
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

CURSO DE CIÊNCIA DA COMPUTAÇÃO

ALEX ZOCH GLIESCH

Solving Atomix Exactly

Work presented in partial fulfillment
of the requirements for the degree of
Bachelor in Computer Science

Advisor: Prof. Dr. Marcus Ritt

Porto Alegre
December 2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb
Coordenador do Curso de Ciência de Computação: Prof. Carlos Arthur Lang Lisbôa
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“We should not judge people by their peak of excellence,

but by the distance they have traveled from the point where they started.”

— HENRY WARD BEECHER

ACKNOWLEDGEMENTS

I would like to thank my advisor, my colleagues, my family, and my girlfriend.

ABSTRACT

This work proposes an algorithm based on heuristic search to solve Atomix. Atomix is a video

game puzzle developed in the 1990s. It falls under the category of sliding block puzzles, which

also contains popular games such as Sokoban, Rush Hour, and the (n2− 1)-puzzle, which have

all been well studied in the literature.

The Atomix puzzle takes place on an integer rectangular grid, where pieces (called atoms) can

be moved by the player through sliding operations. A sliding operation consists of moving a

single atom horizontally or vertically on the grid; once a move is made, the atom will slide over

the grid until it reaches an obstacle, which could be another atom or a ‘wall’ (a static obstacle).

The objective of the game is to arrange the atom in a certain configuration called a molecule.

Since the place of the molecule is not specified there are often multiple possible goal states.

Atomix’s complexity was first studied by Holzer and Schwoon (2004), who have proved it to

be PSPACE-complete. Heuristic search methods for Atomix were studied by Hüffner et al.

(2001); however, the heuristic proposed by the article is somewhat uninformed, leaving several

instances of the standard testbed unsolved.

In this work, we study domain-dependent heuristic functions for Atomix based on pattern

databases (CULBERSON; SCHAEFFER, 1996), in the hopes of advancing the contributions

made by (HÜFFNER et al., 2001). We also study a number of tie-breaking rules for the A* al-

gorithm, as well as some implementation-specific optimizations. Finally, an improved solution

is proposed.

Keywords: Heuristic search. A*. algorithms. Atomix. sliding block puzzles.

Encontrando Soluções Exatas para Atomix.

RESUMO

Este trabalho propõe um algoritmo baseado em busca heurística para resolver Atomix. Atomix

é um puzzle de video game desenvolvido nos anos 90. Ele cai na cadegoria de puzzles de blocos

deslizantes, que também contem jogos populares como Sokoban, Rush Hour, e o (n2 − 1) −

puzzle, todos os quais têm sido bem estudados na literatura.

O puzzle Atomix ocorre em uma grade retangular inteira, onde peças (chamadas átomos) podem

ser movidas pelo jogador através de operações deslizantes. Uma operações deslizante consiste

em mover um único átomo horizontalmente ou verticamente sobre a grade; uma vez que um

movimento foi feito, o átomo irá deslizar sobre a grade até que encontre um obstáculo, que

pode ser outro átomo ou uma parede (um obstácilo estático). O objetivo do jogo é montar

os átomos em uma certa configuração chamada molécula. Como o lugar da molécula não é

especificado, é comum haver mais de um estado final.

A complexidade de Atomix foi primeiro estudada por Holzer and Schwoon (2004), que o provou

ser PSPACE-completo. Técnicas de busca heurísica para Atomix foram estudadas por Hüffner

et al. (2001); porém, a heurística proposta pelo artigo é relativamente desinformada, deixando

várias instâncias não resolvidas.

Neste trabalho, nós estudamos heurísticas dependendes de domínio para Atomix baseadas em

bancos de dados de padrões (CULBERSON; SCHAEFFER, 1996), na esperança de avançar as

contribuições feitas por (HÜFFNER et al., 2001). Nós também estudamos técnicas de desem-

pate para o algoritmo A*, além de algumas otimizações específicas à implementação. Final-

mente, uma solução melhorada é proposta.

Palavras-chave: Busca heurística. A* search. Atomix. Puzzles de blocos deslizantes.

LIST OF FIGURES

Figure 1.1 The notation used for the examples presented in this work.................................... 13
Figure 1.2 The atomix_03 instance.. 14
Figure 1.3 Final states for the atomix_03 instance. ... 14
Figure 1.4 Neighboring states of atomix_03 instance.. 15
Figure 1.5 The 15-puzzle as an Atomix instance... 18

Figure 3.1 Example of the reachability problem.. 27
Figure 3.2 A standard heuristic computation example... 28
Figure 3.3 Example of the duplicate atoms problem. .. 29
Figure 3.4 A bipartite graph induced by duplicate atoms. ... 30
Figure 3.5 Example of the NRP tie-breaking rule. .. 36
Figure 3.6 Example of the FO tie-breaking rule. ... 38
Figure 3.7 Example of the benefit of grouping atoms of the same type in a static PDB. 40
Figure 3.8 A graph with the partitions of a dynamic PDB. ... 42
Figure 3.9 An example of a problem of the multi-goal PDB... 43

Figure 4.1 Comparison of nodes expanded between AFS and OFS. 47
Figure 4.2 Comparison of nodes expanded between GC and the version without tie-breaking.50
Figure 4.3 Comparison of nodes expanded between the version without PDB and the

dynamic PDB. .. 52
Figure 4.4 Comparison of nodes expanded between static and dynamic PDB........................ 54
Figure 4.5 Comparison of nodes expanded between our solution and Hüffner et al. (2001). . 57

LIST OF TABLES

Table 1.1 Comparison of the complexity of sliding block puzzles .. 20

Table 3.1 Expected static PDB memory usages... 39

Table 4.1 Instance groups used to present results. ... 45
Table 4.2 A summary of the techinques presented and tested in this work. 45
Table 4.3 Comparison between One Final State and All Final States heuristics. 46
Table 4.4 Comparison between tie-breaking rules. .. 49
Table 4.5 Comparison between Fibonacci heap and bucket-based open list. 51
Table 4.6 Comparison between PDB methods... 53
Table 4.7 Comparison of the initial heuristic of various methods. .. 55
Table 4.8 Comparison between our final solution and the implementation by Hüffner et

al. (2001). .. 56

Table A.1 Instance Data 1/4 ... 63
Table A.2 Instance Data 2/4 ... 64
Table A.3 Instance Data 3/4 ... 65
Table A.4 Instance Data 4/4 ... 66

Table B.1 Fibonacci Heap vs. Buckets Experiment 1/4... 68
Table B.2 Fibonacci Heap vs. Buckets Experiment 2/4... 69
Table B.3 Fibonacci Heap vs. Buckets Experiment 3/4... 70
Table B.4 Fibonacci Heap vs. Buckets Experiment 4/4... 71

Table C.1 One Final State vs All Final States Experiment 1/4 .. 73
Table C.2 One Final State vs All Final States Experiment 2/4 .. 74
Table C.3 One Final State vs All Final States Experiment 3/4 .. 75
Table C.4 One Final State vs All Final States Experiment 4/4 .. 76

Table D.1 Tie-Breaking Experiment 1/5 .. 78
Table D.2 Tie-Breaking Experiment 2/5 .. 79
Table D.3 Tie-Breaking Experiment 3/5 .. 80
Table D.4 Tie-Breaking Experiment 4/5 .. 81
Table D.5 Tie-Breaking Experiment 5/5 .. 82

Table E.1 PDB Experiment 1/5 .. 84
Table E.2 PDB Experiment 2/5 .. 85
Table E.3 PDB Experiment 3/5 .. 86
Table E.4 PDB Experiment 4/5 .. 87
Table E.5 PDB Experiment 5/5 .. 88

Table F.1 Initial Heuristic Values 1/4 ... 90
Table F.2 Initial Heuristic Values 2/4 ... 91
Table F.3 Initial Heuristic Values 3/4 ... 92
Table F.4 Initial Heuristic Values 4/4 ... 93

Table G.1 Our Final Solution vs. Hüffner et al. (2001)’s 1/4 .. 95
Table G.2 Our Final Solution vs. Hüffner et al. (2001)’s 2/4 .. 96
Table G.3 Our Final Solution vs. Hüffner et al. (2001)’s 3/4 .. 97
Table G.4 Our Final Solution vs. Hüffner et al. (2001)’s 4/4 .. 98

LIST OF ABBREVIATIONS AND ACRONYMS

AFS All Final States

GC Goal Count

FO Fill Order

NRP Number of Realizable Generalized Paths

PS Perimeter Search

BFS Breadth First Search

DFS Depth First Search

PDB Pattern database

CONTENTS

1 INTRODUCTION.. 12
1.1 Structure of This Work.. 12
1.2 The Atomix Puzzle ... 12
1.2.1 Origins... 12
1.2.2 The Game Setup.. 12
1.2.3 Moving Atoms .. 15
1.2.4 Formal Definition.. 16
1.3 Previous Work .. 17
1.3.1 On the Complexity of Atomix .. 17
1.3.2 On Searching the State Space of Atomix.. 17
1.4 Related Puzzles... 18
1.4.1 15-puzzle and the (n2 − 1)-puzzle ... 18
1.4.2 Sokoban... 19
1.4.3 Overview of the Complexity of Other Sliding Block Puzzles .. 19
2 HEURISTIC SEARCH ... 21
2.1 Introduction.. 21
2.2 The A* Algorithm .. 21
2.3 The IDA* Algorithm.. 22
2.4 Pattern Databases .. 24
2.5 Hierarchical A* .. 25
2.6 Perimeter Search.. 25
3 SEARCHING THE STATE SPACE OF ATOMIX... 27
3.1 A Standard Heuristic for Atomix ... 27
3.1.1 The Idea .. 27
3.1.2 Pre-Computing Relaxed Distances ... 28
3.1.3 Dealing with Duplicate Atoms.. 29
3.1.4 Dealing with Multiple Final States ... 30
3.1.4.1 First Approach: Independent Search for All Final States.. 30
3.1.4.2 Second Approach: Using All Final States ... 31
3.1.5 Admissibility... 31
3.1.6 Consistency ... 32
3.2 Implementation Details ... 32
3.2.1 Representing States and Positions in Memory.. 32
3.2.2 An Efficient Bucket-Based Open List for A* ... 32
3.2.3 Hashing Atomix States ... 34
3.3 Tie-Breaking Techniques... 35
3.3.1 Goal Count .. 35
3.3.2 Number of Realizable Generalized Paths ... 35
3.3.3 Fill Order... 37
3.4 Pattern Databases .. 38
3.4.1 Creating Pattern Databases for Atomix .. 38
3.4.2 A Static Disjoint Pattern Database.. 39
3.4.3 A Dynamically-Partitioned Pattern Database ... 41
3.4.4 A Multiple Goal Dynamically-Partitioned Pattern Database.. 42
4 EXPERIMENTS AND RESULTS.. 44
4.1 Experimental Setup ... 44
4.1.1 Platform... 44
4.1.2 Instances.. 44

4.1.3 Techniques Tested ... 45
4.1.4 Experimental Strategy... 46
4.2 Test A: One Final State vs All Final States Heuristics... 46
4.3 Test B: Tie-Breaking Techniques.. 48
4.4 Test C: A* Open List Implementations.. 50
4.5 Test D: Pattern Databases ... 51
4.6 Analysis of the Heuristics’ Quality... 54
4.7 Final Solver... 56
5 CONCLUSION AND FUTURE WORK ... 58
REFERENCES.. 60
APPENDIX A — INSTANCE DATA .. 62
APPENDIX B — FIBONACCI HEAP VS. BUCKETS EXPERIMENT RESULTS 67
APPENDIX C — ONE FINAL STATE VS ALL FINAL STATES EXPERIMENT

RESULTS.. 72
APPENDIX D — TIE-BREAKING EXPERIMENT RESULTS....................................... 77
APPENDIX E — PDB EXPERIMENT RESULTS ... 83
APPENDIX F — INITIAL HEURISTIC VALUES .. 89
APPENDIX G — FINAL SOLVER RESULTS ... 94

12

1 INTRODUCTION

1.1 Structure of This Work

This work is organized as follows. Chapter 1 describes the Atomix puzzle, and briefly

discusses what has been previously studied in the literature about Atomix and other sliding

block puzzles. Chapter 2 presents a brief overview of the heuristic search methods and the

state-of-the-art techniques that were employed in this work. Chapter 3 presents and explains in

detail the techniques and heuristics we applied in this work: the standard heuristics, some imple-

mentation details, tie-breaking rules and pattern databases. Chapter 4 describes the experiments

that were conducted and discusses the results, providing a comprehensive comparison between

the methods tested. Finally, Chapter 5 summarizes our contribution, and provides possible ideas

on how to further improve our solution.

1.2 The Atomix Puzzle

1.2.1 Origins

The game Atomix was originally developed by Günter Krämer, published by Thalion

Software, and released for the Commodore Amiga in 1990. In the late 1990s, it was also

published for other computing systems.

1.2.2 The Game Setup

The game takes place on an integer grid of size w × h. Distributed over this grid are

n pieces, called atoms, which must be assembled together to form a specific molecule. The

molecule to be assembled is given by the problem statement. The grid area is surrounded by

solid walls: obstacles through which atoms cannot pass. There may also be walls inside the grid

area.

A molecule is an atom pattern representing the desired final configuration of atom po-

sitions. The molecule may be placed anywhere on the board (as long as there is room for it,

naturally), so there may be more than one place where one can assemble it. This implies that,

when employing a heuristic search algorithm such as A*, there will be not one, but several goal

13

states. The final molecule cannot be mirrored or rotated. A final molecule always contains all

of the atoms on the board.

Atoms may be distinct, and must each be represented by an identifying label. For exam-

ple, “H-” might represent a hydrogen atom with an atomic link to the right, or “=O=” an oxygen

atom with links to both right and left directions. Two atoms with different link directions (for

example “-H” and “H-”) are considered distinct, i.e., their final positions on the molecule can-

not be interchanged. The problem also permits more than one atom to have the same type (or

label). For example, a molecule may require two hydrogen atoms with the exact same rotation.

We will see in Section 3.1.3 that multiple atoms with the same label make the problem more

difficult.

An instance of the Atomix puzzle defines the molecule pattern to be assembled, the grid

layout, the number of atoms and their respective types, and the initial position of every atom.

This work provides several graphic examples of Atomix instances, in order to demon-

strate peculiar situations that occur in the puzzle. Figure 1.1 shows the basic graphic elements

used to describe Atomix: a wall, an atom having label X, and a goal position of the atom with

label X. Atoms labels are upper-case letters; if two atoms or two goals have the same label, we

differentiate them using subscript indexes, such as X1 or GX2.

Figure 1.2 shows an example Atomix instance, instance atomix_03 of the standard

testbed. The goal of this instance is to assemble the Methanol molecule. Figure 1.3 shows

all the four possible final states, that is, the positions where the final molecule can be placed.

Figure 1.1: The notation used for the examples presented in this work.

(a) A wall. (b) An atom. (c) A goal position.

Source: the author.

14

Figure 1.2: On the left, the initial state for the atomix_03 instance; on the right, the molecule to
be assembled.

Source: the author.

Figure 1.3: All possible final states for the atomix_03 instance.

Source: the author.

15

1.2.3 Moving Atoms

A single atom can be moved with a sliding operation. A sliding operation on an atom

can be performed in any direction (up, down, left or right), and causes that atom to be moved

in the desired direction until an obstacle (another atom, a wall, or an outside border) is reached;

the atom will then stop on the position before the obstacle and end its movement. When sliding,

an atom may not stop at any intermediate position between its initial position and its stopping

point. We can therefore define the concept of direct neighborhood of a given game state: it is

the set of states generated by moving every single atom on the original configuration in every

possible direction.

Figure 1.4 shows the 3 neighboring states achieved by moving the atom A on the initial

configuration of atomix_03 instance, described in the previous section. The other 15 neighbors

are omitted, for simplicity.

Figure 1.4: Neighboring states achieved by moving the atom A on the initial configuration of
atomix_03.

Source: the author.

16

The atomix_03 example instance can be solved optimally with a sequence of 16 moves:

E-up, C-down, C-left, C-up, D-right, F-right, F-down, B-down, B-right, B-down, B-right, B-

down, B-left, A-down, A-up, A-right.

1.2.4 Formal Definition

A game instance can be represented formally by:

• A boolean matrix W ∈ {0, 1}w×h where Wij = 1 if the position (i, j) on the grid is a

wall (a static obstacle), and 0 otherwise.

• A set of atom labels L ⊂ N. Two atoms that have the same label are considered duplicate

(they are of the same type), and can be interchanged in a goal state.

• A starting game state S (the definition of game state is given below).

• A set of goal game states G.

A game state is represented as set of pairs {(p1, l1), . . . , (pn, ln)}, each tuple representing

an atom, where pi ∈ N × N is the 2D coordinate (r, c) of that atom, and li ∈ L is a label

representing the type of that atom. A direction is a coordinate offset (dx, dy), which can be

down = (0, 1), up = (0,−1), right = (1, 0) or left = (−1, 0). We define the set of all directions

to be D = {up, down, left, right}. A grid position p = (r, c) is said to be empty with respect to

a state S if Wrc = 0 and (p, l) /∈ S for any l ∈ L.

A move is a function move(p, d) that, when applied on a position p and direction d,

yields the first position p+ δd such that every p+ δ′d is empty for 0 < δ′ ≤ δ and p+ (δ + 1)d

is not empty. If the position p+ d is not empty, move(p, d) yields p.

The neighbors of a given state P form a set of states N(P) = {P ′ | P ′i = Pi ∀ i 6=

a and P ′a = move(Pa, d), ∀ a ∈ {1, . . . , n} ∀ d ∈ D}.

A state S is considered to be a solution state if S ∈ G. The distance between states P

and Q is the minimum number of neighboring moves needed to transform P into Q.

17

1.3 Previous Work

1.3.1 On the Complexity of Atomix

Holzer and Schwoon (2004) shows that it is possible to conceive Atomix instances which

have optimal solutions that are exponentially long on the board size; however, these instances

tend to not contain molecules patterns which are normally found in nature, and most likely

would not be present in standard instance sets.

Furthermore, it shows that Atomix is PSPACE-complete with respect to the board size

w × h, by reducing the non-emptiness intersection problem for finite automata to Atomix. It

also states that the complexity of Atomix is due to the board structure (i.e., the static obstacles

on the board), and not from the types of atoms or their distribution on the final molecule.

1.3.2 On Searching the State Space of Atomix

Hüffner et al. (2001) present a technique based on heuristic search to solve Atomix. It

uses A* and IDA* to find an optimal sequence of moves to solve the problem.

The paper proposes a relaxed atom movement pattern called generalized moves, which

allows atoms to stop at any free space in a given direction, instead of only at the position just

before an obstacle. It also allows for more than one atom to occupy the same place. The value of

the heuristic for a given state P to a goal state G is the sum of the generalized distances of every

atom in P to every final position in G. An important advantage of this heuristic function is that

single distances can be pre-computed and the total heuristic value can be computed efficiently.

However, removing the sliding property of Atomix is a substantial abstraction, and leads to poor

lower bounds.

The paper also uses of the fact that the heuristic is monotone (consistent) to propose a

very efficient open list data structure for the A* algorithm, which is several times faster than

standard implementations such as C++ STL’s priority_queue. The disadvantage of this

approach is that it does not allow tie-breaking techniques to assign further priorities to states

with the same f-value.

18

1.4 Related Puzzles

1.4.1 15-puzzle and the (n2 − 1)-puzzle

The 15-puzzle, and the more generic (n2 − 1)-puzzle, are perhaps the most famous

benchmark problems used for heuristic search techniques. It consists of a 4×4 board containing

a set of 15 numbered tiles and an empty space; tiles that are adjacent to the empty space may

slide onto it, occupying its space and leaving their previous position empty. The goal of the

puzzle is to arrange the tiles in a pre-defined order.

The advantages of using the (n2 − 1)-puzzle to test new heuristic methods is that it is

easy to implement, and has an obvious admissible heuristic: the sum of the Manhattan distances

between tiles and their final positions. Also, the 15-puzzle version has a rather small state space

and can be solved for many different instances in feasible time. It can also be extended to the

24- or 35-puzzle versions if a harder problem is desired.

Due to its close relation to Atomix, many heuristic search methods developed for the

(n2 − 1)-puzzle can also be used in Atomix. In particular, pattern databases (CULBERSON;

SCHAEFFER, 1996), which were first applied for the 15-puzzle, have proved to be very useful

not only for Atomix, but for other sliding block puzzles. Any (n2−1)-puzzle can be represented

as an Atomix level, as shown in Figure 1.5.

Figure 1.5: The 15-puzzle as an Atomix instance: on the left, the initial state, and, on the right,
the molecule to be assembled.

Source: the author.

19

1.4.2 Sokoban

Sokoban is a classic single-player game taking place in a maze, over which stones

(pieces) are scattered. Those stones may be pushed onto adjacent squares by an agent (or

man) controlled by the player. The objective of the game is to move all stones into a set of goal

positions. Sokoban has been shown to be PSPACE-Complete (CULBERSON, 1999).

As a sliding block puzzle, Sokoban bears resemblances to Atomix. It takes place in

a maze where pieces are to be moved onto goal positions. This hints that many of the same

techniques used to solve Sokoban may be used to our advantage in Atomix. In particular, some

methods used by Pereira, Ritt and Buriol (2013) for Sokoban are also employed in this work to

improve heuristics for Atomix.

One important difference between the two puzzles is that in Sokoban, the player is rep-

resented on a board square as a “man” and may only push stones to which it is adjacent, while in

Atomix the player may move any stone at any time, as in a “god mode”. Another difference is

that, while in Atomix the atoms can all be different, each having one pre-defined goal position,

the Sokoban stones are all considered to be the same, so that any matching of stones to goal

positions is a viable solution. This reduces the state space considerably, compared to Atomix.

Finally, we can also note that solution lengths for Sokoban standard instances are quite long,

averaging from about 100-600 movements, whereas, for Atomix, known solution lengths range

from 20-60 movements.

Sokoban has an interesting property: it allows for deadlock states, that is, states from

which no solution can be found. This property might make it easier to solve the problem, since it

prunes nodes which will certainly not lead to a solution. In fact, this is also the case for Atomix;

however, in the available instances, this kind of situation occurs extremely infrequently, and is

not a major problem. One reason for this is that we have no man in Atomix.

1.4.3 Overview of the Complexity of Other Sliding Block Puzzles

Table 1.1 compares Atomix, Sokoban, 15-puzzle, and other sliding block puzzles. The

column Move uses the nomenclature Move-NumPieces-GoalType, where Move can be Push,

Pull or PushPull, NumPieces denotes the number of pieces that can be moved at once (1, k, or

∗), and GoalType denotes the type of goal of the problem: to move the agent to a final position

(P) or to store the pieces in a set of specific position (S). A Move of type MoveMove means

that moving pieces will slide until they encounter a goal state. For instance, Atomix would be

20

of type PushPushPullPull, because atoms can be both pushed and pulled by sliding operations.

If a result is valid for all variants of NumPieces or GoalType, the correspondent suffixes are

omitted.

Table 1.1: Comparison of the complexity of sliding block puzzles
Game Move Complexity Reference

Sokoban Push-1-S PSPACE-comp. (CULBERSON, 1999)
Push-1-P NP-hard (DEMAINE, 2001)

Push-k with k ≥ 2 PSPACE-hard (DEMAINE; HEARN; HOFFMANN, 2002)
Push-* PSPACE-hard (DEMAINE; HEARN; HOFFMANN, 2002)

PushPush-1 PSPACE-hard (DEMAINE; HOFFMANN; HOLZERC, 2004)
PushPush-k PSPACE-hard (DEMAINE; HOFFMANN; HOLZERC, 2004)
PushPush-* NP-hard (DEMAINE; HOFFMANN; HOLZERC, 2004)

Pull-P NP-hard (RITT, 2010)
Pull-S PSPACE-hard (PEREIRA; RITT; BURIOL, 2016)

PullPull PSPACE-hard (PEREIRA; RITT; BURIOL, 2016)
PushPushPullPull PSPACE-hard (PEREIRA; RITT; BURIOL, 2016)

PushPull PSPACE-hard (PEREIRA; RITT; BURIOL, 2016)
15-puzzle NP-hard (RATNER; WARMUTH, 1990)
Rush Hour PushPushPullPull-k-P PSPACE-comp. (FLAKE; BAUM, 2002)

Atomix PushPushPullPull-1-S PSPACE-comp. (HOLZER; SCHWOON, 2004)
Source: the author.

21

2 HEURISTIC SEARCH

2.1 Introduction

Most single-player puzzles can be formulated as a state space problem, which consists

of a state space S, a set of initial states I ⊆ S, a set of goal states G ⊆ S, and a set of operators

O, where o ∈ O is a function S → S that maps a given state to a neighbor state. In a more

general case, a weighted state space problem also defines a cost function w : O → R which

assigns a cost for every action. In the case of Atomix, all movements have the same cost. The

goal of this type of problem is to find an ordered sequence of operators (o1, . . . , on) ∈ On

that, when applied to one of the initial states in I , yields one of the goal states in G, and that

minimizes the total cost
∑n

i=1w(oi) of the path taken.

State space problems can be solved by heuristic search algorithms such as A* (HART;

NILSSON; RAPHAEL, 1968) and IDA* (KORF, 1985). These algorithms rely on heuristic

functions to guide the search over the state space. A heuristic function is a function S →

R that gives an estimate of the solution path cost for a given current state. In particular, an

admissible heuristic is one that will never overestimate the actual solution cost. If the heuristic

function is admissible, it is proven that A* and IDA* will terminate with an optimal solution;

otherwise, that is not guaranteed. A consistent or monotone heuristic is one where the total

estimate solution cost (which is the value of the heuristic plus the total cost accounted so far;

also called the f-value) is always increasing over any state sequence. A consistent heuristic

guarantees that, in A* search, no state will be visited more than once.

Although many implementation-specific optimizations can be made, these will usually

increase the performance by only a constant factor. The greatest improvements on A*/IDA*

stem from better heuristic functions, i.e., ones that achieve a higher lower bound on the actual

solution cost, while still maintaining admissibility. A good heuristic function can be exponen-

tially more efficient than a bad one. This is because, the better the heuristic function, the less of

the search space the algorithm will tend to explore.

2.2 The A* Algorithm

A* is one of the most widely used algorithms in heuristic search. Although it is efficient,

it requires an amount of memory of the order of the state space size, since it will store every

state expanded in memory. Nonetheless, it tends to be much faster than other memory-efficient

22

algorithms such as IDA*.

The A* algorithm ranks visited states based on their f-values f(s) = g(s)+h(s), where

g(s) is the number of movements required to reach state s from the start of the search, and h(s),

the heuristic function, is an estimate on the minimum number of moves required to reach a goal

state from s.

The algorithm keeps all states found in a states table, which is usually implemented by

a hash table. For each state, we keep its g-value, its h-value, and a pointer or index to its parent

state: the state that was visited just before it. States which have been found and not yet expanded

are kept in a data structure called the open list, which contains, at first, only the starting states. At

every iteration, the algorithm selects a state with the lowest f-value for expansion, and removes

it from the open list. The neighboring states of the expanded state will then be visited and

added to the open list, provided they have not yet been visited; if a neighboring state has been

previously visited with a higher g-value, we update its entry in both the states table and the open

list. The algorithm terminates when a goal state is removed from the open list, or when there

are no more states in the open list. In that case, it means that reaching a goal state is impossible.

Algorithm 1 shows the A* algorithm in detail.

In this work, we chose to use A* to implement our solution and test the heuristics pro-

posed in Chapter 3.

2.3 The IDA* Algorithm

Iterative Deepening A* (IDA*) is an alternative search algorithm to A* that uses mem-

ory linear on the size of the solution path constructed (which is quite negligible). The main

idea behind IDA* is to perform a series of bounded depth-first-searches (DFS) with increasing

move limits, until a solution is found. During each DFS, if the current recursion depth plus the

heuristic estimate for a node exceeds the move limit, that node is pruned. Like A*, it is proven

that, if the heuristic is admissible, IDA* will return an optimal solution. Unlike A*, since it

does not keep tab of which nodes were visited, the DFS can end up visiting the same nodes

several times.

IDA* can be very useful for cases when we have tight memory constraints, for instance,

when A* may consumes all the available memory before a solution is found.

23

Algorithm 1 The A* algorithm.
Procedure A*
Input: implicit problem graph with start node s, a set of goal nodes T , weight function w,
heuristic h, successor generation function Expand, and predicate Goal.
Output: cost-optimal path from s to t ∈ T , or ∅ if no such path exists.
Closed← ∅
Open← {s}
f(s)← h(s)
while Open 6= ∅ do

Remove u from Open with minimum f(u)
Insert u into Closed
if Goal(u) then

return Path(u)
else

Succ(u)← Expand(u)
for each v in Succ(u) do

Improve(u, v)
end for

end if
end while

Procedure Improve
Input: Nodes u and v, v successor of u
Side effects: Update parent of v, f(v), Open, and Closed
if v in Open then

if g(u) + w(u, v) < g(v) then
parent(v)← u
f(v)← g(u) + w(u, v) + h(v)

end if
else

if v in Closed then
if g(u) + w(u, v) < g(v) then
parent(v)← u
f(v)← g(u) + w(u, v) + h(v)
Remove v from Closed
Insert v into Open with f(v)

end if
else
parent(v)← u
Initialize f(v)← g(u) + w(u, v) + h(v)
Insert v into Open with f(v)

end if
end if

Source: Edelkamp and Schroedl (2011), adapted.

24

2.4 Pattern Databases

Pattern Databases (PDBs), a concept first introduced by Culberson and Schaeffer (1996),

are one of the most powerful ways to create admissible heuristics for state space problems. They

have been widely used in the last decade to solve benchmark problems such as the (n2 − 1)-

puzzle ((CULBERSON; SCHAEFFER, 1996), (FELNER; KORF; HANAN, 2004) and (KORF;

FELNER, 2002)), Sokoban (PEREIRA; RITT; BURIOL, 2013), Rubik’s Cube (KORF, 1997),

and many others.

The most direct definition of a PDB is a look-up table containing all possible values of

a heuristic function, which can be accessed in constant time during search. Unfortunately (or

fortunately!), the most interesting state space problems have a huge number of possible states,

most of them with more states than could probably fit in a computer memory.

The main idea behind PDBs is to use an abstraction to reduce the state space problem

to a simpler problem, or pattern, with a smaller search space, which can be fully explored in

feasible time. A problem which has been simplified by an abstraction is said to have an abstract

state space. This abstract state space must be small enough such that its solutions can stored

in memory. In sliding block puzzles such as the 15-puzzle and Sokoban, this is normally done

by removing some pieces and solving the original puzzle with the remaining pieces, which are

called the pattern. Another alternative would be to anonymize a set of pieces by removing their

labels. In the abstracted problem, a state is identified exclusively by the positions of the pattern

pieces (or of all pieces, if we anonymize some of them). A PDB is constructed by visiting all

reachable abstract states with a backward breadth-first-search, starting from the goal state, and

recording the distance to every other state. If there are multiple goal states (as is the case of

Atomix), we may either construct one PDB for every goal state, or a single PDB encompassing

all goal states.

Whenever possible, multiple PDBs should be built, in order to better utilize the available

memory. Of particular interest are disjoint pattern databases (KORF; FELNER, 2002). In

sliding block puzzles, two PDBs are disjoint if the sets of pieces used to build them are also

disjoint. The key advantage of disjoint pattern databases is that the contribution of multiple

disjoint PDBs can be added to make an admissible heuristic, whereas the only obvious way of

combining non-disjoint PDBs is by taking the maximum among them. In the literature, Korf

(1997) uses the maximum of three overlapping PDBs to compute a heuristic for the Rubik’s

cube, while Korf and Felner (2002) takes the maximum of the sum of two sets of disjoint PDBs

to efficiently solve the 24-puzzle. Holte et al. (2004) explores in depth the use of multiple PDBs

25

and shows that, in some cases, it is more useful to use n (m/n)-sized pattern databases instead

of a single m-sized pattern database.

In sliding block puzzles, disjoint PDBs must partition the pieces into disjoint sets, whose

respective PDB heuristics will be added. Felner, Korf and Hanan (2004) present two PDB vari-

ants that differ on the way of performing the pattern partition: statically-partitioned PDBs and

dynamically-partitioned PDBs. In a statically-partitioned PDB, the disjoint sets are pre-defined

according to some criterion before the PDB is actually built. In a dynamically-partitioned PDB,

one PDB is built for every possible pattern, and the partition is performed at run-time, so as to

choose the partition which maximizes the sum of the contributions of the PDB for each state.

Empirically, dynamically-partitioned PDBs are only feasible for small patterns, because the

number of possible patterns can be quite large.

In Section 3.4, we explore three different PDB variants for Atomix: a static disjoint PDB

of size 3, a dynamically-partitioned PDB of size 2, and a dynamically-partitioned multiple goal

PDB of size 2. The three PDB variants are compared experimentally in Section 4.5.

2.5 Hierarchical A*

Hierarchical search (HOLTE et al., 1996) is an A* approach based on a series of increas-

ingly simpler abstractions of the original problem. The heuristic function used for a concrete

(not abstracted) A* is the result of a second A* run on an abstracted version of the problem,

which in turn, uses as heuristic the result of a third, even more abstract A*, and so on. The

argument for hierarchical search is that the large cost of computing the abstracted solutions on

the hierarchy ends up being amortized, because it should lead to heuristic functions of much

higher quality. In practice, this is not always the case.

In a naïve implementation, multiple A* runs on the same level of abstraction would

repeatedly expand a very large number of the same nodes. Holte, Grajkowski and Tanner (2005)

present two optimizations for hierarchical search based on caching, which are denominated

optimal path caching and P-g caching.

2.6 Perimeter Search

Perimeter search, a concept introduced by Dillenburg and Nelson (1994), attempts to

improve heuristics that give poor lower bounds near the vicinity of the goal state. It performs

26

a backward BFS bounded to k moves, starting from the goal state, before the informed search

algorithm begins. All nodes in the final perimeter of the BFS (i.e., nodes with distance k from

the goal state) are stored, and during the informed search (either A* or IDA*), we compute the

heuristic value of a node as the minimum heuristic distance between that state and any of the

nodes in the perimeter. As an advantage, it gives better lower bounds, since the distance from

the perimeter to the goal is exact, and not an estimate. On the other hand, it makes the heuristic

more expensive to compute, since it must be computed for every node in the perimeter. Felner

and Ofek (2007) propose a way to improve this by combining perimeter search with pattern

database abstractions.

Another advantage is that the forward search can terminate whenever a state in the

perimeter is found. Furthermore, if a node’s heuristic estimate is smaller than k and that node

was not expanded by the perimeter search, we can correct the h-value to be k+1; this, however,

causes the heuristic to be non-consistent.

27

3 SEARCHING THE STATE SPACE OF ATOMIX

3.1 A Standard Heuristic for Atomix

3.1.1 The Idea

In many sliding block puzzles, the most straightforward way to achieve good heuristics

is to remove pieces from the board, and solve the abstract problem problem with fewer pieces.

This abstract problem is easier, in general. However, the sliding property of Atomix disallows

us to do so: interactions between atoms are almost always necessary in order to achieve an

optimal solution, and often to achieve any solution at all. An atom on its own may not be able

to reach its goal position; in fact, without interactions, the reach of a single sliding atom is

often extremely limited. Figure 3.1 exemplifies this: atom A cannot reach its final position GA

without the help of atom B, which must act as an obstacle.

Figure 3.1: Example of the reachability problem: A cannot reach GA without the help of B.

Source: the author.

It is clear that any abstraction that only removes atoms is not admissible. In Atomix,

before we remove atoms, we must abstract the slide operation.

The first heuristic upon which we based this work, which we call the standard heuris-

tic, has been proposed by Hüffner et al. (2001). The heuristic is based on abstracted sliding

movements called generalized moves. It provides two abstractions:

1. Instead of sliding, atoms may stop at any free position between the current position and

the end position of the slide. This removes the sliding property and greatly simplifies the

problem: when able to stop its slide, an atom does not need other atoms as obstacles to

reach a position on the board. However, this increases the branching factor considerably.

28

2. Interactions between atoms are ignored; two atoms may occupy the same position, and

may pass through each other. This amounts to the same as solving the problem separately

for every abstracted atom, and adding up all the results. Another way to put this: in the

standard game each free cell has a capacity of one. In this version the capacity constraints

are relaxed.

The goal distance of an atom Pi = (r, c) in a given state P is defined as the distance

from any of the goal positions of atom i to (r, c), using generalized moves. Finally, the value of

the heuristic function is the sum of the goal distances of all atoms to their final positions. Figure

3.2 shows an example where the standard heuristic would yield the value 6: 2 for atom A, 3 for

atom B, and 1 for atom C.

Figure 3.2: Example where the standard heuristic would yield 6: 2 for atom A, 3 for atom B,
and 1 for atom C.

Source: the author.

3.1.2 Pre-Computing Relaxed Distances

The standard heuristic can be pre-computed for all possible source and target positions

before the search algorithm starts. In order to do so, we start a breadth-first-search from every

board position, and visit all other positions on the board using generalized moves. The distance

vector of the breadth-first-search contains the distance from the source position to all other board

positions. Another way to achieve the same result would be to perform the Floyd-Warshall

algorithm (FLOYD, 1962) on the induced graph.

The time and memory complexity of this strategy is quadratic in the board size. Since

the board size does not exceed 1000 squares in any instance of the standard testbed, the memory

and time overheads of this pre-computation are negligible.

29

3.1.3 Dealing with Duplicate Atoms

The above idea does not work when two atoms have the same label. In this case, there

exists more than one final position where they can be placed. Figure 3.3 exemplifies this: both

atoms A1 and A2 have the same type, and can go to any of their possible final positions GA1 or

GA2. If we use the same logic presented above, the heuristic will choose both atoms to go to

same goal A1 (the closest one), yielding an h-value of 3 (1 for A1 and 2 for A2). By allowing

both atoms to go to their closest final position, we lose information, and the heuristic, although

still admissible, will be less powerful. It would be better if it chose A1 to go to GA1, and A2 to

go to GA2, thus achieving a heuristic value of 4.

Figure 3.3: Example of the duplicate atoms problem.

Source: the author.

Unfortunately, testing all possible n! combinations of atoms to final positions by brute

force would render the heuristic too costly to compute, for some instances. In order to achieve

this efficiently, we perform a minimum cost perfect matching on the bipartite graph induced

by the atom positions and their final position. This problem can be solved in O(n3) using

shortest augmenting paths (MUNKRES, 1957). This is the same idea used for achieving a

standard heuristic for Sokoban (PEREIRA; RITT; BURIOL, 2013), where all the stones are

considered equal and must be matched to their final positions. Figure 3.4 shows the bipartite

graph corresponding to the example in Figure 3.3: the edges marked in blue represent the

minimum cost matching for this graph.

30

Figure 3.4: The bipartite graph induced by the duplicate atoms in the example in Figure 3.3.
The edges in blue represent the minimum cost matching.

Source: the author.

In our implementation, if the number of duplicate atoms is equal to 3 or less, a brute

force strategy is employed: all possible combinations are tested. Otherwise, a minimum match-

ing is performed. We do this because, for n 6= 3, a brute force strategy is easy to implement and

requires fewer operations than a minimum matching; for n > 3, constant time overheads en-

tailed by the minimum matching, with aspects such as data structure initialization, are justified.

3.1.4 Dealing with Multiple Final States

The fact that Atomix may have multiple positions for the molecule (as discussed in

Section 1.2.2) introduces a few problems, as different final states may yield different heuristics.

It would be ideal if we knew exactly which of the possible final states will produce the optimal

solution, but, unfortunately, it may difficult to show that a given final state even has a feasible

solution.

In this section, we present two approaches to handle this problem. The first is used by

(HÜFFNER et al., 2001), and the second is proposed in this work.

3.1.4.1 First Approach: Independent Search for All Final States

Hüffner et al. (2001) solves this problem by imposing a move limit and running one A*

instance for every final state. The A* search will not add to the open list nodes whose f-values

are greater than the move limit; the search will continue until there are no more nodes with

an f-value smaller then the limit, or a solution is found. If a solution is not found, the move

limit is increased by one, and a new A* search starts. This method is very similar to IDA*,

with the exception that a state table is kept, so a state is not visited more than once. However,

31

this means that the search will re-expand many of the same states every time the move limit is

increased, which increases the number of nodes expanded, but by not more than a factor of the

node branching factor b (KORF, 1985).

The main advantage of this approach is that it allows to compute the heuristic in con-

stant time, instead of linear time in the number of atoms. After a neighboring move, only the

contribution of the atom that was actually moved must recomputed: the relaxed distance of that

atom on the previous position is subtracted from the current h-value, and the relaxed distance

on the new position is added. Another advantage of this method is that, having only one final

state, the heuristic will tend to lead the search directly towards the vicinity of that state.

3.1.4.2 Second Approach: Using All Final States

The approach we propose is quite simple: we take the heuristic value to be the minimum

sum of generalized distances among all final states. The advantage of this is that it allows us

to run a single A* with no move limit, and thus no states have to be expanded more than once

(given that the heuristic is consistent); it is introduced in the hope of amortizing the weaker

heuristic over the multiple individual searches.

The main disadvantage of this method is that it provides a costlier heuristic, since a

standard heuristic is computed for every final state. We are also not able to recompute it in

constant time after a move, because the closest final state may have changed, and we would not

know the previous h-value for the new closest final state. One way to solve this is by keeping

the best h-value for each final state, and updating each of them using only the contribution of

the moved atom. However, this will substantially increase the memory usage of a state, which

can be a crucial factor for A*. Empirically, the performance gains are insignificant.

3.1.5 Admissibility

The standard heuristic is admissible: the standard Atomix moves are a subset of the

generalized moves. This means that the optimal solution is always reproducible by using only

generalized moves, and so the heuristic value will be, at most, as long as the optimal solution

length.

32

3.1.6 Consistency

Any standard move can be emulated by a generalized move. This means that, after a

neighboring operation that performs one standard move, the total heuristic cost in generalized

moves cannot differ by more than one, which is the cost of emulating that standard move by a

generalized move. It follows therefore that hp ≤ hc + 1, where hp is the h-value of the parent

state and hc is the h-value of the child state.

3.2 Implementation Details

3.2.1 Representing States and Positions in Memory

Formally, a position is a pair (r, c) representing the board cell on the i-th row and j-th

column. In memory, this can be represented as a single integer, having the value i×w+j, where

w is the board width. Unfortunately, since in our testbed instances board sizes have up to 289

positions, we cannot use an 8-bit integer (which holds 256 values) in a generic implementation.

In our implementation, a 16-bit integer is used. The major drawback of this approach is that

it wastes memory, and causes A* to run out of memory approximately two times faster than

when using 8-bit integers. As a future optimization, we could analyze the instance input and

re-compile the solution with an integer size suitable to fit the board size.

States are stored as an array of positions. We chose to use static arrays (as opposed to

dynamic ones) so as to take advantage of the fact that temporary objects can be placed on the

stack, without requiring a heap memory allocation, which usually involves an expensive system

call. In order to use a static array, the number of atoms must be known at compile time; for the

final tests, we re-compiled the state class for every instance.

3.2.2 An Efficient Bucket-Based Open List for A*

In the A* algorithm, we need an open list implementation that allows efficient access

to the element with the lowest f-value, at every state expansion. The basic operations we need

to perform are insert, decrease-key (or update) and delete-min (access and remove the smallest

element). A data structure that provides those operations is called a priority queue. For those

means, heap-based data structures such as the binary heap and the Fibonacci heap (FREDMAN;

33

TARJAN, 1987) are the most obvious choices, as they are powerful, generic, and widely avail-

able in data structure libraries. In particular, the Fibonacci heap allows for time complexity

O(log n) for delete-min and O(1) for both insert and decrease-key.

When elements are ranked based on a discrete key which assumes values in a fixed and

small range, we can use an open list based on buckets. A bucket-based open list consists of an

array of k buckets, where k is the maximum f-value (upper bound) that we expect the search

to generate. A bucket with index i is a dynamic array that stores all open (not expanded) states

with f-value equal to i. We also keep, and update, the smallest index 0 ≤ µ ≤ k for which there

is a non-empty bucket. The basic operations are defined as:

insert: add the state to the bucket with index equal to its f-value. We also update

µ = min(µ, f-value(state)). This is done in O(1) time.

delete-min: while the bucket with µ is empty, increase µ by one. Remove any state in the µ-th

bucket and return it. µ will be incremented at most k times, so this is done in O(k). Note

that, since k is fixed and does not depend on the number of elements in the open list, this

means a constant time. Furthermore, removing any element from a list can be done in

O(1) time.

update: to do this, we would have to perform a linear search on the bucket of the states’ old

f-value, remove it, and re-insert it in the new f-value’s bucket. Other alternatives would

be for each state to store a pointer to its bucket position, to use a hash table as a bucket,

or to store buckets as a linked list of states. As these alternatives would be either too

time-expensive, memory-expensive, and/or difficult to implement, we chose to ignore

this operation; instead, the state is simply re-inserted into the open list, which is done in

O(1) time. To preserve admissibility, when we call delete-min and remove a state from

the µ-th bucket, we check if that states’ f-value is equal to µ; if it is not, we throw this

state away and continue expanding the next state. In practice, the effect this has on the

number of nodes expanded is very small.

The search ends when a goal state is found, or when µ = k, because then we know that

there are no more open states.

For Atomix, out of the 155 instances of our testbed, after one hour of tests, our best

solution finds a maximum lower bound of 65; if an instance has a solution length greater than

100, it is unlikely that we will be able to find it in a modest amount of time using the current

available heuristics. In our implementation, we set the number of buckets k to be 100, which is

easily manageable.

34

One drawback of this approach is that it may complicate the usage of tie-breaking rules,

where we discriminate between states with the same f-value. In Section 3.3, we present three

tie-breaking rules and argue that they do not prevent the use of this bucket-based open-list, save

for a few small tweaks.

In Section 4.4 we compare experimentally this bucket-based open list implementation

with an implementation that utilizes a Fibonacci heap.

3.2.3 Hashing Atomix States

We implemented a hash table as a static sized array. Since the maximum memory avail-

able is pre-defined, there is no rehashing: the entire hash table is pre-allocated before A* starts.

Each entry in the hash table is an integer which references an index in the states array.

The hashing function used is the same as the one used by Hüffner et al. (2001), shown

in Algorithm 2. The ll and gg operators mean left and right shifts, respectively. Compared to

the C++’s STL string hashing algorithm and Spooky Hashing (JENKINS, 2012), this seemingly

arbitrary hashing function is the one which obtained the best results, in terms of performance.

Algorithm 2 The hash function used for Atomix states.
Parameter S : the input state (an array of n integers)
h← 0
for 1 ≤ i ≤ n do
h← h+ Si

h← h+ (h� 10)
h← h⊕ (h� 6)

end for
h← h+ (h� 3)
h← h⊕ (h� 11)
h← h+ (h� 15)
return h

Source: Hüffner et al. (2001)

As a future work, an interesting alternative to this hash function would be Zobrist hash-

ing (ZOBRIST, 1970), which is a hashing scheme that specializes in abstract board games.

Hash collisions are treated with linear probing, i.e., if the desired table index is occupied,

we linearly search the subsequent indexes until a free position is found.

35

3.3 Tie-Breaking Techniques

In A*, when two states in the open list have the same f-value, it is up to the open list

implementation to decide which of those two states will be expanded first. A stable implemen-

tation may preserve insertion order, but, in general, the expansion order depends on details of

the data structure and its implementation. By adding extra intelligence in choosing which node

to expand, we may be able to explore less of the state space and thus find an optimal solution

quicker.

Particularly in Atomix, even using the best applicable heuristics that we know of (see

Section 3.4), some instances need tens of millions of states expanded before a solution is found;

also, solution lengths tend to be smaller than 70. This implies that most of the time, several

thousand states in the open list will have the same f-value. It could be beneficial, therefore, if

we further discriminate between them.

In this section we present three tie-breaking techniques for Atomix based on domain-

dependent knowledge. We compare them experimentally in Section 4.3.

3.3.1 Goal Count

The goal count (GC) tie-breaking rule is as simple as the name suggests: it counts the

number of atoms already in their goal positions. States with a higher goal count have priority

over states with a lower goal count. The tie-breaking value is the maximum goal count among

all final states.

This tie-breaking rule is very simple and efficient to compute, requiring only a linear

scan on the number of atoms, for every final state. To continue using an open list based on

buckets, the same concept used in Section 3.3.2 applies: the amount of buckets is multiplied by

the number of atoms.

3.3.2 Number of Realizable Generalized Paths

A generalized path between two positions is a sequence of generalized moves (see Sec-

tion 3.1.1) that brings a single atom from one position to another. A generalized path is said to

be realizable if it is unobstructed, i.e., there are no atoms blocking its way.

The number of realizable generalized paths (NRP) of a given state S with regard to a

36

final state F is the number of atoms Si ∈ S which have a realizable generalized path from

their current position Si to any of their goal positions {Fj | Lj = Li} (where L is the set of

atom labels, as defined in Section 1.2.4). Note that an atom which is already in its goal position

counts as a realizable path (of length zero). The final tie-breaking value is the maximum NRP

among all final states. States with more realizable paths have priority over states with fewer

realizable paths.

The tie-breaking ranks can range from 0 to n, where n is the number of atoms. This

allows us to continue using a bucket-based open list, except with number of buckets multiplied

by n (since the maximum n over all instances in our testbed is 32, the total number of buckets

is still manageable).

There might be more than one optimal generalized path between any two positions. We

can generate all those paths by slightly modifying the breadth-first-search that pre-computes the

standard heuristic (see Section 3.1.2) to store predecessor nodes, in a way that a state may have

several predecessors. For efficient look-up, a generalized path is represented as a boolean array

of size equal to the number of board positions, which holds 1 if a position is part of the path, or

0, otherwise.

Figure 3.5 shows a situation where two states with the same h-value (5) yield different

tie-breaking values. Suppose both states have the same g-value. In the first example, both B and

C have a realizable optimal path to their final position; A’s optimal path of length 2, however,

is being obstructed by B. All other generalized paths A can make to GA are not optimal. In

the second example, an optimal generalized path for all atoms can be realized, thus yielding a

tie-breaking value of 3. The state of the second example will therefore have priority over the

one on the first.

Figure 3.5: Both situations have the same heuristic value of 5, but, in Figure 3.5a, the number
of realizable paths is 2 (atoms B and C), while in Figure 3.5b, it is 3 (atoms A, B and C).

(a) (b)

Source: the author.

37

The biggest downside of this approach is that the tie-breaking computation becomes

expensive, as for every possible path we must iterate over all atoms to check for obstructions.

3.3.3 Fill Order

This tie-breaking rule was originally proposed for assembling stones in Sokoban by

(PEREIRA; RITT; BURIOL, 2013), and consists of giving higher priority to states which have

correctly placed atoms whose placement is more essential, and is more likely to happen first.

A fill order (FO) is an ordering of atoms based on a guess of the order in which the

atoms would most likely be assembled in an optimal solution. Atoms which should be placed

first have higher priority. The FO priorities are computed as follows: starting from the final

molecule, we iteratively remove all atoms to which a backward move may be applied. To every

atom removed at iteration i will be assigned priority 2i. The algorithm continues until all atoms

have been removed, or until none of the remaining atoms allow a backward move; in the second

case, those atoms receive priority 2k+1, where k was the total number of iterations.

Consider Figure 3.6, for example, which depicts the marbles_14 instance of the standard

testbed; Figure 3.6a shows the initial state, and Figure 3.6b shows the only possible final state

for that instance. From simple inspection, it is visually clear that the most efficient strategy

would be to first move atoms C, B1 and B2, in this specific order, to their goal positions. Figure

3.6c shows the FO priorities for the marbles_14 instance. Figure 3.6d shows a state that has a

fill order rank of 50: 32 for C, 16 for B1 and 2 for A. Notice that, although there is an atom A

in a position with priority 08, that priority is not accounted for, since it is not a goal position for

A.

In order to adapt FO to a bucket-based open list, we must multiply the number of buckets

by the maximum sum of fill orders among all final states. This increases considerably the

number of buckets: for the example on Figure 3.6, it would be 64 times the default number of

buckets, instead of only 6. That does not pose a significant performance overhead.

38

Figure 3.6: A fill order example depicting the marbles_14 instance. 3.6a shows the initial state,
3.6b shows the desired molecule, 3.6c shows the FO priorities for the molecule, and 3.6d shows
an example state with FO rank 50.

(a) (b)

(c) (d)

Source: the author.

3.4 Pattern Databases

3.4.1 Creating Pattern Databases for Atomix

In standard Atomix, it is not so simple to remove atoms to create a simpler pattern, since

any heuristic that exclusively removes atoms breaks admissibility. This is because sliding atoms

may need support from other atoms to reach certain positions, as shown in Section 3.1.1. On

the other hand, we can remove atoms in the generalized version of Atomix, where atoms may

stop at any intermediate position: it does not preclude an atom of reaching its final position in

an optimal (generalized) way.

However, since generalized moves allow atoms to pass through each other, it would not

make sense to partition the atoms into patterns if the contribution of each atom is computed

39

independently, as it would amount to the same as computing the original heuristic. In order to

make a useful PDB, we drop the capacity abstraction: atoms may not occupy the same space, or

pass through one another. This way, a PDB will capture interaction penalties arising from linear

conflicts (when the optimal paths for two atoms are overlapping) between atoms within that

pattern. Of course, it may happen be that the optimal generalized path and the actual optimal

path are completely disjoint, but, in general, this is not the case.

The way we pre-compute and access our standard heuristic as a look-up table, as defined

in Section 3.1.2, can be seen as a special case of PDB, where the pattern size is 1.

3.4.2 A Static Disjoint Pattern Database

Given the dimensions w × h of an Atomix board, a static pattern database of size k

for Atomix would occupy O((wh)k) memory: all possible distributions of k atoms over the

wh positions. Considering that we can store a PDB heuristic value in a single byte, and that

the maximum board size (w × h) of all instances in the standard testbed is 289, the maximum

expected memory usage for a PDB with size k would be approximately 289k bytes. Table 3.1

shows the expected memory usage for k ∈ {1, . . . , 5}.

Table 3.1: Expected static PDB memory usages.

k Memory usage

1 289 bytes

2 81 KB

3 23 MB

4 6.5 GB

5 1.8 TB

Source: the author.

We partition the n atoms into bn/kc disjoint groups, and a single PDB is constructed for

each k-pattern. Knowing that, and that there are instances with at most 32 atoms, it is feasible

to construct static PDBs for Atomix with up to 3 atoms: in the most extreme situation, a set of

disjoint PDBs for a single final state will require approximately 230 MB of memory (b32
3
c× 23

MB). If the number of atoms is not divisible by three, a single smaller PDB (of size 2 or 1) for

the remaining atoms is constructed.

It is important to mention that, because Atomix allows multiple goal states, multiple sets

of disjoint PDBs might be necessary. In this case, the minimum sum among all sets of disjoint

40

PDBs is taken as heuristic value. The maximum number of goal states for any instance is 64,

so, using a very pessimistic estimate, we would need 14.7 GB of memory for the PDB, which

is still acceptable, considering current main memory sizes.

Being a static PDB, as opposed to a dynamic one, the partition is pre-defined before

constructing the PDB. Some partitions will yield overall better heuristic values than others,

since some atom groups possess more linear conflicts than others. In our solution, we choose

the initial patterns almost arbitrarily: atoms are grouped in alphabetical order, which gives a

preference for grouping atoms with the same type in the same pattern.

This preference for grouping atoms with the same type is not unfounded. Consider the

example in Figure 3.7. If we were to create two disjoint PDBs of size 2 for it, we would have

the following partitions:

• A1 + A2 and B + C, yielding a heuristic of 6 (1 for A1, 2 for A2, 1 for B and 2 for C)

• A1 + B and A2 + C, yielding a heuristic of 5 (1 for A1, 1 for A2, 1 for B and 2 for C)

• A1 + C and A2 + B, yielding a heuristic of 5 (1 for A1, 1 for A2, 1 for B and 2 for C)

Figure 3.7: Example of the benefit of grouping atoms of the same type in a static PDB.

Source: the author.

Notice that, if we put A1 and A2 separately, both of them will choose to go to the closest

goal, GA1, which requires only one move. However, since only one of them may actually be

placed there, we would lose information. In cases like this, where there is no interaction between

atoms in the generalized version, the PDB would be even worse than the standard heuristic. This

kind of situation arises very often in Atomix instances with many duplicate atoms. Therefore,

in order to keep the PDB competitive and at least as good as the standard heuristic, we take the

final heuristic to be the maximum between the standard heuristic and the PDB heuristic.

This very simple partitioning criterion does not guarantee that a good number of linear

conflicts will be identified.

41

3.4.3 A Dynamically-Partitioned Pattern Database

For any given state in the state space, a static partition may not always offer the best

heuristic possible among all possible atom partitions. In practice, the difference between the

best and the worst partitions can be significant, and lead to poor heuristic values. It would be

nice if we could, for any given state, always select the partition which maximizes the heuristic

value. Dynamically-partitioned PDBs, a concept introduced by (FELNER; KORF; HANAN,

2004), are a way to achieve this.

In a dynamic PDB, we store a table (called a k-atom database) which holds, for every

possible atom pattern of size k, and for every possible sequence of k board positions, the number

of generalized moves necessary to bring those k atoms to their final positions, with interactions

between them. In other words, a k-atom database is a set of tuples (i1, . . . , ik, P1, . . . , Pk, d)

where i1, . . . , ik represent the atom indexes in the pattern, P1, . . . , Pk their possible positions,

and d the number of moves necessary to bring the pattern to its final state. Since there are(
n
k

)
possible atom patterns of size k and (w × h)k possible sequences of k board positions, to

construct such PDB would require O(
(
n
k

)
(w × h)k) memory. This is only feasible, under the

constraints discussed in the previous section, for k ≤ 2, for which it would require
(
32
2

)
2892 ≈

40MB of memory1. In practice, this table can be computed in a matter of milliseconds.

Choosing k = 2 rather simplifies computing the heuristic value, which is computed

for a state S as follows. We define a complete graph, where each vertex represents an atom. A

vertex i is connected to every other vertex j by an edge of weight d, corresponding to the 2-atom

database entry (i, j, Si, Sj, d), where Si and Sj are the positions of i and j in S. We then compute

a maximum weighted perfect matching on this graph, which will select a set of edges such that

every vertex connects to exactly one edge in the set, and such that the sum of edge weights is

maximized. This can be done in O(n3) time (PAPADIMITRIOU; STEIGLITZ, 1998). In the

special case where the number of vertices is odd (and a perfect matching is impossible), we

add a “dummy” vertex which connects to every other vertex with weight equal to the minimum

generalized distance between that atom and any of its possible final positions. For the maximum

cost matching in our implementation, we used the Blossom V library, developed by Kolmogorov

(2009).

Figure 3.8 shows the complete graph defined by the example on Figure 3.7. The edges

in the maximum matching are marked in blue.

1For k = 3, it would require over 110GB of memory.

42

Figure 3.8: The graph representing the possible partitions of the example PDB on Figure 3.7.

Source: the author.

As discussed in the previous section, if there are multiple goal states, multiple PDBs

are necessary, and the final heuristic value is the minimum heuristic obtained by performing a

maximum matching on all the PDBs’ partitions.

The major shortcoming of this approach is that a maximum cost perfect matching must

be computed at every heuristic call. Although this is not a big problem when there is only one

goal state, it can be very time-consuming in instances that have a large number of goal states:

for every goal, there will be one PDB, and consequently one matching. One way to improve the

performance would be by storing the matched edges together with the state representation and

performing the matching only once every fixed number of neighboring moves; however, this

would double the memory usage of a state.

3.4.4 A Multiple Goal Dynamically-Partitioned Pattern Database

The motivation behind a multi-goal PDB is to try to reduce the time lost performing

several matchings, by performing only one matching instead.

The main idea of a multi-goal PDB is to combine multiple PDBs with the same char-

acteristic into a single, more generic, PDB. In the literature, Felner and Ofek (2007) use a

multi-goal PDB to combine multiple states in the fringe of a perimeter search, and provide a

heuristic that gives a lower bound on the distance of a state to any of the states on that fringe.

In this work, we use a multiple goal PDB to combine the Atomix goal states into a single PDB.

A multi-goal PDB is represented by the exact same data structure as a single-goal dy-

namic PDB (i.e., a k-atom database), but is different in the way that it is built. To construct a

43

single-goal PDB, we perform a BFS on every possible pattern, starting from the pattern atoms’

positions in the goal state. If there are multiple goal states, multiple breadth-first-searches are

required, since we need multiple single-goal PDBs. For the multi-goal PDB, we store a single

k-atom database, which is computed with a BFS that, for every possible pattern, starts simulta-

neously from all possible goal positions. Notice that, when we have one goal state, a multi-goal

PDB is the same as a single-goal PDB.

Figure 3.9: An example of when two patterns may choose to go to the different goal positions,
on a multi-goal PDB.

Source: the author.

The major problem with a multi-goal PDB is that we lose information as different pat-

terns may “choose to go” to different goal states. Consider the example on Figure 3.9, which

has two goal states, one on the left and one on the right. For this example, we examine the

partition AC + BD2. In a single-goal PDB we would have, for the first goal state, the heuristic

4(AC) + 5(BD) = 9, and for the second goal state, the heuristic 6(AC) + 4(BD) = 10, which

yields a minimum of 9. However, when taking into account both goal states, we have that the

shortest distance of AC to any of them is 4 (to GA1 and GC1, respectively), and the shortest

distance for BD to any of them is also 4 (to GB2 and GD2, respectively), yielding a total of 8. In

this case, we lose information, and, without linear conflicts, the heuristic would be even worse

than the standard heuristic. The final heuristic value is taken to be the maximum between the

PDB heuristic and the standard heuristic.

2This partition was not chosen arbitrarily: it is the one which yields the maximum heuristic, since A and C are
the only atoms in linear conflict.

44

4 EXPERIMENTS AND RESULTS

4.1 Experimental Setup

4.1.1 Platform

The following tests were performed on a AMD FX-8150 Eight-Core Processor CPU

with 32 GB of available memory. All tests were run with a time limit of one hour1, and a

memory limit of 22 GB. The programming language used for the implementation was C++,

with the compiler GCC 4.7.3 and optimization flag -O3.

4.1.2 Instances

The standard set of instances contains 155 Atomix levels, with number of atoms ranging

from 3 to 32, and board sizes ranging from 64 to 289. More details about the instances can be

seen in Appendix A, including number of final states, number of free cells, and the length of

the best known solution.

For presentation purposes, in this section, we separate the instances into similar-sized

groups, based on the number of atoms n. The groups are shown in Table 4.1. We chose n as a

grouping factor because, experimentally, it is the input parameter that has the most influence on

the difficulty of solving the instance.

In this section, results such as average time, nodes expanded, and lower bounds for each

group are computed using the harmonic mean over the instances that were solved, because of

its stability regarding outliers. The Total row on each table contains the sum of times/nodes

of all the instances that were solved, plus a penalty for every instance that was not solved by

that method but which was solved by another method in the same table. The penalty for every

unsolved instance is the smallest upper bound on that parameter that is a multiple of ten; this

causes the total result to implicitly show the number of instances that were not solved in its first

digits.

1With the exception of the tests described in Section 4.2, which were run for a time limit of 10 minutes, because
of time constraints for the delivery of this manuscript.

45

Table 4.1: Instance groups used to present results.
n # Instances in testbed
≤ 3 8
4 10
5 12
6 13
7 8
8 14
9 11

10 and 11 13
12 21

13 and 14 10
15 10
16 10
≥ 17 15
Total 155

Source: the author.

Table 4.2: A summary of the techinques presented and tested in this work.

Method First proposed by
Applied to
Atomix by

Multiple A*’s with One Final State (HÜFFNER et al., 2001) (HÜFFNER et al., 2001)
One A* with All Final States this work this work

Goal Count Tie-Breaking this work
Fill Order Tie-Breaking (PEREIRA; RITT; BURIOL, 2013) this work

Number Realizable Paths Tie-Breaking this work this work
Fibonacci Heap Open List (FREDMAN; TARJAN, 1987) this work

Buckets Open List this work
Static PDB (KORF; FELNER, 2002) this work

Dynamic PDB (FELNER; KORF; HANAN, 2004) this work
Multi-goal PDB (FELNER; OFEK, 2007) this work

Source: the author.

4.1.3 Techniques Tested

Table 4.2 shows the methods that were tested, and clarifies which methods were devel-

oped entirely in this work, or were proposed originally by other authors.

46

Table 4.3: Comparison between One Final State and All Final States heuristics.
Instances

(n)
One Final State All Final States

Solved Time(s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 33.83 1305 8/8 19.51 146
= 4 10/10 30.70 12,204 10/10 18.74 3284
= 5 12/12 22.93 12,817 12/12 19.26 6002
= 6 13/13 26.54 52,185 13/13 22.20 42,001
= 7 6/8 31.55 676,157 6/8 28.11 299,065
= 8 9/14 30.35 3165 9/14 30.50 3826
= 9 3/11 31.91 43,610 3/11 28.61 26,960

10 ≤ n ≤ 11 2/13 36.29 2,451,595 2/13 39.45 2,044,228
= 12 0/21 0.00 0 0/21 0.00 0

13 ≤ n ≤ 14 0/10 0.00 0 0/10 0.00 0
= 15 1/10 27.19 5,082,501 1/10 19.22 1,449,440
= 16 1/10 18.08 87,079 1/10 16.61 58,335
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 65 3657.67 679,552,757 65 2655.89 275,563,258

Source: the author.

4.1.4 Experimental Strategy

In every section of this chapter, we will test a set of related techniques described in

Chapter 3, and select the best one. The selected technique will be incorporated into the final

solver, and used in the experiments that follow. This assumes that the techniques implemented

are somewhat orthogonal, e.g., choosing one tie-breaking rule will not affect too much the

performance of the PDBs as opposed to another rule.

4.2 Test A: One Final State vs All Final States Heuristics

We conducted experiments to test which strategy described in Section 3.1.4 is better:

using multiple independent A* runs with one final state at a time (OFS), or only one A* con-

sidering all final states (AFS). Because of time constraints, these tests were run for only 10

minutes, instead of one hour.

Table 4.3 shows the summarized results. The full results can be found in Appendix C.

We can see that both versions solved the same number of instances (65). Because of the multiple

A* runs, the One Final State version expanded a much larger number of nodes; however, we

had originally expected this difference to be much larger. Both these results were a surprise to

us: we expected OFS version to do a lot worse, and solve fewer instances.

47

We believe that these favorable results are due to OFS ending up pruning a large number

of states whose f-values are larger than the move limit, and thus exploring a smaller portion of

the search space. In particular, for harder instances, the time performance of both versions are

similar, which could imply that OFS offers a more scalable solution as the problem difficulty

increases.

Figure 4.1 shows the number of nodes expanded by AFS versus OFS. A quick glance

at this graph shows a clear preference for AFS, as it expands much fewer nodes in almost all

instances.

Figure 4.1: Comparison of nodes expanded between AFS and OFS.

Source: the author.

Considering that All Final States performed better, we decided to choose this version

for our final solver. It remains to be studied whether further optimizations to OFS, such as

combining it with PDBs or perimeter search, could possibly lead to an even better solver.

48

4.3 Test B: Tie-Breaking Techniques

Experiments were conducted to test the performance of the three tie-breaking rules de-

scribed in Section 3.3. All experiments used the standard heuristic considering all final states

and a bucket-based open list. The summarized results can be seen in Table 4.4, and the full

results can be found in Appendix D.

By analyzing Table 4.4, we observe that all tie-breaking rules presented a good improve-

ment on the version without tie-breaking, solving at least three extra instances. We can see that

the NRP (number of realizable paths) rule solved 69 instances, as opposed to GC (goal count)

and FO (fill order), which solved 70 instances each. The NRP rule took considerably more time,

which was already expected, since it iterates over all the possible paths for every atom. With

that in consideration, we conclude that this rule is clearly inferior to the other two.

FO and GC showed very similar results: both solved 70 instances, and had approxi-

mately performance in terms of time and expanded nodes, with a slight preference for GC. We

argue that, in practice, the FO does not serve much purpose other than a simple goal count,

only with weights. This argument was also supported by an informal test we performed using

a “reverse” FO: instead of giving priority to nodes on the inside of the molecule, we prioritized

nodes on the outside of the molecule. It was expected that, for representative instances such as

marbles_14, shown in Section 3.3.3, the reversed FO would fare much worse than normal FO;

however, to our surprise, it expanded 22949 nodes, as opposed to 22953 nodes with the normal

FO. This kind of behavior was similar in several other instances.

Of the three tie-breaking rules, we declare GC to be the best, since it is simpler to

implement, is more scalable than FO (as it requires fewer buckets for the open list) and is

slightly faster than FO and much faster than NRP.

Figure 4.2 shows the number of nodes expanded by GC versus the version without tie-

breaking, over the instances that both solutions solved. We can see that GC was able to reduce

the number of nodes expanded in almost all instances.

49

Table 4.4: Comparison between tie-breaking rules.
Instances

(n)
No Tie-Break GC

Solved Time (s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 18.96 146 8/8 19.06 140
= 4 10/10 18.43 3284 10/10 18.53 3233
= 5 12/12 18.91 6002 12/12 19.42 5272
= 6 13/13 22.16 42,001 13/13 21.47 20,780
= 7 7/8 32.89 348,609 7/8 30.38 208,902
= 8 9/14 29.15 3826 10/14 31.98 1868
= 9 3/11 28.64 26,960 5/11 43.71 12,431

10 ≤ n ≤ 11 2/13 39.67 2,044,228 2/13 47.33 3,435,702
= 12 0/21 0.00 0 0/21 0.00 0

13 ≤ n ≤ 14 0/10 0.00 0 1/10 337.59 26,506,951
= 15 1/10 18.16 1,449,440 1/10 18.54 1,453,014
= 16 1/10 16.48 58,335 1/10 16.06 21,324
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 66 43,482.33 4,333,304,472 70 4477.64 455,192,014

Instances
(n)

NRP FO

Solved Time(s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 19.20 147 8/8 19.51 142
= 4 10/10 18.54 2750 10/10 18.66 3307
= 5 12/12 19.12 4354 12/12 19.69 5882
= 6 13/13 22.97 22,827 13/13 22.30 21,732
= 7 7/8 38.49 255,939 7/8 31.24 234,014
= 8 10/14 33.41 2443 10/14 32.26 1535
= 9 4/11 38.98 9933 5/11 44.93 12,345

10 ≤ n ≤ 11 2/13 63.89 3,142,103 2/13 47.84 3,435,690
= 12 0/21 0.00 0 0/21 0.00 0

13 ≤ n ≤ 14 1/10 762.59 26,516,710 1/10 343.97 26,506,947
= 15 1/10 19.98 1,447,183 1/10 18.65 1,441,610
= 16 1/10 16.35 21,324 1/10 16.20 21,324
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 69 18,329.68 1,429,385,324 70 4828.03 468,542,161

Source: the author.

50

Figure 4.2: Comparison of nodes expanded between GC and the version without tie-breaking.

Source: the author.

4.4 Test C: A* Open List Implementations

We conducted two experiments to test the time performance of the bucket-based open

list versus the Fibonacci heap-based open list. Both experiments used the standard heuristic

considering all final states, and break ties by goal count. For the Fibonacci heap, we used the

implementation available with the Boost C++ library (BOOST, 2015). Table 4.5 shows the

summarized results for the open list implementations test.

An apparent time difference shown in favor of the Fibonacci heap may lead one to be-

lieve that, although that variant solves fewer instances, it is faster. This is not true. The size

of the pre-allocated states table for the Fibonacci heap had to be reduced, since the Fibonacci

heap implementation we used takes up a considerable amount of memory, and so pre-allocating

the states table takes less time. For the buckets version, the pre-allocation of the states table

takes approximately 18 seconds, as opposed to 8 seconds for the Fibonacci heap version. This

51

Table 4.5: Comparison between Fibonacci heap and bucket-based open list.
Instances

(n)
Buckets Fibonacci Heap

Solved Time(s) # Solved Time(s)
≤ 3 8/8 19.06 8/8 8.08
= 4 10/10 18.53 10/10 8.31
= 5 12/12 19.42 12/12 8.83
= 6 13/13 21.47 13/13 11.29
= 7 7/8 30.38 6/8 17.23
= 8 10/14 31.98 9/14 17.04
= 9 5/11 43.71 3/11 15.25

10 ≤ n ≤ 11 2/13 47.33 2/13 62.39
= 12 0/21 0.00 0/21 0.00

13 ≤ n ≤ 14 1/10 337.59 0/10 0.00
= 15 1/10 18.54 1/10 14.04
= 16 1/10 16.06 1/10 9.06
≥ 17 0/15 0.00 0/15 0.00
Total 70 4477.64 65 53,280.97

Source: the author.

constant time overhead gives a disadvantage to the buckets for easier instances (n ≤ 6), but is

compensated by performance improvements in harder instances.

Having solved 70 instances as opposed to the 65 instances solved by the Fibonacci heap,

we can declare the bucket-based open list a clear winner. The main reason is that it is able to

solve 5 more instances than the Fibonacci heap, and is able to generate significantly more nodes

before it hits the memory limit.

The full results can be found in Appendix B. Observing the results shown in the ap-

pendix, we can notice a slight difference between the number of nodes expanded on solved

instances: this is due to the difference in the open list’s update methods, where the Fibonacci

heap actually updates the state’s f-value and the buckets version re-inserts the state. For the

unsolved instances, it is interesting to observe the differences in nodes generated, which are due

to the Fibonacci heap running out of memory much more quickly.

4.5 Test D: Pattern Databases

The summarized results for the PDB experiments can be found in Table 4.6. The full

results are found in Appendix E. We can see that all three PDB variants have improved the

number of instances solved by at least two. In particular, the static PDB and the multi-goal

PDB solved the most number of instances, 73. Out of those two, the static PDB had the best

time performance, with a run-time of approximately 4 times faster than the multi-goal PDB.

52

We can attribute this to the time cost of performing a maximum matching operation at every

heuristic call, on the multi-goal PDB.

It can be observed that the static PDB expanded, on average, 68% more nodes than the

multi-goal PDB. The results show that, although they might take longer to compute, both the

multi-goal and the dynamic PDBs provide a more powerful heuristic than the static PDB. Figure

4.4 shows the number of nodes expanded on the static versus dynamic PDBs, considering the

instances that both solutions solved. Although the number of expanded nodes is very similar for

a large portion of the instances, we see that, in many cases, the dynamic PDB expanded at least

one order of magnitude fewer nodes. Figure 4.3 compares the version without PDB against the

dynamic PDB.

Figure 4.3: Comparison of nodes expanded between the version without PDB and the dynamic
PDB.

Source: the author.

53

Table 4.6: Comparison between PDB methods.
Instances

(n)
No PDB Static PDB

Solved Time(s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 19.06 140 8/8 21.74 65
= 4 10/10 18.53 3233 10/10 24.77 2692
= 5 12/12 19.42 5272 12/12 20.21 4169
= 6 13/13 21.47 20,780 13/13 24.37 10,568
= 7 7/8 30.38 208,902 8/8 39.01 192,080
= 8 10/14 31.98 1868 10/14 29.79 1386
= 9 5/11 43.71 12,431 6/11 46.70 13,366

10 ≤ n ≤ 11 2/13 47.33 3,435,702 2/13 40.15 1,915,480
= 12 0/21 0.00 0 1/21 709.93 25,582,015

13 ≤ n ≤ 14 1/10 337.59 26,506,951 1/10 160.77 11,574,396
= 15 1/10 18.54 1,453,014 1/10 16.89 626,928
= 16 1/10 16.06 21,324 1/10 16.39 16,508
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 70 34,477.64 3,455,192,014 73 5827.16 458,051,038

Instances
(n)

Dynamic PDB Multi-Goal PDB

Solved Time(s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 19.36 65 8/8 19.43 126
= 4 10/10 21.60 1355 10/10 19.13 2474
= 5 12/12 22.59 1820 12/12 20.28 2539
= 6 13/13 30.80 6949 13/13 26.43 10,132
= 7 7/8 67.04 131,032 8/8 59.03 181,815
= 8 10/14 37.01 979 10/14 37.91 994
= 9 5/11 57.85 459 5/11 55.72 724

10 ≤ n ≤ 11 3/13 65.89 129,247 3/13 67.63 129,247
= 12 1/21 3360.40 2,823,005 1/21 2650.41 13,447,435

13 ≤ n ≤ 14 1/10 212.09 845,399 1/10 216.52 845,399
= 15 1/10 30.14 380,647 1/10 30.53 380,647
= 16 1/10 17.35 15,565 1/10 17.85 15,565
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 72 124,033.14 1,192,314,386 73 23,210.46 272,844,946

Source: the author.

54

Figure 4.4: Comparison of nodes expanded between static and dynamic PDB.

Source: the author.

Considering the results exposed in this section, we decide to choose the static PDB for

our final solver: although it expands more nodes, out of the three PDBs, it is the one which

solved the most instances in less time.

4.6 Analysis of the Heuristics’ Quality

In this section, we compare the lower bounds obtained by different heuristic functions.

Table 4.7 shows the average heuristic values for the initial state (relative to the best known lower

bounds found by the static PDB) obtained by the standard heuristic, the three PDB versions, the

generalized A* solution (which takes into account the interactions between all atoms)2, and the

best known lower bounds. For these results, the arithmetic mean was used. The full results can

be found in Appendix F.

2This computation was made by running an A* with the difference that, instead of regular moves, generalized
moves with capacity constraints were used. A static PDB was used as heuristic.

55

Table 4.7: Comparison of the initial heuristic of various methods.

Instances
(n)

Group
Size

Standard
Heuristic

Static
PDB

(k = 3)

Dynamic
PDB

(k = 2)

Multi-Goal
PDB

(k = 2)

Generalized
A*

Best
LB

≤ 3 8 0.52 0.53 0.53 0.52 0.53 1.00
= 4 10 0.56 0.57 0.59 0.57 0.61 1.00
= 5 12 0.70 0.71 0.73 0.71 0.74 1.00
= 6 13 0.68 0.69 0.71 0.69 0.72 1.00
= 7 8 0.65 0.66 0.66 0.65 0.68 1.00
= 8 14 0.73 0.74 0.76 0.74 0.78 1.00
= 9 11 0.70 0.72 0.75 0.73 0.77 1.00

10 ≤ n ≤ 11 13 0.79 0.81 0.82 0.81 0.84 1.00
= 12 21 0.86 0.87 0.88 0.87 0.90 1.00

13 ≤ n ≤ 14 10 0.87 0.88 0.91 0.89 0.94 1.00
= 15 10 0.81 0.83 0.86 0.86 0.95 1.00
= 16 10 0.84 0.85 0.87 0.87 0.96 1.00
≥ 17 15 0.91 0.92 0.95 0.95 0.98 1.00

Average 0.76 0.77 0.79 0.78 0.82 1.00
Source: the author

We observe in Table 4.7 that the average values of the initial heuristic and all the PDBs

are very similar, even though the PDBs lead to good in the overall performance of our solu-

tion. This hints that even very small improvements to our heuristic function can lead to great

improvements in terms of nodes expanded.

We also notice that, even though the static PDB uses a pattern of size k = 3 atoms, it is

slightly worse than the dynamic and multi-Goal PDBs, that use a pattern of k = 2 atoms. This

is because both the dynamic and multi-goal PDBs compute the heuristic through a maximum

matching operation, and so are always able to select the best partition. Comparing the dynamic

and multi-goal PDBs, it was already expected that the dynamic would be better, since the multi-

goal PDB is more generalized, as it groups several goal positions into one.

Since the generalized A* captures all linear conflicts, it represents an upper bound on the

quality of any PDB we might use. Comparing our best PDB solution with the generalized A*,

we can see that they are not that different. The difference between them indicates the amount

of information we lose by not capturing some linear conflicts with the PDB.

We can observe an average difference of over 23% between the generalized A* solution

and the best lower bounds found so far. This difference accounts for the times when an atom has

to deviate from its optimal path in order to provide support for another atom. In other words, it

accounts for the sliding property, that we completely abstract in the generalized movement.

56

Table 4.8: Comparison between our final solution and the implementation by Hüffner et al.
(2001).

Instances
(n)

Hüffner et al. (2001) Our Solution

Solved Time(s) Nodes Exp. # Solved Time(s) Nodes Exp.
≤ 3 8/8 76.39 1379 8/8 21.74 65
= 4 10/10 63.32 8558 10/10 24.77 2692
= 5 12/12 21.73 20,319 12/12 20.21 4169
= 6 13/13 24.39 86,859 13/13 24.37 10,568
= 7 8/8 39.42 1,345,025 8/8 39.01 192,080
= 8 11/14 21.16 11,263 10/14 29.79 1386
= 9 7/11 43.42 74,267 6/11 46.70 13,366

10 ≤ n ≤ 11 3/13 22.93 7,395,077 2/13 40.15 1,915,480
= 12 1/21 2427.92 302,608,420 1/21 709.93 25,582,015

13 ≤ n ≤ 14 1/10 1968.19 187,441,572 1/10 160.77 11,574,396
= 15 1/10 33.44 6,009,587 1/10 16.89 626,928
= 16 2/10 1155.94 176,592 1/10 16.39 16,508
≥ 17 0/15 0.00 0 0/15 0.00 0
Total 77 22,597.49 6,746,746,521 73 45,827.16 4,458,051,038

4.7 Final Solver

After the experiments conducted in this chapter, we can propose our best final solver,

with the following characteristics:

• One A* guided by All Final States.

• A buckets-based open list.

• Goal count tie-breaking.

• A static PDB of size 3 as heuristic function.

Table 4.8 compares our solution with the implementation made available from Hüffner

et al. (2001). Unfortunately, even using all techniques described in this work, we were still not

able to outperform the best solution in the literature, having solved only 73 instances, compared

to the 77 instances solved by Hüffner et al. (2001).

However, it can be seen that, even though our implementation did worse in terms of

time performance and number of instances solved, it requires a significantly smaller number

of node expansions before a solution is found. This is evident in Figure 4.5, which compares

the number of nodes expanded of the two solutions, for the instances that were solved by both.

Of course, most of this difference comes from the fact that Hüffner et al. (2001)’s solution is

based on multiple independent A*’s (or what we call One Final State), but it is also due to our

more powerful heuristic and tie-breaking criterion. Additionally, we believe that the difference

57

in terms of time performance in favor of Hüffner et al. (2001) is a matter of implementation:

their solution uses several low-level context-specific code optimizations, especially regarding

memory usage, such as recompiling the code to utilize 8 or 16-bit integers to represent positions,

according to the instance board size.

Figure 4.5: Comparison of nodes expanded between our solution and Hüffner et al. (2001).

Source: the author.

One important thing to note is that our solution, which was based on A*, hits the mem-

ory barrier too quickly: even though the tests were run for one hour, for most instances the

algorithm uses all memory available in less than 10 minutes. This hints that a solution based on

a memory-efficient algorithm such as IDA* may be a good option, especially considering the

improvements made to the heuristic function. Unfortunately, because of time constraints, we

have not tested this option experimentally.

58

5 CONCLUSION AND FUTURE WORK

In this work, we have studied heuristic search methods to solve Atomix optimally. We

have surveyed some of the most important techniques used in state-of-the-art heuristic search,

and applied some of them in practice.

The standard heuristic function we presented in this work was based on the generalized

moves concept, proposed by Hüffner et al. (2001). Based on the standard heuristic, we showed

that, for our implementation, an approach which runs a single A* search considering all final

states performs better than one which runs multiple A* searches considering one final state

each, both in terms of time and nodes.

The three tie-breaking rules we proposed in this work have shown improvements of our

solution, as opposed to not using tie-breaking at all. We believe that further research on this

topic would be relevant for Atomix, as tie-breaking becomes more important the more powerful

the heuristic becomes. It would be interesting to try to combine more than one tie-breaking rule,

to better choose between states that have exactly the same f-value and goal count.

Three PDB strategies have been presented: a static PDB, a dynamic PDB and a multi-

goal PDB. Even though the dynamic and multi-goal PDBs offer better lower bounds that lead

to fewer node expansions, the static PDB has better time performance. Both the dynamic and

multi-goal PDBs time performance could be improved by reducing the time cost of computing a

max-matching. One interesting way to achieve this could be to find the maximum matching via

heuristic methods: even if the absolute maximum is not found, any matching is still admissible.

Another alternative would be to implement a max-matching version that is specifically tailored

for our purposes, instead of using a generic implementation. However, the usefulness of those

PDBs is still limited by the quality of the heuristic function.

Analyzing the quality of the heuristic functions, we conclude that great improvements

could be made by giving some sort of penalty (i.e., increasing the h-value) when an atom makes

an illegal stop in a generalized move. Unfortunately, this has shown to be not that simple.

We have also observed that the A* algorithm tends to use all available memory very

quickly. In the future, we believe that an attempt on memory-efficient algorithms, such as

IDA*, combined with the PDB heuristics we developed, could be relevant, because it takes full

advantage of the available time. Also, because of IDA*’s very small memory usage, we could

possibly use the remaining available memory to construct more powerful PDBs.

Finally, even though our solution did not solve more instances than the best solution in

the literature, we have argued that the heuristic functions and tie-breaking methods applied in

59

this work are able reduce node expansions significantly. With that in mind, we think that our

contributions for Atomix are valid.

60

REFERENCES

BOOST. Boost C++ libraries. 2015. Available from Internet: <http://www.boost.org/>.

CULBERSON, J. Sokoban is PSPACE-complete. In: Proceedings in Informatics. [S.l.: s.n.],
1999. v. 4, p. 65–76.

CULBERSON, J. C.; SCHAEFFER, J. Searching with pattern databases. In: Advances in
Artifical Intelligence. [S.l.]: Springer, 1996. p. 402–416.

DEMAINE, E. Playing Games with Algorithms. [S.l.], 2001.

DEMAINE, E. D.; HEARN, R. A.; HOFFMANN, M. Push-2-f is PSPACE-complete. In:
CCCG. [S.l.: s.n.], 2002. p. 31–35.

DEMAINE, E. D.; HOFFMANN, M.; HOLZERC, M. Pushpush-k is PSPACE-complete.
Citeseer, 2004.

DILLENBURG, J. F.; NELSON, P. C. Perimeter search. Artificial Intelligence, Elsevier,
v. 65, n. 1, p. 165–178, 1994.

EDELKAMP, S.; SCHROEDL, S. Heuristic search: theory and applications. [S.l.]: Elsevier,
2011.

FELNER, A.; KORF, R. E.; HANAN, S. Additive pattern database heuristics. J. Artif. Intell.
Res., v. 22, p. 279–318, 2004.

FELNER, A.; OFEK, N. Combining perimeter search and pattern database abstractions. In:
Abstraction, Reformulation, and Approximation. [S.l.]: Springer, 2007. p. 155–168.

FLAKE, G. W.; BAUM, E. B. Rush hour is PSPACE-complete, or “why you should generously
tip parking lot attendants”. Theoretical Computer Science, Elsevier, v. 270, n. 1, p. 895–911,
2002.

FLOYD, R. W. Algorithm 97: shortest path. Communications of the ACM, ACM, v. 5, n. 6,
p. 345, 1962.

FREDMAN, M. L.; TARJAN, R. E. Fibonacci heaps and their uses in improved network
optimization algorithms. Journal of the ACM, ACM, v. 34, n. 3, p. 596–615, 1987.

HART, P. E.; NILSSON, N. J.; RAPHAEL, B. A formal basis for the heuristic determination
of minimum cost paths. Systems Science and Cybernetics, IEEE Transactions on, IEEE,
v. 4, n. 2, p. 100–107, 1968.

HOLTE, R. C.; GRAJKOWSKI, J.; TANNER, B. Hierarchical heuristic search revisited. In:
Abstraction, Reformulation and Approximation. [S.l.]: Springer, 2005. p. 121–133.

HOLTE, R. C. et al. Multiple pattern databases. In: ICAPS. [S.l.: s.n.], 2004. p. 122–131.

HOLTE, R. C. et al. Hierarchical a*: Searching abstraction hierarchies efficiently. In:
CITESEER. AAAI/IAAI, Vol. 1. [S.l.], 1996. p. 530–535.

HOLZER, M.; SCHWOON, S. Assembling molecules in atomix is hard. Theoretical
computer science, Elsevier, v. 313, n. 3, p. 447–462, 2004.

http://www.boost.org/

61

HÜFFNER, F. et al. Finding optimal solutions to atomix. In: KI 2001: Advances in Artificial
Intelligence. [S.l.]: Springer, 2001. p. 229–243.

JENKINS, B. Spookyhash: a 128-bit noncryptographic hash. 2012.

KOLMOGOROV, V. Blossom v: a new implementation of a minimum cost perfect matching
algorithm. Mathematical Programming Computation, Springer, v. 1, n. 1, p. 43–67, 2009.

KORF, R. E. Depth-first iterative-deepening: An optimal admissible tree search. Artificial
intelligence, Elsevier, v. 27, n. 1, p. 97–109, 1985.

KORF, R. E. Finding optimal solutions to rubik’s cube using pattern databases. In:
AAAI/IAAI. [S.l.: s.n.], 1997. p. 700–705.

KORF, R. E.; FELNER, A. Disjoint pattern database heuristics. Artificial intelligence,
Elsevier, v. 134, n. 1, p. 9–22, 2002.

MUNKRES, J. Algorithms for the assignment and transportation problems. Journal of the
Society for Industrial and Applied Mathematics, SIAM, v. 5, n. 1, p. 32–38, 1957.

PAPADIMITRIOU, C. H.; STEIGLITZ, K. Combinatorial optimization: algorithms and
complexity. [S.l.]: Courier Corporation, 1998.

PEREIRA, A. G.; RITT, M. R. P.; BURIOL, L. S. Finding optimal solutions to sokoban using
instance dependent pattern databases. In: Sixth Annual Symposium on Combinatorial
Search. [S.l.: s.n.], 2013.

PEREIRA, A. G.; RITT, M. R. P.; BURIOL, L. S. Pull and pushpull are PSPACE-complete. In:
Private Communication. [S.l.: s.n.], 2016.

RATNER, D.; WARMUTH, M. The (n2-1)-puzzle and related relocation problems. Journal of
Symbolic Computation, Elsevier, v. 10, n. 2, p. 111–137, 1990.

RITT, M. Motion planning with pull moves. arXiv preprint arXiv:1008.2952, 2010.

ZOBRIST, A. L. A new hashing method with application for game playing. ICCA journal,
v. 13, n. 2, p. 69–73, 1970.

62

APPENDIX A — INSTANCE DATA

63

Table A.1: Instance Data 1/4

Instance n
Final
States w × h # Free

Positions
Solution
Length

adrien_01 3 54 198 77 =7
atomix_01 3 17 156 45 =13
kai_01 3 9 144 39 =9
katomic_01 3 23 143 49 =15
katomic_36 3 21 195 52 =9
marbles_04 3 18 144 49 =22
marbles_13 3 3 100 27 =18
unitopia_01 3 41 180 68 =11
adrienl_05 4 64 260 131 =12
atomix_23 4 20 224 82 =10
atomix_26 4 17 240 102 =14
kai_06 4 16 195 72 =14
kai_19 4 21 210 73 =19
katomic_20 4 16 225 83 =18
katomic_23 4 32 225 93 =18
marbles_01 4 2 100 21 =11
marbles_03 4 5 143 39 =22
unitopia_02 4 5 180 62 =22
adrien_02 5 13 198 81 =17
atomix_02 5 6 208 61 =21
atomix_11 5 14 225 83 =14
kai_02 5 2 182 54 =24
kai_11 5 7 182 52 =15
katomic_02 5 10 195 64 =27
katomic_10 5 8 225 84 =19
katomic_57 5 3 182 45 =21
marbles_02 5 5 132 38 =15
marbles_05 5 2 121 34 =25
marbles_06 5 3 168 41 =14
unitopia_03 5 12 180 56 =16
adrien_03 6 31 198 75 =12
adrien_06 6 15 198 81 =15
atomix_03 6 4 225 65 =16
atomix_04 6 2 195 60 =23
kai_03 6 4 225 65 =16
katomic_03 6 4 210 66 =20
katomic_04 6 8 169 45 =23
katomic_58 6 3 169 60 =17

Source: the author.

64

Table A.2: Instance Data 2/4

Instance n
Final
States w × h # Free

Positions
Solution
Length

marbles_08 6 3 144 48 =23
marbles_12 6 3 126 40 =28
marbles_14 6 1 156 27 =22
unitopia_04 6 5 180 59 =20
unitopia_05 6 7 180 68 =20
adrienl_01 7 26 260 122 =20
adrienl_03 7 43 260 133 =22
atomix_09 7 1 156 49 =20
katomic_08 7 1 169 61 =26
katomic_26 7 3 225 81 =36
katomic_46 7 3 195 53 =24
katomic_60 7 4 169 54 =19
unitopia_08 7 4 180 59 =23
adrienl_02 8 7 260 108 ≥31
atomix_06 8 4 64 16 =13
atomix_13 8 1 156 49 =28
atomix_18 8 4 64 16 =13
atomix_22 8 3 240 85 ≥26
atomix_29 8 2 240 79 =22
atomix_30 8 4 64 16 =13
kai_05 8 2 182 67 =27
kai_17 8 3 225 80 =23
katomic_11 8 4 169 71 =23
katomic_19 8 2 255 103 ≥31
katomic_31 8 2 169 54 =29
marbles_11 8 1 225 59 =28
unitopia_10 8 2 180 57 ≥39
adrienl_04 9 1 198 68 ≥34
atomix_05 9 2 240 80 ≥36
atomix_07 9 1 225 79 =27
atomix_12 9 4 64 16 =14
atomix_16 9 2 210 73 ≥27
katomic_05 9 2 182 52 =27
katomic_06 9 1 196 50 =27
katomic_14 9 1 225 85 ≥28
katomic_32 9 5 121 25 =19
katomic_38 9 1 225 89 ≥34
unitopia_06 9 2 180 61 =31
adrien_04 10 16 260 119 ≥25

Source: the author.

65

Table A.3: Instance Data 3/4

Instance n
Final
States w × h # Free

Positions
Solution
Length

adrien_05 10 13 240 108 ≥26
atomix_10 10 2 210 82 ≥29
atomix_28 10 1 182 65 =29
kai_09 10 1 238 78 ≥35
katomic_09 10 1 225 81 ≥31
katomic_25 10 1 195 73 ≥35
katomic_33 10 4 225 72 ≥50
katomic_35 10 1 143 47 ≥34
katomic_61 10 2 165 58 ≥53
unitopia_07 10 1 180 60 ≥34
katomic_47 11 1 169 60 =29
katomic_66 11 1 225 78 ≥31
atomix_08 12 1 210 81 ≥34
atomix_14 12 1 224 94 ≥35
atomix_15 12 1 210 89 ≥36
atomix_21 12 2 240 108 ≥31
kai_07 12 1 210 81 ≥33
kai_08 12 1 225 72 ≥36
kai_18 12 1 240 89 ≥34
kai_20 12 1 256 90 ≥38
kai_22 12 1 225 85 ≥33
katomic_07 12 8 225 68 =24
katomic_12 12 8 225 93 ≥36
katomic_13 12 1 225 87 ≥41
katomic_18 12 4 225 90 ≥46
katomic_27 12 1 225 81 ≥46
katomic_28 12 1 225 73 ≥37
katomic_42 12 1 169 51 ≥34
katomic_62 12 1 289 96 ≥51
katomic_63 12 2 195 70 ≥41
katomic_67 12 2 169 54 ≥32
marbles_15 12 1 225 62 ≥37
unitopia_09 12 2 180 60 ≥43
katomic_34 13 1 225 96 ≥36
atomix_20 14 1 195 68 =29
atomix_25 14 2 240 101 ≥37
kai_14 14 2 240 76 ≥40
kai_21 14 1 289 101 ≥42
kai_24 14 1 272 79 ≥40

Source: the author.

66

Table A.4: Instance Data 4/4

Instance n
Final
States w × h # Free

Positions
Solution
Length

kai_25 14 1 272 95 ≥33
katomic_17 14 2 195 73 ≥31
katomic_22 14 4 225 90 ≥32
katomic_45 14 1 210 63 ≥39
15-puzzle 15 1 64 16 =34
atomix_17 15 1 224 90 ≥36
atomix_19 15 1 210 65 ≥28
kai_12 15 1 240 97 ≥35
katomic_15 15 1 225 87 ≥35
katomic_16 15 1 225 69 ≥42
katomic_29 15 1 225 71 ≥57
katomic_41 15 4 225 81 ≥34
katomic_55 15 1 225 83 ≥47
katomic_56 15 1 225 79 ≥49
atomix_24 16 1 144 32 ≥29
kai_28 16 1 289 106 ≥46
katomic_21 16 1 196 32 ≥26
katomic_40 16 1 169 61 ≥56
katomic_51 16 1 225 82 ≥39
katomic_53 16 2 99 35 ≥25
katomic_54 16 1 225 81 ≥35
katomic_59 16 4 169 49 ≥27
katomic_64 16 2 255 98 ≥53
marbles_10 16 1 80 20 =24
katomic_39 17 1 225 77 ≥47
katomic_48 17 1 225 79 ≥57
katomic_50 17 2 169 61 ≥42
katomic_65 17 1 121 25 ≥31
katomic_49 18 1 195 71 ≥45
kai_27 19 1 289 112 ≥60
katomic_52 19 1 225 84 ≥53
atomix_27 20 1 240 84 ≥45
katomic_24 20 10 255 115 ≥36
kai_29 21 1 272 87 ≥63
katomic_30 21 1 225 72 ≥51
katomic_44 21 1 210 65 ≥48
katomic_37 24 1 289 134 ≥54
katomic_43 26 1 225 86 ≥65
marbles_20 32 1 100 36 ≥37

Source: the author.

67

APPENDIX B — FIBONACCI HEAP VS. BUCKETS EXPERIMENT RESULTS

68

Table B.1: Fibonacci Heap vs. Buckets Experiment 1/4

Instance n
Buckets Fibonacci Heap

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_01 3 =7 19 28 =7 8 14
atomix_01 3 =13 19 418 =13 8 473
kai_01 3 =9 19 120 =9 8 146
katomic_01 3 =15 18 599 =15 8 598
katomic_36 3 =9 19 353 =9 8 356
marbles_04 3 =22 18 2548 =22 8 2552
marbles_13 3 =18 19 4963 =18 8 4799
unitopia_01 3 =11 18 181 =11 8 182
adrienl_05 4 =12 18 18,746 =12 8 18,693
atomix_23 4 =10 18 1047 =10 8 1273
atomix_26 4 =14 18 9948 =14 8 10,206
kai_06 4 =14 18 5165 =14 8 5173
kai_19 4 =19 18 19,193 =19 8 19,135
katomic_20 4 =18 18 2829 =18 8 2835
katomic_23 4 =18 18 15,519 =18 8 17,021
marbles_01 4 =11 18 779 =11 8 767
marbles_03 4 =22 18 51,583 =22 8 51,595
unitopia_02 4 =22 18 57,583 =22 8 57,598
adrien_02 5 =17 20 256,410 =17 10 256,195
atomix_02 5 =21 19 10,509 =21 8 10,338
atomix_11 5 =14 19 3811 =14 8 3590
kai_02 5 =24 19 246,130 =24 9 252,201
kai_11 5 =15 19 11,640 =15 8 13,030
katomic_02 5 =27 19 120,615 =27 9 120,481
katomic_10 5 =19 19 6275 =19 8 6243
katomic_57 5 =21 19 33,450 =21 8 33,004
marbles_02 5 =15 19 24,059 =15 8 24,092
marbles_05 5 =25 19 51,427 =25 8 51,433
marbles_06 5 =14 19 1134 =14 8 1232
unitopia_03 5 =16 19 1462 =16 8 1473
adrien_03 6 =12 18 2943 =12 8 2947
adrien_06 6 =15 18 59,843 =15 9 76,529
atomix_03 6 =16 18 28,274 =16 8 28,272
atomix_04 6 =23 42 6,486,774 =23 65 6,486,772
kai_03 6 =16 18 28,274 =16 8 28,272
katomic_03 6 =20 19 295,609 =20 10 295,607
katomic_04 6 =23 19 222,364 =23 9 221,362
katomic_58 6 =17 18 23,748 =17 8 23,794

Source: the author.

69

Table B.2: Fibonacci Heap vs. Buckets Experiment 2/4

Instance n
Buckets Fibonacci Heap

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
marbles_08 6 =23 29 3,027,891 =23 30 3,028,007
marbles_12 6 =28 86 15,969,380 =28 147 15,968,821
marbles_14 6 =22 18 22,953 =22 8 21,664
unitopia_04 6 =20 18 10,017 =20 8 8488
unitopia_05 6 =20 19 226,450 =20 10 226,342
adrienl_01 7 =20 30 1,065,324 =20 26 1,065,004
adrienl_03 7 =22 534 32,511,794 =22 803 32,521,963
atomix_09 7 =20 21 715,535 =20 14 714,799
katomic_08 7 ≥25 541 115,111,670 ≥24 548 44,994,838
katomic_26 7 =36 287 64,259,387 ≥35 712 57,117,594
katomic_46 7 =24 20 512,485 =24 12 512,498
katomic_60 7 =19 18 35,474 =19 9 34,208
unitopia_08 7 =23 23 1,015,270 =23 18 1,015,297
adrienl_02 8 ≥31 660 81,215,335 ≥30 515 30,570,504
atomix_06 8 =13 18 242 =13 8 200
atomix_13 8 =28 24 1,401,827 =28 23 1,401,772
atomix_18 8 =13 18 1648 =13 9 1648
atomix_22 8 ≥25 543 67,584,077 ≥25 441 26,255,547
atomix_29 8 =22 20 304,658 =22 12 304,663
atomix_30 8 =13 18 1648 =13 8 1648
kai_05 8 =27 498 74,829,335 ≥26 479 30,995,989
kai_17 8 =23 22 500,963 =23 15 500,968
katomic_11 8 =23 159 19,882,485 =23 345 20,674,757
katomic_19 8 ≥31 433 58,202,893 ≥30 426 26,056,576
katomic_31 8 =29 196 34,194,628 =29 477 34,147,232
marbles_11 8 =28 186 22,485,798 =28 344 22,486,547
unitopia_10 8 ≥39 526 103,225,531 ≥38 525 41,329,408
adrienl_04 9 ≥34 516 99,520,890 ≥33 494 38,875,395
atomix_05 9 ≥36 455 66,636,140 ≥35 442 26,564,437
atomix_07 9 ≥26 431 59,906,097 ≥26 395 24,460,587
atomix_12 9 =14 18 2506 =14 8 2490
atomix_16 9 ≥27 491 59,533,377 ≥27 438 25,775,303
katomic_05 9 =27 134 21,309,141 =27 309 21,305,468
katomic_06 9 =27 327 54,058,835 ≥26 433 30,108,751
katomic_14 9 ≥27 423 61,966,682 ≥26 402 25,587,827
katomic_32 9 =19 20 323,260 =19 12 337,712
katomic_38 9 ≥33 463 77,742,782 ≥32 458 31,369,409
unitopia_06 9 =31 468 57,992,469 ≥30 350 20,492,060
adrien_04 10 ≥25 1093 43,570,830 ≥24 595 16,554,971

Source: the author.

70

Table B.3: Fibonacci Heap vs. Buckets Experiment 3/4

Instance n
Buckets Fibonacci Heap

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_05 10 ≥26 875 35,191,945 ≥26 549 15,962,166
atomix_10 10 ≥29 416 42,461,881 ≥28 341 17,343,008
atomix_28 10 =29 85 10,384,620 =29 168 10,384,624
kai_09 10 ≥34 390 48,323,586 ≥34 333 18,822,021
katomic_09 10 ≥31 356 44,274,522 ≥30 348 20,014,442
katomic_25 10 ≥33 391 51,777,687 ≥33 338 20,675,038
katomic_33 10 ≥49 674 63,622,846 ≥48 501 27,032,966
katomic_35 10 ≥32 379 59,712,760 ≥31 369 24,598,238
katomic_61 10 ≥53 405 56,297,870 ≥52 353 22,349,236
unitopia_07 10 ≥34 379 50,456,445 ≥33 368 23,403,358
katomic_47 11 =29 32 2,058,349 =29 38 1,831,032
katomic_66 11 ≥31 350 35,716,591 ≥31 317 16,099,735
atomix_08 12 ≥34 362 32,315,494 ≥34 337 14,979,838
atomix_14 12 ≥35 345 29,642,063 ≥35 303 13,193,841
atomix_15 12 ≥36 366 31,384,517 ≥36 280 12,053,793
atomix_21 12 ≥31 786 27,974,963 ≥30 512 12,263,540
kai_07 12 ≥33 370 34,185,196 ≥33 345 15,348,529
kai_08 12 ≥35 351 34,248,304 ≥35 282 13,506,352
kai_18 12 ≥34 271 24,196,706 ≥33 266 11,627,576
kai_20 12 ≥38 310 30,043,943 ≥37 274 13,164,557
kai_22 12 ≥33 348 32,573,982 ≥32 289 13,472,332
katomic_07 12 ≥23 725 33,634,825 ≥23 482 15,066,912
katomic_12 12 ≥35 822 44,459,538 ≥35 589 20,757,046
katomic_13 12 ≥41 317 28,162,721 ≥41 277 12,599,154
katomic_18 12 ≥46 1428 31,716,634 ≥46 723 13,847,962
katomic_27 12 ≥46 295 30,487,175 ≥45 259 12,761,203
katomic_28 12 ≥36 373 41,518,698 ≥35 369 18,567,374
katomic_42 12 ≥34 494 40,758,365 ≥33 377 16,920,536
katomic_62 12 ≥51 318 32,472,028 ≥51 261 13,544,618
katomic_63 12 ≥41 408 43,970,240 ≥40 349 19,342,172
katomic_67 12 ≥30 397 41,205,819 ≥30 343 18,361,370
marbles_15 12 ≥37 1788 48,437,736 ≥36 957 19,853,062
unitopia_09 12 ≥43 416 40,493,250 ≥42 362 18,763,768
katomic_34 13 ≥35 304 24,107,907 ≥35 247 10,045,535
atomix_20 14 =29 337 26,506,951 ≥28 277 11,846,210
atomix_25 14 ≥36 386 22,580,850 ≥35 278 9,233,190
kai_14 14 ≥40 335 25,311,694 ≥40 276 11,235,629
kai_21 14 ≥42 338 28,551,322 ≥42 289 12,446,221
kai_24 14 ≥40 315 21,266,572 ≥40 254 9,823,106

Source: the author.

71

Table B.4: Fibonacci Heap vs. Buckets Experiment 4/4

Instance n
Buckets Fibonacci Heap

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
kai_25 14 ≥33 330 22,648,412 ≥33 271 10,005,478
katomic_17 14 ≥31 387 23,867,185 ≥30 289 10,261,354
katomic_22 14 ≥31 501 24,379,339 ≥31 388 12,276,100
katomic_45 14 ≥38 266 22,728,680 ≥38 220 9,867,074
15-puzzle 15 =34 18 1,453,014 =34 14 1,448,575
atomix_17 15 ≥36 654 22,459,789 ≥35 400 9,500,351
atomix_19 15 ≥27 329 24,576,634 ≥27 269 11,099,148
kai_12 15 ≥35 314 18,525,081 ≥35 251 8,114,402
katomic_15 15 ≥35 740 24,666,899 ≥35 482 11,548,524
katomic_16 15 ≥42 320 25,639,546 ≥41 256 11,334,370
katomic_29 15 ≥56 287 24,306,760 ≥56 217 10,656,680
katomic_41 15 ≥34 400 20,762,730 ≥33 287 9,288,654
katomic_55 15 ≥47 306 25,049,689 ≥47 270 11,566,580
katomic_56 15 ≥48 283 23,986,260 ≥48 235 10,269,943
atomix_24 16 ≥29 401 28,506,922 ≥28 332 13,628,680
kai_28 16 ≥46 254 14,630,723 ≥46 216 6,997,644
katomic_21 16 ≥25 395 29,326,866 ≥25 321 13,993,211
katomic_40 16 ≥56 351 32,636,619 ≥55 315 14,553,046
katomic_51 16 ≥39 316 21,061,341 ≥39 262 10,292,715
katomic_53 16 ≥25 551 21,595,083 ≥24 389 10,143,059
katomic_54 16 ≥35 282 21,298,003 ≥34 264 10,460,758
katomic_59 16 ≥27 326 15,475,405 ≥26 243 7,061,313
katomic_64 16 ≥53 368 24,516,740 ≥53 276 10,702,244
marbles_10 16 =24 16 21,324 =24 9 21,324
katomic_39 17 ≥46 272 20,398,950 ≥46 226 9,419,227
katomic_48 17 ≥56 264 16,139,318 ≥55 214 7,717,571
katomic_50 17 ≥41 359 24,736,636 ≥41 261 11,025,886
katomic_65 17 ≥31 302 35,777,006 ≥30 286 17,258,307
katomic_49 18 ≥45 278 18,385,996 ≥44 249 9,222,795
kai_27 19 ≥59 242 10,074,866 ≥59 179 4,883,797
katomic_52 19 ≥53 256 15,094,790 ≥52 208 7,532,604
atomix_27 20 ≥45 650 10,270,513 ≥45 396 5,136,547
katomic_24 20 ≥36 3600 8,051,122 ≥36 2676 6,024,304
kai_29 21 ≥62 264 11,465,703 ≥62 191 5,354,661
katomic_30 21 ≥51 270 14,001,792 ≥51 218 6,919,686
katomic_44 21 ≥47 271 16,030,106 ≥47 242 8,071,908
katomic_37 24 ≥54 270 8,196,266 ≥54 203 4,077,825
katomic_43 26 ≥64 245 8,184,587 ≥64 188 4,520,602
marbles_20 32 ≥37 3387 46,133,258 ≥37 2135 26,395,956

Source: the author.

72

APPENDIX C — ONE FINAL STATE VS ALL FINAL STATES EXPERIMENT

RESULTS

73

Table C.1: One Final State vs All Final States Experiment 1/4

Instance n
One Final State All Final States

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_01 3 =7 29 290 =7 20 27
atomix_01 3 =13 31 6191 =13 19 418
kai_01 3 =9 25 562 =9 19 167
katomic_01 3 =15 47 14,763 =15 19 712
katomic_36 3 =9 36 6062 =9 19 365
marbles_04 3 =22 67 161,468 =22 19 2572
marbles_13 3 =18 24 56,844 =18 19 5262
unitopia_01 3 =11 37 2072 =11 19 221
adrienl_05 4 =12 72 242,887 =12 19 19,377
atomix_23 4 =10 31 4543 =10 18 1015
atomix_26 4 =14 34 48,911 =14 18 10,501
kai_06 4 =14 28 42,944 =14 18 6351
kai_19 4 =19 34 227,137 =19 18 26,864
katomic_20 4 =18 28 15,145 =18 18 3232
katomic_23 4 =18 63 231,308 =18 18 15,430
marbles_01 4 =11 18 2127 =11 18 763
marbles_03 4 =22 26 537,459 =22 18 55,293
unitopia_02 4 =22 22 216,522 =22 18 65,716
adrien_02 5 =17 34 2,248,373 =17 21 257,127
atomix_02 5 =21 21 54,536 =21 19 17,193
atomix_11 5 =14 25 25,137 =14 19 6996
kai_02 5 =24 20 762,079 =24 19 326,902
kai_11 5 =15 22 33,970 =15 18 12,418
katomic_02 5 =27 32 1,197,850 =27 19 129,319
katomic_10 5 =19 21 14,367 =19 18 6148
katomic_57 5 =21 19 175,810 =21 19 52,206
marbles_02 5 =15 21 126,181 =15 18 40,673
marbles_05 5 =25 20 256,530 =25 18 56,769
marbles_06 5 =14 18 1504 =14 18 839
unitopia_03 5 =16 24 10,634 =16 18 3483
adrien_03 6 =12 29 6316 =12 19 10,694
adrien_06 6 =15 27 284,730 =15 20 131,341
atomix_03 6 =16 19 118,502 =16 19 34,757
atomix_04 6 =23 55 17,189,370 =23 45 7,312,479
kai_03 6 =16 19 118,502 =16 18 34,757
katomic_03 6 =20 22 1,205,458 =20 20 713,597
katomic_04 6 =23 28 1,175,077 =23 18 225,539
katomic_58 6 =17 19 64,919 =17 18 34,633

Source: the author.

74

Table C.2: One Final State vs All Final States Experiment 2/4

Instance n
One Final State All Final States

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
marbles_08 6 =23 54 16,295,151 =23 31 3,863,347
marbles_12 6 =28 314 115,375,402 =28 83 16,131,164
marbles_14 6 =22 18 51,752 =22 18 21,150
unitopia_04 6 =20 18 30,567 =20 18 14,968
unitopia_05 6 =20 25 874,705 =20 20 629,451
adrienl_01 7 =20 59 7,581,021 =20 33 1,314,800
adrienl_03 7 =22 407 126,250,217 ≥22 600 38,773,541
atomix_09 7 =20 23 1,872,983 =20 22 873,796
katomic_08 7 ≥26 600 233,702,367 ≥25 527 116,241,299
katomic_26 7 ≥36 600 259,031,101 =36 286 66,170,428
katomic_46 7 =24 23 1,804,241 =24 22 1,189,955
katomic_60 7 =19 20 136,343 =19 18 59,925
unitopia_08 7 =23 27 3,212,968 =23 26 1,627,424
adrienl_02 8 ≥30 510 165,736,520 ≥31 600 76,593,585
atomix_06 8 =13 18 443 =13 18 663
atomix_13 8 =28 26 3,316,812 =28 25 1,436,165
atomix_18 8 =13 19 3428 =13 18 2383
atomix_22 8 ≥25 445 127,573,489 ≥25 516 68,362,973
atomix_29 8 =22 20 607,470 =22 20 342,878
atomix_30 8 =13 19 3428 =13 18 2383
kai_05 8 ≥26 470 135,377,447 ≥27 531 82,703,697
kai_17 8 =23 25 2,238,382 =23 29 1,709,079
katomic_11 8 =23 162 50,256,808 =23 243 32,867,082
katomic_19 8 ≥31 503 153,018,116 ≥31 398 56,981,623
katomic_31 8 =29 359 138,260,628 =29 257 47,101,869
marbles_11 8 =28 334 57,111,666 =28 184 23,475,184
unitopia_10 8 ≥38 447 165,221,840 ≥39 505 101,601,798
adrienl_04 9 ≥33 480 134,842,285 ≥34 519 99,824,979
atomix_05 9 ≥35 353 90,839,699 ≥36 472 71,471,615
atomix_07 9 ≥26 481 114,981,638 ≥26 407 57,354,445
atomix_12 9 =14 19 14,700 =14 18 9168
atomix_16 9 ≥28 600 159,464,496 ≥27 463 59,565,098
katomic_05 9 =27 276 92,694,848 =27 299 50,476,125
katomic_06 9 ≥26 424 113,845,569 ≥27 422 71,036,297
katomic_14 9 ≥27 600 170,496,312 ≥27 401 60,399,949
katomic_32 9 =19 24 1,328,942 =19 20 458,640
katomic_38 9 ≥32 410 108,091,942 ≥33 457 77,059,936
unitopia_06 9 ≥30 404 100,148,214 ≥31 440 58,069,889
adrien_04 10 ≥25 600 123,727,945 ≥24 600 27,529,775

Source: the author.

75

Table C.3: One Final State vs All Final States Experiment 3/4

Instance n
One Final State All Final States

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_05 10 ≥26 600 135,912,455 ≥26 600 29,998,220
atomix_10 10 ≥29 600 149,032,555 ≥29 387 41,242,166
atomix_28 10 =29 122 26,888,844 =29 101 13,549,793
kai_09 10 ≥34 381 86,686,159 ≥34 374 47,528,544
katomic_09 10 ≥31 586 146,679,694 ≥31 346 44,381,988
katomic_25 10 ≥33 396 94,841,272 ≥33 363 50,187,615
katomic_33 10 ≥49 600 154,755,457 ≥49 543 62,974,440
katomic_35 10 ≥31 339 93,268,395 ≥32 364 59,515,565
katomic_61 10 ≥53 600 187,921,606 ≥53 386 56,884,950
unitopia_07 10 ≥35 600 172,441,294 ≥34 366 52,329,090
katomic_47 11 =29 21 1,284,348 =29 24 1,105,507
katomic_66 11 ≥31 542 108,979,059 ≥31 334 36,474,813
atomix_08 12 ≥34 600 113,585,841 ≥34 367 34,307,518
atomix_14 12 ≥35 600 110,173,721 ≥35 339 30,216,513
atomix_15 12 ≥36 462 78,048,870 ≥36 369 33,080,515
atomix_21 12 ≥31 600 45,734,879 ≥31 600 21,675,143
kai_07 12 ≥34 600 109,189,195 ≥33 388 37,908,844
kai_08 12 ≥35 424 78,627,777 ≥35 341 34,578,125
kai_18 12 ≥34 600 128,303,194 ≥34 277 25,477,485
kai_20 12 ≥37 236 42,661,886 ≥38 303 29,858,040
kai_22 12 ≥32 287 47,977,496 ≥33 326 31,608,500
katomic_07 12 ≥24 600 124,246,637 ≥23 550 32,762,716
katomic_12 12 ≥36 600 122,471,146 ≥35 600 39,028,978
katomic_13 12 ≥41 600 122,441,803 ≥41 301 28,343,691
katomic_18 12 ≥46 600 57,221,698 ≥46 600 13,103,648
katomic_27 12 ≥45 211 39,655,836 ≥46 292 30,160,378
katomic_28 12 ≥35 274 51,228,929 ≥36 374 42,901,393
katomic_42 12 ≥33 481 60,309,547 ≥34 466 40,127,320
katomic_62 12 ≥51 389 78,600,703 ≥51 304 33,449,681
katomic_63 12 ≥41 600 151,007,870 ≥41 366 44,101,099
katomic_67 12 ≥30 500 110,074,261 ≥30 369 42,496,672
marbles_15 12 ≥36 600 19,557,606 ≥36 600 16,927,977
unitopia_09 12 ≥43 439 91,357,210 ≥43 379 41,143,697
katomic_34 13 ≥35 352 58,442,189 ≥35 299 24,464,313
atomix_20 14 ≥28 319 46,429,758 ≥29 314 26,616,211
atomix_25 14 ≥35 296 37,854,184 ≥36 339 22,483,883
kai_14 14 ≥40 577 101,096,095 ≥40 346 28,002,747
kai_21 14 ≥43 600 101,287,806 ≥42 325 28,005,897
kai_24 14 ≥40 600 94,002,953 ≥40 310 23,549,989

Source: the author.

76

Table C.4: One Final State vs All Final States Experiment 4/4

Instance n
One Final State All Final States

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
kai_25 14 ≥33 349 45,408,173 ≥33 310 22,438,432
katomic_17 14 ≥31 600 96,177,743 ≥31 337 23,266,052
katomic_22 14 ≥32 600 93,082,043 ≥31 423 24,670,191
katomic_45 14 ≥38 225 36,635,817 ≥38 253 22,688,072
15-puzzle 15 =34 27 5,082,501 =34 19 1,449,440
atomix_17 15 ≥35 572 27,274,967 ≥36 600 21,379,043
atomix_19 15 ≥27 324 47,309,683 ≥27 297 23,794,653
kai_12 15 ≥35 492 62,765,593 ≥35 297 18,403,055
katomic_15 15 ≥35 600 26,867,264 ≥35 600 20,541,058
katomic_16 15 ≥41 282 42,887,760 ≥42 295 25,550,787
katomic_29 15 ≥56 336 54,972,362 ≥56 269 24,710,652
katomic_41 15 ≥34 600 98,006,917 ≥34 362 21,040,786
katomic_55 15 ≥48 600 103,569,135 ≥47 313 26,756,715
katomic_56 15 ≥48 240 39,281,282 ≥48 266 23,983,488
atomix_24 16 ≥28 341 37,126,276 ≥29 369 27,843,517
kai_28 16 ≥46 600 88,179,596 ≥46 253 14,845,020
katomic_21 16 ≥26 600 78,817,174 ≥25 357 29,200,930
katomic_40 16 ≥55 330 52,943,587 ≥56 340 32,406,399
katomic_51 16 ≥40 600 81,606,290 ≥39 306 22,084,488
katomic_53 16 ≥25 600 55,357,841 ≥25 486 20,063,361
katomic_54 16 ≥34 203 26,637,554 ≥35 273 21,403,636
katomic_59 16 ≥27 600 98,535,680 ≥27 292 15,446,625
katomic_64 16 ≥54 600 92,309,368 ≥53 364 26,346,409
marbles_10 16 =24 18 87,079 =24 16 58,335
katomic_39 17 ≥46 495 69,735,349 ≥46 264 20,602,373
katomic_48 17 ≥55 188 20,329,327 ≥56 239 16,232,317
katomic_50 17 ≥41 323 46,888,484 ≥41 296 24,622,933
katomic_65 17 ≥30 272 53,414,461 ≥31 269 35,354,532
katomic_49 18 ≥44 216 23,863,533 ≥45 267 19,052,593
kai_27 19 ≥59 193 15,857,481 ≥59 229 9,748,673
katomic_52 19 ≥52 157 14,337,795 ≥53 246 14,655,126
atomix_27 20 ≥45 600 15,179,013 ≥45 600 10,083,637
katomic_24 20 ≥36 600 14,700,245 ≥35 600 1,298,641
kai_29 21 ≥62 197 16,775,516 ≥62 244 11,409,357
katomic_30 21 ≥51 600 66,683,286 ≥51 265 14,470,999
katomic_44 21 ≥47 349 41,174,257 ≥47 248 15,230,213
katomic_37 24 ≥54 526 33,791,878 ≥54 273 9,208,173
katomic_43 26 ≥64 600 46,179,074 ≥64 217 7,481,980
marbles_20 32 ≥36 600 8,184,118 ≥36 600 8,213,768

Source: the author.

77

APPENDIX D — TIE-BREAKING EXPERIMENT RESULTS

78

Table
D

.1:Tie-B
reaking

E
xperim

ent1/5

Instance
n

N
o

Tie-B
reak

G
C

N
R

P
FO

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

adrien_01
3

=7
18

27
=7

19
28

=7
19

27
=7

19
28

atom
ix_01

3
=13

18
418

=13
19

418
=13

19
535

=13
19

381
kai_01

3
=9

19
167

=9
19

120
=9

19
160

=9
19

129
katom

ic_01
3

=15
19

712
=15

18
599

=15
19

728
=15

19
686

katom
ic_36

3
=9

19
365

=9
19

353
=9

19
400

=9
19

420
m

arbles_04
3

=22
18

2572
=22

18
2548

=22
19

2568
=22

19
2619

m
arbles_13

3
=18

18
5262

=18
19

4963
=18

19
5300

=18
19

4841
unitopia_01

3
=11

18
221

=11
18

181
=11

19
224

=11
19

183
adrienl_05

4
=12

18
19,377

=12
18

18,746
=12

18
19,464

=12
18

20,194
atom

ix_23
4

=10
18

1015
=10

18
1047

=10
18

649
=10

18
1170

atom
ix_26

4
=14

18
10,501

=14
18

9948
=14

18
9988

=14
18

9845
kai_06

4
=14

18
6351

=14
18

5165
=14

18
6649

=14
18

5206
kai_19

4
=19

18
26,864

=19
18

19,193
=19

18
21,130

=19
18

19,168
katom

ic_20
4

=18
18

3232
=18

18
2829

=18
18

3236
=18

18
2849

katom
ic_23

4
=18

18
15,430

=18
18

15,519
=18

18
14,987

=18
18

16,009
m

arbles_01
4

=11
18

763
=11

18
779

=11
18

749
=11

18
756

m
arbles_03

4
=22

18
55,293

=22
18

51,583
=22

18
55,101

=22
18

51,582
unitopia_02

4
=22

18
65,716

=22
18

57,583
=22

18
58,630

=22
18

57,584
adrien_02

5
=17

20
257,127

=17
20

256,410
=17

21
256,100

=17
20

258,277
atom

ix_02
5

=21
18

17,193
=21

19
10,509

=21
18

11,892
=21

19
10,277

atom
ix_11

5
=14

18
6996

=14
19

3811
=14

18
3750

=14
19

4001
kai_02

5
=24

19
326,902

=24
19

246,130
=24

19
272,190

=24
20

249,948
kai_11

5
=15

18
12,418

=15
19

11,640
=15

18
11,261

=15
19

11,508
katom

ic_02
5

=27
19

129,319
=27

19
120,615

=27
19

152,072
=27

19
121,637

katom
ic_10

5
=19

18
6148

=19
19

6275
=19

18
8520

=19
19

6162
katom

ic_57
5

=21
18

52,206
=21

19
33,450

=21
18

33,419
=21

19
33,244

m
arbles_02

5
=15

18
40,673

=15
19

24,059
=15

18
24,569

=15
19

24,062
m

arbles_05
5

=25
18

56,769
=25

19
51,427

=25
18

51,498
=25

19
51,427

m
arbles_06

5
=14

18
839

=14
19

1134
=14

18
597

=14
19

1219
unitopia_03

5
=16

18
3483

=16
19

1462
=16

18
2382

=16
19

1938
adrien_03

6
=12

18
10,694

=12
18

2943
=12

18
3028

=12
18

2943

Source:the
author.

79
Ta

bl
e

D
.2

:T
ie

-B
re

ak
in

g
E

xp
er

im
en

t2
/5

In
st

an
ce

n
N

o
Ti

e-
B

re
ak

G
C

N
R

P
FO

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

ad
ri

en
_0

6
6

=1
5

19
13
1,
34
1

=1
5

18
59
,8
43

=1
5

20
61
,4
45

=1
5

19
58
,0
95

at
om

ix
_0

3
6

=1
6

18
34
,7
57

=1
6

18
28
,2
74

=1
6

18
28
,9
26

=1
6

19
33
,3
10

at
om

ix
_0

4
6

=2
3

44
7,
31
2,
47
9

=2
3

42
6,
48
6,
77
4

=2
3

55
6,
56
0,
67
4

=2
3

44
6,
55
8,
70
5

ka
i_

03
6

=1
6

18
34
,7
57

=1
6

18
28
,2
74

=1
6

18
28
,9
26

=1
6

19
33
,3
10

ka
to

m
ic

_0
3

6
=2

0
21

71
3,
59
7

=2
0

19
29
5,
60
9

=2
0

20
30
7,
54
7

=2
0

20
29
5,
60
2

ka
to

m
ic

_0
4

6
=2

3
19

22
5,
53
9

=2
3

19
22
2,
36
4

=2
3

20
22
2,
83
5

=2
3

19
22
4,
55
4

ka
to

m
ic

_5
8

6
=1

7
18

34
,6
33

=1
7

18
23
,7
48

=1
7

18
24
,5
33

=1
7

19
23
,9
43

m
ar

bl
es

_0
8

6
=2

3
31

3,
86
3,
34
7

=2
3

29
3,
02
7,
89
1

=2
3

35
3,
08
5,
90
3

=2
3

30
3,
09
1,
67
9

m
ar

bl
es

_1
2

6
=2

8
83

16
,1
31
,1
64

=2
8

86
15
,9
69
,3
80

=2
8

11
1

15
,9
87
,0
36

=2
8

90
16
,1
04
,0
76

m
ar

bl
es

_1
4

6
=2

2
18

21
,1
50

=2
2

18
22
,9
53

=2
2

18
23
,1
27

=2
2

19
22
,9
53

un
ito

pi
a_

04
6

=2
0

18
14
,9
68

=2
0

18
10
,0
17

=2
0

18
16
,9
82

=2
0

19
12
,0
18

un
ito

pi
a_

05
6

=2
0

21
62
9,
45
1

=2
0

19
22
6,
45
0

=2
0

22
37
7,
68
0

=2
0

20
23
6,
19
8

ad
ri

en
l_

01
7

=2
0

32
1,
31
4,
80
0

=2
0

30
1,
06
5,
32
4

=2
0

12
4

2,
22
1,
88
3

=2
0

32
1,
08
9,
14
9

ad
ri

en
l_

03
7

=2
2

85
7

57
,7
41
,2
14

=2
2

53
4

32
,5
11
,7
94

=2
2

29
52

47
,2
53
,9
68

=2
2

79
6

40
,5
53
,6
79

at
om

ix
_0

9
7

=2
0

22
87
3,
79
6

=2
0

21
71
5,
53
5

=2
0

24
1,
04
9,
96
3

=2
0

21
75
8,
70
0

ka
to

m
ic

_0
8

7
≥

25
52
2

11
6,
24
1,
29
9

≥
25

54
1

11
5,
11
1,
67
0

≥
25

74
6

12
2,
73
9,
96
4

≥
25

54
8

11
5,
11
1,
67
0

ka
to

m
ic

_2
6

7
=3

6
28
5

66
,1
70
,4
28

=3
6

28
7

64
,2
59
,3
87

=3
6

49
6

69
,3
91
,5
17

=3
6

29
5

64
,3
05
,7
39

ka
to

m
ic

_4
6

7
=2

4
23

1,
18
9,
95
5

=2
4

20
51
2,
48
5

=2
4

22
51
3,
20
0

=2
4

20
51
3,
24
5

ka
to

m
ic

_6
0

7
=1

9
19

59
,9
25

=1
9

18
35
,4
74

=1
9

19
43
,4
11

=1
9

18
40
,4
81

un
ito

pi
a_

08
7

=2
3

26
1,
62
7,
42
4

=2
3

23
1,
01
5,
27
0

=2
3

28
1,
07
7,
64
8

=2
3

23
1,
01
5,
26
6

ad
ri

en
l_

02
8

≥
31

63
4

81
,7
63
,8
74

≥
31

66
0

81
,2
15
,3
35

≥
31

16
63

82
,3
15
,4
12

≥
31

71
0

82
,2
40
,9
51

at
om

ix
_0

6
8

=1
3

17
66
3

=1
3

18
24
2

=1
3

17
34
8

=1
3

18
18
9

at
om

ix
_1

3
8

=2
8

23
1,
43
6,
16
5

=2
8

24
1,
40
1,
82
7

=2
8

26
1,
40
3,
09
0

=2
8

25
1,
40
1,
79
4

at
om

ix
_1

8
8

=1
3

17
23
83

=1
3

18
16
48

=1
3

18
16
49

=1
3

18
16
47

at
om

ix
_2

2
8

≥
25

50
2

68
,3
62
,9
73

≥
25

54
3

67
,5
84
,0
77

≥
25

10
32

70
,1
12
,7
48

≥
25

55
4

67
,5
84
,0
77

at
om

ix
_2

9
8

=2
2

19
34
2,
87
8

=2
2

20
30
4,
65
8

=2
2

21
30
5,
64
4

=2
2

20
30
4,
65
8

at
om

ix
_3

0
8

=1
3

17
23
83

=1
3

18
16
48

=1
3

17
16
49

=1
3

18
16
47

ka
i_

05
8

≥
27

51
8

82
,7
03
,6
97

=2
7

49
8

74
,8
29
,3
35

=2
7

77
8

75
,4
87
,8
39

=2
7

49
3

75
,0
97
,4
65

ka
i_

17
8

=2
3

28
1,
70
9,
07
9

=2
3

22
50
0,
96
3

=2
3

26
51
6,
08
7

=2
3

22
50
0,
96
3

ka
to

m
ic

_1
1

8
=2

3
23
9

32
,8
67
,0
82

=2
3

15
9

19
,8
82
,4
85

=2
3

51
6

28
,6
48
,2
63

=2
3

16
5

19
,9
51
,9
30

ka
to

m
ic

_1
9

8
≥

31
39
1

56
,9
81
,6
23

≥
31

43
3

58
,2
02
,8
93

≥
31

78
4

63
,7
98
,3
33

≥
31

44
1

59
,0
08
,9
38

ka
to

m
ic

_3
1

8
=2

9
25
2

47
,1
01
,8
69

=2
9

19
6

34
,1
94
,6
28

=2
9

32
5

35
,2
58
,2
31

=2
9

22
4

38
,8
09
,4
91

So
ur

ce
:t

he
au

th
or

.

80

Table
D

.3:Tie-B
reaking

E
xperim

ent3/5

Instance
n

N
o

Tie-B
reak

G
C

N
R

P
FO

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

m
arbles_11

8
=28

181
23,475,184

=28
186

22,485,798
=28

232
22,521,429

=28
186

22,485,852
unitopia_10

8
≥

39
492

101,601,798
≥

39
526

103,225,531
≥

39
787

108,552,885
≥

39
535

103,225,531
adrienl_04

9
≥

34
516

99,824,979
≥

34
516

99,520,890
≥

34
768

97,462,646
≥

34
525

99,520,890
atom

ix_05
9

≥
36

472
71,471,615

≥
36

455
66,636,140

≥
36

875
73,081,794

≥
36

479
68,100,765

atom
ix_07

9
≥

26
411

57,354,445
≥

26
431

59,906,097
≥

26
696

65,320,478
≥

26
435

59,906,097
atom

ix_12
9

=14
18

9168
=14

18
2506

=14
18

2503
=14

19
2489

atom
ix_16

9
≥

27
462

59,565,098
≥

27
491

59,533,377
≥

27
923

60,412,724
≥

27
488

59,533,377
katom

ic_05
9

=27
302

50,476,125
=27

134
21,309,141

=27
242

21,303,377
=27

139
21,303,093

katom
ic_06

9
≥

27
420

71,036,297
=27

327
54,058,835

=27
460

54,077,568
=27

332
54,058,835

katom
ic_14

9
≥

27
405

60,399,949
≥

27
423

61,966,682
≥

27
669

66,296,048
≥

27
440

63,912,542
katom

ic_32
9

=19
20

458,640
=19

20
323,260

=19
24

324,877
=19

21
316,043

katom
ic_38

9
≥

33
460

77,059,936
≥

33
463

77,742,782
≥

33
702

79,666,113
≥

33
492

81,501,580
unitopia_06

9
≥

31
444

58,069,889
=31

468
57,992,469

≥
31

878
58,065,813

=31
475

57,952,229
adrien_04

10
≥

25
887

42,967,390
≥

25
1093

43,570,830
≥

24
3600

37,864,309
≥

25
1166

43,460,007
adrien_05

10
≥

26
667

35,492,297
≥

26
875

35,191,945
≥

26
3442

34,824,876
≥

26
916

34,725,671
atom

ix_10
10

≥
29

371
41,242,166

≥
29

416
42,461,881

≥
29

843
42,129,792

≥
29

432
42,877,148

atom
ix_28

10
=29

100
13,549,793

=29
85

10,384,620
=29

124
10,387,541

=29
85

10,384,620
kai_09

10
≥

34
377

47,528,544
≥

34
390

48,323,586
≥

34
620

50,105,000
≥

34
395

48,323,586
katom

ic_09
10

≥
31

337
44,381,988

≥
31

356
44,274,522

≥
31

583
45,184,460

≥
31

376
45,811,726

katom
ic_25

10
≥

33
360

50,187,615
≥

33
391

51,777,687
≥

33
607

52,925,362
≥

33
395

51,777,687
katom

ic_33
10

≥
49

541
62,974,440

≥
49

674
63,622,846

≥
49

1620
67,033,985

≥
49

643
63,622,712

katom
ic_35

10
≥

32
365

59,515,565
≥

32
379

59,712,760
≥

32
550

62,122,010
≥

32
400

61,216,251
katom

ic_61
10

≥
53

386
56,884,950

≥
53

405
56,297,870

≥
53

770
57,605,864

≥
53

416
56,583,101

unitopia_07
10

≥
34

364
52,329,090

≥
34

379
50,456,445

≥
34

594
54,564,590

≥
34

390
50,661,181

katom
ic_47

11
=29

24
1,105,507

=29
32

2,058,349
=29

43
1,851,005

=29
33

2,058,340
katom

ic_66
11

≥
31

335
36,474,813

≥
31

350
35,716,591

≥
31

596
37,185,828

≥
31

362
36,085,450

atom
ix_08

12
≥

34
362

34,307,518
≥

34
362

32,315,494
≥

34
668

31,970,919
≥

34
369

32,363,925
atom

ix_14
12

≥
35

337
30,216,513

≥
35

345
29,642,063

≥
35

655
27,886,479

≥
35

351
29,660,574

atom
ix_15

12
≥

36
365

33,080,515
≥

36
366

31,384,517
≥

36
656

30,837,406
≥

36
368

31,328,044
atom

ix_21
12

≥
31

751
27,336,892

≥
31

786
27,974,963

≥
31

1600
26,451,599

≥
31

817
28,216,086

kai_07
12

≥
33

389
37,908,844

≥
33

370
34,185,196

≥
33

690
36,024,484

≥
33

378
34,322,165

kai_08
12

≥
35

336
34,578,125

≥
35

351
34,248,304

≥
35

642
33,715,466

≥
35

358
34,331,230

Source:the
author.

81
Ta

bl
e

D
.4

:T
ie

-B
re

ak
in

g
E

xp
er

im
en

t4
/5

In
st

an
ce

n
N

o
Ti

e-
B

re
ak

G
C

N
R

P
FO

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

ka
i_

18
12

≥
34

27
3

25
,4
77
,4
85

≥
34

27
1

24
,1
96
,7
06

≥
34

50
3

24
,2
41
,4
30

≥
34

28
2

24
,3
60
,1
43

ka
i_

20
12

≥
38

29
5

29
,8
58
,0
40

≥
38

31
0

30
,0
43
,9
43

≥
38

59
4

30
,3
59
,8
85

≥
38

32
1

30
,6
11
,0
99

ka
i_

22
12

≥
33

32
2

31
,6
08
,5
00

≥
33

34
8

32
,5
73
,9
82

≥
33

66
3

32
,3
59
,8
31

≥
33

35
3

32
,3
68
,1
03

ka
to

m
ic

_0
7

12
≥

23
54
8

32
,7
62
,7
16

≥
23

72
5

33
,6
34
,8
25

≥
23

33
25

33
,4
05
,4
50

≥
23

75
8

33
,6
88
,2
57

ka
to

m
ic

_1
2

12
≥

35
69
5

45
,4
59
,9
83

≥
35

82
2

44
,4
59
,5
38

≥
35

35
73

46
,4
59
,2
79

≥
35

87
8

44
,5
44
,2
51

ka
to

m
ic

_1
3

12
≥

41
30
3

28
,3
43
,6
91

≥
41

31
7

28
,1
62
,7
21

≥
41

64
3

27
,4
88
,0
38

≥
41

32
0

28
,6
01
,8
22

ka
to

m
ic

_1
8

12
≥

46
13
70

29
,5
33
,8
60

≥
46

14
28

31
,7
16
,6
34

≥
46

36
00

23
,8
29
,3
82

≥
46

14
29

31
,4
95
,1
33

ka
to

m
ic

_2
7

12
≥

46
28
8

30
,1
60
,3
78

≥
46

29
5

30
,4
87
,1
75

≥
46

52
8

30
,5
33
,8
65

≥
46

30
3

30
,2
50
,1
41

ka
to

m
ic

_2
8

12
≥

36
37
2

42
,9
01
,3
93

≥
36

37
3

41
,5
18
,6
98

≥
36

62
6

43
,5
15
,8
87

≥
36

38
6

42
,2
63
,6
96

ka
to

m
ic

_4
2

12
≥

34
46
3

40
,1
27
,3
20

≥
34

49
4

40
,7
58
,3
65

≥
34

85
3

41
,0
92
,4
13

≥
34

50
5

40
,9
70
,8
44

ka
to

m
ic

_6
2

12
≥

51
30
2

33
,4
49
,6
81

≥
51

31
8

32
,4
72
,0
28

≥
51

66
4

32
,6
96
,5
00

≥
51

32
0

32
,4
83
,6
19

ka
to

m
ic

_6
3

12
≥

41
36
6

44
,1
01
,0
99

≥
41

40
8

43
,9
70
,2
40

≥
41

96
1

48
,1
44
,6
37

≥
41

41
9

43
,9
70
,2
40

ka
to

m
ic

_6
7

12
≥

30
37
2

42
,4
96
,6
72

≥
30

39
7

41
,2
05
,8
19

≥
30

82
9

42
,5
11
,5
17

≥
30

41
2

41
,2
96
,4
30

m
ar

bl
es

_1
5

12
≥

37
18
42

50
,2
49
,1
42

≥
37

17
88

48
,4
37
,7
36

≥
37

22
86

48
,6
28
,5
18

≥
37

18
13

48
,9
56
,3
56

un
ito

pi
a_

09
12

≥
43

37
4

41
,1
43
,6
97

≥
43

41
6

40
,4
93
,2
50

≥
43

10
39

40
,7
02
,6
05

≥
43

44
2

42
,9
14
,7
85

ka
to

m
ic

_3
4

13
≥

35
30
0

24
,4
64
,3
13

≥
35

30
4

24
,1
07
,9
07

≥
35

56
3

23
,9
76
,2
89

≥
35

31
5

24
,1
35
,5
89

at
om

ix
_2

0
14

≥
29

30
4

26
,6
16
,2
11

=2
9

33
7

26
,5
06
,9
51

=2
9

76
2

26
,5
16
,7
10

=2
9

34
3

26
,5
06
,9
47

at
om

ix
_2

5
14

≥
36

33
6

22
,4
83
,8
83

≥
36

38
6

22
,5
80
,8
50

≥
36

10
42

22
,5
80
,0
50

≥
36

39
5

22
,6
10
,4
37

ka
i_

14
14

≥
40

34
1

28
,0
02
,7
47

≥
40

33
5

25
,3
11
,6
94

≥
40

84
4

24
,8
03
,2
30

≥
40

34
5

24
,7
32
,6
28

ka
i_

21
14

≥
42

32
3

28
,0
05
,8
97

≥
42

33
8

28
,5
51
,3
22

≥
42

78
0

27
,5
16
,0
80

≥
42

34
3

28
,5
85
,7
80

ka
i_

24
14

≥
40

31
1

23
,5
49
,9
89

≥
40

31
5

21
,2
66
,5
72

≥
40

70
4

20
,5
02
,8
02

≥
40

31
3

21
,3
20
,2
67

ka
i_

25
14

≥
33

30
5

22
,4
38
,4
32

≥
33

33
0

22
,6
48
,4
12

≥
33

77
8

23
,4
50
,9
13

≥
33

33
6

22
,8
12
,4
47

ka
to

m
ic

_1
7

14
≥

31
33
5

23
,2
66
,0
52

≥
31

38
7

23
,8
67
,1
85

≥
31

12
96

23
,6
75
,3
95

≥
31

39
4

23
,8
60
,9
22

ka
to

m
ic

_2
2

14
≥

31
42
3

24
,6
70
,1
91

≥
31

50
1

24
,3
79
,3
39

≥
31

20
32

26
,2
02
,2
68

≥
31

53
1

24
,8
22
,6
97

ka
to

m
ic

_4
5

14
≥

38
25
2

22
,6
88
,0
72

≥
38

26
6

22
,7
28
,6
80

≥
38

49
4

22
,5
54
,8
30

≥
38

27
5

22
,7
28
,6
80

15
-p

uz
zl

e
15

=3
4

18
1,
44
9,
44
0

=3
4

18
1,
45
3,
01
4

=3
4

19
1,
44
7,
18
3

=3
4

18
1,
44
1,
61
0

at
om

ix
_1

7
15

≥
36

63
6

23
,5
05
,9
65

≥
36

65
4

22
,4
59
,7
89

≥
36

11
04

22
,7
12
,9
33

≥
36

64
7

22
,4
34
,3
31

at
om

ix
_1

9
15

≥
27

28
9

23
,7
94
,6
53

≥
27

32
9

24
,5
76
,6
34

≥
27

67
7

24
,8
30
,4
11

≥
27

33
5

24
,9
53
,4
28

ka
i_

12
15

≥
35

29
0

18
,4
03
,0
55

≥
35

31
4

18
,5
25
,0
81

≥
35

70
2

19
,3
02
,4
31

≥
35

32
2

18
,8
71
,1
93

ka
to

m
ic

_1
5

15
≥

35
69
7

23
,8
57
,3
52

≥
35

74
0

24
,6
66
,8
99

≥
35

12
40

23
,9
57
,9
83

≥
35

71
6

24
,1
10
,7
77

ka
to

m
ic

_1
6

15
≥

42
29
3

25
,5
50
,7
87

≥
42

32
0

25
,6
39
,5
46

≥
42

68
3

25
,5
84
,6
23

≥
42

32
6

25
,6
77
,8
37

ka
to

m
ic

_2
9

15
≥

56
26
8

24
,7
10
,6
52

≥
56

28
7

24
,3
06
,7
60

≥
56

77
6

23
,6
82
,1
86

≥
56

28
9

24
,3
06
,7
60

So
ur

ce
:t

he
au

th
or

.

82
Table

D
.5:Tie-B

reaking
E

xperim
ent5/5

Instance
n

N
o

Tie-B
reak

G
C

N
R

P
FO

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

katom
ic_41

15
≥

34
361

21,040,786
≥

34
400

20,762,730
≥

34
1644

20,275,601
≥

34
439

21,216,519
katom

ic_55
15

≥
47

313
26,756,715

≥
47

306
25,049,689

≥
47

650
26,454,981

≥
47

315
25,054,218

katom
ic_56

15
≥

48
267

23,983,488
≥

48
283

23,986,260
≥

48
535

23,786,199
≥

48
289

23,986,260
atom

ix_24
16

≥
29

365
27,843,517

≥
29

401
28,506,922

≥
29

845
27,975,914

≥
29

410
28,409,764

kai_28
16

≥
46

245
14,845,020

≥
46

254
14,630,723

≥
46

511
14,060,661

≥
46

265
14,413,095

katom
ic_21

16
≥

25
356

29,200,930
≥

25
395

29,326,866
≥

25
805

28,998,509
≥

25
408

29,965,377
katom

ic_40
16

≥
56

325
32,406,399

≥
56

351
32,636,619

≥
56

622
32,583,206

≥
56

368
32,947,098

katom
ic_51

16
≥

39
299

22,084,488
≥

39
316

21,061,341
≥

39
702

22,292,128
≥

39
322

21,296,663
katom

ic_53
16

≥
25

480
20,063,361

≥
25

551
21,595,083

≥
25

1515
20,967,929

≥
25

571
21,580,462

katom
ic_54

16
≥

35
264

21,403,636
≥

35
282

21,298,003
≥

35
544

20,946,688
≥

35
299

21,718,932
katom

ic_59
16

≥
27

284
15,446,625

≥
27

326
15,475,405

≥
27

1496
15,778,407

≥
27

375
15,430,923

katom
ic_64

16
≥

53
350

26,346,409
≥

53
368

24,516,740
≥

53
1086

25,471,871
≥

53
385

24,105,469
m

arbles_10
16

=24
16

58,335
=24

16
21,324

=24
16

21,324
=24

16
21,324

katom
ic_39

17
≥

46
270

20,602,373
≥

46
272

20,398,950
≥

46
564

19,304,958
≥

46
289

20,479,863
katom

ic_48
17

≥
56

245
16,232,317

≥
56

264
16,139,318

≥
56

589
16,113,515

≥
56

275
16,199,286

katom
ic_50

17
≥

41
308

24,622,933
≥

41
359

24,736,636
≥

41
1004

24,658,398
≥

41
357

24,510,395
katom

ic_65
17

≥
31

276
35,354,532

≥
31

302
35,777,006

≥
31

573
36,194,587

≥
31

325
36,107,129

katom
ic_49

18
≥

45
267

19,052,593
≥

45
278

18,385,996
≥

45
691

18,710,046
≥

45
303

18,731,380
kai_27

19
≥

59
219

9,748,673
≥

59
242

10,074,866
≥

59
709

10,092,744
≥

59
256

10,074,866
katom

ic_52
19

≥
53

240
14,655,126

≥
53

256
15,094,790

≥
53

643
15,080,106

≥
53

271
15,292,856

atom
ix_27

20
≥

45
612

10,554,954
≥

45
650

10,270,513
≥

45
1464

10,413,119
≥

45
660

10,295,784
katom

ic_24
20

≥
36

3600
8,126,193

≥
36

3600
8,051,122

≥
36

3600
3,134,962

≥
36

3600
8,094,698

kai_29
21

≥
62

249
11,409,357

≥
62

264
11,465,703

≥
62

723
11,404,622

≥
62

268
11,465,703

katom
ic_30

21
≥

51
264

14,470,999
≥

51
270

14,001,792
≥

51
676

13,602,781
≥

51
282

14,200,689
katom

ic_44
21

≥
47

248
15,230,213

≥
47

271
16,030,106

≥
47

671
16,151,942

≥
47

275
15,961,053

katom
ic_37

24
≥

54
276

9,208,173
≥

54
270

8,196,266
≥

54
802

8,021,150
≥

54
268

8,184,413
katom

ic_43
26

≥
64

216
7,481,980

≥
64

245
8,184,587

≥
64

917
7,608,668

≥
64

249
8,212,056

m
arbles_20

32
≥

37
3122

43,696,363
≥

37
3387

46,133,258
≥

37
3600

24,788,192
≥

37
3449

46,482,389

Source:the
author.

83

APPENDIX E — PDB EXPERIMENT RESULTS

84

Table
E

.1:PD
B

E
xperim

ent1/5

Instance
n

N
o

PD
B

Static
PD

B
D

ynam
ic

PD
B

M
ulti-G

oalPD
B

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

adrien_01
3

=7
19

28
=7

34
11

=7
19

11
=7

19
25

atom
ix_01

3
=13

19
418

=13
19

316
=13

19
326

=13
19

400
kai_01

3
=9

19
120

=9
19

111
=9

19
111

=9
19

114
katom

ic_01
3

=15
18

599
=15

20
429

=15
19

434
=15

19
592

katom
ic_36

3
=9

19
353

=9
20

263
=9

19
263

=9
19

314
m

arbles_04
3

=22
18

2548
=22

20
2493

=22
19

2520
=22

19
2548

m
arbles_13

3
=18

19
4963

=18
19

4925
=18

19
4957

=18
19

4962
unitopia_01

3
=11

18
181

=11
25

81
=11

19
81

=11
20

149
adrienl_05

4
=12

18
18,746

=12
130

16,740
=12

34
12,595

=12
19

15,577
atom

ix_23
4

=10
18

1047
=10

24
879

=10
18

211
=10

18
601

atom
ix_26

4
=14

18
9948

=14
28

8687
=14

20
7266

=14
19

9106
kai_06

4
=14

18
5165

=14
22

4085
=14

19
3206

=14
18

4335
kai_19

4
=19

18
19,193

=19
23

18,345
=19

23
16,582

=19
19

17,696
katom

ic_20
4

=18
18

2829
=18

22
2561

=18
19

2427
=18

18
2679

katom
ic_23

4
=18

18
15,519

=18
30

15,141
=18

25
14,988

=18
19

15,412
m

arbles_01
4

=11
18

779
=11

19
623

=11
18

654
=11

18
696

m
arbles_03

4
=22

18
51,583

=22
19

48,587
=22

21
50,300

=22
19

51,263
unitopia_02

4
=22

18
57,583

=22
19

50,822
=22

21
43,792

=22
19

46,992
adrien_02

5
=17

20
256,410

=17
24

251,180
=17

90
204,427

=17
27

234,036
atom

ix_02
5

=21
19

10,509
=21

19
7835

=21
20

7057
=21

19
8201

atom
ix_11

5
=14

19
3811

=14
22

2414
=14

19
1312

=14
18

2379
kai_02

5
=24

19
246,130

=24
19

157,627
=24

23
81,490

=24
22

119,221
kai_11

5
=15

19
11,640

=15
19

6319
=15

19
4199

=15
19

5896
katom

ic_02
5

=27
19

120,615
=27

20
86,113

=27
36

74,283
=27

21
111,265

katom
ic_10

5
=19

19
6275

=19
20

3874
=19

19
729

=19
19

729
katom

ic_57
5

=21
19

33,450
=21

19
25,631

=21
20

20,261
=21

19
24,007

m
arbles_02

5
=15

19
24,059

=15
19

14,232
=15

20
11,015

=15
19

14,807
m

arbles_05
5

=25
19

51,427
=25

19
50,645

=25
21

47,097
=25

20
48,444

m
arbles_06

5
=14

19
1134

=14
19

1014
=14

19
729

=14
19

841
unitopia_03

5
=16

19
1462

=16
20

1278
=16

19
398

=16
19

768
adrien_03

6
=12

18
2943

=12
35

1182
=12

20
948

=12
19

1449

Source:the
author.

85
Ta

bl
e

E
.2

:P
D

B
E

xp
er

im
en

t2
/5

In
st

an
ce

n
N

o
PD

B
St

at
ic

PD
B

D
yn

am
ic

PD
B

M
ul

ti-
G

oa
lP

D
B

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

ad
ri

en
_0

6
6

=1
5

18
59
,8
43

=1
5

29
53
,2
51

=1
5

33
25
,8
45

=1
5

20
43
,7
36

at
om

ix
_0

3
6

=1
6

18
28
,2
74

=1
6

19
25
,5
51

=1
6

20
12
,9
18

=1
6

19
21
,2
63

at
om

ix
_0

4
6

=2
3

42
6,
48
6,
77
4

=2
3

33
3,
51
0,
93
4

=2
3

19
2

2,
48
0,
31
7

=2
3

15
7

3,
57
0,
19
1

ka
i_

03
6

=1
6

18
28
,2
74

=1
6

19
25
,5
51

=1
6

20
12
,9
18

=1
6

19
21
,2
63

ka
to

m
ic

_0
3

6
=2

0
19

29
5,
60
9

=2
0

21
24
4,
18
7

=2
0

32
10
8,
91
2

=2
0

25
18
0,
01
6

ka
to

m
ic

_0
4

6
=2

3
19

22
2,
36
4

=2
3

20
19
3,
49
8

=2
3

34
77
,5
67

=2
3

23
16
8,
23
0

ka
to

m
ic

_5
8

6
=1

7
18

23
,7
48

=1
7

19
12
,1
67

=1
7

19
36
48

=1
7

19
40
69

m
ar

bl
es

_0
8

6
=2

3
29

3,
02
7,
89
1

=2
3

30
2,
79
9,
52
5

=2
3

20
1

2,
31
9,
40
1

=2
3

10
2

2,
59
8,
25
0

m
ar

bl
es

_1
2

6
=2

8
86

15
,9
69
,3
80

=2
8

89
14
,4
92
,3
05

=2
8

13
74

13
,0
36
,4
46

=2
8

63
1

15
,3
51
,7
23

m
ar

bl
es

_1
4

6
=2

2
18

22
,9
53

=2
2

18
15
,9
49

=2
2

18
18
,3
05

=2
2

19
18
,3
05

un
ito

pi
a_

04
6

=2
0

18
10
,0
17

=2
0

19
79
09

=2
0

19
37
81

=2
0

19
63
39

un
ito

pi
a_

05
6

=2
0

19
22
6,
45
0

=2
0

22
17
5,
52
8

=2
0

53
16
1,
70
9

=2
0

26
18
0,
28
6

ad
ri

en
l_

01
7

=2
0

30
1,
06
5,
32
4

=2
0

95
1,
00
8,
91
1

=2
0

10
77

88
9,
68
7

=2
0

98
1,
02
9,
24
7

ad
ri

en
l_

03
7

=2
2

53
4

32
,5
11
,7
94

=2
2

95
1

26
,8
45
,7
32

≥
19

36
00

1,
86
8,
88
4

=2
2

28
00

31
,0
04
,3
90

at
om

ix
_0

9
7

=2
0

21
71
5,
53
5

=2
0

21
60
1,
85
8

=2
0

51
56
8,
83
4

=2
0

51
56
8,
83
4

ka
to

m
ic

_0
8

7
≥

25
54
1

11
5,
11
1,
67
0

=2
6

54
9

11
2,
28
1,
72
2

=2
6

22
19

41
,2
25
,1
47

=2
6

22
42

41
,2
25
,1
47

ka
to

m
ic

_2
6

7
=3

6
28
7

64
,2
59
,3
87

=3
6

14
2

25
,7
70
,1
75

=3
6

19
35

11
,7
12
,9
95

=3
6

13
28

23
,7
12
,1
15

ka
to

m
ic

_4
6

7
=2

4
20

51
2,
48
5

=2
4

20
26
6,
74
8

=2
4

29
75
,5
98

=2
4

26
13
4,
22
9

ka
to

m
ic

_6
0

7
=1

9
18

35
,4
74

=1
9

20
29
,5
77

=1
9

23
28
,2
40

=1
9

20
31
,1
35

un
ito

pi
a_

08
7

=2
3

23
1,
01
5,
27
0

=2
3

24
73
9,
31
0

=2
3

13
2

55
8,
10
2

=2
3

54
62
3,
33
4

ad
ri

en
l_

02
8

≥
31

66
0

81
,2
15
,3
35

≥
31

86
1

79
,5
04
,8
88

≥
30

36
00

8,
96
9,
57
4

≥
30

36
00

51
,9
78
,3
15

at
om

ix
_0

6
8

=1
3

18
24
2

=1
3

18
18
1

=1
3

17
13
6

=1
3

18
13
8

at
om

ix
_1

3
8

=2
8

24
1,
40
1,
82
7

=2
8

21
68
2,
30
5

=2
8

26
14
6,
13
2

=2
8

27
14
6,
13
2

at
om

ix
_1

8
8

=1
3

18
16
48

=1
3

18
11
94

=1
3

18
70
7

=1
3

18
71
8

at
om

ix
_2

2
8

≥
25

54
3

67
,5
84
,0
77

≥
26

58
4

63
,7
84
,6
53

≥
26

36
00

18
,7
39
,1
79

≥
26

36
00

45
,3
84
,5
04

at
om

ix
_2

9
8

=2
2

20
30
4,
65
8

=2
2

20
14
1,
64
8

=2
2

28
83
,5
90

=2
2

28
13
9,
65
4

at
om

ix
_3

0
8

=1
3

18
16
48

=1
3

18
11
94

=1
3

18
70
7

=1
3

18
71
8

ka
i_

05
8

=2
7

49
8

74
,8
29
,3
35

=2
7

32
5

45
,8
21
,7
71

=2
7

26
11

18
,6
34
,5
73

=2
7

26
20

31
,3
17
,2
45

ka
i_

17
8

=2
3

22
50
0,
96
3

=2
3

22
32
9,
67
1

=2
3

36
94
,4
25

=2
3

35
21
2,
82
9

ka
to

m
ic

_1
1

8
=2

3
15
9

19
,8
82
,4
85

=2
3

75
6,
49
9,
33
7

=2
3

12
23

4,
89
9,
16
4

=2
3

73
3

9,
06
0,
75
3

ka
to

m
ic

_1
9

8
≥

31
43
3

58
,2
02
,8
93

≥
31

46
7

57
,0
91
,0
35

≥
31

36
00

24
,3
88
,9
59

≥
31

36
00

45
,0
56
,3
14

ka
to

m
ic

_3
1

8
=2

9
19
6

34
,1
94
,6
28

=2
9

12
4

18
,6
64
,9
28

=2
9

40
4

3,
16
1,
60
5

=2
9

42
4

6,
62
1,
81
2

So
ur

ce
:t

he
au

th
or

.

86

Table
E

.3:PD
B

E
xperim

ent3/5

Instance
n

N
o

PD
B

Static
PD

B
D

ynam
ic

PD
B

M
ulti-G

oalPD
B

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

m
arbles_11

8
=28

186
22,485,798

=28
171

19,824,635
=28

1170
17,658,058

=28
1222

17,658,058
unitopia_10

8
≥

39
526

103,225,531
≥

39
589

107,715,630
≥

39
3600

31,202,456
≥

40
3600

59,903,861
adrienl_04

9
≥

34
516

99,520,890
≥

34
571

101,514,965
≥

34
3600

59,478,478
≥

34
3600

59,596,102
atom

ix_05
9

≥
36

455
66,636,140

≥
36

528
66,867,912

≥
36

3600
22,101,948

≥
36

3600
39,400,286

atom
ix_07

9
≥

26
431

59,906,097
=27

351
45,931,513

=27
2175

23,719,191
=27

2239
23,719,191

atom
ix_12

9
=14

18
2506

=14
18

2286
=14

18
92

=14
18

145
atom

ix_16
9

≥
27

491
59,533,377

≥
27

563
62,522,384

≥
27

3600
21,869,957

≥
27

3600
38,056,675

katom
ic_05

9
=27

134
21,309,141

=27
82

10,481,012
=27

162
1,053,973

=27
280

3,099,254
katom

ic_06
9

=27
327

54,058,835
=27

229
35,089,002

=27
1785

20,803,147
=27

1818
20,803,147

katom
ic_14

9
≥

27
423

61,966,682
≥

28
467

61,297,719
≥

28
3600

35,173,244
≥

28
3600

34,985,892
katom

ic_32
9

=19
20

323,260
=19

19
88,760

=19
38

62,346
=19

31
141,615

katom
ic_38

9
≥

33
463

77,742,782
≥

34
535

80,862,264
≥

34
3600

43,799,916
≥

34
3600

44,161,298
unitopia_06

9
=31

468
57,992,469

=31
320

35,851,379
≥

30
3600

19,556,181
≥

30
3600

29,753,239
adrien_04

10
≥

25
1093

43,570,830
≥

25
1485

39,699,704
≥

24
3600

2,158,023
≥

24
3600

23,056,421
adrien_05

10
≥

26
875

35,191,945
≥

26
1234

36,409,100
≥

26
3600

2,544,582
≥

26
3600

22,654,999
atom

ix_10
10

≥
29

416
42,461,881

≥
29

456
41,882,754

≥
28

3600
16,308,937

≥
29

3600
29,606,772

atom
ix_28

10
=29

85
10,384,620

=29
88

9,895,172
=29

706
7,897,803

=29
703

7,897,803
kai_09

10
≥

34
390

48,323,586
≥

35
416

48,507,793
≥

35
3600

33,400,650
≥

35
3600

32,978,686
katom

ic_09
10

≥
31

356
44,274,522

≥
31

404
47,957,249

=32
1724

16,055,645
=32

1707
16,055,645

katom
ic_25

10
≥

33
391

51,777,687
≥

35
395

48,499,480
≥

35
3600

34,338,765
≥

35
3600

34,567,739
katom

ic_33
10

≥
49

674
63,622,846

≥
50

736
59,907,853

≥
48

3600
8,777,053

≥
49

3600
30,621,261

katom
ic_35

10
≥

32
379

59,712,760
≥

34
406

61,331,911
≥

35
3600

36,592,724
≥

35
3600

35,804,907
katom

ic_61
10

≥
53

405
56,297,870

≥
53

448
56,008,022

≥
53

3600
17,249,053

≥
53

3600
30,739,791

unitopia_07
10

≥
34

379
50,456,445

≥
34

410
51,661,418

≥
34

3600
31,188,574

≥
34

3600
35,278,021

katom
ic_47

11
=29

32
2,058,349

=29
26

1,060,372
=29

22
43,436

=29
23

43,436
katom

ic_66
11

≥
31

350
35,716,591

≥
31

389
37,474,626

≥
32

3600
23,041,381

≥
32

3600
23,221,827

atom
ix_08

12
≥

34
362

32,315,494
≥

34
391

32,460,663
≥

35
3600

19,535,589
≥

35
3600

18,930,874
atom

ix_14
12

≥
35

345
29,642,063

≥
35

376
29,700,679

≥
35

3600
18,145,551

≥
35

3600
18,217,256

atom
ix_15

12
≥

36
366

31,384,517
≥

36
409

32,097,828
≥

36
3600

21,336,874
≥

36
3600

19,645,578
atom

ix_21
12

≥
31

786
27,974,963

≥
31

837
26,940,770

≥
31

3600
9,445,512

≥
31

3600
15,485,877

kai_07
12

≥
33

370
34,185,196

≥
33

420
36,200,166

≥
34

3600
21,506,643

≥
34

3600
21,086,518

kai_08
12

≥
35

351
34,248,304

≥
36

403
36,618,193

≥
36

3600
19,415,792

≥
36

3600
19,359,370

Source:the
author.

87
Ta

bl
e

E
.4

:P
D

B
E

xp
er

im
en

t4
/5

In
st

an
ce

n
N

o
PD

B
St

at
ic

PD
B

D
yn

am
ic

PD
B

M
ul

ti-
G

oa
lP

D
B

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

M
ov

es
Ti

m
e(

s)
N

od
es

E
xp

.
M

ov
es

Ti
m

e(
s)

N
od

es
E

xp
.

ka
i_

18
12

≥
34

27
1

24
,1
96
,7
06

≥
34

29
3

24
,1
08
,0
59

≥
35

36
00

20
,9
11
,3
90

≥
35

36
00

20
,5
59
,4
72

ka
i_

20
12

≥
38

31
0

30
,0
43
,9
43

≥
38

32
5

29
,2
34
,0
56

≥
39

36
00

16
,4
82
,7
45

≥
39

36
00

16
,2
68
,2
42

ka
i_

22
12

≥
33

34
8

32
,5
73
,9
82

≥
33

36
4

31
,4
56
,7
07

≥
34

36
00

20
,9
62
,1
27

≥
34

36
00

20
,5
08
,8
22

ka
to

m
ic

_0
7

12
≥

23
72
5

33
,6
34
,8
25

=2
4

70
9

25
,5
82
,0
15

=2
4

33
60

2,
82
3,
00
5

=2
4

26
50

13
,4
47
,4
35

ka
to

m
ic

_1
2

12
≥

35
82
2

44
,4
59
,5
38

≥
36

12
10

49
,7
93
,6
97

≥
34

36
00

2,
91
2,
66
0

≥
35

36
00

20
,8
61
,6
33

ka
to

m
ic

_1
3

12
≥

41
31
7

28
,1
62
,7
21

≥
41

34
5

28
,6
94
,9
61

≥
41

36
00

20
,1
34
,1
52

≥
41

36
00

19
,8
98
,7
22

ka
to

m
ic

_1
8

12
≥

46
14
28

31
,7
16
,6
34

≥
46

15
51

31
,8
47
,3
53

≥
46

36
00

4,
21
3,
33
4

≥
46

36
00

15
,1
45
,2
01

ka
to

m
ic

_2
7

12
≥

46
29
5

30
,4
87
,1
75

≥
46

31
3

30
,0
38
,9
40

≥
47

36
00

24
,6
40
,7
95

≥
47

36
00

24
,7
28
,5
54

ka
to

m
ic

_2
8

12
≥

36
37
3

41
,5
18
,6
98

≥
37

40
3

41
,1
35
,2
44

≥
38

36
00

22
,8
46
,0
27

≥
38

36
00

22
,4
02
,4
79

ka
to

m
ic

_4
2

12
≥

34
49
4

40
,7
58
,3
65

≥
34

51
9

40
,0
93
,4
68

≥
34

36
00

19
,5
89
,7
35

≥
34

36
00

19
,7
42
,1
88

ka
to

m
ic

_6
2

12
≥

51
31
8

32
,4
72
,0
28

≥
51

34
4

33
,3
26
,7
41

≥
51

36
00

24
,9
26
,3
31

≥
51

36
00

24
,9
70
,4
26

ka
to

m
ic

_6
3

12
≥

41
40
8

43
,9
70
,2
40

≥
41

44
3

43
,4
79
,4
27

≥
40

36
00

13
,7
08
,7
35

≥
41

36
00

25
,7
51
,6
52

ka
to

m
ic

_6
7

12
≥

30
39
7

41
,2
05
,8
19

≥
32

47
5

45
,4
67
,2
72

≥
31

36
00

14
,2
59
,8
93

≥
32

36
00

25
,2
34
,3
39

m
ar

bl
es

_1
5

12
≥

37
17
88

48
,4
37
,7
36

≥
37

18
53

48
,4
35
,9
65

≥
36

36
00

10
,1
23
,8
78

≥
36

36
00

9,
92
9,
24
2

un
ito

pi
a_

09
12

≥
43

41
6

40
,4
93
,2
50

≥
43

47
4

41
,4
06
,0
90

≥
43

36
00

12
,8
30
,4
40

≥
43

36
00

24
,9
83
,0
10

ka
to

m
ic

_3
4

13
≥

35
30
4

24
,1
07
,9
07

≥
36

33
5

24
,7
78
,2
62

≥
37

36
00

17
,5
35
,2
50

≥
37

36
00

16
,9
84
,9
37

at
om

ix
_2

0
14

=2
9

33
7

26
,5
06
,9
51

=2
9

16
0

11
,5
74
,3
96

=2
9

21
2

84
5,
39
9

=2
9

21
6

84
5,
39
9

at
om

ix
_2

5
14

≥
36

38
6

22
,5
80
,8
50

≥
37

41
7

20
,6
55
,5
94

≥
39

36
00

6,
57
3,
98
2

≥
38

36
00

12
,5
86
,8
21

ka
i_

14
14

≥
40

33
5

25
,3
11
,6
94

≥
40

39
2

25
,7
03
,6
37

≥
41

36
00

8,
29
3,
47
0

≥
41

36
00

15
,7
21
,9
62

ka
i_

21
14

≥
42

33
8

28
,5
51
,3
22

≥
42

38
0

29
,3
40
,2
76

≥
42

36
00

11
,9
34
,2
01

≥
42

36
00

11
,6
11
,8
28

ka
i_

24
14

≥
40

31
5

21
,2
66
,5
72

≥
40

33
5

21
,3
91
,1
15

≥
40

36
00

14
,8
17
,5
72

≥
40

36
00

14
,4
48
,4
87

ka
i_

25
14

≥
33

33
0

22
,6
48
,4
12

≥
33

37
0

23
,4
54
,7
18

≥
33

36
00

13
,0
22
,2
04

≥
33

36
00

12
,8
91
,8
90

ka
to

m
ic

_1
7

14
≥

31
38
7

23
,8
67
,1
85

≥
31

42
7

22
,8
60
,8
20

≥
34

36
00

6,
71
6,
72
4

≥
32

36
00

12
,0
42
,5
18

ka
to

m
ic

_2
2

14
≥

31
50
1

24
,3
79
,3
39

≥
32

60
9

24
,1
89
,4
44

≥
32

36
00

3,
17
9,
95
7

≥
31

36
00

11
,5
13
,1
14

ka
to

m
ic

_4
5

14
≥

38
26
6

22
,7
28
,6
80

≥
39

27
5

22
,3
89
,6
86

≥
41

36
00

17
,1
71
,9
16

≥
41

36
00

16
,9
47
,5
51

15
-p

uz
zl

e
15

=3
4

18
1,
45
3,
01
4

=3
4

16
62
6,
92
8

=3
4

30
38
0,
64
7

=3
4

30
38
0,
64
7

at
om

ix
_1

7
15

≥
36

65
4

22
,4
59
,7
89

≥
36

63
8

21
,6
38
,5
02

≥
36

36
00

9,
45
2,
62
4

≥
36

36
00

9,
32
4,
46
3

at
om

ix
_1

9
15

≥
27

32
9

24
,5
76
,6
34

≥
28

35
9

25
,4
12
,5
63

≥
30

36
00

10
,3
55
,6
21

≥
30

36
00

10
,0
90
,9
35

ka
i_

12
15

≥
35

31
4

18
,5
25
,0
81

≥
35

35
7

19
,4
34
,5
52

≥
36

36
00

9,
20
0,
16
9

≥
36

36
00

9,
09
9,
30
8

ka
to

m
ic

_1
5

15
≥

35
74
0

24
,6
66
,8
99

≥
35

75
1

24
,2
37
,4
34

≥
36

36
00

7,
98
2,
70
5

≥
36

36
00

7,
93
3,
04
7

ka
to

m
ic

_1
6

15
≥

42
32
0

25
,6
39
,5
46

≥
42

32
5

23
,9
89
,7
43

≥
43

36
00

10
,8
07
,4
75

≥
43

36
00

10
,6
07
,9
96

ka
to

m
ic

_2
9

15
≥

56
28
7

24
,3
06
,7
60

≥
57

29
4

22
,7
28
,0
29

≥
58

36
00

15
,5
04
,7
11

≥
58

36
00

15
,3
86
,2
92

So
ur

ce
:t

he
au

th
or

.

88
Table

E
.5:PD

B
E

xperim
ent5/5

Instance
n

N
o

PD
B

Static
PD

B
D

ynam
ic

PD
B

M
ulti-G

oalPD
B

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

M
oves

Tim
e(s)

N
odes

E
xp.

katom
ic_41

15
≥

34
400

20,762,730
≥

34
506

20,379,180
≥

34
3600

3,418,789
≥

34
3600

10,999,631
katom

ic_55
15

≥
47

306
25,049,689

≥
47

339
26,071,264

≥
48

3600
14,881,089

≥
48

3600
14,727,947

katom
ic_56

15
≥

48
283

23,986,260
≥

49
305

23,882,537
≥

50
3600

14,484,614
≥

50
3600

14,389,950
atom

ix_24
16

≥
29

401
28,506,922

≥
29

414
27,798,912

≥
31

3600
12,372,710

≥
31

3600
12,316,550

kai_28
16

≥
46

254
14,630,723

≥
46

295
14,549,114

≥
48

3600
10,288,128

≥
48

3600
10,202,386

katom
ic_21

16
≥

25
395

29,326,866
≥

26
413

28,943,892
≥

27
3600

14,343,394
≥

27
3600

14,162,018
katom

ic_40
16

≥
56

351
32,636,619

≥
56

380
31,444,230

≥
58

3600
14,040,485

≥
58

3600
13,983,200

katom
ic_51

16
≥

39
316

21,061,341
≥

39
381

23,537,979
≥

40
3600

11,044,516
≥

40
3600

10,858,345
katom

ic_53
16

≥
25

551
21,595,083

≥
25

597
21,544,641

≥
26

3600
5,037,349

≥
26

3600
9,462,184

katom
ic_54

16
≥

35
282

21,298,003
≥

35
305

20,794,088
≥

36
3600

14,522,724
≥

36
3600

14,458,349
katom

ic_59
16

≥
27

326
15,475,405

≥
27

414
15,462,612

≥
26

3600
3,274,403

≥
27

3600
11,122,515

katom
ic_64

16
≥

53
368

24,516,740
≥

53
438

24,905,394
≥

54
3600

7,201,643
≥

53
3600

11,307,986
m

arbles_10
16

=24
16

21,324
=24

16
16,508

=24
17

15,566
=24

17
15,566

katom
ic_39

17
≥

46
272

20,398,950
≥

47
287

19,585,878
≥

49
3600

11,887,444
≥

49
3600

11,859,533
katom

ic_48
17

≥
56

264
16,139,318

≥
57

275
15,904,728

≥
59

3600
7,823,579

≥
59

3600
7,737,548

katom
ic_50

17
≥

41
359

24,736,636
≥

42
381

24,542,647
≥

43
3600

7,192,513
≥

43
3600

11,574,591
katom

ic_65
17

≥
31

302
35,777,006

≥
31

318
36,113,505

≥
31

3600
17,879,893

≥
31

3600
17,969,184

katom
ic_49

18
≥

45
278

18,385,996
≥

45
322

18,230,038
≥

46
3600

10,687,009
≥

46
3600

10,660,043
kai_27

19
≥

59
242

10,074,866
≥

60
278

10,241,191
≥

61
3600

5,383,429
≥

61
3600

5,350,418
katom

ic_52
19

≥
53

256
15,094,790

≥
53

294
15,642,556

≥
54

3600
8,155,252

≥
54

3600
8,075,235

atom
ix_27

20
≥

45
650

10,270,513
≥

45
678

10,327,799
≥

46
3600

4,160,483
≥

46
3600

4,143,178
katom

ic_24
20

≥
36

3600
8,051,122

≥
36

3600
7,789,643

≥
37

3600
448,884

≥
36

3600
2,916,517

kai_29
21

≥
62

264
11,465,703

≥
63

294
11,375,083

≥
65

3600
5,532,461

≥
65

3600
5,489,127

katom
ic_30

21
≥

51
270

14,001,792
≥

51
297

13,472,166
≥

55
3600

6,357,042
≥

55
3600

6,284,067
katom

ic_44
21

≥
47

271
16,030,106

≥
48

300
15,299,391

≥
52

3600
5,997,355

≥
52

3600
5,859,866

katom
ic_37

24
≥

54
270

8,196,266
≥

54
307

8,455,662
≥

56
3600

3,252,668
≥

56
3600

3,226,823
katom

ic_43
26

≥
64

245
8,184,587

≥
65

266
7,353,377

≥
65

3600
3,365,681

≥
65

3600
3,292,784

m
arbles_20

32
≥

37
3387

46,133,258
≥

37
3546

47,268,499
≥

36
3600

7,265,501
≥

36
3600

7,089,841

Source:the
author.

89

APPENDIX F — INITIAL HEURISTIC VALUES

90

Table F.1: Initial Heuristic Values 1/4

Instance n
Standard
Heuristic

Static
PDB

(k = 3)

Dynamic
PDB

(k = 2)

Multi-Goal
PDB

(k = 2)

Generalized
A*

Best
LB

adrien_01 3 6 6 6 6 6 7
atomix_01 3 8 8 8 8 8 13
kai_01 3 4 4 4 4 4 9
katomic_01 3 8 8 8 8 8 15
katomic_36 3 4 4 4 4 4 9
marbles_04 3 5 5 5 5 5 22
marbles_13 3 6 6 6 6 6 18
unitopia_01 3 8 9 9 8 9 11
adrienl_05 4 6 7 7 6 7 12
atomix_23 4 5 5 7 6 8 10
atomix_26 4 7 7 7 7 7 14
kai_06 4 9 9 9 9 9 14
kai_19 4 13 13 13 13 13 19
katomic_20 4 13 13 13 13 13 18
katomic_23 4 8 8 8 8 8 18
marbles_01 4 6 6 6 6 6 11
marbles_03 4 10 10 10 10 11 22
unitopia_02 4 14 14 14 14 14 22
adrien_02 5 10 10 10 10 10 17
atomix_02 5 16 17 17 16 17 21
atomix_11 5 10 10 10 10 10 14
kai_02 5 15 15 16 15 16 24
kai_11 5 10 11 11 10 11 15
katomic_02 5 18 18 18 18 18 27
katomic_10 5 15 15 16 16 16 19
katomic_57 5 16 16 16 16 16 21
marbles_02 5 9 10 10 10 10 15
marbles_05 5 14 14 14 14 15 25
marbles_06 5 12 12 12 12 13 14
unitopia_03 5 12 12 14 13 14 16
adrien_03 6 9 9 9 9 9 12
adrien_06 6 10 10 11 10 11 15
atomix_03 6 12 12 12 12 12 16
atomix_04 6 14 15 15 15 15 23
kai_03 6 12 12 12 12 12 16
katomic_03 6 14 14 14 14 14 20
katomic_04 6 14 14 16 14 17 23
katomic_58 6 13 13 14 14 14 17

Source: the author.

91

Table F.2: Initial Heuristic Values 2/4

Instance n
Standard
Heuristic

Static
PDB

(k = 3)

Dynamic
PDB

(k = 2)

Multi-Goal
PDB

(k = 2)

Generalized
A*

Best
LB

marbles_08 6 12 12 12 12 12 23
marbles_12 6 13 13 13 13 13 28
marbles_14 6 16 16 16 16 18 22
unitopia_04 6 18 18 19 18 19 20
unitopia_05 6 13 13 13 13 13 20
adrienl_01 7 13 13 13 13 13 20
adrienl_03 7 10 10 10 10 10 22
atomix_09 7 11 11 11 11 12 20
katomic_08 7 13 14 14 14 15 26
katomic_26 7 26 27 28 26 29 36
katomic_46 7 19 19 19 19 19 24
katomic_60 7 15 15 15 15 15 19
unitopia_08 7 17 17 17 17 17 23
adrienl_02 8 21 21 22 21 22 -
atomix_06 8 12 12 12 12 12 13
atomix_13 8 23 23 24 24 24 28
atomix_18 8 10 10 10 10 11 13
atomix_22 8 17 18 19 17 19 -
atomix_29 8 17 18 18 17 18 22
atomix_30 8 10 10 10 10 11 13
kai_05 8 18 18 19 19 20 27
kai_17 8 19 19 19 19 19 23
katomic_11 8 15 16 17 15 17 23
katomic_19 8 22 22 22 22 22 -
katomic_31 8 16 18 20 19 20 29
marbles_11 8 19 19 19 19 19 28
unitopia_10 8 28 28 29 29 29 -
adrienl_04 9 24 24 24 24 24 -
atomix_05 9 28 28 28 28 28 -
atomix_07 9 18 19 19 19 20 27
atomix_12 9 11 11 13 12 13 14
atomix_16 9 20 20 20 20 20 -
katomic_05 9 19 19 21 20 22 27
katomic_06 9 15 15 16 16 16 27
katomic_14 9 19 20 20 20 22 -
katomic_32 9 13 15 15 13 15 19
katomic_38 9 22 23 24 24 25 -
unitopia_06 9 24 25 24 24 26 31
adrien_04 10 17 17 18 17 18 -

Source: the author.

92

Table F.3: Initial Heuristic Values 3/4

Instance n
Standard
Heuristic

Static
PDB

(k = 3)

Dynamic
PDB

(k = 2)

Multi-Goal
PDB

(k = 2)

Generalized
A*

Best
LB

adrien_05 10 21 21 21 21 22 -
atomix_10 10 22 22 22 22 24 -
atomix_28 10 21 21 21 21 21 29
kai_09 10 29 29 29 29 29 -
katomic_09 10 24 24 25 25 25 -
katomic_25 10 28 29 30 30 31 -
katomic_33 10 38 40 41 40 - -
katomic_35 10 24 27 27 27 31 -
katomic_61 10 48 48 49 48 49 -
unitopia_07 10 27 27 27 27 28 -
katomic_47 11 27 27 27 27 28 29
katomic_66 11 26 26 26 26 26 -
atomix_08 12 30 30 31 31 32 -
atomix_14 12 31 31 31 31 31 -
atomix_15 12 32 32 32 32 32 -
atomix_21 12 27 27 27 27 28 -
kai_07 12 29 29 29 29 30 -
kai_08 12 32 32 32 32 34 -
kai_18 12 29 30 30 30 31 -
kai_20 12 33 33 34 34 36 -
kai_22 12 29 29 31 31 31 -
katomic_07 12 18 18 19 18 20 24
katomic_12 12 28 28 29 28 32 -
katomic_13 12 38 38 38 38 39 -
katomic_18 12 44 44 44 44 - -
katomic_27 12 43 43 43 43 43 -
katomic_28 12 31 32 33 33 33 -
katomic_42 12 28 28 29 29 29 -
katomic_62 12 46 46 46 46 - -
katomic_63 12 33 33 33 33 34 -
katomic_67 12 24 25 25 25 27 -
marbles_15 12 31 31 31 31 31 -
unitopia_09 12 39 39 39 39 39 -
katomic_34 13 30 31 32 32 33 -
atomix_20 14 24 24 25 25 25 29
atomix_25 14 31 33 35 34 - -
kai_14 14 37 37 38 38 - -
kai_21 14 39 39 39 39 - -
kai_24 14 37 37 37 37 37 -

Source: the author.

93

Table F.4: Initial Heuristic Values 4/4

Instance n
Standard
Heuristic

Static
PDB

(k = 3)

Dynamic
PDB

(k = 2)

Multi-Goal
PDB

(k = 2)

Generalized
A*

Best
LB

kai_25 14 28 28 28 28 - -
katomic_17 14 26 26 29 27 - -
katomic_22 14 25 26 26 25 30 -
katomic_45 14 36 37 38 38 - -
15-puzzle 15 4 10 10 10 34 34
atomix_17 15 31 31 32 32 33 -
atomix_19 15 22 22 25 25 27 -
kai_12 15 31 31 32 32 32 -
katomic_15 15 31 31 33 33 - -
katomic_16 15 38 38 39 39 42 -
katomic_29 15 54 55 55 55 - -
katomic_41 15 30 30 30 30 31 -
katomic_55 15 43 43 44 44 44 -
katomic_56 15 44 44 45 45 45 -
atomix_24 16 24 24 26 26 30 -
kai_28 16 43 44 44 44 - -
katomic_21 16 20 21 21 21 26 -
katomic_40 16 50 50 53 53 - -
katomic_51 16 35 36 36 36 36 -
katomic_53 16 20 20 21 21 - -
katomic_54 16 30 30 31 31 31 -
katomic_59 16 22 22 22 22 23 -
katomic_64 16 50 50 51 50 - -
marbles_10 16 16 16 16 16 24 24
katomic_39 17 43 43 45 45 - -
katomic_48 17 53 55 56 56 - -
katomic_50 17 35 35 37 37 - -
katomic_65 17 26 26 26 26 31 -
katomic_49 18 41 41 43 43 - -
kai_27 19 58 58 59 59 - -
katomic_52 19 51 51 52 52 - -
atomix_27 20 42 42 43 43 44 -
katomic_24 20 33 33 35 33 - -
kai_29 21 61 61 62 62 - -
katomic_30 21 49 50 54 54 - -
katomic_44 21 44 44 50 50 - -
katomic_37 24 51 51 53 53 - -
katomic_43 26 63 64 64 64 - -
marbles_20 32 28 28 28 28 - -

Source: the author.

94

APPENDIX G — FINAL SOLVER RESULTS

95

Table G.1: Our Final Solution vs. Hüffner et al. (2001)’s 1/4

Instance n
Hüffner et al. (2001)’s Our Solution

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_01 3 =7 97 330 =7 34 11
atomix_01 3 =13 109 9458 =13 19 316
kai_01 3 =9 31 661 =9 19 111
katomic_01 3 =15 123 9344 =15 20 429
katomic_36 3 =9 88 2524 =9 20 263
marbles_04 3 =22 408 130,733 =22 20 2493
marbles_13 3 =18 60 42,481 =18 19 4925
unitopia_01 3 =11 65 1624 =11 25 81
adrienl_05 4 =12 412 299,336 =12 130 16,740
atomix_23 4 =10 46 1538 =10 24 879
atomix_26 4 =14 205 33,721 =14 28 8687
kai_06 4 =14 71 23,909 =14 22 4085
kai_19 4 =19 166 236,139 =19 23 18,345
katomic_20 4 =18 61 16,099 =18 22 2561
katomic_23 4 =18 317 260,856 =18 30 15,141
marbles_01 4 =11 18 2742 =11 19 623
marbles_03 4 =22 90 305,224 =22 19 48,587
unitopia_02 4 =22 42 191,058 =22 19 50,822
adrien_02 5 =17 86 2,456,375 =17 24 251,180
atomix_02 5 =21 19 46,353 =21 19 7835
atomix_11 5 =14 38 17,968 =14 22 2414
kai_02 5 =24 23 998,173 =24 19 157,627
kai_11 5 =15 31 44,096 =15 19 6319
katomic_02 5 =27 86 1,303,898 =27 20 86,113
katomic_10 5 =19 7 25,651 =19 20 3874
katomic_57 5 =21 18 179,752 =21 19 25,631
marbles_02 5 =15 37 171,558 =15 19 14,232
marbles_05 5 =25 30 235,820 =25 19 50,645
marbles_06 5 =14 9 2842 =14 19 1014
unitopia_03 5 =16 37 12,195 =16 20 1278
adrien_03 6 =12 34 11,970 =12 35 1182
adrien_06 6 =15 54 214,855 =15 29 53,251
atomix_03 6 =16 16 175,199 =16 19 25,551
atomix_04 6 =23 59 28,507,754 =23 33 3,510,934
kai_03 6 =16 16 175,199 =16 19 25,551
katomic_03 6 =20 27 1,298,229 =20 21 244,187
katomic_04 6 =23 71 1,361,808 =23 20 193,498
katomic_58 6 =17 12 116,629 =17 19 12,167

Source: the author.

96

Table G.2: Our Final Solution vs. Hüffner et al. (2001)’s 2/4

Instance n
Hüffner et al. (2001)’s Our Solution

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
marbles_08 6 =23 64 15,624,411 =23 30 2,799,525
marbles_12 6 =28 173 72,805,973 =28 89 14,492,305
marbles_14 6 =22 10 61,353 =22 18 15,949
unitopia_04 6 =20 13 44,442 =20 19 7909
unitopia_05 6 =20 35 940,639 =20 22 175,528
adrienl_01 7 =20 133 4,522,601 =20 95 1,008,911
adrienl_03 7 =22 654 238,729,460 =22 951 26,845,732
atomix_09 7 =20 16 2,497,729 =20 21 601,858
katomic_08 7 =26 831 477,625,886 =26 549 112,281,722
katomic_26 7 =36 452 284,211,961 =36 142 25,770,175
katomic_46 7 =24 17 2,294,027 =24 20 266,748
katomic_60 7 =19 22 211,552 =19 20 29,577
unitopia_08 7 =23 35 6,506,879 =23 24 739,310
adrienl_02 8 ≥33 3600 1,707,098,508 ≥31 861 79,504,888
atomix_06 8 =13 6 1293 =13 18 181
atomix_13 8 =28 16 6,430,548 =28 21 682,305
atomix_18 8 =13 11 9892 =13 18 1194
atomix_22 8 =27 2266 943,223,533 ≥26 584 63,784,653
atomix_29 8 =22 15 1,856,294 =22 20 141,648
atomix_30 8 =13 12 9892 =13 18 1194
kai_05 8 =27 544 315,337,836 =27 325 45,821,771
kai_17 8 =23 17 3,518,865 =23 22 329,671
katomic_11 8 =23 210 122,789,263 =23 75 6,499,337
katomic_19 8 - - - ≥31 467 57,091,035
katomic_31 8 =29 228 143,112,488 =29 124 18,664,928
marbles_11 8 =28 660 88,325,861 =28 171 19,824,635
unitopia_10 8 ≥41 3600 1,317,755,067 ≥39 589 107,715,630
adrienl_04 9 ≥36 3600 1,106,661,012 ≥34 571 101,514,965
atomix_05 9 ≥38 3600 1,048,265,144 ≥36 528 66,867,912
atomix_07 9 =27 672 356,079,418 =27 351 45,931,513
atomix_12 9 =14 9 10,749 =14 18 2286
atomix_16 9 =29 1850 981,308,861 ≥27 563 62,522,384
katomic_05 9 =27 177 108,651,436 =27 82 10,481,012
katomic_06 9 =27 288 166,981,668 =27 229 35,089,002
katomic_14 9 ≥29 2668 836,024,185 ≥28 467 61,297,719
katomic_32 9 =19 25 833,607 =19 19 88,760
katomic_38 9 ≥35 3094 924,033,872 ≥34 535 80,862,264
unitopia_06 9 =31 571 328,569,611 =31 320 35,851,379
adrien_04 10 ≥26 3600 1,727,133,356 ≥25 1485 39,699,704

Source: the author.

97

Table G.3: Our Final Solution vs. Hüffner et al. (2001)’s 3/4

Instance n
Hüffner et al. (2001)’s Our Solution

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
adrien_05 10 ≥27 3600 945,686,552 ≥26 1234 36,409,100
atomix_10 10 ≥31 3600 1,127,126,271 ≥29 456 41,882,754
atomix_28 10 =29 98 53,822,181 =29 88 9,895,172
kai_09 10 ≥36 2334 551,220,229 ≥35 416 48,507,793
katomic_09 10 =32 1176 589,666,142 ≥31 404 47,957,249
katomic_25 10 ≥35 2076 584,516,478 ≥35 395 48,499,480
katomic_33 10 ≥51 3504 989,106,558 ≥50 736 59,907,853
katomic_35 10 ≥34 2745 851,098,956 ≥34 406 61,331,911
katomic_61 10 ≥55 3600 1,423,335,054 ≥53 448 56,008,022
unitopia_07 10 ≥36 3359 832,875,517 ≥34 410 51,661,418
katomic_47 11 =29 8 2,594,709 =29 26 1,060,372
katomic_66 11 ≥33 2314 654,472,530 ≥31 389 37,474,626
atomix_08 12 ≥35 3600 406,921,253 ≥34 391 32,460,663
atomix_14 12 ≥36 3600 477,721,036 ≥35 376 29,700,679
atomix_15 12 ≥38 2778 610,191,870 ≥36 409 32,097,828
atomix_21 12 ≥32 3600 159,798,083 ≥31 837 26,940,770
kai_07 12 ≥34 3600 504,455,009 ≥33 420 36,200,166
kai_08 12 ≥37 2543 721,543,630 ≥36 403 36,618,193
kai_18 12 ≥36 3458 1,005,810,506 ≥34 293 24,108,059
kai_20 12 - - - ≥38 325 29,234,056
kai_22 12 ≥34 3600 652,733,904 ≥33 364 31,456,707
katomic_07 12 =24 2427 302,608,420 =24 709 25,582,015
katomic_12 12 ≥37 3600 603,713,028 ≥36 1210 49,793,697
katomic_13 12 ≥43 3600 964,297,677 ≥41 345 28,694,961
katomic_18 12 ≥47 3600 177,204,474 ≥46 1551 31,847,353
katomic_27 12 ≥47 1753 462,753,171 ≥46 313 30,038,940
katomic_28 12 ≥38 3066 944,475,610 ≥37 403 41,135,244
katomic_42 12 ≥35 3600 326,807,091 ≥34 519 40,093,468
katomic_62 12 - - - ≥51 344 33,326,741
katomic_63 12 - - - ≥41 443 43,479,427
katomic_67 12 ≥32 3600 1,323,375,073 ≥32 475 45,467,272
marbles_15 12 ≥34 3600 178,748 ≥37 1853 48,435,965
unitopia_09 12 ≥44 3600 506,812,291 ≥43 474 41,406,090
katomic_34 13 ≥37 1999 441,614,044 ≥36 335 24,778,262
atomix_20 14 =29 1968 187,441,572 =29 160 11,574,396
atomix_25 14 ≥37 3600 248,978,222 ≥37 417 20,655,594
kai_14 14 ≥42 3530 914,325,888 ≥40 392 25,703,637
kai_21 14 - - - ≥42 380 29,340,276
kai_24 14 ≥41 2684 185,944,459 ≥40 335 21,391,115

Source: the author.

98

Table G.4: Our Final Solution vs. Hüffner et al. (2001)’s 4/4

Instance n
Hüffner et al. (2001)’s Our Solution

Moves Time(s) Nodes Exp. # Moves Time(s) Nodes Exp.
kai_25 14 ≥35 3600 317,432,120 ≥33 370 23,454,718
katomic_17 14 ≥32 3600 301,972,372 ≥31 427 22,860,820
katomic_22 14 ≥32 3600 340,878,443 ≥32 609 24,189,444
katomic_45 14 ≥40 1681 464,058,677 ≥39 275 22,389,686
15-puzzle 15 =34 33 6,009,587 =34 16 626,928
atomix_17 15 ≥36 3600 94,046,263 ≥36 638 21,638,502
atomix_19 15 ≥29 3600 353,777,325 ≥28 359 25,412,563
kai_12 15 ≥36 3600 288,303,629 ≥35 357 19,434,552
katomic_15 15 ≥36 3600 95,662,295 ≥35 751 24,237,434
katomic_16 15 ≥43 3323 315,685,653 ≥42 325 23,989,743
katomic_29 15 ≥57 2462 811,894,030 ≥57 294 22,728,029
katomic_41 15 ≥36 3600 1,248,620,284 ≥34 506 20,379,180
katomic_55 15 ≥48 2355 663,547,586 ≥47 339 26,071,264
katomic_56 15 ≥50 1557 430,680,182 ≥49 305 23,882,537
atomix_24 16 ≥30 3600 262,871,336 ≥29 414 27,798,912
kai_28 16 ≥47 996 198,517,336 ≥46 295 14,549,114
katomic_21 16 ≥26 3600 348,297,019 ≥26 413 28,943,892
katomic_40 16 - - - ≥56 380 31,444,230
katomic_51 16 ≥41 2549 726,362,274 ≥39 381 23,537,979
katomic_53 16 ≥26 3600 242,994,747 ≥25 597 21,544,641
katomic_54 16 ≥36 1102 264,356,116 ≥35 305 20,794,088
katomic_59 16 =28 2987 892,463,476 ≥27 414 15,462,612
katomic_64 16 ≥55 3550 1,027,710,926 ≥53 438 24,905,394
marbles_10 16 =24 716 88,305 =24 16 16,508
katomic_39 17 ≥47 1892 617,547,824 ≥47 287 19,585,878
katomic_48 17 ≥57 1170 297,645,087 ≥57 275 15,904,728
katomic_50 17 ≥43 1369 457,603,193 ≥42 381 24,542,647
katomic_65 17 ≥32 1312 460,199,416 ≥31 318 36,113,505
katomic_49 18 ≥46 2521 268,337,502 ≥45 322 18,230,038
kai_27 19 - - - ≥60 278 10,241,191
katomic_52 19 ≥54 1490 319,862,589 ≥53 294 15,642,556
atomix_27 20 ≥45 3600 14,295,747 ≥45 678 10,327,799
katomic_24 20 ≥36 3600 13,039,944 ≥36 3600 7,789,643
kai_29 21 ≥64 1596 354,301,347 ≥63 294 11,375,083
katomic_30 21 ≥52 1024 115,621,912 ≥51 297 13,472,166
katomic_44 21 ≥49 2565 348,829,831 ≥48 300 15,299,391
katomic_37 24 ≥55 3600 272,524,375 ≥54 307 8,455,662
katomic_43 26 ≥65 1628 87,029,639 ≥65 266 7,353,377
marbles_20 32 =0 3600 0 ≥37 3546 47,268,499

Source: the author.

	Acknowledgements
	Abstract
	Resumo
	List of Figures
	List of Tables
	List of Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Structure of This Work
	1.2 The Atomix Puzzle
	1.2.1 Origins
	1.2.2 The Game Setup
	1.2.3 Moving Atoms
	1.2.4 Formal Definition

	1.3 Previous Work
	1.3.1 On the Complexity of Atomix
	1.3.2 On Searching the State Space of Atomix

	1.4 Related Puzzles
	1.4.1 15-puzzle and the (n2-1)-puzzle
	1.4.2 Sokoban
	1.4.3 Overview of the Complexity of Other Sliding Block Puzzles

	2 Heuristic Search
	2.1 Introduction
	2.2 The A* Algorithm
	2.3 The IDA* Algorithm
	2.4 Pattern Databases
	2.5 Hierarchical A*
	2.6 Perimeter Search

	3 Searching the State Space of Atomix
	3.1 A Standard Heuristic for Atomix
	3.1.1 The Idea
	3.1.2 Pre-Computing Relaxed Distances
	3.1.3 Dealing with Duplicate Atoms
	3.1.4 Dealing with Multiple Final States
	3.1.4.1 First Approach: Independent Search for All Final States
	3.1.4.2 Second Approach: Using All Final States

	3.1.5 Admissibility
	3.1.6 Consistency

	3.2 Implementation Details
	3.2.1 Representing States and Positions in Memory
	3.2.2 An Efficient Bucket-Based Open List for A*
	3.2.3 Hashing Atomix States

	3.3 Tie-Breaking Techniques
	3.3.1 Goal Count
	3.3.2 Number of Realizable Generalized Paths
	3.3.3 Fill Order

	3.4 Pattern Databases
	3.4.1 Creating Pattern Databases for Atomix
	3.4.2 A Static Disjoint Pattern Database
	3.4.3 A Dynamically-Partitioned Pattern Database
	3.4.4 A Multiple Goal Dynamically-Partitioned Pattern Database

	4 Experiments and Results
	4.1 Experimental Setup
	4.1.1 Platform
	4.1.2 Instances
	4.1.3 Techniques Tested
	4.1.4 Experimental Strategy

	4.2 Test A: One Final State vs All Final States Heuristics
	4.3 Test B: Tie-Breaking Techniques
	4.4 Test C: A* Open List Implementations
	4.5 Test D: Pattern Databases
	4.6 Analysis of the Heuristics' Quality
	4.7 Final Solver

	5 Conclusion and Future Work
	References
	Appendix A — Instance Data
	Appendix B — Fibonacci Heap vs. Buckets Experiment Results
	Appendix C — One Final State vs All Final States Experiment Results
	Appendix D — Tie-Breaking Experiment Results
	Appendix E — PDB Experiment Results
	Appendix F — Initial Heuristic Values
	Appendix G — Final Solver Results

