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Combining models for phenotypic and molecular evolution can lead to powerful inference

tools. Under the flexible framework of Bayesian phylogenetics, I develop statistical meth-

ods to address phylodynamic problems in this intersection. First, I present a hierarchical

phylogeographic method that combines information across multiple datasets to draw in-

ference on a common geographical spread process. Each dataset represents a parallel

realization of this geographic process on a different group of taxa, and the method shares

information between these realizations through a hierarchical graph structure. Addition-

ally, I develop a multivariate latent liability model for assessing phenotypic correlation

among sets of traits, while controlling for shared evolutionary history. This method can

efficiently estimate correlations between multiple continuous traits, binary traits and dis-

crete traits with many ordered or unordered outcomes. Finally, I present a method that

uses phylogenetic information to study the evolution of antigenic clusters in influenza. The

method builds an antigenic cartography map informed by the assignment of each influenza

strain to one of the antigenic clusters.
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CHAPTER 1

Introduction

Ever since Darwin, biologists have had interest in reconstructing the evolutionary relation-

ships between groups of organisms. Haeckel’s drawings and Darwin’s notebook illustra-

tions show early attempts to represent these relationships in the form of trees (Haeckel,

1866). In an era before molecular sequences were available, the first information used by

systematists for such reconstructions were phenotypes. The first formalized methods for

phylogenetic reconstructions from phenotypes were parsimony based approaches

When amino acid and later DNA sequences were made available by advances in molecular

biology, molecular information became the most reliable data for phylogenetic reconstruc-

tions. The increased sample sizes, combined with computational improvements, paved

the road for more reliable phylogenetic reconstructions using maximum likelihood and

Bayesian methods (Felsenstein, 1981a; Rannala and Yang, 1996; Felsenstein, 2004).

Through advancing evolutionary modeling of molecular sequence data, it became possible

to investigate how the evolution of a phenotypic trait relates to sequence evolution. In this

dissertation, I explore this interface by developing models for phenotypic trait evolution

and integrating them with Bayesian phylogenetic methods. In the projects presented here,

the focus is on features such as antigenic properties of influenza, antibiotic resistance in

bacteria and cell type of infection in HIV. The genetic data have a primary role in informing

the evolutionary relationship between the organisms. These data are modeled using stan-

dard Bayesian phylogenetic approaches and should be viewed here as a covariate enabling
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better inference for the phenotypic traits.

Many of the datasets analysed in this dissertation come from rapidly evolving pathogens.

These applications demonstrate rich evolutionary features and provide the biological sig-

nificance that motivates the field of phylodynamics.

1.1 Phylodynamics

Diseases associated with viral infections, such as human immunodeficiency virus (HIV),

hepatitis C virus (HCV) and dengue, kill millions of people every year; even seemingly be-

nign influenza is alone responsible for 250,000 to 500,000 deaths annually (Stohr, 2002).

Additionally, emergent infectious diseases are a constant threat to public health, as ex-

emplified by the recent outbreak of swine-origin Influenza A that reached pandemic pro-

portions in only a few months. Pheotypic traits such as those related to the interaction

between the virus and host immune system and geographic distribution are important

determinants of epidemic impact.

These infectious agents, primarily RNA viruses, consistently defy host immune systems

and vaccination attempts, due mainly to their high mutation rates (Domingo and Holland,

1997). These rapidly evolving pathogens present a unique feature; their evolutionary dy-

namics occur on the same time scale as important ecological processes that determine

patterns such as variability and distribution of epidemics. The burgeoning field of phylo-

dynamics exploits these commensurate scales by integrating theoretical approaches from

phylogenetics and epidemiological dynamics (Drummond et al, 2003; Grenfell et al, 2004).

Different features of epidemics have been examined trough phylodynamic approaches. The

rapid mutation rates of these viruses allows for time calibration of evolution, by collecting

samples at different time points (Rambaut, 2000; Drummond et al, 2002). Additionally,
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phylodynamics studies have used molecular sequence data to draw inference on variation

in viral population sizes (Kuhner et al, 1998; Minin et al, 2008; Gill et al, 2013). Other

studies have analyzed geographical spread of epidemics and viral transmission networks

(Lewis, 2001; Lemey et al, 2009; Vrancken et al, in press).

1.2 Outline

This dissertation is composed of three individual projects connected by the common ob-

jective of creating new statistical methods to address phylodynamic problems at the inter-

section of sequence and phenotypic evolution. These projects are presented in chapters 3

through 5, and can be read as individual research articles.

All models developed in this dissertation are built under the methodological framework of

Bayesian phylogenetics. For this reason, in chapter 2, I present a short overview of a basic

Bayesian phylogenetic model used to estimate phylogenetic trees from molecular sequence

data. Additionally, I briefly address inference through Markov chain Monte Carlo (MCMC),

introducing a few concepts that are central to the efficiency of the inference techniques

developed here.

Then, in chapter 3, I present a Bayesian hierarchical model for phylogeography. This

project builds upon previous work that models geographical dispersion as a continuous

time Markov chain along the phylogenetic tree (Lemey et al, 2009). To improve inference,

the proposed hierarchical model combines information across many conditionally inde-

pendent evolutionary processes that share similar geographic dispersion properties. The

relevant information for these processes is summarized in a hierarchical level graph, in

which the nodes represent geographical locations and edges connect the locations that are

linked by migration. I present two data applications that exemplify the use of the method.

They are also used to compare this method to alternative approaches for the same type of
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data. The work presented in chapter 3 has been published in the journal Transactions of

the royal society B (Cybis et al, 2013), and is joint work with Janet S. Sinsheimer, Phillippe

Lemey and Marc A. Suchard.

Chapter 4 presents the latent liability model for studying correlation between traits, while

accounting for shared evolutionary history. The model is extremely flexible and can es-

timate correlation between continuous traits, discrete binary traits, discrete traits with

multiple ordered or unordered states, and combinations thereof. The model considers the

evolution of a continuous unobserved latent liability variable that determines the outcome

of the observed traits of interest at the tips of the tree. The multivariate latent liabilities

evolve along the phylogenetic tree through Brownian diffusion, and the covariance ma-

trix of the diffusion process serves as a proxy for covariance among traits. In this chapter

I discuss development of efficient MCMC transition kernels for this model and inference

techniques for hypothesis testing. Additionally, I present applications of the method to

Columbine flower morphology data, antibiotic resistance data in Salmonella, and epitope

data in Influenza. This project is joint work with Janet S. Sinsheimer, Trevor Bedford,

Alison Mather, Phillippe Lemey and Marc A. Suchard.

In chapter 5, I explore a nonparametric clustering method to investigate the intersection

between genetic and antigenic evolution in influenza. Antigenicity in influenza can be

visualized on antigenic maps, which are low dimensional representations of antigenic dis-

tances between viruses. In these maps, influenza strains naturally form clusters of similar

antigenic properties. In this chapter I focus on the antigenic clusters, since they may have

implications for vaccine design. The method employs a Bayesian multidimensional scaling

model to create the antigenic map (Bedford et al, 2014), and adopts a novel nonpara-

metric clustering prior on viral locations on the map. The clustering prior combines a

modified version of a Chinese restaurant process mixture model and phylogenetics, using

4



the tree structure to induce dependency in antigenic clustering. I present an application

to an H1N1 influenza dataset in which the method produces estimates of an antigenic

map with better resolved clusters as well as probabilities of cluster associations for indi-

vidual viruses. This project is joint work with Janet S. Sinsheimer, Trevor Bedford, Andrew

Rambaut, Phillippe Lemey and Marc A. Suchard.

Finally, in chapter 6, I discuss directions for future research arising from the latent liability

model of chapter 4. As an additional avenue for future work, I introduce concepts for

the correction of sampling bias in phylogenetic reconstructions based on single nucleotide

polymorphism (SNP) data.
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CHAPTER 2

Bayesian Phylogenetics

Throughout this dissertation, Bayesian phylogenetics is the backbone over which all new

methodology is constructed. For this reason, I now present a short overview of these

methods.

2.1 Phylogeneic models

Phylogenetic methods use sequence data S to estimate a phylogenetic tree F representing

the evolutionary relationship between N organisms. The N ×L sequence matrix S = {sij}

contains N aligned DNA or RNA sequences of length L, originating from each of the organ-

isms in the sample. The alignment process takes sequences of potentially different lengths

and rearranges them by removing elements or inserting spaces (“-”), to create correspon-

dence between sites in all sequences. All the entries in one column (site) of the aligned

sequence matrix S are assumed to be homologous, that is, generated as one realization of

the same evolutionary process on the tree. The alignment process is a statistical procedure

susceptible to errors that may affect phylogenetic reconstruction. For this reason, methods

that combine alignment and phylogenetic inference have been proposed (Redelings and

Suchard, 2005, 2007). However, these methods can become computationally intensive,

and for the purpose of this dissertation I adopt the widespread approach of disregarding

potential errors in the alignment of S.

A phylogenetic tree is an acyclic graph with N nodes of degree 1 representing the N

6
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Figure 2.1: Example rooted tree with N = 5 tips.

organisms in the sample. These nodes are generally termed as tips, and denoted by

ν1, · · · , νN . The tree also has N − 2 nodes of degree 3 called internal nodes, usually de-

noted by νN+1, · · · , ν2N−2. The internal nodes represent common ancestors to two or more

organisms in the sample. Finally, the tree may have one node of degree 2 called the root

and denoted by ν2N−1. If this node exists, it represents the most recent common ancestor

of all N organisms, and we say that the tree is rooted. The weights t = (t1, · · · , t2N−2)

on the edges of a rooted tree represent elapsed evolutionary time between two nodes,

and are generally referred to as branch lengths. When temporal information is available,

trees can be calibrated, so that branch lengths represent physical time (Sanderson, 2002;

Drummond et al, 2006). Figure 2.1 presents an example rooted tree with N = 5 tips.

In order to estimate the tree F from sequence data, we require a model for computing the

probabilities of changes (mutations) in the molecular sequences over evolutionary time.

For each site of the molecular sequence, this process is usually modelled as a continuous
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time Markov chain (CTMC), defined through the infinitesimal rate matrix Q. When the

sequence matrix S is composed of nucleotide data, the CTMC has four different states

{A,G,C,T/U}, corresponding to each of the four bases of DNA/RNA, and Q is a 4 × 4

matrix. The matrix P(t) of transition probabilities in time t can be obtained through

matrix exponentiation as

P(t) = exp(tQ). (2.1)

Generally, the process is assumed to be reversible and have reached stationarity, although

exceptions arise (Lemey et al, 2009). Biological knowledge about the base substitution

process often guides parameterization of Q; Jukes and Cantor (1969) and Hasegawa et al

(1985) provide two common examples.

The Markovian property of the base substitution process implies that, after two lineages

split, their mutation processes are independent, given their most common recent ancestor.

For the tree in figure 2.1, this means that

p(s1j, s2j|s6j, t1, t2) = p(s1j|s6j, t1)p(s2j|s6j, t2), (2.2)

where sij represents the base at site j of sequence i. The probability p(sij|si′j, ti) is ob-

tained from from P(t). Propagation of this property throughout the tree leads to the tree

likelihood for site j.

The tree likelihood L(Q, t, F |S) = p(Sj|Q, t, F ) computes the probability of the data, given

the molecular evolution process on the tree. If we observed the sequences at the internal

nodes of the tree, computing the likelihood for one site of the sequence would simply be

a matter of multiplying the probabilities of mutational events for each branch. However,

since this information is not available, we must integrate over all possible base combina-
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tions for the unobserved nodes of the tree. For the tree in figure 2.1, this yields

p(Sj|Q, t, F ) =
∑
s9j

∑
s8j

∑
s7j

∑
s6j

p(s9j)p(s6j|s9j, t6)p(s8j|s9j, t8)p(s7j|s8j, t7)

× p(s5j|s7j, t5)p(s4j|s7j, t4)p(s3j|s8j, t3)p(s2j|s6j, t2)p(s1j|s6j, t1), (2.3)

where the probability p(s9j) of the root state is often obtained from the CTMC equilibrium

distribution. Explicit dependency on the rate matrix Q was dropped from all probabilities

on the right side of this equation for notational ease.

Naive evaluation of the expression (2.3) would be computationally prohibitive for large

N , requiring the computation of all the 4N−1 terms in the sum. Computing this likelihood

is made feasible by a pruning algorithm that traverses the tree in post order, keeping

track of conditional probabilities, and evaluates the likelihood through O(N) operations

(Felsenstein, 1981a) .

In order to obtain the likelihood for the whole matrix S, one must assume a model for

molecular evolution across sites. The simplest approach takes all sites to be independent

and identically distributed, and computes the overall likelihood as

p(S|Q, t, F ) ∝
L∏
j=1

p(Sj|Q, t, F ). (2.4)

Nonetheless, this independent model seems to be oversimplified in many cases. Consider-

able effort has gone into the development and testing of more elaborate models of molec-

ular evolution across sites. These include, among others, the partitioning of the sites into

classes with different substitution processes and models for the variation of substitution

rates across the sequence (Yang, 2006).
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2.2 Bayesian models in phylogenetics

Bayesian phylogenetic analyses draw inference based on the posterior probability p(θ|S) of

parameters θ, given the sequence data S. Here θ collects all the phylogenetic parameters,

such that for the simple model described in section 2.1 we have θ = {Q, t, F}. Through

Bayes theorem, the posterior can be computed as

p(θ|S) = p(S|θ)p(θ)
p(S) , (2.5)

where p(θ) is the prior distribution representing our beliefs a priori about θ and the nor-

malizing constant p(S) is the marginal likelihood of the data S. The likelihood L(θ|S) =

p(S|θ) of the molecular evolution process can be obtained through expression (2.4).

This Bayesian approach requires the definition of prior distributions for all parameters in

θ, and different choices of priors are possible. Depending on the parametrization adopted

for Q , common choices for the parameters of the base substitution model are exponential

and Dirichlet distributions. Prior distributions for the tree topology F and branch lengths

t can come from models that generate tree-like structures, such as the birth-death process

and the coalescent. An interesting direction arises from exploring the coalescent prior to

study demographic dynamics (Kuhner et al, 1998; Minin et al, 2008).

To compute the posterior in (2.5), we would also need an expression for the normalizing

constant p(S), which can be computed as the integral

p(S) =
∫
p(S|θ)p(θ) dθ. (2.6)
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However, since θ = {Q, t, F}, evaluating (2.6) requires integrating over the space of all

possible tree topologies, as well as all possible branch length combinations and base sub-

stitution parameters. In general, there is no tractable solution for p(S), and consequently

Bayesian phylogenetic inference generally relies on Markov chain Monte Carlo (MCMC)

(Sinsheimer et al, 1996; Rannala and Yang, 1996; Suchard et al, 2001).

2.3 Markov chain Monte Carlo

Monte Carlo integration is a simulation method for estimating multidimensional integrals.

Suppose we wish to estimate the expected value of h(θ), then

E(h(θ)|S) =
∫
h(θ)p(θ|S) dθ,

where p(θ|S) is the posterior distribution of θ. If we cannot analytically evaluate the

integral, random samples θ(1), . . . ,θ(n) from the distribution p(θ|S) can be used to estimate

h(θ) as

ĥ(θ) = 1
n

n∑
i=1

h(θ(i)).

The samples can also be used to obtain variance of the estimates and marginal distributions

on individual components of θ.

However, for phylogenetic models it generally is not straightforward to generate samples

from the distribution p(θ|S). MCMC methods use Markov chains to generate dependent

samples of the target distribution. These chains are constructed to be ergodic and have

equilibrium distribution p(θ|S). Consequently, the process is asymptotically guaranteed to

achieve the target distribution.

The construction of ergodic Markov chains with the correct stationary distribution is cen-
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tral to MCMC. The two most used methods for producing these chains are the Metropolis-

Hastings method (Metropolis et al, 1953; Hastings, 1970) and the Gibbs sampler (Geman

and Geman, 1984). These can be thought of as recipes for constructing MCMC algorithms.

Importantly, neither method requires the evaluation of the normalizing constant in expres-

sion (2.6) to generate samples from the posterior distribution.

Metropolis-Hastings algorithms rely on a two step procedure to generate consecutive pos-

terior samples for θ. First a new state θ? is proposed according to a proposal distribution

qθk(θ?), that usually depends on the current state θ(k). Then, the new state may be ac-

cepted θ(k+1) = θ?, with probability

A(θk,θ?) = min
{

1, qθ
?(θk)p(θ?|S)

qθk(θ?)p(θk|S)

}
, (2.7)

or rejected θ(k+1) = θ(k). Note that only the ratio of posterior probabilities is required for

this evaluation.

Gibbs samplers divide the parameter θ into M components θ = (θ1, · · · ,θM), and update

each individual component θi at a time. New samples for each θi are drawn from the

conditional distribution p(θi|θ−i,S), where θ−i = (θ1, · · · ,θi−1,θi+1, · · · ,θM) represents

all other component parameters in θ. In these complex phylogenetic models, however, full

conditional distributions are not available for all the parameter components. Metropolis-

Hastings algorithms can be used to generate samples for individual parameter components

for which a Gibbs sampler is not available. This approach produces a Metropolis-within-

Gibbs sampler, in which some parameter components are updated based on full conditional

probabilities, and others are updated using Metropolis-Hastings algorithms.

The phylogenetic methods presented in this dissertation exploit the flexibility of this Metropolis-

within-Gibbs approach. I explore combinations of different transition kernels for the pa-
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rameter components, with the goal speeding up convergence, and reducing autocorrela-

tion between samples. A significant portion of this dissertation is dedicated to finding

efficient transition kernels for parameters in the different models.

2.4 Combining models for molecular a phenotypic evolution

In this dissertation I present projects that combine models for molecular and phenotypic

evolution. To jointly model these processes, I assume that the models are independent,

conditional on the phylogenetic tree F . Thus, joint likelihoods can be computed as the

product of the likelihoods for each evolutionary process. Additionally, MCMC transition

kernels for the phylogenetic and molecular evolution parameters remain unchanged. This

allows for the seamless combination of complex evolutionary models, and is one of the

advantages of the Bayesian approach.

13



CHAPTER 3

Graph hierarchies for phylogeography1

Abstract. Bayesian phylogeographic methods simultaneouly integrate geographic and evo-

lutionary modeling and have demonstrated value in assessing spatial spread patterns of

measurably evolving organisms. We improve on existing phylogeographic methods by

combining information from multiple phylogeographic datasets in a hierarchical setting.

Consider N exchangeable datasets or strata consisting of viral sequences and locations,

each evolving along its own phylogenetic tree and according to a conditionally indepen-

dent geographic process. At the hierarchical level, a random graph summarizes the overall

dispersion process by informing which migration rates between sampling locations are

likely to be relevant in the strata. This approach provides an efficient and improved frame-

work for analyzing inherently hierarchical datasets. We first examine the evolutionary

history of multiple serotypes of dengue virus in the Americas to showcase our method. Ad-

ditionally, we explore an application to intrahost HIV evolution across multiple patients.

1The research presented in this chapter has been published in the journal Transactions of the royal society
B (Cybis et al, 2013), and is joint work with Janet S. Sinsheimer, Phillippe Lemey and Marc A. Suchard.
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3.1 Introduction

Viral pathogens represent serious burdens on public health, as the current HIV-1 pandemic

exemplifies, with an estimated 33.3 million people infected worldwide (UNAIDS, 2010).

To reduce the impact of such pathogens, public health policies that aim to reduce viral

dispersion and global circulation are of paramount importance. Detailed knowledge of

the processes that govern epidemic evolution and spread is crucial for the determination

of these policies. Recent phylogeographic studies explore the commensurate time scales

of geographic dispersion and evolutionary processes to increase our understanding of the

dispersal patterns of rapidly evolving pathogens (Wallace et al, 2007; Biek et al, 2007;

Paraskevis et al, 2009).

Methods that integrate genetic and geographic analyses have been used to assess origins

and dispersal patterns of many organisms of interest such as modern humans (Fagundes

et al, 2007) and dogs (Pollinger et al, 2010). These phylogeographic studies largely ben-

efit from the development of new methodologies (Bloomquist et al, 2010). An emerging

methodological approach is the introduction of spatial diffusion processes in both discrete

(Lemey et al, 2009) and continuous space (Lemey et al, 2010) to Bayesian phylogenetic

analysis. This introduction allows for simultaneous reconstructions of geographic spread

history, estimation of clade geographical origins and characterization of the dispersion

process (Bloomquist et al, 2010; Faria et al, 2011).

When we assume discrete geographical locations, a key feature for characterizing disper-

sion processes in these models becomes the migration graph. In this graph, the vertices

represent the geographic states of the model, and an edge connects two vertices only if

the instantaneous migration rate between these vertex locations is nonzero. To infer the

nonzero rates, a variable selection procedure controls the total number of edges to avoid

overfitting. Thus, the migration graph contains the information of which migration rates
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are relevant for describing the overall dispersion process.

One troubling aspect of phylogeographic inference centers on the observation that we gen-

erally only have one realization of the geographic evolutionary process that produced the

spatial distribution of the group under study. Thus, even for moderately small numbers of

geographic states, most transitions between locations might not even be sampled. Conse-

quently, when there is a large number of locations, phylogeographic analyses frequently

have to control for poor estimates for the migration rates.

Ideally we would like to have many realizations under the same geographic process in

order to improve inference. In some cases, parallel geographic realizations are available

for this type of analysis. An example of such data structure that we explore in this pa-

per concerns the four different serotypes of dengue virus in the Americas. Although the

different serotypes do not have the same evolutionary history and probably arrived in the

Americas at different times and in different locations, they share the same vector, host,

mode of transmission and most other aspects of viral biology and ecological niches (Hal-

stead, 2008). Thus, we reasonably assume that the factors that govern their dispersion

processes, and in turn, their migration graphs are similar. Consequently, information ob-

tained from one serotype should improve inference on the phylogeography of the other

serotypes of dengue if we allow for occasional differences.

Previous studies have explored two different strategies when dealing with these parallel

data structures. One alternative is to treat each phylogeographic dataset or strata inde-

pendently, as Allicock et al (2012) explore for the four serotypes of dengue. This approach

allows for comparisons between the different serotypes and can identify discrepancies in

the migration process. Nevertheless, there is no structure for sharing information between

the four separate analyses.

Alternatively, Sanmartín et al (2008), in a similar data analysis, model all strata jointly by
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imposing the same migration graph and rates to all strata of the analysis. This method

effectively combines information from all strata to improve rate estimates. But in doing

so, it disregards any stratum-specific peculiarities, and does not provide an opportunity

to distinguish the processes of different strata. One reasonably assumes that inherent

variability or systematic differences of scientific interest may introduce small differences

in the processes.

As a middle-ground to these two extreme alternatives, we propose to model these inher-

ently parallel datasets through a Bayesian hierarchical model. The hierarchical structure

of our model effectively represents the overall dispersion process and allows for sharing

information between the strata. We allow each individual stratum small variation from

the hierarchical level; and large deviations from the expected pattern naturally assesses

discrepancies between the strata. To accomplish this task, we introduce a novel hierarchi-

cal migration graph that summarizes the geographic dispersion process over all strata and

informs which are the predominant migration rates for the individual strata. Figure 3.1

presents a schematic representation of the structure of the model.

Hierarchical models have found success in Bayesian phylogenetics for modeling the molec-

ular sequence substitution processes within multipartite data, in contexts where overall

properties of the data are of interest (Suchard et al, 2003). These hierarchical phyloge-

netic models (HPMs) generally have the property of reducing variability in estimates for

phylogenetic parameters of individual partitions while providing a framework for assess-

ing overall tendencies. Examples of HPMs involving the sequence substitution processes in

infectious diseases include examining selective pressures in HIV intrahost data, where in-

formation pools across multiple patients (Edo-Matas et al, 2011), and estimating the time

to most recent common ancestor across the multiple gene segments of influenza (Tom

et al, 2010).
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Figure 3.1: Schematic representation of the hierarchical structure of the model. At the
hierarchical level, the hierarchical migration graph summarizes the overall process. For
each of the parallel stratum, an analogous graph indicates the positive rates that define
trait evolution along the tree for the stratum.
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After presenting the details of our novel geographic HPM in section 3.2, we analyze two

datasets that showcase our method. In section 3.3 we first present the joint analysis of

the dataset of dengue virus in the Americas mentioned above for comparison with the

previous study (Allicock et al, 2012). Although our method draws inspiration from purely

geographic problems, the model is composed of Markov chains describing the evolution

of any discrete trait with a single or small number of realizations per strata along phy-

logenetic trees. To demonstrate its application to other traits, in Section 3.3, we also

present the analysis of intrahost HIV data from 14 different patients. Here, the discrete

trait records the different cell compartments from which the virus was isolated, and each

patient represents one parallel realization of the intrahost trait process. Finally, in Section

3.4, we conclude with some features arising from the methodology and examples.

3.2 Methods

We present a hierarchical model for the evolution of a discrete trait with a single (or small

of number of) realization(s) in N similar strata. This trait typically tracks geographic

location of sampling, but can also represent any discrete character with a fixed number

of states, evolving through a homogeneous Markovian process. Each stratum represents

a conditionally independent evolutionary history for the same trait. We assume sufficient

similarity between the strata for a joint modeling approach. Our model has two levels.

At the stratum level, each stratum possesses its own evolutionary process; the hierarchical

level shares information across strata.

We have both sequence and trait information for each sample of each stratum. For each

individual stratum, we model the sequence data through a phylogenetic tree, with se-

quence evolution and demographic parameters coming from standard Bayesian phyloge-

netic methods (Drummond et al, 2012).
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We denote the trait data for each stratum i by Xi = {Xi1, . . . , Xini}, where the number of

samples ni may vary by strata. For each stratum we assume that a phylogenetic tree relates

the samples, where the state at the root Xi,root and internal nodes {Xi,ni+1, . . . , Xi,2ni−2} are

not observed. Following the approach of Lemey et al (2009), we model trait evolution

on the tree as a continuous time Markov chain (CTMC) with infinitesimal rate matrix

Λi = {λijk}. This K ×K rate matrix for stratum i is parametrized as

Λi = µi SiΠi, (3.1)

where Πi = diag(πi1, . . . , πiK) is a diagonal matrix with equilibrium frequencies for each

state, µi is a scalar overall transition rate, and Si = {sijk} is a K ×K matrix normalized

to give overall transition rate 1. When the matrix Si is taken to be symmetric, then the

CTMC is time reversible.

For traits with a large number of sampling states K, as is commonly the case for geography,

the number of ratesK(K−1) is large. Since each sequence only has one sampling location,

we expect a priori that many of the possible transitions will be very unlikely, rendering a

sparse matrix Λi. Thus we adopt the approach of Lemey et al (2009) and employ Bayesian

Stochastic Search Variable Selection (BSSVS) to select a parsimonious interpretation of Λi.

This approach is instrumental in dealing with the high variances associated with this type

of inference.

In BSSVS the model is augmented with indicator variables δijk. Each indicator is placed

on one directed edge of the graph connecting the states of the CTMC. When δijk = 0 the

infinitesimal rate between states j and k is zero. When δijk = 1 the rate from state j to k is

λijk.

At the hierarchical level our model is composed of a migration graph, whose nodes are
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the sampling states of the process. A directed edge from node j to k on this hierarchical

graph represents a nonzero infinitesimal rate from state j to k, and is present when the

indicator δHjk = 1. The hierarchical graph is a representation of the overall evolutionary

process of the trait across strata. It highlights which transitions are dominant in the model.

By introducing this hierarchical level, we create a structure through which information is

shared across the different strata.

Individual strata are allowed to diverge from the hierarchical graph to account for inherent

variability. For each stratum, the number of differences between the hierarchical graph and

the one induced by the BSSVS follows a binomial distribution

∑
j 6=k
|δijk − δHjk| ∼ Binomial(ν, p), (3.2)

where p is a fixed error parameter, and ν = K(K − 1) or K(K − 1)/2 depending on

whether the process is assumed time reversible. The binomial distribution is chosen mainly

for the convenience of independence between edges of the graph. An alternative option

that favors the hierarchical and stratum graphs being identical and introduces dependency

between edge differences is the geometric distribution.

3.2.1 Priors

We use standard noninformative prior choices for the parameters of the infinitesimal rate

matrices at the stratum level, following the suggestions of Lemey et al (2009). The overall

rate parameter µi is taken to be Exponential(1), and the unnormalized elements of Si

are also assumed to be independent Exponential(1). When extra information is available,

alternative prior specifications for these parameters are possible without affecting the hi-
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erarchical structure of the model. Informative priors for the transition rates can be based

on geographic distances, population size, or even air traffic data. The prior distribution

on the indicator variables of the BSSVS procedure is given by the hierarchical level of the

model.

We must also set prior distributions on the hyper parameters of the hierarchical level

graph. We assume a priori that each directed edge is included in the model according to

a Bernoulli random variable with small success probability χ. The sum of these indepen-

dent random variables
∑
δHjk is binomially distributed. In the limit when χ << K(K − 1)

this distribution is approximately a Poisson distribution with expected number of edges

K(K − 1)χ.

3.2.2 Inference

Inference on this model is made by a Markov chain Monte Carlo (MCMC) procedure,

where each parameter of the model is updated in turn to generate a Markov chain whose

limiting distribution is the posterior. This is done in accordance with standard Bayesian

phylogeographic methods (Lemey et al, 2009).

One note on this procedure is that independent updates of the edge indicator variables

from the hierarchical level and all the strata may lead to poor mixing and slow conver-

gence. This is especially the case when the number of states is high. An alternative to in-

dependent updates is to jointly update all the indicator variables by adopting a Metropolis-

Hastings step with a proposal distribution that updates one edge of the graph in all strata

simultaneously. Updating multiple edges at a time also improves the mixing of the chain.

The method described in this paper has been incorporated into the software package

BEAST-Bayesian Evolutionary Analysis Sampling Trees (Drummond et al, 2012).
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3.2.3 Bayes Factors

To verify support for a particular edge in the migration graph being included in the model,

we use the Bayes factor. The Bayes factor measures how the data change the support

for edge {jk} being included in the graph relative to the change in support for it being

excluded. Formally, the Bayes factor is defined as the ratio of the marginal likelihood of

a model and the marginal likelihood of the alternative. For graph i, it can be computed

simply as the ratio between posterior and prior odds

BFijk = Posterior Odds
Prior Odds

= pijk
1− pijk

/
qijk

1− qijk
. (3.3)

The posterior probability of the edge {jk} is the posterior mean of the indicator δijk. For

the hierarchical graph, the prior qHjk is obtained from the Poisson distribution. For the

stratum graphs, the prior probability of edge {jk} being included in the model depends on

the distribution of edge differences between hierarchical and stratum graphs. If we adopt

the Binomial(ν, p) distribution for these differences, then

qijk = qHjk(1− p) + (1− qHjk)p. (3.4)

3.2.4 Entropy

We use the entropy as measure of uncertainty for the distribution of edge inclusions in the

migration graph. The entropy of a distribution is a quantity commonly used in information

theory (see for example Gray (2011)). For a discrete random variable Y assuming values
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yi it is defined as

H(Y ) = E(− log(p(Y ))) = −
∑

(p(yi) log(p(yi))). (3.5)

Entropy is used as a measure of uncertainty in probability distributions, and it attains its

maximum when the distribution is uniform (ie. all outcomes have the same probability).

It is especially useful for assessing variability of distributions over categorical data. When

Y is a vector of random variables with components Yj, then

H( Y) ≤
∑

H(Yj) (3.6)

with equality holding when the elements of Y are independent.

3.3 Results

We analyze two datasets for which we integrate information across multiple strata to ob-

tain better representations of evolutionary and spatial processes. The first is in the context

of geographical dispersion of viral pathogens, in which we analyze the migration pattern of

dengue virus in the Americas by combining information from the four different serotypes

of the virus. Next, we explore the use of our hierarchical model for a different type of dis-

crete trait: cellular compartments infected by HIV. We use information from 14 different

patients to study the intrahost dynamics of the virus between these compartments.
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3.3.1 Dengue Virus in the Americas

With approximately 50 million infections annually, dengue is a serious public health issue

in the tropical and subtropical regions where its mosquito vectors, Aedes aegypti and Aedes

albopictus, are common (Guzman et al, 2010). In the Americas, the virus is distributed

widely, with reported cases in all but 3 countries; and the number of cases has been steadily

increasing since the 1980s (San Martín et al, 2010). There are four antigenically distinct

dengue virus serotypes (DENV-1 to DENV-4), and we integrate data from all serotypes to

study geographical patterns of the virus in the Americas.

We analyze a dataset consisting of 904 sequences of the envelope gene, divided between

all four serotypes of the virus. The samples originated from K = 36 different countries in

Latin America and the Caribbean, and date from 1977 to 2009. These data were previously

analyzed by treating each serotype independently (Allicock et al, 2012).

Because of the biological similarities, we model geographical diffusion for the serotypes

jointly to identify the overall dispersal pattern. For each serotype we have a migration

graph, with nodes representing the sampling locations and edges representing which in-

stantaneous rates between locations are nonzero. An overall migration graph summarizes

this information at the hierarchical level.

Figure 3.2 presents these graphs, superimposed over maps (Bielejec et al, 2011), for the

hierarchical level and each stratum. Thickness of the edges are proportional to edge sup-

port, and only those edges that have Bayes factors larger than 3 are shown. Our results

agree with the previous independent analysis in that most of the significant links are be-

tween neighbouring countries (Allicock et al, 2012). An example of this are the highly

supported links between Peru, Venezuela and Colombia. Additionally, our model indicates

that a few countries such as Colombia, Suriname, Trinidad and Tobago, and Martinique

act as centers of viral dispersion, with high number of links to other countries.
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Figure 3.2: Hierarchical and serotype location maps with links connecting the countries
that have direct viral migration. Edge widths are proportional to posterior probability for
edge inclusions, and only edges with a Bayes factor higher than 3 are shown.
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An example of how the hierarchical model integrates information across the strata can

be seen by comparing edge probabilities in hierarchical and stratum graphs for locations

with incomplete sampling. Notice that although we do not have samples from Nicaragua

for serotype 4, the hierarchical structure of our model requires that all graphs have the

same nodes, and so the probability of an edges linking Nicaragua to other countries are

estimated for DENV-4. Building on information from the other three serotypes, the pos-

terior probability for an edge between Nicaragua and Mexico in the hierarchical graph

is 0.93. The inclusion probability of this edge for DENV-4 is dictated by the hierarchical

prior. Thus, even though the data carry no direct information on the migration of DENV-4

through Nicaragua, we have a Bayes factor of 6.1 for including the edge.

For some edges, there are notable discrepancies between hierarchical and stratum graphs;

however, overall deviations conform well with the specified model for all strata. The

posterior mean edge differences lie between 0.044 and 0.050 per edge for all serotypes;

while the prior model specification assigned a 0.05 probability for an edge in the stratum

graph being different from the hierarchical graph.

We have also analyzed this data using geographical distances to inform the prior probabil-

ities of edge inclusions in the hierarchical graph. The results, however, were only slightly

different from those presented here and the qualitative conclusions remained absolutely

unchanged

3.3.2 Intrahost HIV

Treatment of HIV with highly active antiretroviral therapy (HAART) significantly sup-

presses viral replication in CD4+ T lymphocytes. In this context, alternative sites of HIV

infection, such as CD8+ T cells, may become increasingly important. To assess the role of

infection of CD8+ cells in patients under HAART, we study a previously published HIV-1
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dataset from 14 different patients (Potter et al, 2006). In each patient, the virus was iso-

lated from two different cell compartments, CD4+ T cells, CD8+ T cells, as well as from

plasma. We analyze samples collected at two or three different times for each patient, the

first being at the time of treatment initiation.

Under the assumption that viral migration between cell types is similar in all patients, each

patient represents one stratum in our hierarchical model. Since there are only 6 edges in

the migration graph for this problem, we use a binomial prior with inclusion probability

0.5. Figure 3.3 presents the hierarchical graph representing the main viral migrations

between cell compartments. Directed edges and corresponding Bayes factors are only

shown for links with a Bayes factor higher than 1. In this graph, the main connections are

between plasma and CD4+ compartments. Additionally, there is evidence for a directed

edge from the CD8+ to the CD4+ compartment (BF=35.3). Equivalent graphs for the

patients show the same overall pattern, with the eventual addition of one other edge.

These graphs can be found in the supplementary material (section 3.5).

We compare the graph hierarchical model to two alternative approaches for analyzing this

dataset: the consensus approach, where all patients are assumed to have the same migra-

tion matrix, and the independent approach, where patient analyses are carried out sepa-

rately. We make analogous choices of prior distributions in all analyses. Table 3.1 presents

a comparison between analyses of the uncertainty of graph estimates measured through

the entropy of their posterior distributions for edges. The comparison of the hierarchical

model and independent analysis shows lower entropy values in the hierarchical model for

every patient. This indicates that combining the patient data in the hierarchical setting re-

duces the uncertainty in the estimates of individual patient graphs. The consensus analysis

also presents higher entropy than the overall matrix of the hierarchical model.

In general the posterior probabilities of edges in the hierarchical and stratum graphs are
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Figure 3.3: Migration graphs for the hierarchical level of the intrahost HIV data, with
Bayes factor value for each edge in the graph. Only edges with a Bayes factor higher than
1 are shown.
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Table 3.1: Comparison of hierarchical model, independent and consensus analysis.
hierarchical model independent consensus

pp entropy entropy entropy
patient 1 0.0667 1.9260 3.0124
patient 2 0.0929 2.0128 3.1824
patient 3 0.0692 1.9800 3.5299
patient 4 0.0565 1.8330 2.7376
patient 5 0.0734 1.8557 3.0509
patient 6 0.0631 1.8734 3.4204
patient 7 0.0685 1.9541 2.7179
patient 8 0.1094 1.9844 3.2912
patient 9 0.0803 1.9516 3.4381
patient 10 0.0944 2.0824 3.2942
patient 11 0.0698 1.9066 3.2193
patient 12 0.0764 1.9619 3.1608
patient 13 0.0729 1.8894 3.2017
patient 14 0.0549 1.8399 3.0861
overall 1.6022 2.2937

Entropy values are computed for the posterior distributions of edge inclusions for the graphs of
states, and pp represents the posterior probability of edges in the stratum graph being different

from the hierarchical graph.

similar. Table 3.1 shows that, in the posterior distribution, between 0.05 - 0.1% of the

stratum edges differ from their counterparts in the hierarchical graph. The discrepancy

fraction observed in the sample varies among patients, and for patients 2, 8 and 10 is close

to twice the expected 0.05 defined as the binomial parameter p for the edge differences.

3.4 Discussion

We present a hierarchical phylogenetic model for the evolution of a discrete trait in mul-

tiple strata. Our method integrates information across the strata to improve estimation,

while allowing for inter-strata variation. At the hierarchical level, properties of the overall

process are summarized through the migration graph, with edges representing nonzero

instantaneous rates.

The main motivation for this method comes from phylogeographic applications, in which
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the trait of interest is geographic location, and we wish to study the migration process. Re-

cently, many studies have analyzed spatial spread of epidemics using analogous Bayesian

phylogeographic methods for only one sample of the geographical process (Nelson et al,

2011; Auguste et al, 2010; Allicock et al, 2012). In addition to the potential public health

significance, these studies are motivated by the fact that rapidly evolving pathogens allow

for viral sampling in a time frame comparable to sequence evolution, leading to reconstruc-

tions of geographic diffusion in real time units. In this context, we present an example in

which we use data from multiple serotypes of dengue virus to study the viral dispersion

process in the Americas. The analysis supports similar dispersion processes across the four

serotypes.

In the parallel datasets for which our model is constructed, it is possible that some of the

strata have incomplete sampling of state locations, as with the dengue example. In the

dengue dataset, some countries do not have samples for all serotypes, yet the hierarchical

structure of our model integrates information from the other serotypes to estimate migra-

tion rates for the missing strata. Our hierarchical model naturally deals with these often

troubling missing data problems.

Hierarchical phylogenetic models have been used in phylodynamic studies of the intrahost

behavior of HIV (Liang and Weiss, 2007; Edo-Matas et al, 2011). The long timespan of HIV

infections, which sometimes last more than 10 years, combined with high mutation rates,

makes phylodynamics a useful tool for assessing viral intrahost biology. Thus, hierarchical

models that combine data from multiple patients are relevant. In this context, we present

an example in which we use an HIV intrahost dataset to asses the role of infection in CD8+

T cells for patients under HAART.

Our analysis suggests that an important component of the inter-compartment dynamics is

the replenishment of CD4+ T cells by viral populations from CD8+ cells. Because CD4+
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0.6

Figure 3.4: MCC phylogeny for patient 13 with branches coloured according to the most
probable posterior cell compartment. Red represents CD8 T cells, blue represents CD4 T
cells, and yellow represents plasma.

cells represent the main pool of infected cells, in line with the higher HIV-1 diversity ob-

served in this compartment (Potter et al, 2006), this compartment is expected to replenish

other cell compartments under a metapopulation dynamics scenario. According to the

hierarchical graph, CD4+ cells could still be the major source of infection for CD8+ cells

when seeded by plasma virus. However, since our analysis also indicates an non-negligible

role for viral migration from CD8+ cells to CD4+ cells during HAART, as also exemplified

by the reconstructed migration history in the maximum clade credibility (MCC) tree for a

particular patient (Figure 3.4), the role of CD8+ cells in the maintenance of HIV reservoir

dynamics may require further attention.

In our method, the conformity of stratum graphs to the hierarchical graph is dependent

on the choice of parameter p for the binomial distribution of edge differences. Small
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values of p induce a large amount of information sharing between strata, and impose a

large constraint on similarity between stratum graphs. In the limit, we have the consensus

analysis, in which all strata have the same graph. On the other hand, large values of p

generate estimates with smaller dependency between graphs.

Even though we use a fixed value for binomial parameter p, the fraction of discrepancies in

the posterior distribution may differ from the specified probability p. This may be used as

an indicator of the degree of similarity between the strata, or to identify an outlier stratum.

This was observed in the HIV example, where posterior discrepancies were higher in some

strata than in others. In comparison, in the dengue example all strata conformed better to

a common dispersion process.

We follow Lemey et al (2009) in our choice of prior distribution for the total number

of edges in the hierarchical graph, by adopting the Poisson approximation for the sum

of a large number of Bernoulli random variables. This choice of prior distribution has

been used in a number of subsequent applications, where it has adequately controlled the

total number of edges included in the graph. Other popular prior choices for graph edges

consider edge inclusions as exchangeable Bernoulli trials with common success probability

(Brown et al, 1998; Dobra et al, 2004). It follows that the total number of edges in the

graph has a binomial prior. Additionally, Carvalho and Scott (2009) show that when the

inclusion probability comes from the Beta hyperprior, the model has a strong control over

the number of false edges included in the graph. Telesca et al (2012) model dependent

gene expression through a graph structure similar to the one in our model, and adopt the

binomial-beta model for total number of edges; they show through simulations that their

model presents good control over false discovery rates.

One advantage of the Bayesian phylogenetic framework we exploit in formulating our

graph hierarchical model is that the framework easily lends itself to combination of dif-
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ferent models. These could be phylogenetic methods for demographical inference (Minin

et al, 2008), methods for calibrating trees and relaxed clock models (Drummond et al,

2006). Our hierarchical phylogeographic approach can easily be associated with these

existing models to provide comprehensive analysis of viral history.

The data analyses presented here highlight the strengths of the hierarchical phylogenetic

model for analyzing these parallel dataset consisting of conditionally independent trait

evolution processes. In particular, the entropy comparisons for the HIV data show the re-

duction in overall uncertainty of the hierarchical model, in comparison to the independent

approach. This is obtained by sharing information over the parallel strata. On the other

hand, the consensus approach does not allow for the variability between strata processes

observed in both examples.

Our method paves the way for further exploration of geographic dispersion processes.

Through an analysis of the migration graph, for example, we can identify structural prop-

erties of the system: fully connected subgraphs and cycles are motifs that may represent

local dynamics of interest. We could also assess the reversibility of the geographic process,

by testing time-reversibility on the migration matrix. Additionally, changes in the migra-

tion process over time could be assessed by generalizing our model into a dynamic model.

This method could also be extended to account for more general dependency structures

on the hyper-graph.

3.5 HIV supplementary figures

This section presents the figures supplementary figures for the HIV intrahost analysis of

subsection 3.3.2.

34



Hierarchical Patient 1 Patient 2

Patient 5

Patient 2

Patient 4Patient 3

Patient 6 Patient 7 Patient 8

Patient 5

Patient 11

Patient 8

Patient 10Patient 9

Patient 6

Patient 12 Patient 13 Patient 14

Figure 3.5: Migration graphs for the strata and hierarchical level of the intrahost HIV
dataset. Edges that differ from the hierarchical graph are presented in red. Only edges
with a Bayes factor higher than 1 are shown.
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Figure 3.6: MCC phylogeny for patients 1 - 6 of the HIV dataset, with branches colored
according to the most probable posterior cell compartment. Red represents CD8 T cells,
blue represents CD4 T cells, and yellow represents plasma.
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Figure 3.7: MCC phylogeny for patients 7 - 14 of the HIV dataset, with branches colored
according to the most probable posterior cell compartment. Red represents CD8 T cells,
blue represents CD4 T cells, and yellow represents plasma.
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CHAPTER 4

Assessing phenotypic correlation through the multivariate

phylogenetic latent liability model1

Abstract. Understanding which phenotypic traits are consistently correlated throughout

evolution is a highly pertinent problem in modern evolutionary biology. Here, we propose

a multivariate phylogenetic latent liability model for assessing the correlation between

multiple types of data, while simultaneously controlling for their unknown shared evo-

lutionary history informed through molecular sequences. The latent formulation enables

us to consider in a single model combinations of continuous traits, discrete binary traits,

and discrete traits with multiple ordered and unordered states. Previous approaches have

entertained a single data type generally along a fixed history, precluding estimation of cor-

relation between traits and ignoring uncertainty in the history. We implement our model

in a Bayesian phylogenetic framework, and discuss inference techniques for hypothesis

testing. Finally, we showcase the method through applications to columbine flower mor-

phology, antibiotic resistance in Salmonella, and epitope evolution in influenza.

1This project is joint work with Janet S. Sinsheimer, Trevor Bedford, Alison E. Mather, Phillippe Lemey
and Marc A. Suchard
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4.1 Introduction

Biologists are often interested in assessing phenotypic correlation among sets of traits,

since it can help elucidate many biological processes. These correlations may be a result

of genetic correlation, in which traits are partially determined by the same or linked loci.

Alternatively, they may be evidence of selective correlation, in which the same environ-

mental pressure acts on two seemingly unrelated traits or the outcome of one trait affects

selective pressure on the other. Studying these processes is one of the aims of comparative

biology.

The purpose of this project is to present a statistical framework for estimating phenotypic

correlation among many traits simultaneously for combinations of different types of data.

We consider combinations of continuous data, discrete data with binary outcomes, and

discrete data with multiple ordered and unordered outcomes. We also provide inference

tools to address specific hypotheses regarding the correlation structure.

Several comparative methods have been proposed to assess the phenotypic correlation

between groups of traits (Felsenstein, 1985; Pagel, 1994; Grafen, 1989; Ives and Garland,

2010). These methods estimate correlations in trait data across multiple species while

controlling for shared evolutionary history through phylogenetic trees. Yet their use is

generally limited to fixed phylogenetic trees, specific types of data or small datasets.

Markov chains are a natural choice to model the evolution of discrete traits, allowing for

correlation between them (Pagel, 1994; Lewis, 2001). In this case, the state space of the

Markov chain includes all combinations of possible values for all the traits, and correlation

is assessed through the transition probabilities between states. Thus, when the number

of traits and possible outcomes for each trait increase, the number of parameters to be

estimated in the rate matrix scales up rapidly.
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For continuous data, a common approach for assessing phenotypic correlation is the in-

dependent contrasts method that models the evolution of multiple traits as a multivariate

Brownian diffusion process along the tree (Felsenstein, 1985). Correlation between traits

is assessed through the precision matrix of the diffusion process. This method has been

extended to account for phylogenetic uncertainty by integrating over the space of trees in

a Bayesian context (Huelsenbeck and Rannala, 2003). Recent developments also increase

the methods flexibility by allowing for different diffusion rates along the branches of the

tree (Lemey et al, 2010) and more efficient computation of the model likelihood, and thus,

larger datasets (Pybus et al, 2012).

Phylogenetic linear models and related methods can naturally consider combinations of

different types of data (Grafen, 1989; Ives and Garland, 2010). Developments in this area

have led to flexible and efficient methods (Faria et al, 2013; Ho and Ané, 2014). How-

ever, these models assess the effects of independent variables on a dependent variable that

evolves along a tree. Although it is possible that the independent variables are phyloge-

netically correlated, this aspect is generally not explicitly modeled. Thus, these models are

not tailored to assess correlation between sets of traits throughout evolutionary history.

An approach for assessing correlated evolution that can combine both binary and contin-

uous data is the phylogenetic threshold model (Felsenstein, 2005, 2012). The threshold

model is used in statistical genetics for traits with a discrete outcome determined by an

underlying unobserved continuous variable (Wright, 1934; Falconer, 1965). Felsenstein

(2005) proposed the use of this model in phylogenetics. In his model, the underlying con-

tinuous variable (or latent liability) undergoes Brownian diffusion along the phylogenetic

tree. At the tips, a binary trait is defined depending on the position of the latent liability

relative to a specified threshold. This non-Markovian model has the desirable property

that the probability of transition from the current state to another can depend time spent
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in that current state.

A possible interpretation for this model is that the binary outcome represents the presence

or absence of some phenotypic trait, and the underlying continuous process represents the

combined effect of a large number genetic factors that affect this trait. During evolution,

these factors undergo genetic drift, that is usually modeled as Brownian diffusion.

In its multivariate version, the threshold model allows for inference on the phenotypic

correlation structure between a few continuous and binary traits. As with the independent

contrasts method, this correlation can be assessed through the covariance matrix of the

multivariate Brownian diffusion for the continuous latent liability.

In this project we build upon the flexibility of the threshold model to create a Bayesian

phylogenetic model for the evolution of binary data, discrete data with multiple ordered

or unordered states and continuous data. We explore recent developments in models

for continuous trait evolution that improve computational efficiency, and make the joint

analysis of multiple traits feasible in the presence of possible phylogenetic uncertainty

(Lemey et al, 2010; Pybus et al, 2012).

Importantly, our approach estimates the between trait correlation while simultaneously

controlling for the correlation induced through the traits being shared by descent.

As shown in one of our examples, failing to control for the evolutionary history can result

in confounded inference of the correlation between traits, in analogy to false inference

in association analysis when failing to control for population substructure or relatedness

among individuals. In section 4.2 we introduce our model and discuss inference procedure

and hypothesis testing. Then, in section 4.3, we present three applications that exemplify

the use of the phylogenetic latent liability model to different biological problems. First, we

assess phenotypic correlation in multi-drug resistance for Salmonella through the analysis

of binary resistance data. Then we analyse a dataset with a combination of continuous
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and discrete traits to investigate how a series of morphological floral traits relate to shifts

if pollinators for Columbine flowers. And, in the third application, we assess correlations

in the evolution of epitopes of the HA protein in Influenza, through the analysis of discrete

data with multiple unordered states. Finally, in section 4.4 we discuss our results, and

some extensions to the model.

4.2 Methods

Consider a dataset of N aligned molecular sequences S from related organisms and an

N × P matrix Y = (Y1, . . . ,YN)t of P -dimensional trait observations from each of the

N organisms, such that Yi = (yi1, . . . , yiP ) for i = 1, . . . , N . We model the sequence

data S using standard Bayesian phylogenetics models (Drummond et al, 2012) that in-

clude, among other parameters φ less germaine to our development here, an unobserved

phylogenetic tree F . This phylogenetic tree is a bifurcating, directed graph with N termi-

nal nodes (ν1, . . . , νN) of degree 1 that correspond to the tips of the tree, N − 2 internal

nodes (νN+1, . . . , ν2N−2) of degree 3, a root node ν2N−1 of degree 2 and edge weights

(t1, . . . , t2N−2) between nodes that track elasped evolutionary time. Conditional on F , we

assume independence between S and Y, and refer interested readers to, for example,

Suchard et al (2001) and Drummond et al (2012) for detailed development of p(S,φ, F ).

The dimensions of Yi contain trait observations that may be binary, discrete with multiple

states, continuous or a mixture thereof. Importantly, to handle the myriad of different

data types, we assume that the observation of Y is governed by an underlying unobserved

continuous random variable X = (X1, . . . ,XN)t, called a latent liability, where each row

Xi = (xi1, . . . , xiD) ∈ RD with D ≥ P depending on the mixture of data types. In brief,

we assume that X arise from a multivariate Brownian diffusion along the tree F (Lemey
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et al, 2010) for which we provide a more indepth description shortly. At the tips of F ,

the realized values of Y emerge deterministically from the latent liabilities X through the

mapping function g(X).

4.2.1 Latent Liability Mappings

When column j of Y provides binary data, these values map from a single dimension j′

in X following a probit-like formulation in which the outcome is one if the underlying

continuous value is larger than a threshold and zero otherwise. Without loss of generality,

we take the threshold to be zero, such that

yij = g(xij′) =


0 if xij′ ≤ 0

1 if xij′ > 0.
(4.1)

Alternatively, if column j of Y assumes K possible discrete states (s1, . . . , sK), and they

are ordered so that transitions from state sk to sk+2 must necessarily pass through sk+1, we

entertain a multiple threshold mapping (Wright, 1934). Again, column j of Y maps from

a single dimension j′ in the latent liabilities X; however, the position of xij′ relative to the

multiple thresholds (a1, . . . , aK−1) determines the value of yij through the function

yij = g(xij′) =



s1 if xij′ < a1

sk if ak−1 ≤ xij′ < ak for k = 2, . . . , K − 1

sK if xij′ ≥ aK−1,

(4.2)

where a2, . . . , aK−1 in increasing values are generally estimable from the data if we set

a1 = 0 for identifiability. Let A = {ak} track all of the non-fixed threshold parameters for
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all ordered traits.

When column j of Y realizes values in K multiple states, but there is no ordering between

them, we adopt a multinomial probit model Here the observed trait maps from K − 1

dimensions in the latent liabilities X, and the value of yij is determined by the largest

component of these latent variables, such that

yij = g(xij′ , . . . , xi,j′+K−2) =


s1 if 0 = sup(0, xij, . . . , xi,j+K−2)

sk+1 if xik = sup(0, xij, . . . , xi,j+K−2),
(4.3)

where we have taken without loss of generality the first state s1 to be the reference state.

Finally, if column j of Y returns continuous values, a simple monotonic transform from R

suffices. For example, for normally distributed outcomes, yij = g(xij′) = xij′.

4.2.2 Trait Evolution

A multivariate Brownian diffusion process along the tree F (Lemey et al, 2010) gives rise

to the elements of X. This process posits that the latent trait value of a child node νk in

F is multivariate normally distributed about the unobserved trait value of its parent node

νpa(k) with variance tk×Σ. In this manner, the unknown D×D matrix Σ characterizes the

between-trait correlation and the tree F controls for trait values being shared by descent.

Assuming that the latent trait value at the root node ν2N−1 draws a priori from a multivari-

ate normal distribution with mean µ0 and variance τ0×Σ and integrating out the internal

and root node trait values (Pybus et al, 2012), we recall that the latent liabilities X at the
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tips of F are matrix normally distributed, with probability density function

p(X |V(F ),Σ,µ0, τ0) =
exp

{
−1

2tr
[
Σ−1 (X− µ0)t (V(F ) + τ0J)−1 (X− µ0)

]}
(2π)NP/2 |Σ|N/2 |V(F ) + τ0J|P/2

, (4.4)

where J is the N × N matrix of all ones and V(F ) = {vii′} is an N × N matrix that

is a deterministic function of F . Specifically, let dF (u,w) equal the sum of edge weights

along the shortest path between node u and node w in F . Then diagonal elements vii =

dF (ν2N−1, νi), the time-distance between the root node and tip node i, and the off-diagonal

elements vii′ = [dF (ν2N−1, νi) + dF (ν2N−1, νi′)− dF (νi, νi′)] /2, the time-distance between

the root node and the most recent command ancestor of tip nodes i and i′.

We consider the augmented likelihood for the trait data Y and latent liabilities X and

highlight a convenient factorization

p(Y,X |V(F ),Σ,A,µ0, τ0) = p(Y |X,A)× p(X |V(F ),Σ,µ0, τ0). (4.5)

The conditional likelihood p(Y |X,A) = 1(Y=g(X)) in factorization (4.5) is simply the in-

dicator function that X are consistent with the observations Y. Consequentially, the aug-

mented likelihood is a truncated, matrix normal distribution.

Figure 4.1 illustrates schematic representations of the latent liability model for all four

types of data. In the figure, we include trees with N = 4 to 6 taxa with their observed

traits Y at the tree tips and plot potential realizations of the latent liabilities X values

along these trees that give rise to Y.
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Figure 4.1: Realizations of the evolution of latent liabilities X and observed trait Y for
different types of data. Both tree and Brownian motion plots are color coded according to
the trait Y. Realization (a) represents a continuous trait, (b) represents discrete binary
data, (c) represents discrete data with multiple ordered states, and (d) represents dis-
crete data with multiple unordered states, for which the latent liabilities X is multivariate.
**This figure was created using code modified from R package phylotools (Revell, 2012).
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We complete our model specification by assuming a priori

Σ−1 ∼Wishart(d0,T), (4.6)

with degrees of freedom d0 and rate matrix T. For the non-fixed threshold parame-

ters A, we assume differences ak − ak−1 for each trait are a priori independent and

Exponential(α) distributed, where α is a rate constant. Finally, we specify fixed hyper-

parameters (µ0, τ0, d0,T, α) in each of our examples.

4.2.3 Inference

We aim to learn about the posterior distribution

p(Σ, F,φ,A |Y,S) ∝ p(Y |Σ, F,A)× p(Σ)× p(A)× p(S,φ, F ) (4.7)

=
(∫

p(Y,X |Σ, F,A)dX
)
× p(Σ)× p(A)× p(S,φ, F ).

We accomplish this task through Markov chain Monte Carlo (MCMC) and the develop-

ment of computationally efficient transitions kernels to faciliate sampling of the latent

liabilities X. We exploit a random-scan Metropolis-with-Gibbs scheme. For the tree F and

other phylogenetic parameters φ involving the sequence evolution, we employ standard

Bayesian phylogenetic algorithms (Drummond et al, 2012) based on Metropolis-Hastings

parameter proposals. Further, the full conditional distribution of Σ−1 remains Wishart

(Lemey et al, 2010), enabling Gibbs sampling.

MCMC transition kernels for sampling X are more problematic; tied into this difficulty

also lies computationlly efficient evaluation of Equation (4.4). Strikingly, the solution to
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Figure 4.2: Example N = 3 tree to illustrate pre- and post-order traversals for efficient
sampling of latent liabilities X = (X1,X2,X3)t.

the latter points to new directions in which to attack the sampling problem. As written,

computing p(X |V(F ),Σ,µ0, τ0) to evaluate a Metropolis-Hasting acceptance ratio appears

to command the high computational cost of O(N3) involved in forming (V(F ) + τ0J)−1.

In general, such a cost would be prohibitive for large N when F is random, necessiat-

ing repeated inversion. This is one reason why previous work has limited itself to fixed,

known F . However, we follow Pybus et al (2012), who develop a dynamic programming

algorithm to evaluate density (4.4) in O(N) that avoids matrix inversion. Critically, we ex-

tend these algorithmic ideas in this project to construct computationally efficient sampling

procedures for X.

Pybus et al (2012) propose a post-order tree traversal that visits each node u in F , start-

ing at the tips and ending at the root. For the example tree displayed in Figure 4.2, one

possible post-order traversal proceeds through nodes {1 → 2 → 4 → 3 → 5}. Let Xu for

u = N + 1, . . . , 2N − 1 imply now hypothesized latent liabilities at the internal and root

nodes of F . Then, at each visit, one computes the conditional density of the tip latent

liabilities {X}post
u that are descendent to node u given Xpa(u) at the parent node of u by in-
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tegrating out the hypothesized value Xu at node u. For example, when visiting node u = 4

in Figure 4.2, one considers the conditional density of (X1,X2) |X5. Each of these condi-

tional densities are proportional to a multivariate normal density, so during the traversal

it suffices to simply keep track of the partial mean vector mpost
u , partial precision scalar

ppost
u and remainder term ρu that characterize the conditional density. We refer interested

readers to the Supplementary Material in Pybus et al (2012) for further details.

Building upon this post-order traversal algorithm, we identify that it is possible and prac-

tical to generate samples from p(Xi |X(−i),V(F ),Σ,µ0, τ0) for tip νi without having to

manipulate V(F ) via one additional pre-order traversal of F . This enables us to exploit

p(Xi |X(−i),V(F ),Σ,µ0, τ0) as a proposal distribution in an efficient Metropolis-Hastings

scheme to sample Xi, since the distribution often closely approximates the full conditional

distribution of Xi.

To ease notation in the remainder of this section, we drop explicit dependence on V(F ), Σ,

µ0, τ0 in our distributional arguments. Further, let {X}pre
u collect the latent liabilities at the

tree tips that are not descendent to node u for u = 1, . . . , 2N−1, such that {X}pre
u ∪{X}post

u =

X and {X}pre
u ∩{X}post

u = ∅. Notably, {X}pre
i = X(−i) and {X}pre

2N−1 = ∅. With these goals and

definitions in hand, we find p(Xi |X(−i)) recursively.

Consider a triplet of nodes in F such that node u has parent pa(u) = w that it shares with

sibling sib(u) = v. For example, in Figure 4.2, u = 1, v = 2 and w = 4 is one of two

choices. Because of the conditional independence structure of the multivariate Brownian

diffusion process on F , we can write

p(Xu | {X}pre
u ) =

∫
p(Xu |Xpa(u)) p(Xpa(u) | {X}pre

pa(u), {X}
post
sib(u)) dXpa(u), (4.8)

where Equation (4.8) returns the desired quantity when i = u and the first term of the
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integrand is a multivariate normal density MVN
(

Xu ; Xpa(u), (tuΣ)−1
)

centered at Xpa(u)

with precision (tuΣ)−1. The second term requires more exploration

p(Xpa(u) | {X}pre
pa(u), {X}

post
sib(u)) =

p(Xpa(u), {X}post
sib(u) | {X}

pre
pa(u))

p({X}post
sib(u) | {X}

pre
pa(u))

(4.9)

∝ p({X}post
sib(u) |Xpa(u)) p(Xpa(u) | {X}pre

pa(u)),

where the normalization constant does not depend on Xpa(u) and we fortuitously have de-

termined that p({X}post
sib(u) |Xpa(u)) is proportional to a MVN

(
Xpa(u) ; mpost

sib(u), p
post
sib(u)Σ

−1
)

during

the post-order traversal.

Substituting Equation (4.9) in Equation (4.8) furnishes a set of recursive integrals down

the tree

p(Xu | {X}pre
u ) ∝

∫
p(Xu |Xpa(u)) p({X}post

sib(u) |Xpa(u)) p(Xpa(u) | {X}pre
pa(u)) dXpa(u). (4.10)

To solve the set of integrals in (4.10), we recall that p(X2N−1 | {X}pre
2N−1) = p(X2N−1) is

MVN ( X2N−1 ;µ0, (τ0Σ)−1) and so define pre-order, partial mean vector mpre
2N−1 = µ0 and

partial precision scalar ppre
2N−1 = 1/τ0. Since the convolution of multivariate normal random

variables remains multivariate normal, we identify that p(Xu | {X}pre
u ) is multivariate nor-

mal MVN
(

Xu ; mpre
u , p

pre
u Σ−1

)
where pre-order, partial mean vectors and precision scalars

unwind through

mpre
u =

ppost
sib(u)m

post
sib(u) + ppre

pa(u)m
pre
pa(u)

mpost
sib(u) + mpre

pa(u)
, and

1
ppre
u

= tu + 1
ppost

sib(u) + ppre
pa(u)

, (4.11)

until we hit tip node i.
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With a simple algorithm to compute the mean and precision of the full conditional distri-

bution p(Xi |X(−i),V(F ),Σ,µ0, τ0) at our disposal, we finally turn our attention toward

a Metropolis-Hastings scheme to sample Xi. The algorithm must only generate sam-

ples for the latent liabilities Xi(−c) corresponding to the discrete traits, since the map

function g(·) fixes the latent liabilities Xic for all the continuous traits. Thus we con-

sider the proposal distribution p(Xi(−c) |Xic,X(−i),V(F ),Σ,µ0, τ0), which is obtained from

p(Xi |X(−i),V(F ),Σ,µ0, τ0) by further conditioning on the fixed liabilities Xic. This con-

ditional distribution is MVN ( Xic ; mcond
i , ppre

i Wcc), where

mcond
i = mpre

i(−c) −W−1
cc Wc(−c)

(
Xi(−c) −mpre

i(−c)

)
. (4.12)

Here the vector mpre
i(−c) = (mpre

i(−c),m
pre
ic ) is partitioned according to correspondence to con-

tinuous traits, as is the precision matrix for the diffusion process

Σ−1 =

 W(−c)(−c) W(−c)c

Wc(−c) Wcc

 . (4.13)

Several approaches compete for generating truncated multivariate normal random vari-

ables, including rejection sampling (Breslaw, 1994; Robert, 1995) and Gibbs sampling

(Gelfand et al, 1992; Robert, 1995) possibly with data augmentation (Damien and Walker,

2001). For the examples we explore in this manuscript, the dimension D of Xi can be

large, ranging up to 54 with N = 360 tips, with occasionally high correlation in Σ. Gibbs

sampling can suffer from slow convergence in the presence of high correlation between di-

mensions. Consequentially, we explore an extension of rejection sampling that involves

a multiple-try Metropolis (Liu et al, 2000) construction. We simulate up to R draws
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X(r)
i ∼ p(· |X(−i),V(F ),Σ,µ0, τ0). For draw X(r)

i , if p(X(r)
i |Yi,A) 6= 0, then we accept

this value as our next realization of Xi. Appendix 4.5 demonstrates that the Metropolis-

Hastings acceptance probability of this action is 1. If all R proposals return 0 density, the

MCMC chain remains at its current location.

In our largest example, we briefly evaluate one approach to select R. We start with a

very large R = 10000 and observe that most proposals that lead to state changes occur

in the first 20 attempts; further, after 100 attempts, the residual probability of generating

a valid sample becomes negligible. Thus, we set R = 100 for future MCMC simulation.

As MCMC chains converge towards the posterior distribution, the probably of generating

a valid sample approaches the 75 – 85% range in our examples. Finally, we employ a

Metropolis-Hastings scheme to sample A in which the proposal distribution is a uniform

window centered at the parameter’s current value with a tunable length.

4.2.4 Correlation Testing and Model Selection

To assess the phenotypic relationship between two specific components of the trait vector

Y, we look at the correlation of the corresponding elements in the latent variable X.

One straight-forward approach entertains the use of the marginal posterior distribution of

pair-wise correlation coefficients ρjj′ determined from Σ. As a simple rule-of-thumb, we

designate ρjj′ significantly non-zero if > 99% of its posterior mass falls strictly greater than

or strictly less than 0.

When scientific interest lies in formal comparison of models that involve more than pair-

wise effects, we employ Bayes factors. Possible examples include identifying block-diagonal

structures in Σ, comparing the latent liability model to other trait evolution models and,

as demonstrated in our examples, state-ordering of multiple discrete traits.
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The Bayes factor that compares models M0 and M1 can be obtained as

B01 = p(Y,S|M0)
p(Y,S|M1) , (4.14)

in which p(Y,S|M) is the marginal likelihood of the data under model M (Jeffreys, 1935).

Computing these marginal likelihoods is not straightforward, involving high dimensional

integration. We adopt a path sampling approach which estimates these integrals through

numerical integration.

While estimating the Bayes factor directly by integrating along a path that goes from model

M0 to model M1 is possibly a good strategy for comparing nested or closely related mod-

els, it does not present the same flexibility as estimating individual marginal likelihoods.

Individual marginal likelihoods can be efficiently used for comparisons between multiple

models. Additionally, this strategy is better suited for comparisons between models defined

on different parameter spaces. For this reason, we pursue the latter.

To estimate the marginal likelihoods in (4.14), we follow Baele et al (2012) in consid-

ering a geometric path qβ(Y,S; X,θ) that goes from a normalized source distribution

q0(Y,S; X,θ) to the unnormalized posterior distribution p(Y,S|X,θ)p(X,θ). Here both

distributions are defined on the same parameter space, and θ = {Σ, F,φ,A} collects all

model parameters. The path sampling algorithm employs MCMC to numerically compute

the path integral

log(p(Y,S|M)) =
∫ 1

0
Eqβ [log(q1(Y,S; X,θ))− log(q0(Y,S; X,θ))] dβ. (4.15)

A natural choice for the source distribution is the prior p(X,θ). However, due to trunca-
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tions in the distribution of X induced by the map function g(·), the path from the prior

to the unnormalized posterior is not continuous. Since continuity along the whole path is

required for (4.15) to hold, we propose here a different destination distribution that leads

to a continuous path. Let

q0(Y,S; X,θ) = p(X|Y,A)ψ(X)p(θ), (4.16)

where p(θ) is the prior, p(X |Y,A) = 1(Y=g(X)), and ψ(X) is a function proportional to a

conveniently chosen matrix normal distribution. The proportionality constant of ψ(X) is

selected to guarantee ∫
p(X |Y,A)ψ(X)dX = 1, (4.17)

and thus a normalized source distribution q0(Y,S; X,θ).

The choice of function ψ(X) = ψ∗(X)/Q(Y,A) is central to the success of this path sam-

pling approach. We select the matrix normal distribution ψ∗(X) so that all entries in X are

independent, and consequently the proportionality constant is

Q(Y,A) =
N∏
i=1

P∏
j=0

Q(yij,A) =
N∏
i=1

P∏
j=0

∫
p(Xij∗ | yij,A)ψ∗(Xij∗)dXij∗ , (4.18)

where Xij∗ are all the entries of the latent liability corresponding to yij.

For binary traits, Xij∗ is univariate, and ψ(Xij∗) is proportional to a normal distribution

whose mean X̄ij∗ and variance σ̄2
ij∗ match those of the posterior distribution of Xij∗. Con-

sidering that the map function g(·) restricts Xij∗ to be larger (or smaller) than 0, and that
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X̄ij∗ always belongs to this valid region, the proportionality constant for a binary trait is

Q(Yij,A) = Φ
(
|X̄ij∗|
σ̄ij∗

)
, (4.19)

where Φ (·) is the cumulative distribution function (CDF) of the standard normal distribu-

tion.

For traits with K ≥ 3 ordered states, Xij∗ is also univariate, and we make the same

choice for mean and variance parameters of ψ∗(Xij∗). The map function depends on the

threshold parameters A, that must be fixed for this analysis. If al(yij) and au(yij) denote

respectively the lower and upper threshold for the valid region mapped from yij, then the

proportionality constant becomes

Q(yij,A) = Φ
(
au(yij)− X̄ij∗

σ̄ij∗

)
− Φ

(
al(yij)− X̄ij∗

σ̄ij∗

)
. (4.20)

When yij assumes one of the extreme states s1 and sK , then the normalizing constant

considers the appropriate open interval.

For discrete data with K ≥ 3 unordered states, yij maps from K − 1 dimensions in Y. For

simplicity, ψ∗(Xij∗) is a standard multivariate normal distribution, and the proportionality

constant is

Q(yij,A) =


2−(K−1) if yij = s1

1−2−(K−1)

K−1 if yij = s2, · · · , sK .
(4.21)

Finally, for continuous yij we simply have ψ(Xij∗) = yij.
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Implementation

The methods described in this chapter have been implemented in the software package

BEAST (Drummond et al, 2012).

4.3 Real-World Examples

We present applications of our model to three problems in which researchers wish to assess

correlation between different types of traits while controlling for their shared evolutionary

history.

4.3.1 Antimicrobial resistance in Salmonella

Development of multidrug resistance in pathogenic bacteria is a serious public health bur-

den. Understanding the relationships between resistance to different drugs throughout

bacterial evolution can help shed light on the fundamentals of multidrug resistance on the

epidemiological scale.

We use the phylogenetic latent liability model to assess phenotypic correlation between

resistance traits to 13 different antibiotics in Salmonella. We analyse 248 isolates of

Salmonella Typhimurium DT104, obtained from animals and humans in Scotland between

1990 and 2011 (Mather et al, 2013). For each isolate, we have sequence data and binary

phenotypic data indicating the strains resistance status to each of the 13 antibiotics.

To assess which resistance traits tend to be associated, we examine the correlation matrix

of the latent liabilities X. Because the trait data are binary, the underlying latent variables

Xi for this problem are D = 13-dimensional, with each entry corresponding to resistance

to one antibiotic. To highlight the main correlation structure of Σ, Figure 4.3 presents a

heatmap of the significantly non-zero pair-wise correlation coefficients. This matrix con-

56



tains only positive correlations, consistent with genetic linkage between resistance traits.

Additionally, the significant correlations form a block-like structure. Table 4.3 presents

posterior mean and 95% BCI estimates for all correlations between resistance traits. Es-

timates of non-significant correlations tend to be slightly positive, with the exception of

correlations involving resistance to ciprofloxacin.

Our analysis reveals a block of strong positive correlations between resistance traits to

the antibiotics tetracycline, ampicillin, chloramphenicol, spectinomycin, streptomycin and

sulfamethoxazole (sulfonamide), similar to those found using a simpler model (Mather

et al, 2012). We estimate a posterior probability > 0.9999 for positive correlation between

all these resistance traits simultaneously. This block is consistent with the Salmonella

genomic island 1 (SGI-1), a 43-kb genomic island conferring multidrug resistance. Among

the drugs considered here, SGI-1 confers resistance to these 6 antibiotics (Boyd et al,

2001).

Another pair of antibiotic resistance traits that we infer to be strongly correlated are gen-

tamicin and netilmicin, with a 95% BCI of [0.80, 0.98]. These drugs are both aminoglyco-

side antibiotics, and the same genes may confer resistance to both antibiotics. These drugs

also appear correlated with some of the resistance traits connected to SGI-1.

Although previous analysis of this dataset has revealed that most of the evolutionary his-

tory that these data capture was spent in human hosts, human-to-animal or animal-to-

human transitions do occur across the tree (Mather et al, 2013). We investigate whether

these interspecies transitions also correlate with antibiotic resistance. To do so, we include

host species (animal/human) as a 14th binary trait under in latent liability model. None

of the pair-wise correlations are significantly non-zero given our rule-of-thumb definition.

Table 4.2 contains estimated correlations to the host trait.
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antibiotic resistance traits for the latent liability model. Darker colors indicate stronger
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4.3.2 Columbine flower evolution

The flowers of columbine genus Aquilegia have attracted several different pollinators through-

out their evolutionary history. One question that remains is the exact role the pollinators

play in the tempo of columbine flower evolution (Whittall and Hodges, 2007). Since dif-

ferent pollinator species demonstrate distinct preferences for flower morphology and color,

we investigate here how these traits correlate over the evolutionary history of Aquilegia.

We analyse P = 12 different floral traits for N = 30 monophyletic populations from the

genus Aquilegia. Of these traits, 10 are continuous and represent color, length and orien-

tation of different anatomical features of the flowers. Additionally, we consider a binary

trait that indicates presence or absence of anthocyanin pigment; and another discrete trait

that indicates the primary pollinator for that population. The pollinator trait was assessed

through a combination of floral characters known as pollination syndrome. The prevail-

ing hypothesis is that evolutionary transitions from bumblebee-pollinated flowers (Bb) to

those primarily pollinated by hawkmoths (Hm) are obligated to pass through an inter-

mediate stage of hummingbird-pollination (Hb) (Whittall and Hodges, 2007), we treat

pollinators as ordered states, but we formally test alternative orderings. Taken together,

this results in a latent liability model with D = 12 dimensions. As sequence data are not

readily available for all the taxa included in this analysis, we consider for our analysis the

same fixed phylogenetic tree used in Whittall and Hodges (2007). The ability to either

condition on a fixed phylogeny F or integrate over a random F in a single framework

presents a strength in a field that has traditionally focused on either genetic or phenotypic

data alone and joint datasets are an emerging addition. Whittall et al (2006) and Whit-

tall and Hodges (2007) have published the original data that are available on the Bodega

phylogenetics website (http://bodegaphylo.wikispot.org).

To draw inference on the phenotypic correlation structure of these traits, we focus on the
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12× 12 variance matrix Σ of the Brownian motion process that governs the evolution of X

on the tree. We report posterior mean and BCI estimates for all pair-wise correlations in Σ

in Table 4.4. Figure 4.4 presents a heatmap of the posterior means of the correlations, in

which blue represents negative phenotypic correlation, and red represents positive ones.

Our analysis reveals a strong block correlation structure between the floral traits. We find

one block of positive correlation between chroma of both spur and blade and the presence

of anthocyanins. All other color and morphological traits in the analysis form a second

block of positive correlation. Additionally, phenotypic correlation between the first and

second trait blocks are all negative.

Whittall and Hodges (2007) highlight the relationship between changes in pollinators and

increases in the length of floral spurs. They argue that flowers with longer spurs are only

pollinated by the hawkmoths, because the other pollinators with shorter tongues cannot

access and feed on the nectar contained at the end of the spur. Here we estimate a positive

correlation between pollinators and spur length, with a posterior mean of 0.76, and a 95%

BCI of [0.60; 0.88], consistent with their findings.

The pollinator trait has K = 3 ordered states and, under the latent liability model, one

dimension in X determines the trait outcome. Specifically, the position of this column

relative to threshold parameters a1 = 0 and a2 determine the outcome. Consequently, our

estimate of a2 is instrumental in determining the relative probabilities of the states in our

model and the inferred trait state at the root of the tree. We estimate a2 to have a posterior

mean of 3.00 with a 95% BCI of [1.14; 5.34].

The bumblebee ↔ hummingbird ↔ hawkmoth (Bb-Hb-Hm) orderings is only one of sev-

eral, and alternative hypotheses regarding pollinator adaptation could be proposed (van der

Niet and Johnson, 2012; Smith et al, 2008b). We examine whether the data support the

Bb-Hb-Hm ordering, or if there is another model with a better fit. We use the Bayes factors

61



Table 4.1: Model selection for the ordering of bumblebee (Bb), hummingbird (Hb) and
hawkmoth (Hm) pollinators in Columbine flowers.

log Marginal log Bayes Factor
Order Likelihood Hm-Bb-Hb Hb-Hm-Bb unordered

Bb-Hb-Hm -11.2 9.4 14.2 24.8
Hm-Bb-Hb -20.6 - 4.8 15.3
Hb-Hm-Bb -25.4 - - 10.5
unordered -36.0 - - -

to compare four different models for the pollinator trait: the Bb-Hb-Hm, Hb-Hm-Bb, Hm-

Bb-Hb, and an unordered formulation. Note that there are only three possible orderings

for a K = 3 state ordered latent liability model since, for symmetric models such as Bb-Hb-

Hm and Hm-Hb-Bb, inverting the order leads to equivalent models with inverted signs for

the latent traits. The unordered model leads to a bivariate contribution to latent liabiliy X.

Table 4.1 presents the path sampling estimates for the marginal likelihood of each model

and the corresponding Bayes factors. These comparisons indicate that, in agreement with

Whittall and Hodges (2007), the data strongly support the Bb-Hb-Hm model.

Our latent liability model estimates correlation between traits while accounting for shared

evolutionary history. To evaluate the effect that phylogenetic relatedness has on our esti-

mates of the trait correlation structure, we estimated the same correlation under a latent

liability model with no phylogenetic structure. In this analysis, a star tree with identical

distance between all taxa was used. Table 4.5 presents these correlation estimates and the

corresponding 95% BCI. Comparing these results to the original latent liability analysis that

accounts for shared evolutionary history, we noticed that most estimates were consistent

between the both analyses, with a mean absolute difference for posterior means of corre-

lation of 0.11. However, for three of the pairwise correlations (anthocianins × orientation,

orientation × blade length, spur length × spur hue) the BIC‘s for the model that does

not account for shared evolution did not contain the posterior mean for the evolutionary
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model. In particular, the evolutionary model estimates a significantly weaker correlation

between spur length and spur hue (posterior mean of 0.55) than does the model that does

not account for shared history, with a 95% BCI of [0.63; 0.87].

4.3.3 Correlation within and across influenza epitopes

In influenza, the viral surface proteins hemagglutinin (HA) and neuraminidase provide

the antigenic epitopes to which the host immune system responds. Rapid mutation of

these proteins to evade immune response, known as antigenic drift, severely challenges

the design of annual influenza vaccines. The epitope regions in these genes are particu-

larly important to the drift process (Fitch et al, 1991; Plotkin and Dushoff, 2003). In this

context, we are interested in studying the phenotypic correlation among the amino acid

sites of these epitopes, because the identification of correlated amino acids grants insight

into the dynamics of antigenic drift in influenza.

The HA protein has five identified epitopes A-E, each containing around 20 amino acids.

We focus on epitopes A and B, because these are the most immunologically stimulating

for most influenza strains (Bush et al, 1999; Cox and Bender, 1995). We analyse sequence

data for 180 strains of human H3N2 influenza dating from 1995 to 2012, obtained from

the Influenza Research Database (http://www.fludb.org) and selected to promote geo-

graphic diversity. We use the amino acid information in epitope A and B for the latent

liability part of the model, and the remaining sequence data in a standard phylogenetic

approach to inform the tree structure.

Of the 40 amino acid sites in epitopes A and B of the HA protein, we find 17 to be variable

in our sample. The number of unique amino acids in these sites varies between K = 2

and K = 5. Through a preliminary survey of a larger sample of influenza strains (900

samples) from the same period we find that all polymorphic sites for which the major allele
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Figure 4.5: Heatmap of the posterior mean for the non-zero phenotypic correlations of
amino acids in H3N2 epitopes A and B in the latent liability model. Darker colors indicate
stronger correlation. We list the sites as follows: the number of the amino acid site in
the aligned sequence; the one letter code for the reference amino acid for the site, in
parenthesis; the code for the amino acid corresponding to the latent trait; and the epitope
to which the site belongs.
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frequency is < 99% are also variable in our 180 sequence sample, strongly suggesting that

our limited dataset contains information about all the common variant sites in epitopes A

and B during this period.

We model these data with the latent liability model for multiple unordered states. For each

amino acid site, we have K−1 corresponding latent traits, yielding a total of D = 32 latent

dimensions in X. Without loss of generality, we take the amino acid observed in the oldest

sequence of the sample as the reference state, and each entry of the latent liability column

corresponds to one of the other amino acid variants for that site.

To assess the phenotypic correlation structure between sites in epitopes A and B, we esti-

mate the correlation matrix associated with Σ of the latent liability X. Figure 4.5 presents

a heatmap with the pairwise correlations for the significantly non-zero estimates. The ar-

rangement of the states follows the order of the sites in the primary amino acid sequence,

even though the sites are not necessarily contiguous in folded protein-space.

Our analysis suggests a group of 10 sites that are strongly correlated with each other. This

group includes all the sites identified by Koel et al (2013) as being the major determi-

nants of antigenic drift that are polymorphic in our sample. We do not find preferential

correlations within epitopes.

Table 4.6 presents a list with point estimates and 95% BCI of correlations whose credible

intervals do not include zero. All correlations in this list are positive and point estimates

range from 0.6 to 0.74. Since, for all sites the oldest variant was taken as the reference

state, a positive correlation between two latent traits could be seen as association between

novel amino acids in both sites. The strongest evidence for correlation was found between

sites 158(E)K and 156(K)Q, with an estimated correlation coefficient of 0.74 (95% BIC of

[0.40, 0.93]). Koel et al (2013) identified these specific mutations in both sites as being

the main drivers of an event of major antigenic change that took place between 1995 and
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1997. Mutations in sites 159 and 189 are another example of a pair of substitutions iden-

tified as driving an event of major antigenic change taking place in the late 1980’s. Even

though the oldest sequence in our sample only dates back to 1995, correlation between

these two sites remains strongly supported by our analysis, with an estimated correlation

coefficient between 159(Y)F and 189(S)N of 0.69 (95% BIC of [0.27, 0.92]).

4.4 Discussion

We present the phylogenetic latent liability model as a framework for assessing phenotypic

correlation between different types of data. Through our three applications, we illustrate

the use of our methodology for binary data, discrete data with multiple ordered and un-

ordered states, continuous data and combinations thereof. The applications exemplify

current biological problems which our method can naturally address. Additionally, we

show how the model can be used to reveal the overall phenotypic correlation structure

of the data, and we provide tools to test hypotheses about individual correlations and for

general model testing.

The threshold structure of the phylogenetic latent liability model renders it non-Markovian

for the discrete traits. Both Felsenstein (2005, 2012) and Revell (2013) argue that this is

actually a valuable property for many phenotypic traits for which the probability of transi-

tioning between states should vary depending on the time spent at that state. Based on this

argument, Revell (2013) investigates ancestral state reconstruction for univariate ordered

traits under the threshold model, and finds consistent reconstructions for simulated data.

For our model, it would be straightforward to perform ancestral state estimation for multi-

variate traits of all types considered, since the inference machinery is already implemented

in BEAST.

A problem with many comparative biology methods for phenotypic correlation is the re-
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quirement for a fixed tree. Through sequence data, our model can account for the uncer-

tainty of tree estimation by integrating over the space of phylogenetic trees, as we do for

the influenza epitope and antibiotic resistance examples.

As a caveat for this type of model, Felsenstein (2012) points out a general lack of power,

arguing that for real size datasets confidence intervals would be too large. This issue could

be magnified on discrete traits, since the correlations are an extra step removed from the

data. In our applications, the size of our posterior credible intervals are relatively large for

intervals constrained between -1 and 1. However, this did not prevent us from recover-

ing general correlation patterns and identifying important correlations. Moreover, for the

columbine flower example, we find no difference in average size of credible intervals for

correlations including latent traits and those between two continuous traits.

Analytically integrating out continuous trait values at root and internal nodes to compute

the likelihood of Brownian motion on a tree leads to significant improvement in efficiency

of inference methods (Pybus et al, 2012). This strategy computes successive conditional

likelihoods by a post-order tree traversal in a procedure akin to Felsenstein’s peeling al-

gorithm (Felsenstein, 1981a). Its effectiveness has been explored in similar contexts in

univariate (Novembre and Slatkin, 2009; Blum et al, 2004) and multivariate Brownian

motion (Freckleton, 2012) and even to estimate the Gaussian component of Lévy pro-

cesses (Landis et al, 2013). A related post-order traversal approach has been used to

improve computation in the context of phylogenetic regressions for some Gaussian and

non-Gaussian models (Ho and Ané, 2014). Unfortunately, a similar solution is not avail-

able to marginalize the latent liability X at the tips of the tree in our model. Consequently

this integration must be performed by MCMC. Integration for X is a critical part of our

method, and for large datasets, mixing becomes a problem. To address this issue, we

present an efficient sampler that, at each iteration, updates all components of the multi-
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variate latent variable X at one tip of the tree. This algorithm builds upon the dynamic

programming strategy of Pybus et al (2012) to obtain a truncated multivariate normal as

the full conditional distribution of Xi. Even though sampling from this truncated distribu-

tion still requires an accept/reject step that could be highly inefficient, we find that as the

chain approaches equilibrium, rejection rates tend to become small.

In our analysis of influenza epitopes, we set the oldest amino acid observed for each site as

the reference state, and for each of the remaining variants we assigned an entry in X. For

the multiple unordered states model, this choice results in a reduction of dimensionality

in the problem, but is done mainly to improve identifiability. However, this procedure

breaks the symmetry of the model and complicates interpretability of correlations. In fact,

a correlation between two entries of the latent trait X cannot be directly translated as a

correlation between the states they represent, since variations in an entry of X are linked

to all other states for that trait through the reference state. Despite this caveat, general

statements about the correlation structure of the data can still be made based on the latent

liability X, as we show in the influenza epitopes application.

In this context, different model choices could be used to change the interpretational links

between correlations in X and in the data. Hadfield and Nakagawa (2010) briefly discuss

a multinomial phylogenetic mixture model where a latent variable determines the proba-

bility of the multinomial outcome. They consider the common choice of constraining the

latent variable to a simplex by setting the sum of its components to one. This makes the

value of the latent trait immediately interpretable as probabilities, however it further com-

plicates interpretability of the correlations. A possible alternative to address this issue is

to model the evolution of X in the latent liability model with a central tendency such as

the Ornstein-Uhlenbeck process. It remains to be investigated whether this would improve

identifiability, eliminating the need to impose constraints on the model.
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Lartillot and Poujol (2011) have studied the correlation between continuous traits and

parameters of the molecular evolution model, such as dS/dN ratio and mutation rate, by

modelling the evolution of these parameters as a diffusion process along the tree. One

possible extension to our method would be to incorporate the evolution of these parame-

ters in our model, allowing for the estimation of correlations between our continuous and

discrete traits and these evolutionary parameters.

The Bayesian phylogenetic framework in which we integrate our model easily lends itself

to combination of different models. These could be phylogenetic models for demographic

inference (Minin et al, 2008), methods for calibrating trees and relaxed clock models

(Drummond et al, 2006). Additionally, we can explore the relaxed random walk (Lemey

et al, 2010) to get varying rates of trait evolution along different branches of the tree.

The latent liability model can easily be associated with these existing models to provide

comprehensive analyses.
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4.5 Appendix: Sampling repeatedly from truncated multivariate nor-

mal and Metropolis-Hastings acceptance ratio

In this section we obtain the Metropolis-Hastings ratio for the multiple-try Metropolis

algorithm pretended in subsection 4.2.3. Proposals are designed as follows: draw re-

peated samples from X(r)
i ∼ p(· |X(−i),V(F ),Σ,µ0, τ0), stop when p(Xr

i |Yi) 6= 0 or

after R attempts. To compute the acceptance ratio for this Metropolis-Hastings algo-

rithm, we must first obtain the proposal distributions q(X∗i |Xk
i ). Notice, however, that

p(· |X(−i),V(F ),Σ,µ0, τ0) does not depend on the current state Xk
i , thus the proposal dis-

tribution can be written as q(X∗i ). For the remainder of this section, let the parameter

θ = {V(F ),Σ,µ0, τ0} .

The outcome of the proposal can be divided in two groups. In the first, we reach R’th

attempt without proposing a valid value for Xi. In this case, an invalid value will be

proposed and automatically rejected (since it’s likelihood is zero). In the second group,

a valid value is proposed in one of the R attempts. The probability of proposing a valid

value is

P (valid) =
R−1∑
j=0

[∫
/V
p(Xi |X(−i),θ)dXi

]j ∫
V
p(Xi |X(−i),θ)dXi,

where V represents the valid region and /V its complement. If X∗i is a valid value we have

q(X∗i ) = p(valid,X∗i ) = p(X∗i |valid)p(valid)

= p(X∗i |X(−i),θ)∫
V p(Xi |X(−i),θ)dXi

R−1∑
j=0

[∫
/V
p(Xi |X(−i),θ)dXi

]j ∫
V
p(Xi |X(−i),θ)dXi

= p(X∗i |X(−i),θ)
R−1∑
j=0

[∫
/V
p(Xi |X(−i),θ)dXi

]j
.

Notice that the sum of integrals above does not depend on Xk
i , so the Hastings ratio be-
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comes

HR = q(Xk
i )

q(X∗i )
= p(Xk

i |X(−i),θ)
p(X∗i |X(−i),θ) ,

which does not depend on the maximum number of attempts R. The acceptance ratio for

the Metropolis-Hastings algorithm is then

AR = q(Xk
i )

q(X∗i )
p(X∗,Y|θ)
p(Xk

i ,Y|θ)

= p(Xk
i |X(−i),θ)

p(X∗i |X(−i),θ)
p(X∗i |X(−i),θ)p(X∗i |Y)P (X(−i),Y|θ)
p(Xk

i |X(−i),θ)p(Xk
i |Y)P (X(−i),Y|θ) = 1.

Thus, if a valid value is proposed, the Metropolis-Hastings algorithm accepts it with prob-

ability 1.

Summary

In summary, our multiple-try Metropolis algorithm generates samples for the latent liability

X at the tips as follows:

1. Randomly select a tip i to update.

2. Obtain the conditional distribution p(· |X(−i),θ):

(a) Compute the partial mean vectors mpost
u and precision scalars ppost

u in the post

order traversal:

• For the tips mpost
u = Xu and ppost

u = 1/tu;

• For the internal nodes, if νd1(u) and νd2(u) represent the two child nodes to
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node νu, then

mpost
u =

ppost
d1(u)m

post
d1(u) + ppost

d2(u)m
post
d2(u)

mpost
d1(u) + mpost

d2(u)
, and

1
ppost
u

= tu + 1
ppost
d1(u) + ppost

d2(u)
, (4.22)

(b) Compute the partial mean vectors mpre
u and precision scalars ppre

u in the path from

the root to νu:

• For the root mpre
u = µ and ppre

u = 1/φ;

• For the other nodes:

mpre
u =

ppost
sib(u)m

post
sib(u) + ppre

pa(u)m
pre
pa(u)

mpost
sib(u) + mpre

pa(u)
, and

1
ppre
u

= tu + 1
ppost

sib(u) + ppre
pa(u)

, (4.23)

(c) Obtain p(·|X(−i),θ) = MVN(·; mpre
i , p

pre
i P).

3. PROPOSAL: Generate proposal X∗i according to q(Xi) by repeatedly generating sam-

ples from p(·|X(−i),θ). Stop when P (X∗i |Yi) = 1 or after R attempts.

4. DECISION:

• accept Xk+1
i = X∗i , if p(X∗i |Yi) = 1,

• reject X∗i if (X∗i |Yi) = 0, and set Xk+1
i = Xk

i .
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4.6 Appendix: Supplementary tables form the applications

Table 4.2: Posterior mean and 95% Bayesian credible interval (BCI) estimates for pairwise
correlation between the host trait (Animal/Human) and the different antibiotic resistance
traits.

Correlation 95% BCI
Ampicillin 0.0349 [-0.2357, 0.3036]

Chloramphenicol -0.0610 [-0.3055, 0.1903]
Ciprofloxacin 0.1505 [-0.3313, 0.6099]

Gentamicin -0.3651 [-0.6893, -0.0086]
Kanamycin -0.1578 [-0.4641, 0.1715]

Furazolidone 0.0001 [-0.3131, 0.3098]
Nalidixic acid -0.0967 [-0.4199, 0.2439]

Netilmicin -0.3315 [-0.6551, 0.0145]
Spectinomycin -0.2696 [-0.5130, 0.0009]

Streptomycin -0.1392 [-0.4020, 0.1375]
Sulphamethoxazole 0.1399 [-0.2104, 0.4768]

Tetracycline -0.0142 [-0.2716, 0.2471]
Trimethoprim 0.0049 [-0.2888, 0.2976]
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Table 4.6: Posterior mean and 95% Bayesian credible
interval (BCI) estimates for significant correlations be-
tween sites in Influenza epitopes A and B.

Sites Correlation 95% BCI
1 [156(K)Q EpB, 158(E)K EpB] 0.7432 [0.3999, 0.9284]
2 [158(E)N EpB, 189(S)K EpB] 0.7365 [0.2806, 0.9499]
3 [144(V)N EpA, 158(E)K EpB] 0.7204 [0.3469, 0.9249]
4 [133(D)N EpA, 144(V)N EpA] 0.7180 [0.2908, 0.9391]
5 [159(Y)F EpB, 189(S)N EpB] 0.6913 [0.2655, 0.9174]
6 [144(V)I EpA, 156(K)Q EpB] 0.6883 [0.2880, 0.9161]
7 [133(D)N EpA, 158(E)K EpB] 0.6849 [0.2355, 0.9360]
8 [144(V)N EpA, 145(N)S EpA] 0.6826 [0.1411, 0.9304]
9 [131(A)T EpA, 159(Y)F EpB] 0.6792 [0.1932, 0.9353]

10 [145(N)S EpA, 188(D)Y EpB] 0.6726 [0.2276, 0.9137]
11 [144(V)N EpA, 188(D)Y EpB] 0.6640 [0.0368, 0.9332]
12 [144(V)N EpA, 156(K)Q EpB] 0.6602 [0.2393, 0.9076]
13 [159(Y)F EpB, 189(S)K EpB] 0.6586 [0.1364, 0.9346]
14 [156(K)H EpB, 159(Y)F EpB] 0.6585 [0.1583, 0.9204]
15 [158(E)K EpB, 188(D)Y EpB] 0.6534 [1.503e-05, 0.9262]
16 [144(V)N EpA, 144(V)D EpA] 0.6523 [0.0478, 0.9326]
17 [144(V)D EpA, 158(E)K EpB] 0.6516 [0.1447, 0.9094]
18 [131(A)T EpA, 156(K)H EpB] 0.6500 [0.1195, 0.9357]
19 [156(K)H EpB, 189(S)N EpB] 0.6381 [0.1477, 0.9119]
20 [144(V)N EpA, 156(K)H EpB] 0.6376 [0.0889, 0.9335]
21 [133(D)N EpA, 156(K)Q EpB] 0.6343 [0.1697, 0.9142]
22 [133(D)N EpA, 156(K)H EpB] 0.6328 [0.0869, 0.9432]
23 [145(N)S EpA, 156(K)H EpB] 0.6324 [0.0278, 0.9333]
24 [133(D)N EpA, 144(V)D EpA] 0.6320 [0.0886, 0.9170]
25 [144(V)I EpA, 158(E)K EpB] 0.6291 [0.1824, 0.8998]
26 [145(N)S EpA, 198(A)S EpB] 0.6195 [0.1026, 0.9115]
27 [156(K)H EpB, 198(A)S EpB] 0.6192 [0.0813, 0.9172]
28 [158(E)N EpB, 159(Y)F EpB] 0.6192 [0.0549, 0.9204]
29 [133(D)N EpA, 145(N)S EpA] 0.6190 [0.0058, 0.9267]
30 [189(S)K EpB, 193(S)Y EpB] 0.6138 [0.0330, 0.9231]
31 [131(A)T EpA, 189(S)N EpB] 0.6047 [0.0788, 0.9113]
32 [131(A)T EpA, 189(S)K EpB] 0.6030 [0.0881, 0.9200]
33 [144(V)D EpA, 156(K)Q EpB] 0.5898 [0.0680, 0.8939]

Continues on next page
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Sites Correlation 95% BCI
34 [159(Y)F EpB, 198(A)S EpB] 0.5780 [0.0158, 0.9013]
35 [145(N)S EpA, 158(E)K EpB] 0.5774 [0.0008, 0.8927]
36 [144(V)K EpA, 189(S)K EpB] 0.5738 [0.0089, 0.9101]
37 [131(A)T EpA, 158(E)N EpB] 0.5652 [0.0013, 0.9056]
38 [133(D)N EpA, 197(R)Q EpB] 0.5644 [0.0600, 0.8911]
39 [189(S)K EpB, 193(S)F EpB] 0.5149 [0.0128, 0.8652]
40 [131(A)T EpA, 193(S)F EpB] 0.4865 [0.0112, 0.8355]
41 [159(Y)F EpB, 193(S)F EpB] 0.4849 [0.0015, 0.8354]

-

*The code for sites is as follows: of the number of the amino acid site in the aligned sequence; the

one letter code for the reference amino acid for the site in parenthesis; the code for the amino acid

corresponding to the latent trait; and the epitope to which the site belongs.
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CHAPTER 5

Bayesian Nonparametric Clustering in Phylogenetics:

Modeling Antigenic Evolution in Influenza 1

Abstract. Influenza is responsible for up to 500,000 deaths every year, and antigenic vari-

ability represents much of its epidemiological burden. To visualize antigenic differences

across many viral strains, antigenic cartography methods use multidimensional scaling on

binding assay data to map influenza antigenicity onto a low-dimensional space. In these as-

says, the influenza strains naturally form clusters of similar antigenicity that correlate with

sequence evolution. To understand the dynamics of these antigenic groups, we present a

framework that jointly models genetic and antigenic evolution by combining multidimen-

sional scaling of binding assay data, Bayesian phylogenetic machinery and nonparametric

clustering methods. We propose a phylogenetic Chinese restaurant process that modifies

the Chinese restaurant process to incorporate the evolutionary dependency structure be-

tween strains in the modeling of antigenic clusters. With this method, we are able to

use the genetic information to better understand the evolution of antigenicity throughout

epidemics, as shown in an application of this model to a H1N1 dataset.

1This project is joint work with Janet S. Sinsheimer, Trevor Bedford, Andrew Rambaut and Marc A.
Suchard
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5.1 Introduction

Every year, 10 to 20% of the world population is affected by influenza epidemics, with

a death toll of approximately half a million people. Additionally, there is an enormous

disease burden associated with influenza, with economic losses reaching an estimated 87

billion dollars for seasonal influenza in the US alone (Stohr, 2002; Molinari et al, 2007;

Thompson et al, 2006). The World Health Organization (WHO) carefully monitors the

influenza epidemics and defines strategies regarding disease control, including vaccine

design. One of the main challenges for vaccination is the constant evolution of viral im-

munogenic proteins to evade immune response, known as antigenic drift. To be effective,

vaccines must be designed specifically for the antigenic types circulating after they are

administered, and these do not necessarily coincide with those circulating at the time of

design. Consequently, an understanding of how viral antigenicity evolves over time is

paramount for the efficacy of future influenza vaccination campaigns. In this paper we

present methodology to study this evolutionary process through the perspective of clusters

of viruses with similar antigenicity, and its relation to genetic evolution.

To characterize changes in antigenicity, researchers use information on how strongly the

viral proteins interact with sera that represent immune responses to specific viral strains.

This information is traditionally obtained from binding assays that measure the affinity of

the two main immunogenic viral proteins, Hemagglutinin (HA) and Neuraminidase (NA),

to the sera. To visualize patterns across many viral strains, antigenic cartography methods

use these binding assay data to map influenza antigenicity onto a low-dimensional space

(with generally 2 dimensions). In these maps, points that are close together represent

antigenically similar strains (Smith et al, 2004; Cai et al, 2010).

Since their introduction in 2004, antigenic cartography methods have gained significant

popularity, and are currently among the tools used by the WHO for vaccine strain selection
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(Smith et al, 2008a). Antigenic cartography methods have been used to study differences

in antigenic evolution between NA and HA proteins, the history of seasonal influenza in the

last 35 years, and vaccination strategies for avian influenza (Sandbulte et al, 2011; Smith

et al, 2004; Fouchier and Smith, 2010). Although the initial motivation was seasonal

influenza, antigenic cartography methods have also found applications in horse and swine

influenza, as well as in other diseases such as rabies and malaria (Smith et al, 2008a).

These studies have shown that the influenza strains tend to form aggregates based on

similar antigenicity. Clusters are temporally oriented, so that in most years the circulat-

ing influenza strains belong to only one or two of the clusters. Additionally, they show

that antigenic evolution correlates with genetic evolution. Nevertheless, this correlation

is not perfect. While genetic evolution is approximately continuous over time, antigenic

evolution seems to be more punctuated (Smith et al, 2008a).

For all its potential impact, methods that explicitly model the correlation between genetic

evolution and antigenicity, as measured through antigenic cartography maps, have been

conspicuously absent. Bedford et al (2014) lay groundwork for this type of study by pre-

senting a probabilistic model for the multidimensional scaling of binding assay data. They

use a Bayesian phylogenetic framework to connect molecular evolution to the antigenic

map. We build upon their model to create our phylogenetic antigenic clustering method.

Our goal is to use the genetic information to better understand the evolution of antigenic-

ity, the emergence of new antigenic groups and the molecular changes which give rise to

new clusters.

Our model focuses on the antigenic groups. Since there is potentially an infinite number of

groups and the interactions of the evolutionary processes that govern antigenic evolution

are not simply defined parametrically, we opt to use a nonparametric model. A canonical

choice for modeling nonparametric clustering would be the Dirichlet mixture model, where
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the likelihood of the data is a mixture of normal distributions with the normal components

representing the clusters (Antoniak, 1974). However, in the Dirichlet mixture model, the

data points are assumed to be exchangeable and there is no flexibility for a dependency

structure. This is not appropriate for antigenic data, since the viral strains are related to

each other through evolution. Some strains are more recently diverged than others, and

these relationships are captured by the phylogenetic tree. Thus, for this problem, a method

that considers the dependency structure between samples in determining the probabilities

of clustering would be more adequate.

Recent developments in Bayesian nonparametics have made it feasible to account for the

dependency structure required to incorporate phylogenetic data in this clustering prob-

lem. Miller et al (2012) present a variation on the Indian buffet process that incorporates

a nonexchangeable prior in the form of a tree. Dahl (2008) presents a modification of

the Chinese restaurant process (CRP) that considers distances between data points for

computing the probabilities of cluster arrangements. Blei and Frazier (2011) present an

alternative representation of the CRP that also incorporates a distance matrix, but presents

a more efficient sampling scheme. Both CRP models can be reduced to the original CRP

by an appropriate choice of parameters. We build upon the distance dependent Chinese

restaurant process - ddCRP (Blei and Frazier, 2011) as a clustering method for defining

antigenic groupings. In our phylogenetic Chinese restaurant process (pCRP), distances

between data points are informed by the phylogenetic tree.

In summary, our model follows Bedford et al (2014) in generating an antigenic map from

binding assay data. The virus locations in the antigenic map are parameters of their proba-

bilistic multidimensional scaling model. We define the pCRP as a clustering prior for these

location parameters. This prior assigns each viral strain to one antigenic cluster, such that

probabilities of clusters are a function of phylogenetic relatedness. By jointly modeling the
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cartographic map, antigenic clustering and molecular evolution, we effectively incorpo-

rate uncertainty about mapping, the unobserved phylogeny, and evolutionary parameters.

Therefore, we are able to jointly estimate distributions for the antigenic map and cluster-

ing, while assessing how these relate to molecular evolution.

In the following section we present our model, and the sampling scheme that allows us to

draw inference from it. Then, in Section 5.3, we present an application of this model to

H1N1 influenza. A discussion of the results, modeling and future directions is presented

in Section 5.4.

5.2 Methods

Consider a dataset of aligned molecular sequences S from N influenza strains and an

N × M cross-reactivity matrix H = {hij} originating from hemagglutination inhibition

(HI) assays for the N viral strains and M challenging sera. With the purpose of assessing

antigenic similarities between viruses, HI assays measure the reactivity of one viral strain to

serum containing antibodies raised against another. These assessments are made through

serial dilutions, and the cross-reactivity measure hij represents log2 of the largest dilution

titer at which serum j is effective against viral strain i.

We model the sequence data S using standard Bayesian phylogenetics models (Drummond

et al, 2012) that include, among other evolutionary parameters θ, an unobserved phylo-

genetic tree F that represents the evolutionary relationship between the N viruses. This

phylogenetic tree is a bifurcating, directed graph with N terminal nodes of degree 1 that

correspond to the tips of the tree, N − 2 internal nodes of degree 3, a root node of degree

2. The edge weights between nodes are termed branch lengths and track elapsed evolu-

tionary time. Conditional on F , we assume independence between the sequence data and

H.
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In our model, H is used to generate an antigenic cartography map of the N viruses. We

then model the locations of the virus on this map as a phylogenetic Chinese restaurant

process (pCRP) that clusters viruses based on antigenic and phylogenetic distances, linking

H and S. In order to create a 2-dimensional antigenic map that preserves the relationships

represented in H, we employ the Bayesian multidimensional scaling (BMDS) method of

Bedford et al (2014).

5.2.1 Bayesian multidimensional scaling

Let X = (X1, · · · ,XN)t be the N × 2 matrix of virus locations in the antigenic cartography

map, such that Xi = (xi1, xi2) for i = 1, · · ·N . Likewise, let Y = (Y1, · · · ,YM)t represent

the M × 2 analogous matrix of antigenic coordinates for the sera, with Yj = (yj1, yj2)

for j = 1, · · ·M . BMDS is a probabilistic approach that estimates locations X and Y by

matching immunologic distances from H to distances in the antigenic map (Bedford et al,

2014).

If h′ij represents the theoretical titer at which reactivity ceases between virus i and serum

j on a continuous scale, the immunologic distance can be defined as

∆ij = sj − h′ij (5.1)

in which sj = max{h1j, · · · , hNj} represents the fixed serum effect. Additionally, let δij =

||Xi −Yj||2 represent the Euclidean distance between Xi and Yj. BMDS assumes that the

HI titers are normally distributed with variance ϕ2 and mean such that the expected value

for the immunologic distance ∆ij is the map distance δij, thus

h′ij ∼ N (sj − δij, ϕ2), (5.2)
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where N (µ, σ2) represents the normal distribution with mean µ and variance σ2.

However, the observed hij ’s are integer values representing the last titer in the serial dil-

lution at which reactivity was detected, consequently the matrix H is censored and inter-

valed. To circumvent this issue, we adopt the interpretation of an observed titer hij as a

threshold, which implies that reactivity has ceased somewhere between the titers hij and

hij + 1. Thus, the likelihood of an observed titer can be computed as

p(hij|Xi,Yj, ϕ
2) = φ

(
hij + δij − sj + 1

ϕ

)
− φ

(
hij + δij − sj

ϕ

)
, (5.3)

where φ(·) is the standard normal cumulative distribution function. When a serum and

virus pair is not reactive for the smallest titer in the assay, the likelihood is defined analo-

gously as an open interval, through the lower tail probability.

Assuming independence between the observations in H, the joint likelihood can be com-

puted as

p(H|X,Y, ϕ2) =
∏

(i,j)∈I
p(hij|Xi,Yj, ϕ

2), (5.4)

where I is the set of virus/serum pairs (i, j) for which observations are available. We note

that, due to experimental constraints, most of the N ×M comparisons cannot be made,

leading to an incomplete matrix H and identifiability issues in the model.

We address identifiablity by adopting the drift prior of Bedford et al (2014) on the serum

locations. The drift prior assumes that locations are normally distributed, and their ex-

pected values increase linearly with date of sampling along antigenic dimension 1. Thus

yj1 ∼ N (βtj, σ2
y) and yj2 ∼ N (0, σ2

y), (5.5)
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for j = 1, · · ·M , where ti is the difference between time of sampling of serum j and that of

the oldest virus or serum in the sample, β is the drift parameter and σ2
y is the serum prior

variance. This choice of prior is motivated by the observation that antigenic distances in

influenza tend to increase over time (Smith et al, 2004).

To complete specification of the BMDS model, we select gamma prior distributions for

the multidimensional scaling precision 1/ϕ2, and the precision 1/σ2
y of the serum drift

prior. We also adopt a diffuse gamma prior on the serum drift parameter β. Finally, the

prior distribution of virus locations X on the antigenic map is given by the pCRP, thus

connecting BMDS to antigenic clustering.

5.2.2 Phylogenetic Chinese restaurant process

The CRP (Blackwell and MacQueen, 1973) is a stochastic process that can be used to

generate samples from the Dirichlet process. It is usually understood through the following

analogy: customers arrive in turn at a restaurant with an infinite number of tables and

choose a table to sit at according to a predefined distribution. After the arrival of N

customers, their distribution in this Chinese restaurant represents a random partition of

customers into table groups. The ddCRP modifies the CRP to consider affinities between

customers for table assignment (Blei and Frazier, 2011). We use this feature to incorporate

phylogenetic distances into our model.

In our phylogenetic Chinese restaurant process (pCRP), each customer represents one of

the N viral strains. Each table represents one antigenic cluster, so that all customers

assigned to the same table represent viruses in the same antigenic cluster. Even though

theoretically the pCRP has an infinite number of potential clusters, in one realization only

a finite number K is observed.

The dependency structure between customers is represented by the phylogenetic distance
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matrix D = {dil}, in which dil is computed as the sum of branch lengths separating viruses

i and l on the tree F . The effect that the phylogenetic distances D have on antigenic

clustering is modulated through a decay function f(·). We adopt the form f(d) = 1/dλ,

which for positive λ takes large distances and transforms them into low probabilities of

belonging to the same cluster. The parameter λ can regulate the effects of differences

in the dil’s that may span many orders of magnitude, especially for asynchronous data.

When λ = 0 we have no phylogenetic effect on the clustering, and the pCRP becomes that

standard CRP.

Under the Chinese restaurant analogy, the customer groupings in this pCRP act on two

levels. On the first level, each customer chooses another customer with whom he would

like to sit, and forms one single directional link. Customer i forms a link to customer l with

probability proportional to f(dil). Alternatively, the customer might choose not to form a

link with any other customer and form an auto-link instead, with probability proportional

to α. If ci represents the customer to which customer i is linked, and c = {ci}, then

p(c|D, λ, α) =
N∏
i=1

1{ci=i}α + 1{ci 6=i}f(di,ci)
α +∑

`6=i f(di,`)
. (5.6)

On the second level, the set of customer links is converted into table assignments through

the transform z(c) that takes all connected customers and assigns them to the same table.

In our antigenic cartography setting, this translates into a set of links c between viruses

that is resolved through z(c) into antigenic cluster associations. The virus locations X in

the antigenic map are modelled as a mixture of normal distributions, where the mixture

components are given by the antigenic clusters. Thus, to each antigenic cluster corresponds

one mean vector µk and one precision matrix Λk, such that, if zk represents the viruses in

antigenic cluster k, then
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Xzk |µk,Λk ∼MVN (µk,Λ−1
k ) (5.7)

for k = 1, · · · , K. Here,MVN (·) represents the multivariate normal distribution.

For convenience, we use the conjugate Normal-Wishart prior for the mean and precision

parameters of the mixture components, thus

Λk ∼ W(T0, u0) (5.8)

µk ∼ MVN
(
m0, (κ0Λk)−1

)
,

for k = 1, · · · , K. Here, W(T, u) is the Wishart distribution with scale matrix T and

ν degrees of freedom. For ease of notation, we collect all the hyperparameters for the

cluster normal distributions in G0 = {m0, κ0,T0, u0}. Exploiting the conjugate prior, we

can analytically integrate out the the cluster mean and precision parameters, and compute

the density of the viral locations in antigenic cluster k as

p(xzk |G0, c) = 1
πNk

Γ2(uk/2)
Γ2(u0/2)

|Tk|uk/2

|T0|u0/2
κ0

κk
, (5.9)

for k = 1, · · · , K. Here, Nk is the number of viruses in cluster k, and

uk = u0 +Nk, (5.10)

κk = κ0 +Nk.
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Also, the posterior scale matrix can be obtained through

T−1
k = T−1

0 +
∑
zk

(Xi − X̄zk)(Xi − X̄zk)t + κ0Nk

κ0 +Nk

(X̄zk −m0)(X̄zk −m0)t, (5.11)

where X̄zk represents the mean location for viruses in cluster k, and Γ2 is the 2-dimensional

Gamma function. For the further information on expression (5.9) we refer the reader to

the appendix in section 5.5.

Combining expressions (5.6) and (5.9), the joint density of the virus location matrix X

and link vector c can be computed as

p(X, c|D, λ, α,G0) = p(c|D, λ, α)
K∏
k=1

p(Xzk |G0, c). (5.12)

We assume a priori that the tuning parameter λ of the decay function is normally dis-

tributed with zero mean, and the concentration parameter α has an exponential distribu-

tion. Figure 5.1 presents a schematic representation of the pCRP.

5.2.3 Inference

The posterior distribution for our model can be expressed as

p(c,X,Y, F,θ,ψ,η|H,S) ∝ p(H|X,Y,ψ)× p(X, c|F,η)× p(Y,ψ)× p(η)× p(S,θ, F ),

(5.13)

where η = {α, λ} collects the parameters of the pCRP, and ψ = {ϕ2, β, σ2
y} collects

parameters of BMDS. To learn about this distribution we employ Markov chain Monte
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Figure 5.1: Schematic representation of the pCRP: The sequence data are modelled
through a phylogenetic tree F . The tree also dictates the probabilities of links between
viruses. In turn, links translate into cluster assignments trough transform z(c). Virus map
locations X for each cluster are modelled as a Gaussian mixture component with mean µk
and precision Λk. Finally, binding assay data H are modelled through BMDS to generate
the antigenic map.
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Carlo (MCMC). We exploit a random-scan Metropolis-with-Gibbs scheme. For the tree F

and other phylogenetic parameters θ modeling sequence evolution, we employ standard

Bayesian phylogenetic algorithms (Drummond et al, 2012) based on Metropolis-Hastings

parameter proposals. For the parameters X, Y and ψ of the BMDS model, we follow

Bedford et al (2014) in using Metropolis-Hastings transition kernels.

A central issue for this model is sampling for the links c between viruses, and consequently

the cluster assignments. For this parameter we employ a Gibbs sampling scheme akin to

the one of Blei and Frazier (2011) develop for the ddCRP. This Gibbs sampler explores the

space of possible links between viruses by replacing at random one link at each step.

This individual link update to c can be understood in two steps. First, a virus i is chosen at

random from a uniform distribution and the corresponding link is removed, resulting in a

partition of X induced by the remaining links c−i. Subsequently, a new link c∗i is created,

rendering a new partition of X induced by c∗ = (c−i ∪ c∗i ).

Up to a constant, the conditional distribution of c∗i can be computed as

p(c∗i |c−i,X,G0,η,D) = p(c∗|X,G0,η,D)
p(c−i|X,G0,η,D) ∝

(
1{c∗i=i}α + 1{c∗i 6=i}f(di,c∗i )

) p(X|G0, c∗)
p(X|G0, c−i)

.

(5.14)

The creation of a new link i can have two possible effects on the virus partitions. First,

virus i might form a new link to another virus that already belongs to the same cluster

or form an auto-link: this operation does not change the data partition, and thus does

not affect the p(X|G0, c). Alternatively, virus i might form a link to a virus from another

cluster: this would join he two clusters, and therefore affect p(X|G0, c).

With these partition changes in mind, and noting that
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p(X|G0, c) =
K∏
`=1

p(Xz`|G0, c), (5.15)

we can obtain the full conditional distribution for the Gibbs sampler as proportional to

p(c∗i |c−i,X,G0,η) ∝



α if c∗i = i

f(di`) if c∗i = ` does not join two clusters

f(di`)
p(X

zk+` |G0,c−i)
p(X

z`
|G0,c−i)×p(Xzk |G0,c−i) if c∗i = ` joins clusters k and `.

(5.16)

Additionally, we use Metropolis-Hastings schemes to sample λ and α.

Even though the mean and precision of the normal components that represent the clus-

ters have been analytically integrated out of the pCRP posterior distribution, it may be of

interest to generate posterior samples for these parameters. By exploring the conjugate

structure of the model, these parameters can be directly obtained from their posterior dis-

tribution given the cluster assignments c and hyperparameters G0 and antigenic locations

X. Thus we can sample directly from

Λk ∼ W(Tk, uk) (5.17)

µk ∼ MVN
(
mk, (κkΛk)−1

)
,

where uk, κk and Tk have been defined respectively in expressions (5.10) and (5.11).

Additionally, we have mk = κ0m0+NkX̄zk
κ0+m0

.
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5.3 H1N1 influenza

We examine a dataset of H1N1 influenza with 115 viral strains and 77 sera obtained from

(Bedford et al, 2014). We have 1882 cross reactivity measurements and nucleotide se-

quence data from the HA gene for each of the 115 viruses. The isolates have a wide

geographic distribution and were collected between the years 1977 and 2009.

Figure 5.2 presents the maximum a posteriori estimate for the antigenic map, with viruses

color coded according to antigenic cluster assignments. As expected, our analysis indicates

a time directionality in the clusters, with older strains in the clusters of the left corner of

the antigenic map, and younger strains at the right end of the plot. The strains present

good correlation between the phylogenetic tree and antigenic groups. This can be seen

in figure 5.3 which shows the viral phylogenetic tree with tip annotations color coded

according to the antigenic clusters of figure 5.2. The fact that recent clusters have larger

number of viruses is mainly a reflection of unequal temporal sampling.

For the time frame covered in the sample, we infer high posterior probability for the pres-

ence of 4 or 5 antigenic clusters (figure 5.4). For strains sampled post 1985, we clearly

identified three antigenic clusters: the first, shown in yellow in figure 5.2, contains strains

sampled between 1986 and 1996; the second cluster, in pink, is composed of viruses rang-

ing from 1995 to 2009; and the third antigenic cluster, in green, has strains from 2006 to

2009. All strains in this period can be clearly associated to one of these antigenic clusters

based on their posterior distribution of cluster assignments. The only noticeable exception

is strain A/HongKong/1252/2000 that has similar posterior probabilities of being assigned

to the pink and green clusters. These three antigenic clusters can be clearly seen in figure

5.5, which presents a heatmap of posterior probabilities of cluster co-assignments. Here,

strains are not ordered temporally, but arranged to highlight cluster associations.
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Figure 5.2: Maximum a posteriori (MAP) estimates of virus locations X in the antigenic
map. Strains are color coded according to MAP cluster assignments.

The uncertainty on the number of antigenic clusters mainly reflects the mapping of viruses

from 1977 to 1983. In this 7 year period, there is considerable antigenic variation that can-

not be easily resolved into antigenic clusters (figure 5.2). Although these strains are clearly

distinct from later clusters, there is considerable uncertainty on whether they should all be

grouped together (figure 5.5). A better sampling of this time period would probably help

resolve the issue.

Figure 5.6 presents the posterior distribution of cluster means. This distribution has three

concentrated peaks representing the means of the most recent antigenic clusters. It also

presents a more diffuse peek whose location corresponds to the viruses from 1977 to 1983.

This last peak has a wider distribution, particularly along antigenic dimension 2, reflecting

the clustering uncertainty in this period.

The drift parameter β of the prior distribution on serum locations can be seen as a measure

of the overall linear change in antigenicity over time, since under this choice of prior most
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Figure 5.3: Maximum clade credibility tree for H1N1 influenza viruses. Tips are color
coded according to MAP cluster assignments to match figure 5.2.
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Figure 5.4: Posterior distribution of the number of antigenic clusters.

of the antigenic change happens across antigenic dimension 1. We estimate a posterior

mean of 0.5112, with a 95% Bayesian credible interval of [0.4692, 0.5539] for β. These

numbers are consistent with the findings of Bedford et al (2014) for their corresponding

model. However, the rate of antigenic change is not constant trough time, as is evident by

the uneven spacing of clusters along antigenic dimension 1 (figures 5.2 and 5.6).

We compare the posterior distribution of virus mappings for our model with that of the

phylogenetic diffusion model of Bedford et al (2014). In their model, the prior distribution

for the virus location X on the antigenic map is composed of a linear drift term and a

continuous diffusion process along the phylogenetic tree. Supplementary videos (5.1)

and (5.2) contain dynamic representations of the posterior distribution of the antigenic

map locations X for both models. While both models exhibit similar distributions along

antigenic dimension 1 reflecting their corresponding drift priors, the overall aggregation of

strains is quite different. The drift-diffusion model generates a rather diffuse distribution
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Figure 5.5: Heatmap of the probabilities of viruses being assigned to the same antigenic
cluster. Dark orange represents higher probabilities. Arrangement of the order of viruses
is not chronologic, but optimizes cluster visualization.
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Figure 5.6: Posterior distribution of cluster means on antigenic map.

of viruses on the map, while the pCRP produces antigenic maps in which viral strains

have a tendency toward aggregation. This distinction is, without doubt, a consequence of

modeling choices. We argue that better defined groupings on the antigenic map, as well as

explicit cluster association are important features of pCRP for the study of arising antigenic

clusters.

Another important feature of the pCRP is the connection of antigenic clustering to molec-

ular evolution. The tuning parameter λ of the decay function modulates the effect of the

tree F on co-assignment probabilities. Our posterior mean estimate for λ was 0.3781, with

a 95% Bayesian credible interval of [0.0184, 0.7559]. This implies that the probabilities

of links between two viruses are less than inversely proportional to their phylogenetic dis-

tance. Consequently, the decay function has an attenuating effect on the large variability

between phylogenetic distances induced by the trunk-like structure of the influenza phylo-

genetic tree. Additionally, at the 95% significance level, we infer that λ 6= 0, highlighting

the impact of phylogenetic distances on antigenic clustering.
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5.4 Discussion

In this paper we present a method for studying the interplay of antigenic and genetic

evolution in influenza through the prism of antigenic clusters. We explicitly model the

interaction between phylogenetics, antigenic clustering and the multidimensional scaling.

This allows us to jointly estimate the antigenic map and cluster assignments. We also

demonstrate, in an application to H1N1 influenza, that phylogenetic relatedness is an

important factor in antigenic clustering. Additionally, we show that our pCRP can lead

not only to antigenic maps with better defined clusters, but also high confidence in cluster

assignments for most viral strains.

The purpose of the multidimensional scaling method is to represent the structure of the HI

titer data in a low-dimensional space, for better interpretation. Both Smith et al (2004)

and Bedford et al (2014) have compared different space dimensionalities and found the

2D plane to be optimal for their influenza data in terms of visualization and fit. For this

reason, we develop our analysis with the 2-dimensional antigenic map. Nevertheless,

pCRP and BMDS are not constrained to 2D maps, and can easily accommodate other map

dimensions.

The drift prior for serum locations Y on the antigenic map, although motivated by observa-

tions of increased antigenic distance over time (Smith et al, 2004), is important to address

identifiability of map locations. This choice of prior yields a biologically interpretable rate

parameter representing the overall antigenic change over time, and has the effect of gen-

erating more linear antigenic maps. In Bedford et al (2014), inclusion of drift prior and a

phylogenetic model not only improved identifiability of virus X and serum Y locations, it

also improved model performance as measured through prediction errors.

Bayesian nonparametric modeling has found use in phylodynamics for estimating effective
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populations sizes of ancestral populations (Pybus et al, 2000). The nonparametric setting

allows for a degree of flexibility for the shape of population size curve that would not be

feasible with parametric forms. But nonparametric clustering methods have not yet been

employed in phylodynamic studies of phenotypic traits such as antigenicity.

Traditional antigenic cartography applications use K-means clustering algorithms to define

the antigenic groups Smith et al (2004). The pCRP, on the other hand, does not predefine

the number of clusters, allowing a potentially infinite number of clusters. This is a strength

of the non-parametric clustering, and it is particularly relevant if we are interested in

identifying the rise of new antigenic clusters.

One desirable propriety of Dirichlet processes is marginal invariance: the marginal dis-

tribution when one observation is removed is the same as the distribution of the process

without that observation. The ddCRP, and consequently our model, are not marginally

invariant Blei and Frazier (2011). It is still not clear what repercussion, if any, follow from

this property. However, it could be said that the existence of a strain with a particular

antigenic profile could alter the antigenic landscape and the selective pressure on other

strains. Thus, clustering should be different if such a strain exists or not, independent of

it being sampled. Yet, the best we could expect is to have a representative sample of the

antigenic landscape, since we could never observe all existing strains.

Antigenic cartography methods have been used to analyse other pathogens besides in-

fluenza, such as malaria and rabies. For these organisms, if the antigenic variability present

the cluster-like structure observed in influenza, then our method could be instrumental to

understanding the evolution of antigenicity and its relation to molecular evolution.

The fact that antigenic modeling is incorporated in the Bayesian phylogenetic context al-

lows for joint estimation of the tree and the antigenic process. Demographic inference and

geographic analysis are features already developed in this framework that can be jointly
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analysed with antigenicity, leading to a more complete representation of the evolution of

influenza both genotypically and phenotypically (Minin et al, 2008; Lemey et al, 2009).

Through the posterior distribution of cluster assignments for an individual strain, we can

assess the probability of recent viruses forming new antigenic clusters. Accurate detection

of strains that are likely to seed new antigenic clusters could be particularly useful for in-

fluenza surveillance and vaccine design. For this purpose, the effectiveness of our method

in the definition and detection of antigenic clusters should be further evaluated through

applications to different strains of influenza and larger datasets. In the H1N1 example, the

high confidence in cluster assignments obtained through the pCRP is particularly encour-

aging, even though in this example recent strains were well nested in current antigenic

clusters, and we have no indication of new cluster formation.

5.5 Appendix: Normal-Wishart conjugate prior and marginal likeli-

hood of X

For ease of notation, in this section, we drop the explicit dependency of all densities on

hyperparameters m0, κ0, T0 and u0. Additionally, for this section, let X represent all the

virus locations in the antigenic map for strains belonging to cluster k. Then, these locations

are all generated by the same normal component, and their density is given by

p(X|µk,Λk) = (2π)−rNk/2 |Λk|Nk/2 exp
−1

2

Nk∑
i=1

(Xi − µk)Λk(Xi − µk)′
 , (5.18)

where r is the dimension of the antigenic map. All normal components share the same

priors for the mean parameter µk and precision matrix Λk. We adopt the conjugate Wishart

Normal prior, where

Λk ∼ W(u0,T0)
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and

µk|Λk ∼MVN (m0, (κ0Λk)−1).

Thus, the joint prior density can be expressed as

p(µk,Λk) = P (µk|Λk)p(Λk) =
(
κ0

2π

)d/2
|Λk|1/2 exp

(
−κ0

2 (µk −m0)Λk(µk −m0)t
)

× 1
Z0
|Λk|

u0−r−1
2 exp

(
−1

2tr(T−1
0 Λk)

)
(5.19)

where

Z0 = 2
u0r

2 |T0|
u0
2 Γr(u0/2)

and Γr(·) is the multivariate gamma function,

Γr(v) = πr(r−1)/4
r∏

n=1
Γ(v + (1− n)/2)

In this conjugate model, the posterior distribution also assumes the form of a normal-

Wishart distribution, and

µk,Λk|X ∼ NW(mk, κk,Tk, uk),
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where NW(·) represents the normal Wishart distribution with density

p(µk,Λk|X) =
(
κk
2π

)d/2
|Λk|1/2 exp

(
−κk2 (µk −mk)Λk(µk −mk)t

)
× 1
Z0
|Λk|

uk−r−1
2 exp

(
−1

2tr(T−1
k Λk)

)
(5.20)

where

Zn = 2
ukr

2 |Tk|
uk
2 Γr(uk/2)

and , uk = u0 +Nk, κk = κ0 +Nk and T−1
k = T−1

0 +∑−Nk(Xi − X̄)(Xi − X̄)t + κ0n
κ0+n(X̄−

m0)(X̄−m0)t and mk = κkm0+NkX̄
κ0+Nk

(DeGroot, 2005).

The posterior precision for each cluster can be samples from aW(Tk, uk), and µk|Λk,X ∼

MVN (mk, (κkΛk)−1) .

We now compute the marginal likelihood of the data, integrating out the mean and preci-

sion parameters. Notice, however, that

p(X) = p(X|µk,Λk)p(µk,Λk)
p(µk,Λk|X) .

Combining expressions (5.18) and (5.20), and noting that p(X) does not depend on µk or

Λk, we can obtain the marginal likelihood as

p(X) =
(2π)−rNk/2

(
κ0
2π

)r/2 1
Z0(

κk
2π

)r/2 1
Zn

= κ
r/2
0 Zn

(2π)rNk/2κr/2k Z0
= 1
πNkr/2

Γr(uk/2)
Γr(u0/2)

|Tk|uk/2

|T0|u0/2

(
κ0

κk

)r/2
.

When r = 2, this becomes the marginal likelihood of expression (5.9).
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CHAPTER 6

Future Directions

In this dissertation I develop statistical methods for studying the intersection between

phenotypic and genetic evolution under the framework of Bayesian phylogenetics. I now

present some future directions arising from the latent liability model developed in chapter

4. As an additional future direction, I also outline a method for correcting ascertainment

bias in phylogenetic reconstructions from single nucleotide polymorphism (SNP) data.

6.1 Symmetry of latent liability model for discrete traits with multiple

unordered outcomes

In chapter 4 of this dissertation, I present the multivariate latent liability model, a non-

Markovian model for the evolution of phenotypic traits. The main motivation for introduc-

ing this model is estimating the correlation structure between sets of traits while control-

ling for shared evolutionary history. The flexibility of the model allows for assessment of

correlation between continuous traits, discrete binary traits, discrete traits with multiple

ordered or unordered states, and combinations thereof.

For the discrete traits with multiple unordered outcomes, I adopt a multinomial probit

function for the mapping of the latent liability X onto the observed trait Y. In the no-

tation of chapter 4, when the trait in column j of Y has K possible unordered states,

then its outcome is a function of K − 1 dimensions in the latent liability. Moreover, if

xij′ , . . . , xi,j′+K−2 are the latent liability entries corresponding to yij, then the largest of
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these elements determines the trait value,

yij = g(xij′ , . . . , xi,j′+K−2) =


s1 if 0 = sup(0, xij, . . . , xi,j+K−2)

sk+1 if xik = sup(0, xij, . . . , xi,j+K−2).
(6.1)

Here, the first state s1 is taken as reference to address identifiability. Notice that this choice

of g(·) induces asymmetry in the model, since a priori the reference state s1 has probability

2−(K−1) and all other states have probability 1−2−(K−1)

K−1 . In a small simulated example, the

choice of reference state did not have major implications for inference. Figure 6.1 gives

geometric intuition of this asymmetry for K = 3 unordered states.

In addition to its implications for the symmetry between states, this particular map func-

tion also has implications for the interpretability of inferred correlation. As discussed in

chapter 4, other choices of map function such as the simplex might improve the symmetry

but further complicate interpretation of correlation between traits.

A simpler model that simultaneously addresses both symmetry and interpretability maps

the trait Y from K dimensions in the latent liability X, through the function

yij = g∗(xij′ , . . . , xi,j′+K−1) = sk if xik = sup(xij, . . . , xi,j+K−1). (6.2)

However, this model is not identifiable. Identifiability issues in general multinomial probit

models have been well documented (Bunch, 1991; Weeks, 1997), and arise from the fact

that only differences between the latent traits can be effectively estimated from the multi-

nomial data. Lack of identifiability is frequently addressed by reducing the dimension of

X, as done in g(·).

In the latent liability model, an alternative solution would be to address identifiability
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Figure 6.1: Realization of the evolution of latent liabilities X and observed trait Y for
discrete data with 3 unordered states. Both tree and Brownian motion plots are color
coded according to the trait Y. ** This figure was created using code modified from R
package phylotools (Revell, 2012).
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through specification of a different diffusion model for the evolution of X. One option

is the Ornstein-Uhlenbeck (OU) model, a stationary Gaussian mean-reverting stochastic

process. It can be defined from a Brownian motion process W (t) through the stochastic

differential equation

dxt = θ(µ− xt)dt+ σdW (xt), (6.3)

for parameters σ ≥ 0, θ ≥ 0 and µ. When θ = 0 the OU process becomes Brownian motion.

The OU process is used in comparative biology to model stabilizing selection (Bartoszek

et al, 2012). Importantly, while the variance of Brownian diffusion processes increases

linearly over time, the variance of OU processes is bounded, and its stationary value can

be obtained as σ2

2θ .

A critical issue in the latent liability model is efficient computation of the likelihood for

the Brownian motion part of the model, and the efficient MCMC transition kernel derived

from this result. Thus, in order to efficiently use OU for the evolution of the latent liability,

similar results are required. Ho and Ané (2014) develop linear time algorithms for a more

general class of linear models including OU, which could be used to compute the likelihood

of the latent liability model, as well as to develop MCMC transition kernels.

An important feature of the latent liability model is the biological appeal of the non-

Markovian property, as it is reasonable to expect for many biological problems that tran-

sition probabilities are affected by the time in which the process has been in the current

state. This premiss motivates the work of Felsenstein (2012) and Revell (2012), however

neither paper addresses the case of multiple unordered states. This highlights the im-

portance of improving biological interpretiability through the use the map function g∗(·)

instead of g(·).
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6.2 Alternative Bayes factors computation in the latent liability model

for large datasets

Bayes factors for comparing different latent liability models are computed in chapter 4

through a path sampling approach (Gelman and Meng, 1998). In this approach, first

individual log marginal likelihoods for each model are estimated by numerically evaluating

an path integral along a path between carefully chosen distributions. Then, the log Bayes

factor is obtained as the difference between log marginal likelihoods.

Although there are many methods for calculating Bayes factors, their success in handling

complex models is limited (Suchard et al, 2005; Dutta and Ghosh, 2013). Computing

the high dimensional integrals required to estimate marginal likelihoods for these models

is a challenging task. In the particular case of path sampling, the choice of the origin

and destination distribution, as well as the path parametrization is particularly important

for success of numerical integration. The path sampling approach of chapter 4 considers

the geometric path between the potentially unnormalized distributions q0(Y,S; X,θ) and

q1(Y,S; X,θ),

qβ(Y,S; X,θ) = q0(Y,S; X,θ)1−βq1(Y,S; X,θ)β, (6.4)

for the path parameter β ∈ [0; 1]. If z0 is the normalizing constant for q0(Y,S; X,θ), and z1

the normalizing constant for q1(Y,S; X,θ), then the identity of thermodynamic integration

gives us

log(z1)− log(z0) =
∫ 1

0
Eqβ [log(q1(Y,S; X,θ))− log(q0(Y,S; X,θ))] dβ. (6.5)

The path sampling algorithm employs MCMC to sample from qβ(Y,S; X,θ) along the path

and estimate the integral above (Gelman and Meng, 1998).
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To estimate marginal likelihoods for the latent liability model, the destination distribution

is taken to be unnormalized posterior p(Y,S|X,θ)p(X,θ), whose normalizing constant

z1 = p(Y,S) is the marginal likelihood. The source distribution q0(Y,S; X,θ) is an ap-

propriately chosen normalized distribution defined on the same parameter space as the

destination, so that log(z0) = 0. Separately estimating marginal likelihoods for each model

is convenient for multiple model comparisons and allows for comparison between models

defined on different parameter spaces. However, even with the carefully chosen source

distribution presented in chapter 4, for large models this procedure may suffer from nu-

merical issues.

A biologically relevant hypothesis for correlation analyses with the latent liability model

is whether blocks of traits evolve independently. To address this hypothesis, one must test

for a block structure in the covariance matrix. This requires a comparison between two

nested models: the full model in which all covariances are allowed to be non-zero, and the

block model in which the covariance between traits from different blocks is zero.

For comparisons between nested models or models defined on similar parameter spaces, an

alternative path sampling approach suggests itself. Instead of individually approximating

the marginal likelihoods for each model, we can directly use path sampling to estimate the

Bayes factor by considering a path between the two models. In this scheme, source and

destination distributions are the unnormalized posteriors under each of the models being

compared. Thus, the left side of equation (6.5) becomes the Bayes factor.

Because this choice of path spans two models in similar probability spaces, it should be

easier to adequately sample from qβ(Y,S; X,θ) through the whole path, leading to better

Bayes factor estimates. However, efficient MCMC tradition kernels that generate samples

from qβ(Y,S; X,θ) are required in order to employ this strategy. In particular, new versions

of the Gibbs samplers should be developed.
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6.3 Correction of ascertainment bias in SNP data

A single nucleotide polymorphism (SNP) is a populational variation in a single position of

the genome. Each diploid individual may have 0, 1 or 2 copies of the minor allele for a par-

ticular SNP. Through microarray technology, multiple SNPs can be assessed simultaneously

in a single chip, making the collection of SNP data fast and inexpensive.

By collecting data from multiple individuals in a population, SNP minor allele frequencies

can be estimated and used for phylogenetic reconstruction. The use of gene frequency

data to reconstruct evolutionary relationships between species dates back to early statisti-

cal phylogenetic methods (Cavalli-Sforza and Edwards, 1967). To model SNP frequency

data through phylogenetics, one must first transform the frequency data onto the real line

through a transform function such as the logit. Alternatively, one may employ a variance

stabilizing transform such as the arcsine transform (Felsenstein, 1981b).

The N ×M matrix of transformed frequencies W = (W1, · · · ,WM), for N taxa and M

SNPs, is then modelled as M independent Brownian diffusion processes along a phylo-

genetic tree F . Assuming a conjugate normal distribution with mean µ0 and variance τ0

for the transformed frequency at the root of the tree, Wj becomes multivariate normal

MVN (Wj;µ0J, ρΣ). Here JN is a vector of ones of length N , ρ is the diffusion variance,

and

Σ = V(F ) + τ0JN×N , (6.6)

with JN×N representing an N ×N matrix of ones. Also, V(F ), as defined in section 4.2.2,

is a phylogenetic matrix tracking the shared evolutionary history between pairs of taxa on

the tree F . Finally, the likelihood for W is obtained as the product of the likelihoods for

the individual SNPs
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Figure 6.2: Effect of SNP ascertainment on minor allele frequencies. Kernel density esti-
mates for the distribution of minor allele frequencies (defined in mod) for 2 dog popula-
tions (mod and anc) and 6 other canids.

p(W|V(F ), ρ) =
M∏
j=1

p(Wj|V(F ), ρ). (6.7)

After prior specification for ρ and F , phylogenetic inference can be performed through

MCMC.

However, a practical caveat complicates inference for this type of frequency data. In order

to collect the SNP data for the multiple taxa, it is necessary to first select which sites in the

genome will be queried. This step is carried out in a preliminary study, frequently in only

one of the taxa, and may include the design of a microarray chip. SNP selection is done

by identifying single nucleotide sites that are variable in the sample of the preliminary

study. Using the same chip for multiple taxa, when SNP ascertainment was performed in

only one of these taxa, leads to differences in the overall allele frequency distributions.

These distributions may violate model assumptions and introduce bias in phylogenetic

estimation.
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Figure (6) exemplifies the ascertainment effect on frequency distributions through a canid

dataset (Pollinger et al, 2010). In this example, a microarray chip was designed for SNP

analysis in a particular dog population. In a subsequent study, the same chip was used to

obtain frequency data in two populations of dogs and 6 populations of other canids (wolfs

and coyotes). The figure shows considerable variability in SNP minor allele frequencies

for the dog populations. For the other populations, most SNPs are invariable or have very

low minor allele frequencies. A tree reconstruction on these frequency data is likely to

produce an inaccurate tree F , and particularly distorted branch lengths leading to the dog

populations.

One approach for correcting ascertainment bias is to condition on the taxa for which the

data was ascertained. That is, if SNP selection was performed on the taxa at tip ν1, then

instead of performing inference based on (6.7), one could consider

p(W(−1)j|w1j,V(F ), ρ) = p(Wj|V(F ), ρ)
p(w1j|V(F ), ρ) , (6.8)

where W(−1)j = (w2j, · · ·wNj) collects all transformed allele frequencies for SNP j, except

w1j for tip ν1. Note that, p(w1j|V(F ), ρ) is the density of a normal distribution with mean

µ0 and variance τ1ρ + τ0, where τ1 is the sum of branch lengths on F connecting tip ν1 to

the root.
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