 Succeeded
H5: Gap of F8 in Group C > Gap of F8 in Group A 0.000 Succeeded

Source: created by author.

6.3.7 Comparative results

In this section we compare the methods tested in previous sections. Figure 6.2
presents a boxplot graphic comparing the average optimality gaps for all evaluated
methods obtained within each group.

Figure 6.2 – Graphical comparison of optimality gaps between all approaches evaluated.
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Table 6.15 presents gap results for each method, and the best results are
presented in bold. Results of CPLEX using a time limit of 10 hours are presented in
column CPX10. It can be observed that, on average, the fix-and-optimize heuristic
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outperformed all methods evaluated in groups A and C. In group B, the results are
worse than CPLEX mainly due to the poor quality of the initial solution provided
by CPX0 in this particular group. Finally, one may still note that SVNS solvers are
significantly outperformed by other approaches in all group of instances. Although
the variant SC has gained some boost on performance in groups A and C due to
CPX0, even taking into account this improvement it is not able to cope with other
methods.
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Table 6.15 – Comparison of optimality gaps between the main approaches evaluated.
Group A Group B Group C

Id CPX10 SK SC F8 CPX10 SK SC F8 CPX10 SK SC F8

01 0.00 5.41 5.41 0.00 0.00 5.41 76.21 0.00 0.00 5.41 5.41 0.00
02 0.00 4.76 6.83 0.00 0.00 4.76 11.11 0.00 0.00 4.76 5.21 0.00
03 0.87 96.41 25.97 8.58 0.87 96.71 98.00 6.86 0.90 79.14 34.59 9.95
04 0.72 96.68 11.88 0.72 0.72 92.45 91.86 0.86 0.74 73.39 18.67 1.03
05 0.00 95.79 5.48 0.00 0.00 93.02 95.01 0.11 2.91 70.29 16.74 1.72
06 0.00 0.00 0.00 0.00 0.00 0.00 96.79 0.00 0.00 0.00 0.00 0.00
07 0.00 98.59 6.11 0.00 0.00 98.01 96.84 0.00 0.00 94.68 25.00 0.00
08 0.50 89.34 6.57 0.50 0.00 89.29 86.57 0.40 1.56 84.14 2.98 2.07
09 0.63 1.75 3.68 1.63 0.00 1.74 91.36 1.50 0.00 5.53 7.31 0.54
10 2.13 2.13 2.13 2.13 1.06 1.06 98.39 1.06 2.13 2.13 2.13 2.13
11 0.00 93.39 1.53 0.00 0.70 90.47 97.15 0.70 0.00 10.60 7.41 0.00
Avgs 0.44 53.11 6.87 1.23 0.31 52.08 85.39 1.05 0.75 39.10 11.40 1.59

12 0.00 95.83 2.15 0.37 0.00 93.99 95.98 0.37 3.23 14.98 12.28 2.33
13 2.78 93.64 11.09 3.85 2.33 91.13 94.13 76.31 2.43 34.80 18.62 7.88
14 0.00 97.17 3.80 0.39 0.00 96.55 97.69 0.55 19.56 22.32 18.89 7.50
15 11.04 16.08 18.09 4.21 8.66 16.69 15.80 3.76 2.86 14.79 14.07 1.64
16 0.56 0.28 0.34 0.50 0.56 0.28 0.34 0.45 0.56 0.28 0.28 0.50
17 1.84 91.99 20.15 3.45 2.23 87.51 85.00 3.44 24.58 30.17 28.44 11.44
18 0.00 96.71 4.07 0.49 0.00 95.37 97.91 0.98 24.46 33.36 29.97 11.49
19 0.00 96.97 2.54 0.00 0.38 97.07 98.41 0.54 2.62 87.38 13.65 3.00
20 0.00 95.73 9.64 2.60 0.00 94.02 96.54 2.17 18.67 38.86 29.47 10.36
21 5.99 85.15 17.50 6.09 4.71 79.39 92.96 5.41 13.92 28.33 27.65 8.95
Avgm 2.22 76.95 8.94 2.19 1.89 75.20 77.48 9.40 11.29 30.53 19.33 6.51

22 18.47 97.44 18.83 12.61 24.64 97.41 99.33 12.48 23.07 97.39 17.66 12.46
23 16.02 97.47 20.26 11.39 17.92 97.46 99.14 54.69 21.68 97.30 17.16 13.41
24 13.74 96.84 16.40 10.73 13.23 96.44 99.16 32.81 17.78 95.57 13.63 9.72
25 22.13 94.16 12.55 10.08 17.72 94.76 99.30 10.52 16.07 93.49 12.98 11.23
26 14.04 93.51 10.56 9.77 14.80 93.20 99.32 8.94 14.04 93.52 10.45 9.77
27 10.83 94.96 8.11 7.30 9.78 94.86 99.32 74.68 17.83 93.77 9.38 8.31
28 12.49 96.36 25.19 10.06 17.73 93.83 99.25 10.39 17.05 96.25 26.68 11.73
29 7.63 46.11 51.93 4.21 4.10 18.87 98.07 5.58 25.57 15.69 27.91 12.01
30 12.17 73.23 48.89 7.17 11.70 75.29 96.76 7.50 39.08 79.78 18.36 14.04
31 2.40 68.70 21.20 6.68 8.13 66.38 97.85 7.72 19.41 65.63 18.95 15.82
32 14.18 51.57 35.02 10.37 16.36 10.94 97.18 9.03 40.48 20.44 29.84 19.01
33 12.30 8.47 21.23 8.80 11.23 8.55 97.24 7.68 34.51 19.78 20.38 19.33
Avgl 13.03 76.57 24.18 9.10 13.95 70.67 98.49 20.17 23.88 72.39 18.61 13.07

Avg∗ 5.56 68.87 13.79 4.38 5.75 65.85 87.76 10.53 12.35 48.60 16.43 7.25

Source: created by author.
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6.3.8 Best solutions found

Table 6.16 presents the best known solutions found for each instance consid-
ering all methods evaluated in this chapter. The column Time displays the time in
seconds when the solution was found. In case two or more methods reached a solu-
tion with the same value, we reported only the quickest one. In addition, all these
solutions and instances were submitted to the High School Benchmarking Project
website and might be available online soon. From this table, it can be seen that still
there is space for improvements on several instances, specially in the larger ones, as
well as medium and large instances of group C.
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Table 6.16 – Best solutions found in this study.
Group A Group B Group C

Id Method Obj Gap Time Method Obj Gap Time Method Obj Gap Time

01 F8 315 0.00 0.4 F8 315 0.00 0.7 F8 315 0.00 0.4
02 CPX10 360 0.00 2.2 CPX10 360 0.00 1.6 CPX10 360 0.00 2.3
03 CPX10 690 0.87 1911.1 CPX10 690 0.87 13827.0 CPX10 663 0.90 22662.5
04 CPX10 417 0.72 2822.1 F8 417 0.72 257.1 F8 408 0.74 484.4
05 F8 528 0.00 199.9 F8 528 0.00 11.4 F8 489 1.72 352.3
06 F8 333 0.00 1.2 CPX10 333 0.00 0.7 CPX10 324 0.00 0.9
07 CPX10 387 0.00 2.6 CPX10 387 0.00 7.0 F8 351 0.00 35.0
08 F8 600 0.50 167.1 F8 600 0.00 87.2 F8 576 1.56 852.9
09 CPX10 474 0.63 4376.2 GK 474 0.00 2032.0 F8 441 0.00 1373.5
10 F8 282 2.13 8.0 F8 282 1.06 7.6 F8 282 2.13 8.1
11 F8 426 0.00 6.5 F8 426 0.70 4.9 F8 405 0.00 5.9

12 CPX10 654 0.00 1637.2 F8 654 0.00 105.1 F8 645 2.33 286.5
13 CPX10 648 2.78 11083.9 CPX10 645 2.33 35434.6 CPX10 618 2.43 35676.8
14 CPX10 759 0.00 817.0 CPX10 759 0.00 716.2 F8 699 6.78 1095.3
15 F8 636 3.49 769.3 F8 636 3.49 2117.2 F8 618 0.97 154.3
16 SK 1074 0.28 82.0 SK 1074 0.28 156.0 SK 1074 0.28 73.0
17 F8 903 1.84 3024.8 CPX10 906 2.23 35953.6 F8 864 9.66 2363.8
18 CPX10 1089 0.00 196.7 CPX10 1089 0.00 361.6 F8 963 8.45 3506.4
19 F8 783 0.00 174.9 F8 783 0.38 1582.8 F8 747 1.45 1897.9
20 CPX10 540 0.00 35124.0 F8 540 0.00 2311.5 F8 450 10.00 2566.9
21 F8 567 4.50 1042.3 F8 573 4.71 1652.9 F8 495 8.18 2644.0

22 F8 984 11.01 2453.2 F8 990 10.94 1348.1 F8 900 10.25 2146.8
23 F8 1206 10.38 3554.9 CPX10 1323 17.92 34549.4 F8 948 11.76 3559.6
24 F8 1170 8.21 3550.6 F8 1176 8.58 2295.6 F8 1020 8.34 1858.7
25 F8 1179 9.25 1539.4 F8 1179 9.56 2484.6 F8 1188 10.56 1495.0
26 F8 1458 8.21 2756.4 F8 1449 7.92 2798.9 F8 1458 8.21 2740.1
27 F8 1491 6.71 1947.1 CPX10 1539 9.78 31857.7 F8 1449 7.28 2806.7
28 F8 1443 8.49 2573.7 F8 1416 8.15 3463.4 F8 1377 10.00 2161.0
29 F8 1335 3.48 3421.9 CPX10 1344 4.10 31889.8 F8 1107 10.44 3496.1
30 F8 1837 6.72 3539.8 F8 1843 6.96 1483.5 F8 1233 12.99 3396.3
31 CPX10 1636 2.40 35927.1 F8 1693 5.85 2181.4 F8 1377 13.62 3460.7
32 F8 1771 8.51 3319.7 F8 1780 8.33 2817.5 F8 1422 16.24 3398.2
33 F8 1801 6.46 2680.7 F8 1810 6.67 2047.5 F8 1575 17.68 3561.0

Source: created by author.

6.4 Conclusions

In this chapter is presented a novel and high-constrained variant of the High
School Timetabling Problem referred as the Extended High School Timetabling
Problem (HTSP+). Here, we defined HSTP+ in terms of hard, soft and medium
requirements through two models: a Mixed Integer Programming model that gen-
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eralizes HSTP, and an XHSTT model that formalizes the HSTP+ as a subproblem
of the Generalized High School Timetabling Problem (GHSTP).

The computational experiments were carried out on a novel set composed by
33 real-world instances originated from Brazilian schools. In this experiments we
evaluated the performance of the fix-and-optimize approach proposed in Chapter 4
in comparison with a state-of-the-art MIP solver, as well as two state-of-the-art
local search based solvers designed for solving the GHSTP. When analyzing results,
conclusions we had drawn were supported by statistical analysis.

The obtained results show strong evidence that the fix-and-optimize approach
is suitable for solving the HSTP+. In addition to provide quick feasible solutions, it
was able to produce high quality solutions for the majority of the instances evalu-
ated. The comparative results also demonstrate that the fix-and-optimize approach
significantly outperforms the other tested methods when solving real-world instances
of the HSTP+.
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7 FINAL CONSIDERATIONS

7.1 Conclusions

The research carried out in this thesis presents as major contribution a novel
matheuristic approach that is able to produce high quality feasible solutions for the
High School Timetabling Problem. Different from the majority of the works pro-
posed in the related literature, in this research, the claims about the performance of
the proposed approach is stated in a large set of real-world instances and compar-
isons to previously proposed methods are conducted, as well as to state-of-the-art
MIP solvers.

This investigation focused in two variants of the High School Timetabling
Problem originated from Brazilian institutions. The first variant, denoted as HSTP,
is a well-known problem previously proposed in the literature that has gained in-
creasing attention due to be part of the set of instances considered in the Third
International Timetabling Competition. The second variant, denoted as HSTP+,
is a new problem that was introduced in this research in order to validate the pro-
posed methods in a practical scenario using a broader set of instances. The HSTP+

is formally defined in this thesis through both a MIP formulation and a XHSTT
model.

In addition to defining the studied problems, along this research, several MIP
models were proposed in order to evaluate the performance of MIP solvers. The ex-
perimental results performed on HSTP and HSTP+ instances revealed that MIP
solvers are best suitable for providing solutions to small instances and, particularly
in these cases, they often produce better solutions that other compared methods
by using a realistic time limit. This study also investigated how certain require-
ments may affect the resolution process of a MIP solver. It was found that among
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the soft requirements, the idle times constraint is the one that most degraded the
performance of the solver. It was also observed that if all soft requirements are
disregarded, the MIP solver is able to find a feasible solution in few seconds, even
for the largest instances evaluated. Particularly this feature demonstrated to be an
effective approach for producing initial feasible solutions in real-world conditions.

A novel approach was proposed for solving the HSTP by exploring class,
teacher and day decompositions through a fix-and-optimize heuristic combined with
a variable neighborhood descent method. A initial experimental investigation on
HSTP demonstrated that this novel approach is able to provide high quality feasible
solutions in a smaller computational time when compared with results obtained by a
MIP solver. The effectiveness of this approach was also demonstrated by producing
new best known solutions for several instances quoted in the literature. Among
these new results, better solutions were found to four out of five HSTP instances
from the first round of the Third International Timetabling Competition. A further
set of experiments carried out on HSTP+ and supported by statistical analysis,
provided stronger evidence about the potential of the fix-and-optimize heuristic
in providing high quality results for real-world instances. Furthermore, a set of
experiments were conducted with two state-of-the-art local search based solvers
designed for solving the GHSTP, referred as GOAL and SVNS. The obtained results
demonstrated these solvers are not efficient for solving instances of the HSTP+.
A comparative experiment also revealed that they are outperformed by the fix-and-
optimize approach, as well as by a MIP solver. While the results of these comparisons
should be interpreted with reservations, since both GOAL and SVNS solvers are
designed for a more general problem, the results obtained in the HSTP+ instances
demonstrated clearly that there is space for improvements in solvers designed to
GHSTP.

In order to better state the quality of heuristic solutions provided by the
proposed fix-and-optimize algorithm, a column generation approach was proposed
for producing lower bounds to the HSTP by using a novel multicommodity flow
representation. In comparison with the previous state-of-the-art approach, the ex-
perimental results show that the proposed approach is able to produce the same
tight lower bounds, albeit with two significant advantages: i) the method is simpler;
ii) and it is five times faster on average. During the experimental evaluations, best
known lower bounds were found for all instances considered in the first round of the
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Third International Timetabling Competition.

Finally, this work helped to reduce one of the major issues in the high school
timetabling that is the lack of available test cases. All instances and results collected
to the HSTP+ were submitted to the High School Benchmark Project website. To
the best of our knowledge, this is the largest set of real-world instances that have
been made publicly available for the High School Timetabling problem in an stan-
dardized format like the XHSTT. Hopefully, this contribution will help in stablishing
a strong foundation for future investigation in the High School Timetabling Problem.

7.2 Perspectives

As future work, there are several directions in which the research conducted
in this work can be extended. The main ones are discussed next.

7.2.1 Selection of fruitful partitions in the fix-and-optimize heuristic

In the fix-and-optimize heuristic proposed in this research we explored the
subproblems generated by different neighborhoods and decompositions through two
simple orders: lexicographical and random. While these approaches are problem-
independent, they may limit the performance of the algorithm by wasting time when
unfruitful partitions are chosen to be optimized, i.e., the most of the selected par-
titions lead to either infeasible state or terminate due to time limit. An interesting
direction for future research would be to use a metric for predicting fruitful par-
titions for optimization such as the Hamming-Oriented Partition Search (HOPS)
proposed by (CAMARGO; TOLEDO; ALMADA-LOBO, 2014). In the HOPS ap-
proach, a partition is chosen in a deterministic way by using information obtained
from an Partion Attractivness Array that is updated along the search whenever a
new incumbent solution is found. The array is updated in such way to give highest
priority to partitions with variables that often change their values.
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7.2.2 A Branch-and-price approach

To the best of our knowledge, there is no Branch-and-price approach proposed
in the literature for solving the High School Timetabling Problem. Next, we describe
three potential improvements in which the column generation approach we proposed
in Chapter 5 may be extended in order to provide a practicable Branch-and-price
method. Firstly, one may propose a tailored method for solving Pt or P′t in a more
efficient way than using a generic MIP solver. Secondly, since about 90% of the
computational time is spent in the pricing step, the gains with parallelization might
be promising. In fact, given that one pricing is solved for each teacher, they could
be trivially solved in parallel. Finally, in order to harness the full potential of the
column generation, one may propose branching strategies inside a branch-and-price
framework for providing, ultimately, optimal integer solutions for the problem.

7.2.3 Methods for resource assignment

The development of diferent techniques for resource assignment is another
promising research area in High School Timetabling. In the problems HSTP and
HSTP+ presented in this thesis, the resource assignment is previously done by the
school board. A natural extension for the fix-and-optimize heuristic proposed in
Chapter 4 is the inclusion of mechanisms for handling resource assignments pro-
gramatically. This addition, may allow the resolution of GHSTP in a two-stage
approach: first, assigning resources and then, proceed to a improvement stage car-
ried out by a fix-and-optimize heuristic.
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GLOSSARY

Class is a set of students that share the same teaching program.

Curriculum is a set of informations that defines a teaching program.

Cycle is the period of time which a timetable is enforced. One-year and one-
semester are the most common cycles. After the cycle a new timetable must
be built.

Double lessons are lessons given in two consecutive periods.

Event is a meeting between class and teacher to address a particular subject in a
given number of lessons allocated in a given room.

Idle period is a free period of time between two lessons.

Lesson is a particular event associated with a timeslot.

Period is the standard duration of lessons.

Requirement is an attribute or characteristic that needs to be provided or handled
in a timetable.

Resource is the generic name given to entities which are needed by an event, e.g.,
teachers, rooms, etc.

Room is any place where the events occur, e.g., a classroom, a sports court or a
chemistry lab.

Subject is a topic taught, e.g., Mathematics.

Teacher is a person who provides education for the students. We refer as teacher
anyone who is responsible to administer events.

Timeslots are the periods along the week which a lesson can be scheduled.

Timetable is a table that presents the time in which all events of an institution
occur.

Timetabler is the professional responsible to construct the timetable.
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APPENDIX A — RESULTS OF CPLEX SOLVER

ON HSTP+



126

Table A.1 – CPLEX results using a time limit of 10 hours on instances of group A.
Id Obj LB Gap GapL t∗ Time Columns Rows x0 t0

01 315 315.0 0.00 0.0 1 1 3.7×103 1.7×103 624 0
02 360 360.0 0.00 0.0 2 2 4.6×103 2.3×103 360 2
03 690 684.0 0.87 0.9 1911 36000 8.5×103 4.3×103 831 89
04 417 414.0 0.72 0.7 2822 36000 6.7×103 3.6×103 498 7
05 528 528.0 0.00 0.0 282 3915 7.7×103 4.2×103 576 12
06 333 333.0 0.00 0.0 2 2 5.3×103 2.4×103 1026 0
07 387 387.0 0.00 0.0 3 9 1.5×104 7.9×103 423 2
08 600 597.0 0.50 0.5 284 36000 9.2×103 4.3×103 690 19
09 474 471.0 0.63 0.6 4376 36000 1.1×104 5.2×103 513 7
10 282 276.0 2.13 2.2 71 36000 7.9×103 3.6×103 510 4
11 426 426.0 0.00 0.0 35 13287 1.1×104 5.9×103 453 2
12 654 654.0 0.00 0.0 1637 3027 1.3×104 7.1×103 675 68
13 648 630.0 2.78 2.9 11084 36000 1.7×104 8.9×103 720 99
14 759 759.0 0.00 0.0 817 834 1.6×104 8.8×103 795 55
15 690 613.8 11.04 12.4 34764 36000 1.8×104 10×103 735 317
16 1077 1071.0 0.56 0.6 2546 36000 1.6×104 7.7×103 2025 45
17 903 886.4 1.84 1.9 13661 36000 3.1×104 1.4×104 1173 48
18 1089 1089.0 0.00 0.0 197 237 3.4×104 1.6×104 1173 38
19 783 783.0 0.00 0.0 1488 22162 2.5×104 1.3×104 795 37
20 540 540.0 0.00 0.0 35124 35124 2.8×104 1.5×104 627 84
21 576 541.5 5.99 6.4 14078 36000 4×104 2.2×104 702 243
22 1074 875.7 18.47 22.6 16502 36000 7.9×104 3.6×104 1137 3012
23 1287 1080.8 16.02 19.1 34040 36000 8×104 3.6×104 1293 2186
24 1245 1074.0 13.74 15.9 35850 36000 8×104 3.6×104 1254 1940
25 1374 1069.9 22.13 28.4 10069 36000 1.4×105 5.4×104 1374 10069
26 1557 1338.4 14.04 16.3 31984 36000 1.5×105 6.2×104 1614 8928
27 1560 1391.0 10.83 12.1 16790 36000 1.6×105 6.2×104 1668 6666
28 1509 1320.5 12.49 14.3 35203 36000 1.6×105 6.7×104 1566 3589
29 1395 1288.5 7.63 8.3 35459 36000 1.2×105 5.5×104 1482 1352
30 1951 1713.6 12.17 13.9 35074 36000 1.4×105 6.3×104 2195 3405
31 1636 1596.7 2.40 2.5 35927 36000 1.5×105 6.9×104 2659 4639
32 1888 1620.2 14.18 16.5 36000 36000 1.6×105 7.6×104 1936 3857
33 1921 1684.7 12.30 14.0 35250 36000 1.7×105 7.7×104 2767 4625

Avgs 437 435.5 0.44 0.4 890 17929 8.2×103 4.1×103 591 13
Avgm 771 756.8 2.22 2.4 11540 24138 2.4×104 1.2×104 942 104
Avgl 1533 1337.8 13.03 15.3 29846 36000 1.3×105 5.8×104 1745 4522

Avg∗ 937 861.0 5.56 6.5 14646 26382 5.8×104 2.6×104 1117 1680

Source: created by author.
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Table A.2 – CPLEX results using a time limit of 10 hours on instances of group B.

Id Obj LB Gap GapL t∗ Time Columns Rows x0 t0

01 315 315.0 0.00 0.0 2 2 3.7×103 2×103 92645 0
02 360 360.0 0.00 0.0 2 2 4.6×103 2.7×103 360 2
03 690 684.0 0.87 0.9 13827 36000 8.5×103 4.6×103 10711 15
04 417 414.0 0.72 0.7 2910 36000 6.7×103 4.1×103 4450 7
05 528 528.0 0.00 0.0 681 1297 7.7×103 4.7×103 2564 13
06 333 333.0 0.00 0.0 1 1 5.3×103 2.4×103 16026 0
07 387 387.0 0.00 0.0 7 31 1.5×104 8.3×103 7414 3
08 600 600.0 0.00 0.0 546 2438 9.2×103 4.7×103 5672 22
09 474 474.0 0.00 0.0 2575 20302 1.1×104 5.3×103 5525 8
10 282 279.0 1.06 1.1 10 36000 7.9×103 3.9×103 22777 0
11 426 423.0 0.70 0.7 36 36000 1.1×104 6.6×103 3438 2
12 654 654.0 0.00 0.0 1587 1587 1.3×104 7.8×103 672 66
13 645 630.0 2.33 2.4 35435 36000 1.7×104 9.6×103 12801 52
14 759 759.0 0.00 0.0 716 716 1.6×104 9.5×103 13777 48
15 672 613.8 8.66 9.5 35749 36000 1.8×104 1.1×104 7777 99
16 1077 1071.0 0.56 0.6 4088 36000 1.6×104 8.2×103 1116 254
17 906 885.8 2.23 2.3 35954 36000 3.1×104 1.5×104 1083 98
18 1089 1089.0 0.00 0.0 362 392 3.4×104 1.6×104 13155 16
19 783 780.0 0.38 0.4 36000 36000 2.5×104 1.4×104 14798 16
20 540 540.0 0.00 0.0 5547 5547 2.8×104 1.6×104 12636 59
21 573 546.0 4.71 4.9 5772 36000 4×104 2.3×104 13005 106
22 1170 881.7 24.64 32.7 3851 36000 7.9×104 3.6×104 1170 3851
23 1323 1086.0 17.92 21.8 34549 36000 8×104 3.6×104 4347 1251
24 1239 1075.1 13.23 15.2 35742 36000 8×104 3.6×104 2299 1584
25 1296 1066.3 17.72 21.5 35849 36000 1.4×105 5.4×104 190574 3113
26 1566 1334.2 14.80 17.4 22169 36000 1.5×105 6.2×104 123085 1598
27 1539 1388.4 9.78 10.8 31858 36000 1.6×105 6.2×104 1593 3847
28 1581 1300.6 17.73 21.6 34544 36000 1.6×105 6.8×104 2590 6717
29 1344 1288.8 4.10 4.3 31890 36000 1.2×105 6.9×104 8340 216
30 1942 1714.7 11.70 13.3 35898 36000 1.4×105 7.8×104 69906 4559
31 1735 1593.9 8.13 8.9 35804 36000 1.5×105 8.4×104 79647 4348
32 1951 1631.7 16.36 19.6 31046 36000 1.6×105 9.1×104 1972 4521
33 1903 1689.2 11.23 12.7 35779 36000 1.7×105 9.3×104 2020 4085

Avgs 437 436.1 0.31 0.3 1872 15279 8.2×103 4.5×103 15598 7
Avgm 769 756.9 1.89 2.0 16121 22424 2.4×104 1.3×104 9082 81
Avgl 1549 1337.6 13.95 16.6 30748 36000 1.3×105 6.4×104 40628 3307

Avg∗ 942 861.1 5.75 6.8 16690 24979 5.8×104 2.9×104 22725 1230

Source: created by author.
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Table A.3 – CPLEX results using a time limit of 10 hours on instances of group C.

Id Obj LB Gap GapL t∗ Time Columns Rows x0 t0

01 315 315.0 0.00 0.0 1 1 3.7×103 1.7×103 624 0
02 360 360.0 0.00 0.0 2 2 4.6×103 2.3×103 360 2
03 663 657.0 0.90 0.9 22662 36000 8.6×103 4.3×103 894 118
04 408 405.0 0.74 0.7 20505 36000 6.8×103 3.7×103 756 12
05 495 480.6 2.91 3.0 15691 36000 7.8×103 4.2×103 1284 0
06 324 324.0 0.00 0.0 1 1 5.3×103 2.4×103 1170 0
07 351 351.0 0.00 0.0 709 709 1.5×104 8.1×103 1434 0
08 576 567.0 1.56 1.6 2759 36000 9.2×103 4.3×103 681 23
09 441 441.0 0.00 0.0 5376 5376 1.1×104 5.2×103 507 15
10 282 276.0 2.13 2.2 71 36000 7.9×103 3.6×103 510 4
11 405 405.0 0.00 0.0 249 4515 1.2×104 6.2×103 909 0
12 651 630.0 3.23 3.3 34708 36000 1.3×104 7.4×103 2022 0
13 618 603.0 2.43 2.5 35677 36000 1.7×104 8.9×103 1371 72
14 810 651.6 19.56 24.3 33290 36000 1.8×104 9.9×103 1008 286
15 630 612.0 2.86 2.9 6545 36000 1.8×104 1×104 2388 0
16 1077 1071.0 0.56 0.6 2427 36000 1.6×104 7.7×103 2025 45
17 1035 780.6 24.58 32.6 34875 36000 3.1×104 1.4×104 3117 0
18 1167 881.6 24.46 32.4 33834 36000 3.4×104 1.6×104 3921 0
19 756 736.2 2.62 2.7 33303 36000 2.6×104 1.4×104 927 63
20 498 405.0 18.67 23.0 34370 36000 2.8×104 1.5×104 1239 124
21 528 454.5 13.92 16.2 35501 36000 4×104 2.2×104 657 809
22 1050 807.8 23.07 30.0 14513 36000 7.9×104 3.6×104 1050 14513
23 1068 836.5 21.68 27.7 17675 36000 8×104 3.6×104 1092 17667
24 1137 934.9 17.78 21.6 15062 36000 8×104 3.6×104 1152 15059
25 1266 1062.6 16.07 19.1 35029 36000 1.4×105 5.4×104 1356 10206
26 1557 1338.4 14.04 16.3 30432 36000 1.5×105 6.2×104 1614 9059
27 1635 1343.5 17.83 21.7 29924 36000 1.6×105 6.2×104 1653 15722
28 1494 1239.3 17.05 20.6 4558 36000 1.6×105 6.7×104 1494 4558
29 1332 991.5 25.57 34.3 36000 36000 1.2×105 5.6×104 2233 6652
30 1761 1072.8 39.08 64.1 27993 36000 1.4×105 6.4×104 3706 12198
31 1476 1189.5 19.41 24.1 36000 36000 1.5×105 7×104 1560 7955
32 2001 1191.0 40.48 68.0 18299 36000 1.6×105 7.6×104 4419 15864
33 1980 1296.6 34.51 52.7 19083 36000 1.7×105 7.7×104 3366 16939

Avgs 420 416.5 0.75 0.8 6184 17328 8.3×103 4.2×103 829 16
Avgm 777 682.5 11.29 14.0 28453 36000 2.4×104 1.3×104 1867 140
Avgl 1479 1108.7 23.88 33.4 23714 36000 1.3×105 5.8×104 2057 12199

Avg∗ 913 748.8 12.35 16.6 19307 29776 5.8×104 2.6×104 1590 4484

Source: created by author.
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APPENDIX B — RESULTS OF GOAL SOLVER

ON HSTP+
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Table B.1 – Results of KHE+GOAL using a time limit of 1 hour on instances of group

A.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 18860.8 2633.4 96.37 2657.4 17.8 / 1060.8 0.84 / 20.74 17 / 1041
04 12475.2 2891.7 96.68 2913.3 12.0 / 475.2 0.00 / 3.42 12 / 471
05 12531.0 2273.3 95.79 2273.3 12.0 / 531.0 0.00 / 0.00 12 / 531
06 333.0 0.0 0.00 0.0 0.0 / 333.0 0.00 / 0.00 0 / 333
07 27482.4 7001.4 98.59 7001.4 27.0 / 482.4 0.00 / 8.05 27 / 468
08 5601.2 833.5 89.34 838.2 5.0 / 601.2 0.00 / 6.57 5 / 597
09 486.0 2.5 3.09 3.2 0.0 / 486.0 0.00 / 4.74 0 / 480
10 283.2 0.4 2.54 2.6 0.0 / 283.2 0.00 / 2.68 0 / 282
11 6444.0 1412.7 93.39 1412.7 6.0 / 444.0 0.00 / 0.00 6 / 444
12 15690.0 2299.1 95.83 2299.1 15.0 / 690.0 0.00 / 4.24 15 / 687
13 10883.4 1579.5 94.21 1627.5 10.2 / 683.4 0.45 / 13.81 10 / 684
14 26808.2 3432.0 97.17 3432.0 26.0 / 808.2 0.00 / 8.11 26 / 798
15 738.6 7.0 16.90 20.3 0.0 / 738.6 0.00 / 3.91 0 / 732
16 1074.6 -0.2 0.34 0.3 0.0 / 1074.6 0.00 / 1.34 0 / 1074
17 11080.0 1127.0 92.00 1150.0 10.0 / 1080.0 0.00 / 5.61 10 / 1071
18 33168.8 2945.8 96.72 2945.8 32.0 / 1168.8 0.00 / 38.75 32 / 1128
19 25828.0 3198.6 96.97 3198.6 25.0 / 828.0 0.00 / 0.00 25 / 828
20 13053.4 2317.3 95.86 2317.3 12.4 / 653.4 0.55 / 4.93 12 / 657
21 3666.0 536.5 85.23 577.0 3.0 / 666.0 0.00 / 10.39 3 / 651
22 34854.8 3145.3 97.49 3880.3 33.8 / 1054.8 0.45 / 29.44 33 / 1107
23 42224.6 3180.9 97.44 3806.6 41.0 / 1224.6 1.22 / 35.71 39 / 1269
24 30663.6 2362.9 96.50 2755.2 29.4 / 1263.6 0.89 / 14.29 28 / 1245
25 18334.4 1234.4 94.16 1613.7 17.0 / 1334.4 0.00 / 13.81 17 / 1320
26 20662.0 1227.0 93.52 1443.8 19.0 / 1662.0 0.00 / 9.95 19 / 1647
27 28429.6 1722.4 95.11 1943.8 26.8 / 1629.6 2.05 / 14.60 25 / 1623
28 37130.0 2360.6 96.44 2711.8 35.0 / 2130.0 0.00 / 15.73 35 / 2106
29 2200.4 57.7 41.44 70.8 0.8 / 1400.4 0.45 / 9.34 0 / 1407
30 6687.2 242.8 74.37 290.2 4.8 / 1887.2 0.84 / 71.96 4 / 1921
31 4763.2 191.1 66.48 198.3 3.0 / 1763.2 0.00 / 6.57 3 / 1753
32 2639.4 39.8 38.61 62.9 0.8 / 1839.4 0.84 / 62.14 0 / 1882
33 2288.6 19.1 26.39 35.8 0.4 / 1888.6 0.55 / 19.83 0 / 1879

Avgs 7746.2 1550.9 53.27 1555.7 7.3 / 491.6 0.08 / 4.20 7 / 487
Avgm 14199.1 1744.3 77.12 1756.8 13.4 / 839.1 0.10 / 9.11 13 / 831
Avgl 19239.8 1315.3 76.50 1567.8 17.6 / 1589.8 0.61 / 25.28 16 / 1596

Avg∗ 13881.1 1523.8 68.94 1621.0 12.9 / 996.3 0.28 / 13.35 12 / 994

Source: created by author.
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Table B.2 – Results of KHE+GOAL using a time limit of 1 hour on instances of group

B.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 17830.2 2484.1 96.16 2506.8 0.0 / 17830.2 0.00 / 1090.26 0 / 17029
04 5480.0 1214.1 92.45 1223.7 0.0 / 5480.0 0.00 / 0.00 0 / 5480
05 7564.0 1332.6 93.02 1332.6 0.0 / 7564.0 0.00 / 0.00 0 / 7564
06 334.8 0.5 0.54 0.5 0.0 / 334.8 0.00 / 4.02 0 / 333
07 19451.8 4926.3 98.01 4926.3 3.0 / 16451.8 0.00 / 1.64 3 / 16450
08 5602.4 833.7 89.29 833.7 1.0 / 4602.4 0.00 / 4.93 1 / 4597
09 489.6 3.3 3.19 3.3 0.0 / 489.6 0.00 / 10.69 0 / 474
10 285.6 1.3 2.31 2.4 0.0 / 285.6 0.00 / 3.29 0 / 282
11 4438.0 941.8 90.47 949.2 0.0 / 4438.0 0.00 / 0.00 0 / 4438
12 11081.0 1594.3 94.10 1594.3 0.0 / 11081.0 0.00 / 543.62 0 / 10681
13 8465.4 1212.5 92.56 1243.7 2.8 / 5665.4 0.45 / 5.37 2 / 5675
14 22778.2 2901.1 96.67 2901.1 0.2 / 22578.2 0.45 / 1924.48 0 / 21780
15 736.2 9.6 16.63 19.9 0.0 / 736.2 0.00 / 4.55 0 / 729
16 1075.2 -0.2 0.39 0.4 0.0 / 1075.2 0.00 / 2.68 0 / 1074
17 7101.6 683.8 87.53 701.7 0.0 / 7101.6 0.00 / 12.62 0 / 7083
18 27342.4 2410.8 96.02 2410.8 0.2 / 27142.4 0.45 / 4001.89 0 / 28143
19 26205.8 3246.8 97.02 3259.7 2.0 / 24205.8 0.00 / 550.23 2 / 23798
20 9630.0 1683.3 94.39 1683.3 0.0 / 9630.0 0.00 / 0.00 0 / 9630
21 2663.6 364.9 79.50 387.8 0.0 / 2663.6 0.00 / 4.93 0 / 2660
22 34096.8 2814.3 97.41 3767.3 3.0 / 31096.8 0.00 / 13.01 3 / 31077
23 42070.2 3079.9 97.42 3774.0 10.0 / 32070.2 0.71 / 837.15 9 / 31287
24 28257.0 2180.6 96.20 2528.3 6.8 / 21457.0 0.45 / 456.14 6 / 22272
25 20387.2 1473.1 94.77 1812.0 0.0 / 20387.2 0.00 / 16.65 0 / 20359
26 19644.6 1154.4 93.21 1372.4 2.0 / 17644.6 0.00 / 7.47 2 / 17638
27 27028.4 1656.2 94.86 1846.7 5.4 / 21628.4 0.89 / 1.34 5 / 21629
28 21115.6 1235.6 93.84 1523.5 1.0 / 20115.6 0.00 / 3.91 1 / 20112
29 1963.8 46.1 34.37 52.4 0.6 / 1363.8 0.55 / 7.53 0 / 1353
30 6730.4 246.6 74.52 292.5 0.8 / 5930.4 1.10 / 163.31 0 / 5894
31 5159.6 197.4 69.11 223.7 1.4 / 3759.6 0.55 / 15.06 1 / 3753
32 1831.0 -6.6 10.88 12.2 0.0 / 1831.0 0.00 / 24.83 0 / 1789
33 1877.8 -1.3 10.04 11.2 0.0 / 1877.8 0.00 / 25.95 0 / 1852

Avgs 5653.4 1068.0 52.33 1071.7 0.4 / 5289.8 0.00 / 101.35 0 / 5214
Avgm 11707.9 1410.7 75.48 1420.3 0.5 / 11187.9 0.13 / 705.04 0 / 11125
Avgl 17513.5 1173.0 72.22 1434.7 2.6 / 14930.2 0.35 / 131.03 2 / 14917

Avg∗ 11800.9 1210.1 66.58 1309.3 1.2 / 10582.7 0.17 / 295.08 1 / 10534

Source: created by author.
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Table B.3 – Results of KHE+GOAL using a time limit of 1 hour on instances of group

C.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 3152.6 375.5 79.16 379.8 2.0 / 1152.6 0.00 / 5.77 2 / 1146
04 1527.4 274.4 73.48 277.1 1.0 / 527.4 0.00 / 1.34 1 / 525
05 1618.6 227.0 70.31 236.8 1.0 / 618.6 0.00 / 2.51 1 / 615
06 325.8 0.6 0.55 0.6 0.0 / 325.8 0.00 / 4.02 0 / 324
07 6594.0 1778.6 94.68 1778.6 6.0 / 594.0 0.00 / 0.00 6 / 594
08 3578.4 521.2 84.15 531.1 3.0 / 578.4 0.00 / 3.29 3 / 576
09 484.8 9.9 9.03 9.9 0.0 / 484.8 0.00 / 1.64 0 / 483
10 284.4 0.9 2.95 3.0 0.0 / 284.4 0.00 / 3.29 0 / 282
11 459.0 13.3 11.76 13.3 0.0 / 459.0 0.00 / 6.00 0 / 453
12 741.6 13.9 15.05 17.7 0.0 / 741.6 0.00 / 1.34 0 / 741
13 739.2 19.6 18.43 22.6 0.0 / 739.2 0.00 / 4.02 0 / 735
14 839.4 3.6 22.37 28.8 0.0 / 839.4 0.00 / 3.91 0 / 837
15 717.0 13.8 14.64 17.2 0.0 / 717.0 0.00 / 5.61 0 / 711
16 1077.0 0.0 0.56 0.6 0.0 / 1077.0 0.00 / 3.67 0 / 1074
17 1131.6 9.3 31.02 45.0 0.0 / 1131.6 0.00 / 5.77 0 / 1122
18 1360.2 16.6 35.19 54.3 0.0 / 1360.2 0.00 / 6.91 0 / 1353
19 5849.6 673.8 87.41 694.6 5.0 / 849.6 0.00 / 10.26 5 / 840
20 675.0 35.5 40.00 66.7 0.0 / 675.0 0.00 / 6.36 0 / 666
21 648.0 22.7 29.86 42.6 0.0 / 648.0 0.00 / 0.00 0 / 648
22 31033.2 2855.5 97.40 3741.8 30.0 / 1033.2 0.00 / 6.22 30 / 1026
23 31079.4 2810.1 97.31 3615.4 30.0 / 1079.4 0.00 / 15.65 30 / 1068
24 21090.8 1755.0 95.57 2156.0 20.0 / 1090.8 0.00 / 7.82 20 / 1083
25 16338.0 1190.5 93.50 1437.6 15.0 / 1338.0 0.00 / 7.04 15 / 1326
26 20651.2 1226.3 93.52 1443.0 19.0 / 1651.2 0.00 / 5.45 19 / 1644
27 21594.2 1220.7 93.78 1507.3 20.0 / 1594.2 0.00 / 6.91 20 / 1587
28 29088.6 1847.0 95.74 2247.2 27.0 / 2088.6 0.00 / 6.50 27 / 2079
29 1179.0 -13.0 15.91 18.9 0.0 / 1179.0 0.00 / 18.37 0 / 1152
30 5317.6 202.0 79.83 395.7 4.0 / 1317.6 0.00 / 18.66 4 / 1305
31 3454.4 134.0 65.57 190.4 2.0 / 1454.4 0.00 / 10.26 2 / 1440
32 1508.4 -32.7 21.04 26.6 0.0 / 1508.4 0.00 / 20.72 0 / 1476
33 1611.0 -22.9 19.52 24.2 0.0 / 1611.0 0.00 / 19.09 0 / 1584

Avgs 1703.3 292.0 39.66 294.6 1.2 / 521.5 0.00 / 2.53 1 / 519
Avgm 1377.9 80.9 29.45 99.0 0.5 / 877.9 0.00 / 4.79 0 / 872
Avgl 15328.8 1097.7 72.39 1400.3 13.9 / 1412.2 0.00 / 11.89 13 / 1397

Avg∗ 6559.4 521.0 48.47 637.4 5.6 / 953.3 0.00 / 6.62 5 / 945

Source: created by author.
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Table B.4 – Results of CPX0+GOAL using a time limit of 1 hour on instances of group

A.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 387.6 7.7 7.12 7.7 0.0 / 387.6 0.00 / 10.48 0 / 378
03 921.6 33.6 25.78 34.7 0.0 / 921.6 0.00 / 2.51 0 / 918
04 475.8 14.1 12.99 14.9 0.0 / 475.8 0.00 / 3.42 0 / 471
05 564.6 6.9 6.48 6.9 0.0 / 564.6 0.00 / 7.47 0 / 558
06 333.0 0.0 0.00 0.0 0.0 / 333.0 0.00 / 0.00 0 / 333
07 424.8 9.8 8.90 9.8 0.0 / 424.8 0.00 / 6.57 0 / 414
08 649.2 8.2 8.04 8.7 0.0 / 649.2 0.00 / 14.17 0 / 633
09 501.6 5.8 6.10 6.5 0.0 / 501.6 0.00 / 8.85 0 / 495
10 285.6 1.3 3.36 3.5 0.0 / 285.6 0.00 / 3.29 0 / 282
11 436.8 2.5 2.47 2.5 0.0 / 436.8 0.00 / 5.02 0 / 429
12 672.0 2.8 2.68 2.8 0.0 / 672.0 0.00 / 0.00 0 / 672
13 728.4 12.4 13.51 15.6 0.0 / 728.4 0.00 / 8.32 0 / 714
14 790.8 4.2 4.02 4.2 0.0 / 790.8 0.00 / 1.64 0 / 789
15 759.0 10.0 19.13 23.7 0.0 / 759.0 0.00 / 9.25 0 / 744
16 1076.4 -0.1 0.50 0.5 0.0 / 1076.4 0.00 / 5.37 0 / 1074
17 1147.2 27.0 22.74 29.4 0.0 / 1147.2 0.00 / 14.94 0 / 1125
18 1146.0 5.2 4.97 5.2 0.0 / 1146.0 0.00 / 0.00 0 / 1146
19 810.0 3.4 3.33 3.4 0.0 / 810.0 0.00 / 7.65 0 / 801
20 617.4 14.3 12.54 14.3 0.0 / 617.4 0.00 / 6.50 0 / 612
21 671.4 16.6 19.35 24.0 0.0 / 671.4 0.00 / 12.97 0 / 651
22 1155.0 7.5 24.18 31.9 0.0 / 1155.0 0.00 / 12.90 0 / 1143
23 1392.6 8.2 22.39 28.8 0.0 / 1392.6 0.00 / 22.19 0 / 1362
24 1344.6 8.0 20.13 25.2 0.0 / 1344.6 0.00 / 17.67 0 / 1320
25 1259.4 -9.1 15.05 17.7 0.0 / 1259.4 0.00 / 16.76 0 / 1242
26 1540.2 -1.1 13.10 15.1 0.0 / 1540.2 0.00 / 13.35 0 / 1518
27 1564.8 0.3 11.11 12.5 0.0 / 1564.8 0.00 / 9.86 0 / 1554
28 1806.0 19.7 26.88 36.8 0.0 / 1806.0 0.00 / 21.94 0 / 1785
29 1896.8 36.0 32.07 47.2 0.0 / 1896.8 0.00 / 66.48 0 / 1789
30 2822.2 44.7 39.28 64.7 0.0 / 2822.2 0.00 / 20.19 0 / 2800
31 1904.0 16.4 16.14 19.2 0.0 / 1904.0 0.00 / 18.85 0 / 1886
32 2527.6 33.9 35.90 56.0 0.0 / 2527.6 0.00 / 36.27 0 / 2479
33 2018.2 5.1 16.52 19.8 0.0 / 2018.2 0.00 / 29.59 0 / 1978

Avgs 483.1 8.7 7.88 9.2 0.0 / 483.1 0.00 / 5.62 0 / 476
Avgm 841.9 9.6 10.28 12.3 0.0 / 841.9 0.00 / 6.66 0 / 832
Avgl 1769.3 14.1 22.73 31.2 0.0 / 1769.3 0.00 / 23.84 0 / 1738

Avg∗ 1059.5 10.9 14.01 18.2 0.0 / 1059.5 0.00 / 12.56 0 / 1043

Source: created by author.
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Table B.5 – Results of CPX0+GOAL using a time limit of 1 hour on instances of group

B.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 1324.0 320.3 76.21 320.3 0.0 / 1324.0 0.00 / 0.00 0 / 1324
02 406.8 13.0 11.50 13.0 0.0 / 406.8 0.00 / 4.02 0 / 405
03 33162.4 4706.1 97.94 4748.3 0.0 / 33162.4 0.00 / 449.23 0 / 32960
04 5678.8 1261.8 92.71 1271.7 0.0 / 5678.8 0.00 / 446.23 0 / 5471
05 11777.2 2130.5 95.52 2130.5 0.0 / 11777.2 0.00 / 835.43 0 / 10573
06 10360.0 3011.1 96.79 3011.1 0.0 / 10360.0 0.00 / 0.00 0 / 10360
07 13445.8 3374.4 97.12 3374.4 0.0 / 13445.8 0.00 / 4.02 0 / 13444
08 7074.4 1079.1 91.52 1079.1 0.0 / 7074.4 0.00 / 1339.73 0 / 5672
09 5496.2 1059.5 91.38 1059.5 0.0 / 5496.2 0.00 / 5.45 0 / 5489
10 17308.4 6037.7 98.39 6103.7 0.0 / 17308.4 0.00 / 3.91 0 / 17306
11 15239.2 3477.3 97.22 3502.6 0.0 / 15239.2 0.00 / 446.22 0 / 14441
12 17079.2 2511.5 96.17 2511.5 0.0 / 17079.2 0.00 / 1342.88 0 / 15675
13 11929.6 1749.6 94.72 1793.6 0.0 / 11929.6 0.00 / 445.23 0 / 11723
14 23584.8 3007.4 96.78 3007.4 0.0 / 23584.8 0.00 / 1791.63 0 / 20783
15 743.4 10.6 17.43 21.1 0.0 / 743.4 0.00 / 9.10 0 / 732
16 1080.0 0.3 0.83 0.8 0.0 / 1080.0 0.00 / 7.65 0 / 1074
17 7946.0 777.0 88.85 797.0 0.0 / 7946.0 0.00 / 842.14 0 / 7134
18 36356.8 3238.5 97.00 3238.5 0.0 / 36356.8 0.00 / 4606.22 0 / 30155
19 33416.0 4167.7 97.67 4184.1 0.0 / 33416.0 0.00 / 1348.39 0 / 32804
20 16821.6 3015.1 96.79 3015.1 0.0 / 16821.6 0.00 / 1304.30 0 / 15621
21 8179.2 1327.4 93.32 1398.0 0.0 / 8179.2 0.00 / 549.43 0 / 7769
22 131696.8 11156.1 99.33 14837.1 0.0 / 131696.8 0.00 / 556.29 0 / 131083
23 126302.6 9446.7 99.14 11530.4 0.0 / 126302.6 0.00 / 17.67 0 / 126287
24 127271.4 10172.1 99.16 11738.3 0.0 / 127271.4 0.00 / 13.97 0 / 127251
25 151812.0 11613.9 99.30 14137.4 0.0 / 151812.0 0.00 / 9.25 0 / 151800
26 196089.2 12421.7 99.32 14597.2 0.0 / 196089.2 0.00 / 20.41 0 / 196064
27 204656.8 13198.0 99.32 14640.2 0.0 / 204656.8 0.00 / 538.48 0 / 204058
28 173938.2 10901.8 99.25 13273.4 0.0 / 173938.2 0.00 / 894.44 0 / 173337
29 63265.2 4607.2 97.96 4808.7 0.0 / 63265.2 0.00 / 955.76 0 / 62570
30 50363.4 2493.4 96.60 2837.2 0.0 / 50363.4 0.00 / 429.60 0 / 49599
31 70161.4 3943.9 97.73 4301.9 0.0 / 70161.4 0.00 / 1052.69 0 / 69116
32 52915.2 2612.2 96.92 3142.9 0.0 / 52915.2 0.00 / 1221.08 0 / 51251
33 54604.6 2769.4 96.91 3132.5 0.0 / 54604.6 0.00 / 866.64 0 / 53781

Avgs 11024.8 2406.4 86.03 2419.5 0.0 / 11024.8 0.00 / 321.30 0 / 10676
Avgm 15713.7 1980.5 77.96 1996.7 0.0 / 15713.7 0.00 / 1224.70 0 / 14347
Avgl 116923.1 7944.7 98.41 9414.7 0.0 / 116923.1 0.00 / 548.02 0 / 116349

Avg∗ 50954.1 4291.3 88.08 4835.1 0.0 / 50954.1 0.00 / 677.50 0 / 50215

Source: created by author.
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Table B.6 – Results of CPX0+GOAL using a time limit of 1 hour on instances of group

C.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 385.8 7.2 6.69 7.2 0.0 / 385.8 0.00 / 8.64 0 / 378
03 995.4 50.1 34.00 51.5 0.0 / 995.4 0.00 / 7.16 0 / 987
04 499.8 22.5 18.97 23.4 0.0 / 499.8 0.00 / 8.64 0 / 489
05 573.0 15.8 16.13 19.2 0.0 / 573.0 0.00 / 2.12 0 / 570
06 327.6 1.1 1.10 1.1 0.0 / 327.6 0.00 / 4.93 0 / 324
07 468.0 33.3 25.00 33.3 0.0 / 468.0 0.00 / 0.00 0 / 468
08 605.4 5.1 6.34 6.8 0.0 / 605.4 0.00 / 9.34 0 / 594
09 490.2 11.2 10.04 11.2 0.0 / 490.2 0.00 / 8.38 0 / 480
10 285.6 1.3 3.36 3.5 0.0 / 285.6 0.00 / 3.29 0 / 282
11 448.8 10.8 9.76 10.8 0.0 / 448.8 0.00 / 7.22 0 / 441
12 725.4 11.4 13.15 15.1 0.0 / 725.4 0.00 / 15.65 0 / 714
13 752.4 21.7 19.86 24.8 0.0 / 752.4 0.00 / 12.97 0 / 738
14 824.4 1.8 20.96 26.5 0.0 / 824.4 0.00 / 8.85 0 / 816
15 736.8 17.0 16.94 20.4 0.0 / 736.8 0.00 / 11.54 0 / 723
16 1077.0 0.0 0.56 0.6 0.0 / 1077.0 0.00 / 3.00 0 / 1074
17 1134.0 9.6 31.17 45.3 0.0 / 1134.0 0.00 / 4.74 0 / 1128
18 1323.0 13.4 33.36 50.1 0.0 / 1323.0 0.00 / 10.17 0 / 1311
19 881.4 16.6 16.47 19.7 0.0 / 881.4 0.00 / 14.76 0 / 867
20 592.2 18.9 31.61 46.2 0.0 / 592.2 0.00 / 7.53 0 / 585
21 644.4 22.0 29.47 41.8 0.0 / 644.4 0.00 / 3.29 0 / 642
22 1035.0 -1.4 21.95 28.1 0.0 / 1035.0 0.00 / 10.61 0 / 1023
23 1047.0 -2.0 20.11 25.2 0.0 / 1047.0 0.00 / 12.19 0 / 1032
24 1128.0 -0.8 17.12 20.7 0.0 / 1128.0 0.00 / 17.36 0 / 1110
25 1269.0 0.2 16.27 19.4 0.0 / 1269.0 0.00 / 12.55 0 / 1254
26 1537.2 -1.3 12.94 14.9 0.0 / 1537.2 0.00 / 10.31 0 / 1521
27 1539.6 -6.2 12.74 14.6 0.0 / 1539.6 0.00 / 20.39 0 / 1518
28 1750.2 17.1 29.19 41.2 0.0 / 1750.2 0.00 / 30.04 0 / 1713
29 1406.6 5.6 29.51 41.9 0.0 / 1406.6 0.00 / 21.47 0 / 1379
30 1322.4 -33.2 18.87 23.3 0.0 / 1322.4 0.00 / 31.56 0 / 1287
31 1492.2 1.1 20.29 25.5 0.0 / 1492.2 0.00 / 16.10 0 / 1467
32 1733.6 -15.4 31.30 45.6 0.0 / 1733.6 0.00 / 16.35 0 / 1712
33 1636.2 -21.0 20.75 26.2 0.0 / 1636.2 0.00 / 11.73 0 / 1620

Avgs 492.1 14.9 12.43 15.8 0.0 / 492.1 0.00 / 5.43 0 / 486
Avgm 869.1 13.2 21.35 29.0 0.0 / 869.1 0.00 / 9.25 0 / 859
Avgl 1408.1 -4.8 20.92 27.2 0.0 / 1408.1 0.00 / 17.56 0 / 1386

Avg∗ 939.4 7.2 18.22 24.0 0.0 / 939.4 0.00 / 11.00 0 / 926

Source: created by author.
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APPENDIX C — RESULTS OF SVNS SOLVER

ON HSTP+
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Table C.1 – Results of KHE+SVNS using a time limit of 1 hour on instances of group A.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 19045.8 2660.3 96.41 2684.5 18.0 / 1045.8 0.00 / 21.49 18 / 1014
04 12475.2 2891.7 96.68 2913.3 12.0 / 475.2 0.00 / 1.64 12 / 474
05 12534.6 2274.0 95.79 2274.0 12.0 / 534.6 0.00 / 3.29 12 / 531
06 333.0 0.0 0.00 0.0 0.0 / 333.0 0.00 / 0.00 0 / 333
07 27468.0 6997.7 98.59 6997.7 27.0 / 468.0 0.00 / 0.00 27 / 468
08 5598.8 833.1 89.34 837.8 5.0 / 598.8 0.00 / 2.68 5 / 597
09 479.4 1.1 1.75 1.8 0.0 / 479.4 0.00 / 2.51 0 / 477
10 282.0 0.0 2.13 2.2 0.0 / 282.0 0.00 / 0.00 0 / 282
11 6440.4 1411.8 93.39 1411.8 6.0 / 440.4 0.00 / 3.91 6 / 435
12 15670.8 2296.1 95.83 2296.1 15.0 / 670.8 0.00 / 4.02 15 / 669
13 9903.2 1428.3 93.64 1471.9 9.2 / 703.2 0.45 / 14.79 9 / 705
14 26784.8 3429.0 97.17 3429.0 26.0 / 784.8 0.00 / 14.01 26 / 771
15 731.4 6.0 16.08 19.2 0.0 / 731.4 0.00 / 2.51 0 / 729
16 1074.0 -0.3 0.28 0.3 0.0 / 1074.0 0.00 / 0.00 0 / 1074
17 11064.4 1125.3 91.99 1148.3 10.0 / 1064.4 0.00 / 8.59 10 / 1053
18 33089.0 2938.5 96.71 2938.5 32.0 / 1089.0 0.00 / 21.94 32 / 1065
19 25819.0 3197.4 96.97 3197.4 25.0 / 819.0 0.00 / 6.36 25 / 810
20 12651.6 2242.9 95.73 2242.9 12.0 / 651.6 0.00 / 8.05 12 / 639
21 3647.4 533.2 85.15 573.6 3.0 / 647.4 0.00 / 5.37 3 / 639
22 34263.8 3090.3 97.44 3812.8 33.2 / 1063.8 0.84 / 21.70 32 / 1074
23 42771.8 3223.4 97.47 3857.3 41.6 / 1171.8 1.34 / 23.39 40 / 1185
24 33979.6 2629.3 96.84 3063.9 32.8 / 1179.6 0.45 / 13.48 32 / 1191
25 18327.2 1233.9 94.16 1613.0 17.0 / 1327.2 0.00 / 11.34 17 / 1320
26 20633.2 1225.2 93.51 1441.7 19.0 / 1633.2 0.00 / 12.30 19 / 1614
27 27596.6 1669.0 94.96 1883.9 26.0 / 1596.6 1.73 / 18.30 25 / 1581
28 36310.2 2306.2 96.36 2649.7 34.2 / 2110.2 0.45 / 14.94 34 / 2097
29 2391.0 71.4 46.11 85.6 1.0 / 1391.0 0.00 / 40.77 1 / 1365
30 6401.6 228.1 73.23 273.6 4.6 / 1801.6 0.55 / 53.70 4 / 1846
31 5101.2 211.8 68.70 219.5 3.4 / 1701.2 0.55 / 42.09 3 / 1717
32 3345.6 77.2 51.57 106.5 1.6 / 1745.6 0.55 / 78.20 1 / 1722
33 1840.6 -4.4 8.47 9.3 0.0 / 1840.6 0.00 / 5.77 0 / 1831

Avgs 7760.7 1552.8 53.11 1557.6 7.3 / 488.0 0.00 / 3.23 7 / 483
Avgm 14043.6 1719.6 76.95 1731.7 13.2 / 823.6 0.04 / 8.56 13 / 815
Avgl 19413.5 1330.1 76.57 1584.7 17.9 / 1546.9 0.54 / 28.00 17 / 1545

Avg∗ 13902.0 1522.4 68.87 1620.2 12.9 / 974.7 0.21 / 13.85 12 / 970

Source: created by author.
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Table C.2 – Results of KHE+SVNS using a time limit of 1 hour on instances of group B.

Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 20821.8 2917.7 96.71 2944.1 1.4 / 19421.8 0.89 / 4968.50 0 / 27008
04 5485.4 1215.4 92.45 1225.0 0.0 / 5485.4 0.00 / 4.93 0 / 5480
05 7565.2 1332.8 93.02 1332.8 0.0 / 7565.2 0.00 / 1.64 0 / 7564
06 333.0 0.0 0.00 0.0 0.0 / 333.0 0.00 / 0.00 0 / 333
07 19450.6 4926.0 98.01 4926.0 3.0 / 16450.6 0.00 / 1.34 3 / 16450
08 5601.2 833.5 89.29 833.5 1.0 / 4601.2 0.00 / 4.02 1 / 4597
09 482.4 1.8 1.74 1.8 0.0 / 482.4 0.00 / 2.51 0 / 480
10 282.0 0.0 1.06 1.1 0.0 / 282.0 0.00 / 0.00 0 / 282
11 4438.0 941.8 90.47 949.2 0.0 / 4438.0 0.00 / 0.00 0 / 4438
12 10883.4 1564.1 93.99 1564.1 0.0 / 10883.4 0.00 / 442.53 0 / 10681
13 7099.0 1000.6 91.13 1026.8 1.2 / 5899.0 0.45 / 441.18 1 / 5699
14 21982.4 2796.2 96.55 2796.2 0.4 / 21582.4 0.55 / 2046.39 0 / 21777
15 736.8 9.6 16.69 20.0 0.0 / 736.8 0.00 / 4.55 0 / 732
16 1074.0 -0.3 0.28 0.3 0.0 / 1074.0 0.00 / 0.00 0 / 1074
17 7091.4 682.7 87.51 700.5 0.0 / 7091.4 0.00 / 11.10 0 / 7083
18 23537.0 2061.3 95.37 2061.3 0.6 / 22937.0 0.55 / 2486.37 0 / 25128
19 26599.8 3297.2 97.07 3310.2 2.2 / 24399.8 0.45 / 1340.08 2 / 23795
20 9024.6 1571.2 94.02 1571.2 0.0 / 9024.6 0.00 / 551.31 0 / 8621
21 2649.8 362.4 79.39 385.3 0.0 / 2649.8 0.00 / 5.45 0 / 2642
22 34071.0 2812.1 97.41 3764.3 2.4 / 31671.0 0.55 / 542.29 2 / 31077
23 42811.4 3135.9 97.46 3842.2 11.6 / 31211.4 0.55 / 34.75 11 / 31236
24 30192.2 2336.8 96.44 2708.4 9.0 / 21192.2 0.00 / 2.68 9 / 21188
25 20345.2 1469.8 94.76 1808.0 0.0 / 20345.2 0.00 / 7.53 0 / 20338
26 19629.0 1153.4 93.20 1371.2 2.0 / 17629.0 0.00 / 3.67 2 / 17626
27 27012.2 1655.2 94.86 1845.5 5.0 / 22012.2 0.00 / 897.12 5 / 21605
28 21096.4 1234.4 93.83 1522.0 1.0 / 20096.4 0.00 / 11.10 1 / 20079
29 1588.6 18.2 18.87 23.3 0.2 / 1388.6 0.45 / 37.60 0 / 1359
30 6938.0 257.3 75.29 304.6 1.2 / 5738.0 0.45 / 49.72 1 / 5737
31 4741.0 173.3 66.38 197.4 1.0 / 3741.0 1.00 / 16.57 0 / 3723
32 1832.2 -6.5 10.94 12.3 0.0 / 1832.2 0.00 / 25.95 0 / 1801
33 1847.2 -3.0 8.55 9.4 0.0 / 1847.2 0.00 / 20.74 0 / 1819

Avgs 5924.6 1107.2 52.08 1111.3 0.5 / 5433.7 0.08 / 453.00 0 / 6122
Avgm 11067.8 1334.5 75.20 1343.6 0.4 / 10627.8 0.20 / 732.90 0 / 10723
Avgl 17675.4 1186.4 70.67 1450.7 2.8 / 14892.0 0.25 / 137.48 2 / 14799

Avg∗ 11756.2 1204.9 65.85 1305.1 1.3 / 10447.1 0.18 / 423.08 1 / 10671

Source: created by author.
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Table C.3 – Results of KHE+SVNS using a time limit of 1 hour on instances of group C.

Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 378.0 5.0 4.76 5.0 0.0 / 378.0 0.00 / 0.00 0 / 378
03 3150.2 375.1 79.14 379.5 2.0 / 1150.2 0.00 / 5.85 2 / 1143
04 1522.0 273.0 73.39 275.8 1.0 / 522.0 0.00 / 0.00 1 / 522
05 1617.4 226.7 70.29 236.5 1.0 / 617.4 0.00 / 2.51 1 / 615
06 324.0 0.0 0.00 0.0 0.0 / 324.0 0.00 / 0.00 0 / 324
07 6594.0 1778.6 94.68 1778.6 6.0 / 594.0 0.00 / 0.00 6 / 594
08 3576.0 520.8 84.14 530.7 3.0 / 576.0 0.00 / 0.00 3 / 576
09 466.8 5.9 5.53 5.9 0.0 / 466.8 0.00 / 7.53 0 / 456
10 282.0 0.0 2.13 2.2 0.0 / 282.0 0.00 / 0.00 0 / 282
11 453.0 11.9 10.60 11.9 0.0 / 453.0 0.00 / 0.00 0 / 453
12 741.0 13.8 14.98 17.6 0.0 / 741.0 0.00 / 0.00 0 / 741
13 924.8 49.6 34.80 53.4 0.2 / 724.8 0.45 / 11.34 0 / 720
14 838.8 3.6 22.32 28.7 0.0 / 838.8 0.00 / 1.64 0 / 837
15 718.2 14.0 14.79 17.4 0.0 / 718.2 0.00 / 2.68 0 / 717
16 1074.0 -0.3 0.28 0.3 0.0 / 1074.0 0.00 / 0.00 0 / 1074
17 1117.8 8.0 30.17 43.2 0.0 / 1117.8 0.00 / 7.53 0 / 1107
18 1323.0 13.4 33.36 50.1 0.0 / 1323.0 0.00 / 8.49 0 / 1311
19 5835.8 671.9 87.38 692.7 5.0 / 835.8 0.00 / 8.64 5 / 828
20 662.4 33.0 38.86 63.6 0.0 / 662.4 0.00 / 4.93 0 / 657
21 634.2 20.1 28.33 39.5 0.0 / 634.2 0.00 / 4.55 0 / 630
22 31006.2 2853.0 97.39 3738.4 30.0 / 1006.2 0.00 / 10.31 30 / 996
23 31023.0 2804.8 97.30 3608.7 30.0 / 1023.0 0.00 / 8.22 30 / 1014
24 21095.6 1755.4 95.57 2156.5 20.0 / 1095.6 0.00 / 7.77 20 / 1086
25 16317.6 1188.9 93.49 1435.7 15.0 / 1317.6 0.00 / 8.05 15 / 1305
26 20638.6 1225.5 93.52 1442.1 19.0 / 1638.6 0.00 / 8.85 19 / 1623
27 21571.4 1219.4 93.77 1505.6 20.0 / 1571.4 0.00 / 10.90 20 / 1557
28 33083.2 2114.4 96.25 2569.5 31.0 / 2083.2 0.00 / 8.64 31 / 2070
29 1176.0 -13.3 15.69 18.6 0.0 / 1176.0 0.00 / 7.65 0 / 1170
30 5305.0 201.2 79.78 394.5 4.0 / 1305.0 0.00 / 15.73 4 / 1287
31 3461.0 134.5 65.63 191.0 2.0 / 1461.0 0.00 / 15.15 2 / 1443
32 1497.0 -33.7 20.44 25.7 0.0 / 1497.0 0.00 / 12.19 0 / 1479
33 1616.4 -22.5 19.78 24.7 0.0 / 1616.4 0.00 / 8.05 0 / 1611

Avgs 1699.7 291.2 39.10 293.8 1.2 / 517.9 0.00 / 1.44 1 / 516
Avgm 1387.0 82.7 30.53 100.6 0.5 / 867.0 0.04 / 4.98 0 / 862
Avgl 15649.2 1119.0 72.39 1425.9 14.2 / 1399.2 0.00 / 10.12 14 / 1386

Avg∗ 6677.5 529.0 48.60 646.9 5.7 / 944.2 0.01 / 5.67 5 / 937

Source: created by author.
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Table C.4 – Results of CPX0+SVNS using a time limit of 1 hour on instances of group

A.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 386.4 7.3 6.83 7.3 0.0 / 386.4 0.00 / 4.93 0 / 378
03 924.0 33.9 25.97 35.1 0.0 / 924.0 0.00 / 5.61 0 / 918
04 469.8 12.7 11.88 13.5 0.0 / 469.8 0.00 / 2.68 0 / 468
05 558.6 5.8 5.48 5.8 0.0 / 558.6 0.00 / 6.50 0 / 549
06 333.0 0.0 0.00 0.0 0.0 / 333.0 0.00 / 0.00 0 / 333
07 412.2 6.5 6.11 6.5 0.0 / 412.2 0.00 / 4.02 0 / 405
08 639.0 6.5 6.57 7.0 0.0 / 639.0 0.00 / 7.65 0 / 630
09 489.0 3.2 3.68 3.8 0.0 / 489.0 0.00 / 3.67 0 / 486
10 282.0 0.0 2.13 2.2 0.0 / 282.0 0.00 / 0.00 0 / 282
11 432.6 1.5 1.53 1.5 0.0 / 432.6 0.00 / 2.51 0 / 429
12 668.4 2.2 2.15 2.2 0.0 / 668.4 0.00 / 2.51 0 / 666
13 708.6 9.4 11.09 12.5 0.0 / 708.6 0.00 / 9.10 0 / 693
14 789.0 4.0 3.80 4.0 0.0 / 789.0 0.00 / 0.00 0 / 789
15 749.4 8.6 18.09 22.1 0.0 / 749.4 0.00 / 6.84 0 / 738
16 1074.6 -0.2 0.34 0.3 0.0 / 1074.6 0.00 / 1.34 0 / 1074
17 1110.0 22.9 20.15 25.2 0.0 / 1110.0 0.00 / 3.00 0 / 1107
18 1135.2 4.2 4.07 4.2 0.0 / 1135.2 0.00 / 10.73 0 / 1122
19 803.4 2.6 2.54 2.6 0.0 / 803.4 0.00 / 3.29 0 / 801
20 597.6 10.7 9.64 10.7 0.0 / 597.6 0.00 / 10.04 0 / 585
21 656.4 14.0 17.50 21.2 0.0 / 656.4 0.00 / 3.29 0 / 651
22 1078.8 0.4 18.83 23.2 0.0 / 1078.8 0.00 / 15.39 0 / 1062
23 1355.4 5.3 20.26 25.4 0.0 / 1355.4 0.00 / 4.93 0 / 1350
24 1284.6 3.2 16.40 19.6 0.0 / 1284.6 0.00 / 14.60 0 / 1269
25 1223.4 -12.3 12.55 14.3 0.0 / 1223.4 0.00 / 14.76 0 / 1200
26 1496.4 -4.0 10.56 11.8 0.0 / 1496.4 0.00 / 9.81 0 / 1482
27 1513.8 -3.1 8.11 8.8 0.0 / 1513.8 0.00 / 10.08 0 / 1503
28 1765.2 17.0 25.19 33.7 0.0 / 1765.2 0.00 / 7.22 0 / 1758
29 2680.4 92.1 51.93 108.0 0.0 / 2680.4 0.00 / 1106.95 0 / 1868
30 3352.8 71.9 48.89 95.7 0.0 / 3352.8 0.00 / 713.61 0 / 2688
31 2026.2 23.9 21.20 26.9 0.0 / 2026.2 0.00 / 345.44 0 / 1865
32 2493.4 32.1 35.02 53.9 0.0 / 2493.4 0.00 / 36.02 0 / 2443
33 2138.8 11.3 21.23 27.0 0.0 / 2138.8 0.00 / 425.63 0 / 1918

Avgs 478.1 7.6 6.87 8.0 0.0 / 478.1 0.00 / 3.42 0 / 473
Avgm 829.3 7.8 8.94 10.5 0.0 / 829.3 0.00 / 5.01 0 / 822
Avgl 1867.4 19.8 24.18 37.4 0.0 / 1867.4 0.00 / 225.37 0 / 1700

Avg∗ 1089.7 12.1 13.79 19.4 0.0 / 1089.7 0.00 / 84.61 0 / 1025

Source: created by author.
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Table C.5 – Results of CPX0+SVNS using a time limit of 1 hour on instances of group

B.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 1324.0 320.3 76.21 320.3 0.0 / 1324.0 0.00 / 0.00 0 / 1324
02 405.0 12.5 11.11 12.5 0.0 / 405.0 0.00 / 0.00 0 / 405
03 34181.6 4853.9 98.00 4897.3 0.0 / 34181.6 0.00 / 441.86 0 / 33978
04 5084.8 1119.4 91.86 1128.2 0.0 / 5084.8 0.00 / 546.63 0 / 4483
05 10573.0 1902.5 95.01 1902.5 0.0 / 10573.0 0.00 / 711.36 0 / 9564
06 10360.0 3011.1 96.79 3011.1 0.0 / 10360.0 0.00 / 0.00 0 / 10360
07 12241.0 3063.0 96.84 3063.0 0.0 / 12241.0 0.00 / 1095.44 0 / 11441
08 4469.0 644.8 86.57 644.8 0.0 / 4469.0 0.00 / 2276.41 0 / 1675
09 5488.4 1057.9 91.36 1057.9 0.0 / 5488.4 0.00 / 6.50 0 / 5480
10 17306.6 6037.1 98.39 6103.1 0.0 / 17306.6 0.00 / 3.29 0 / 17303
11 14841.0 3383.8 97.15 3408.5 0.0 / 14841.0 0.00 / 546.38 0 / 14438
12 16279.2 2389.2 95.98 2389.2 0.0 / 16279.2 0.00 / 2075.38 0 / 13678
13 10733.8 1564.2 94.13 1603.8 0.0 / 10733.8 0.00 / 992.59 0 / 9723
14 32792.0 4220.4 97.69 4220.4 0.0 / 32792.0 0.00 / 12342.33 0 / 18780
15 729.0 8.5 15.80 18.8 0.0 / 729.0 0.00 / 7.04 0 / 723
16 1074.6 -0.2 0.34 0.3 0.0 / 1074.6 0.00 / 1.34 0 / 1074
17 5905.8 551.9 85.00 566.7 0.0 / 5905.8 0.00 / 1099.29 0 / 5098
18 51998.2 4674.9 97.91 4674.9 0.0 / 51998.2 0.00 / 4417.11 0 / 47155
19 49042.4 6163.4 98.41 6187.5 0.0 / 49042.4 0.00 / 8091.30 0 / 41834
20 15628.2 2794.1 96.54 2794.1 0.0 / 15628.2 0.00 / 4.02 0 / 15624
21 7758.8 1254.1 92.96 1321.0 0.0 / 7758.8 0.00 / 4.55 0 / 7751
22 132259.6 11204.2 99.33 14900.9 0.0 / 132259.6 0.00 / 1098.83 0 / 131074
23 126541.6 9464.7 99.14 11552.4 0.0 / 126541.6 0.00 / 472.20 0 / 126260
24 127262.4 10171.4 99.16 11737.4 0.0 / 127262.4 0.00 / 7.77 0 / 127251
25 151764.0 11610.2 99.30 14132.9 0.0 / 151764.0 0.00 / 11.42 0 / 151749
26 196056.8 12419.6 99.32 14594.8 0.0 / 196056.8 0.00 / 9.86 0 / 196043
27 204221.4 13169.7 99.32 14608.8 0.0 / 204221.4 0.00 / 480.06 0 / 203974
28 172510.6 10811.5 99.25 13163.6 0.0 / 172510.6 0.00 / 822.25 0 / 171337
29 66692.8 4862.3 98.07 5074.6 0.0 / 66692.8 0.00 / 5829.44 0 / 62476
30 52873.2 2622.6 96.76 2983.5 0.0 / 52873.2 0.00 / 6969.45 0 / 49451
31 74153.6 4174.0 97.85 4552.3 0.0 / 74153.6 0.00 / 12098.00 0 / 65892
32 57797.4 2862.5 97.18 3442.1 0.0 / 57797.4 0.00 / 11079.75 0 / 51121
33 61172.4 3114.5 97.24 3521.3 0.0 / 61172.4 0.00 / 14208.34 0 / 53754

Avgs 10570.4 2309.7 85.39 2322.7 0.0 / 10570.4 0.00 / 511.62 0 / 10041
Avgm 19194.2 2362.0 77.48 2377.7 0.0 / 19194.2 0.00 / 2903.50 0 / 16144
Avgl 118608.8 8040.6 98.49 9522.1 0.0 / 118608.8 0.00 / 4423.95 0 / 115865

Avg∗ 52470.4 4409.5 87.76 4957.3 0.0 / 52470.4 0.00 / 2659.10 0 / 50371

Source: created by author.
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Table C.6 – Results of CPX0+SVNS using a time limit of 1 hour on instances of group

C.
Id Obj GapB Gap GapL Average Std. Deviation Best

01 333.0 5.7 5.41 5.7 0.0 / 333.0 0.00 / 0.00 0 / 333
02 379.8 5.5 5.21 5.5 0.0 / 379.8 0.00 / 4.02 0 / 378
03 1004.4 51.5 34.59 52.9 0.0 / 1004.4 0.00 / 10.69 0 / 996
04 498.0 22.1 18.67 23.0 0.0 / 498.0 0.00 / 6.00 0 / 492
05 577.2 16.6 16.74 20.1 0.0 / 577.2 0.00 / 6.22 0 / 570
06 324.0 0.0 0.00 0.0 0.0 / 324.0 0.00 / 0.00 0 / 324
07 468.0 33.3 25.00 33.3 0.0 / 468.0 0.00 / 0.00 0 / 468
08 584.4 1.5 2.98 3.1 0.0 / 584.4 0.00 / 5.77 0 / 576
09 475.8 7.9 7.31 7.9 0.0 / 475.8 0.00 / 6.22 0 / 468
10 282.0 0.0 2.13 2.2 0.0 / 282.0 0.00 / 0.00 0 / 282
11 437.4 8.0 7.41 8.0 0.0 / 437.4 0.00 / 3.91 0 / 435
12 718.2 10.3 12.28 14.0 0.0 / 718.2 0.00 / 4.55 0 / 714
13 741.0 19.9 18.62 22.9 0.0 / 741.0 0.00 / 4.74 0 / 735
14 803.4 -0.8 18.89 23.3 0.0 / 803.4 0.00 / 14.14 0 / 780
15 712.2 13.0 14.07 16.4 0.0 / 712.2 0.00 / 8.64 0 / 702
16 1074.0 -0.3 0.28 0.3 0.0 / 1074.0 0.00 / 0.00 0 / 1074
17 1090.8 5.4 28.44 39.7 0.0 / 1090.8 0.00 / 15.96 0 / 1071
18 1258.8 7.9 29.97 42.8 0.0 / 1258.8 0.00 / 15.09 0 / 1236
19 852.6 12.8 13.65 15.8 0.0 / 852.6 0.00 / 7.47 0 / 843
20 574.2 15.3 29.47 41.8 0.0 / 574.2 0.00 / 7.53 0 / 567
21 628.2 19.0 27.65 38.2 0.0 / 628.2 0.00 / 6.91 0 / 621
22 981.0 -7.0 17.66 21.4 0.0 / 981.0 0.00 / 11.22 0 / 969
23 1009.8 -5.8 17.16 20.7 0.0 / 1009.8 0.00 / 7.82 0 / 1002
24 1082.4 -5.0 13.63 15.8 0.0 / 1082.4 0.00 / 6.84 0 / 1074
25 1221.0 -3.7 12.98 14.9 0.0 / 1221.0 0.00 / 8.22 0 / 1212
26 1494.6 -4.2 10.45 11.7 0.0 / 1494.6 0.00 / 15.06 0 / 1482
27 1482.6 -10.3 9.38 10.4 0.0 / 1482.6 0.00 / 11.30 0 / 1470
28 1690.2 13.1 26.68 36.4 0.0 / 1690.2 0.00 / 7.82 0 / 1683
29 1375.4 3.3 27.91 38.7 0.0 / 1375.4 0.00 / 22.69 0 / 1352
30 1314.0 -34.0 18.36 22.5 0.0 / 1314.0 0.00 / 18.00 0 / 1296
31 1467.6 -0.6 18.95 23.4 0.0 / 1467.6 0.00 / 15.50 0 / 1446
32 1697.6 -17.9 29.84 42.5 0.0 / 1697.6 0.00 / 28.73 0 / 1667
33 1628.4 -21.6 20.38 25.6 0.0 / 1628.4 0.00 / 12.97 0 / 1614

Avgs 487.6 13.8 11.40 14.7 0.0 / 487.6 0.00 / 3.89 0 / 483
Avgm 845.3 10.2 19.33 25.5 0.0 / 845.3 0.00 / 8.50 0 / 834
Avgl 1370.4 -7.8 18.61 23.7 0.0 / 1370.4 0.00 / 13.85 0 / 1355

Avg∗ 917.0 4.9 16.43 21.2 0.0 / 917.0 0.00 / 8.91 0 / 907

Source: created by author.
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APPENDIX D — RESULTS OF F8 VARIANT

ON HSTP+

Table D.1 – Results of F8 variant on instances of group A using a time limit of 1 hour.
Id x∗ t∗ (s) time (s) GapB Gap GapL x0 t0 (s) imp (%) n.f. (%) inf (%)

01 315 0 51 0.00 0.00 0.00 468 0 5 0 94
02 360 5 101 0.00 0.00 0.00 516 1 7 0 92
03 717 1170 3600 3.91 4.60 4.82 990 4 12 0 88
04 417 3531 3600 0.00 0.72 0.72 534 1 1 40 59
05 528 540 3600 0.00 0.00 0.00 615 1 2 25 72
06 333 2 3600 0.00 0.00 0.00 630 0 19 0 81
07 387 3 3600 0.00 0.00 0.00 471 0 10 0 90
08 600 1174 3600 0.00 0.50 0.50 903 0 7 0 93
09 477 1928 3600 0.63 1.26 1.27 600 0 5 15 80
10 282 19 3600 0.00 2.13 2.17 522 0 0 61 39
11 426 11 3600 0.00 0.00 0.00 450 0 1 18 80
12 657 95 3600 0.46 0.46 0.46 693 13 8 16 76
13 660 1425 3600 1.85 4.55 4.76 915 3 8 13 79
14 771 705 3600 1.58 1.56 1.58 798 4 16 1 83
15 636 3384 3600 -8.49 3.49 3.62 1149 5 3 64 33
16 1077 249 3600 0.00 0.56 0.56 2052 0 15 7 78
17 912 2737 3600 1.00 2.81 2.89 1392 2 7 36 57
18 1107 35 3600 1.65 1.63 1.65 1152 5 9 20 71
19 783 360 3600 0.00 0.00 0.00 849 5 9 0 91
20 567 341 3600 5.00 4.76 5.00 741 4 6 38 56
21 579 2728 3600 0.52 6.48 6.93 936 4 6 34 59
22 984 2453 3600 -9.15 11.01 12.37 1485 61 8 9 81
23 1209 3172 3600 -6.45 10.60 11.86 1473 177 10 1 84
24 1212 3405 3600 -2.72 11.39 12.85 1614 33 10 0 89
25 1200 1138 3600 -14.50 10.84 12.16 1854 18 12 1 87
26 1458 2756 3600 -6.79 8.21 8.94 2109 18 7 1 92
27 1494 1913 3600 -4.42 6.89 7.40 2103 15 8 0 91
28 1449 2658 3600 -4.14 8.87 9.73 2397 13 9 0 91
29 1350 3328 3600 -3.33 4.56 4.77 3893 12 11 3 86
30 1855 889 3600 -5.18 7.62 8.25 3766 7 12 0 88
31 1708 1964 3600 4.40 6.51 6.97 2710 11 12 0 88
32 1828 2794 3600 -3.28 11.37 12.82 4076 8 11 0 89
33 1858 1877 3600 -3.39 9.33 10.29 2899 8 12 0 87

Avgs 440 762 2959 0.41 0.84 0.86 609 1 6 15 79
Avgm 775 1206 3600 0.36 2.63 2.74 1067 4 9 23 68
Avgl 1467 2362 3600 -4.91 8.93 9.87 2531 32 10 1 88

Avg∗ 915 1478 3386 -1.54 4.32 4.71 1447 13 9 12 79

Source: created by author.
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Table D.2 – Results of F8 variant on instances of group B using a time limit of 1 hour.
Id x∗ t∗ (s) time (s) GapB Gap GapL x0 t0 (s) imp (%) n.f. (%) inf (%)

01 315 1 50 0.00 0.00 0.00 5486 0 6 0 94
02 360 4 106 0.00 0.00 0.00 7555 0 8 0 92
03 726 1663 3600 5.22 5.79 6.14 40032 0 11 0 89
04 417 788 3600 0.00 0.72 0.72 28549 0 2 48 50
05 528 11 3600 0.00 0.00 0.00 25621 0 2 34 64
06 333 12 3600 0.00 0.00 0.00 12684 0 20 0 80
07 387 63 3600 0.00 0.00 0.00 20474 0 11 1 88
08 600 2704 3600 0.00 0.00 0.00 23915 0 5 18 77
09 483 2759 3600 1.90 1.86 1.90 6639 0 3 18 80
10 282 8 3600 0.00 1.06 1.08 28510 0 0 71 29
11 426 5 3600 0.00 0.70 0.71 25453 0 1 10 89
12 657 196 3600 0.46 0.46 0.46 37729 0 7 14 79
13 2660 1312 3600 312.40 76.32 322.22 34924 0 4 29 67
14 765 38 3600 0.79 0.78 0.79 45807 0 16 0 84
15 642 375 3600 -4.67 4.39 4.59 33221 0 4 48 48
16 1080 519 3600 0.28 0.83 0.84 3052 0 13 5 82
17 927 2197 3600 2.32 4.44 4.65 35473 0 5 50 46
18 1089 604 3600 0.00 0.00 0.00 55224 0 11 13 77
19 1780 359 3600 127.33 56.18 128.21 57861 0 10 2 88
20 561 2108 3600 3.89 3.74 3.89 41762 1 11 45 44
21 582 551 3600 1.57 6.19 6.59 40293 0 9 37 54
22 993 2206 3600 -17.82 11.21 12.63 136788 7 8 4 88
23 2224 3566 3600 68.10 51.17 104.79 131695 9 9 4 87
24 2170 1544 3600 75.14 50.46 101.84 129896 6 13 0 87
25 1224 1729 3600 -5.88 12.88 14.79 165595 2 8 26 66
26 1464 1533 3600 -6.97 8.87 9.73 220066 2 7 3 91
27 5494 2921 3600 256.99 74.73 295.70 213703 3 9 3 88
28 1467 2885 3600 -7.77 11.34 12.79 212201 2 11 3 86
29 1371 2195 3600 2.01 5.99 6.37 76672 5 12 0 88
30 1864 3551 3600 -4.18 8.01 8.71 65312 20 13 0 86
31 1693 2181 3600 -2.48 5.85 6.22 95486 5 10 1 89
32 1780 2818 3600 -9.61 8.33 9.09 77483 3 12 0 88
33 1849 2215 3600 -2.92 8.64 9.46 86554 4 14 0 86

Avgs 442 729 2960 0.65 0.92 0.96 20447 0 6 18 76
Avgm 1074 826 3600 44.44 15.33 47.22 38534 0 9 24 67
Avgl 1966 2445 3600 28.72 21.46 49.34 134287 6 10 4 86

Avg∗ 1188 1382 3387 24.12 12.76 32.57 67324 2 9 15 77

Source: created by author.
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Table D.3 – Results of F8 variant on instances of group C using a time limit of 1 hour.
Id x∗ t∗ (s) time (s) GapB Gap GapL x0 t0 (s) imp (%) n.f. (%) inf (%)

01 315 0 51 0.00 0.00 0.00 468 0 5 0 95
02 360 5 100 0.00 0.00 0.00 516 0 7 0 93
03 759 3311 3600 14.48 13.44 15.53 1128 2 5 0 95
04 408 484 3600 0.00 0.74 0.74 753 0 3 46 51
05 492 1989 3600 -0.61 2.32 2.37 831 1 4 70 26
06 324 1 3600 0.00 0.00 0.00 711 0 19 0 81
07 351 57 3600 0.00 0.00 0.00 594 0 8 1 91
08 576 853 3600 0.00 1.56 1.59 1212 0 5 29 66
09 447 2332 3600 1.36 1.34 1.36 945 0 4 57 39
10 282 19 3600 0.00 2.13 2.17 522 0 0 61 39
11 405 101 3600 0.00 0.00 0.00 672 0 1 17 82
12 645 286 3600 -0.93 2.33 2.38 1248 2 3 56 41
13 648 1728 3600 4.85 6.94 7.46 1365 2 5 43 52
14 711 712 3600 -13.92 8.35 9.12 1389 2 5 43 53
15 630 1754 3600 0.00 2.86 2.94 1464 2 3 58 39
16 1077 241 3600 0.00 0.56 0.56 2052 0 13 8 79
17 873 3555 3600 -18.56 10.59 11.84 2013 1 7 60 33
18 1029 3391 3600 -13.41 14.33 16.72 2130 2 9 71 21
19 765 406 3600 1.19 3.76 3.91 1248 2 7 3 90
20 459 2269 3600 -8.50 11.76 13.33 1209 1 9 27 63
21 531 309 3600 0.57 14.41 16.83 1293 2 9 24 68
22 921 1868 3600 -14.01 12.29 14.02 1659 34 10 8 82
23 960 1835 3600 -11.25 12.86 14.76 1779 38 9 5 85
24 1047 1642 3600 -8.60 10.71 11.99 1842 27 9 9 81
25 1203 1916 3600 -5.24 11.67 13.22 1761 18 7 5 87
26 1458 2740 3600 -6.79 8.21 8.94 2109 18 7 1 92
27 1455 3430 3600 -12.37 7.66 8.30 2082 18 6 0 93
28 1380 990 3600 -8.26 10.20 11.35 2412 15 8 0 91
29 1143 3592 3600 -16.54 13.26 15.28 3444 2 16 4 80
30 1233 3396 3600 -42.82 12.99 14.93 4106 2 15 2 84
31 1386 2544 3600 -6.49 14.18 16.52 3411 4 17 1 82
32 1422 3398 3600 -40.72 16.24 19.40 4708 2 18 1 81
33 1602 2560 3600 -23.60 19.06 23.55 3762 3 13 2 85

Avgs 429 832 2959 1.38 1.96 2.16 759 0 6 25 69
Avgm 737 1465 3600 -4.87 7.59 8.51 1541 2 7 39 54
Avgl 1268 2493 3600 -16.39 12.44 14.36 2756 15 11 3 85

Avg∗ 827 1628 3386 -6.97 7.48 8.52 1722 6 8 22 70

Source: created by author.
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APPENDIX E — RESULTS OF F8 VARIANT ON

HSTP+
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