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“Life can only be understood backwards,

but it must be lived forwards.”

— SOREN KIERKEGAARD

“ ‘I wish life was not so short’, he thought.

‘Languages take such a time, and so do all

the things one wants to know about’.”

— J.R.R. TOLKIEN
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ABSTRACT

The move towards an SDN-driven network presents a new set of challenges to network archi-

tects. The simplicity of having a centralized entity coordinating state updates among switching

elements comes along with concerns such as overload and delayed network view in the control

plane. Those issues become especially relevant in the scenario of Wide Area Networks. One

way to attempt to mitigate them is to allow a relaxation of the concept of a centralized con-

troller, by leveraging the notion of physical distribution of control instances. Such control plane

design might reduce latency from each control instance to its corresponding devices, resulting

in better response to local network events and improved overall network performance. How-

ever, the distribution of control itself comes with its own caveats, mostly related to the need to

synchronize the distributed instances. In this context, we present the first thorough attempt at

identifying and quantifying how control plane distribution design choices affect network opera-

tion, specifically in WAN scenarios. We perform an evaluation campaign using emulations with

a real global network topology, as well as synthetic one, in order to identify important trade-offs

and compare distributed and centralized control plane strategies. We also demonstrate that a ge-

ographically distributed controller that relies on constant state synchronization reacts slowly to

network events when compared to a simpler geographically centralized solution.

Keywords: Software-defined networking. network control plane. wide area networks. dis-

tributed systems.



Um estudo sobre os Efeitos da Distribuição do Plano de Controle de Redes Definidas por

Software em Redes de Longa Distância

RESUMO

A transição para Redes Definidas por Software apresenta um novo conjunto de desfafios para

arquitetos de rede. A simplicidade de se ter uma entidade centralizada que coordena atuali-

zações de estado entre elementos comutadores traz consigo preocupações como sobrecarga e

visão atrasada da rede pelo plano de controle. Estas questões se tornam relevantes especial-

mente no cenário de Redes de Longa Distância. Uma alternativa para se tentar mitigá-las é

permitir um relaxamento do conceito de um controlador centralizado, utilizando-se da noção

de uma distribuição física de instâncias de controle. Esse estilo de plano de controle tem o

potencial de reduzir a latência de cada instância de controle para com seus dispositivos corres-

pondentes, resultando em melhor resposta para eventos de rede locais e melhor performance

de rede em geral. Porém, a distribuição de controle em geral traz à tona desafios próprios,

principalmente pela necessidade de sincronização entre as instâncias distribuídas. Neste con-

texto, nós apresentamos uma primeira tentativa de identificar e quantificar como escolhas de

projeto do plano de controle afetam a operação da rede, especificamente em cenários de Redes

de Longa Distância. Realizamos uma avaliação em que emulamos tanto uma topologia de rede

global como com uma sintética, de modo a identificar importantes relações de custo-benefício e

a comparar estratégias de plano de controle distribuído e centralizado. Demonstramos ainda que

um controlador geograficamente distribuído que depende de sincronização constante de estado

reage lentamente a eventos de rede quando comparado a uma solução simples de controlador

geograficamente centralizado.

Palavras-chave: redes definidas por software, plano de controle da rede, redes de longa distân-

cia, sistemas distribuídos.
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1 INTRODUCTION

The increasing complexity of Internet service infrastructures called for new mecha-

nisms to provision and manage resources. The concept of Software-Defined Networking (SDN)

emerged within this context, seeking to allow more effective ways of programming computer

networks. An important characteristic of this paradigm is the separation between the control

and the data plane of the network. With this separation, the control plane becomes a logically

centralized entity. It is responsible for managing the underlying datapath infrastructure, using

an API such as OpenFlow (N. McKeown et al., 2008), and also to provide an abstract view

of that infrastructure to control applications. Since the introduction of SDN as a new architec-

tural paradigm, the networking community has been encouraged to revisit network control from

the perspective of the abstractions it enables, producing very interesting results along the way

(KREUTZ et al., 2015).

The study of Wide Area Network SDN deployments is particularly interesting, in part

due to their distinctive requirements over more traditional SDN deployments such as in datacen-

ters. Typical WAN deployments face challenges with low resource utilization as a consequence

of policies to mitigate failures and loss of data. Leveraging the principles of SDN enables oper-

ators to overcome these issues, increasing the overall efficiency of these networks and reducing

infrastructure costs (S. Jain et al., 2013; HONG et al., 2013).

The logical centralization of the SDN control plane provides a clean abstraction to net-

work designers. It also introduces several challenges, such as how to deal with possible scal-

ability limitations. The body of work on the design of SDN control plane constitutes itself a

quite diverse research area. Related work on the design of SDN control planes can be sep-

arated into three main categories: controller roles and interfaces (Koponen, T. et al., 2010;

TOOTOONCHIAN; GANJALI, 2010; YEGANEH; GANJALI, 2012), controller positioning

(SCHMID; SUOMELA, 2013; ZHANG; BEHESHTI; TATIPAMULA, 2011; HELLER; SHER-

WOOD; MCKEOWN, 2012; MULLER et al., 2014) and distribution trade-offs (LEVIN et al.,

2012; YEGANEH; GANJALI, 2014; AKELLA; KRISHNAMURTHY, 2014).

The commonly proposed solution for scaling and increasing resilience of the SDN con-

trol plane is the physical separation of the control plane among different control instances. In

the case of an SDN WAN, control instances could be geographically separated, in contrast to

deployments using a single control instance or multiple clustered ones. It is surprising, there-

fore, that the effects of this geographical distribution of control have not been investigated in

the SDN literature. We envisage as main potential challenges variable responsiveness to global
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network updates, delays introduced by controller synchronization, and control traffic overhead.

This study presents an initial attempt at understanding such effects. By devising a

testbed tailored to SDN WAN scenarios, and using current, production level software (such

as the ONOS distributed controller and the Open vSwitch virtual switch), we focus on answer-

ing two fundamental research questions: how does the inherent propagation latency of WAN

networks affect general communication in a distributed control plane setup? and how does the

control plane distribution scheme impact on intensive data plane communication? Our results

indicate that the need for frequent synchronization significantly harms the performance of geo-

graphically distributed control planes in responding to network events, resulting high latency to

reactions.

This study is organized as follows: Chapter 2 discusses related work on SDN control

plane design, with focus on SDN WAN deployments. Chapter 3 lays the foundation to our study,

and also describes our testbed and experimental methodology. Chapter 4 presents and discusses

our experimental results, focusing on answering our research questions. Finally, Chapter 5

concludes this work and presents possibilities for future work.
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2 LITERATURE ON SDN CONTROL PLANE DESIGN

The separation between control and data planes in the SDN paradigm is often advocated

as being the key enabler for easing the development of control applications in an organized,

modular way, representing a great shift from traditional network protocol design. A core ele-

ment of this separation is the aggregation of the control plane as a logically centralized entity.

This concept relates to the idea of aggregating network state inside the Network Operating Sys-

tem – NOS (sometimes in the form of a Global Network View abstract graph – GNV), while

conveying it to network applications in a simple, seemingly centralized manner. This way, com-

mon networking functionality can be implemented at a central entity and be provided as simple

abstractions to network applications.

It is challenging to implement a logically centralized controller in real networking envi-

ronments. Most deployments require the control plane to handle a large amount of interactions,

due either to intensive network behavior or to a large quantity of network nodes to manage.

The range of use cases also tend to present diverse network requirements. Hence, proposals in

SDN control plane design have moved on from simpler, single machine approaches, to scalable

distributed systems. This allowed SDN to meet the performance required in these scenarios and

leverage its adoption in production environments. Figure 2.1 illustrates the main distributed

control plane structuring approaches, in which we focus our attention. The notion of distribu-

tion we discuss in our analysis relates to the positioning of the control instances in the WAN

network – either physically separated (i.e. distributed SDN WAN control plane) or physically

co-located (i.e. centralized SDN WAN control plane).

Some of these design approaches will be presented in the forthcoming sections. We

summarize their features in table 2.1, establishing a comparison between their advantages and

drawbacks. The rest of the chapter is organized as follows: Section 2.1 presents the main ap-

proaches to SDN control plane organization. Section 2.2 identifies general trade-offs in the

design of control planes. Section 2.3 concludes this chapter by describing the attempts at de-

ploying SDN in WAN settings that were identified.
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Figure 2.1 – The main approaches to SDN control plane distribution design. Top: classic centralized

(left) and physically centralized clustered (right) control planes. Bottom: hiearchical (left) and physically

distributed (right) control planes.
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2.1 Control Plane Organization

In this section, we briefly discuss the main design approaches to SDN control plane or-

ganization. Section 2.1.1 presents the initial SDN control plane designs, which consider only

single machine centralized implementations and parallelization optimizations. Section 2.1.2

presents the hierarchical approach to controller decentralization, discussing some of its advan-

tages and drawbacks in terms of controller load and visibility. Finally, Section 2.1.3 concludes

by discussing the design of fully distributed control planes, where control instances have very

similar roles in the network management process.

2.1.1 Classic Centralized Control Plane

Logical centralization of the network control plays a central role in an SDN architecture.

Initial efforts towards implementing such an architecture focused on its feasibility in real world
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scenarios (e.g. campus networks) and on identifying benefits over traditional approaches. Initial

designs leveraged the use of single controller deployments (GUDE et al., 2008), relying on the

now-standard OpenFlow protocol (N. McKeown et al., 2008). Later, other designs have been

developed and released (e.g. (MCCAULEY, 2014; ERICKSON, 2013; CAI; COX; NG, 2010;

Ryu SDN Framework Community, 2015)). However, most of them do not provide a very well

defined northbound API, nor attempt to shield the application developer from dealing with

certain low-level mechanisms of OpenFlow.

Recent work provides interesting conclusions in terms of centralized controller perfor-

mance. (TOOTOONCHIAN et al., 2012) show that, with minor code optimizations and a

redesign of the controller structure to support multithreaded parallelism, one can drastically

improve throughput and reduce latency on a centralized, single machine controller. Via these

optimizations, it has been possible to implement controllers capable to process up to 12 million

packet-in messages per second (ERICKSON, 2013).

The research community often argues that, despite the advancements in single controller

processing capabilities, it is still not enough to meet the performance, scalability and resiliency

requirements of large scale production environments (Koponen, T. et al., 2010; TOOTOONCHIAN;

GANJALI, 2010; KREUTZ et al., 2015). The intrinsic limitations of this type of design, such

as increased latency to forwarding devices in large networks and difficulty in handling large

network state, have motivated the development of distributed control plane designs.

2.1.2 Hierarchically Distributed Control Plane

Hierarchical control planes are developed around the idea that control instances should

have different roles in the control process. Kandoo (YEGANEH; GANJALI, 2012) explicitly

separates control among two different layers of controllers. The top layer is composed of a

root controller. It is responsible for maintaining global network policies and pushing those

down to the bottom layer controllers. The bottom layer is comprised of local controllers. These

controllers directly configure the network forwarding devices, and share their perceived network

state with the root controller. This approach has the direct benefit of simplifying the presentation

of the Global Network View to control applications at the root controller. However, it requires

the development and maintenance of one type of controller for each control plane layer. The

root controller introduces concerns as it represents a single point of failure, since it is required

to deal with constant network updates. Moreover, it has to operate on an eventually consistent

network state, since it can only perceive state that is reported by local controllers. Thus, this
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design is somewhat limited in applicability, being more favorable in low latency environments

like datacenters, where traffic locality can be well explored in most cases.

(YU et al., 2010) presents Difane, a solution for network control in which so-called

Authority Switches are assigned the role of forwarding rule caches – much in line with what

the local controllers illustrated previously perform in Kandoo. The objective of this approach is

to delegate some of the control concerns to the data plane, thus limiting the load imposed over

the network controller. Similarly, (A. R. Curtis et al., 2011) presents a hierarchical approach to

control delegation in which forwarding devices handle most of the data traffic without controller

intervention. Specific significant flows are identified according to certain traffic features, and

are still handled by the controller directly. This way, datapath flow tables should be handled

more efficiently, and flow rules suffer far less from flow setup overhead.

Despite the advantages of these approaches to scaling the network to larger sizes, they

achieve their results by breaking the principle of separation between control and data planes,

as they allow some of the control tasks to be handled at the data plane. Hence, designs that

consider delegation of control to forwarding devices must be carefully planned as they could

hide important state information from control applications. Also, they favor proactive network

control by design, and thus could prevent the network controller from taking faster, near globally

optimal actions for certain types of network events.

Another interesting hierarchical control approach is to leverage the notion of a recursive

SDN design, which is a rather recent effort in this area (MCCAULEY et al., 2015; KWAK

et al., 2015; DAI et al., 2014). R-SDN (MCCAULEY et al., 2015), for instance, presents an

interesting solution around such design. The basic insight behind it is that, for most deployment

cases, control plane operations at the different levels of network control – subnet protocols,

site protocols, region protocols and WAN protocols – can be seen as very similar tasks, but

with different requirements. In traditional network approaches, these different levels of control

would be typically implemented by different protocols (e.g. STP for subnets, OSPF for sites,

BGP for peering autonomous systems in the Internet). RSDN aims at following this same type

of structure, and also re-uses control plane implementations for these different levels of control

through aggregation with the so-called Logical Crossbars. This approach has the potential of

scaling more easily to very large networks such as carrier networks, where it should provide

good recovery properties for locally-based failures.
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2.1.3 Fully Distributed Control Plane

Fully distributed control planes are composed of control instances with very similar roles

and capabilities, constituting a horizontal approach to control plane organization. Coordination

among instances is essential, as they need to properly configure forwarding devices in order to

achieve global network goals/policies, while at the same time ensuring good performance in the

network.

Works such as (Koponen, T. et al., 2010; TOOTOONCHIAN; GANJALI, 2010) pro-

vided the initial insights on how SDN control plane distribution should be performed. They

both argue that simpler, centralized controller deployments can severely suffer from delayed

responsiveness by the controller as networks grow in number of nodes – implying in controller

overload – and in diameter (as control messages need to traverse longer paths to connect con-

trollers and forwarding devices). A common concern over such distribution is regarded to what

the best trade between application agnosticism of the underlying distribution scheme (i.e. sim-

plicity of implementation) and performance of control operations (e.g. quicker reaction to net-

work events) is. This type of analysis is performed in (LEVIN et al., 2012), in which the results

suggest that agnosticism to the underlying control distribution and staleness of network view

can severely impact network performance.

Onix (Koponen, T. et al., 2010) is a control platform designed to provide scale-out

capabilities to network control while allowing great flexibility in terms of network state choices

for control application developers. The central abstraction Onix provides for applications is

the Network Information Base (NIB). This structure presents the state in the form of a GNV

graph. Since network control can be distributed, the platform allows designers to choose the

level of state consistency they require for their applications. For instance, if they wish to impose

strong consistency – at the penalty of possible delay in the reaction to network events – they

can implement a transactional database store in the NIB. If, however, such constraint can be

relaxed (e.g. when dealing only with routing in the locality of each instance), they can also

employ an eventually consistent store, such as a Distributed Hash Table. Despite introducing

further complexity into network applications, this approach also enables designers to decide on

trade-offs regarding features such as consitency, durability and scalability.

Hyperflow (TOOTOONCHIAN; GANJALI, 2010) is another approach to control plane

distribution. It works as an application that runs over the NOX controller (GUDE et al., 2008).

In order to provide faster response times, each Hyperflow controller instance is positioned in

a different region of the network, and all important network state updates are instantly shared
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among control instances. This way, according to the authors, it is possible to avoid spikes in

latency when certain global policies are applied, since instances don’t need to perform special

requests among them. When only local network state is involved, controllers can be closer to

targets and take local decisions immediately. Applications that run on Hyperflow-enabled con-

trollers can manipulate network state as if they were running centrally, but still require some

modifications to adapt to the abstractions provided by the Hyperflow application. Notwith-

standing, this freedom in control application design and the overall push/subscribe structure of

the state synchronization employed by Hyperflow greatly limit the amount of network events

that can be handled by the control plane. It was identified that excessive events in the network

(around 1000 events per second) greatly diminish control plane responsiveness performance,

being prohibitively large for proper network operation. Its current design cannot scale the con-

trol task well when the events that trigger controller synchronization are a function of the total

number of flows in the network. Thus, in order to mitigate any undesirable effects, improve-

ments over Hyperflow need to consider modifications on the network control mechanisms. For

instance, state aggregation (to minimize control message size), less frequent state information

updates and proactive control applications can greatly improve the performance of Hyperflow,

eventually at the cost of a less frequently consistent network view.

ONOS (P. Berde et al., 2014) is an open-source network controller platform (i.e. NOS).

The design goals behind ONOS include high throughput, low latency in event processing, capa-

bility of handling a large GNV and high availability. Different third-party tools were leveraged

to simplify its construction. For instance, Zookeeper (HUNT et al., 2010) was integrated to

manage mastership relations among forwarding devices and control instances, whereas Cas-

sandra (LAKSHMAN; MALIK, 2010) facilitates controller synchronization among control in-

stances. Over time, the project moved to its own custom implementation for many of these

modules, and continues to be improved today (ON.LAB, 2015). To react faster to events such

as network partitions and swiftly perform the discovery process, ONOS control instances con-

stantly probe the network by sending LLDP packets out forwarding device ports. Since ONOS

aims at providing scale-out capabilities to meet the requirements of many use cases, with an em-

phasis on carrier networks, it provides the option of forming clusters of ONOS controllers. Each

controller in a cluster has the task of managing a subset of the data plane forwarding devices,

improving performance in the handling of network events. In order to provide high availability

and reliability, forwarding devices are assigned both a master and standby controllers. These

properties and the availability of this project as open source led us to adopt ONOS as the control

platform in our testing environments, as will be discussed later in this document.
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2.2 Trade-offs in SDN Control Plane Design

The literature on SDN includes discussions on different trade-offs involved in the de-

sign of the control plane. The separation between control and data planes is often pointed out

as a benefit, since it leverages the use of abstractions to allow the evolution of each plane in-

dependently. However, it also poses a challenge, due to the inherent dependency between the

devices associated with each plane. The works presented below focus on particular aspects of

this and other control plane design options, in order to shed light on what the best choices for

each particular SDN deployment are, according to its requirements.

In (LEVIN et al., 2012), the authors argue that SDN designers must be careful when

dealing with the consistency models employed. Specifically, they compare an eventually con-

sistent state design and a strongly consistent one. In their study, they identify and analyze

important trade-offs related to control application performance and the underlying consistency

model when the control of the network is distributed among different controller instances. By

experimenting with different versions of a load balancer application, they identify that network

functions that require fast responsiveness from the control application cannot be agnostic to the

state distribution features of the control plane.

The sequencing of updates on the forwarding state in an SDN network is also an in-

teresting area of research that can directly influence the design of the control plane. In (RE-

ITBLATT et al., 2012) the authors provide an extensive analysis on the problem of consistent

updates, arguing that the capacity of constructing abstractions provided by the SDN architecture

presents an excellent opportunity towards managing such updates. They present a simple model

of a general OpenFlow network, over which they construct mechanisms to guarantee consistent

updates in the network forwarding state. These mechanisms give the network the interesting

ability to transition from a currently employed policy to a final goal policy, while guaranteeing

that each packet traversing such network is only processed according to only one of them, and

never a mixture of the two. Further works attempt to deal with scenarios that consider a dis-

tributed control plane along with concurrency of policy updates (CANINI et al., 2015). They

also consider the possibility of failure of control instances during the update process. None of

these works on consitent updates, however, provides an extensive study of the impact that the

proposed mechanisms have in the operation of a real SDN network deployment. The network

would have to deal with challenges regarding flow table occupancy (since forwarding devices



20

would have to keep flow entries for both current and goal policies for a certain period of time)

and coordination among controller instances while updates take place in the data plane.

Another important consideration when dealing with geographical distribution of con-

trol is to determine the placement and number of controller instances to position over the net-

work topology. Authors in (HELLER; SHERWOOD; MCKEOWN, 2012) explored some of the

fundamental trade-offs to be considered in this decision, such as those involving controller-to-

switch latency and number of control instances required. The authors of (ZHANG; BEHESHTI;

TATIPAMULA, 2011), on the other hand, tackled the problem motivated by the resilience issues

involved in the split planes feature of the SDN architecture, attempting to guarantee connectiv-

ity between forwarding devices with at least one controller instance. (MULLER et al., 2014)

further enhances these results, by taking into account a variety of metrics such as controller

capacity, device demands and also the quantity of disjoint paths between controller instances

and forwarding devices.

Other works revisit some of the fundamental ideas of SDN, seeking the proper ways to

tackle the control plane design challenges. In (PANDA et al., 2013), a discussion about the

features of distributed control plane SDNs with regards to the CAP theorem is made, pointing

out that there are certain fundamental trade-offs between availability and the enforceability of

certain network policies. In (SCHMID; SUOMELA, 2013) the authors discuss functions that

an SDN controller typically implements from the standpoint of local algorithms, arguing that

the use of such algorithms can potentially result in greater efficiency gains for these functions.

The authors of (AKELLA; KRISHNAMURTHY, 2014) discuss some of the current flaws in

distributed control plane deployments. They illustrate concerns over the way that SDN net-

works are structured today and their current reliance on legacy protocols to function properly,

having serious consequences on network availability. Fortunately, they present some principles

from well-known distributed system protocols that can help SDN overcome these shortcomings.

Finally, in (CASADO et al., 2012) the authors discuss SDN limitations that surfaced over the

years, motivating an architecture in which principles from MPLS and SDN are combined to

construct a very interesting network structure. In such architecture, the core of the network is

made of switches that forward packets based on simple labels, whereas the edge implements

the complex functionality with distributed control instances and specialized edge switches.

There are also works that attempt to tackle the challenge of control distribution in a

theoretical manner. The authors in (MATNI; TANG; DOYLE, 2015) present an interesting

taxonomy between classes of network control architectures: distributed control architectures,

encompassing both control schemes that work only locally on network management and those
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that coordinate state globally among themselves; and central control architectures, regarding

standard centralized SDN approaches. The authors also argue that there is an inherent trade-off

between distributed and centralized approaches, pointing out that while a centralized solution

will provide more predictable response times (with higher latency in general), a distributed

solution can provide better local response times, while presenting more variable response times.

2.3 SDN WAN deployments

Privately-owned Wide Area Networks today need to be properly provisioned and de-

signed to provide value to businesses. The high costs of maintaining this kind of infrastruc-

ture, as well as the need for better means of extracting performance from it, have led Google

to develop their B4 network (S. Jain et al., 2013). This network is responsible for providing

connectivity between their globally distributed datacenters, thus representing an essential asset

to leverage the operation of the services they provide. In order to reach their goals, Google

leveraged the fact that they control every aspect of their networks, from applications running

in their servers to the Internet-facing edge, thus greatly benefiting from the predictability and

configurability properties in the design of their infrastructure.

The core of their solution to increase efficiency was to use a Software-Defined Network

architecture for control with a customized implementations of OpenFlow and Onix. This trans-

formation into an SDN WAN led to a series of advantages: (i) link utilization levels in B4

have increased close to 100% – usually, their WAN deployment would operate at 2 to 3 times

overprovisioning for their links to minimize packet losses and mitigate failures, incurring in

increased operation costs; (ii) the switching fabric could now be built by cheaper, simpler and

custom hardware, instead of the usual proprietary, high end expensive WAN routers; and (iii)

they could easily iterate over new versions of their central traffic engineering solution, as well

as deploy new functionality much faster than if they only used solution comprised of traditional

networking protocols.

Google also illustrated their bandwidth enforcement solution – BwE – for enabling effi-

cient utilization of their WAN infrastructure (KUMAR et al., 2015). They present the benefits

of their scheme, in which bandwidth control is performed all the way down to the applica-

tion level in individual servers. Google employed a hierarchical SDN approach to control their

networks at different levels of aggregation, going as far as modifying the networking stack of

individual machines in order to improve traffic classification and thus properly enforce priority

and provide better efficiency. The higher levels of BwE (e.g. Site and Cluster enforcers) are re-
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sponsible for monitoring aggregate flow statistics. Taking these into account, along with global

policy information, they redistribute bandwidth allocation among the lower levels. Bandwidth

enforcement is then applied at the kernel of individual machines. This scheme of bandwidth

control has also greatly contributed to the performance levels achieved with B4.

The scientific community has also invested on SDN solutions built specifically for the

WAN setting. For instance, (GEROLA et al., 2015a; GEROLA et al., 2015b) illustrate ICONA,

a network application built for ONOS to scale the network control plane in globally deployed

networks with multiple domains. It provides connectivity among different ONOS clusters –

each of those, while being comprised of multiple instances, positioned in at strategic points

of the network. The authors attempt to explore locality of control for events local to a clus-

ter region, while still allowing inter-region communication in the network as a WAN. While

promising, the results presented for tasks such as path rerouting and network discovery show

little improvements of using ICONA in these environments over a standard single ONOS cluster

approach. The experiments presented in (GEROLA et al., 2015a) were performed using an em-

ulated network environment with Mininet (LANTZ; HELLER; MCKEOWN, 2010), along with

the netem (Linux Foundation, 2015) tools to simulate the global dispersion effects of WANs.

Similarly to the efforts taken by Google with their B4 network, (HONG et al., 2013)

present SWAN, a centralized SDN solution to increase overall WAN utilization. The scenarios

explored by SWAN also comprise inter datacenter WANs. The approach taken with SWAN is to

leverage the use of central control to reach global optimal network provisioning and bandwidth

allocation. In order to do that, SWAN requires a small amount of free capacity reservation on

links to ensure that the reconfiguration processes will not produce congestion in the network.

Also, analogous to what is done with B4, SWAN is responsible for negotiating network resource

allocations with network services. The centralized nature of the solution allows for better rea-

soning over such allocation, as the state of the whole network is aggregated at a single entity,

which can then reason over shared link allocation and application scheduling. This is in con-

trast to more traditional distributed solutions such as MPLS Traffic Engineering, which greedily

allocate traffic based only on remaining shortest paths with enough capacity in the network.
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Table 2.1 – Summary of SDN control plane organizations described in the literature of control plane
design.

Organization Advantages Drawbacks Target Notable examples

Single Machine

Simpler design in
general; easier to
construct abstrac-
tions for control
applications; faster
prototyping

Poor resilience
compared to its
distributed coun-
terparts; becomes
a bottleneck under
high load; higher
latency to distant
network events

LAN scenarios;
control application
prototyping and
simulation

NOX; NOX-MT;
BEACON; Mae-
stro; Ryu

Specialized control
instance roles

Mitigates controller
overload; faster
response to local
events

Root controller
constitutes a SPF;
different control
implementations
for the differ-
ent levels of the
hierarchy

Datacenters with
locality of traffic Kandoo

Hierarchically
distributed

Devolved control
plane

(Presumably) sim-
ple adaptation of
forwarding de-
vices; faster local
response times;
mitigates controller
overload

Loss of visibility
by the controller
to certain events;
concerns with con-
sistency of updates;
devolution breaks
the separation of
concerns advocated
with SDN

Datacenter net-
works Difane; DevoFlow

Recursive SDN

Simpler, replicable
controller design;
good separation of
concerns through
levels of aggre-
gation, leading to
reduced controller
overload; good
response to local
failures; good
scalability potential

Delayed global
policy updates; di-
minished visibility
of lower level state
updates to higher
levels of the hier-
archy; difficulty of
devising a general
solution that can
be applied to the
different levels
of the hierarchy;
control network can
be cumbersome to
manage

Carrier networks;
global networks in
general

RSDN; RAON; R-
SDN

Fully distributed

Physically central-
ized

Scales to larger
numbers of for-
warding devices;
fast synchroniza-
tion among control
instances; smaller
variability in re-
sponse times due
to centralization;
can be deployed in
a dedicated cluster
(easier to maintain)

Increased latency
to distant network
events; SPF; par-
titions can cause
more impact in net-
work connectivity

Globally-deployed
networks (e.g.
WAN) and datacen-
ter networks

ONOS; BwE+B4
(custom Onix);
SWAN; Onix;
Hyperflow

Physically dis-
tributed

Faster response to
local events; bet-
ter resilience to par-
titions when com-
pared to its central-
ized counterpart

Higher variability
in network response
times; issues with
delayed synchro-
nization among
control instances;
need for managing
the synchronization
traffic

Globally-deployed
networks (e.g.
WAN)

DISCO; ONOS;
ICONA; Onix

Source: by author.
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3 CONTROL PLANE DISTRIBUTION STUDY

This study presents a novel analysis of SDN control plane distribution trade-offs in Wide

Area Network scenarios. The following research questions were fundamental to guide our anal-

ysis process of comparing clustering and geographical distribution of network control planes:

• How does the inherent propagation latency of WAN networks affect general communi-

cation in a distributed control plane setup? Since WAN infrastructures present a large

maintenance cost overhead, it is of interest of operators to keep utilization levels high (S.

Jain et al., 2013; KUMAR et al., 2015; HONG et al., 2013). To that end, guaranteeing

fast responsiveness from the control plane to network events and keeping to schedules

is of fundamental importance. While longer communication latency can severely affect

application performance, variability can limit link utilization efficiency;

• How does the control plane scheme adopted impact on intensive data plane commu-

nication? It is essential to determine the effects on data plane communication when the

control plane is under heavy load due to higher utilization demands from applications.

The situation becomes even worse in the WAN setting, as the intrinsic link delays can

severely affect the visibility of the control plane. This may lead to losses related to com-

promised control plane responsiveness, thus greatly diminishing efficient link utilization.

With this question in mind, we also attempt to understand how the control plane itself

behaves in these extreme situations (e.g., what happens to control traffic when demands

are higher?).

3.1 Evaluation environment

An SDN WAN testbed was developed in order to compare the centralized and distributed

control plane schemes experimentally. In this testbed, the control plane is realized by deploying

multiple ONOS instances, whereas the virtual forwarding devices and hosts are instantiated and

managed using the Mininet network emulation tool (LANTZ; HELLER; MCKEOWN, 2010).

Geographic scale effects of the network under test are made possible by making use of the Linux

netem (Linux Foundation, 2015) set of traffic control tools (such as queue disciplines), allowing

us to set up WAN properties such as link delays with great flexibility. These tools are commonly

used in network emulation evaluations (YAN; JIN, 2015; GEROLA et al., 2015b), and their use

is supported by Mininet. In order to facilitate deployment of new control instances, we leverage
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the use of Docker containers (Docker, Inc., 2015). These containers are provided with their own

isolated process and file system namespaces, and can be easily customized to our needs. For

instance, this allows us to make sure that each container only keeps the essential set of tools

(e.g. Java runtime environment, ONOS) to minimize system overhead. Also, the architecture

of the Docker management system helps enabling the automatization of the experiment process

through scripting.

Figure 3.1 – A possible instance of our testbed architecture, illustrating its components. ONOS in-
stances run inside Docker containers, and interact with the underlying data plane infrastructure through
a direct link with certain forwarding devices. An OVS bridge is used to allow synchronization among
instances.

Mininet

Docker container
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Docker container

ONOS
OVS 

Bridge
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Host

Host
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Source: by author.

The topology employed as reference for our study is extracted from the Abilene Net-

work1. It spans 11 nodes throughout the United States territory. We collected topology infor-

mation from the Internet Topology Zoo repository (KNIGHT et al., 2011). Such information

allows us to both set node connectivity and calculate propagation delays in the topology links.

Controller instance positions have been calculated as defined in (MULLER et al., 2014).

The methodology described in this work provides the best controller-to-switch mapping in terms

of diversity of disjoint paths between the two types of entities, thus favoring network resilience

– a frequent argument towards implementing geographical control distribution in WANs. Fig-

ure 3.3 illustrates the network topology, along with the resulting switch-to-controller map and

1Abilene has been recently upgraded into the Internet2 (The Internet2 Community, 2015), having now one less
node in comparison
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the instance positions. The best controller placement for this topology with regards to net-

work resilience corresponds to two instances, one located in the Chicago region (node S1) and

another in the Kansas City region (node S7).

3.1.1 Open vSwitch

Open vSwitch is a project that develops and maintains a production quality open source

virtual switch implementation. It is compliant with many different networking technologies,

such as OpenFlow, IPv4 and STP, and also provides support for many features such as VLAN

tunneling and network monitoring via NetFlow and sFlow. It also allows for switching to be

performed either in kernel space (enabling performance of switching) or in user space (lever-

aging flexibility of user space software). The design of OVS aims at network virtualization

environments, where it provides connectivity between VMs (Open vSwitch, 2013; PFAFF et

al., 2015).

In our experiments, the OVS nodes are configured to communicate with their controllers

using the in-band mode. This mode allows southbound control traffic (i.e. OpenFlow messages)

to be handled by network switches, in contrast with the more common out-of-band scheme.

Thus, it does not require a complete separate control network infrastructure to be instantiated.

In OVS, this scheme is implemented by making use of high priority flow rules in the switch,

which are handled exclusively in the data plane in an L2-switching fashion – thus, the control

plane of the network has no control over it. These rules allow for basic network discovery and

forwarding functionality for OpenFlow messages, providing a bootstraped environment to allow

network discovery and management by the network controller.

3.1.2 Mininet

Mininet (LANTZ; HELLER; MCKEOWN, 2010) is a network emulation tool that al-

lows researchers to perform tests in custom network topologies in a simple manner. It works

by virtualizing and isolating multiple network stacks, one for each node in the emulated net-

work (with the exception of network switches – we discuss this matter further ahead), as well

as establishing virtual links between their interfaces. The instantiation process is constructed to

ease the deployment of network emulations by requiring just a few steps of configuration. Sub-

systems other than the network stack are shared among the different nodes, such as the process
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space and the filesystem. Since Mininet does not employ fully-fledged hardware virtualization,

it allows for much better resource utilization and performance than in the case of complete

virtual machines, which require the use of multiple copies of the system kernel.

To provide connectivity among nodes, Mininet makes use of Open vSwitch switches,

in which they are referred to more generally as network bridges. Since Mininet is primarily

configured to run on out-of-band scenarios, it leverages the creation of all bridges under the

same network stack of the host machine. This allows the OVS bridges to easily reach an external

controller through the system’s loopback and/or gateway interfaces. This setup, however, does

not fit our experiment scenario at all, as it also potentially allows control messages to leak

among the datapath bridges and take routes which would be infeasible in real scenarios. Thus,

we need to isolate each OVS bridge within its own network stack namespace, in order to ensure

that the datapath will behave properly regarding the OpenFlow message exchanges. In order to

do that, we leveraged the already isolated network stacks for the Mininet hosts, and deployed

the network switches as different instances of OVS, each running on its own host. We make use

of a methodology similar to that employed in (Gregory Gee, 2014).

3.1.3 ONOS

ONOS (P. Berde et al., 2014) is a control platform that, similarly to other projects (e.g.

OpenDaylight (MEDVED et al., 2014)), attempts to provide a complete, open-source solution

for network control. Built on top of Apache Karaf (Apache Software Foundation, 2015b), it al-

lows for a modular composition of network applications that share the same GNV. The platform

is responsible for retrieving and constantly updating information extracted from the data plane,

and sharing such information with control applications that are built on top of it. Furthermore,

it provides operators with the ability to distribute mastership of datapath forwarding devices

among multiple separate control instances, allowing the control plane to meet their scale-out

needs. In our experiments, we run ONOS with the minimal set of applications required to

allow basic control plane operations, such as ARP message management, network discovery

(with LLDP packets), control instance clustering (to enable synchronization among control

instances) and reactive forwarding (basic forwarding mechanism based on packet-in events).

The applications we activate – other than the builtin ones – are org.onosproject.config (for net-

work configuration), org.onosproject.drivers (for certain device drivers), org.onosproject.fwd

(for the reactive forwarding behavior), org.onosproject.openflow (to enable OpenFlow connec-

tivity providers) and org.onosproject.proxyarp (for ARP peering).



28

3.1.4 Environment specifications

The testbed runs on a virtual machine with an Intel(R) Xeon(R) CPU @ 3.50GHz pro-

cessor, Ubuntu (64 bits) 14.04.2 (kernel 3.16.0-37-generic x86-64) operating system and 6553

MB of RAM. The hypervisor machine runs VirtualBox 4.3.6 to manage the VM on a Win-

dows 7 64-bit operating system. Inside the testbed, we use Open vSwitch 2.3.90, ONOS 1.3.0

SNAPSHOT, Mininet 2.2.1, Docker version 1.6.0. and OpenFlow 1.3.

3.1.5 Booting procedure

In order for the system to behave properly during the experiments, a series of steps must

be taken to ensure proper configuration and stability, benefiting the analysis process and mini-

mizing eventual noises in our results. First, the initialization starts by bringing up the Docker

containers with images that have ONOS pre-installed. They require some time to boot up,

since ONOS by default fetches its packages using Maven bundles (Apache Software Founda-

tion, 2015a), installs and then configures those packages (we override that process by servicing

packages locally, thus ensuring the exact same environment throughout our experiments). Sec-

ond, the control instances need to be clustered together. After that process has finished, we can

instantiate the Mininet network nodes (switches and hosts) and connect the control instances to

them. In order to avoid an ARP storm – since, at first, the OVS switches are not connected with

their controllers and run in L2-switching mode – we need to start them with STP enabled. Over

time, the ONOS instances will recognize the topology. ONOS will not be able to recognize the

disabled ports through its topology discovery mechanism at first as we started the switches with

STP enabled, and thus not all links will be available.

Once the system has stabilized, we move on to disable STP for each OVS switch in

our topology. As this process runs, we see that ONOS manages to recognize the previously

inactive links. Next, we reassign the mastership roles among ONOS instances (according to the

mapping mechanism provided by (MULLER et al., 2014) for the Abilene topology). Finally,

we make sure that ONOS has recognized each one of the hosts in the network by sending ICMP

echo requests among them utilizing the ping tool. This makes our testbed experiments focus on

performance after the discovery process, aiming at evaluating the actual management process

involving the control plane.
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3.1.6 Assumptions

We based our experiments around the following assumptions and configurations:

• The synchronization links between control instances are dedicated. This means that syn-

chronization traffic is not handled by the datapath elements – instead, we instantiate an

individual, separate control network switch to handle traffic among control instances in a

bridged configuration. When the instances are geographically separated, we apply delay

to their links using traffic control according to datapath topology constraints. In real dis-

tributed control plane WAN scenarios, it is expected that the instances would instead take

a share of the capacity of the data network to synchronize;

• The network uses an in-band scheme for OpenFlow control messages. Given the geo-

graphic scale of the scenarios we are considering, it seems reasonable use the in-band

mode from OVS. Thus, there is not a complete control network dedicated to provide con-

nectivity between control instances and forwarding devices. The cost of maintaining such

separate network in a real production setting, with extra links and devices dispersed over

large regions, would be prohibitively large;

• The control instances run a reactive forwarding application. The focus of the present

study is on understanding how fast the control plane reacts to certain network events for

each of the configurations under test. We would like to determine how the stress on the

control plane would affect network-wide operations in each scenario defined. We leave

the comparison between centralized and distributed control planes in proactive network-

ing scenarios – such as network resource provisioning and allocation – for future work.

3.2 Topology scenarios

The topologies employed in our evaluation have been chosen according to how their

characteristics would contribute to our analysis. We considered the ability to provide generaliz-

able results as well as lead to findings that would be representative of real world scenarios. This

way, we defined two types of toplogies for our evaluation, which are presented below.
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3.2.1 Simple Linear Topology

First of all, we wanted to isolate particular behaviors from each kind of control organiza-

tion under testing. Such requirement led us to devise a simpler, general topology, allowing us to

identify and capture important features. Figure 3.2 illustrates the topology in question, referred

to as simple linear topology throughout the document. In this topology, we limit the number of

control instances, as well as the number of forwarding devices, to 2. Each forwarding device

has two hosts connected to it. The idea behind these design choices was to mimic, with a sim-

plified, generic scenario, two types of interactions: local interactions among co-located hosts

(hosts connected to the same switch) and global interactions between geographically separated

hosts (each host connected to a different switch). Two control instance distribution schemes

have been employed: one in which both instances are connected to the same switch (S1, in this

case) – centralized – and another where each instance would be located in a different region and

connected to a different forwarding device – distributed.

For this scenario, we varied the propagation delay imposed in the link between the for-

warding devices in order to better understand the effects of a WAN scenario on each control

plane scheme under evaluation. In both control plane schemes evaluated, there is a synchro-

nization channel connecting the forwarding devices (using an OVS bridge), but only in the

decentralized case we apply delay to that channel. In the centralized case, we expect to measure

lower latency for local interactions that happen closer to the control instances (e.g. h1−h3 –

please refer to Figure 3.2), whereas both global interactions (e.g. h0−h1) and local interactions

that occur far from it (e.g. h0−h2) should present worse results, but lower variability in general.

As for the decentralized case, we expect to obtain highly variable latency results (mainly due

to state synchronization issues), with high latency still. However, in the case of local interac-

tions, given a proper controller-to-switch mapping, we expect to see low latency in interactions

for both regions of the network, as each control instance would be able to simply configure a

neighboring forwarding device without as much need for synchronization.
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Figure 3.2 – Centralized (top) and distributed (bottom) cases for the simple linear evaluations. Notice
that, in the centralized case, both control instances are located in the S1 region.
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Source: by author.

3.2.2 Abilene Topology

The second topology, Abilene, is closer to a real world WAN scenario. It is repre-

sentative of current WAN deployments, mostly in terms of global scale. There, a distributed

control plane deployment would be, presumably, recommended for enabling resilience and

lower-latency management. The topology map, illustrated in Figure 3.3, is comprised of 11

nodes located in strategic positions throughout the United States territory. It is characterized

also by having three internal loops (allowing path diversity among nodes) and a diameter of 5.

We leveraged information obtained from (KNIGHT et al., 2011) to determine node connectivity

and link latency for this topology.

By making use of the controller positioning and controller-to-switch mapping method-

ology from (MULLER et al., 2014), we can determine that the ideal number of controllers for

this topology is 2 when using a distributed control plane scheme. These two controller instances

are each located at S1 and S7 regions. The resulting mappings are also illustrated in the figure:

the controller positioned at S7 is master of 6 forwarding devices in the topology (S5, S6, S7,

S8, S9, S10), and the one located at S1 controls the remaining 5 (S0, S1, S2, S3, S4).

For the sake of simplicity, we compare this distributed scheme scenario with two cen-

tralized scenarios: one in which the two instances are located at S7 and another where both

are positioned at S1 – the same locations used in the distributed case. This way, we intend

to identify cases in which the separation has provided any kind of advantage over the central-
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ized scheme. We could make attempts to analyze the results of centralized scenarios at various

other locations of the network, not being restricted to S1 and S7. However, the whole process

would take a long time to finish. With the current conditions, it takes about 22 hours to properly

evaluate a given scheme in this topology – not to mention the laborious procedure of bootstrap-

ping the testbed. Also, the process of making a more extensive analysis wouldn’t provide us

a much more significant contribution towards understanding the trade-offs among the different

positioning schemes.

Figure 3.3 – Abilene network topology map. Color key indicates the control mastership mapping of
forwarding devices. Control instance positioning locations are highlighted at S1 and S7.
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3.3 Experiments

In the following sections, we describe the methodology employed in our experiments to

compare physically distributed and centralized control planes. They are executed considering

an already bootstrapped emulation environment as precondition (as discussed in Section 3.1.5).

Section 3.3.1 describes our metric on data plane latency involving control plane reactivity. Sec-

tion 3.3.2, on the other hand, introduces our second metric, which focuses on determining the

effects of the employed control plane configuration on intensive data plane interactions.
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3.3.1 Round-Trip Time between hosts

Our firs metric is a measure of the Round-Trip Time between hosts of the topology under

testing for each evaluated control plane organization. We use this evaluation metric both in the

Abilene and the simple linear topology scenarios. With this metric – which is tightly associated

with our first question – we are interested in assessing the total Round-Trip Time between each

pair of hosts in the network when forcing the control instances to reactively interact with the

forwarding elements to forward packets. By doing that, we expect to better understand the

responsiveness of the underlying controller scheme whenever it is required for the control plane

to act on datapath events.

For each pair of hosts, we perform 30 repetitions of ICMP echo requests using the ping

tool. These requests require the forwarding devices between to interact with their controllers,

in order to reactively set up a path that allows connectivity to be maintained among hosts.

After each RTT interaction measured, we wait for 25 seconds. That is more than enough time

for the control plane instances to clear the forwarding table entries related to the ICMP traffic

in the forwarding devices (i.e. waiting until an OpenFlow idle timeout expires) and stabilize

in the standard ONOS implementation. Given these conditions, we assume that each of the

interactions is independent of the others.

In the first topology – the simple linear one, Figure 3.2 – we calculate the RTT between

pairs of hosts with a varying delay parameter for the link between the forwarding devices. In

the centralized case, both control instances are within the same location (S1), so there is no

need for applying delay in their synchronization links. We do not attempt a different controller

location for this scheme such as S0, since we would fall into a symmetric case. In the decen-

tralized case, each instance is co-located with its corresponding forwarding device. We apply

exact same delay as the one between the datapath switches to their synchronization channel.

The controller-to-switch mapping is the same in every situation: instances in the distributed

case are masters of their neighboring switches, whereas each instance in the centralized case

controls either the distant switch (S0) or the local one (S1). We vary the delay parameter lin-

early between 0ms and 20ms, with steps of 5ms in between (the 0ms value corresponds to an

ideal case, where no propagation delay would influence the testbed). In order to facilitate the

evaluation and analysis processes, we chose to limit ourselves to the following representative

pairs of interactions (refer to Figure 3.2 for clarification): h0−h1 (global interaction), h0−h2

and h1−h3 (local interactions, each at a different region of the network).

As for the Abilene topology, we calculate the RTT for every combination of hosts in the
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network. The network link propagation delays were pre-computed according to the properties

of the actual network. Since there is one host connected to each forwarding devices of the

topology – 11 hosts in total – there are 55 pairings, or 110 possible interactions in total (i.e.

considering (src : h0, dst : h1) and (src : h1, dst : h0) as two separate interaction cases).

In the decentralized control plane evaluation for this topology, we consider the delay between

control instances to be sum of the propagation delays of the shortest path between S1 and S7, as

would be the case in a real world scenario where the synchronization traffic shares link resources

with the data plane elements.

3.3.2 Host throughput

The second metric is a measurement of the throughput among hosts in the data plane

when the control plane is required to reactively act on their interactions. The main goal of this

evaluation is to obtain a notion of how the host throughput is affected for each type of control

plane scheme. We once again make use of different values of a delay parameter that repre-

sents WAN delay propagation effects. We use this metric in conjunction with the simple linear

topology only (Figure 3.2). This provides a simple, but clear way of investigating the answer to

the second question we posed, related to measuring the effects of the control plane distribution

on regular network operation. For further guidance in that effort, we also measure the over-

all control traffic throughput in both forwarding devices and in the controller synchronization

channel.

In the experiment that uses this metric, we limit our evaluation to global interaction

throughput between h0 and h1 – both in the outgoing and incoming directions for each. We

generate traffic originating from both of the hosts, and measure that traffic for a window of 100

seconds. The hosts run each a script that generates UDP packets targeted at the IP address of

one another. The traffic that is generated produces packets scheduled according to a Poisson

process with mean interval of 10ms. The sizes of the packets vary exponentially around a

mean of 1024 bytes, upper-bounded by the maximum Ethernet payload size of 1500 bytes. The

seeds used in the traffic generation are different for each host, but the same in every scenario

evaluated. Also, we perform IP spoofing in the source address of the packets, so as to force the

controller to constantly interact with flow setups. This experiment is built to simulate a highly

demanding situation, where multiple events need to be handled by the control plane in a short

period of time. There is no need for a socket handler for incoming UDP packets in either host,

as we compute those results directly on host interfaces using tcpdump. Similarly to the first
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metric with the same topology, we vary the link delay parameter for values from 5m to 20ms of

propagation delay, with steps of 5m (we don’t consider the ideal case of no delay for this host

throughput metric).
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4 RESULTS

In this chapter, we present the results obtained in the SDN WAN experiments intro-

duced previously. As stated in Chapter 3, we aim at answering the following questions: (i) how

does the inherent propagation latency of WAN networks affect general communication in a dis-

tributed control plane setup? and (ii) how does the control plane scheme adopted impact on

intensive data plane communication? Towards this end, Section 4.1 addresses the experiments

using the first metric (round-trip time between hosts), which attempts to answer our first ques-

tion, related to control plane responsiveness in reaction to network events. These results have

been obtained both for the Abilene and simple linear topologies. Section 4.2, in turn, addresses

the second experiment metric (host throughput), seeking to understand the effects of control

plane behavior under intensive load on network traffic.

4.1 Control Plane Responsiveness

This section presents our findings for the first metric of our study. It is separated accord-

ing to each the topology employed in our analysis: Section 4.1.1 attempts to identify general

results and principles by analyzing the experimental results over the simple linear topology. Se-

tion 4.1.2 moves this discussion towards real world WAN deployments, providing results on the

performance of distributed and centralized globally deployed control planes for these scenarios.

4.1.1 Simple Linear Topology

In the simple linear topology (shown in Figure 3.2), we want (i) to understand how

latency over a single hop can affect communication between hosts, considering a distributed

control plane (where latency impacts the synchronization of control instances); and (ii) to iso-

late and analyze the forwarding behavior of both local and global traffic under each type of

controller scheme. We show the results in Figures 4.1 and 4.2. More specifically, Figure 4.1

illustrates our findings for the RTT for global interactions in the topology, whereas Figure 4.2

focuses on the the local interactions. These figures present the mean RTT values between each

pair of hosts, in both directions, for different values of a varying link delay parameter.

As expected, Figure 4.1 indicates that the effective data plane latency for global inter-

actions, involving hosts in different regions of the network, grows linearly with the increase
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in delay between those regions. This happens with both centralized and decentralized control

plane schemes. The result also indicates that the disparity between latencies in the two schemes

becomes more significant as the link delay increases, favoring the centralized one. In the case

of 20ms of link delay, the increase of latency from the centralized to the decentralized case is

of 61%. Even though this is a result for an extreme case (very large single link delay), it helps

us to illustrate the geographical scalability effects of each scheme under evaluation.

Figure 4.1 – Mean latency with a varying link delay parameter for global interactions in each control
plane scheme (Simple Linear Topology).
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To gain a better understanding, we look at the interactions for the centralized case for

this point. First, host h0 sends an ICMP echo request to forwarding device S0. Since it does not

have a rule in its forwarding table matching the incoming packet, it sends a packet-in message to

the network controller (located at the S1 region) using the inter-region link. After about 20ms,

this packet arrives at S1, which in turn sends it to the controller. The controller computes

the forwarding state update that needs to be performed at S0 in order to allow similar packets

to flow in the same direction. Then, it sends both a flow-mod and a packet-out OpenFlow

messages back to S0 (20ms more). Once S0 receives those messages, it immediately installs

a forwarding rule and sends the packet to S1. S1 then performs the same interaction as the

one that happened between S0 and the controller (recall that the control plane runs a reactive

forwarding application), but this time not being limited by link delays. An analogous process

occurs for the corresponding ICMP echo reply, resulting in at least 120ms of additive delay due
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to the inter-region link. Thus, the latency measured at the 20ms delay point for the centralized

case (131.06ms) is consistent with this setting (without considering the processing overhead).

This is in contrast with the decentralized case. Should the control instances be oper-

ating completely independently of each other, the total response time would potentially drop

to around 40ms (without processing overhead), as each forwarding device is co-located with

its respective controller. However, the coordination among the control instances using their

synchronization channel proved to be the major drawback of this approach, bringing the mean

perceived latency to 211.36ms. There were a few cases in which this measured latency was in

the order of 175.0ms, indicating a variability that depends on the synchronization state in which

the instances are when the requests arrive at them. These observations suggest that ONOS em-

ploys strong consistency in network updates.

Figure 4.2 – Mean latency with a varying link delay parameter for local interactions in each control
plane scheme (Simple Linear Topology).
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Next, Figure 4.2 presents the results for local interaction latencies. We can see that the

two local interactions involving the decentralized control plane yielded approximately the same

response times, while interactions in the centralized case presented different response times.

This happened because communication between h1−h3 did not involve the inter-region link,

in contrast to communication between h0−h2 and all communication of the distributed case.

Notice that the measured latency for the distant RTT interaction (Cen-h0>h2) was smaller in

this case when compared to the global interaction from the previously presented results (Cen-

h0>h1), at about 92.2ms. That happens because the sequence of events to complete the RTT
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interaction in this case involves less utilization of the inter-region link. In the decentralized

case, the synchronization overhead was quite large like in the global interaction results from

before. This indicates that, even for events that could be easily handled by a single controller

instance, they still have to coordinate before taking action.

4.1.2 Abilene Topology

With this experiment, we are interested in understanding how some of the effects ob-

served in the simplified case study with the simple linear topology manifest themselves in an

actual WAN deployment scenario with the Abilene topology (Figure 3.3). In this topology, we

do not find propagation delays as large as those used in the previous experiment, being limited

to around 1.71ms in the longest link. However, due to the larger number of forwarding devices,

along with the presence of more links, even more interactivity takes place between the control

and data planes of the network. We compare three positioning cases for this topology: one

distributed case in which the two deployed instances are positioned each at S1 and S7 regions,

and two centralized cases where both instances are either at S1 or S7.

Figure 4.3 – CDF of mean interaction latencies for each scenario.
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Since the number of interactions evaluated is quite larger for this network, we leverage

the use of CDFs to display these results. Figure 4.3 presents the CDF for the mean RTT values

measured among hosts in this topology. It is noticeable that having the control plane centrally

clustered around S7 produced, in general, lower mean latency results than the other schemes.

The highest mean value obtained in this case stands at 112.5ms, whereas the ones obtained with

a centralized scheme at S1 and distributed among S1 and S7 topped at 130.33ms and 136.20ms

respectively. We recognize, however, that the decentralized and centralized at S1 cases present

quite similar results for this visualization. Also note that, with this plot, we are comparing all

mean results in general, without more specific information for analyzing individual host pairing

interactions.

Figure 4.4 – CDF of standard deviation of interaction latencies for each scenario.
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Next, we analyze the variability of RTTs measured on each scheme. Figure 4.4 illus-

trates the standard deviation CDF for the same experiments (recall that each interaction is re-

peated 30 times). This time, we see that having the control instances centralized at S1 provides

less variability in general – thus, it also tends to be more predictable than the other two schemes

for most interactions in the data plane. While S7 does not fare very far behind in up to 90% of

the cases when compared to S1 (in more than 80% of the interactions their standard deviation

is below 10ms), we can see that the variability present in the decentralized case is amplified,
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since control instances need to coordinate between themselves. Recall from the previous exper-

iments with the Simple Linear Topology that increasing delays in the synchronization channel

can greatly diminish overall data plane latency when considering the control plane overhead in

the interactions.

Figure 4.5 – CDF of the 95th percentile of interaction latencies for each scenario.
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Taking individual pairs of hosts and comparing the mean RTT between all evaluated

schemes, we find that the scheme where the control instances are located at S7 provides the

lowest mean latency among the three for about 76% of the possible interactions. There was no

pair for which the decentralized scheme performed better than the centralized ones. For the rest

of the interactions (24%), S1 provided better mean latency than the other two. By analyzing the

results closely, we see that the positioning scheme in which we centralize the control instances

at S1 does better than the others mostly in cases where either the origin/destination node is much

closer to the S1 forwarding device when compared to S7 (e.g. from h0, h1 and h10). Since

S7 is located at a central region of the topology and connects to more forwarding devices, it

benefits from that in terms of the overall latency to all other forwarding devices when compared

to S1, which is located at the periphery of the network.

Moreover, Figure 4.5 illustrates the worst-case scenario latencies measured throughout

the experiments – taking only the 95th percentile of the sample from each interaction, in order
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to discard outliers. This result emphasizes the differences between the three control plane place-

ment schemes, showing that the decentralized control plane provides the worst performance of

the three for the RTT metric for most situations. The highest 95th percentile latencies measured

for each of the schemes were 152.5ms, 131.0ms and 176.5ms for the S1 and S7 centralized

schemes and the decentralized one, respectively.

4.2 Effects of Intensive Data Plane Interactions

This section presents the final results for our control plane distribution study. Given

the nature of the metrics employed in this experiment, we decided to explore them only on the

simple linear topology (Figure 3.2), as it enables us to better visualize the underlying network

behavior. We believe this type of isolated behavior would be more difficult to extract if we

employ the exact same methodology on topologies such as Abilene (Figure 3.3), so we leave

this analysis to future work. Section 4.2.1 presents our results for the second experiment, and

also concludes this chapter.

4.2.1 Simple Linear Topology

In this experiment, we analyze the impact of control distribution in the performance

perceived by the data plane elements. In the case of this analysis, we limit our evaluation to

global interactions occurring between the h0 and h1 hosts in the simple linear topology. The

link delay parameter is varied between 5ms and 20ms, with steps of 5ms in between. Hence,

we are focusing on how each control plane scheme behaves in face of the decreasing network

visibility caused by the increased delay among regions and how each control scheme is affected

by it.

Summarizing the experiment overview from the previous chapter, we generate UDP

traffic in both h0 and h1, and make them target each other using spoofed source IP addresses.

This forces the forwarding devices to constantly perform packet-in requests to their respective

control instances in order to forward the packets towards the hosts. Should the control plane

not respond in time due to network delay and control mechanism constraints, we will observe a

drop in the ratio between data that was originally sent and what was effectively received in the

destination host. The duration of this experiment is 100s for each scenario combination (control

plane organization and link delay).
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Table 4.1 – Resulting mean aggregate traffic loads measured in forwarding devices, synchronization
bridge and network hosts for varying sizes of the propagation delay of the inter-region link (values in
kbps).

Scheme Entity 5ms 10ms 15ms 20ms

Centralized

S0 395.24 396.88 397.91 397.74
S1 1166.01 1171.03 1169.83 1168.29

synch 1277.88 2269.18 1716.17 1716.99
aggrTX 78.23 78.60 78.34 78.65
aggrRX 77.89 78.41 78.29 78.59

Distributed

S0 716.68 707.49 710.88 606.12
S1 717.38 709.50 709.06 694.24

synch 1075.81 1003.64 954.93 781.95
aggrTX 78.46 78.43 78.17 77.60
aggrRX 78.33 78.31 77.87 72.14

Source: by author.

Table 4.1 presents the aggregate results for the experiment. For each control plane

scheme analyzed, we display the aggregate mean throughput measured in each element of the

network. In the case of forwarding devices, we measure this throughput by collecting their

internal forwarding table counters for control messages (considering both OpenFlow messages

relayed due to in-band control and direct exchanges with the control instances). As for syn-

chronization messages among control instances, we measure the counters directly from the

synchronization bridge – synch rows. We monitor the network interfaces of both hosts h0 and

h1 using tcpdump to filter the UDP packets involved in the interactions. That is necessary as the

controller constantly floods the network with LLDP packets for network discovery. We keep

statistics on sent and received bytes of UDP packets by hosts. Also, we sum values of the same

type to simplify their presentation (e.g.: h0 TX + h1 TX = aggrTX in the results table).

The results show that the throughput observed at the aggregate host traffic in the central-

ized scheme presented little change for varying link delay values. In the decentralized case, the

hosts presented a slight degradation in effective aggregate throughput for the 15ms and 20ms

cases. Even though the traffic rates between hosts were not aggressive, the fact that each packet

sent has a different source IP address required the control plane to constantly interact with the

data plane throughout the exchange process. This behavior led to packet loss across all tested

scenarios. Interestingly, packets sent specifically from h0 to h1 in the centralized scenario pre-

sented no misses in delivery at all for every value of the delay parameter, in contrast with traffic

going the opposite way. Conversely, in the decentralized case with the delay parameter set to

20ms, we measured data losses of 12.74% in bytes for interactions starting at h1 to h0.
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The results for the centralized control plane synchronization traffic indicate higher rates

of this kind of traffic than those from the decentralized case. We can see from the results that

higher delays in the synchronization channel not only imply in delayed network view, but can

also impact in the available throughput in that channel for the decentralized case. On the other

hand, notice the disparity of load in the switches for each of the schemes evaluated. In the

centralized scheme, the average load on the S1 forwarding device was way higher than that

of S0 (almost 3 times as large), as all OpenFlow traffic targeting S0 needs to be forwarded

through it. This behavior happens even though the traffic being originated in either region is of

the same nature. Meanwhile, the control traffic is balanced evenly among forwarding devices

in the decentralized case.
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5 CLOSING REMARKS AND FUTURE WORK

This work presented a novel study which focuses on understanding the effects of control

plane distribution in WAN settings. Our contributions to this area are, among others: (i) we

introduce the motivation for the problem of control plane distribution effects in WAN networks;

(ii) we develop a new testbed configuration, using production-quality software components,

aiming for emulation of the effects of globally deployed networks; and (iii) we provide results

that allow for a comparison between centralized and distributed control plane schemes in WAN

networks.

Our experimental results indicate that, despite the potential benefits of globally dis-

tributed control planes in terms of resilience, their responsiveness to network events is not

necessarily better than that of a centralized approach. The increased latency between control in-

stances incurs in effects that range from larger and more variable latency from the control plane

to network events to diminished data plane throughput. These effects are caused mainly due to

the constant need for synchronization among instances, and puts into question the feasibility of

reactive distributed control planes with strong network state consitency constraints.

We also identified that distributed control planes allow for the control communication

over the network infrastructure to be more balanced among forwarding devices when using in-

band control. This is in contrast with a centralized control plane, which behaves as a focal point

for all control traffic generated in the network. Still, the need for a synchronization channel to

be maintained among the globally separated instances poses a challenge to the performance and

reliability of distributed control planes.

Although this study provides the initial insights on globally-deployed control plane dis-

tribution trade-offs, there are plenty of open research fronts that can explored in this area. For

instance, we have not devised a comparison between centralized and distributed control planes

in proactive control approaches, such as in those involving network resource provisioning. Also,

it was identified during this study that the current Open vSwitch in-band scheme implementation

does not encompass multipath alternatives for guaranteed delivery of control packets, greatly

harming the deployability of resilient distributed control planes over it. Finally, we identified

research potential in analyzing the trade-offs discussed in this study in other types of globally

deployed topologies. We leave these issues and open research questions to be explored as future

work.
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