

DETERMINAÇÃO DO ENRIQUECIMENTO ISOTÓPICO DE ÁGUA E OXIGÊNIO UTILIZADOS EM INVESTIGAÇÕES DE TRAÇAGEM ISOTÓPICA

Anderson Bordin¹* e Cláudio Radtke² *anderson.bordin@ufrgs.br

- 1 Instituto de Física, UFRGS, 91509-900 Porto Alegre, RS
- 2 Instituto de Química, UFRGS, 91509-900 Porto Alegre, RS

Introdução

O estudo de ciências dos materiais envolve o conhecimento sobre física de altas energias na execução de técnicas de análises de materiais por feixe de íons, algumas sensíveis a presença de diferentes isótopos. A determinação do nível de enriquecimento de uma fonte gasosa enriquecida em certo isótopo nos permite utilizá-lo como ferramenta de investigação de fenômenos físico-químicos durante etapas do processamento de materiais através de *traçagem isotópica*.

Motivação: investigar o nível de enriquecimento no isótopo ¹⁸O de fonte utilizada em tratamentos térmicos..

Metodologia

Amostras de Si foram previamente limpas de acordo com estudos anteriores^{1,2}, com posterior oxidação térmica em atmosferas estáticas de ¹⁸O₂ e D₂¹⁸O a diferentes períodos de tempo, gerando SiO₂. Com feixe de prótons incidentes, que rompem o potencial coulombiano dos isótopos, provoca-se uma reação nuclear; a espécie instável formada decai em partículas α (fig1), sendo a quantidade detectada proporcional a concentração ¹⁸O.

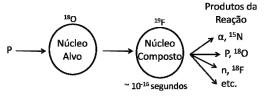


Figura 1: Produtos da reação nuclear com ¹⁸O.

Análises por Reação Nuclear (NRA, em inglês)³ opera numa região de platô (730 keV) - secção de choque (probabilidade de reação) constante (fig2). Desta, obtém-se informação a respeito da concentração do isótopo ¹⁸O presente na amostra pela comparação com padrão.

A Perfilometria por Reação Nuclear (NRP, em inglês)³ determina a presença de 18 O em função da profundidade (espessura real do óxido); prótons de 151 keV (ressonância da secção de choque) incidem na amostra; varrendo-se a energia do feixe, produz-se partículas α desde a superfície até diferentes profundidades⁴.

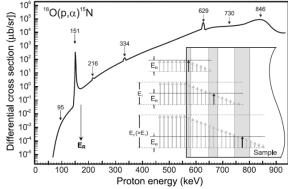


Figura 2: curva da secção de choque diferencial; no detalhe, ilustração da técnica NRP.

Conhecidos alguns parâmetros de análise, determina-se a quantidade de ¹⁸O (NRA). A diferença entre supor o filme estequiométrico (espessura nominal) e o experimental (NRP) representa a porcentagem de enriquecimento.

Resultados e Discussões

Os resultados de NRA nos fornecem uma curva, cuja integral é proporcional a área de ¹⁸O, a ser comparada com padrão. Os dados coletados em experimentos de NRP são analisados em um software de simulação⁵ de perda de energia na matéria (fig3), permitindo sua interpretação;

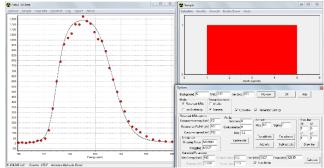


Figura 3: Simulação dados NRP pelo software *Flatus*; perfil pode ser transformado em espessura física do filme.

INFORMAÇÕES:

- NRA → densidade areal (átomo/cm²) de ¹⁸O → padrão: quantidade e espessura conhecida (3.047E+16).
- NRP \rightarrow espessura do filme \rightarrow ($\mu g/cm^2$) * ($1/d_{densidade}$) = ($\mu g/cm^2$) * (cm^3/g) = $_xx_10^{-8}$ m

Amostra			atm/cm2	NRA [nm]	NRP [nm]	%
D ₂ ¹⁸ O ₂	1000°C	30min	3.90E+16	8.1	7.5	53.90
$D_2\ ^{18}O_2$	1000°C	1h30min	8.27E+16	16.8	15.8	53.25
$D_2\ ^{18}O_2$	1000°C	2h30min	1.12E+17	32.3	25.3	63.80
$D_2\ ^{18}O_2$	1000°C	6h30min	1.80E+17	52.0	42.3	61.43
$^{18}O_{2}$	950°C	30min	4.07E+16	11.8	6.6	89.46
$^{18}O_{2}$	950°C	1h30min	7.97E+16	23.0	12.8	90.17
$^{18}O_{2}$	950°C	2h30min	1.13E+17	32.8	17.5	93.82
$^{18}O_{2}$	950°C	6h30min	2.02E+17	58.5	32.5	90.00

Conclusão

Foi investigada o enriquecimento no isótopo raro ¹⁸O. O valor obtido fica entre 55 e 60 %, que nos indica que a grau de enriquecimento foi perdido ao longo dos anos devido a troca isotópica natural com o ambiente.

Referências

- 1. Okumura, H.; Akane, T.; Matsumoto. Applied Surface Science. 1998, 125, 125.
- 2. Kern, W.; Puotinen, D. A.. This Week's Citation Classic. 1970, 31, 187.
- The use of narrow nuclear resonances in the study of alternative metal-oxidesemiconductor structures - Nuclear Instruments and Methods in Physics Research B 249 (2006) 278–285.
- 4. Rolim, G. K.. Efeito do Eletrodo de Platina e da Passivação com Enxofre na Formação de Filmes Dielétricos sobre Germânio. Porto Alegre, 2014.
- 5. Flatus 3.0.0.3 Rafael Pezzi Produções