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ABSTRACT

Sensor networks have become ubiquitous, ranging from personal mobile phones to smart grids,

and are producing each time higher amounts of data, in ever shorter time intervals. Distributed

event stream processing systems, in its turn, are systems that help us to parallelize not only the

processing, but also the input of multiple data streams into a single processing engine, providing

us capabilities to produce near real-time insights based on multiple data streams, as well as make

decisions more quickly.

Joining together these ideas, in this work, we propose an architecture based on open source

tools that represent the state-of-the-art in distributed event stream processing systems. In this

manner, we aim to provide a platform for processing large scale sensor network data, focused

on data profiles of smart grids.

To evaluate the feasibility of a system of this kind, we use a dataset based on a sensor network

for smart energy consumption meters, in order to generate load forecasts based on this dataset.

In the end, we evaluate the proposed architecture regarding to processing scale and latency is-

sues. Achieving the conclusions that it is possible to build a distributed processing platform,

for processing of sensor network data flows coming from smart grids, as it was designed on this

work. The platform is able to process up to approximately 45K messages per second using 8

processing nodes, while providing stable latencies for micro-batches above 30 seconds.

Keywords: Event Stream Processing. Distributed Processing. Sensor Networks. Smart Grids.

Internet of Things. Cloud Computing.





Processamento Distribuído em Quase Tempo Real de

Fluxos de Dados de Redes de Sensores para

Redes Inteligentes de Energia

RESUMO

Redes de sensores tornaram-se ubíquas, indo desde telefones móveis pessoais até redes inte-

ligentes de energia, e estão produzindo cada vez maiores quantidades de dados, em intervalos

de tempo cada vez menores. Sistemas para o processamento distribuído de fluxo de eventos,

por sua vez, são sistemas que ajudam-nos a paralelizar não somente o processamento, mas

também a inserção de múltiplos fluxos de dados em um único mecanismo de processamento,

proporcionando-nos capacidades para produzir análises em tempo real baseadas em múltiplos

fluxos da dados, assim como tomar decisões mais rapidamente.

Unindo essas idéias, neste trabalho, propomos uma arquitetura baseada em ferramentas de có-

digo aberto que representam o estado-da-arte em processamento distribuído de fluxo de eventos.

Desta maneira, nosso objetivo é oferecer uma plataforma para o processamento de dados em

redes de sensores em grande escala, focada em perfis de dados de redes inteligentes de energia.

Para avaliar a viabilidade de um sistema desse tipo, nós utilizamos um conjunto de dados ba-

seado em uma rede de sensores para medidores de consumo de energia inteligentes, a fim de

gerar previsões de carga baseadas nesse conjunto de dados. No final, nós avaliamos a arqui-

tetura proposta com relação à escala de processamento e problemas de latência. Alcançando

as conclusões de que é possível contruir uma plataforma de processamento distribuída, para o

processamento de fluxos de dados de redes de sensores provenientes de redes inteligentes de

energia, como foi projetado nesse trabalho. A plataforma é capaz de processar até 45 mil men-

sagens por segundo utilizando 8 nós de processamento, enquanto provê latências estáveis para

micro-lotes acima de 30 segundos.

Palavras-chave: Processamento de Fluxo de Eventos, Processamento Distribuído, Redes de

Sensores, Redes Inteligentes de Energia, Internet das Coisas, Computação em Nuvem.
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1 INTRODUCTION

In Section 1.1 we introduce the motivation behind this work. In Section 1.2 we describe

our objectives when we started this work. Finally, in Section 1.3, we describe an outline of the

following chapters.

1.1 Motivation

The internet has made a significant impact in our economy and society by offering a

remarkable networking infrastructure for communication. In global information and media

sharing, the internet has been a major driver. It is now turning each time more ubiquitous,

mainly due to the arrival of wireless broadband connectivity at each time lower costs (WEISER

et al., 1999).

Advancements in technologies related to data collection, such as embedded devices and

Radio-Frequency Identification (RFID) technology, had let to an increase in the number of de-

vices connected to networks producing data, leading to the advent of Wireless Sensor Networks

(WSNs). The continuation of this trend is Internet of Things (IoT), where the web provides the

medium to the objects interact between themselves (ASHTON, 2009).

Although the proliferation in connectivity and pervasivity of data produced by sensors

provides large benefits for everyone, it also produces large challenges related to data processing.

The datasets produced by IoT sensors represent a challenge in the data velocity aspect of big

data, which we need to overcome in order to guarantee that data will be processed and we will

be able produce insights for organizations in the expected time spans (SAGIROGLU; SINANC,

2013a).

Furthermore, finding ways to achieve a more sustainable lifestyle plays a large hole on

the path of our society growth, and poses some challenges to a society that depends each time

more on a increasing number of electrical devices. To achieve this, the smart grid incentives pre-

tend to improve the legacy systems for energy production and consumption, based on research,

to advance technologies in the energy field.

Smart grids will allow consumers to receive near real-time feedback about their energy

consumption and price, enabling them to make their own informed decisions about consump-

tion and spending. On the producer point-of-view, we can leverage home consumption data

to produce energy forecasts, enabling near real-time reaction and a better scheduling of en-

ergy generation and distribution (BROWN, 2008). In this way, smart grids will save billions
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of dollars on both sides in the long run, for consumers and the generators, according to recent

forecasts (REUTERS, 2011).

Since millions of end-users will be taking part into processes and information flows of

smart grids, high scalability of these methods turns into an important issue. To solve these

issues, cloud computing services present themselves as a viable solution, by providing reliable,

distributed and redundant capabilities at global scale (BUYYA et al., 2009).

Given the volume of data produced and the number of users in smart grid systems, there

are large IoT challenges with the growth of these technologies, not only by their huge data flows,

but also by the difficulties in scaling those systems. In this way, the main challenge of this work

is to build a platform that provides load measures and predictions over sensor networks data

while maintaining the capacity of the network to growth over time, and without compromising

the quality of their measures and predictions.

1.2 Objective

The objective of this work is to provide an adaptable architecture for processing IoT data

flows. We aim to provide a stack based on open source tools that represent the state-of-the-art

in distributed event stream processing, providing a reliable and cheap data platform.

In order to show the applicability of the platform, we will build a series of load prediction

algorithms for smart grids, test them using a series of realistic datasets, and further discuss what

is achievable using this platform, focusing on the aspects of throughput and latency.

Furthermore, we will discuss how a platform of its type could be able to scale without

compromising its ability to properly produce measures and predictions, and what is needed to

achieve it from the point of view of data ingestion, data processing and data output.

1.3 Outline

Chapter 2 introduces the background needed to better understand our design and imple-

mentation, explaining from the trends of the IoT and big data that are part of what motivates

this work, to part of the tools that we have used to build it: Distributed event stream processing

frameworks and the cloud computing infrastructure.

In the Chapter 3 we present the design of our architecture, citing several architectural

patterns and explaining why we believe that our proposed architecture fulfills some needs not
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addressed by previous works. Here we also explain where the data used in the evaluation comes

from, how the algorithm works inside of the architecture, and how we manage to implement it

in a real software platform.

In Chapter 4 we explore the capabilities and limitations of the architecture, in order to

better understand what we can expect when using it. After the platform was built and evaluated,

in Chapter 5 we discuss works related to the platform we built, what points of the platform were

not explored and what we think that still could be improved. Finally, in Chapter 6, we review

what we achieved with this work and cite some plans for the improvement of the presented

ideas.
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2 BACKGROUND

In this chapter, we introduce the necessary background in order to further understand the

basic concepts that will be used as a basis along this work. Section 2.1 introduces what is IoT,

what are WSNs and why sensors have been becoming ubiquitous in everyday life. Section 2.2

explain what are distributed event stream processing systems, why they are important in fields

that require processing for unbounded amounts of data and the relationship of those systems

with the IoT field. Section 2.3 we explain what is cloud computing and what are the advantages

of using it as the basis to design large scale online systems. Section 2.4 discuss what is big

data and what are the challenges to address the need to process this kind of data. Finally, in

Section 2.5 we discuss what are smart grids, their importance on the control of global energy

consumption, as well as the importance of the field in global environmental protection.

2.1 Internet of Things

IoT is a novel paradigm that is rapidly gaining ground in the scenario of modern wireless

telecommunications. The IoT builds on the pervasive presence around us of a variety of things

or objects – such as RFID tags, sensors, actuators, mobile phones, etc. – which, through unique

addressing schemes, are able to interact with each other and cooperate with their neighbors to

reach common goals (ATZORI et al., 2010).

However, for the IoT vision to successfully emerge, the computing criterion will need

to go beyond traditional mobile computing scenarios that use smartphones and portables, and

evolve into connecting everyday existing objects and embedding intelligence into our environ-

ment. For technology to disappear from the consciousness of the user, the IoT demands: (1)

a shared understanding of the situation of its users and their appliances, (2) software architec-

tures and pervasive communication networks to process and convey the contextual information

to where it is relevant, and (3) the computational artifacts in the IoT that aim for autonomous

and smart behavior. With these three fundamental grounds in place, smart connectivity and

context-aware computation via anything, anywhere, and anytime can be accomplished (YAN et

al., 2008).

Gartner, Inc. forecasts that the IoT will reach 26 billion units by 2020, up from 0.9 billion

in 2009, and will impact the information available to supply chain partners and how the supply

chain operates. From production line and warehousing to retail delivery and store shelving, the

IoT is transforming business processes by providing more accurate and real-time visibility into
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Figure 2.1 – The internet of things paradigm as the convergence of different visions (ATZORI et al.,
2010)

the flow of materials and products. Firms will invest in the IoT to redesign factory workflows,

improve tracking of materials, and optimize distribution costs. For example, large enterprises

such as John Deere and UPS are already using IoT-enabled fleet tracking technologies to cut

costs and improve supply efficiency (LEE et al., 2015).

In Figure 2.1, the main concepts, technologies and standards are highlighted and classi-

fied with reference to the IoT visions they contribute to characterize best. From such an illus-

tration, it clearly appears that the paradigm shall be the result of the convergence of three main

visions. The "Internet oriented" together with the "Things oriented" perspective imply the huge

number of interconnected devices connected through unique addressing protocols. The "Se-

mantic oriented" perspective, on the other hand, represents the challenges in data representation

for storage and information exchange (ATZORI et al., 2010).
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2.2 Distributed Event Stream Processing Systems

Applications that require real-time or near real-time processing functionalities are chang-

ing the way that traditional data processing systems infrastructures operate. They are pushing

the limits of current processing systems forcing them to provide better throughputs with the

lowest possible latencies.

The main problems to be solved nowadays are not primarily focused on raw data, but

rather in the high-level intelligence that can be extracted from it. As a response, systems were

developed to filter, aggregate and correlate data, and notify interested parties about its results,

abnormalities, or interesting facts.

However, the distributed processing ecosystem today is mostly focused on Hadoop (WHITE,

2012), which itself is the result of the Google’s Inc. research effort into large scale processing,

that ended up producing several tools — such as MapReduce (DEAN; GHEMAWAT, 2004) and

Google File System (GFS) (GHEMAWAT; GOBIOFF; LEUNG, 2003) — that were rewritten

for the open source community through the Apache Foundation.

Hadoop has proved that the development of large scale distributed processing systems

on the cloud is achievable. After understanding that it was possible to develop such systems,

better approaches were proposed using Hadoop’s infrastructure, but focusing on improving the

performance of these kinds of systems. The aim was not to limit them only to batch processing,

but to evolve them into systems of near real-time processing (CARVALHO; ROLOFF et al.,

2013).

During the development of applications that aim to achieve better throughputs using

Hadoop, its bottlenecks were exposed, proving that it is not the best platform for certain kinds

of intensive data processing systems, being better for workloads that are more batch processing

oriented. Aiming improvements in the fields in which Hadoop failed, new approaches to dis-

tributed processing were proposed, focusing each time on more reliable processing systems that

are not heavily bounded by intensive processing workloads (PAVLO et al., 2009).

These efforts generated a convergence between event processing systems and distributed

processing systems, in direction for a merge between those fields. Nowadays event processing

systems have been developed focusing on ways for distribute data processing. On the other

hand, the most recent distributed processing systems also include complex built-in tools and

specific Advanced Programming Interface (API) for easier the process of analysing data (CAR-

VALHO; ROLOFF; NAVAUX, 2013).

We can trace the development of the event stream processing area back to Data Stream



26

Management Systems (DSMSs), such as TelegraphCQ (CHANDRASEKARAN et al., 2003)

and Aurora/Borealis (ABADI et al., 2003) (ABADI et al., 2005), which are similar to Database

Management Systems (DBMSs), but focused on managing continuous data streams. In contrast

to DBMSs, they execute a continuous query that is not only performed once, but is permanently

executed until it is explicitly stopped. The development of the area could also be traced back to

the origins of Complex Event Processing (CEP) systems, which are event processing systems

that combine data from multiple sources to infer events or patterns that suggest more compli-

cated situations. These systems are represented broadly by traditional content-based publish-

subscribe systems like Rapide (LUCKHAM et al., 1995) and TESLA/T-Rex (CUGOLA; MAR-

GARA, 2010) (CUGOLA; MARGARA, 2012).

In the evolution of both kinds of systems, a process of convergence between DSMSs

systems and CEP systems had generated intersections between those fields, complicating more

the characterization of them in distinct and clear groups.

Aiming to solve this naming problems, efforts were done to group all those kinds of

systems into a common terminology. The term Information Flow Processing (MARGARA;

CUGOLA, 2011) was created to refer to an application domain in which users need to collect

information produced by multiple sources, to process it in a timely way, in order to extract new

knowledge as soon as the relevant information is collected.

As well as the information processing systems had aggregated characteristics of dis-

tributed processing systems, many distributed processing system are aggregating information

flow processing capabilities into their platforms. These changes are making it harder to explain

the differences between them, because they are merging into tools that offer characteristics of

both of them (CARVALHO; ROLOFF; NAVAUX, 2013).

These new systems have their designs strongly driven by the trend towards cloud com-

puting, which requires the data stream processing engines to be highly scalable and robust to-

wards faults. We can see this trend through well-known system of this generation, that will

be discussed in the following subsections, such as Flink 2.2.1, Spark Streaming 2.2.2 and

Storm 2.2.3.

More specifically, this generation of streaming systems present a pattern towards a set

of common requirements: 1) the scenarios typically involve input streams with high up to very

high data rates (> 10000 event/s); 2) they have relaxed latency constraints (up to a few seconds);

3) the use cases require the correlation among historical and live data; 4) they require systems

to elastically scale and to support diverse workloads and; 5) they need low overhead fault toler-

ance, supporting out-of-order events and exactly once semantic (HEINZE et al., 2014).
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2.2.1 Apache Flink

Apache Flink Streaming is a distributed stream analytics system that is part of the

Apache Flink Stack (former Stratosphere). Apache Flink is architectured around a generic

runtime engine uniformly processing both batch and streaming jobs composed of stateful in-

terconnected tasks. Analytics jobs in Flink are compiled into directed graphs of tasks. Data

elements are fetched from external sources and routed through the task graph in a pipelined

fashion. Tasks are continuously manipulating their internal state based on the received inputs

and are generating new outputs (CARBONE et al., 2015).

The Stratosphere software stack consists of three layers, termed the Sopremo, Paral-

lelization Contract (PACT), and Nephele layers. Each layer is defined by its own programming

model (the API that is used to program directly the layer or used by upper layers to interact with

it) and a set of components that have certain responsibilities in the query processing pipeline.

Sopremo is the topmost layer of the Stratosphere stack. A Sopremo program consists

of a set of logical operators connected in a Directed Acyclic Graph (DAG), akin to a logical

query plan in relational DBMSs. Programs for the Sopremo layer can be written in Meteor,

an operator-oriented query language that uses a JSON-like data model to support the analysis

of unstructured and semi-structured data. Meteor shares similar objectives as higher-level lan-

guages of other big data stacks, such as Pig (OLSTON et al., 2008) and Hive (THUSOO et al.,

2009) in the Hadoop ecosystem, but is highlighted by extensibility and the semantically rich

operator model Sopremo, which also lends its name to the layer.

The output of the Sopremo layer and, at the same time, input to the PACT layer of the

Stratosphere system is a PACT program. PACT programs are based on the PACT programming

model, an extension to the MapReduce programming model. Similar to MapReduce, the PACT

programming model builds upon the idea of second-order functions, called PACTs. Each PACT

provides a certain set of guarantees on what subsets of the input data will be processed together,

and the first-order function is invoked at runtime for each of these subsets. That way, the first-

order functions can be written (or generated from a Sopremo operator plan) independently of

the concrete degree of parallelism or strategies for data shipping and reorganization. Apart from

the Map and Reduce contracts, the PACT programming model also features additional contracts

to support the efficient implementation of binary operators. Moreover, PACTs can be assembled

to form arbitrarily complex DAGs, not just fixed pipelines of jobs as in MapReduce.

The first-order (user-defined) functions in PACT programs can be written in Java by the

user, and their semantics are hidden from the system. This is more expressive than writing
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programs in the Sopremo programming model, as the language is not restricted to a specific set

of operators. However, PACT programs still exhibit a certain level of declarativity as they do

not define how the specific guarantees of the used second-order functions will be enforced at

runtime. In particular, PACT programs do not contain information on data repartitioning, data

shipping, or grouping. In fact, for several PACT input contracts, there exist different strate-

gies to fulfill the provided guarantees with different implications on the required effort for data

reorganization. Choosing the cheapest of those data reorganization strategies is the responsibil-

ity of a special cost-based optimizer, contained in the PACT layer. Similar to classic database

optimizers, it computes alternative execution plans and eventually chooses the most preferable

one. To this end, the optimizer can rely on various information sources, such as samples of the

input data, code annotations (possibly generated by the Sopremo layer), information from the

cluster’s resource manager, or runtime statistics from previous job executions.

The output of the PACT compiler is a parallel data flow program for Nephele, Strato-

sphere’s parallel execution engine, and the third layer of the Stratosphere stack. Similar to

PACT programs, Nephele data flow programs, also called Job Graphs, are also specified as

DAGs with the vertices representing the individual tasks and the edges modeling the data flows

between those. However, in contrast to PACT programs, Nephele Job Graphs contain a concrete

execution strategy, chosen specifically for the given data sources and cluster environment. In

particular, this execution strategy includes a suggested degree of parallelism for each vertex of

the Job Graph, concrete instructions on data partitioning as well as hints on the co-location of

vertices at runtime.

Nephele itself executes the received Job Graph on a set of worker nodes. It is responsible

for allocating the required hardware resources to run the job from a resource manager, schedul-

ing the job’s individual tasks among them, monitoring their execution, managing the data flows

between the tasks, and recovering tasks in the event of execution failures. Moreover, Nephele

provides a set of memory and I/O services that can be accessed by the user tasks submitted. At

the moment, these services are primarily used by the PACT data preparation code mentioned

above (ALEXANDROV et al., 2014).

2.2.1.1 Nephele Streaming

Nephele Streaming is the research prototype that has driven the creation of the Flink

Streaming project. It uses Nephele engine as an underline to develop a massively parallel event

stream processing engine with latency constraints.

Nephele Streaming shares some goals with Apache Storm: It is a software framework
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for massively parallel real-time computation on large clusters or clouds. Nephele Streaming

jobs are continuous data flows where tasks communicate via sending records along predefined

channels.

The main feature of Nephele Streaming is that users can annotate their applications

(jobs) with latency constraints. A latency constraint as declaration of a non-functional applica-

tion requirement. It specifies a desired upper latency bound in milliseconds for a portion of the

job’s dataflow graph. At runtime the engine attempts to enforce the constraints by three tech-

niques: 1) Adaptive Output Batching: Emitted records are by default sent immediately to the

receiver for low latency. Adaptive output batching flushes those buffers in a time driven fashion

to enforce the constraint. The lower the constraint, the more often buffers are flushed (and vice

versa); 2) Dynamic Task Chaining: The mapping of pipeline parallel tasks on the same worker

process (task manager) is changed ad-hoc at runtime by the framework, depending on CPU

utilization. This eliminates queues between pipeline parallel tasks; 3) Elastic Scaling: Queues

are a major source of latency in event stream processing. In order to fulfill latency constraints

despite variations in stream rates and computational load, Nephele Streaming autoscales data

parallel tasks. This technique uses a predictive latency model based on queueing theory.

Its main differences regarding to the original Nephele engine are related to the removal

of specific batch processing capabilities, such as Hadoop Distributed File System (HDFS) sup-

port and higher-level programming models (e.g. PACTs). The original Nephele Streaming

currently differs from the Flink Streaming, but the main ideas behind the system are still related

to Nephele Streaming (LOHRMANN; WARNEKE; KAO, 2014).

2.2.2 Apache Spark

Apache Spark relies on a main abstraction that is called Resilient Distributed Dataset

(RDD), which represents a read-only collection of objects partitioned across a set of machines

that can be rebuilt if a partition is lost. Users can explicitly cache an RDD in memory across

machines and reuse it in multiple MapReduce-like parallel operations. RDDs achieve fault

tolerance through a notion of lineage: if a partition of an RDD is lost, the RDD has enough

information about how it was derived from other RDDs to be able to rebuild just that partition.

Although RDDs are not a general shared memory abstraction, they represent a sweet-spot be-

tween expressivity on the one hand and scalability and reliability on the other hand, and we

have found them well-suited for a variety of applications.

Spark is implemented in Scala programming language, a statically typed high-level pro-
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gramming language for the Java Virtual Machine (JVM), and exposes a functional programming

interface similar to DryadLINQ (YU et al., 2008). In addition, Spark can be used interactively

from a modified version of the Scala interpreter, which allows the user to define RDDs, func-

tions, variables and classes and use them in parallel operations on a cluster. We believe that

Spark is the first system to allow an efficient, general-purpose programming language to be

used interactively to process large datasets on a cluster (ZAHARIA et al., 2010).

In order to address the nowadays needs for processing data arriving in real-time, the

Spark research team proposed a new programming model, Discretized Streams (D-Streams),

that offers a high-level functional programming API, strong consistency, and efficient fault re-

covery. D-Streams support a new recovery mechanism that improves efficiency over the tradi-

tional replication and upstream backup solutions in streaming databases: parallel recovery of

lost state across the cluster. They have prototyped D-Streams in an extension to the Spark cluster

computing framework called Spark Streaming, which lets users seamlessly intermix streaming,

batch and interactive queries.

2.2.2.1 D-Streams

The key idea behind D-Streams is to treat a streaming computation as a series of de-

terministic batch computations on small time intervals. Two immediate advantages of the D-

Stream model are that consistency is well-defined (each record is processed atomically with the

interval in which it arrives), and that the processing model is easy to unify with batch systems.

There are two key challenges in realizing the D-Stream model. The first is making the

latency (interval granularity) low. Traditional batch systems like Hadoop and Dryad (ISARD et

al., 2007) fall short here because they keep state on disk between jobs and take tens of seconds to

run each job. Instead, to meet a target latency of several seconds, we keep intermediate state in

memory. However, simply putting the state into a general-purpose in-memory storage system,

such as a key-value store, would be expensive due to the cost of data replication. Instead, they

build on RDDs, a storage abstraction that can rebuild lost data without replication by tracking

the operations needed to recompute it.

Along with a fast execution engine (Spark) that supports tasks as small as 100 ms, they

can achieve latencies as low as a second. They argue that this is sufficient for many real-

world big data applications, where the timescale of events monitored (e.g., trends in a social

network) is much higher. The second challenge is recovering quickly from failures. In order

to do this, they use the deterministic nature of the batch operations in each interval to provide

a new recovery mechanism that has not been present in previous streaming systems: parallel
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recovery of a lost node’s state. Each node in the cluster works to recompute part of the lost

node’s RDDs, resulting in faster recovery than upstream backup without the cost of replication.

Parallel recovery was hard to implement in record-at-a-time systems due to the complex state

maintenance protocols needed even for basic replication, but is simple with the deterministic

model of D-Streams (ZAHARIA et al., 2012).

D-Stream Operators provide two types of operators to let users build streaming pro-

grams:

• Transformation operators, which produce a new D-Stream from one or more parent streams.

These can be either stateless (i.e., act independently on each interval) or stateful (share

data across intervals).

• Output operators, which let the program write data to external systems (e.g., save each

RDD to HDFS).

D-Streams support the same stateless transformations available in typical batch frameworks,

including map, reduce, groupBy, and join. They reuse all of the operators already present in

Spark.

In addition, D-Streams introduce new stateful operators that work over multiple inter-

vals. These include:

• Windowing: The window operator groups all the records from a range of past time inter-

vals into a single RDD. As we can see in Figure 2.2, a window operator can, for example,

combine RDDs at each three time units into a single windowed RDD. Window is the most

general stateful operator, but it is also often inefficient, as it repeats work.

• Incremental aggregation: For the common use case of computing an aggregate value,

such as a count or sum, over a sliding window, D-Streams have several variants of a

reduceByWindow operator. The simplest one only takes an associative “merge” operation

for combining values.

• Time-skewed joins: Users can join a stream against its own RDDs from some time in the

past to compute trends.

Finally, the user calls output operators to transfer results out of D-Streams into external systems

(e.g., for display on a dashboard). There are provided two such operators: 1) save, which writes

each RDD in a D-Stream to a storage system, and; 2) foreach, which runs a user code snippet

(any Spark code) on each RDD in a stream.
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Figure 2.2 – Comparison between a simple and a windowed DStream

2.2.3 Apache Storm

Apache Storm is a free Java and Clojure programming languages based framework that

supports distributed real-time computations. Clojure is a functional programming language,

which is based on Lisp and can be executed on the JVM. Storm was first developed by Nathan

Marz when working at BackType, which was later acquired by Twitter in 2011. In 2014, Storm

graduated to an Apache top-level project and became an open source framework. Storm sup-

ports the development of applications, which are processing large amount of data in real-time.

In contrast to the batch processing framework Apache Hadoop, Storm has become an important

platform for real-time processing (JAIN; NALYA, 2014).

Storm provides four different levels of parallelism in its architecture. The following

levels are used to run a topology in Storm (STORM, 2015):

• Supervisor (Slave)

• Worker (JVM)

• Executor (Thread)

• Task

First of all Storm supports the distribution of work among multiple slave nodes. Each

one of these worker nodes runs a single Supervisor daemon. A Supervisor executes one or

multiple Worker processes within a dedicated JVM instance. At the next level each Worker is

able to use multiple Executor threads within its JVM process. And finally each Executor thread

executes one or more Tasks serially. By default Storm runs one Task per each Executor thread

but an Executer might also execute multiple Tasks serially. The feature of having multiple

Tasks that are executed in a serial fashion within an Executor, allows to test the parallelism of

the system.
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2.2.3.1 Spouts

The terminology Spout defines the source of tuples in Storm. A Spout reads data from

an external source and provides it to the Storm topology. For example, a Spout might listen to

a Twitter stream and emits this data into a Storm stream. Storm supports reliable and unreliable

Spouts. If a tuple fails during the execution within a topology, then a reliable Spout would

replay it. In contrast, an unreliable Spout forgets a tuple as soon as it is emitted.

2.2.3.2 Bolts

In Storm the actual processing of a task is executed by Bolts. A Bolt takes the tuples of

one or multiple input streams, processes and emits them to one or multiple output streams. A

Bolt can transform, filter, aggregate, join or execute other functions on tuples.

2.2.3.3 Topologies

Storm uses its own terminology to describe the workflow. A topology in Storm defines

a DAG, which represents the structure and logic of a Storm real-time application. Each node

in this DAG processes and forwards tuples in parallel. A topology typically consists of the

two major components Spouts and Bolts. The connection between Spouts and Bolts is called

stream. A stream represents an infinite sequence of tuples, which can be processed in parallel.

Storm supports different stream groupings, which specify how streams should be partitioned

among different Bolts.

2.3 Cloud Computing

Cloud computing is a new paradigm of computing. It was developed with the com-

bination and evolution of distributed computing and virtualization, with strong contributions

from grid and parallel computing (BUYYA et al., 2009). There are many efforts to provide a

definition of cloud computing, such as the work of Grid Computing and Distributed Systems

Laboratory (BUYYA et al., 2009) and the initiative from Berkeley University (BUYYA et al.,

2009). In 2011, NIST (National Institute of Standards and Technology) has published its defi-

nition that consolidates several studies and became widely adopted.

Cloud computing has two main actors that are defined as the user and the provider.

The user is defined as the consumer and can be a single person or an entire organization. The
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Figure 2.3 – Cloud computing service models stack and their relationships

provider is an organization that provides the services to the user. According to NIST definition

(MELL; GRANCE, 2011), cloud computing is a model that conveniently provides on-demand

network access to a shared pool of configurable computing resources that can be provisioned

and released quickly without large management efforts and interaction with the service provider.

This model definition is composed of five essential characteristics, three service models and four

implementation models, which will be discussed in this section.

A cloud computing service needs to present the following characteristics to be consid-

ered adherent to the NIST definition: On-demand service; Broad network access; Resource

Pooling; Rapid Elasticity and Measured Service.

As it is shown on Figure 2.3, the services provided by a cloud provider are categorized

into three service models (BADGER et al., ): Infrastructure as a Service (IaaS), Platform as

a Service (PaaS) and Software as a Service (SaaS). Some providers denominates other service

models such as Database as a Service and Framework as a Service. Those models are commonly

defined as Everything as a Service (XaaS), but it is possible to classify these models into one of

the three defined by NIST.

The NIST cloud definition lists four implementation models: private, community, public

and hybrid. Each one of these models has its particularities regarding to aspects such as network

dependency, security, quantity of resources, among others. In the public model the user rents the

resources from a provider, the private and community models can be used in two configurations,

outsourced, where the user rents exclusive resources from a provider, and on-site, where the

resources are owned by the user. The hybrid model is a combination between any of the other

three models.

Generally we can say that a cloud service is controlled by a cloud platform, which is

responsible for all procedures related to the service. A cloud platform is a very abstract term. In

a practical approach it is made up of several components that are responsible for its operation.
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The base of any cloud service is the hardware. By hardware we mean servers, stor-

age and networking equipment. In a public cloud provider this hardware is maintained in a

datacenter facility. The hardware is normally grouped into a container, that holds thousands of

physical machines and storages interconnected with a high-speed network. This strategy is used

by providers to optimize energy consumption. The containers are switched on and off according

to user demand, each container has its own cooling system that is only used when the container

is turned on.

In a cloud service normally the machines and storages offered to the users are a virtu-

alization of real hardware. The component that performs this virtualization is the hypervisor.

Basically the hypervisor controls the underlying hardware and provides VMs to the upper lay-

ers of the cloud platform. The hardware is a group of machines composed by different sizes

and configurations and also a different type of processor architectures and operating systems.

The purposes of the use of a hypervisor are to take care of all this heterogeneity and provide a

standard interface to the cloud platform. Example of hypervisors that can be used are: Xen 1,

KVM2, Virtualbox3, Hyper-V4 and VMware5. The hypervisor layer delivers basically virtual

machines to the other layers. The Virtual Machines (VMs) are abstractions of real hardware

and can be used for general purposes.

The resource manager is responsible for providing the interface between the resources

and the cloud platform. It controls the VM allocation and deallocation, also the VM migration

between different servers is controlled in this layer. The security of resources is defined in

this layer too. For example, the policies of VMs interconnection are defined by the resource

manager. This is the main component regarding the energy consumption. Because this is the

layer that decides when to power up a new machine, or an entire container, according to the

demand. The resource manager has the responsibility to perform the VM consolidation to be

possible turn off a server.

The main part of a cloud service is the cloud manager. This component performs the

entire administrative tasks of the cloud platform. The user authentication is performed by the

manager, that has a complete user record system controlling each user rights. The consumption

of resources that each user makes of the system and the pricing mode are also controlled by

this component. This control is used for billing purposes, in this way it can be stated that the

pay-per-use charging model is implemented here. The instance sizes of VMs and the standard

1<http://www.openstack.org/>
2<http://www.linux-kvm.org/>
3<https://www.virtualbox.org/>
4<http://www.microsoft.com/hyper-v-server>
5<http://www.vmware.com/>

http://www.openstack.org/
http://www.linux-kvm.org/
https://www.virtualbox.org/
http://www.microsoft.com/hyper-v-server
http://www.vmware.com/


36

operating systems are also defined in the cloud manager. All the capabilities of customization of

the images, size changing, multiple creation, user access security, among others are controlled

in this layer too. The user reports are generated and provided here. Examples of cloud managers

are: OpenStack 6, Eucalyptus 7, OpenNebula 8 and Nimbus 9. Several providers implement their

own proprietary cloud managers (ROLOFF, 2013).

The user interface is the front-end layer of the cloud platform. All the user-provider

interaction is made through this layer. The user interface is normally a web page or a smart

phone application, from the point of view of the user this layer is the entire cloud platform.

Commonly the cloud managers provide a standard user interface, but each provider customizes

it.

Microsoft started its initiative in cloud computing with the release of Windows Azure10

in 2008, which initially was a PaaS to develop and run applications written in the programming

languages supported by the .NET framework. At these days, the company owns products that

covers all types of service models. Online Services11 is a set of products that are provided as

SaaS, while Windows Azure provides both PaaS and IaaS.

Windows Azure PaaS is a platform developed to provide to the user, the capability to

develop and deploy a complete application into Microsoft’s infrastructure. To have access to

this services, the user needs to develop his application following the provided framework. The

Azure framework has support to a wide range of programming languages, including all .NET

languages, Python, Java and PHP. A generic framework is provided in which the user can de-

velop in any programming language that is supported by Windows Operating System (OS).

Windows Azure IaaS is a service developed to provide to the user access to VMs running

in Microsoft’s infrastructure. The user has a set of base images of Windows and Linux OS, but

other images can be created using Hyper-V. The user can also configure an image directly into

the Azure and capture it to use locally or to deploy to another provider that supports Hyper-V.

In this work, we use Microsoft Azure IaaS extensively, as the basis for our deployment

and evaluation. It completely fulfills our needs for a stable and flexible large scale platform to

deploy VMs, as well as provides several tools to partially automate our deployments of VMs

using the Azure Command Line Interface (CLI) 12.

6<http://www.openstack.org/>
7<http://www.eucalyptus.com/>
8<http://opennebula.org/>
9<http://www.nimbusproject.org/>

10<http://www.windowsazure.com/>
11<http://www.microsoftonline.com/>
12<https://azure.microsoft.com/pt-br/documentation/articles/xplat-cli/>

http://www.openstack.org/
http://www.eucalyptus.com/
http://opennebula.org/
http://www.nimbusproject.org/
http://www.windowsazure.com/
http://www.microsoftonline.com/
https://azure.microsoft.com/pt-br/documentation/articles/xplat-cli/
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2.4 Big Data

Big data is an abstract concept. Apart from masses of data, it also has some other fea-

tures, which determine the difference between itself and "massive data" or "very big data." At

present, although the importance of big data has been generally recognized, people still have

different opinions on its definition. In general, big data shall mean the datasets that could

not be perceived, acquired, managed, and processed by traditional information technology and

software/hardware tools within a tolerable time. Because of different concerns, scientific and

technological enterprises, research scholars, data analysts, and technical practitioners have dif-

ferent definitions of big data. The following definitions may help us have a better understanding

on the profound social, economic, and technological connotations of big data.

In 2010, Apache Hadoop defined big data as "datasets which could not be captured,

managed, and processed by general computers within an acceptable scope." On the basis of

this definition, in May 2011, McKinsey, a global consulting agency announced big data as the

next frontier for innovation, competition, and productivity. Big data shall mean such datasets

which could not be acquired, stored, and managed by classic database software. This definition

includes two connotations: First, datasets volume that conform to the standard of big data are

changing, and may grow over time or with technological advances; Second, datasets’ volumes

that conform to the standard of big data in different applications differ from each other. At

present, big data generally ranges from several TB to several PB (MANYIKA et al., 2011).

From the definition by McKinsey, it can be seen that the volume of a dataset is not the

only criterion for big data. The increasingly growing data scale and its management that could

not be handled by traditional database technologies are the next two key features.

As a matter of fact, big data has been defined as early as 2001. Doug Laney, an analyst

of META (presently Gartner) defined challenges and opportunities brought about by increased

data with a "3Vs" model, i.e., the increase of Volume, Velocity, and Variety, in a research report

(LANEY, 2001). Although such a model was not originally used to define big data, Gartner

and many other enterprises, including IBM (ZIKOPOULOS; EATON et al., 2011) and some

research departments of Microsoft (MEIJER, 2011) still used the "3Vs" model to describe big

data within the following ten years (BEYER, 2011). In the "3Vs" model, Volume means, with

the generation and collection of masses of data, data scale becomes increasingly big; Velocity

means the timeliness of big data, specifically, data collection and analysis, etc. must be rapidly

and timely conducted, so as to fully utilize the commercial value of big data; Variety indicates

the various types of data, which include semi-structured and unstructured data such as audio,
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video, webpage, and text, as well as traditional structured data. However, others have different

opinions, including International Data Corporation, one of the most influential leaders in big

data and its research fields. In 2011, an International Data Corporation report defined big data

as "big data technologies describe a new generation of technologies and architectures, designed

to economically extract value from very large volumes of a wide variety of data, by enabling

the high-velocity capture, discovery, and/or analysis." (GANTZ; REINSEL, 2011). With this

definition, characteristics of big data may be summarized as four Vs, that are: Volume (great

volume); Variety (various modalities); Velocity (rapid generation) and Value (huge value but

very low density). Such 4Vs definition was widely recognized since it highlights the mean-

ing and necessity of big data, i.e., exploring the huge hidden values. This definition indicates

the most critical problem in big data, which is how to discover values from datasets with an

enormous scale, various types, and rapid generation.

In addition, NIST defines big data as "Big data shall mean the data of which the data vol-

ume, acquisition speed, or data representation limits the capacity of using traditional relational

methods to conduct effective analysis or the data which may be effectively processed with im-

portant horizontal zoom technologies", which focuses on the technological aspect of big data.

It indicates that efficient methods or technologies need to be developed and used to analyze and

process big data.

There have been considerable discussions from both industry and academia on the def-

inition of big data (CHEN; MAO; LIU, 2014). In addition to developing a proper definition,

the big data research should also focus on how to extract its value, how to use data, and how to

transform "a bunch of data" into "big data." (SAGIROGLU; SINANC, 2013b).

2.5 Smart Grid

For 100 years, there has been no change in the basic structure of the electrical power

grid. Experiences have shown that the hierarchical, centrally controlled grid of the 20th Cen-

tury is ill-suited to the needs of the 21st Century. To address the challenges of the existing

power grid, the new concept of smart grid has emerged. The smart grid can be considered

as a modern electric power grid infrastructure for enhanced efficiency and reliability through

automated control, high-power converters, modern communications infrastructure, sensing and

metering technologies, and modern energy management techniques based on the optimization

of demand, energy and network availability, and so on. While current power systems are based

on a solid information and communication infrastructure, the new smart grid needs a different
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and much more complex one, as its dimension is much larger (GÜNGÖR et al., 2011).

According to the U.S. Department of Energy report, the demand and consumption for

electricity in the U.S. have increased by 2.5% annually over the last 20 years (GUNGOR; LU;

HANCKE, 2010). Today’s electric power distribution network is very complex and ill-suited

to the needs of the 21st Century. Among the deficiencies are a lack of automated analysis,

poor visibility, mechanical switches causing slow response times, lack of situational awareness,

etc (ENERGY, 2015). These have contributed to the blackouts happening over the past 40

years. Some additional inhibiting factors are the growing population and demand for energy, the

global climate change, equipment failures, energy storage problems, the capacity limitations of

electricity generation, one-way communication, decrease in fossil fuels, and resilience problems

(EROL-KANTARCI; MOUFTAH, 2011). Also, the greenhouse gas emissions on Earth have

been a significant threat that is caused by the electricity and transportation industries (SABER;

VENAYAGAMOORTHY, 2011). Consequently, a new grid infrastructure is urgently needed to

address these challenges.

2.5.1 Advanced Metering Infrastructure

The Advanced Metering Infrastructure (AMI) is regarded as the most fundamental and

crucial part of smart grid. It is designed to read, measure, and analyse the energy consumption

data of consumers through smart meters in order to allow for dynamic and automatic electricity

pricing.

AMI requires a two way communication and spans through all the network components

of smart grid from the private networks and Field Area Networks to Wide Area Networks. AMI

goes beyond automatic meter reading scenarios which according to IEC 61968-9 — a series of

standards under development that will define standards for information exchanges between elec-

trical distribution systems — only have to do with meter reading, meter events, grid events and

alarms. AMI will include customer price signals, load management information, power support

for prepaid services, Home Energy Management Systems and Demand Response. It can also be

used to monitor power quality, electricity produced or stored by Distributed Energy Resources

units as well as interconnect Intelligent Electronic Devices (ANCILLOTTI; BRUNO; CONTI,

2013).

In addition, AMI is also expected to support customer switch between suppliers and

help in detection and reducing electricity theft. Electricity theft has plagued many utilities

companies especially in developing countries. To address these issues, authors in (ANAS et
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al., 2012) have reviewed electricity theft and reduction issues using security and efficient AMIs

(TSADO; LUND; GAMAGE, 2015).

2.5.2 Demand Side Management

Demand Side Management (DSM) is the action that influences the quantity or pattern

of energy consumption by end users. These actions may include targeting reduction of peak

demand by end users during periods when energy supply systems are constrained. Energy

peak management does not necessarily decrease the amount of total energy consumption, but it

will reduce the need for investments on power generation sources or spinning reserves at peak

periods (WANG; XU; KHANNA, 2011) (DAVITO; TAI; UHLANER, 2010). DSM includes

the following:

• Demand Response enabling the utility operator to optimally balance power generation

and consumption either by offering dynamic pricing programs or by implementing vari-

ous load control programs.

• Load Management through dynamic pricing which helps to reduce energy consumption

during peak hours by encouraging customers to limit energy usage or shifting demand

to other periods. Existing dynamic pricing programs include: Time-of-use, Real-Time

Pricing, Critical Peak timing and Peak time Rebates.

• Conservation of energy through load control program which involve performing remote

load control programs where communicating networks are used to control usage of ap-

pliances remotely to use less energy across many hours (TSADO; LUND; GAMAGE,

2015).

2.5.3 Consumption Forecasting

The term forecasting is frequently confused with the terms prediction and predictive

analytics. A prediction in the general sense involves an imagination of an oracle which can

reason about the past based on some experience and which on this basis is able to look into

future to predict a certain event.

Prediction and predictive analytics in the scientific sense means predicting a behavior of

someone or a trend characterized with a probability and based on statistical data analysis and

the current evolution. In contrast, forecasting refers to predicting an (aggregated) value, or an
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occurrence of an event at certain time point, based on historical data analysis, the current state

and sometimes on predictive analytics (ANALYTICSWORLD, 2015).

Electricity load forecasts provide a prediction of an amount of electricity consumed at

a certain point of time. The purpose of electricity load forecasting is in most cases an efficient

economic and quality planning. Good forecasts ensure economic profitability of the service and

safety of the network.

Energy consumption forecasts can be performed on different levels of time interval res-

olution. The range of the forecasts generally depends on the available reliable data and the goal

of the forecast. Usually, the following three terms for forecasting interval are used: short term,

medium term and long term forecasts (ALFARES; NAZEERUDDIN, 2002).

• Short Term Load Forecasting (STLF) means to give forecasts for the next minutes up

to one day on minutes or hourly basis. Such forecasts are required for the scheduling,

capacity planning and control of power systems.

• Medium Term Load Forecasting (MTLF) are required for planning and operation of

power systems. Such forecasts can be provided from one day to months ahead on hourly

or days basis.

• Long Term Load Forecasting (LTLF), in contrast to short and medium term forecasting

which support operational decisions, has the aim to support strategic decisions, more than

a year ahead.

Metrics to measure the quality of load forecasting can be subdivided into two main

categories: Measuring the forecast accuracy and measuring the processing delay (latency).

2.6 Chapter Remarks

Throughout this chapter, we discussed several topics that are important as the under-

lining background of this work. We started with IoT in Section 2.1, which is an important

research topic, represented in this work by the sensors networks that collect data from smart

grids. In Section 2.2 we presented the field of distributed event stream processing and dis-

cussed several frameworks that represent their state-of-the-art. From the available options, we

decided to choose Apache Spark Streaming for our implementation, from reasons we discuss

on the implementation section of Chapter 3. In Section 2.3 we discuss the importance of cloud

computing and present Microsoft Azure, which will be our IaaS provider for the evaluation

of our platform, for reasons we also discuss on the implementation section of the Chapter 3.
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Finally, in Section 2.5 we present the field of smart grids and the subfields of AMI, DSM and

consumption forecasting. Those areas are important for this work because it is proposed an ar-

chitecture for consumption forecasting, based on AMI data and for DSM, which have its design

and implementation shown along the Chapter 3.
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3 DESIGN AND IMPLEMENTATION

In this chapter, we explain how we designed our architecture, describe important project

decisions and finally show how it was implemented. Section 3.1 describes architectural patterns

that we found in the state-of-the-art, how we planned our own architecture and what thoughts

lead us to design this specific architecture. The final design of our architecture, which we named

Cyclic Architecture, can be found in Subsection 3.1.4.

Section 3.2 explain the dataset used to design and test our application, and what are the

implications and constraints by using it. Section 3.3 describe the forecast method used, why

it was chosen and how it fits our proposed architecture. Section 3.4 describe the challenges

needed to overcome the difficulties imposed by data input in parallel and how we overcome

those limitations Section 3.5 focuses on the implementation specifics, tools and framework

used to turn the proposed architecture into a real application.

3.1 Architecture

The proposed architecture was built based on the state-of-the-art research on distributed

processing for event stream processing, maintaining characteristics such as a high throughput

and low latency, while keeping large scalability and availability in mind.

In order to obtain the desired characteristics, we have studied the patterns for successful

implementation of large scale processing, mainly those focused on the velocity aspect of big

data (SAGIROGLU; SINANC, 2013b). We found that, after the large success of MapReduce

architecture and the subsequent understanding of its faults — mainly due to the difficulties

of adapting a batch-oriented architecture for solving online and near real-time problems —

research goals went from adapting this architectural design for building new ones.

3.1.1 Lambda Architecture

In this architectural design, as we can see in Figure 3.1, input data is sent to both an

offline and an online processing system. Both systems execute the same processing logic and

output results to a service layer. Queries from back-end systems are executed based on the

data in the service layer, reconciling the results produced by the offline and online processing

systems (MARZ; WARREN, 2015).
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The use of this pattern allows organizations to adapt their current infrastructures to sup-

port near real-time applications (FERNANDEZ et al., 2015). This comes at a cost, though:

developers must write, debug, and maintain the same processing code for both the batch and

stream layers, and the Lambda architecture increases the hardware footprint.

Figure 3.1 – Lambda Architecture

3.1.2 Kappa Architecture

In this architecture, a single near real-time system, e.g. an event stream processing

platform, processes the input data. To re-process data, a new job starts in parallel to an existing

one. It re-processes the data from scratch and outputs the results to a service layer. After the

job has finished, back-end systems read the data loaded by the new job from the service layer.

This approach only requires a single processing path, as we can see Figure 3.2. However, its

architecture has a higher storage footprint, and applications access stale data while the system

is reprocessing data.

In summary, implementing the above architectural patterns in current MapReduce/GFS-

based data integration stacks introduces a range of problems, including an increased hardware

footprint, data and processing duplication and more complex management. To overcome these

issues and provide more flexibility for the new requirements of near real-time applications, they

describe a new data integration stack, that acts as a more efficient substrate for back-end systems

by providing low-latency data access by default (KREPS, 2014).
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Figure 3.2 – Kappa Architecture

3.1.3 Liquid Architecture

Liquid is a data integration stack with two independent, yet cooperating layers, as it can

be seen in the Figure 3.3. A processing layer 1) executes jobs similar to extract-transform-

load process for different back-end systems according to a stateful event stream processing

model (FERNANDEZ et al., 2013); 2) guarantees service levels through resource isolation; 3)

provides low latency results; and 4) enables incremental data processing. A messaging layer

supports the processing layer. It 1) stores high-volume data with high availability; and 2) offers

rewindability, i.e. the ability to access data through metadata annotations.

The two layers communicate by writing and reading data to and from two types of feeds,

stored in the messaging layer: source-of-truth feeds represent primary data, i.e. data that is not

generated within the system; and derived data feeds contain results from processed source-of-

truth feeds or other derived feeds. Derived feeds contain lineage information, i.e. annotations

about how the data was computed, which are stored by the messaging layer. The processing

layer must be able to access data according to different annotations, e.g. by timestamp. It also

produces such annotations when writing data to the messaging layer.

Back-end systems read data from the input feeds, after Liquid has pre-processed them to

meet application-specific requirements. These jobs are executed by the processing layer, which

reads data from input feeds and outputs processed data to new output feeds. The division into

two layers is an important design decision. By keeping both layers separated, producers and

consumers can be decoupled completely, i.e. a job at the processing layer can consume from a

feed more slowly than the rate at which another job published the data without affecting each

other’s performance. In addition, the separation improves the operational characteristics of the

data integration stack in a large organization, particularly when it is developed and operated by
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independent teams: separation of concerns allows for management flexibility, and each layer

can evolve without affecting the other (FERNANDEZ et al., 2015).

Figure 3.3 – Liquid Architecture

3.1.4 Cyclic Architecture

While the Lambda architecture provides a complete solution for both high velocity data

and batch processing, Kappa architecture focuses only on high velocity data, which is desirable

for an IoT architecture, but does not provides a solution for queries on the output data. In order

to process output data in a Kappa architecture approach, data needs to iterate over the stack,

leading to unnecessary reprocessing. Liquid architecture, on the other side, provides a solution

that dissociates processing from the flow of data completely. That dissociation from the flow of

data can be required for some specific profiles of data, but it does not cover a broadly amount

of cases where raw data has not value to the system at all.

We then propose the Cyclic architecture, which can be seen on Figure 3.4, that is a hybrid

solution mixing architectural solutions from Kappa architecture and Liquid architecture. Our

solution, like Kappa architecture, is based on the idea of continuous process over the data, but

doesn’t relies on such strict (and high) storage footprint and a single processing path. Likewise,

our solution relies on some ideas behind liquid architecture, mainly on the idea that we can split
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the design in two layers (messaging layer and processing layer). On the other hand, we do not

separate the output of data from the processing path, relying on the processing layer itself to

provide answers (which can also induce computations) to output systems.

Figure 3.4 – An overview of the proposed Cyclic Architecture
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3.2 Data

The dataset used to evaluate the platform is originated from the 8th ACM International

Conference on Distributed Event-Based Systems (DEBS). This conference provides competi-

tions with problems which are relevant for the industry and, in 2014, the conference challenge

focus was on the ability of CEP systems to apply on real-time predictions over a large amount of

sensor data. For this purpose, household energy consumption measurements where generated,

based on simulations driven by real-world energy consumption profiles, originating from smart

plugs deployed in households.

For the purpose of the challenge a number of smart plugs has been deployed in house-

holds with data being collected roughly every second for each sensor in each smart plug. It

has to be noted that the dataset is collected in an uncontrolled, real-world environment, which

implies the possibility of malformed data as well as missing measurements.

In Table 3.1 we describe how is the layout of each one of the measurements into the

dataset. It is used a hierarchical structure to represent the relation of the smart plugs, households,

and houses. A house is identified by a unique house id. A house is the topmost entity. Every

house contains one or more households, identified by a unique household id. Each household id

is unique only within a given house. Every household contains one or more smart plugs, each

identified by a unique plug id. Similar to household id, the plug id is unique only within a given

household. Every smart plug contains exactly two sensors: 1) a load sensor measuring current

load with Watt as unit and 2) a work sensor measuring total accumulated work since the start

(or reset) of the sensor with kWh as unit.

The synthesized data file contains over 4055 Millions of measurements for 2125 plugs

distributed across 40 houses, for a total amount of 136 GB. Generated measurements cover a

period of one month with the first timestamp equal to 1377986401 (Sept. 1st, 2013, 00:00:00)

and the last timestamp equal to 1380578399 (Sept. 30th, 2013, 23:59:59). All events in the data

file are sorted by the timestamp value. Events with the same timestamp are ordered randomly

with respect to each other. For our tests, we used a subset of this file, in order to decrease

the total processing time and being able to make a greater numbers of simulation tests. The

subset of the file contains 100 Million measurements, the same amount of plugs and houses, for

a total amount of 3.6 GB. The subset file covers a period of two days, which is an important

characteristic to test our prediction algorithm using historical data (data from the previous day).
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Table 3.1 – Dataset: Schema and overview
Name Description Type Unit
id Unique identifier 32 bit unsigned integer Number

timestamp Timestamp of measurement 32 bit unsigned integer
Number of seconds
(since January 1, 1970,
00:00:00 GMT)

value
Measurement value, with unit type
dependent of the property field value

32 bit floating point kWh or Watt

property Type of measurement 32 bit unsigned integer 0 or 1
plug_id Identifier of the smart plug 32 bit unsigned integer Number

household_id
Identifier of where the plug
is located

32 bit unsigned integer Number

house_id
Identifier of the house where
the household
with the plug is located

32 bit unsigned integer Number

3.3 Forecasting Method

Smart grid deployments carry the promise of allowing better control and balance of

energy supply and demand through near real-time, continuous visibility into detailed energy

generation and consumption patterns. Methods to extract knowledge from near real-time and

accumulated observations are hence critical to the extraction of value from the infrastructure

investment.

In this context, STLF refers to the prediction of power consumption levels in the next

hour, next day, or up to a week ahead. Methods for STLF consider variables such as date

(e.g., day of week and hour of the day), temperature (including weather forecasts), humidity,

temperature-humidity index, wind-chill index and most importantly, historical load. Residential

versus commercial or industrial uses are rarely specified.

Time series modeling for STLF has been widely used over the last 30 years and a myriad

of approaches have been developed. These methods (KYRIAKIDES; POLYCARPOU, 2007)

can be summarized as follows:

• Regression models that represent electricity load as a linear combination of variables

related to weather factors, day type, and customer class.

• Linear time series-based methods including the Autoregressive Integrated Moving Aver-

age (ARIMA) model, auto regressive moving average with external inputs model, gener-

alized auto-regressive conditional heteroscedastic model and State-Space Models (SSMs).

• SSMs typically relying on a filtering-based (e.g., Kalman) technique and a characteriza-

tion of dynamical systems.
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• Nonlinear time series modeling through machine learning methods such as nonlinear re-

gression.

Shawkat Ali (ALI, 2013) argues that the three most accurate models for load predic-

tion are, respectively, Multilayer Perceptron (MLP), Support Vector Machine and Least Mean

Squares. Due to the model fit in relation to the distributed architecture, we decide to pursue the

approach suggested by the conference committee (ZIEKOW; JERZAK, 2014), that is schemat-

ically described in Equation (3.1). This approach could be interpreted as a mixed approach be-

tween MLP and ARIMA. It brings together characteristics from both Linear time series-based

methods and SSMs (BYLANDER; ROSEN, 1997).

More specifically, the set of queries provide a forecast of the load for: 1) each house,

i.e., house-based and 2) for each individual plug, i.e., plug-based. The forecast for each house

and plug is made based on the current load of the connected plugs and a plug specific prediction

model. The aim of these queries is not at the over the better prediction model, but at stressing

the interplay between modules for model learning that operate on long-term (historic) data with

components that apply the model on top of live, high velocity data.

L(si+2) =
avgL(si) +median(avgL(sj))

2
(3.1)

In the Equation (3.1), avgL(si) represents the current average load for the slice si. The

value of avgL(si), in case of plug-based prediction, is calculated as the average of all load

values reported by the given plug with timestamps ∈ si. In case of a house-based prediction the

avgL(si) is calculated as a sum of average values for each plug within the house. avgL(sj) is a

set of average load value for all slices sj such that:

sj = si+2−n∗k (3.2)

In the Equation (3.2), k is the number of slices in a 24 hour period and n is a natural

number with values between 1 and floor( i+2
k
). The value of avgL(sj) is calculated analogously

to avgL(si) in case of plug-based and house-based (sum of averages) variants.

3.4 Distributed Data Input

We have decided to implement the core of our architecture using Spark Streaming. Our

decision was based on evidence that we found that, while Apache Storm could provide better
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latencies, it was difficult to achieve comparable throughputs in comparison to Spark Streaming

(ZAHARIA et al., 2012) (TOSHNIWAL et al., 2014) (CARVALHO; NAVAUX, 2014). We also

found that there are many issues related to the platform stability over time (KULKARNI et al.,

2015). Similarly, when we started our project implementation using Flink Streaming (our first

implementation approach) we have found some issues. We have found that their windowing

system — which is important due to the importance of time frames in our architecture — was

still unstable and under development phase, which have made us decide to shift our implemen-

tation to use Spark Streaming as the underlining event stream processing framework.

In order to being able to distribute the data input to all processing machines, we needed

to research ways of parallelizing not only the processing, but also the data input, otherwise

we could have been heavily bounded by the data throughput into the event stream processing

system. Several options exist for this task, such as: Message Queues (MQs) like ZeroMQ1 and

Apache Qpid2; Higher level messaging protocols like XMPP3; Low memory footprint protocols

like CoAP4 and MQTT5. All of these options were considered, but we ended up using Apache

Kafka6, mainly due to its proved capacity of supporting large scale and high throughput systems,

with strong fault tolerance and rebalancing algorithms.

We do agree that low memory footprint protocols should be used for data collection.

However, we found that most protocols, such as MQTT queues, can be easily connected into

Apache Kafka — and sometimes provide their own implementations of the Kafka API — which

can then use these topics to distribute the data input to processing nodes.

Apache Kafka is a scalable publish-subscribe messaging system with its core architec-

ture as a distributed commit log. It was originally built at LinkedIn as its centralized event

pipelining platform for online data integration tasks. Over the past years developing and oper-

ating Kafka, LinkedIn extended its log-structured architecture as a replicated logging backbone

for much wider application scopes in the distributed environment (WANG et al., 2015).

Log processing has become a critical component of the data pipeline for consumer inter-

net companies, and is through Kafka that LinkedIn is able to collect and deliver high volumes of

log data with low latency. The system incorporates ideas from existing log aggregators and mes-

saging systems, and is suitable for both offline and online message consumption. Experimental

results show that Kafka has superior performance when compared to two popular messaging

1<http://http://zeromq.org/>
2<http://qpid.apache.org/>
3<http://xmpp.org/>
4<http://coap.technology/>
5<http://mqtt.org/>
6<http://kafka.apache.org>

http://http://zeromq.org/
http://qpid.apache.org/
http://xmpp.org/
http://coap.technology/
http://mqtt.org/
http://kafka.apache.org
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systems. LinkedIn have been using Kafka in production for some time and uses it to process

hundreds of gigabytes of new data each day.

Kafka organizes messages as a partitioned write-ahead commit log on persistent storage

and provides a pull-based messaging abstraction to allow both real-time subscribers such as on-

line services and offline subscribers such as Hadoop and data warehouse to read these messages

at arbitrary pace. Since Oct. 2012, Kafka has become a top-level Apache open source software

and be widely adopted outside LinkedIn as well 7.

The Kafka functionality addresses not only data ingestion and distributed log processing,

but also the renewed interest in using log-centric architectures to build distributed systems that

provides efficient durability and availability (BALAKRISHNAN et al., 2013) (LIN et al., 2008)

(OUSTERHOUT et al., 2011). In its approach, a collection of distributed servers can maintain a

consistent system state via a replicated log that records state changes in sequential order. When

some of the servers fail and come back, their states can be deterministically reconstructed by

replaying this log upon recovery.

3.5 Implementation

3.5.1 Architectural Implementation

Once the architecture was designed, we worked to materialize it through the implemen-

tation flow described in the Figure 3.5. The implementation consists of a series of layers, each

one represented by the framework or tool responsible for its implementation.

In the first layer, as our Messaging Layer, we have used Apache Kafka, the distributed

message framework, as a way to provide large scale input and output with high throughput and

fault tolerance capabilities.

The next layer is the Processing Layer, represented here by the chosen Streaming Pro-

cessing framework Spark Streaming. As we discussed in the last chapter, it provides high

processing throughputs, exactly-once processing semantics, and all of it through a simple pro-

gramming API. We can do the processing of sets of tuples itself in this layer, and then store the

results on the volatile store or put tuples back into another Kafka topics to be processed by other

connected platforms.

Finally, we have the Volatile Layer implemented using a Redis key-value store in-

memory database. Using Redis, we can do simple and fast distributed I/O and, since we do

7<http://kafka.apache.org>

http://kafka.apache.org
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not rely on complex queries and do not need to store data permanently, the model fits well to

the architectural design needs.

Figure 3.5 – An overview of the stack used to implement the Cyclic Architecture

3.5.2 Processing Flow

The processing starts with the data being read from disk and put into Kafka topics.

Once the data is in Kafka topics, the system makes data partitions and starts to send them to

Spark Streaming nodes. When the data arrives at Spark Streaming nodes, the system does the

processing and, in the end of a time window, stores load prediction data into Redis.

The most complex part of the processing is done using Spark Streaming processing,

which we can describe as the processing flow in the Figure 3.6.

The processing starts with the Measurements Producer, which is a Scala application

which reads from the input file and sends data to the Kafka destination topic. Then the Mea-

surements Reader gets the input from the Kafka topic using the Kafka’s High Level API. The

Data Filter cleans the dataset, which in our case means get rid of work measurements in the

dataset, as well as invalid measurements, and keep only the valid power measurements (there

are known approaches for recover load measurements from work measurements, which are not

under the scope of this work and are discussed in Chapter 5). Aggregate Windowing is the step
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Figure 3.6 – An overview of the data processing flow

where we group similar load measurements for the prediction algorithm processing, which in

our case means grouping measurements within the same house and the same plugs. The next

step is the Median Update, which gets the average for the current time slice and updates the set

of averages for the current time slice, in order to keep data updated for the system to calculate

the median in the next iteration (as it was previously described, there are a certain number of

time slices that are circularly updated based on calculations based on their timestamp). Finally,

the set of measurements within the time window, together with the previous median for the

current time slice are used to calculate the Load Prediction step.

The final result is stored on Redis, which represents our Volatile Layer, and can be used

for external queries to the AMI. The processed events can also be redirected to another Kafka

topics and the same architecture could be used to reprocess this data in another queries, as well

as feed another systems that could want to keep further processing this data.
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4 EVALUATION

In this chapter, we explain the approach we have used to evaluate our platform and what

results were found on these tests. Section 4.1 describes the platform used as the basis for running

our tests. Section 4.2 explores the system regarding to the achievable latency, measuring the

end-to-end time taken by events to traverse the system. Section 4.3 does a series of tests to

evaluate the throughput of the platform, and better understand how the system behaves when

the number of nodes increases.

4.1 Platform

In order to evaluate the system, we need a platform able to execute our tests. As we have

previously discussed in the Chapter 2, cloud computing platforms presents features desirable

to host these kinds of applications, and then we decided to use the IaaS platform provided

by Microsoft Azure. The platform was chosen not only because it is one of the largest cloud

computing platforms that provide IaaS capabilities, but also because it was available at our

university free of utilization costs, through a research project partnership. The platform built

using Microsoft Azure to host our application was configured using the settings described in

Table 4.1.

Table 4.1 – Platform evaluation: Virtual machines and toolset description
Parameter Description
Instance Type Standard_A3 (4 cores, 7 GB of RAM)
Nodes 10
Operating System Ubuntu 14.04 LTS
Location West Europe
Kafka Version 0.8.2.1
Scala Version 2.10
Java Version 1.7.0_80
Zookeeper Version 3.4.6
Spark Version 1.5.1
Redis Version 3.0.4

The system was then configured to operate with one node acting exclusively as the Spark

master, with up to 8 nodes as Spark slave processing nodes. We also separate one node exclu-

sively for Kafka, to receive writes from input readers and receive reads from processing nodes.
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Kafka was configured to use a single broker, providing an average write throughput of 45K

events per second in all of the following tests.

4.2 Latency

It is desirable for a smart grid system to provide the smallest possible latencies, due

to the discussed impact in monetary costs as well as for the environment. Nevertheless, when

dealing with distributed systems, it is impossible to get rid completely of latencies, and often we

need to decide between larger throughputs or smaller latencies. Because of these limitations, we

tried to balance acceptable latencies (given the application needs) with the highest throughput

possible, in order to accept the highest possible amount of clients.

The analysis of latency consists of the measurement of the time taken from an event

arrival — in our case, an energy measurement — to its arrival into the end of the processing

and delivering to the desired location. In our case, due to the predominant time taken by the

processing step, time taken from event development to data pipeline, and from data pipeline to

storage, is negligible. The focus of the measurement then goes to the processing step, where

we measure the time taken by the processing of an event into the application pipeline of Spark

Streaming.

As we can see in Figure 4.1, when batch sizes are large the system has enough time to

schedule and process the DAG of the application pipeline, not incurring into schedule delays

or processing pressure due to time constraints. This way, the system is able to maintain itself

below the time limit, which means below the value of the batch size. In Figure 4.2, we can

observe that even when there are scheduling spikes, the system is able to recover itself and

compensate the processing time spikes in the long run.

However, when batches are too small, the system is not capable of providing the low

latencies — in Spark Streaming, latencies are directly bound by the configured batch sizes —

and latency spikes. To overcome that, it is needed to decrease the input rate (to an amount which

the system is able to process) or to increase the batch size (which implies into greater latencies).

To analyse the system behavior when the batch sizes are small, we did a second set of

tests using batch sizes from 5 to 15 seconds. In the Figure 4.3, we can see that to its batch

sizes, the system is not able to handle the amount of data as it is received — an overall of 45K

messages per second —, and the latencies are now greater then the batch sizes, which did not
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Figure 4.1 – Best case scenario - Large batches with 8 processing nodes

Figure 4.2 – Sample Execution - 8 processing nodes, 30 seconds batch and stable overall processing

happened for the batch sizes in the Figure 4.1. When latencies are larger than batch sizes, the

system starts queueing those messages into memory buffers. The overall processing time keeps

increasing, until there are not enough space anymore in the pre-configured queue buffer, as we

can see in Figure 4.4.
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Figure 4.3 – Worst case scenario - Small batches with 1 processing node

Figure 4.4 – Sample Execution - 1 processing node, 5 seconds batch and increasing input queueing

4.3 Throughput

The throughput is an important metric in an AMI, since it delimits the number of possible

clients that can be reach by the AMI smart grid systems, given the number of messages per

second a single meter will provide. To measure the throughput in our platform, we analyse the

system behavior when the number of nodes increases and also how it behaves with different

batch sizes.

As we can see in Figure 4.5, the system scales linearly up to 8 nodes, doubling the input

processing rate when the number of machines doubles. By analyzing the Figure 4.5 we can
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Figure 4.5 – Average message throughput, by number of nodes, with 30 seconds batch

perceive that, up to the boundary of the input rate, the system is able to handle the data input

of a single Measurements Producer. In order to add more nodes to the processing system, we

would need to add more Measurements Producer nodes, and distribute them among different

Kafka brokers, in order to parallelize not only the reads from Kafka, but also the parallel writes

to the system queue.

The system achieves a maximum median throughput of almost 45K events per second

with 8 processing nodes. In this way, the system is able to handle all of the data being processed

within their batch size. In this way, the system does not generate increasing queues on Kafka

buffers, which happens with the same input rate but less than 8 processing nodes.

The second step of the testing process was the testing of some parameters of the system.

We decided then to test the effect of batch sizes into the overall throughput of the system, due

to the impact that we had seen into latency. We also decided to use the maximum number of

available nodes (8 nodes) and batch sizes that presented a stable performance on the previous

tests — batches from 30 seconds to 120 seconds —.

Contrary to our previous suspect, the batch sizes affect the latency more than the through-

put — which is not exactly true to extremely low batch sizes, which can turn the system unstable

and then have a great impact in the throughput — as we show in the Figure 4.6. Either way,

the batch sizes still have some effects over the throughput of the system, but their impact is

much lower than into the latency performance, generating a tiny constant increment into the

overall throughput as the batch sizes grows up. However, we can see that the throughput do not



60

exponentially grows, as it happens with latency, when the batch sizes increase.

Figure 4.6 – Average message throughput, by batch sizes, with 8 processing nodes
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5 RELATED WORK

In this chapter, we present works related to our proposal from different points-of-view.

In Section 5.1 we present related works in the fields of energy consumption and smart grids

infrastructure. In Section 5.2 we present more specific related works, in the area of load fore-

casting using event processing.

5.1 Energy Consumption and Smart Grids Infrastructure

The field of smart grids is highly active and there are ongoing research in topics such

as energy forecasting, information security, energy consumption scheduling, etc. In this section

we introduce studies related to energy consumption, smart grids and AMIs.

(METKE; EKL, 2010) discuss the importance of minding security issues when design-

ing a smart grid solution, and provides key security technologies that must be adopted to assure

minimal security for a smart grid environment, such as public key infrastructures and trusted

computing. (FANG et al., 2012) describes in its survey the differences between the old elec-

tromechanical grids and the new digital grids, providing and important notion dividing the smart

grids in 3 subsystems: Smart Infrastructure System, Smart Management System and Smart Pro-

tection System. The Smart Protection System is exclusively designed to take care of failure

protection and security of the system.

(AUNG et al., 2012) provides an statistical model for load forecasting in smart grids,

providing an method that can obtain approximately 98% of average accuracy on predictions and

that is also computationally efficient, with potential for being used in large scale forecasting.

(KALYVIANAKI et al., 2012) provide a technique to control average latency by dropping some

incoming packages, in order to keep system stability over time.

The main advantage of AMIs is the ability to make the DSM. But it is not only limited

to the ability of monitor and control the client devices. AMIs can also provide data to cus-

tomers, which in turn make smart decisions for when it is preferable to spend or to save energy.

(MOHSENIAN-RAD et al., 2010) proposes a technique based on game-theory to achieve a

Nash equilibrium in the smart grid, based on the two-way communication provided by Smart

Meters with the smart grid, the system balances itself to better schedule energy consumption

for the energy companies and better energy costs for the end users.
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5.2 Load Forecasting Using Event Processing

There are lots of research going related to smart grids, and a subset of these research

uses Event Processing systems to address its problems. (ZHOU et al., 2013) and (ZIEKOW et

al., 2013) provide a middleware solution for smart grids, and in the ladder extends the former to

address load demand balancing. (DUNNING; FRIEDMAN, 2014) provides a highly scalable

quantile estimator called t-digest, which was designed for parallel online operation.

The DEBS challenge (ZIEKOW; JERZAK, 2014) held in the DEBS conference of 2014

was one of the motivations for this work. The solutions presented to the challenge represent

some interesting techniques for load prediction and outlier detection for smart grid systems. In

(PERERA et al., 2014) is proposed a technique with a histogram of values to predict the median

and a min-max heap approach. In (MARTIN et al., 2014) they propose an approach for data

completion based on work measures, generating missing load measurements based on work

measurements data. In (SUNDERRAJAN; AYDT; KNOLL, 2014) it is provided an approach

that is similar to ours, but using Apache Storm as a baseline, providing better overall latencies

but worse average throughputs.

Our work relates to (APRELKIN, 2014), that also works with STLF, but focus on pre-

diction algorithms and do not explore distributed processing. (WÅLINDER; HOANG, 2015)

also works with AMIs, but has its focus on analytics and social networks, providing metrics

for the end-user to take smart decisions about energy consumption. Finally, (KUMAR, 2014)

provides an architecture for processing sensor network data, for a Water Distribution Network

using Apache Storm. He manages to provide analytics for detection of anomalies and explores

the scalability of the system.
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6 CONCLUSION AND FUTURE WORK

The main goal of this work was to provide a high performance scalable architectural

solution for distributed event stream processing, focusing on smart grids data profiles. The

main goal was achieved and the system was able to handle the pressure with high throughputs,

while scaling linearly up to 8 processing nodes.

We found that for tiny batch sizes the system could turn unstable and have difficulties

to process data. It could lead to increasing data queue until there are not space anymore and

packets will start being dropped. It is possible and desirable to adjust batch sizes to fit the

latency needs in a way that the system could be able to deliver the proper latencies without data

loss.

It was also found that greater batch sizes improve throughput performance, leading to

a greater number of events being processed per second, in expense of latencies, which start to

increase proportionally.

Future works include a deeper research on prediction forecasting and results on fore-

cast accuracy, as well as other ways to increment prediction quality, such as recovery of lost

load energy measurements or to use weather predictions into energy load forecast prediction

algorithms.

We also plan to improve overall throughput by increasing the number of parallel data

feeds, as well as platform settings such as data serialization and improvements into the algo-

rithm itself.

The system availability could be improved by adding certain parameters and configura-

tions to the platform. All of the most parts used to build the platform, Apache Kafka, Apache

Spark and Apache Redis, present features for fault tolerance, but we still need more research

about parameters and the interconnections between them to assure that.

A final important improvement would be to add an abstraction layer for machine deploy-

ment, such as Apache YARN 1 or Apache Mesos2 with Docker3 containers. It would provide

advanced scheduling for our application, as well as to provide an abstraction layer from the

underlining IaaS platform, turning it easier to replace the IaaS provider. We have tried a Docker

deployment, but decided to stay with the standard Azure CLI due to several issues with Docker

networking — that was still under development when this work was finished —.

1<https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html>
2<http://mesos.apache.org>
3<http://www.docker.com>

https://hadoop.apache.org/docs/current/hadoop-yarn/hadoop-yarn-site/YARN.html
http://mesos.apache.org
http://www.docker.com
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