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ABSTRACT

Reducing the cost of memory accesses, both in terms of performance and energy con-
sumption, is a major challenge in shared-memory architectures. Modern systems have
deep and complex memory hierarchies with multiple cache levels and memory controllers,
leading to a Non-Uniform Memory Access (NUMA) behavior. In such systems, there
are two ways to improve the memory affinity: First, by mapping tasks that share data
(communicate) to cores with a shared cache, cache usage and communication performance
are improved. Second, by mapping memory pages to memory controllers that perform
the most accesses to them and are not overloaded, the average cost of accesses is reduced.
We call these two techniques task mapping and data mapping, respectively. For optimal
results, task and data mapping need to be performed in an integrated way. Previous work
in this area performs the mapping only separately, which limits the gains that can be
achieved. Furthermore, most previous mechanisms require expensive operations, such as
communication or memory access traces, to perform the mapping, require changes to the
hardware or to the parallel application, or use a simple static mapping. These mechanisms
can not be considered generic solutions for the mapping problem. In this thesis, we make
two contributions to the mapping problem. First, we introduce a set of metrics and a
methodology to analyze parallel applications in order to determine their suitability for
an improved mapping and to evaluate the possible gains that can be achieved using an
optimized mapping. Second, we propose two automatic mechanisms that perform task
mapping and combined task/data mapping, respectively, during the execution of a parallel
application. These mechanisms work on the operating system level and require no changes
to the hardware, the applications themselves or their runtime libraries. An extensive eval-
uation with parallel applications from multiple benchmark suites as well as real scientific
applications shows substantial performance and energy efficiency improvements that are
significantly higher than simple mechanisms and previous work, while maintaining a low
overhead.

Keywords: Task mapping. Data mapping. Shared memory. Multicore. NUMA.





Mapeamento automático de processos e dados
em arquiteturas de memória compartilhada

RESUMO

Arquiteturas paralelas modernas têm hierarquias de memória complexas, que consistem
de vários níveis de memórias cache privadas e compartilhadas, bem como Non-Uniform
Memory Access (NUMA) devido a múltiplos controladores de memória por sistema. Um
dos grandes desafios dessas arquiteturas é melhorar a localidade e o balanceamento de
acessos à memória de tal forma que a latência média de acesso à memória é reduzida.
Dessa forma, o desempenho e a eficiência energética de aplicações paralelas podem ser
melhorados. Os acessos podem ser melhorados de duas maneiras: (1) processos que acessam
dados compartilhados (comunicação entre processos) podem ser alocados em unidades de
execução próximas na hierarquia de memória, a fim de melhorar o uso das caches. Esta
técnica é chamada de mapeamento de processos. (2) Mapear as páginas de memória que
cada processo acessa ao nó NUMA que ele está sendo executado, assim, pode-se reduzir o
número de acessos a memórias remotas em arquiteturas NUMA. Essa técnica é conhecida
como mapeamento de dados. Para melhores resultados, os mapeamentos de processos e
dados precisam ser realizados de forma integrada. Trabalhos anteriores nesta área executam
os mapeamentos separadamente, o que limita os ganhos que podem ser alcançados. Além
disso, a maioria dos mecanismos anteriores exigem operações caras, como traços de acessos
à memória, para realizar o mapeamento, além de exigirem mudanças no hardware ou na
aplicação paralela. Estes mecanismos não podem ser considerados soluções genéricas para
o problema de mapeamento. Nesta tese, fazemos duas contribuições principais para o
problema de mapeamento. Em primeiro lugar, nós introduzimos um conjunto de métricas
e uma metodologia para analisar aplicações paralelas, a fim de determinar a sua adequação
para um melhor mapeamento e avaliar os possíveis ganhos que podem ser alcançados
através desse mapeamento otimizado. Em segundo lugar, propomos um mecanismo que
executa o mapeamento de processos e dados online. Este mecanismo funciona no nível do
sistema operacional e não requer alterações no hardware, os códigos fonte ou bibliotecas.
Uma extensa avaliação com múltiplos conjuntos de carga de trabalho paralelos mostram
consideráveis melhorias em desempenho e eficiência energética.

Palavras-chave: Mapeamento de processos. Mapeamento de dados. Memória comparti-
lhada. Multicore. NUMA.





Automatisches Mapping von Tasks und Daten
in Shared Memory Architekturen

ZUSAMMENFASSUNG

Moderne parallele Architekturen haben komplexe Speicherhierarchien, die aus mehreren
Ebenen von privaten und gemeinsam genutzten Caches, sowie einem Non-Uniform Memory
Access (NUMA) Verhalten aufgrund mehrerer Speichercontroller bestehen. Eine der
größten Herausforderungen in diesen Architekturen ist die Verbesserung der Lokalität
und Balance von Speicherzugriffen, so dass die Latenz der Speicherzugriffe reduziert wird,
da dies die Performance und Energieeffizienz von parallelen Anwendungen verbessern
kann. Zwei Typen von Verbesserungen existieren: (1) Tasks die auf gemeinsame Daten
zugreifen, sollen nah beieinander in der Speicherhierarchie ausgeführt werden, um die
Nutzung der Caches zu verbessern. Wir bezeichnen diese Technik als Task Mapping. (2)
Speicherseiten sollen den Speichercontrollern zugeordnet werden, von denen die meisten
Zugriffe kommen und die nicht überlastet sind, um die durchschnittliche Speicherzugriffszeit
zu reduzieren. Wir nennen diese Technik Data Mapping. Für optimale Ergebnisse
müssen Task und Data Mapping in integrierter Form durchgeführt werden. Frühere
Arbeiten in diesem Bereich führt das Mapping nur getrennt aus, wodurch die Vorteile,
die erzielt werden können, begrenzt werden. Außerdem erfordern die meisten früheren
Mechanismen teure Operationen um das Mapping durchzuführen, wie etwa Traces der
Kommunikation oder von Speicherzugriffen. Andere Arbeiten erfordern Änderungen
an der Hardware oder an der parallelen Anwendung, oder erzeugen nur ein einfaches
statisches Mapping. Diese Mechanismen können nicht als generische Lösungen für das
Mapping-Problem betrachtet werden. In dieser Arbeit präsentieren wir zwei Beiträge für
das Mapping-Problem. Zuerst führen wir eine Reihe von Metriken und eine Methodologie
zur Bestimmung der Eignung von parallelen Anwendungen für die verschiedenen Arten
von Mapping. Das Ziel ist es, die möglichen Gewinne, die durch eine optimiertes Mapping
erreicht werden können, vorherzusagen. Zweitens stellen wir zwei Mechanismen vor, die
Task und Data Mapping automatisch während der Laufzeit der parallelen Applikation
ausführen. Diese Mechanismen funktionieren auf der Betriebssystemebene und erfordern
keine Änderungen an der Hardware, den Anwendungen oder deren Laufzeit-Bibliotheken.
Eine umfangreiche Auswertung mit einer großen Auswahl paralleler Applikationen zeigen
signifikante Verbesserungen der Performance und der Energieeffizienz.

Keywords: Task Mapping. Data Mapping. Shared Memory. Multicore. NUMA.
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1 INTRODUCTION

Since reaching the limits of Instruction Level Parallelism (ILP), Thread Level
Parallelism (TLP) has become important to continue increasing the performance of
computer systems. Increases in the TLP are accompanied by more complex memory
hierarchies, consisting of several private and shared cache levels, as well as multiple
memory controllers that introduce Non-Uniform Memory Access (NUMA) characteristics,
to provide data to memory-hungry applications. As a result, the performance of memory
accesses started to depend also on the location of the data (WANG et al., 2012; COTEUS
et al., 2011). Accesses to data that is located on local caches and NUMA nodes have
a higher bandwidth and lower latency than accesses to remote caches or nodes (FELIU
et al., 2012). Improving the locality of memory accesses is mostly important when the
time to access remote caches and NUMA nodes is much higher than an access to local
ones (RIBEIRO et al., 2010; LIU; MELLOR-CRUMMEY, 2014). However, when the
difference between local and remote accesses is low, the influence of locality becomes lower.
In these cases, another important factor to be considered is the load of the caches and
memory controllers. The goal is to balance the memory accesses such that all caches
and controllers handle a similar number of requests (WANG; MORRIS, 1985; BELLOSA;
STECKERMEIER, 1996; AWASTHI et al., 2010; BLAGODUROV et al., 2010; DASHTI
et al., 2013). Improving locality and balance are therefore important ways to optimize
performance and energy consumption of parallel applications in modern architectures.

In this thesis, we focus on shared memory architectures, that is, parallel architectures
that share a single global memory address space and execute a single instance of an
operating system. Current shared memory architectures consist of several processors, cores,
and NUMA nodes, as shown in Figure 1.1a. Interconnections in this type of architecture
consist of traditional buses, or newer point-to-point systems, such as Intel’s QuickPath
Interconnect (QPI) (ZIAKAS et al., 2010) and AMD’s HyperTransport (CONWAY,
2007). A special type of shared memory system is a distributed shared memory (DSM)
architecture (NITZBERG; LO, 1991). In these systems, the main memories are physically
separate but can be addressed as a single address space. Usually, each DSM platform has
a custom interconnect, such as SGI’s NUMAlink interconnect (WOODACRE et al., 2005),
which is used in the Altix platform. In contrast to shared memory systems, cluster systems
are distributed memory architectures, where each cluster node has its own memory address
space, as shown in Figure 1.1b. Each cluster node runs its own copy of an operating

CPU CPU CPU

Cache Cache Cache

Mem. Mem. Mem.

Interconnection

Memory
address space

Operating
system

(a) Shared memory system with 3 NUMA nodes.

CPU CPU CPU

Cache Cache Cache

Mem. Mem. Mem.

Interconnection

Memory
address space

Operating
system

(b) Cluster system with 3 cluster nodes.

Figure 1.1: Comparison of a shared memory architecture and a cluster system.
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Figure 1.2: Scaling of the Intel Xeon processor between 1998 and 2014..

system and needs to communicate with other nodes through interconnections such as
Ethernet or Infiniband. Although the mechanisms that will be presented in this thesis
work in shared memory systems, they can be applied to cluster systems as well to optimize
memory accesses in each cluster node.

Historically, parallel shared memory architectures were introduced as a solution
to the high power consumption and wire-delay problems (AGARWAL et al., 2000) of
single-threaded cores. TLP was increased through multiple processors per systems (Sym-
metric Multi-Processing, SMP), multiple cores per processors (Multi-core, or Chip Multi-
Processing, CMP) and execution of multiple tasks1 on each core simultaneously (such as
Symmetric Multi-Threading, SMT). We refer to an element of a shared memory system
that can execute a task as a processing unit (PU). We assume that all PUs are homogeneous,
that is, they have the same computational power in terms of functional units, cache sizes
and execution frequency, among others. As an example of the TLP increase, Figure 1.2
shows the number of cores and Last Level Cache (LLC) size of the Intel Xeon processors
released between 1998 (first Xeon generation) and 2014. Every 4 to 5 years, the number
of cores and LLC size has been doubling.

This increase of the TLP leads to a higher memory pressure and exacerbates
the memory wall problem (WULF; MCKEE, 1995). For these reasons, traditional bus
interconnections between processors and memories (such as the Front-Side Bus, FSB)
were replaced by dedicated point-to-point interconnections, resulting in a NUMA behavior.
Despite these improvements, memory accesses still represent a challenge for the performance
and energy consumption of applications. For the performance, the gap between CPU
and memory performance still keeps on increasing (Figure 1.3a). Analyzing the energy
consumption for computation and data accesses presents similar challenges. Figure 1.3b
shows the average energy consumption (in picojoules) of a floating point operation (FLOP),

1In the context of this thesis, we use the word task to refer to the threads and processes of parallel
applications. When it is necessary for the discussion, we will refer to threads and processes directly.
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Figure 1.3: The impact of memory accesses on performance and energy consumption. Note
that the y-axis in both graphs is in logarithmic scale.

a register access, an on-chip cache access, and an off-chip cache access/DRAM access.
Values from 2010, as well as predictions for 2018 are depicted in the figure. The results show
that memory accesses to local caches and memory have a far lower energy consumption
than remote accesses and are projected to remain so for the foreseeable future (SHALF;
DOSANJH; MORRISON, 2010). Furthermore, moving data between processors, caches,
and the memory has an energy consumption that is generally much higher than the
computation performed on the data (DALLY, 2010).

In distributed-memory environments, locality has been improved by placing pro-
cesses that communicate on cluster nodes that are close to each other (SISTARE; VAN-
DEVAART; LOH, 1999; RODRIGUES et al., 2009). For parallel applications running on
shared memory architectures, memory access locality can be improved in two ways. First,
by executing tasks that access shared data close to each other in the memory hierarchy, they
can benefit from shared caches and faster intra-chip interconnections (CRUZ; DIENER;
NAVAUX, 2012; DIENER; CRUZ; NAVAUX, 2013). We refer to accesses to shared data
as communication in this thesis and call the resulting mapping of tasks to processing
units a communication-aware task mapping. Most parallel programming APIs for shared
memory, such as OpenMP and Pthreads, directly use memory accesses to communicate.
Even many implementations of the Message Passing Interface (MPI) (which uses explicit
functions to communicate) contain optimizations to communicate via shared memory.
Second, the memory pages that a task accesses should be placed on NUMA nodes close to
where it is executing, to reduce the inter-node traffic as well as to increase the performance
of accesses to the main memory (RIBEIRO et al., 2009). We call this technique data
mapping. For both types of mapping, balancing the communication and memory accesses
can also become important in order to prevent an overload.
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The state-of-the-art research in this area focuses on either task or data mapping,
performing them only separately. We make the case that mapping should be performed
in an integrated way in order to achieve the maximum gains. Some mechanisms rely
on communication or memory access traces (RODRIGUES et al., 2009; MARATHE;
THAKKAR; MUELLER, 2010; DIENER et al., 2010; CRUZ et al., 2011), which cause a
high overhead (ZHAI; SHENG; HE, 2011; BARROW-WILLIAMS; FENSCH; MOORE,
2009) and generate incorrect data if the behavior of the application changes between
executions. Mechanisms that use indirect information about the memory access behavior,
such as cache statistics or IPC (AZIMI et al., 2009; KLUG et al., 2008; BROQUEDIS
et al., 2010a; RADOJKOVIĆ et al., 2013), can result in less accurate mappings. Other
approaches use architecture dependent features or require hardware changes or changes to
the applications themselves to perform an optimized mapping (MARATHE; MUELLER,
2006; CRUZ; DIENER; NAVAUX, 2012; CRUZ et al., 2014a; TIKIR; HOLLINGSWORTH,
2008; OGASAWARA, 2009). These approaches can not be considered generic solutions for
the mapping problem.

The goal of this thesis is to improve on the current state-of-the-art by introducing
mechanisms that perform an integrated task and data mapping on the kernel level. The
proposed techniques use sampling of memory accesses to determine the behavior of the
parallel application during its execution, and use this information to perform the mapping.
The mechanisms are compatible with a wide range of hardware architectures, requiring
no changes to the hardware. Since they operate on the kernel level, they require no
changes to the applications, are independent of the parallelization API and support several
running applications at the same time. Extensive evaluation using a large set of parallel
benchmarks show significant improvements of performance and energy efficiency.

The research described in this thesis was conducted in the context of a joint degree
between the Federal University of Rio Grande do Sul (UFRGS) and the Technische
Universität Berlin. Parts of the research were developed at the Parallel and Distributed
Processing Group (GPPD) at UFRGS and the at the Communication and Operating
Systems group (KBS) at TU Berlin.

1.1 Parallel Shared Memory Architectures

Modern shared memory architectures are characterized by an increasing amount
of parallelism in each system. We briefly discuss the current state-of-the-art of these
architectures and give an overview of emerging technologies that affect the memory access
behavior.

1.1.1 State-of-the-Art Architectures

Traditional parallel shared memory architectures were built with Symmetric Multi
Processing (SMP), that is, multiple single-core processors interconnected through a shared
bus. Each processor can only execute a single thread at the same time, and has a cache
that is private to the CPU. Such systems contain a single memory controller, which is
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usually connected to the same bus shared between the processors. Figure 1.4a depicts an
example of such a Uniform Memory Access (UMA) architecture.

Since traffic on the shared bus and accesses to the main memory represent a
significant bottleneck, these UMA systems are being replaced by architectures that feature
a Non-Uniform Memory Access (NUMA) behavior. In NUMA systems, the bus has
been replaced by high-speed point-to-point interconnections. To increase the efficiency
of memory accesses, the physical memory is split between several memory controllers,
such that multiple memory requests can be handled at the same time. In this thesis, we
only discuss cache-coherent NUMA architectures (ccNUMA), where the cache coherence
is maintained automatically by the hardware. An example of such a system is shown
in Figure 1.4b. NUMA systems are characterized by an overhead to access memory on
remote memory controllers, which is called the NUMA factor (PILLA et al., 2011).

In addition to NUMA behavior, the parallelism in each CPU has increased re-
markably compared to SMP machines. To increase the utilization of functional units,
techniques such as Simultaneous Multi-Threading (SMT) allow the execution of multiple
tasks concurrently by sharing the same functional units. To reduce data movement between
processors, the industry has been duplicating functional units on processors, creating
multi-core or CMP chips. Most current architectures employ both SMT and CMP to
maximize the parallelism on each processor, resulting in the introduction of complex cache
hierarchies with private and shared cache levels.

1.1.2 Emerging Technologies

Since NUMA architectures have reached the mainstream, several important devel-
opments have happened that affect the memory access efficiency and mapping policies.
Most of the challenges introduced by these emerging technologies will be discussed in
more detail throughout the thesis. First of all, manycore architectures will lead to a large
increase of parallelism on a single chip, going from tens of cores in multi-core systems to

CPU

Cache

CPU

Cache

CPU

Cache

Main
memory

Controller

(a) UMA system with multiple processors and
a single memory controller interconnected with
a shared bus.

CPU

Cache

CPU

Cache

Cache

CPU

Cache

CPU

Main
memory

Controller

Main
memory

Controller

Controller

Main
memory

Controller

Main
memory
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Figure 1.4: Comparison of UMA and NUMA architectures.
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thousands of cores or more (ASANOVIC et al., 2006). This impacts especially the task
mapping (SINGH et al., 2013), requiring the introduction of more efficient algorithms or
limiting the mapping to only a part of the chip. Chapter 3 discusses some of these questions
in more detail. On the other hand, the gains from task mapping are also expected to be
higher due to the larger and more complex chip structure. Another technology that affects
task mapping is the introduction of additional cache levels, such as L4 caches consisting of
embedded Dynamic Random Access Memory (eDRAM) (WU et al., 2009) on the chip.
This can impact the improvements from task mapping by further increasing the benefits
of keeping data local.

For data mapping, two main trends are emerging. Due to the rising memory
consumption of parallel applications, increasing the page size of modern systems is an
attractive way to reduce the overhead of memory management. Larger pages reduce
the number of page faults (GAUD et al., 2014), TLB misses (BASU et al., 2013), and
TLB shootdowns (VILLAVIEJA et al., 2011), and require less memory to store the page
table (CASCAVAL et al., 2005). For these reasons, many applications can benefit from
significant performance improvements when using larger pages (WEISBERG; WISEMAN,
2009; BASU et al., 2013). Most current architectures have a default page size of a few
KByte (such as 4 KByte in Intel x86 (INTEL, 2013b)) and optionally support much larger
pages (256 MByte in Intel Itanium and 1 GByte in Intel x86_64, for example). Also, most
modern operating systems include at least rudimentary support for larger pages, such as
the Huge page mechanism for Linux (LU et al., 2006), Superpages in FreeBSD (NAVARRO,
2004), and the Multiple Page Size Support (MPSS) of Solaris (MCDOUGALL, 2004).
Although larger pages increase memory management efficiency, it presents challenges for
data mapping, as the larger granularity reduces opportunities for improvements (GAUD
et al., 2014). This aspect will be discussed in more detail in Chapters 4 and 7.

The second trend that impacts data mapping is the increase of the number of
memory controllers in shared memory systems. Most architectures currently in use contain
a single memory controller per chip, such as most modern Intel Xeon processors. However,
manufacturers are beginning to include multiple memory controllers on the same chip,
leading to a NUMA behavior even within a single socket, as well as a hierarchy of memory
controllers in a multi-socket system. This can increase the gains from an improved data
mapping policy. Many current AMD processors feature multiple memory controllers (AMD,
2012), and we will evaluate the performance improvements of data mapping on such an
architecture in Chapters 5 and 7.

1.2 Measuring the Impact of Mapping

To evaluate how mapping affects parallel applications, we experiment with a small
synthetic benchmark to discuss the benefits of improved task and data mappings.



27

1.2.1 Task and Data Mapping Example

To illustrate the impact of mapping decisions on the performance and energy
consumption of parallel applications, consider the NUMA system shown in Figure 1.5,
which is based on the Intel Xeon Nehalem microarchitecture (INTEL, 2010b). This system
consists of 4 multi-core processors with support for Simultaneous Multi-Threading (SMT).
Each processor contains an L3 cache that is shared by all cores, as well as L1 and L2 caches
that are private to each core. Since the processors have their own memory controllers,
each one forms a NUMA node and is connected to its local main memory.

In this system, there are 3 different ways to execute a pair of tasks, labeled a , b
and c in the figure, which impact the access to shared data between the tasks. In case a ,
the tasks execute on the same core, and can access shared data through the fast private
caches as well as the local NUMA node. In case b , tasks execute on different cores
in the same processor and can still benefit from the shared L3 cache and fast on-chip
interconnection. In case c however, tasks need to access shared data across the slow
off-chip interconnection. Furthermore, since the shared data needs to be placed on one of
the NUMA nodes, the task that runs on the other node has a further penalty to access
the memory located on the remote node.

To evaluate the impact of mapping choices, we developed a producer/consumer
benchmark that consists of two tasks. The producer task repeatedly writes data to a
shared vector, which gets read by the consumer task. Neither task performs significant
calculations apart from incrementing a loop counter, and the application is therefore highly
memory-bound. We executed this benchmark 20 times on the machine described above,
using the default task and data mapping policies of the Linux operating system (OS), and
measured the execution time and energy consumption of each run.

The results of this experiment are shown in Figure 1.6. For each of the 20 executions,
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Figure 1.5: Example NUMA architecture with 4 NUMA nodes. In this system, two tasks
can access shared data in three different ways, labeled a , b and c .
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Figure 1.6: Performance and energy consumption results of 20 executions of the produc-
er/consumer benchmark running on the machine shown in Figure 1.5. The results are
ordered according to the execution time of the benchmark. a , b , and c correspond to
the three mapping decisions depicted in Figure 1.5, performed by the OS.

we show the execution time and energy consumption, and order the results according to
the execution time. From the results, the three mapping possibilities described before,
a , b , and c , can be clearly determined. For about half of the executions, the OS
chose the correct mapping for this particular benchmark, executing the two tasks on the
same core, resulting in the lowest execution time and energy consumption. Since the
OS uses the first-touch policy to allocate pages, the data mapping is also correct in this
case. For the other half of the executions, the OS placed the tasks farther apart, reducing
performance and energy efficiency due to the worse task mapping. Furthermore, when
the tasks get mapped to different NUMA nodes (case c ), they have to perform memory
accesses to the remote NUMA nodes, which contributes to the further decreases in this
case. Between the best and worst mapping, execution time more than tripled, and energy
consumption was increased 5.5 times. These results show that mapping has a large impact
on the application’s efficiency.

1.2.2 Benefits of Improved Mappings

Task and data mapping aim to improve the memory accesses to shared and private
data in parallel applications. This section discusses how mapping can improve performance
and energy efficiency.

1.2.2.1 Performance Improvements

Task mapping improves the efficiency of the interconnections, reducing inter-chip
traffic that has a higher latency and lower bandwidth than intra-chip interconnections. It
also reduces the number of cache misses of parallel applications. In read-only situations,
executing tasks on the same shared cache reduces data replication, thereby increasing the
cache space available to the application (CHISHTI; POWELL; VIJAYKUMAR, 2005). In
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Figure 1.7: Two scenarios that show why task mapping is a requirement for data mapping.
Consider that two tasks T0 and T1 access a page P.

read-write or write-write situations, an optimized task mapping also reduces cache line
invalidations, reducing the traffic on the interconnections as well as preventing a cache
miss on the next access to the cache line (ZHOU; CHEN; ZHENG, 2009). Data mapping
improves the memory locality on NUMA machines by reducing the number of accesses to
remote memory banks. As task mapping, it improves the efficiency of the interconnections
by reducing the traffic between NUMA nodes. This increases the memory bandwidth
available in the system and reduces the average memory access latency.

It is important to note that task mapping is a prerequisite for data mapping, for
the two reasons depicted in Figure 1.7, where two tasks T0 and T1 access a page P. First,
task mapping prevents unnecessary task migrations between NUMA nodes, such that
tasks can benefit from the local data accesses (Figure 1.7a). In the figure, task T0 is
migrated unnecessarily between NUMA nodes, such that accesses to page P are now
accesses to a remote NUMA node, rendering the data mapping of the page ineffective.
Second, data mapping alone is not able to improve locality when more than one task
accesses the same page, since the tasks may be executing on different NUMA nodes. In
this situation, only the tasks that are executing on the same node where the data is located
can benefit from the increased locality (Figure 1.7b). By performing the task mapping,
tasks that communicate a lot are executed on the same NUMA node, thereby improving
the effectiveness and the gains of the data mapping. We will evaluate the interaction of
the two types of mapping in more detail throughout this thesis.

1.2.2.2 Energy Consumption Improvements

As shown in the experiment with the producer/consumer benchmark, improved
task and data mappings can also reduce energy consumption of parallel applications. By
reducing application execution time, static energy consumption (leakage) will be reduced
proportionally in most circumstances. Reducing the number of cache misses and traffic
on the interconnections reduces the dynamic energy consumption, leading to a more
energy-efficient execution of parallel applications due to improved mappings. We therefore
expect for most experiments a reduction of energy consumption that is similar to the
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performance improvements and will evaluate our mapping mechanisms in this regard as
well.

1.3 Mapping Approaches

Task and data mappings can be generated and applied in different ways. The type
of mapping determines the amount of benefits, the overhead, as well as the applicability
to different classes of applications, depending on the dynamicity of their memory access
behavior. This section briefly compares parallel applications in terms of this dynamicity
and afterwards presents a classification of mapping approaches.

1.3.1 Classification of Memory Access Behavior

On a high abstraction level, we classify the general memory access behavior of an
application as static or dynamic, as shown in Figure 1.8. We further divide dynamic access
behavior into two types. The first type is characterized by dynamic behavior between
executions, where the behavior depends on specified parameters of the application, such as
the input data or the number of tasks that will be created. Moreover, memory addresses
can also change between executions, due to security techniques such as Address Space
Layout Randomization (ASLR) (MARCO-GISBERT; RIPOLL, 2014) or a different order
of dynamic memory allocations with functions such as malloc().

The second type of dynamic behavior occurs during the execution of the application,
due to the way a parallel algorithm is implemented (such as using work-stealing (BLU-
MOFE; LEISERSON, 1994) or pipeline programming models), or due to the creation and
destruction of tasks or allocation/deallocation of memory. If none of these cases occur, we
classify the applications’ behavior as static. It is important to mention the influence of the
granularity on the classification. If looking at a very small granularity, such as classifying
every memory access, most applications will have a very dynamic behavior. Since we are
mostly interested in the effects of mapping, we will use larger time frames for classifying
the behavior.

Memory access
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Between executions

Dependent
on input
data

Dependent
on number
of tasks

Changing
memory
addresses

During execution

Algorithmic
changes
(phases)

Creation/
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Figure 1.8: Classification of the memory access behavior of parallel applications.
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The memory access classification is important for the types of mapping that can
be performed. If the memory access behavior is static, no runtime migrations of tasks
and memory pages need to be performed. Moreover, the behavior can be classified and
analyzed through communication or memory access traces, and only the global behavior
throughout the complete execution needs to be taken into account. For applications that
show a dynamic behavior only during the execution, traces can still be used to analyze
their behavior. However, the changing behavior during execution needs to be taken into
account when performing mapping, which can require task or data migrations during the
execution to achieve optimal gains. For applications whose behavior changes between
executions, trace-based mechanisms require the generation of a new trace for each set
of input parameters, as the detected behavior would otherwise not be valid for future
executions of the application. Care must also be taken to limit the impact of changes to
memory addresses. Online mechanisms directly support all types of dynamic behavior.

1.3.2 Classification of Mapping Mechanisms

Mapping mechanisms generally consist of two parts: they need to analyze and
describe memory access behavior, which we call the analysis part. Important characteristics
of the analysis are when the analysis is performed (whether information is available before
execution starts), which metrics are used to describe behavior, on which level information
is gathered (hardware, OS, application, ...), and if the hardware or software need to
be modified. Based on the analyzed behavior, a mapping mechanism needs to apply a
policy to determine where tasks and data should be placed and when they should be
migrated. The policy can be characterized in terms of its goals (such as improving locality
or balance), when it is applied (before or during execution), and if the application or
runtime environment needs to be modified. Based on how the analysis and policy parts are
performed in the context of the execution of a parallel application and their characteristics,
we develop a classification of mapping mechanisms that consists of three groups: manual,
semi-automatic and automatic mechanisms.

1.3.2.1 Manual Mechanisms

Manual mapping mechanisms are defined as mechanisms where the mapping is
performed by the developer through source code modifications or by the user through
options in the runtime environment. Libraries such as hwloc (BROQUEDIS et al., 2010b)
and libnuma (KLEEN, 2004) provide information about the hardware and memory
hierarchy and can be used directly from the application. The numactl program (KLEEN,
2004) provides options for the user to modify the data mapping of an application, such as
a forced allocation on a specific NUMA node or an interleaving policy.

To perform task mapping, application developers can use OS functions to execute
tasks on a specified set of processing units. For application users, many runtime environ-
ments for OpenMP and MPI offer options to specify a task mapping. Many environments
also provide more high-level task mapping options, such as a compact mapping, where
neighboring tasks are mapped such that they execute on nearby processing units (INTEL,
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2012b; ARGONNE NATIONAL LABORATORY, 2014b). The most common way to
perform manual data mapping is by performing an explicit memory access at the beginning
of execution such that each memory page is accessed first by the task that will access it,
which can be beneficial in first-touch data mapping policies. In case the memory access
behavior changes during execution, most operating systems include functions to migrate
memory pages during execution. More sophisticated libraries such as MAi (RIBEIRO et al.,
2009) and libnuma (KLEEN, 2004) provide support for data mapping in the application.

Manual mapping mechanisms put the burden of calculating and performing the
mapping on the developer, and can therefore not be considered a general solution to the
mapping problem. They are intrusive, as they require changes to the source code of every
application and adaptation to different hardware architectures. Furthermore, manual
mapping can present problems if multiple applications are executing at the same time, as
the applications are unaware of each other and their mapping decisions might interfere.
However, they can provide the highest improvements in case the developer or the user
have perfect knowledge of the application’s behavior.

1.3.2.2 Semi-Automatic Mechanisms

Semi-automatic mapping mechanisms consist of two steps: First, the application
is profiled to determine its memory access behavior, for example through memory or
communication traces. Tools such as eztrace (TRAHAY et al., 2011) and the Pin dynamic
binary instrumentation tool (LUK et al., 2005) can be used for this purpose. The profile is
analyzed to determine an optimized mapping. In the second step, the calculated mappings
are then applied during the real execution of the application. The profiling phase is
potentially time-consuming and is not applicable if the application changes its behavior
between executions. Similar to the manual mapping, it can also present problems when
multiple applications are executing at the same time. Furthermore, the data generated
during profiling might be very large, necessitating a time-consuming analysis (ZHAI;
SHENG; HE, 2011). However, it requires no changes to the applications and incurs only a
minimal runtime overhead, as the behavior analysis and mapping decisions are performed
before the application starts.

1.3.2.3 Automatic Mechanisms

Automatic mapping mechanisms perform the mapping online, during the execution
of the parallel application, using information gathered only during execution. This has
several consequences. The advantages are that automatic mapping presents a truly general
solution to the mapping problem, as concurrently executing applications can be taken
into account, as well as changing behavior between or during executions. Moreover, no
expensive analysis before execution has to be performed. On the other hand, they have two
important issues that need to be resolved. The main challenge for this type of mechanism
is the runtime overhead, as the information gathering and migration may have a large
impact on the application, reducing or even eliminating the improvements of mapping.
Furthermore, since no prior information about the application behavior is available, future
behavior needs to be predicted using past behavior. This also implies that improvements
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can be lower in comparison to mechanisms that already have this information before the
application starts. We will focus on automatic mapping mechanisms in this thesis, and
compare their improvements to semi-automatic and manual mechanisms.

1.4 Contributions of this Thesis

The main objective of this thesis is to improve the performance and energy con-
sumption of modern shared memory architectures by performing automatic task and data
mapping. The primary contributions of this thesis are as follows:
Characterization of Parallel Applications. We develop metrics and a methodology to
describe the memory access behavior of parallel applications, focusing on the communication
and page usage of the tasks during the execution. The behavior is analyzed to determine
their suitability for task and data mapping.
Trace-Based Benchmark Analysis and Mapping Improvements. We analyze
several parallel benchmark suites that use different parallelization paradigms and evaluate
their improvements using task and data mapping using a trace-based mechanism, which
will serve as the baseline for our automatic mapping mechanisms.
Automatic Kernel-Based Mechanisms to Perform Mapping. We introduce two
automatic, kernel-based mechanisms to perform task and data mapping, CDSM and
kMAF, and implement them in the Linux kernel. CDSM performs task mapping of
parallel applications, while kMAF performs an integrated task and data mapping. Both
mechanisms gather information about the memory access behavior of applications during
their execution through tracing and analyzing the applications’ page faults, which causes
only a small overhead.

1.5 Document Organization

The remainder of this thesis is separated into two parts. The first part discusses
which types of memory access behavior can be improved with different mapping policies
and proposes a trace-based mechanisms to generate these policies. This first part consists
of the following chapters. Chapter 2 briefly presents the general methodology of the
thesis, including the benchmark suites and parallel machines used for measurements, as
well as the software tools used for the characterization. Chapter 3 discusses qualitative
and quantitative aspects of communication in parallel applications, introduces metrics and
methodologies to describe communication behavior and presents task mapping policies
that can improve different behaviors. The chapter finishes with the communication
characterization of the parallel applications. Chapter 4 introduces a similarly-structured
analysis of the page usage of parallel applications and discusses various data mapping
policies for improving page usage on NUMA architectures. Chapter 5 evaluates the
performance and energy consumption impact of the various task and data mapping policies
and presents an Oracle mapping mechanism based on memory access traces.

The second part contains the main contributions of this thesis, presenting two
automatic mapping mechanisms, CDSM and kMAF, which are based on the concepts
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Figure 1.9: Overview of the chapters of the thesis.

introduced in the first part. It consists of the following chapters. Chapter 6 introduces
Communication Detection in Shared Memory (CDSM), an automatic task mapping mecha-
nism for the Linux kernel. After a detailed description of CDSM, we evaluate it in terms
of accuracy, as well as performance and energy consumption improvements, comparing
CDSM to the Oracle and other mechanisms. Chapter 7 introduces the kernel Memory
Affinity Framework (kMAF). kMAF is a generalization of CDSM, supporting data mapping
in addition to task mapping and allowing the use of different types of policies.

Related work for each topic will be discussed in their respective chapters, in
Section 2.4 regarding characterization of memory access behavior, Section 6.2 regarding
task mapping and Section 7.2 regarding data mapping. Finally, Chapter 8 summarizes
our conclusions, gives an overview of the software produced as part of this research and
outlines ideas for future work that can be based on this thesis. An overview of the structure
of the thesis is shown in Figure 1.9.
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2 CHARACTERIZING PARALLEL APPLICATIONS: OVERVIEW
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Chapter 2:
Introduction to
characterization

In order to determine if
applications can benefit from
task or data mapping, two ques-
tions about their memory access
behavior need to be addressed.
Which type of behavior can be
improved with mapping? How
can the behavior be described

mathematically? This first part of this thesis aims to answer these questions for a large set
of parallel benchmarks to determine their suitability for mapping improvements, focusing
on the way that they communicate and how they access memory pages. This chapter
contains a brief overview about related work regarding the memory access characterization
of parallel applications, introduces the benchmarks that we evaluate, and presents an
overview of the memory tracer that is used to perform the characterization. In Chapter 3,
we introduce metrics for the communication behavior and evaluate the benchmarks with
these metrics. Similarly, Chapter 4 presents the metrics and evaluation of the page usage.

2.1 Benchmark Selection

In this thesis, we evaluate a diverse set of parallel applications that use several
parallelization models and have different memory access behaviors. Experiments were
performed with multiple parallel benchmark suites, as well as larger scientific applications.
This section gives an overview of these applications.

2.1.1 Parallel Benchmark Suites

We selected the following parallel benchmark suites: NAS-OMP, PARSEC, NAS-
MPI, HPCC and NAS-MZ. NAS-OMP and PARSEC represent typical parallel shared
memory applications and are therefore the main focus in this thesis. The other benchmark
suites are implemented with MPI. We use the MPICH2 framework (GROPP, 2002) MPI
framework for compilation and execution of the MPI benchmarks. All benchmarks were
compiled with gcc, version 4.6, with the default compilation options specified by each suite
(which, in most cases, specify the -O2 optimization level). Table 2.1 contains a summary
of the parallel APIs, benchmark names, input sizes and average memory usage of the
benchmarks in each suite. Memory usage is presented for benchmark configurations with
64 tasks and only includes memory that was actually accessed by the application (on the
page size granularity).

NAS-OMP (JIN; FRUMKIN; YAN, 1999) is the OpenMP version of the NAS
Parallel Benchmarks (NPB), which consists of 10 applications from the High Performance
Computing (HPC) domain. Due to its good scaling behavior, we will execute these
applications with various input sizes, W, A, B, C, and D, from smallest to largest, to
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Table 2.1: Overview of the parallel benchmark suites used in the evaluation, showing par-
allelization API, benchmark names, input size and average memory usage per application.

Benchmark
suite

Parallel
API

Benchmark
names

Input
size

Memory
usage

NAS-OMP
v3.3.1 OpenMP

BT-OMP, CG-OMP, DC-OMP,
EP-OMP, FT-OMP, IS-OMP,
LU-OMP, MG-OMP, SP-OMP,
UA-OMP (10)

W –D
(DC-OMP:
W –B)

70.1 MByte
– 24.8 GByte

PARSEC
v3.0 beta

Pthreads,
OpenMP

Blackscholes, Bodytrack, Facesim,
Ferret, Freqmine, Raytrace,
Swaptions, Fluidanimate, Vips,
X264, Canneal, Dedup,
Streamcluster (13)

native 3.2 GByte

NAS-MPI
v3.3.1 MPI

BT-MPI, CG-MPI, DT-MPI,
EP-MPI, FT-MPI, IS-MPI,
LU-MPI, MG-MPI, SP-MPI (9)

B 1.7 GByte

HPCC
v1.4.3 MPI HPCC (single application

consisting of 16 workloads)
4000×4000
matrix 19.3 GByte

NAS-MZ
v3.3.1

MPI +
OpenMP BT-MZ, LU-MZ, SP-MZ (3) B 230 MByte

evaluate how the behavior changes with different inputs. The highest input size of DC-OMP
is B.

PARSEC (BIENIA et al., 2008) is a suite of 13 benchmarks that focus on emerging
parallel workloads for modern multi-core architectures. PARSEC benchmarks are imple-
mented with OpenMP and Pthreads. Most applications have a highly dynamic behavior.
This dynamic behavior includes creating and stopping threads during execution, as well as
allocating and deallocating memory dynamically All benchmarks were executed with the
native input set, which is the largest input set available. We measure the full execution
time of each PARSEC benchmark, not just the time spent in the parallel phase (referred
to as Region Of Interest (ROI) in the PARSEC documentation and source code). This
is done to use an evaluation scenario resembling real program behavior (BIENIA et al.,
2008; SOUTHERN; RENAU, 2015) and to ensure better comparability of the results to
the other benchmarks.

NAS-MPI (BAILEY et al., 1991; BAILEY et al., 1995) is the MPI implementation
of the NAS Parallel Benchmarks (NPB), consisting of 9 HPC applications. All NAS-MPI
applications are executed with the B input size. We use the BlackHole (BH) variant of
the DT-MPI benchmark.

HPCC (High Performance Computing Challenge) (LUSZCZEK et al., 2005) is a
single application that consists of 16 different HPC workloads, such as HPL (PETITET
et al., 2012) and STREAM (MCCALPIN, 1995). It is implemented in MPI. We execute
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Table 2.2: Overview of the scientific applications used in the evaluation, showing the
section in which they are discussed, the parallelization API, benchmark names, input size
and average memory usage per application.

Application Section Parallel API Input size Memory usage
Ondes3D 7.5.4 OpenMP 300 × 300 × 300, 1000 iterations 1.2 GByte
HashSieve 7.5.5 OpenMP Lattice of dimension 80 34.6 GByte
BRAMS 6.5.6 MPI lightgr 1.9 GByte

HPCC with a square input matrix of 4000 × 4000 elements, leaving the other input
parameters at their default.

NAS-MZ (VAN DER WIJNGAART; JIN, 2003) is the Multi-Zone implementation
of the NAS benchmarks. It uses a hybrid parallelization using the MPI and OpenMP
models and can be executed with varying combinations of processes and threads. For the
experimental evaluation, we will execute the NAS-MZ benchmarks with 1 process per
socket and a number of threads equal to the number of PUs in each socket. All NAS-MZ
applications are executed with the B input size.

2.1.2 Real Scientific Applications

In addition to the benchmarks, we also analyze several larger scientific applications,
to show how our mechanisms handle real-world scenarios. An overview of these applications
is shown in Table 2.2.

Ondes3D1 simulates the propagation of seismic waves and implements the fourth-
order finite-differences numerical method for solving the elastodynamics equations (DUPROS
et al., 2008). A review of this numerical stencil can be found in Aochi et al. (2013).

HashSieve2 is an algorithm for the Shortest Vector Problem (SVP) (MICCIANCIO,
2002), a key problem in lattice-based cryptography. It requires large amounts of memory
and has a highly irregular memory access pattern. An overview of the implementation of
HashSieve can be found in Mariano et al. (2015).

BRAMS (Brazilian developments on the Regional Atmospheric Modeling Sys-
tem) (FREITAS et al., 2009) is the extended version of the RAMS (Regional Atmospheric
Modeling System) weather prediction model (PIELKE et al., 1992). BRAMS is parallelized
with MPI. We evaluated BRAMS with the light1gr input set3, which represents a test
case for the correctness and performance of BRAMS.

1The author thanks Fabrice Dupros for providing him with Ondes3D and helping with its analysis.
2The author thanks Artur Mariano for providing him with HashSieve and helping with its analysis.
3<http://brams.cptec.inpe.br/~rbrams/light/light1gr.tar.gz>

http://brams.cptec.inpe.br/~rbrams/light/light1gr.tar.gz
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2.2 Hardware Architectures

We evaluate the parallel applications on three real NUMA machines: Itanium, Xeon,
and Opteron. Of the three machines, Xeon is our main evaluation system. Results on the
other systems will only be presented if they deviate substantially from the results on Xeon.

The Itanium machine represents a traditional NUMA architecture based on the
SGI Altix 450 platform (WOODACRE et al., 2005). It consists of 2 NUMA nodes, each
with 2 dual-core Intel Itanium 2 processors (Montecito microarchitecture (INTEL, 2007))
and a proprietary SGI interconnection, NUMAlink (WOODACRE et al., 2005). Each core
has private L1, L2 and L3 caches.

The Xeon machine represents a newer generation NUMA system with high-speed
interconnections. It consists of 4 NUMA nodes with 1 eight-core Intel Xeon processor each
(Nehalem-EX microarchitecture (INTEL, 2010b)) and a QuickPath Interconnect (QPI)
interconnection (ZIAKAS et al., 2010) between the nodes. Each core has private L1 and
L2 caches, while the large L3 cache is shared among all the cores in the processor.

The Opteron machine represents a recently introduced generation of NUMA systems
with multiple on-chip memory controllers. It consists of 4 AMD Opteron processors (Abu
Dhabi microarchitecture (AMD, 2012)), each with 2 memory controllers, forming 8 NUMA
nodes in total. Each core has a private L1 data cache, while the L1 instruction cache and
L2 cache is shared between pairs of cores. The L3 cache is shared among 8 cores in the
same processor.

The Itanium machine can execute up to 8 tasks concurrently, while Xeon and
Opteron can execute 64 tasks concurrently. In our experiments, we will run each parallel
application with at least this number of tasks. Such a configuration results in the best
performance for the applications we evaluated and is the most common usage scenario
(for example, most OpenMP runtime environments will create as many threads as PUs by
default).

A summary of the machines is shown in Table 2.3. The NUMA factors of the
machines, which represent the overhead of memory accesses to remote NUMA nodes com-
pared to the local node, were measured with Lmbench (MCVOY; STAELIN, 1996). They
are calculated with Equation 2.1, where m and n represent different NUMA nodes (PILLA
et al., 2011).

NUMA factors (m,n) = memory read latency from m to n
memory read latency on m

NUMA factor (machine) = max(NUMA factors)
(2.1)

2.3 Characterization Methodology

For an accurate analysis of the memory access behavior of parallel applications, it
is necessary to gather the most information about the memory accesses of each task with
as little overhead as possible. Information that is gathered usually consists of the memory
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Table 2.3: Overview of the systems used in the evaluation.

Name Property Value
Itanium NUMA 2 nodes, 2 processors/node, NUMA factor 2.1

Processors 4× Intel Itanium 2 9030, 1.6 GHz, 2 cores, no SMT
Caches per proc. 16 KB+16 KB L1, 256 KB L2, 4 MB L3
Memory 16 GB DDR-400, page size 16 KB
Operating system Debian 7, Linux kernel 2.6.32, 64 bit

Xeon NUMA 4 nodes, 1 processor/node, NUMA factor 1.5
Processors 4× Intel Xeon X7550, 2.0 GHz, 8 cores, 2-way SMT
Caches per proc. 8× 32 KB+32 KB L1, 8× 256 KB L2, 18 MB L3
Memory 128 GB DDR3-1066, page size 4 KB
Operating system Ubuntu 12.04, Linux kernel 3.8, 64 bit

Opteron NUMA 8 nodes, 2 nodes/processor, NUMA factor 2.8
Processors 4×AMD Opteron 6386, 2.8 GHz, 8 cores, 2-way SMT
Caches per proc. 8× 16 KB+64 KB L1, 8× 2 MB L2, 2× 6 MB L3
Memory 128 GB DDR3-1600, page size 4 KB
Operating system Gentoo, Linux kernel 3.8, 64 bit

address, task ID, operation (read or write), and number of bytes of the operation of each
access. Many previous memory tracing techniques are based on simulating applications
with tools such as Simics (MAGNUSSON et al., 2002) and Gem5 (BINKERT et al.,
2011). However, simulation has generally a very high overhead, which limits the input
sizes and degree of parallelism that can be evaluated. Other mechanisms have tried to
solve the overhead issue through the use of hardware counters that can sample memory
accesses performed by applications. Examples of such tools include MemProf (LACHAIZE;
LEPERS; QUÉMA, 2012) and Memphis (MCCURDY; VETTER, 2010). Due to the use of
sampling, these tools have a lower accuracy that might result in drawing wrong conclusions
about application behavior.

Another approach is to use Dynamic Binary Instrumentation (DBI) (NETHER-
COTE, 2004), where a binary application is executed with added instrumentation code
that performs a certain action when a particular event, such as a memory access, occurs
in the application. DBI can have an overhead that is sufficiently low for accurate memory
access analysis of large applications (UH et al., 2006). Three DBI frameworks that have
been widely used in the community are Valgrind (NETHERCOTE; SEWARD, 2007;
NETHERCOTE, 2004), MemTrace (PAYER; KRAVINA; GROSS, 2013), and Pin (BACH
et al., 2010; LUK et al., 2005). Valgrind already contains CacheGrind (VALGRIND DE-
VELOPERS, 2014a), a tool that can be used to analyze the memory access behavior and
simulate cache memories. However, Valgrind has a large drawback for parallel applications,
since it serializes all threads (VALGRIND DEVELOPERS, 2014b), resulting in a reduced
accuracy as well as a longer execution time. On the other hand, MemTrace directly
supports parallel applications and has a low overhead, with the authors mentioning an
average overhead of 2× (PAYER; KRAVINA; GROSS, 2013). However, MemTrace only
supports 32-bit applications executing on 64-bit x86 machines, since it makes use of the
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extra registers available in 64-bit mode to perform the instrumentation. Our applications
can only be compiled in 64-bit mode due to their large memory usage and are therefore
not supported by MemTrace.

For these reasons, we developed a custom memory tracer based on Pin, numalize,
for the application characterization as part of this thesis. Numalize is built on the Pin
framework, but has no other external dependencies4. Numalize is supported on Linux
for the Intel x86 (INTEL, 2013b) and Itanium (INTEL, 2010a) hardware architectures.
Numalize records all memory accesses of all tasks, storing the address, task ID and time
stamp (via the Time Stamp Counter (TSC)) of each access. For each access, an analysis
routine for communication or page usage is executed. These routines will be described
in Chapters 3 and 4, respectively. To reduce the overhead of numalize, no information is
stored on the disk during execution, everything is kept in main memory. At the end of
execution, the generated behaviors are written to disk.

2.4 Related Work on Characterization of Memory Access Behavior

Related work that characterizes communication mostly focuses on applications that
use explicit message passing frameworks, such as MPI. Examples include (FARAJ; YUAN,
2002; LEE, 2009; KIM; LILJA, 1998). A characterization methodology for communication
is presented in (CHODNEKAR et al., 1997; SINGH; ROTHBERG; GUPTA, 1994), where
communication is described with temporal, spatial and volume components. We use
similar components to describe communication, but apply them in the context of shared
memory, where communication is performed implicitly through memory accesses to memory
areas that are shared between different tasks. Barrow-Williams et al. (2009) perform a
communication analysis of the PARSEC and Splash2 benchmark suites. They focus on
communication on the logical level and therefore only count memory accesses that really
represent communication, filtering out memory accesses that occur due to register pressure
for example. As we are interested in the architectural effects of communication, we take
into account all memory accesses for the characterization.

Regarding the page usage for data mapping, Majo et al. (2013) identify shared
data as a challenge for improved performance on NUMA systems, as it increases the
amount of memory accesses to remote NUMA nodes. They modify four applications
from PARSEC to reduce the amount of data that is shared between tasks to improve the
performance. In this thesis, we adopt a different approach by optimizing the mapping
instead of modifying the applications. SIGMA (DEROSE et al., 2002) is a simulation
infrastructure to analyze memory access bottlenecks of sequential applications, but focuses
on improving cache and TLB usage without addressing NUMA issues. Most previous
tools that focus on memory access analysis for NUMA characterization, such as Mem-
Prof (LACHAIZE; LEPERS; QUÉMA, 2012), MemAxes (GIMÉNEZ et al., 2014), a
NUMA extension (LIU; MELLOR-CRUMMEY, 2014) for the HPCToolkit (ADHIANTO
et al., 2010), and Memphis (MCCURDY; VETTER, 2010), use sampling methods such as
those provided via Instruction-Based Sampling (IBS) (DRONGOWSKI, 2007) on recent

4Numalize is available at <https://github.com/matthiasdiener/numalize>

https://github.com/matthiasdiener/numalize
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AMD architectures and Precise Event Based Sampling (PEBS) (LEVINTHAL, 2009) on
Intel processors. Sampling reduces the accuracy of the gathered data and can therefore
lead to wrong conclusions regarding the behavior. Furthermore, these tools do not treat
the issue of communication. To the best of our knowledge, no systematic evaluation of the
page access behavior of parallel applications has been performed before.

Compared to the related work, we introduce metrics that describe all aspects of
communication and page usage mathematically, focusing on which type of behavior makes
an application suitable for mapping.



44



45
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Chapter 3:
Characterizing
communication

As discussed in Chapter 1,
optimizing communication has
the goal of improving the us-
age of the interconnection and
caches through a better task
mapping. An important aspect
of communication characteriza-
tion is that in general, neither

applications nor the operating system perform a communication-aware task mapping. For
this reason, the improvements that are expected from an improved mapping can be directly
estimated from the characterization.

In this chapter, we discuss the qualitative and quantitative aspects of communication
in shared memory architectures. For the qualitative description of communication, we define
which memory accesses need to be considered as communication and how communication
can be detected. Quantitatively, the communication behavior of parallel applications is then
described with three properties: the structure, volume, and temporal components. We also
present several task mapping policies that improve locality and balance of communication.
In the final part of this chapter, we will analyze the parallel benchmarks using the metrics
and evaluate their suitability for task mapping.

3.1 Qualitative Communication Behavior

Describing the communication behavior presents several challenges that need to
be addressed. In this section, we will present definitions of communication in shared
memory architectures and discuss their impact on the behavior detection, as well as the
task mapping.

3.1.1 Explicit and Implicit Communication

Parallel programming models can use different forms of communication. Com-
munication can be explicit, when the model uses send() and receive() functions to
exchange messages between tasks, as shown in Figure 3.1a. In implicit communication,
communication is performed directly through memory accesses to shared variables, without
using explicit functions to communicate, as shown in Figure 3.1b. Explicit communica-
tion supports communication in distributed environments through message transmission
over network protocols, such as TCP/IP for nodes interconnected via Ethernet. Implicit
communication requires that tasks share a physical address space and is therefore limited
to shared memory architectures. However, implicit communication has a lower overhead
than explicit communication, since it only requires a memory access, while explicit com-
munication has the additional overhead of the socket and packet encapsulation, among
others (BUNTINAS; MERCIER; GROPP, 2006a).
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Task 0 (T0)
res=calc();
send(T1,res);

Task 1 (T1)
r=recv(T0);
print(r);

Comm.

(a) Explicit communication.

Task 0 (T0)
res=calc();

Task 1 (T1)
print(res);Comm.

(b) Implicit communication.

Figure 3.1: Explicit and implicit communication between two tasks T1 and T2.

Programming APIs for explicit communication include the Message Passing Inter-
face (MPI) (MESSAGE PASSING INTERFACE FORUM, 2012) and Charm++ (KALE;
KRISHNAN, 1993), while OpenMP (DAGUM; MENON, 1998) and Pthreads (BUTT-
LAR; FARRELL, 1996) use implicit communication. Since communication via shared
memory has a lower overhead (BUNTINAS et al., 2009), many implementations of MPI
contain extensions to communicate via shared memory within cluster nodes, such as Neme-
sis (BUNTINAS; MERCIER; GROPP, 2006b; BUNTINAS; MERCIER; GROPP, 2006a)
for MPICH2 (GROPP, 2002) and KNEM (GOGLIN; MOREAUD, 2013) for MPICH2
and Open MPI (GABRIEL et al., 2004). These extensions are usually activated by de-
fault (ARGONNE NATIONAL LABORATORY, 2014a). The extensions allocate a shared
memory segment for communication and transform the MPI function calls such that they
access these shared segments for communication, bypassing the network layer (BUNTINAS;
MERCIER; GROPP, 2006a). For this reason, both explicit and implicit communication
can be optimized by improving memory accesses in shared memory architectures.

3.1.2 True/False Communication and Communication Events

In explicit communication, all communication is true, that is, every call to a
communication function represents an intention to exchange data between tasks. In
implicit communication however, not every memory access to shared data by different
tasks necessarily implies an intention to communicate. We refer to this unintentional
communication as false communication, which can be further divided into spatial, temporal
and logical false communication. All types of false communication are caused by the way
that the hardware architecture, especially the caches and interconnections, operate. An
overview of the true and false communication types is shown in Figure 3.2 for two tasks
T0 and T1 that access the same cache line (gray box). The line consists of 4 words.

Only when two tasks access the same word in the same cache line while the line is
not evicted and the second access is not an unnecessary reload, we call this access true
communication (Figure 3.2a).

Spatial false communication happens because the granularity of cache lines and
interconnections is larger than the granularity of memory accesses, similar to the classic
false sharing problem (BOLOSKY; SCOTT, 1993). As an example, consider that two
tasks perform a memory access to the same cache line, but at different offsets within
the same line, as shown in Figure 3.2b. This access is not true communication, as it
does not represent an intention to transfer data. However, the architecture treats this
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access in exactly the same way as it would treat an access to the same offset, in terms
of the cache coherence protocol, invalidation and transfer of cache lines. Since we are
mostly interested in the architectural effects of communication, we include spatial false
communication on the cache line granularity in our definition of communication. In this
way, communication-aware mapping can improve accesses to truly shared data, and can
reduce the impact of false sharing.

Temporal false communication happens when two tasks access the same memory
address, but at different times during the execution, such that at the time of the second
access, the cache line is not in the caches anymore and needs to be fetched from the main
memory. This situation is shown in Figure 3.2c. This type of false communication is
very dependent on the configuration and size of the caches. It can present difficulties for
communication detection mechanisms that rely on memory traces and do not have a way
to filter communication with a low temporal locality. Since temporal false communication
affects the architectural impact of communication, we will reduce its impact by taking
into account the temporal locality in our mechanisms, as described in the next chapters.

Logical false communication happens due restrictions of the hardware architecture,
especially due to the limited number of registers. For example, if an application requires
more registers at the same time than the hardware provides, the compiler needs to spill a
register to the memory and re-read the value at a later time. Since this behavior does not
constitute an exchange of data, this second access is logical false communication. However,
similarly to the spatial false communication, it also affects the architecture. Therefore, we
also consider these accesses as communication, in contrast to previous work that focuses on
the logical communication behavior (BARROW-WILLIAMS; FENSCH; MOORE, 2009).

Summarizing the discussion, we will consider spatial and logical false communication
in the same way as true communication in this thesis, and will filter temporal false
communication in our mechanisms. With these considerations, we introduce the concept
of a communication event, which we define as two memory accesses from different tasks to
the same cache line while the cache line is not evicted. Some of our mechanisms will relax
this definition, by increasing the granularity of the detection to a value that is larger than

T0

tim
e

T1

(a) True communica-
tion. Both tasks ac-
cess the same word in
the same cache line
while the line is not
evicted.

T0

tim
e

T1

(b) Spatial false com-
munication. Both
tasks access the same
cache line, but access
different words within
the same line.

T0

cache line
is evictedtim

e

T1

(c) Temporal false com-
munication. Both tasks
access the same word in
the same cache line, but
the line is evicted be-
tween accesses.

T0,T1

T1 spills
value, rereadstim

e

T1

(d) Logical false
communication. Both
tasks communicate,
but T1 reloads the
same value at a later
time.

Figure 3.2: Comparison between true and false communication. Consider that two tasks
T0 and T1 access the same cache line (gray box), which consists of 4 words.
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the cache line size, and by using simpler definitions of temporal false communication that
are independent of the cache configuration.

3.1.3 Read and Write Memory Accesses

Write operations are generally more expensive than reads, since they imply the
invalidation of cache lines in remote caches, requiring more traffic on on-chip interconnec-
tions than the cache-to-cache transfers that are caused by read operations. However, read
memory accesses are much more numerous than writes. For example, 71.1% of memory
transactions in the (sequential) SPEC CPU 2006 benchmark suite (KEJARIWAL et al.,
2008) are read operations, while they make up 78.1% in the PARSEC suite (BIENIA et
al., 2008). Read accesses also have higher chances to stall the pipeline, since they generate
more dependencies.

Moreover, the processor needs to wait for a read operation to finish in order to be
able to continue operating with the just loaded cache line, which might involve waiting
for the main memory. This latency can not always be hidden with Out-of-Order (OoO)
execution. On the other hand, write operations are mostly asynchronous. After issuing
the write, the processor only needs to wait for an acknowledgment from the L1 data cache
to be able to continue with the next instruction. For these reasons, we consider both read
and write memory accesses equivalently for the description of communication.

3.1.4 Communication Direction and Communication Matrix

In explicit communication, each communication operation has a well-defined send-
ing task and a receiving task (or a group of multiple receiving tasks), in other words,
communication is directed. In implicit communication however, determining the sender
and receiver of communication is much more difficult. Three types of communication
events can be defined for implicit communication, depending on whether data is read or
written by two threads. These types are read/read, read/write, and write/write. In the
read/read case, both tasks perform read memory accesses to the same cache line, in order
to read input data for example. No task can be identified as the sender/receiver as they
perform the same operation. In the read/write case, one task writes data which is read
by the other task. In this case, the writing task can be considered the sender, and the
reading task the receiver. In the write/write case, similar to the read/read case, sender and
receiver can also not be identified. Since direction can not be determined in the majority
of cases, we treat communication in shared memory as undirected in this thesis.

With the information about the communication events, it is possible to create an
undirected communication graph, where nodes represent tasks and edges the number of
communication events between each pair of tasks. An example of such a graph is shown
in Figure 3.3a for a parallel application consisting of five tasks. This type of graph is
also referred to as a Task Interaction Graph (TIG) in the literature (LONG; CLARKE,
1989). In practice, this communication graph is represented as a matrix, which we call
communication matrix or communication pattern. An example communication matrix for
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the previous graph is shown in Figure 3.3b. Each cell of the matrix contains the number
of communication events for the task pairs, while the axes contain the task IDs. Since
we consider that communication is undirected, the matrix is symmetric. Furthermore,
the diagonal of the matrix is kept zero for the majority of the discussion in the thesis, as
memory accesses by the same task do not constitute communication. Finally, to analyze
and discuss the communication patterns, we generally normalize the matrices to their
maximum value, to limit the range of values between 0 and 100, for example. To better
visualize the communication pattern, we depict the normalized matrix in the form of a heat
map, where darker cells indicate more communication. An example of this visualization is
shown in Figure 3.3c.

An important aspect of communication is the question of how to compare different
communication behaviors. Since a communication matrix can be thought of as a grayscale
image, we use a concept from image comparison to compare different matrices. To compare
two normalized communication matrices A and B that have the same size, we calculate
the Mean Squared Error (MSE) (HORE; ZIOU, 2010) with Equation 3.1, where N is the
number of tasks of each matrix. If A and B are equal, the MSE is equal to zero. The
MSE is maximized when only a single pair of tasks communicates in one matrix and all
tasks except that pair communicate equally in the other matrix. In that case, the MSE is
given by N2−N

N2 ×max(M)2, where max(M) is the maximum value of both matrices (the
value that the matrices are normalized to).

MSE (A,B) = 1
N2

N−1∑
i=0

N−1∑
j=0

(
A[i][j]−B[i][j]

)2
(3.1)

By using the MSE, it is possible to compare different communication behaviors
with each other, as well as to measure the accuracy of different communication detection
mechanisms.
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(a) Weighted task interaction
graph (TIG). Edges contain
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between tasks. Tasks T3 and
T4 do not communicate.
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Figure 3.3: Three representations of undirected communication behavior for a parallel
application consisting of five tasks, T0 – T4.
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3.1.5 Relaxing the Definition of Communication

The definition of communication presented in Section 3.1.2 is the most accurate
definition to analyze the architectural impact of communication, but it has three dis-
advantages. First, since it is based directly on the size and configuration of the cache
levels, different cache configurations might result in a different communication behavior,
making it less useful to describe the application behavior itself. Second, determining
the communication behavior with the accurate definition requires either analyzing the
application in a full cache simulator, which has a high overhead, or access to the contents
of the cache on real hardware, which is not possible on most modern architectures. Third,
storing and analyzing communication on the cache line granularity (64 bytes in most
current architectures) has a high storage overhead due to the need to save large amounts
of data. This overhead can be reduced by increasing the granularity of the analysis to
large sizes than the cache line size. For these reasons, we present a relaxed definition of
communication and compare it to the accurate definition in this section.

3.1.5.1 A Relaxed Definition of Communication

We relax the accurate definition of communication in the following way. First,
we remove the requirement on the cache hierarchy and consider all accesses to memory
addresses on a granularity derived by a common cache line size as communication events.
To reduce the impact of temporal false communication, we maintain a small queue of the
two most recent tasks that accessed each cache line. Second, we increase the granularity to
a higher value than the cache line size, separating the memory address space into memory
blocks. Algorithm 3.1 shows the function that is executed on each memory access. The
memory block is calculated by bit shifting the address with the chosen granularity. The
block contains a queue that stores the ID of the previously accessing tasks. Then, the
number of tasks that previously accessed the block are counted. If other tasks had accessed
the block before, communication events are recorded and the queue is updated.

3.1.5.2 Comparing the Communication Definitions

We compare the accurate and relaxed definitions of communication by measuring
the MSE (as introduced in Section 3.1.4) of the generated communication matrices. The
accurate communication is generated with a full cache simulator1 based on the Pin dynamic
binary instrumentation tool (LUK et al., 2005). The tool traces all memory accesses of a
parallel application and simulates an 8-core architecture with a 2-level cache hierarchy.
Each core has private L1 data and instruction caches, the L2 cache is shared among all
cores. For the relaxed definition of communication, we use the Pin-based memory tracing
tool presented in Section 2.3 and use Algorithm 3.1 on each memory access to determine the
communication matrix. As an example of the influence of the communication definitions,
we analyze the behavior of the UA-OMP benchmark from NAS-OMP with the W input
size, which has a high sensitivity to these characteristics. All experiments were performed
with 8 threads.

1CacheSim: <https://github.com/matthiasdiener/CacheSim>

https://github.com/matthiasdiener/CacheSim
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Algorithm 3.1: Counting communication events with the relaxed definition.
Input: address: memory address that was accessed; tid: task ID of the task that

performed the access; granularity: granularity of detection
// memory block of the address, contains a queue of up to 2

tasks:
1 block = address >> granularity;
// number of tasks that accessed the block; can be 0, 1 or 2:

2 nTasks = block.size();
3 if nTasks == 0 then

// no previous access
4 block.push_back(tid);
5 end
6 if nTasks == 1 && block.front() != tid then

// 1 previous access
7 communication_event(block.front(), tid);
8 block.push_back(tid);
9 end

10 if nTasks == 2 then
// 2 previous accesses

11 t1 = block.front();
12 t2 = block.back();
13 if t1 != tid && t2 != tid then
14 communication_event(t1, tid);
15 communication_event(t2, tid);
16 block.pop_front();
17 block.push_back(tid);
18 end
19 else if t1 == tid then
20 communication_event(t2, tid);
21 end
22 else if t2 == tid then
23 communication_event(t1, tid);
24 block.pop_front();
25 block.push_back(tid);
26 end
27 end

In Figure 3.4, the communication matrices of the different detection mechanisms
are shown. The baseline of our evaluation, the matrix generated with the cache simulator
is shown in Figure 3.4a. Figures 3.4b – 3.4h show the matrices generated with the relaxed
definition and increasing granularity of memory blocks. The figure also contains the values
of the Mean Square Error (MSE) as defined in Section 3.1.4, calculated between the
baseline and each matrix generated with the relaxed definition. Higher MSEs indicate a
higher inaccuracy of the detected communication. In this configuration with 8 threads,
the maximum possible MSE is 8750.

The results show that the communication detected with the relaxed definition
remains very accurate up to a granularity of 1 KByte, with low values for the MSE and
matrices that are visually similar to the baseline. When increasing the granularity to
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(a) Communication ma-
trix generated with the
cache simulator, the
baseline for the MSE
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(b) Communication ma-
trix generated with the
relaxed definition and
a 64 Byte granularity
(MSE: 122).
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(c) Communication ma-
trix generated with the
relaxed definition and
a 256 Byte granularity
(MSE: 126).
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(d) Communication ma-
trix generated with the
relaxed definition and
a 1 KByte granularity
(MSE: 189).
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(e) Communication ma-
trix generated with the
relaxed definition and
a 16 KByte granularity
(MSE: 621).
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(f) Communication ma-
trix generated with the
relaxed definition and
a 1 MByte granularity
(MSE: 1393).

0

1

2

3

4

5

6

7

0 1 2 3 4 5 6 7

(g) Communication ma-
trix generated with the
relaxed definition and
a 64 MByte granularity
(MSE: 1531).
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(h) Communication ma-
trix generated with the
relaxed definition and
a 1 GByte granularity
(MSE: 2871).

Figure 3.4: Comparison of the communication matrices of the UA-OMP benchmark,
generated with the accurate (a) and relaxed (b) – (h) definitions of communication with
different detection granularities. The MSE is calculated as the difference to the accurate
matrix (a).

values above 1 KByte, the MSE keeps rising and the matrices lose their similarity to the
baseline, with a complete divergence starting at about 1 MByte. These results indicate
that the relaxed definition is accurate enough to be used to analyze communication if the
granularity of detection is less than 1 Kbyte. Since UA-OMP has a very low memory usage
(8 MByte for the configuration shown here), the accuracy presented here is a lower bound.
Applications with a higher memory usage have a lower sensitivity to the granularity since
there is less overlap between the memory blocks.

As expected, generating the communication with the relaxed definition is much
faster than the cache simulator, about 20× faster for this benchmark, with even higher
speedups in general for larger benchmarks (about 35× for UA-OMP with input size A, for
example). For this reason, we will use the relaxed definition with a 64 Byte granularity
(which is the cache line size of most current architectures) for our evaluation of the
benchmark behavior in this chapter, since it allows us to analyze even huge parallel
applications with a high accuracy. For the automatic mapping mechanisms that will be
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presented in Part II of this thesis, we will use the relaxed definition with higher granularities
to allow a more efficient analysis of runtime behavior.

3.1.6 Common Types of Communication Patterns

Communication patterns are the most important aspect of communication, since
they determine the task mapping that is calculated. Many parallel applications have
one of several common types of communication patterns. This section will present and
discuss the most common patterns: initialization, reduction, all-to-all, nearest neighbor,
matrix, and pipeline. Code examples2 that generate each pattern, written in OpenMP, as
well as the patterns themselves are shown in Figure 3.5. The examples are shown for an
application consisting of 8 tasks. The patterns were verified with gcc 4.6, but naturally
depend on how the compiler and its runtime library manages tasks, such that different
compilers might produce different patterns.

In an initialization pattern, shown in Figure 3.5a, a task distributes initial input
data to the other tasks. Usually, the first created task, task 0, performs this distribution.
This behavior results in a communication pattern similar to the one that is shown in the
Figure, where task 0 performs a lot of communication with all other tasks, but the other
tasks only communicate very little among themselves.

In a reduction pattern, a task collects partial results from other tasks and performs
a reduction operation, such as a sum, on the data. The pattern, shown in Figure 3.5b, is
very similar to the initialization pattern. In the example, task 0 collects information from
all other tasks.

In an all-to-all communication pattern, all tasks communicate in an equal way with
each other, such that all pairs of tasks have a similar amount of communication. This
situation is depicted in Figure 3.5c. The code example performs a matrix multiplication.
Since the values of the resulting matrix depend on values from all rows and columns of
the input matrices, communication between all tasks is performed.

In a nearest neighbor pattern, most communication happens between neighboring
tasks, as shown in Figure 3.5d, where task pairs (0,1), (1,2), ..., communicate the most.
This behavior is common in applications that are based on domain decomposition, where
communication happens via shared data on the borders of the domains. The code presented
in the figure performs the Gauss–Seidel method to solve a linear system of equations.

The matrix communication pattern, shown in Figure 3.5e, is similar to the nearest
neighbor pattern. However, in addition to lots of communication between directly neigh-
boring tasks, there is also substantial communication between tasks that are farther apart,
such as tasks 0 and 6 in the example. This behavior is common in algorithms that operate
on cells of matrices, where the new cell depends on values in neighboring cells in the same
row (which are also accessed by neighboring tasks), as well neighboring cells in different
rows (which are also accessed by tasks that are farther apart). The code presented in the
figure calculates a Gaussian blur for a matrix.

2The examples shown in the figures only contain parts of the main function due to space constraints.
The full code is available at <https://github.com/matthiasdiener/communication-samples>.

https://github.com/matthiasdiener/communication-samples
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1 int a[N];
2 for (i=0; i<N; i++)
3 a[i] = i;
4
5 #pragma omp parallel
6 {
7 int sum, i, tid = omp_get_thread_num();
8 for (i=tid*N/8; i<(tid+1)*N/8; i++)
9 sum += a[i];

10 } 0
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(a) Initialization communication pattern.

1 int i;
2 int a[N];
3 int sum = 0;
4
5 #pragma omp parallel for reduction(+:sum)
6 for (i=0; i < N; i++) {
7 sum += a[i];
8 } 0
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(b) Reduction communication pattern.

1 int A[N][N], B[N][N], C[N][N], i, j, k;
2
3 #pragma omp parallel for
4 for(i=0; i<N; i++) {
5 for(j=0; j<N; j++) {
6 for(k=0; k<N; k++) {
7 C[i][j] += A[i][k]*B[k][j];
8 }
9 }

10 } 0
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(c) All-to-all communication pattern of a naive matrix multiplication.

1 #pragma omp parallel
2 {
3 jstart = tid*dnp; jstop = jstart + dnp;
4 for(j=jstart; j<jstop; j++)
5 dxi += A[i][j]*x[j];
6 #pragma omp critical
7 dx[i] -= dxi;
8 }
9 dx[i] /= A[i][i]; x[i] += dx[i];

10 sum += abs(dx[i]); 0
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(d) Nearest neighbor communication pattern of the Gauss-Seidel method. Adapted from (VER-
SCHELDE, 2014).

Figure 3.5: Common types of communication patterns.

In applications with a pipeline pattern, communication happens usually within each
pipeline stage, but there is little communication between different stages. An example of
this pattern is shown in Figure 3.5f. In the example, there are 2 pipeline stages consisting of
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1 #pragma omp parallel for
2 for (y = 0; y < h; y++) {
3 int tid = omp_get_thread_num(), x1;
4 for (x1 = 0; x1 < w; x1++) {
5 if(x1 < xmax)
6 ringbuf[ksize*tid] = src[y*w + x1+halfk];
7 else
8 ringbuf[ksize*tid] = src[y*w + w-1];
9 dst[y*w + x1] = convolve(kernel,

&ringbuf[ksize*tid], ksize, bufi0);
10 }
11 } 0
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(e) Matrix communication pattern of a Gaussian blur.

1 int A[N], sum, flag=0, i;
2 #pragma omp parallel
3 {
4 int tid = omp_get_thread_num();
5 if (tid<4) {
6 for (i=tid*N/8;i<(tid+1)*N/8;i++)
7 A[i] = random(); //produce
8 flag = 1;
9 } else {

10 while (flag != 1) {};
11 for (i=tid*N/8;i<(tid+1)*N/8;i++)
12 sum += A[i]; //consume
13 }
14 } 0
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(f) Pipeline communication pattern of a producer-consumer benchmark. Adapted from (MATT-
SON; MEADOWS, 2008).

Figure 3.5: Common types of communication patterns (ctd.).

4 tasks each, with large amounts of communication in each stage (0–3 and 4–7). The code
shown in the figure is a producer-consumer application, where the first 4 tasks produce
random data in the A vector, which is then consumed by the other 4 tasks. In addition to
the communication within each pipeline stage, the shared data is communicated between
the stages as well.

Applications can also show a combination of several patterns. For example, an
application might be distributing input data during initialization, then communicate with
a nearest neighbor pattern, and finally collect partial results with a reduction.

With the patterns presented here, it is already possible to determine informally
which types of patterns can be improved with an improved task mapping (this will be
discussed in detail in Section 3.2). The initialization, reduction, and all-to-all patterns are
less suitable for an improved mapping, since grouping tasks according to the communication
between them will always result in a similar amount of communication in each group.
As an example, consider that we want to create an optimized mapping for an all-to-all
pattern in an architecture that has 2 caches that are shared between 4 cores each. Any
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mapping of the 8 tasks to the 8 cores will result in the same amount of communication in
each cache and between the caches.

On the other hand, the nearest neighbor, matrix and pipeline patterns are more
suitable for mapping, since groups of processes with lots of communication within the
group and little communication to other groups can be found. As an example, consider
that we want to create an optimized mapping for a nearest neighbor pattern for the same
architecture described before. In this case, there is an optimized mapping, by placing
tasks 0–3 on one cache and tasks 4–7 on the other cache. In this way, there is lots of
communication in each cache, but very little communication between the caches.

3.1.7 Communication Balance

Apart from the locality of communication, another important metric to consider
is the balance of communication. To illustrate the importance of balance, consider an
the architecture shown in Figure 3.6a, which consists of 8 processing units (PUs), 2 PUs
sharing an L1 cache, and 4 PUs sharing an L2 cache. Consider also that we want to create
an optimized task mapping of 4 tasks with a nearest neighbor communication pattern to
this architecture. In this scenario, a locality-based mapping policy might create a mapping
similar to the one shown in Figure 3.6b, which maximizes local communication through
2 L1 caches and 1 L2 cache. Although this mapping is optimal in terms of locality, it is
severely imbalanced, as half of the caches are not used at all. Therefore, a mapping that
also takes into account the communication balance as well might result in a higher overall
performance. Such a mapping is shown in Figure 3.6c, which uses all the caches, while
still taking the locality into account.

Balance needs to be taken into account for two reasons. First, in situations where
there is an overprovisioning or underprovisioning of the hardware, that is, when there
are more or fewer tasks than the architecture can execute in parallel. The example in
the first paragraph is an underprovisioning scenario. A second scenario is when the
communication of the tasks is imbalanced, that is, when some tasks have a higher or
lower amount of communication than others. An example of this situation is shown in
Figure 3.7, showing communication matrices for balanced communication (Figure 3.7a)
and imbalanced communication (Figure 3.7b). To discuss the communication balance,
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(b) Task mapping that only
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(c) Task mapping that takes lo-
cality and balance into account.

Figure 3.6: Locality and balance of communication in an architecture with 8 PUs and 4
tasks with a nearest neighbor communication pattern.
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(a) Balanced communication.
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Figure 3.7: Communication balance.

we linearize the communication matrix by summing up all columns, generating the total
amount of communication per task. We visualize communication balance in a balance
vector, where darker cells indicate more communication by a task. The vectors show that
in the first case, communication is perfectly balanced, while in the second case, there is a
large imbalance due to the fact that tasks 5–7 do not communicate. If none of these two
situations exists, that is, if the number of tasks is equal to the number of PUs and all tasks
perform the same amount of communication, no special balancing has to be performed.

Communication imbalance of a parallel application can happen for several reasons.
For example, if the problem to be solved can not be divided equally for the requested
number of tasks, some tasks will work with a smaller (or even empty) part of the problem,
leading to a reduced amount of communication for these tasks. Another reason for
imbalance is if some parts of the problem inherently require more communication to be
solved. This can happen in a pipeline parallelization, for example, where some stages
might require more communication than others. Not all communication imbalance can be
solved with an improved mapping. The imbalance of the examples shown in Figures 3.6
and 3.7 can be solved by a balanced mapping. However, when only a few tasks have a
significant amount of communication (such as in the initialization or reduction patterns),
balancing the communication is much more difficult, as the caches to which the tasks with
most communication get mapped will always handle more communication than the other
caches.

Communication balance is a complement to load balance. In load balance, the
amount of computation performed by each task is referred to as the load of that task. The
goal of a load balancing algorithm is to distribute the load such that all processing units
perform the same amount of computation. As mentioned before, tasks might have different
computational and communication requirements, which can lead to higher improvements
from communication balance than from load balance, depending on these requirements.
Due to the similarity, we reuse some concepts of load balance in this chapter.

3.2 Quantitative Communication Behavior

After presenting the qualitative aspects of communication in shared memory, we
will formalize the concepts discussed in Section 3.1 to derive quantitative descriptions of
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the behavior. The quantitative communication behavior of parallel applications can be
described with three properties: the structure, volume, and temporal components (KIM;
LILJA, 1998; SINGH; ROTHBERG; GUPTA, 1994). These metrics are used to determine
which communication behavior can benefit from task mapping policies that are based on
locality, balance, or both. In this section, we will first introduce metrics for the structure
of communication, which we call heterogeneity and balance, and metrics for the volume
of communication, which we call the amount and ratio of communication. Then, we will
describe the temporal behavior in terms of changes to these metrics during the execution
of the parallel application.

3.2.1 Communication Heterogeneity

For policies that focus on improving the locality of communication, it is necessary
to have groups of threads that communicate more within the group than with threads
outside the group. Conversely, if all tasks communicate in the same way among them,
no improvements from locality-based task mapping can be expected. To formalize this
intuition, we can determine the potential for task mapping of the application by analyzing
the differences between the amounts of communication between the tasks contained in the
communication matrix.

We describe the differences as the heterogeneity of the communication CH . To
calculate it, we first normalize the communication matrix to its maximum value, as shown
in Equation 3.2, where max(M) returns the maximum value of M . Normalization makes it
easier to compare the heterogeneity between different applications. Due to the symmetry of
the matrix, we use only the upper triangular. Then, the heterogeneity CH is calculated with
Equation 3.3, where T is the number of tasks, the var function calculates the variance and
then min function returns the minimum value of its arguments. The equation calculates
the average variance of the communication of each task in both x and y-direction and
chooses the minimum of these two values. The higher the heterogeneity, the higher the
potential for locality-based task mapping, since there are larger differences between the
amounts of communication. If the heterogeneity is low, the amount of communication
between the tasks is similar, thus any task mapping applied would result in a similar
locality of communication.

Mnorm = M/ max(M)× 100 (3.2)

CH =
min

([∑T
i=1 var(Mupper

norm [i][1...T ])
]

,
[∑T

i=1 var(Mupper
norm [1...T ][i])

])
T

(3.3)

3.2.2 Communication Balance

For task mapping policies that are based on balance, it is necessary to determine if
some threads are performing more communication than others. To evaluate this property,
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we introduce the CB metric, which we refer to as the balance of the threads’ communication
behavior. To calculate CB, we first calculate the total amount of communication per
thread in a communication vector CV , where each element i of CV contains the number
of communication events of thread i. The vector can be directly generated from the
communication matrix, by summing up the communication events per row. As the
communication matrix is symmetric, we only use the upper half of the matrix (Mupper) for
the calculation. The CV is generated with Equation 3.4, where rowSums calculates the
sum for each row of the matrix.

CV = rowSums(Mupper) (3.4)

Similar to the communication matrix, the CV is then normalized to values between 0
and 100 with Equation 3.5.

CVnorm = CV/ max(CV )× 100 (3.5)

With the normalized CV , we calculate the communication imbalance CB with
Equation 3.6, similar to traditional load imbalance (PEARCE et al., 2012).

CB =
(

max(CVnorm)∑T
i=1 CVnorm[i]/T

− 1
)
× 100% (3.6)

A value of 0 for CB indicates that the communication between tasks is perfectly
balanced, while higher values indicate an imbalance in the communication behavior,
suggesting that balance-based task mapping policies can be beneficial. Figure 3.8 shows a
comparison of communication matrices with different values of heterogeneity and balance.
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Figure 3.8: Comparison of the structure of communication with matrices that have different
values for heterogeneity and balance, for an application consisting of five tasks.
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3.2.3 Communication Amount

Improvements according to a specific task mapping policy also depend on how
much tasks are communicating. We expect higher gains for parallel applications that
communicate more. To describe the amount of communication CA, we use the average
number of communication events per task and per second of execution time, calculated
with Equation 3.7. When there is little communication, task mapping has less potential
for improvements, even when the heterogeneity or imbalance are high.

CA =
∑T

i=1
∑T

j=1 M [i][j]
T 2 × execution time (3.7)

3.2.4 Communication Ratio

The amount of communication itself is not sufficient to evaluate if an application
is suitable for communication-aware task mapping. If tasks have much more memory
accesses to private data than communication, a communication-aware mapping might not
affect the overall memory access behavior. For this reason, we define the communication
ratio metric CR, which is the ratio of the communication accesses to the total number of
memory accesses of the application tasks. CR is calculated by Equation 3.8, where AccV [i]
is the number of memory accesses performed by task i.

CR = CA∑T
i=1 AccV [i]

(3.8)

3.2.5 Temporal Communication Behavior and Phase Detection

The previous two metrics describe the state of the communication matrix at a
certain point during execution. To analyze the temporal communication behavior, we
separate the execution into time slices of a fixed length and calculate the heterogeneity
and amount of communication for each slice.

Since the values for consecutive time slices may differ greatly, we perform a phase
detection on the temporal behavior of the application using the heterogeneity value of the
time slices. We take only the heterogeneity into account, since it determines the need to
migrate tasks. A new phase starts when the average heterogeneity of the last n time slices
differs from the n time slices before them by at least diffmin. This intuition is formalized
in Equation 3.9, where t is the current time slice, (x : y) represents the time slice range
from x to y, and havg(t) represents the average heterogeneity of time slice t.

| havg(t− n : t)− havg(t− 2n : t− n)|
havg(t− n : t) ≥ diffmin (3.9)

In this thesis, we use a time slice length of 10ms and n = 50, which leads to a
minimum phase length of 500ms. We use a value of 0.2 for diffmin. It is important to
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Table 3.1: Overview of the communication metrics introduced in this section.

Metric Symbol Describes Task mapping Suitability
Heterogeneity CH Structure of Locality-based High
Balance CB communication Balance-based Low
Amount CA Volume of Both High
Ratio CR communication High
Dynamicity CD Temporal comm. Both Low

mention that these values are used to analyze and compare the dynamic behavior of the
benchmarks, and do not necessarily indicate that tasks need to be migrated.

By determining the number of phases detected by Equation 3.9, we then calculate
the dynamicity CD of communication by normalizing it to the execution time, as shown in
Equation 3.10. We expect higher improvements from task mapping from applications with
a lower dynamicity, since task migrations during execution impose an overhead on the
application and therefore impact the total execution time.

CD = #detected phases
execution time (3.10)

3.2.6 Summary of Communication Metrics

Table 3.1 contains a summary of the communication metrics that were introduced
in this section, showing which component of the communication behavior they describe,
which type of task mapping they are more suitable for, and if a high or low value of the
metric indicates higher suitability for the task mapping.

3.3 Task Mapping Policies

Several task mapping policies that optimize different characteristics will be evaluated:
Operating System (OS), Compact, Scatter, Locality, Distance, Balance, and Balanced
Locality. OS, Compact, Scatter, and Locality are traditional mapping policies. The other
three policies are introduced in this thesis.

3.3.1 The Policies

3.3.1.1 Operating System (OS)

The mapping performed by the operating system represents the baseline for our task
mapping policies. We use the Completely Fair Scheduler (CFS) (WONG et al., 2008) of
the Linux kernel, which is the default thread scheduler since version 2.6.23. The scheduler
focuses mostly on fairness and load balance (WONG et al., 2008), and has no means for
improving communication locality or balance.
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3.3.1.2 Compact

The Compact mapping performs a round-robin scheduling of threads to PUs
such that neighboring threads are placed close to each other in the memory hierarchy.
This mapping can increase the locality of communication behaviors where neighboring
threads communicate frequently with each other. Compact is similar to task mapping
policies that are available in some MPI runtime environments (ARGONNE NATIONAL
LABORATORY, 2014b) and OpenMP libraries (INTEL, 2012b).

3.3.1.3 Scatter

The Scatter policy represents the opposite of Compact, and is also available in
some runtime environments (INTEL, 2012b). In this mapping, neighboring threads are
placed far from each other in the hierarchy. In this way, performance can be improved
for applications with little communication or a low communication ratio, by reducing
competition for cache space. Compact and Scatter do not take the actual communication
behavior into account.

3.3.1.4 Locality

The Locality policy optimizes the communication behavior by mapping threads
that communicate frequently close to each other in the memory hierarchy. The mapping
algorithm receives as input the communication matrix and a description of the memory
hierarchy of the system, generated with hwloc (BROQUEDIS et al., 2010b). It outputs a
thread mapping that maximizes the overall locality of communication. Since locality-based
task mapping has received a lot of attention in recent years, many algorithms have been
proposed to calculate such a mapping. Proposing a new algorithm is not part of this
thesis, but we present here a brief overview of previous proposals and discuss our selected
algorithm that will be used for all Locality policies throughout this thesis.

The task mapping problem is NP-hard (BOKHARI, 1981), therefore it is necessary
to use efficient heuristic algorithms to calculate the mapping. The mapping problem can
be modeled with two undirected graphs, a communication graph and a hierarchy graph.
In the communication graph, vertices represent tasks and edges represent the amount of
communication between them. In the hierarchy graph, vertices represent levels of the
memory hierarchy and PUs, while edges represent the interconnections between them. The
communication graph is obtained from the communication matrix, while the hierarchy
graph is generated from hardware information.

Many algorithms for locality-based task mapping are based on graph partitioning,
such as METIS (KARYPIS; KUMAR, 1998), ParMETIS (KARYPIS; KUMAR, 1996),
Zoltan (DEVINE et al., 2006), Scotch (PELLEGRINI, 1994) and the topology framework
for MPI/SX (TRÄFF, 2002). A comprehensive overview and comparison of graph-
based algorithms is shown by Glantz et al. (2015). However, many shared-memory
hardware topologies are hierarchical and may be represented as trees (TRÄFF, 2002),
which can lead to more efficient algorithms. Examples of tree based mapping algorithm
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are TreeMatch (JEANNOT; MERCIER, 2010; JEANNOT; MERCIER; TESSIER, 2014)
and EagerMap (CRUZ et al., 2015).

Since our main proposals focus on online mapping during execution, there are several
important criteria for choosing a good algorithm: (1) scalability, to allow mapping for
large architectures, (2) execution time, to reduce the overhead on the running application,
(3) mapping quality, to increase the benefits from task mapping, and (4) stability, to make
sure that small changes in the communication behavior only result in small changes to the
mapping in order to reduce the number of unnecessary task migrations during execution.
An extensive comparison (CRUZ et al., 2015) showed that the EagerMap algorithm has
the best properties for these criteria. It scales with O(T 3), where T is the number of
tasks, which is equal to most algorithms, but has a very short execution time (up to 10×
faster than Scotch, the second fastest), while maintaining the same quality as the other
algorithms. Due to its greedy strategy, it has a very high stability, and results in fewer task
migrations due to small changes in the communication pattern than other algorithms. For
these reasons, we selected EagerMap as the task mapping algorithm for all experiments in
this thesis.

3.3.1.5 Distance

The Distance policy represents the opposite of Locality, placing threads that
communicate far apart in the memory hierarchy. We calculate this mapping by inverting
the communication matrix, subtracting each cell by the maximum value of the matrix
while keeping the diagonal of the matrix at zero. An example of such an inverted matrix
is shown in Section 3.3.2. We then apply the same mapping algorithm as for the Locality
mapping to the inverted matrix. This mapping can be useful when the heterogeneity is
high, but the communication ratio is low, similar to the Scatter policy, but taking the
actual communication behavior into account.

3.3.1.6 Balance

The Balance policy focuses on maximizing the communication balance for the
application. The mapping algorithm receives the communication vector (introduced in
Section 3.2.2) and the description of the memory hierarchy as input. The mapping is
calculated by selecting the thread with the highest amount of communication that has not
been mapped to a PU yet. This thread is then mapped to the PU which currently has the
lowest amount of communication mapped to it. This process is repeated until all threads
are mapped to a PU. This policy focuses only on balance and does not take locality into
account.

3.3.1.7 Balanced Locality

The Balanced Locality policy focuses on increasing locality while still maintaining
the balance of the communication. First, it maps threads that communicate frequently
to nearby PUs, similar to the Locality policy. Second, for each level of the memory
hierarchy, it keeps a similar amount of communication for each cache memory of that
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level. We model the memory hierarchy as a tree, where the leaves represent the PUs,
and the other levels of the tree represent cache levels and their nodes represent specific
cache memories. Our algorithm groups threads with high amounts of communication
to the leaves of the tree, propagating this mapping to the parent nodes up to the root
node. We add threads to the leaves until the amount of communication is higher than the
average amount of communication per leaf. Summarizing, this policy maps threads that
communicate frequently to close PUs whose amounts of communication are lower than the
average amount of communication per PU. Balanced Locality is based on an extension of
EagerMap.

3.3.1.8 Load Balance

We also evaluate the Load Balance of selected benchmarks to compare it to the
Communication Balance metric introduced in Section 3.2.2. We use the number of executed
instructions per thread as the metric for the load, and calculate its value with the same
algorithm as for the Communication Balance.

3.3.2 Example of Policy Behavior

To illustrate the various task mapping algorithms, consider the example presented
in Figure 3.9. In the example, we use an architecture with two processors (4 PUs each),
with 8 PUs in total (Figure 3.9a). PUs 0–3 belong to the first processor, while PUs 4–7
belong to the second one. For the example, we assume that each processor has only a single
cache shared by all PUs, such that communication within each processor is faster than
communication between processors. Communication performance within each processor is
homogeneous.

This architecture executes an application consisting of 8 tasks with the communica-
tion pattern shown in Figure 3.9b. The pattern shows communication between neighboring
tasks, where one task pair (6,7) has much more communication compared to the other
tasks. This pattern is very similar to the communication matrix of UA-OMP that will be
presented in Section 3.4.1.1 and illustrates the behavior of the different mapping policies
well. Its inverted pattern, used for the calculation of the Distance mapping, is shown in
Figure 3.9c.

System
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PU
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PU
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PU
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PU
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Processor 1

PU
4
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(a) System with 2 processors and 4 PUs each.
Each processor has only a single cache.
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(c) Inverted communica-
tion pattern of (b).

Figure 3.9: Inputs for the task mapping example.
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7 4 3 1

6 5 2 0

0 1 2 3

4 5 6 7

Balanced Locality

6 7 0 1

5 4 2 3

Figure 3.10: Output of the task mapping example with various algorithms. Gray boxes
represent the PUs, while black circles represent the tasks.

The mappings that were calculated by each algorithm are shown in Figure 3.10.
Each gray box represents one of the PUs, while the black circles indicate where each
task is mapped. The Compact mapping results in a very imbalanced mapping, since
processor 1 performs most of the communication. It shows a high locality though, since
tasks 5–7, which communicate the most, are located in the same processor. The Scatter
mapping shows a better balance, but reduces the locality of communication, since task
pairs that communicate are placed on different processors. For example, tasks 6 and 7,
which communicate a lot, are mapped to different processors.

The Locality policy calculated a mapping that maximizes the locality, similar to
the Compact mapping, but also causes a significant imbalance. The Distance policy results
in a minimal locality, as expected, but has a high communication balance. Similarly,
the Balance policy results in a high balance, but also causes a lot of inter-processor
communication. Finally, Balanced Locality shows a tradeoff between locality and balance.
Most task pairs with lots of communication between them, (6,7) and (4,5), are placed
on the same processor (causing a high communication locality), while still maintaining a
good balance between processors.

3.4 Communication Behavior of the Benchmarks

For the evaluation of the in this section, we execute the parallel applications
discussed in Section 2.1 with 64 tasks on a simulated machine with 64 PUs and trace all
memory accesses of the application on a per-task basis. We use the numalize memory access
tracer described in Section 2.3 with the relaxed definition of communication introduced in
Section 3.1.5. Benchmarks that can not be executed with 64 tasks are executed with a
number of tasks as close as possible to 64. The NAS-MZ benchmarks were executed with
4 processes and 16 threads per process. To estimate the accuracy of the detected patterns,
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we performed a visual comparison of communication matrices with related work (ZHAI;
SHENG; HE, 2011; MA et al., 2009; RIESEN, 2006), and did not notice any significant
difference to the patterns detected by numalize. Please also see our discussion of numalize’s
accuracy compared to a cache simulator in Section 3.1.5. We begin with a discussion of the
global communication behavior and then analyze the dynamic behavior during execution.

3.4.1 Global Communication Behavior

This section presents the communication patterns during the full execution of each
application, to analyze their overall suitability for different task mapping policies.

3.4.1.1 NAS-OMP Benchmarks

Figure 3.11 shows the communication matrices of the NAS-OMP benchmarks for the
B input size, while Figure 3.12 shows the values of the communication metrics. Evaluating
the heterogeneity of communication, several benchmarks, such as BT-OMP, MG-OMP,
and SP-OMP, show large amounts of communication between neighboring threads, such
as threads 0 and 1. SP-OMP also shows significant communication between thread 0 and
all other threads, indicating an initialization and reduction behavior. LU-OMP has a
high heterogeneity as well, but communication happens mostly between distant threads,
such as threads 0 and 53. It is important to mention that for BT-OMP, LU-OMP, and
SP-OMP, the threads with the highest IDs communicate only very little. This indicates
that the communication is imbalanced. DC-OMP, EP-OMP, FT-OMP, and IS-OMP are
applications with a low heterogeneity, demonstrated by their homogeneous communication
matrices.

Evaluating the communication balance shows that only BT-OMP, LU-OMP, and
SP-OMP are significantly imbalanced and show a suitability for balance-based policies.
The reason for the imbalance of these applications is shown in Figure 3.11, as some of
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Figure 3.11: Communication matrices of the NAS-OMP benchmarks (B input).
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Figure 3.12: Communication characteristics of the NAS-OMP benchmarks.

the threads are not communicating at all. This behavior changes with the input size:
inputs W and B are imbalanced, while A is much more balanced. However, despite this
communication imbalance, there is no significant load imbalance for these benchmarks
according to our measurements, showing that the threads that communicate less still
perform substantial amounts of computation. For example, SP-OMP with the B input
has a load balance of only 38.1 (calculated with the number of executed instructions per
thread), while the communication balance metric is much higher (165.5, higher values
indicate a higher imbalance).

Analyzing the volume of communication metrics, we can see that the communication
amount increases slightly with larger input sizes for most NAS-OMP benchmarks. However,
the communication ratio shows that for most benchmarks, with increasing input sizes, less
communication in comparison to the total number of memory accesses is performed. This
indicates that larger input sizes of NAS-OMP are less suitable for communication-aware
task mapping in general.
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Figure 3.13: Communication matrices of the PARSEC benchmarks.

3.4.1.2 PARSEC Benchmarks

Figures 3.13 and 3.14 show the communication matrices and metrics of the PARSEC
benchmarks, respectively. Only a minority of the PARSEC benchmarks have a high
heterogeneity, indicating that PARSEC applications are generally less suitable for locality-
based thread mapping. Benchmarks with a low heterogeneity mostly show initialization
and all-to-all communication patterns. From the highly heterogeneous benchmarks,
Fluidanimate shows communication between pairs of threads that are not neighbors, but
farther apart, such as threads (0,8). Streamcluster and Ferret show a pipeline model,
where groups of threads (pipeline stages) communicate among themselves.

Three PARSEC benchmarks, Ferret, Dedup, and Streamcluster, are significantly
imbalanced due to their pipeline communication pattern. The load balance is again much
lower than the communication balance (13.1 and 58.0 for Ferret, respectively). Similar to
NAS-OMP, the communication amount differs widely between applications, but PARSEC
benchmarks have a higher communication ratio in general.

3.4.1.3 NAS-MPI Benchmarks

Figures 3.15 and 3.16 show the communication matrices and metrics of the NAS-MPI
benchmarks, respectively. The BT-MPI, LU-MPI, and SP-MPI benchmarks show similar
communication patterns, with a large amount of communication between neighboring
processes, such as processes (0,1), but also similar amounts of communication between
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Figure 3.14: Communication characteristics of the PARSEC benchmarks.

processes that are further apart, such as processes (0,4) and (0,20) in the case of BT-MPI
and SP-MPI. EP-MPI and FT-MPI show very low amounts of communication between
the processes, with maxima for neighboring processes. The pattern of IS-MPI shows
similar amounts of communication for all pairs of processes, what we describe as an
all-to-all pattern. In the DT-MPI benchmark, two pairs of processes, (16,19) and (16,31),
perform the majority of communication. All other processes have a negligible amount
of communication. In CG-MPI, clusters of 8 processes communicate with each other.
For example, ranks 8–15 perform a large amount of communication among themselves.
MG-MPI has a pattern similar to BT-MPI and SP-MPI, with a stronger focus on the
neighboring processes.

All NAS-MPI benchmarks except DT-MPI are well balanced. Although most
benchmarks have large amounts of communication, the communication ratio shows that
only a small percentage of memory accesses constitute communication, of less than 1% on
average.
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Figure 3.15: Communication matrices of the NAS-MPI benchmarks.
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Figure 3.16: Communication characteristics of the NAS-MPI benchmarks.

3.4.1.4 HPCC

The HPCC benchmark consists of 16 phases in total, labeled P1–P16 in Figures 3.17
and 3.18. Since it is a set of different HPC benchmarks, almost each phase has completely
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different communication characteristics. The communication matrices of phases 1, 6, 7
and 15 are shown in Figure 3.17. Most phases show a complex communication behavior
with several groups of threads communicating with each other. Additionally, on almost
every of the 16 phases the communication behavior changes. Both the amount and ratio
of communication are relatively low. The heterogeneity varies greatly between the phases.
Despite the different heterogeneities, all phases are balanced, with similar amounts of
communication for all processes.

3.4.1.5 NAS-MZ Benchmarks

In the NAS Multi-Zone benchmarks, most communication is performed between
the processes and between threads that are not direct neighbors, but farther apart. For all
three Multi-Zone benchmarks, the communication pattern changes when modifying the
number of processes and threads, even when maintaining the same total number of tasks.
Similar to the NAS-OMP benchmarks, BT-MZ and SP-MZ are imbalanced since some of
the threads do not communicate at all. Communication amount and ratio show that all 3
benchmarks are suitable for task mapping.

3.4.2 Dynamic Behavior

The dynamic communication behavior of the applications was evaluated with the
dynamicity CD introduced in Section 3.2.5. Figure 3.21 shows the number of communication
phases per second of each benchmark, calculated by dividing the total number of detected
communication phases by the execution time. Most benchmarks show a relatively stable
communication behavior with less than 1 phase per second. Several of the PARSEC
benchmarks show a very dynamic behavior, with more than 6 phases per second for
Facesim and Ferret. We expect more improvements from task mapping with benchmarks
that have a stable communication pattern with fewer phase changes, since fewer migrations
are expected.

As an illustration of the dynamic behavior, consider Figure 3.22, which shows
the dynamic behavior of the SP-OMP benchmark with the D input size. For a better
visualization, we modified the application to execute only 2 time steps (out of 400),
which corresponds to about 31000 time slices. Each black dot represents the amount of
communication during a time slice, while the gray dots indicate the heterogeneity for a

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(a) P1.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(b) P6.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(c) P7.

0

10

20

30

40

50

60

0 10 20 30 40 50 60

(d) P15.

Figure 3.17: Communication matrices of various phases of the HPCC benchmark.
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Figure 3.18: Communication characteristics of each phase of the HPCC benchmark.
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Figure 3.19: Communication matrices of the NAS-MZ benchmarks.
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Figure 3.20: Communication characteristics of the NAS-MZ benchmarks.
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slice. We also show 3 communication matrices: 1 during the initialization and 2 matrices
at the beginning and end of each time step, respectively. For a better visualization, the
matrices are shown only with the first 8 threads.

We can differentiate several communication phases for SP-OMP. During the initial-
ization of the application, a large amount of communication happens between all pairs of
threads. Each time step spends its initial 80% of the execution time with a medium amount
of communication and a high heterogeneity, corresponding to a communication pattern
between neighboring threads. At the end of each time step, bursts of communication
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Figure 3.23: Dynamic communication behavior of the Ferret benchmark for 256 time steps
of the application.

occur between the master thread and all other threads, corresponding to a reduction
pattern. This regular communication behavior is then repeated for all the time steps of
the application. During the finalization of the application, bursts of communication with
a low heterogeneity occur.

In contrast to the very structured dynamic behavior of SP-OMP, the Ferret bench-
mark, shown in Figure 3.23, has a much more dynamic behavior. In the figure, we show
the communication amount and heterogeneity for the first 256 time steps of the benchmark
(out of 3500), resulting in about 7000 time slices. After the initialization up to 8% of the
execution time, both metrics have a similar behavior, with large amounts of communication
and a heterogeneity that varies quickly between 3 and 70. The reason for this behavior lies
in the pipeline parallelization model of Ferret, which consists of 6 stages in total, where the
first and last stage (consisting of only 1 thread each) handle input and output. As shown
in Figure 3.13, only 1 of the 4 processing pipeline stages of Ferret actually communicates.
This stage that communicates makes heavy use of memory accesses to a shared hash
table (BIENIA et al., 2008), which results in the high amount of sharing within the group
of threads. As the time steps of Ferret are very short (about 0.02 seconds per time step),
the behavior changes very quickly.

Regarding the classification of dynamic memory access behavior discussed in Sec-
tion 1.3.1, we can affirm that no application analyzed in this section changes its communi-
cation behavior between executions, as long as the input data and number of tasks remain
the same. When modifying either input data or the number of tasks, the communication
behavior changes substantially, as shown with the NAS-OMP benchmarks. Since the mem-
ory addresses themselves do not matter for communication detection, changing addresses
do not constitute a dynamic behavior. On the other hand, many applications exhibit
a varying degree of dynamicity during execution, as discussed in this section, mostly
regarding algorithmic phase changes. These results indicate that communication traces



75

Table 3.2: Overview of benchmark suitability for task mapping considering 64 tasks.
Darker cells indicate a higher value for the specified metric.
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can be used for an improved mapping mechanism, and result in an accurate description of
the behavior for multiple executions.

3.5 Summary of Communication Behavior

An overview of the communication metrics of all the benchmarks is shown in
Table 3.2. In the first part of the table, darker colors indicate higher values of a specific
communication metric, while the second part contains an estimation whether an appli-
cation is suitable for locality-based or balanced-based task mapping. Summarizing the
application behavior, we expect that applications with a high amount of communication,
high communication ratio, and low dynamicity have a higher suitability for task map-
ping in general. Locality-based task mapping policies require applications with a high
heterogeneity, while a high value of the balance metric (that is, when the application is
imbalanced) favors balanced-based task mapping policies.

A majority of the benchmarks are suitable for locality-based mapping, while fewer
benchmarks seem to be suitable for balance policies. Due to their less structured behavior,
only a minority of PARSEC benchmarks appear to be suitable for task mapping. For the
reasons mentioned before, even in these applications task mapping can improve the results
of data mapping. Despite their relatively low communication ratios, most MPI-based
applications show suitability for locality-based task mapping. In Section 5.2, we will
evaluate the performance improvements of various task mapping policies and compare
them to the characterization presented in this chapter.
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4 CHARACTERIZING PAGE USAGE
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Chapter 4:
Characterizing
page usage

This chapter introduces
metrics and a methodology that
analyzes the page usage of par-
allel applications to characterize
their suitability for data map-
ping on NUMA architectures. In
contrast to the communication
behavior discussed in the previ-

ous chapter, where we discussed different ways to define and measure communication,
page usage can be determined with much less ambiguity by analyzing memory accesses
on the page size granularity. An additional difference is that the memory access behavior
of an application in conjunction with the page allocation policy of the operating system
always affects the data mapping. Therefore, the expected improvements of data mapping
need to be evaluated by comparing the metrics to the values of the data mapping policy
that the OS employs, such as a first-touch policy. In this chapter, we begin with a brief
overview of qualitative page usage and then introduce the metrics. Finally, we analyze the
parallel benchmarks in terms of these metrics.

4.1 Qualitative Page Usage

This section introduces and discusses the main concepts of the page usage of
parallel applications qualitatively, focusing on how they interact with different data
mapping policies.

4.1.1 Introduction to Page Usage

Since data mapping focuses on the placement and migration of memory pages,
all discussion of page usage and its metrics uses the granularity of the page size of the
architecture. Similar to the communication, page usage can be improved by considering
two metrics, the locality and balance of memory accesses. For a locality-based policy,
pages should be mapped to NUMA nodes from which they are most accessed. For a
balance-based policy, pages should be mapped in such a way that all memory controllers
handle a similar amount of memory accesses. Intuitively, pages that are accessed mostly
from a single NUMA node are candidates for a locality-based policy, where these pages
are mapped to the node with the most accesses to each page. For pages that are accessed
in an equal way from all the nodes, a locality-based policy can usually not improve the
overall memory access performance. However, these shared pages can be mapped in such
a way that the number of memory accesses handled by different memory controllers is
equalized with a balance-based policy, which can become an important factor in order not
to overload some of the nodes.
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Threads T0 T1 T2 T3

Page 1 1 25 1 1 Exclusive page

Memory accesses

Page 2 40 35 35 20 Shared page

Figure 4.1: Example of memory access exclusivity for an application that accesses two
pages and consists of four threads T0–T3.

4.1.2 Example of Page Usage

The two main concepts of page usage, locality and balance of memory accesses, are
illustrated in this section. Both describe the access pattern to memory pages from threads
and NUMA nodes.

4.1.2.1 Exclusivity and Locality

Exclusivity describes how many of the memory accesses to a page are caused by
a single thread or a NUMA node. Pages with a high exclusivity, that is, pages that are
accessed mostly from a single thread, are more suitable for locality-based policies since
such a policy can reduce the memory access distance effectively. Figure 4.1 illustrates two
pages with different exclusivities. Page 1 is mostly accessed by thread 1, with 25 of the
28 accessed performed by this thread. Therefore, this page has a high exclusivity and we
call it an exclusive page. Page 2, on the other hand, has a much more distributed access
pattern, with a similar number of accesses by all threads. This page has a low exclusivity
and we refer to it as a shared page. Page 1 is more suitable for a locality-based mapping
policy, but it has a lower overall impact on the memory accesses since it receives far fewer
accesses than page 2. Since the locality of page 2 varies only slightly with the actual data
mapping, it can be used to balance the memory accesses between memory controllers with
a balance-based policy.

4.1.2.2 Balance

While exclusivity and locality can be discussed for a single page, the memory access
balance needs to be evaluated by taking into account multiple pages. Two balance metrics
can be analyzed: page balance and memory access balance. Figure 4.2 shows examples of
both metrics for two different applications. Application 1 balances the number of pages
fairly among the NUMA nodes, while application 2 allocates the majority of pages on
node 1. This leads to a high imbalance for application 2. However, a high page balance
does not necessarily imply a high memory access balance, because the number of accesses
to each page might be different. An example of this situation is shown in the figure.
Although application 1 has a high page balance, its memory accesses are imbalanced.
Application 2 has the opposite behavior. Since a balance-based policy focuses on the
memory accesses, simple mapping policies that are based on balancing pages (such as
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interleave (MARCHETTI et al., 1995; KLEEN, 2004)) might not result in an optimal
balance.

4.1.3 Common Types of Page Usage

This section discusses some common types of page usages and their impact on
a first-touch mapping policy. We selected the matrix multiplication that was already
presented in Section 3.1.6, since it contains examples of all types that we discuss. The
source code1 of the application is shown in Figure 4.3. The application has three main

1The full source code of the matrix multiplication application is also available at
<https://github.com/matthiasdiener/pageusage-samples>

NUMA nodes N0 N1 N2 N3

Application 1 10 8 9 5 Pages balanced

Pages

Application 2 1 10 1 1 Pages imbalanced

Application 1 5 50 5 5 Memory accesses imbalanced

Memory accesses

Application 2 100 90 90 50 Memory accesses balanced

Figure 4.2: Example of memory access balance for two applications and four NUMA nodes
N0–N3.

1 #define N 128
2 int A[N][N], B[N][N], C[N][N];
3
4 int main(int argc, char const *argv[])
5 {
6 int i=0, j=0, k=0;
7
8 memset(A, 1, N * N * sizeof(int)); //initialize matrices
9 memset(B, 2, N * N * sizeof(int));

10 memset(C, 0, N * N * sizeof(int));
11
12 #pragma omp parallel for
13 for(i=0; i<N; i++)
14 for(j=0; j<N; j++)
15 for(k=0; k<N; k++)
16 C[i][j] += A[i][k] * B[k][j];
17 return 0;
18 }

Figure 4.3: Matrix multiplication code.

https://github.com/matthiasdiener/pageusage-samples
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structures, A, B, and C, representing square matrices of size N × N . The matrices are
initialized with the memset() function (Lines 8–10). After initialization, the application
calculates C = A × B in parallel (Lines 12–16).

We generated a memory access trace of the application when executing it with
4 threads, recording every memory access of every thread for each page that the application
accesses. Memory accesses are recorded with a custom Pin tool. Table 4.1 shows the
memory access profile for a subset of pages that the application uses2. For each page, we
show the address of the page, the structure it is associated to (one of the matrices, A,
B, or C, or a thread’s stack), which thread performed the first access to the page, and
the number of memory accesses from each thread to the page. This page usage profile
exposes several issues for data mapping, which will be discussed in this section. Both
locality-based and balance-based policies are affected. For the discussion, consider that
the application is executing on a system with 4 NUMA nodes, and that each thread is
running on a different node.

4.1.3.1 Initialization from a Single Thread

Analyzing the first access column shows that all pages were first accessed from
thread 0. This means that with the default first-touch mapping policy, all pages will
be allocated on the NUMA node where thread 0 was executing when the application
was starting up, before performing the actual work. All 162 pages were first accessed by
thread 0. This contradicts the ideas behind the introduction of the first-touch mapping
policy, which was developed as an improvement of memory access locality compared to a
round-robin mapping of pages to NUMA nodes (MARCHETTI et al., 1995). Due to the
way Linux allocates static data, removing the memset() calls results in the same first
access behavior.

This behavior is an opportunity to improve both the locality and balance of the
memory accesses. For example, page 1558 is mostly accessed by thread 1, but it is allocated
on the NUMA node of thread 0. Migrating this page to the NUMA node of thread 1
increases the locality of accesses to the page. Furthermore, the NUMA node of thread 0
will handle all main memory accesses of the application, creating an imbalance on its
memory controller. By distributing the pages more fairly among the NUMA nodes, a
balance-based policy can improve the overall load on the memory controllers.

4.1.3.2 Stacks of Multithreaded Applications

A related problem is shown in the allocation of the stacks of each thread. In Linux,
multithreaded applications share the same virtual address space, but also contain data
that is private to each thread. To create a multithreaded application on Linux, the runtime
system uses the clone() or fork() system calls, which are executed in the context of
the calling thread. This calling thread is usually the master thread of the application,
that is, thread 0. The private data of the newly created thread needs to be zeroed (such
as the stack, to prevent information leakage) or initialized (such as the Thread-Local
Storage (TLS) (DREPPER; MOLNAR, 2002)). For this reason, the created thread’s

220 out of 162 pages are shown.
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Table 4.1: Page usage profile of the matrix multiplication application, executing with 4
threads, T0–T3. The table shows the address, structure name, the thread that performed
the first access to the page, and the number of accesses to the page for each thread for
selected pages.

Number of memory accesses
Address Structure First access T0 T1 T2 T3

1537 B T0 17,222 9,347 8,173 9,054
1538 B T0 17,501 9,667 7,626 9,149
1553 C T0 95,869 1,412 1,146 1,382
1557 C T0 12,544 56,598 0 0
1558 C T0 256 81,028 0 0
1561 C T0 256 5,254 77,738 0
1564 C T0 256 0 70,835 0
1565 C T0 256 0 4,454 76,489
1566 C T0 256 0 0 57,033
1572 A T0 131,328 0 0 0
1573 A T0 6,400 28,445 0 0
1575 A T0 256 42,619 0 0
1577 A T0 256 2,594 38,912 0
1578 A T0 256 0 26,010 0
1581 A T0 256 0 2,195 38,343
1582 A T0 256 0 0 28,546
34359738367 Stack T0 T0 5,381,218 1,230,331 1,017,819 1,177,382
34359703002 Stack T1 T0 2 1,688,110 0 0
34359700953 Stack T2 T0 2 0 1,395,867 0
34359698904 Stack T3 T0 2 0 0 1,614,711
Total — — 6,517,798 3,527,898 2,917,345 3,427,447

private data is first accessed by the master thread, leading to an unfavorable page mapping
with a first-touch policy.

The resulting data mapping is inefficient both in terms of locality and balance.
It overloads the NUMA node that runs the master thread with the stack accesses of all
threads, leading to an imbalance. As shown in the table, the vast majority of memory
accesses to each stack are performed by the thread that owns the stack, leading to a bad
locality of these accesses. These issues are further aggravated by the fact that the stack
receives a lot of memory accesses compared to the pages of the other structures. An
improved data mapping policy can help to improve the balance and locality of the stack
usage.

4.1.3.3 Exclusive Pages

As mentioned before, the memory pages used for the stacks have a high exclusivity
since they are accessed mostly from a single thread. Two of the matrices of the matrix
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multiplication are also exclusive, the A and C structures. For example, page 1553 is
accessed mostly by thread 0, while page 1558 is accessed mostly by thread 1. This pattern
is repeated for the whole structure. Some of the pages that are on the border between
two areas of the matrix have an overlap of accesses by two different threads, such as page
1557, which is accessed by threads 0 and 1. Despite this overlap, the page is still relatively
exclusive, since more than 80% of accesses are performed by thread 1. For exclusive pages,
the most appropriate data mapping policy is based on increasing locality. By placing
pages on NUMA nodes that perform the most accesses to them, the overall memory access
latency can be reduced.

This example also illustrates another important aspect. Performing a locality-
based mapping policy can also increase the balance of memory accesses in some cases.
Considering the C matrix as an example, which consists of 16 pages in total, 7 of which
are shown in Table 4.1. In a system with 4 NUMA nodes, a locality-based policy would
map 4 consecutive pages of C to the NUMA node of each thread, increasing the locality
of the accesses. In addition, this mapping also maximizes the balance of the mapping
compared to the first-touch policy, which would map all 16 pages to the NUMA node of
thread 0. The A matrix has very similar behavior. This shows that for these two structures,
a locality-based policy also increases the balance.

4.1.3.4 Shared Pages

The B matrix has a different structure of memory accesses. All 16 pages of this
structure have an access pattern similar to the 2 pages shown in Table 4.1. These pages
are accessed by all threads in a similar manner, with only small differences between the
minimum and maximum numbers of accesses. This indicates that these pages are shared
between threads, and a locality-based policy can improve the overall memory access locality
only slightly. However, these pages are candidates for a balance-based policy and can be
used to distribute the load on the memory controllers more equally. For example, B could
be distributed equally among all the NUMA nodes, or its pages could be migrated from
an overloaded node to reduce its load.

4.1.3.5 Overall Balance

Finally, it is also important to consider the overall memory access balance of the
whole application. The number of memory access of each thread is shown in the Total
row of Table 4.1. The numbers show that thread 0 is performing the majority of memory
accesses of all threads (about 40%). By placing the pages that the threads access in a
more balanced way, it is possible to improve the overall load on the memory controllers
and achieve a fairer balance.

4.1.3.6 Summary

We conclude that the default first-touch policy of modern operating systems presents
inefficiencies, both for the locality and balance of memory accesses, and optimizes for
neither metric. This indicates that large improvements can be achieved by improved data
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mapping policies. Section 4.2 will formalize the intuitive ideas of exclusivity, locality and
balance that were introduced here.

4.1.4 Data Mapping for MPI Applications?

In contrast to multithreaded applications that are based on shared memory pro-
gramming models such as OpenMP and Pthreads, parallel applications based on message
passing models such as MPI are less interesting for data mapping. The MPI runtime
is based on multiple processes that do not share the virtual address space and whose
data is mostly private to each process (FRIEDLEY et al., 2013). In such a model, the
first-touch policy already results in a perfect locality of memory accesses, unless processes
are migrated between NUMA nodes. The only data shared between processes is the small
memory segment used for communication, which is also allocated on local nodes in most
cases (EKMAN et al., 2005), with further optimizations having only a negligible impact
on performance (EKMAN et al., 2005).

For this reason, we will only consider parallel applications based on shared memory
models for data mapping. More specifically, we consider the NAS-OMP and PARSEC
benchmark suites and the Ondes3D and HashSieve applications. For MPI applications run-
ning on NUMA architectures, task mapping is still relevant and needs to avoid migrations
between NUMA nodes (EKMAN et al., 2005) in addition to optimizing communication.
This will be discussed in more detail in Section 5.

4.2 Quantitative Page Usage

In this section, we introduce metrics to describe the memory access behavior
of parallel applications on NUMA systems. We present metrics for the suitability of
applications for locality-based and balance-based policies. We also discuss dynamic
application behavior through the changes to the exclusivity during execution. Finally, we
introduce metrics for the minimum memory usage of an application, below which no gains
from data mapping can be expected, and a metric to describe the locality of a given data
mapping. We describe the memory access behavior to pages with the spatial, volume and
temporal components, similar to the communication behavior.

4.2.1 Memory Access Exclusivity

The potential for locality-based data mapping of a page is proportional to the
amount of memory accesses from a single NUMA node. That is, if a page is mostly accessed
from the same node, it has more potential for locality-based mapping than a page that is
accessed from several nodes. We call the highest number of memory accesses to a page
from a single node compared to the number of accesses from all nodes the page exclusivity
EP age. The higher the exclusivity of a page, the higher its potential for locality-based
mapping. EP age is calculated with Equation 4.1, where MemAcc[p][n] is the number of
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memory accesses to page p from node n, and N is the number of NUMA nodes. The max
function returns the highest number of memory accesses to a page from a node.

EP age[p] = max(MemAcc[p])∑N
n=1 MemAcc[p][n]

(4.1)

The exclusivity is minimal when a page has exactly the same number of accesses
from all nodes. In this case, the exclusivity is given by 1/N . The exclusivity achieves its
maximum value of 1 when all accesses to the corresponding page originate from the same
NUMA node.

Besides the exclusivity of a page, the number of memory accesses to it has to be
considered as well. The higher the number of accesses to a page, the higher its potential
for data mapping. We take the number of memory accesses into account by measuring
the exclusivity for the whole application. To calculate this application exclusivity EApp,
we scale the exclusivity of each page with the number of memory accesses to it, and
divide this value by the total number of memory accesses. This operation is shown in
Equation 4.2, where P is the total number of pages. Like the page exclusivity, the minimum
and maximum of the application exclusivity is 1/N and 1, respectively, when all pages are
fully shared or fully exclusive.

EApp =
∑P

p=1(EP age[p]×∑N
n=1 MemAcc[p][n])∑P

p=1
∑N

n=1 MemAcc[p][n]
(4.2)

4.2.2 Memory Access Balance

Our second metric, memory balance, is used to analyze the suitability of a parallel
application for balance-based data mapping. Memory balance is important in applications
where the memory accesses are performed in such a way that some memory controllers
are overloaded, while others are idle. To measure the page balance BP ages, we introduce
a new vector, NodePages, which consists of N elements. Each element NodePages[n]
contains the number of pages mapped to node n. Equation 4.3 calculates the page balance
for all the pages that an application uses. The equation has a similar structure as the
communication balance presented in Section 3.2.2.

BP ages =
(

max(NodePages)∑N
n=1 NodePages[n]/N

− 1
)
× 100% (4.3)

The balance is maximum (with a value of 0%), when all nodes store the same
number of pages. Higher values indicate a higher page imbalance. The highest imbalance
is reached (with a value of (N − 1)× 100%) when one node stores all the pages.

Since not all pages have the same number of memory accesses, maximizing load
balance considering Equation 4.3 may not improve the balance of memory controllers. To
achieve an improved balance, we need to consider the number of memory accesses to each
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page. We store the number of memory accesses to each NUMA node in the NodeAcc

vector, as shown in Equation 4.4.

NodeAcc[n] =
P∑

p=1
MemAcc[p][n] (4.4)

We can then calculate the memory access balance BAcc of the application with Equation 4.5.

BAcc =
(

max(NodeAcc)∑N
n=1 NodeAcc[n]/N

− 1
)
× 100% (4.5)

If the memory accesses are equally distributed among the nodes, BAcc has a value
of 0%. If all memory accesses are satisfied from a single node, the imbalance is maximized,
and BAcc has a value of (N − 1)× 100%.

4.2.3 Total Memory Usage

Another requirement for data mapping is that the memory usage of the application
must be significantly higher than the cache size of the system. If the memory that an
application uses fits into the processor caches, fewer improvements from a data mapping
policy can be expected, as most memory accesses can be filtered by the caches. We use
Equation 4.6 as a lower bound, where PageSize is the size of each page, C is the total
number of caches in the system and CacheSize[i] is the size of Cache i.

MemUsage = P × PageSize

MemUsage >
C∑

i=1
CacheSize[i]

(4.6)

In our experiments, this affects two of the applications we discuss in this thesis,
EP-OMP and Swaptions, whose memory usage is 66 MByte and 7 MByte, respectively,
for 64 threads and the input sizes we use. This small memory usage fits into the caches
of many current systems. All other applications have a memory usage of at least several
hundred MByte and are therefore not affected by this lower bound.

4.2.4 Dynamic Behavior

Similar to the dynamic communication behavior presented in Section 3.2.5, we
divide the execution of each application into time slices of a fixed size to analyze the
dynamic page usage of the parallel applications. For each time slice, we calculate for each
page p if it needs to be migrated to the NUMA node with the most accesses. This behavior
is expressed in Equation 4.7.

Migrate[p] = arg max(MemAcccur[p]) 6= arg max(MemAcccur−1[p]) (4.7)
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As in the temporal communication detection, we use time slices of 10 ms. This
value is used to characterize the dynamic access behavior to pages and does not necessarily
indicate that a page needs to be migrated. As another indicator of dynamic behavior,
we also calculate the application exclusivity for each time slice. By determining the
number of migrations with Equation 4.7, we can then calculate the Dynamicity of the
page usage PageDyn by normalizing it to the total execution time of the application, as
shown in Equation 4.8. We expect applications with a higher dynamicity that require
more migrations during execution to be less suitable for data mapping due to the overhead
of the page migrations.

PageDyn = #migrations
execution time (4.8)

4.2.5 Locality of a Page Mapping

To compare different mapping policies to each other in terms of their locality, we
first use Equation 4.9 to define if a single page is located on the node with the most
accesses to it3. In the equation, CurNode[p] is the NUMA node where page p is currently
located, and the arg max function returns the NUMA node with the highest number of
accesses to p. Here, we assign 1 to the locality value if the page is located on the NUMA
node with the highest number of accesses to the page, and 0 otherwise.

LocP age[p] =

1, if arg max(MemAcc[p]) = CurNode[p]
0, otherwise

(4.9)

We scale the locality of each page with the number of accesses to it to calculate the
locality of a page mapping for the entire application, expressed with LocApp. Equation 4.10
shows this operation, where P is the number of pages. The minimum for LocApp is 0%,
when no page is mapped to the node with the highest accesses to it, and 100% when all
pages are mapped to the node with the most accesses.

LocApp =
∑P

p=1

(
LocP age[p]×∑N

n=1 MemAcc[p][n]
)

∑P
p=1

∑N
n=1 MemAcc[p][n]

(4.10)

4.2.6 Summary of Page Usage Metrics

Table 4.2 contains a summary of the page usage metrics that were introduced in
this section, showing which component of the behavior they describe, which type of data
mapping they are more suitable for, and if a high or low value of the metric indicates
higher suitability for the task mapping.

3The balance of mappings can be compared directly with BAcc.
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Table 4.2: Overview of the page usage metrics introduced in this section.

Name Symbol Granularity Describes Mapping policy Suitability
Page exclusivity EP age Page Structure Locality-based High
App. exclusivity EApp Application Structure Locality-based High
Page balance BP ages Application Structure Balance-based High
App. balance BAcc Application Structure Balance-based High
Total mem. usage MemUsage Application Volume Both High
Dynamic page usage PageDyn Application Temporal Both Low
Locality LocApp Application Comparison Locality-based High

4.3 Data Mapping Policies

To evaluate the impact of data mapping on the performance of the parallel applica-
tions, we compare several mapping policies to the default first-touch policy. These policies
will be presented in this section.

4.3.1 The Policies

The following mapping policies were evaluated: Random, RoundRobin, Interleave,
Locality, Remote, Balanced, and Mixed. The Interleave policy is available in many op-
erating systems, such as via the numactl tool in Linux (KLEEN, 2004). Locality is a
policy similar to previous mechanisms that focus on locality improvements in NUMA
systems (MARATHE; THAKKAR; MUELLER, 2010; DIENER et al., 2014). Remote is
the opposite of Locality. Balanced and Mixed are two new mapping approaches. Balanced
distributes pages in such a way that all memory controllers resolve the same number of
memory accesses. We also introduce a mixed policy, which presents a trade-off between lo-
cality and balance. In the following description of the mapping policies, node[p] represents
the NUMA node of a page p, and N represents the total number of nodes. Consider that
p.AccNode is a vector, where each element p.AccNode[n] contains the number of memory
access to page p from node n.

4.3.1.1 Random

In the Random mapping, each page gets assigned randomly to a NUMA node.
We use this mapping to validate the importance of data mapping and because it is the
mapping that is most independent from the memory access behavior of the application.
Equation 4.11 calculates this policy, where the random() function returns a random integer.

node[p] = random() mod N (4.11)
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4.3.1.2 RoundRobin

In the RoundRobin mapping, pages get allocated to NUMA nodes in the order that
they are first accessed. The node for a page p gets assigned with the following equations:

node[p] = count mod N

count = count + 1
(4.12)

This mapping ensures that the same number of pages gets assigned to each node,
independent of the memory access behavior and the addresses that the pages are allocated
at.

4.3.1.3 Interleave

In the traditional Interleave policy, pages get assigned to NUMA nodes according
to their address. Usually, the lowest bits of the page address are used to determine the
node. Equation 4.13 describes this behavior, where addr(p) returns the page address of
page p.

node[p] = addr(p) mod N (4.13)

This policy ensures that memory accesses to consecutive addresses are distributed
among the nodes. Similar to the RoundRobin policy, it also maps equal numbers of pages
to each NUMA node in case pages have contiguous addresses.

4.3.1.4 Locality

In the Locality policy, each page gets assigned to the NUMA node with the most
memory accesses to the page. This policy ensures that the highest possible number of
memory accesses are resolved by the local NUMA node. However, it does not take the
balance between nodes into account and can lead to overloaded nodes. Equation 4.14
describes this behavior, where arg max(p) returns the NUMA node with the most accesses
to page p.

node[p] = arg max(p.AccNode) (4.14)

4.3.1.5 Remote

In the Remote policy, each page gets placed on the NUMA node that has the fewest
accesses to that page. This mapping represents a worst-case for data mapping and is used
to further evaluate its importance on parallel applications. Equation 4.15 describes this
behavior, where arg min(p) returns the node with the fewest accesses to page p.

node[p] = arg min(p.AccNode) (4.15)
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Algorithm 4.1: Calculate the Balanced mapping.
Input: p.AccNode[n]: number of accesses to page p from node n; N: number of

NUMA nodes
Output: node[p]: mapping of pages to nodes

1 sort pages by number of accesses;
2 TotalAcc = 0;
3 for each Page p do
4 p.TotalAcc = 0;
5 for each Node n do

// total memory accesses per page

6 p.TotalAcc += p.AccNode[n];
7 end

// total memory accesses

8 TotalAcc += p.TotalAcc;
9 end

10 for each Node n do
11 AccNode[n] = 0;
12 end
13 for each Page p do

// find node with the most accesses to p that is not overloaded

14 n = node with the most accesses to p;
15 while AccNode[n]/TotalAcc > 1/N do
16 n = node with the next highest accesses to p;
17 end

// map page p to node n and update values

18 node[p] = n;
19 AccNode[n] += p.TotalAcc;
20 end

4.3.1.6 Balanced

In the Balanced mapping, we maximize the balance between the nodes, while still
taking into account the locality of each page. Algorithm 4.1 calculates this mapping. In
the algorithm, we first sort the list of pages by the number of accesses. Then, we map
each page to the node with the most accesses to the page that is not overloaded.

Balanced and Locality are opposite policies: Balanced optimizes memory access
balance over locality, while the Locality policy maximizes local accesses at the expense
of memory balance. For this reason, these policies can determine which of the metrics is
more important for the performance of parallel applications.

4.3.1.7 Mixed

In the Mixed mapping, we combine the locality and balance metrics. For each page,
if its exclusivity EP age is above a threshold minExcl, we allocate the page on the node
with the highest number of accesses, as in the Locality policy. If the exclusivity is below
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Table 4.3: Input for the data mapping example for an application consisting of four threads.
For each page, the table shows which thread accessed a page first as well as the number of
memory accesses to that page by each of the four threads.

Number of memory accesses
Page First access T0 T1 T2 T3

0 T0 1 0 1,000 0
1 T0 1 1,000 0 0
2 T0 1,000 0 0 0
3 T0 1,000 0 0 50
Total — 2,002 1,000 1,000 50

the threshold, we allocate the page on the node given by the Interleave mapping. This
behavior is formalized in Equation 4.16.

node[p] =

arg max(p.AccNode), if EP age[p] > minExcl

addr(p) mod N , otherwise
(4.16)

This mapping provides a trade-off between locality and balance. For minExcl =
100%, Mixed is equivalent to Locality, for minExcl = 0%, it is identical to the Interleave
policy.

4.3.1.8 First-touch

The previously presented mapping policies will be compared to a First-touch
policy, where each page gets allocated on the node that accessed the page for the first
time (MARCHETTI et al., 1995). Pages are not migrated during execution. This policy is
the default for most operating systems, such as Linux (LANKES; BIERBAUM; BEMMERL,
2010), Solaris (ORACLE, 2010), and Windows (PAAS, 2009), among others.

4.3.2 Example of Policy Behavior

As an example of the behavior of the data mapping policies, consider the page usage
example presented in Table 4.3. In this example, a parallel application with 4 threads
T0–T3accesses 4 pages. All pages are accessed first by thread T0, and the table shows the
total number of memory access by each thread. Further assume that we want to execute
this application on a system with 4 NUMA nodes, where each thread is mapped to a
different NUMA node with a Compact task mapping (that is, thread 0 executes on node 0,
thread 1 on node 1, etc.).

Figure 4.4 shows the behavior of the different data mapping policies for this example.
In the figure, gray squares represent the NUMA nodes, while the black circles represent
the pages. The First-touch policy allocates all pages on the first NUMA node, since all
pages get accessed first by thread 0, resulting in low memory access locality and a high
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0 1 2 3

First-touch
0 1

2 3
0 1 2 3

Interleave/RoundRobin

0 1 2 3
0 1 2 3

Locality

2 3 1 0

0 1 2 3

Remote

0 1 2 3
0 1 2 3

Balanced

3 2 1 0
0 1 2 3

Mixed (minExcl = 95%)

2 1 0 3

Figure 4.4: Example of data mapping policy behavior. Gray squares represent NUMA
nodes, black circles represent pages.

imbalance. The Interleave and RoundRobin policies result in the same mapping, which
has a good balance but a low locality. The Locality policy results in a very high locality,
as expected, but due to the imbalanced application behavior does not distribute pages
fairly among the nodes (node 3 stores no page, for example). The Remote policy results
in a mapping with a low locality and high imbalance. The Balanced mapping distributes
pages fairly among nodes, but pages 0–2 are mapped to nodes which have no accesses to
them. The Mixed policy (shown for a locality threshold minExcl of 95%), results in a
slightly lower locality compared to the Locality mapping, but results in a very high page
and memory access balance.

4.4 Page Usage of the Benchmarks

For the evaluation of the page usage of the NAS-OMP and PARSEC benchmarks in
this section, we execute each application with 64 threads and record each memory access
of each thread on the page granularity with the numalize memory access tracer presented
in Section 2.3. We use a default page size of 4 KByte. We start with an analysis of the
global application behavior, followed by a discussion of the dynamic page usage.

4.4.1 Global Behavior

We begin with a discussion of the global application behavior, that is, the behavior
during the whole execution of the application.

4.4.1.1 Exclusivity

The application exclusivity EApp is presented in Figures 4.5 and 4.6 for two config-
urations: (i) our baseline, with 64 threads on 4 NUMA nodes (threads are assigned to
NUMA nodes such that the exclusivity is highest), (ii) 64 NUMA nodes (1 thread per
node), to show the inherent exclusivity of the applications. Results are further divided
into three page sizes, 4 KByte (which is the default page size in 32-bit and 64-bit x86
architectures (INTEL, 2013b)), 2 MByte (which is the highest page size supported by 32-bit
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Figure 4.5: Application exclusivity EApp for 4 NUMA nodes and different page sizes.

x86 with the Physical Address Extension (PAE) mode (INTEL, 2013b), and 64 MByte (as
an example of how the exclusivity changes when increasing page sizes further).

Most applications have a high exclusivity, even for 64 NUMA nodes, which demon-
strates the importance of a locality-based mapping policy. Several benchmarks, such as
EP-OMP, Canneal, and Streamcluster, have a lower exclusivity however. Even when
increasing the page size or the number of NUMA nodes, the exclusivity only decreases
slightly for most benchmarks. A slight decrease of exclusivity is expected for larger pages,
as more shared data is stored in the same pages.

When increasing the number of NUMA nodes, more shared pages will be located
on different nodes, lowering the exclusivity. On average, the application exclusivity for
the 4 KByte, 2 MByte and 64 MByte page sizes is 83.3%, 77.1% and 71.3% (for 4 nodes),
and 74.0%, 64.4% and 29.0% (for 64 nodes), respectively. Although the reduction is low
in most cases, these results indicate that with larger pages or more NUMA nodes, fewer
improvements from a locality-based data mapping can be expected. Nevertheless, in the
most relevant case for data mapping, where the number of threads is much higher than
the number of NUMA nodes, we expect still high improvements even with pages that are
much larger than the current default of a few KByte.

4.4.1.2 Balance

Figure 4.7 visualizes the page and memory access balance of the first-touch policy
and a system with 4 NUMA nodes. For all NAS-OMP benchmarks except EP-OMP, as
well as some of the PARSEC benchmarks, the policy distributes the pages fairly between
the nodes. On the other hand, comparing the results for the page and memory access
balance shows that a high page balance does not necessarily result in a high memory
access balance. For example, UA-OMP with first-touch has a very good page balance
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Figure 4.6: Application exclusivity EApp for 64 NUMA nodes and different page sizes.

with an almost equal number of pages on each node. However, the memory accesses of
UA-OMP are very imbalanced, with node 0 handling more than 68% of the total accesses.

This intuition is confirmed by the values of the balance metrics, BP ages and BAcc,
which are shown in Figures 4.8 and 4.9, respectively. In the figures, a value of 0 indicates
perfect balance, while higher values indicate an imbalance in the distribution of pages and
memory accesses between NUMA nodes. The maximum imbalance, when a single node
stores all pages or handles all memory access, results in a value of 300 in this configuration.
The RoundRobin policy is not shown in the figures, as its results were almost equal to the
Interleave mapping.

Regarding the page balance, Random and Interleave are almost perfectly balanced,
as expected. For the NAS-OMP benchmarks, only Remote and First-touch are significantly
imbalanced. On the other hand, most PARSEC benchmarks are imbalanced with all
policies except Random and Interleave. Regarding the memory access balance, most
policies result in higher imbalances. Only the Balance policy results in a high balance
for most of the benchmarks. It is important to mention that the Locality policy already
results in a much better memory access balance than the First-touch policy. For example,
the memory access balance of UA-OMP increases from 47% with First-touch to 95%
with Locality. The Mixed policy results in a balance that is between the interleave and
locality policies, as expected. Table 4.4 shows the average values of both metrics over all
benchmarks for each policy.

We show a comparison of the BAcc metric of the first-touch policy compared to the
main improved mapping policies (Interleave, Locality, Balance, and Mixed) in Figure 4.10.
The values were calculated for each application and policy with the following equation:

∆BAcc = PolicyBAcc
− FirsttouchBAcc

(4.17)
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Figure 4.7: Page and memory access balance of the first-touch policy for a system consisting
of 4 NUMA nodes. The color of each bar indicates how many pages or memory accesses
are handled by each node.

The results show that for almost all of the benchmarks, each of the improved mapping
policies results in a better balance than first-touch. Only a few of the benchmarks, such
as CG-OMP and FT-OMP, are already well-balanced with first-touch and can not profit
much from another policy. Most other benchmarks can benefit much more. It is interesting
to note that the Balance policy, which results in the highest balance improvements in most
cases since it focuses on the memory access balance, shows very similar results to the other
policies. This indicates that this policy might not be necessary to achieve a better balance.

4.4.1.3 Locality

To compare different mapping policies in terms of their memory access locality,
we evaluate the LocP age and LocApp metrics defined in Section 4.2.5. Figure 4.11 shows
these metrics for the first-touch page mapping for 4 KByte pages and 4 NUMA nodes.
The results for the per-page locality LocP age show that the first-touch mapping results in
a high page locality for most applications. However, when comparing it to the weighed

Table 4.4: Average values of the balance metrics of the mappings policies. Lower values
indicate a more balanced behavior.

Metric First-touch Locality Remote RoundRobin Interleave Random Mixed Balance

BP ages 121.2 73.7 177.2 0.007 0.438 1.01 51.1 60.6
BAcc 171.2 66.4 163.8 28.9 30.2 32.1 48.2 12.2
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Figure 4.8: Page balance BP ages of the data mapping policies. A value of 0 indicates
perfect balance. Higher values indicate higher imbalance. The RoundRobin policy not
shown in the figure has results almost equal to the Interleave policy.
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Figure 4.9: Memory access balance BAcc of the data mapping policies. A value of 0
indicates perfect balance. Higher values indicate higher imbalance. The RoundRobin
policy not shown in the figure has results almost equal to the Interleave policy.

locality LocApp, the locality falls for most applications. This indicates that although the
large majority of pages are placed to the NUMA node with the most accesses to them,
other pages that are not placed on their local node receive an above-average number of
memory accesses.

As an example of this behavior, consider the UA-OMP benchmark. Although more
than 92% of its pages are placed on the NUMA node with the most accesses to them, these
pages receive only 68% of the total memory accesses. The 8% of pages that are mapped
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Figure 4.10: Comparing memory access balance between the main mapping policies. Lower
values are better. Results are normalized to the first-touch policy (=0).
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Figure 4.11: Locality of the first-touch page mapping for 4 KByte pages and 4 NUMA
nodes.

to a non-local node receive 32% of memory accesses. Therefore, in order to perform a
locality-based data mapping, it is possible to start with a first-touch mapping and then
migrate a relatively low number of pages to their local NUMA nodes. These pages have
an above average number of memory accesses for most of the benchmarks.

We show a comparison of the LocApp metric of the first-touch policy compared
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Figure 4.12: Comparing memory access locality between the main mapping policies. Values
are normalized to the first-touch policy (=0%).

to the main improved mapping policies (Interleave, Locality, Balance, and Mixed) in
Figure 4.12. The values were calculated for each application with the following equation:

∆LocApp = PolicyLocApp
− FirsttouchLocApp

(4.18)

The results show that the Interleave policy greatly reduces LocApp, causing a lower memory
access locality, despite resulting in a better balance. The other three mapping policies
consistently increase the memory access locality for almost all benchmarks, with the
highest improvements for the Locality policy, as expected. This value, ∆LocApp, can be
used to estimate the performance improvements that can be gained from locality-based
mapping policies.

4.4.2 Dynamic Behavior

To evaluate the dynamic behavior of the workloads, we measure the number of page
migrations that have to be performed in order to maintain each page on the NUMA node
with the most accesses during time windows of 10 ms. Figure 4.13 shows the migrations
for all the workloads, considering no task migrations and an initial first-touch policy. As
before, we assume that the system contains 4 NUMA nodes. The results show that most of
the pages have to be migrated only once or not at all. Only Vips has a significant number
of pages that need to be migrated twice or more. This reinforces our previous statement
that a first-touch policy is a good starting point for page mapping and results in few page
migrations. We did not notice a change in the of the page access balance during execution.

The values of the Pagedyn metric are shown in Table 4.5, presenting a summary of
the number of pages that have to be migrated for each second of execution time of the
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benchmarks. Although the numbers for some benchmarks appear to suggest that a large
amount of data needs to be migrated, the absolute amount of data is actually quite low.
For example, for the Vips benchmark, which has the highest dynamicity, about 34,000
pages need to be migrated per second. This corresponds however to only about 130 MByte
of data that needs to be copied between NUMA nodes, which is a reasonably low amount
of data, even when considering an extremely short time window of 10 ms.

The dynamic page usage behavior of the SP-OMP benchmark is shown in Figure 4.14.
For each time slice, we show the number of pages that need to be migrated to the NUMA
node with the highest number of accesses during that slice, as well as the application
exclusivity EApp. The results show that during the initialization of the application, the
exclusivity varies between 60% and 80%, indicating shared accesses to memory pages.
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Figure 4.15: Dynamic page usage behavior of Vips.

Table 4.5: Dynamic page usage Pagedyn of the benchmarks. Number of page migrations
per second execution time.
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As soon as the parallel part of SP-OMP starts, the exclusivity begins to stabilize and
soon reaches its maximum of 92%. For the number of migrations, we can confirm that a
significant number of page migrations are necessary only during the time slice at the start
of the parallel computation. For the rest of the execution, the page usage is stable and
almost no pages need to be migrated.

As an example of an application with a more dynamic behavior, Figure 4.15 presents
the page usage during the execution of the Vips benchmark, which is the application with
the most migrations in our experiments. The initialization phase with only a single thread
lasts until about 5% of the total execution time. During the whole parallel phase of the
application, the exclusivity stays at about 81%. However, in contrast to SP-OMP, pages
need to be migrated during the whole execution to maintain them on the node with the
highest number of accesses. At each time step, about 3,500 pages need to be migrated,
which represents 0.4% of the total number of pages that Vips uses. With this very dynamic
behavior, we expect fewer benefits from a data mapping policy.

Regarding the classification of dynamic memory access behavior presented in
Section 1.3.1, our experiments showed that page usage remains the same between executions
as long as neither input data nor the number of threads is modified. However, in contrast
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to the communication behavior, memory addresses do change between executions of some
applications, even when switching off Address Space Layout Randomization (ASLR), due
to dynamic memory allocation during execution where addresses depend on the order in
which allocation functions such as malloc() or new(). For this reason, a data mapping
mechanism based on memory access traces can not be 100% accurate, as addresses of
some pages might change between executions. On the other hand, page usage is much
less dynamic during execution compared to the communication behavior. For example,
even though pages get allocated dynamically, their access pattern does not change after
allocation.

4.5 Summary of Page Usage

In this chapter, we introduced metrics and a methodology to analyze the page
usage of parallel applications in order to determine their suitability for data mapping. To
summarize the page usage behavior of the evaluated benchmarks, we saw that most of
them are suitable for locality-based data mapping due to their high exclusivity. Even
when increasing the page size from the default 4 KByte to 2 MByte and 64 MByte, the
exclusivity reduces only slightly when considering that the number of threads is higher
than the number of nodes. Compared to a first-touch mapping, only a few pages need
to be migrated in order to achieve a mapping with maximum locality (less than 22% of
pages on average). However, these pages represent a much higher percentage of memory
accesses (more than 35% of total memory accesses on average), showing the importance of
data mapping. Furthermore, most pages need to be migrated only once, which limits the
overhead of migrations.

Regarding the balance of memory access, we can confirm that a policy that improves
locality also improves balance in most cases. Nevertheless, a policy that focuses mostly on

Table 4.6: Overview of benchmark suitability for data mapping. Darker cells indicate a
higher suitability for mapping for the specified parameter.
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balance increases memory access balance the most. As the default data mapping of the
OS is based on first-touch, we expect benchmarks with a low first-touch locality to have
higher improvements. Similarly, a low number of migrations indicates a lower overhead
and therefore higher improvements. As mentioned before, the memory usage of EP-OMP
and Swaptions is so low that few improvements from data mapping can be expected on
hardware architectures whose cache size is similar to the total memory consumption of
these applications.

Table 4.6 contains a summary of the benchmark behavior that was analyzed in this
chapter. We show the main parameters that influence locality-based and balance-based
data mapping policies. Darker cells indicate that a benchmark is more suitable for the
given parameter. We expect higher performance and energy efficiency improvements for
benchmarks that have a higher suitability for a particular policy. In Section 5.3, we will
evaluate the performance improvements of various data mapping policies and compare
them to the characterization presented in this chapter.
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5 TASK AND DATA MAPPING POLICIES

Chapter 1: Introduction

Chapter 2:
Introduction to
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Chapter 3:
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Chapter 4:
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page usage

Chapter 5:
Mapping
policies

Chapter 6:
CDSM — Task mapping

in the Linux kernel

Chapter 7:
kMAF — A kernel framework
for task and data mapping

Chapter 8: Concluding remarks

Chapter 5:
Mapping
policies

Based on the characteri-
zation of the communication and
page usage behavior of the par-
allel applications in the previous
two chapters, we now evaluate
the performance and energy im-
pact of various task and data
mapping policies. For the devel-

opment of automatic mechanisms, such as those that will be presented in Chapters 6
and 7, this chapter makes the following contributions: (1) Measure the impact of task
and data mapping and explain the reasons for improvements using a microarchitecture
simulator. (2) Evaluate which mapping policies are most beneficial for parallel application
performance on real machines. (3) Help find parameters for the automatic mechanism,
such as the specific mapping algorithms.

In this chapter, we first verify the importance of task and data mapping with a
microarchitecture simulator, evaluating both the performance and energy consumption
improvements that can be achieved, as well as the interaction between task and data
mapping. Then, we perform an in-depth analysis of various task and data mapping
algorithms. Finally, we describe the Oracle mapping mechanism, which uses memory
access traces to calculate an optimized task and data mapping for subsequent executions.
It is therefore a semi-automatic mapping mechanism according to our classification in
Section 1.3.2.

5.1 Evaluating Task and Data Mapping in a Simulator

Before we discuss how to generate specific thread and data mappings, we evaluate
the impact of mapping on the hardware architecture. The goal of this section is to analyze
which improvements can be achieved with improved mappings and how task and data
mapping interact. Different combinations of mappings, generated based on memory access
traces, are evaluated. Furthermore, we also perform an analysis of the energy consumption
improvements due to mapping in the simulator, since accurate and detailed measurements
of energy consumption are infeasible on current real hardware.

As mentioned in Section 1.2.2.2, mapping can reduce energy consumption for two
reasons. Reducing execution time reduces static energy consumption (leakage) with the
same proportion, since the processing units will be in a high power-consuming state for
a shorter time. A shorter execution time does not directly affect the dynamic energy
consumption, since the amount of work performed by the application (in terms of the
number of instructions executed, for example) will remain about the same. However,
reducing the number of cache misses and traffic on the interconnections reduces the dynamic
energy consumption, leading to a more energy-efficient execution of parallel applications due
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to improved mappings. For this reason, we expect overall energy consumption reductions
that are lower than the execution time reductions.

5.1.1 Simulation Methodology

This section discusses the simulation environment, the benchmark used in the
experiments and the mapping configurations.

5.1.1.1 Microarchitecture Simulator

We used SiNUCA (ALVES, 2014; ALVES et al., 2015), a performance and energy
consumption validated, cycle-accurate microarchitecture simulator for the Intel x86 ar-
chitecture. It contains a detailed model of all architectural components and supports
multi-core NUMA architectures. Table 5.1 presents the configuration parameters of the
simulated machine. The processors are based on the Intel Harpertown architecture (IN-
TEL, 2008). The machine contains 4 processors, each with its own memory controller,
forming 4 NUMA nodes in total. The processors consist of two cores, with private L1
instruction and data caches, and a shared L2 cache. The energy consumption of each
component was estimated by feeding statistics generated by SiNUCA to the McPAT energy
modeling tool (LI et al., 2013). Inside McPAT, the cache memories are modeled with
CACTI (THOZIYOOR et al., 2008).

5.1.1.2 Benchmark

For the evaluation, we selected the SP-OMP benchmark from the OpenMP imple-
mentation of the NAS Parallel Benchmarks (JIN; FRUMKIN; YAN, 1999), since it has a
high sensitivity to data and thread mapping. SP-OMP was executed with 8 threads, since
the simulated system consists of 8 cores in total, and input size W due to simulation time
constraints. We generate memory access traces of SP-OMP with the Pin tool (LUK et al.,
2005) presented in Section 2.3 to calculate the mappings.

5.1.1.3 Mapping Configurations

In order to understand the importance of thread and data mapping and their impact
on the performance and energy consumption, four different mapping configurations were
simulated. For each configuration, we select either a local or remote policy for the thread
and data mapping. In the local thread mapping (TL), threads that access shared data are
mapped close to each other in the hierarchy, while they are placed far apart in the remote
thread mapping (TR). Similarly, in the local data mapping (DL), each memory page is
mapped to the NUMA node that performs the most accesses to the page, while in the
remote data mapping (DR) each page is mapped to the node with the fewest accesses. This
results in the following four combinations of configurations that are evaluated: TRDR,
TRDL, TLDR and TLDL.
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Table 5.1: Configuration of the machine that was simulated in SiNUCA.

Property Value
System 4×2-core processors, L1I/L1D cache per core,

L2 caches shared between 2 cores
NUMA 4 memory ctrl./NUMA nodes, NUMA factor: 3,

min/max latency L2 to memory ctrl.: 32/96 cycles
Execution cores OoO, 1.8 GHz, 65 nm, 12 stages, 16 B fetch size,

96-entry ROB, PAs branch predictor
L1I/L1D caches 32 KB, 8-way, 64 B line size, LRU policy, 1 cycle,

MOESI protocol, stride + next-line prefetch
Shared L2 caches 512 KB, 8-way, 64 B line size, LRU policy,

4 cycles, stream prefetch
Interconnection Bi-directional ring, hop latency: 32 cycles
DRAM DDR2 667 MHz (5-5-5), 8 DRAM banks/channel,

2 channels, 8 KB row buffer
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Figure 5.1: Performance and energy consumption of the SP-OMP benchmark in SiNUCA,
normalized to the remote thread and data mapping (TRDR).

5.1.2 Simulation Results

Figure 5.1 presents the simulation results for the system components. The results
are normalized to the values of the TRDR mapping, which had the lowest performance.
We begin with an analysis of the performance results of the different mappings, followed
by a discussion of the energy efficiency improvements.
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5.1.2.1 Performance

We observe that using only the local data mapping (TRDL) improves the perfor-
mance by 31%, providing higher benefits than performing only the local thread mapping
(TLDR), which reduced execution time by 15%. The local data mapping (TRDL) improves
the accesses to the main memory, by reducing the distance between the threads and the
data they access. Since these accesses are off-chip, they are high latency operations. On
the other hand, the local thread mapping (TLDR) improves the usage of the shared cache
memories (L2) by reducing the competition for the L2 cache space and improving the
cache hit and miss ratios. As these are low-latency on-chip accesses, this mapping results
in fewer improvements compared to the local data mapping.

When combining both local mappings (TLDL), the application performance im-
proved by 62%, which is higher than the sum of the results from the local thread and
data mappings applied separately. TLDL is able to reduce the number of cache misses
and cache-to-cache transfers due to the local thread mapping, and also reduces the main
memory average latency and interconnection contention due to the local data mapping. In
addition, the local thread mapping also increases the gains from the local data mapping
for pages that are shared between threads. By mapping threads that share data to the
same NUMA node, main memory accesses from these threads will be considered as local,
augmenting the benefits of the local data mapping (DIENER et al., 2014).

5.1.2.2 Energy Consumption

As discussed in Section 1.2.2.2, thread and data mapping can also improve the
energy efficiency of parallel applications. For all the evaluated mappings, the more efficient
execution also reduced energy consumption. Leakage was reduced for all components,
correlating with the execution time as expected. The main sources of dynamic energy
savings were the reduction on the number of L1 cache misses, the interconnection traffic
reduction and the reduction in the number of main memory accesses, since most of the
accesses are being treated by the L2 cache memory. The overall energy reductions were
slightly lower than the execution time reductions due to lower dynamic energy savings.

5.1.3 Summary

This section showed that substantial performance and energy improvements can
be accomplished with mapping. The main benefits from the local thread and local data
mapping can be observed on the memory sub-system and the interconnections, enabling a
more efficient usage of resources. By combining both types of mappings, a compounding
effect is achieved, resulting in higher improvements than when applying each technique
separately.
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5.2 Evaluating Task Mapping Policies

In this section, we evaluate the performance improvements that are achieved by
the task mapping policies proposed in Section 3.3 on a real machine.

5.2.1 Experimental Methodology

This section contains methodological considerations regarding the performance
experiments.

5.2.1.1 Benchmarks and Evaluation System

We performed the experiments on our main evaluation system, Xeon, which contains
64 processing units in total, divided into 4 NUMA nodes. Task mapping results on the
other two systems are qualitatively similar, and we do not present them here. Detailed
information about the configuration of the system is shown in Section 2.2. We selected the
NAS-OMP (with the A and B input sizes) and PARSEC (native input size) benchmark
suites since their results are representative for the other suites as well. All applications
were executed with 64 threads. We evaluate all mapping policies that were presented in
Section 3.3. In all policies except OS, no migrations during execution were performed.

5.2.1.2 Statistical Evaluation

The presentation of performance and energy consumption results in this chapter
and the rest of the thesis is based on the following methodology. All experiments are
executed at least 10 times for all configurations. Statistics are collected regarding each
execution (such as execution time, energy consumption, L3 cache misses and QPI traffic)
and we calculate the average of each type of statistic. We then normalize all values to our
baseline, the results of the OS.

Performance for each benchmark is presented in terms of improvements compared
to the baseline, calculated with Equation 5.1.

meanPerformance =
(

average execution time with OS
average execution time with mechanism − 1

)
× 100% (5.1)

For the other statistics, we present results as a reduction compared to the baseline,
described by Equation 5.2.

meanOthers =
(

1− average value with mechanism
average value with OS

)
×−100% (5.2)

The accuracy of the presented averages is shown with a confidence interval for a
confidence level of 95%, assuming a Student’s t-distribution.

To compare the results of different mechanisms for multiple benchmarks, we use
the geometric mean of the benchmark results, since the normalized results represent ratios.
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However, some of the ratios might be negative, if a mechanism causes a performance
reduction compared to the OS, for example. Negative values are not directly supported
by the geometric mean. For this reason, we calculate the mean in a slightly modified
way, by adding 100% to each value and subtracting this value again after the mean is
calculated. This operation is shown in Equation 5.3, where xi represents the gain or
reduction of benchmark i compared to the baseline, and N is the number of results for
which to calculate the mean.

geomean (xi) =
(

N∏
i=1

(xi + 100%)
)1/N

− 100% (5.3)

5.2.2 Results

Figure 5.2 shows the performance gains compared to the OS mapping. For NAS-
OMP with the A input, most benchmarks profit from the Locality policy, as predicted
by our analysis. With the A input, this policy never reduces performance. The Balanced
Locality policy has similar results as Locality for all benchmarks except DC-OMP. For the
benchmarks that have a nearest neighbor communication pattern, the Compact policy
improves performance, but reduces it in some cases, such as LU-OMP. The Distance and
Balance policies only show performance improvements close to the Locality policy for the
DC-OMP benchmark, which benefits from a better balance due to its low communication
ratio. The Scatter policy never results in significant performance gains and reduces it
in many cases. On average, the Locality, Balanced Locality, and Compact policies show
improvements of more than 12%, the other policies gain less than 4%.

For the NAS-OMP benchmarks with the B input, the Locality policy reduces
performance for the benchmarks that are imbalanced (BT-OMP, LU-OMP, and SP-OMP).
On the other hand, Balanced Locality achieves the highest gains, proving that only
taking locality into account is not sufficient for applications with this characteristic. The
Load Balance policy (not shown in the figure) has improvements of less than 5% for
the 3 benchmarks, indicating that balancing the load is not as effective as balancing the
communication in these cases. The other benchmarks show a similar behavior as the A
input, with lower average gains. This echoes our discussion of the communication ratio,
were we expected lower improvements when the ratio decreases. On average, Balanced
Locality achieved the highest improvements, of 10.9%. As several benchmarks benefit
from balancing, the Balance policy has the second-highest improvements, of 7.3%. The
other policies gain less than 5%.

As discussed in Section 3.4, the PARSEC benchmarks generally have lower metrics
for task mapping than the NAS-OMP benchmarks, which is reflected in the performance
results. Five benchmarks (Ferret, Vips, X264, Dedup, and Streamcluster) benefit from
communication-aware thread mapping. Most of them benefit from both the Locality and
the Balance policies, but the Balanced Locality policy, which combines both, results in
the highest improvements in most cases. The Compact, Distance, and Scatter policies do
not improve performance consistently and result in performance losses in several cases.
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Figure 5.2: Performance improvements of different task mapping policies on the Xeon
machine, compared to the OS mapping.

On average, Balanced Locality has again the highest gains of 6.7%, followed by Balance
(5.4%) and Locality (3.4%).

5.2.3 Comparison to Predicted Task Mapping Suitability

Section 3.5 summarized our benchmark characterization regarding the suitability
for task mapping. All NAS-OMP benchmarks except EP-OMP and FT-OMP were
characterized as suitable for at least one type of task mapping. This is reflected well in the
performance results. As predicted, EP-OMP and FT-OMP had almost no performance
improvements. BT-OMP, LU-OMP, and SP-OMP with the B input can not benefit from
locality-based policies due to their imbalance, but have high gains from balance policies.
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The other NAS-OMP benchmarks have substantial performance improvements from both
policy types.

The PARSEC benchmarks were characterized as generally less suitable for task
mapping, with Ferret, Dedup, and Streamcluster predicted to benefit from both types of
task mapping. These benchmarks also have substantial performance gains. Two other
benchmarks Vips and X264, also have high gains, in contrast to the predictions. We assume
that these gains are mostly due to the prevention of task migrations during execution,
which can have a substantial impact on performance as these applications have a highly
dynamic behavior. Vips is based on a thread pool, where tasks that will be calculated
are put in a list. X264 creates 1,024 threads, which only exist for a short time. All other
PARSEC benchmarks have only negligible performance differences with task mapping, as
correctly predicted by our characterization.

Although the general suitability for task mapping was characterized with a high
accuracy, the amount of performance improvements can not be predicted accurately in all
cases with our model. For example, CG-OMP and DC-OMP with the B input size had a
very similar suitability for locality-based task mapping, but CG-OMP has much higher
performance improvements from such a policy. To achieve such a high level of precision, a
more detailed model of the application and hardware architecture is necessary, such as
information about the exact timing of memory accesses, interconnection latencies and
cache sizes. This requires a highly-detailed architectural simulator, which would limit the
characterization to small benchmarks.

5.2.4 Summary

From the results presented in this section, we conclude that increasing locality
is the most important way to perform communication-aware thread mapping for most
parallel applications. However, some applications can benefit from improving the balance
of the communication, achieving higher performance gains and avoiding the performance
reduction that a locality-based policy can cause. Simple mapping policies that do not take
the communication behavior into account only improve performance in some cases and
provide no consistent improvements over the OS.

5.3 Evaluating Data Mapping Policies

This section evaluates the performance improvements of the data mapping policies
that were proposed in Section 4.3.

5.3.1 Methodology

We evaluate the data mapping policies and compare them to the baseline, the
first-touch policy of Linux. Since its results were very close to the Interleave policy, the
RoundRobin mapping will not be shown in the figures. As these mapping policies are
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calculated based on memory access traces, we require that the addresses themselves do
not change between multiple executions. We disable Address Space Layout Randomiza-
tion (ASLR) in the kernel, which makes most memory allocations reproducible between
different executions. However, addresses can change in case the parallel application calls
malloc() from multiple threads. Most NAS-OMP benchmarks and some PARSEC
applications have static addresses between executions, and we filter out those applications
where the memory addresses change.

Since the behavior on our evaluation systems Itanium, Xeon, and Opteron differ
considerably, we present results for all three of them. Threads were pinned to the execution
cores with a Compact thread mapping, to remove the influence of thread migrations during
execution.

5.3.2 Performance Results

The results for the performance improvements (compared to the baseline, the first-
touch policy of Linux) for the three evaluated architectures are shown in Figures 5.3, 5.4
and 5.5. For the Mixed policy, we show the improvements for a value of minExcl of 90%.

5.3.2.1 Itanium

Figure 5.3 shows the results for the Itanium machine. The highest improvements
were achieved for the CG-OMP benchmark, of up to 67% for Locality, Balanced and
Mixed. Due to Itanium’s relatively slow interconnection, the Interleave policy achieves
generally lower improvements than the Locality and Mixed policies. Since it still takes
locality into account, the Balanced policy achieves higher improvements than Interleave.
As the machine has only a small number of NUMA nodes (2), even the Random policy
improves performance in many cases, as it has a higher chance of mapping the page to the
local node. The average performance improvements are: 5.2% with Random, 5.7% with
Interleave, 20.9% with Locality, 14.4% with Balanced and 19.4% with Mixed. The fact
that the improvements with Mixed are lower than the improvements with Locality (even
when using a 99% minimum exclusivity for mixed) shows that on this machine, improving
memory access locality is more important than balance.

5.3.2.2 Xeon

Figure 5.4 shows the results for the Xeon machine. Due to the higher number of
threads and NUMA nodes, performance improvements from data mapping are higher than
on Itanium, despite Itanium’s slower interconnection. For the same reason, the balance
policies achieve improvements closer to the locality policies. The SP-OMP benchmark
achieved the highest improvements, even for the Random policy, of up to 108%. For
the other benchmarks, the Random policy can not reduce execution time significantly or
even increases it (up to 37% for MG-OMP). On average, performance was improved by
8.7% with Random, 15.8% with Interleave, 18.5% with Locality, 14.6% with Balanced and
23.7% with Mixed. The results show that increasing only locality is not enough to achieve
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Figure 5.3: Performance improvements on Itanium with different data mapping policies,
compared to the first-touch mapping.
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Figure 5.4: Performance improvements on Xeon with different data mapping policies,
compared to the first-touch mapping.

optimal improvements. For several benchmarks (BT-OMP, LU-OMP, and Canneal), the
Locality policy actually reduces performance compared to First-touch.

5.3.2.3 Opteron

Figure 5.5 shows the results for the Opteron machine. Due to its large number of
NUMA nodes (8) and high NUMA factor, the highest improvements were achieved on
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this machine. In many cases, the Random and Interleave policies reduce performance.
Balancing memory accesses is still important though, as shown by the higher improvements
for Mixed than for Locality. As before, the Locality policy increases execution time slightly
compared to the baseline for some benchmarks (CG-OMP, LU-OMP, and UA-OMP).
Similar to the Xeon machine, the highest improvements were achieved for SP-OMP, up
to 272% with the mixed policy. On average, performance was improved by 6.3% with
Random, 7.2% with Interleave, 50.0% with Locality, 23.9% with Balanced and 61.8% with
Mixed.

5.3.3 Comparison to Predicted Data Mapping Suitability

In Section 4.5, we summarized our predicted suitability for data mapping, consider-
ing 64 threads and 4 NUMA nodes, which corresponds to our Xeon machine. Comparing
the performance results on Xeon to the prediction showed that suitability was analyzed
correctly in most cases. From the NAS-OMP benchmarks, we only characterized EP-OMP
and LU-OMP as being unsuitable for data mapping, which is reflected in their very low
improvements and performance reduction in some cases. All other NAS-OMP benchmarks
improve performance with data mapping. The PARSEC benchmarks evaluated in this
section were all characterized as suitable for data mapping, and they have significant
performance gains.

Similar to the analysis for task mapping, although the characterization was very
accurate in terms of which benchmarks can benefit from data mapping, the performance
improvements still vary widely between benchmarks, which is not well reflected by the
metrics. This is due to two main factors. First, not all information about the memory
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Figure 5.5: Performance improvements on Opteron with different data mapping policies,
compared to the first-touch mapping.



114

access pattern of the application is collected. For example, the suitability of the pattern
for the cache line prefetcher is not taken into account. If the prefetcher can perform
an accurate prediction of future memory access, data mapping is less effective, as more
memory accesses can be filtered by the caches. On the architectural level, cache size,
interconnection speed and contention influences the benefits of data mapping. To provide
such a level of precision, much more detailed architectural simulation is required, which
would limit the applicability of the characterization to small applications.

5.3.4 Summary and Discussion

Several important conclusions can be drawn from these performance results.
First-touch often has a negative impact on performance. Compared to

most other policies, the First-touch policy of modern operating systems often has a
negative impact on the performance of parallel applications. In many cases, even a random
assignment of pages to NUMA nodes outperforms first-touch. The reason for this behavior
is that in many parallel applications, one thread initializes the data and forces page
allocation on a single NUMA node, leading to an increased number of memory accesses
to that node, while a random policy can balance the memory access load more equally
among the nodes.

Locality is still more important than balance. Regarding the importance of
locality and balance, results depend on the hardware architecture. On traditional NUMA
systems with a relatively slow interconnection, such as our Itanium machine, memory
access locality is the most important metric for performance improvements. For modern
NUMA architectures, the importance of balancing the memory accesses between memory
controllers is becoming increasingly important, although locality is still the most important
metric to optimize, as evidenced by the results of the Interleave and Balanced policies
compared to the Locality policy. An important reason for this result is that improving
locality also improves balance for most applications.

Mixed policies can provide the highest improvements. Neither Locality
nor Balanced are able to improve performance in all cases and actually reduce performance
significantly in some instances. Taking both locality and balance into account (as done
by our Mixed policy) when mapping pages to NUMA nodes achieves the highest results
overall and also avoids the performance decrease of the other policies. In this way, highly
exclusive pages can benefit from the locality, while shared pages are distributed among
the nodes to balance the memory accesses between memory controllers.

5.4 An Oracle Mapping Mechanism

This section describes an optimized task and data mapping mechanism, which we
refer to as the Oracle mechanism, consisting of a memory tracer and mapping policies.

To determine the memory access behavior, we adapted the Pin-based memory
tracer presented in Section 2.3. The tool outputs the communication matrix and the page
usage of the parallel application, and uses them to calculate the task and data mapping
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policies. Despite the overhead caused by the tracing, it is still feasible to characterize very
large applications, such as the ones we use in the thesis. Since we do not save the full
memory access trace, but only the behavior, the data generated is very small (less than
100 MByte per application).

To calculate the task mapping from the communication matrix, we use either the
Locality or Balanced Locality policy introduced in Section 3.3, whichever resulted in the
highest performance gains for each application on each machine.

For the calculation of the data mapping, we apply data mapping policy that had
the highest performance results for each application and machine to the global page usage.
The mechanism outputs a file that contains a list of pages and the NUMA node where
they should be mapped to.

We implemented the Oracle mechanism as a kernel extension for Linux. When
a parallel application starts, the kernel reads the files that contain the thread and data
mapping and maps tasks and pages according to the specified mapping when they are
created or accessed for the first time, respectively. In this way, the Oracle mechanism
is independent of the parallel API that the application uses. It is difficult to perform
dynamic migrations according to a predefined policy with a high accuracy For this reason,
we modify those parallel applications that have a dynamic communication behavior such
that at each phase change, they perform a migration according to the calculated Oracle
task mapping. For data mapping, only 1 application (Vips) has a significant dynamic page
usage, but we did not find a reliable way to perform an Oracle data migration, and we
maintain the data mapping static for the applications.

5.5 Summary

In this chapter, we evaluated a large set of task and data mapping policies according
to their performance on a variety of parallel machines. We concluded that for most
applications, increasing locality of memory accesses is the most important way to improve
performance. However, some applications can also benefit from improving the balance.
The results have shown that for most benchmarks, our behavior analysis in Chapters 3
and 4 were correct in predicting the improvements that are possible.

Based on these observations, we proposed a trace-based Oracle mechanism to
calculate optimized task and data mappings. This mechanism serves as a baseline for
the maximum improvements that can be achieved in the next chapters. The Oracle
mechanism has complete access to the application’s behavior and has no runtime overhead
as all the mapping decisions are made before execution. However, it requires expensive
memory tracing operations before the actual execution. In the next chapters, our goal is
to introduce automatic mechanisms that achieve similar results as the Oracle, based on
the task and data mapping policies presented here. These mechanisms have knowledge of
only a part of the behavior and need to perform mapping decisions during execution.
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Chapter 6:
CDSM — Task mapping

in the Linux kernel

In the first part of the the-
sis, we performed an extensive
evaluation of the memory access
behavior of parallel applications
and developed mapping policies
to improve it based on complete
and precise information about
the behavior. In the second part,

we will present mapping mechanisms that perform the behavior analysis and mapping au-
tomatically during the execution of the application. In order to keep the runtime overhead
manageable, these mechanisms need to deal with incomplete information, through the use
of sampling, coarser detection granularities and mapping heuristics.

In this chapter, we introduce our first automatic mechanism, Communication
Detection in Shared Memory (CDSM), which is a kernel-based mechanism to perform
communication-aware task mapping. We begin this chapter with a brief overview of the
challenges of online mapping, followed by a review of previous work in the task mapping
area. Then, we present CDSM and evaluate its performance and energy consumption
improvements.

6.1 Introduction

CDSM is a mechanism to perform communication-aware task mapping in shared
memory architectures. In contrast to the Oracle presented in the previous chapter, it is
an automatic mechanism as per our classification in Section 1.3.2. Automatic mapping
mechanisms face two main challenges, the runtime overhead and the limitation to past
behavior. First, the detection of communication has to be performed accurately and with
a low overhead. As applications generate a huge number of memory accesses, the detection
can be done by sampling the memory accesses. Second, since automatic mechanisms have
no knowledge about future behavior, it must be predicted using knowledge about the past
behavior.

In this chapter, we will introduce CDSM, our mechanism to detect communication
and use the detected information to perform an optimized task mapping. CDSM is based
on the central idea of using page faults to sample and analyze memory access behavior,
which generates a very low overhead for the running application. The detected behavior is
used to optimize the mapping of tasks to cores. Since CDSM is implemented on the kernel
level, it is independent of the parallel API that the application uses and requires no changes
to the application or the hardware. It can handle multithreaded as well as multiprocess
applications. We evaluated CDSM with the benchmarks presented in Section 2.1 and
achieved substantial performance and energy consumption improvements with a negligible
overhead.
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6.2 Related Work on Task and Process Mapping

Several related mechanisms that focus on thread and process mapping considering
the communication have been proposed. In this section, we analyze these mechanisms and
compare them to our proposed approach. Specific algorithms that can be used to calculate
a task mapping are not part of the thesis, but were discussed briefly in Section 3.3.

6.2.1 Applications Based on Message Passing

For parallel applications that communicate through explicit message passing, such
as MPI, most previous research focuses on methods to trace the messages and use the infor-
mation to perform a static process mapping. Mechanisms to trace MPI messages include
the MPI Parallel Environment (MPE) (CHAN; GROPP; LUSK, 1998), eztrace (TRAHAY
et al., 2011) and the Intel Trace Analyzer and Collector (INTEL, 2013a). MPIPP (CHEN
et al., 2006) is a framework for static process mapping in MPI, consisting of a message
tracer and a mapping algorithm.

Extensions for several MPI frameworks have been proposed to perform a mapping
of processes to cores such that communicating processes are executing close to each other.
In (MERCIER; JEANNOT, 2011), an extension for the MPICH2 framework (GROPP,
2002) is proposed, where the communication pattern can be provided by the application
developer or generated via execution traces. In (HURSEY; SQUYRES; DONTJE, 2011), a
similar extension for Open MPI (GABRIEL et al., 2004) is introduced, where the user needs
to specify the desired mapping. Both frameworks focus on static mappings only. Static
mappings of specific MPI applications are evaluated in (MERCIER; CLET-ORTEGA, 2009;
BRANDFASS; ALRUTZ; GERHOLD, 2012; ITO; GOTO; ONO, 2013; RODRIGUES
et al., 2009) for the NAS-MPI applications, a Computational Fluid Dynamics (CFD)-
kernel, a weather forecast application, and an application based on domain decomposition,
respectively. None of the proposals supports dynamic mapping, they need previous
information about the applications’ behavior.

A related type of proposal that affects communication is based on what is called
communication reduction or communication avoidance (BALLARD et al., 2014). Such
proposals focus on reducing the impact of communication by reducing the amount of data
that needs to be communicated between tasks in order to overcome the high performance
and energy consumption impact of communication (SHALF; DOSANJH; MORRISON,
2010). These proposals focus on improving parallel algorithms, and can be seen as
orthogonal to our techniques, since even a reduced amount of communication can be
optimized with a better task mapping. A comprehensive overview of communication
avoidance algorithms is given in Ballard et al. (2014).

6.2.2 Multithreaded Applications

In most multithreaded applications, communication is performed implicitly through
memory accesses to shared memory areas. In (CRUZ et al., 2011; DIENER et al., 2010;
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DIENER, 2010; BARROW-WILLIAMS; FENSCH; MOORE, 2009; BIENIA; KUMAR;
LI, 2008), techniques to statically collect the communication pattern of the threads of
parallel applications based on shared memory were evaluated. These methods consist
of instrumenting simulators to generate memory accesses traces, which are analyzed
to determine the communication pattern of the applications. The application is then
executed with static mappings based on the detected patterns. Due to the high overhead
of simulation, these mechanisms were only evaluated with small applications.

The ForestGOMP runtime system (BROQUEDIS et al., 2010a) uses information
about the affinity between threads in OpenMP-based programs gathered from several
sources, such as the developer, application source code (from OpenMP parallel sections),
and hardware counters during runtime. Threads with a high affinity are then placed close
to each other in the processor hierarchy. Due to its limitation to OpenMP applications
with a custom runtime, ForestGOMP is not a general solution for task mapping.

The usage of the instructions per cycle (IPC) metric to guide thread mapping is
evaluated in Autopin (KLUG et al., 2008). Autopin itself does not detect communication,
but measures the IPC of several mappings fed to it and executes the application with the
thread mapping that presented the highest IPC. In (RADOJKOVIĆ et al., 2013), the
authors propose BlackBox, a scheduler that selects the best mapping by measuring the
performance that each mapping obtained, similar to Autopin. When the number of threads
is low, all possible thread mappings are evaluated. When the number of threads makes
it unfeasible to evaluate all possibilities, the authors execute the application with 1000
random mappings to select the fastest one.

Several mechanisms use indirect communication statistics from hardware counters
to perform the task mapping during execution. Azimi et al. (2009) use hardware counters
that provide memory addresses of requests resolved by remote cache memories. It detects
incomplete communication patterns, since memory requests resolved by local caches are not
considered. Moreover, these hardware counters are specific to each processor architecture,
and need to be adapted for each new architecture.

In (CRUZ; DIENER; NAVAUX, 2012; CRUZ; DIENER; NAVAUX, 2015), the
communication pattern is detected by comparing the contents of the Translation Lookaside
Buffer (TLB). The most recently used pages of a core have a corresponding entry in its
TLB. The mechanism compares the contents of all TLBs in the system, and consider as
communication when the same entry is found in the TLBs of different cores. Most current
hardware architectures require hardware changes to support, since the TLB contents are
usually managed by the processor and can not be accessed by software. In (CRUZ et al.,
2014a), cache line invalidation messages are monitored to determine which cores access
the same cache line. Each invalidation message is considered as a communication event,
while the aggregated amount of communication of all cores is used to estimate the global
behavior. This mechanism requires extensive hardware changes since it adds a vector to
each core to store the number of invalidation messages received by all other cores.
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Table 6.1: Summary of the main related task mapping mechanisms.
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MPIPP Semi. Messages X X X X X X
Autopin Auto. IPC X X X X X X X
Azimi et al. Auto. Cache misses X X X X X X X
ForestGOMP Auto. Shared data X X X X X

CDSM Auto. Page faults X X X X X X X X X

6.2.3 Summary of Related Work on Task Mapping

Compared to previous work, our proposal, CDSM, presents several advantages. It
operates completely during execution and requires no previous knowledge of the application
behavior. Furthermore, CDSM requires no changes to the hardware, applications or their
runtime libraries. Since it works on the operating system level, all parallel applications
that use memory accesses to communicate are supported. Table 6.1 contains an overview
of the main related work in communication-based task mapping. We note that none of
the previous proposals discuss a balance-based policy, focusing only on improving locality.
We will compare CDSM to Autopin and MPIPP in Section 6.5.5.

6.3 CDSM: Communication Detection in Shared Memory

This section describes how CDSM detects the communication of parallel applications.
We begin by explaining the general concept of the detection, followed by a description of
the implementation in the Linux kernel and an analysis of the detection overhead.

The only requirement of CDSM is that the hardware and OS use virtual memory
with paging. When an application causes a page fault, the hardware notifies the OS,
which updates the page table of the process that caused the fault. It is important to note
that threads of the same process share a common page table in many OS, such as Linux.
Different processes have separate page tables. Processes and threads are handled similarly
by CDSM. To simplify the explanation, we refer to both of them as tasks in this chapter
and will only refer to processes and threads when they are handled differently.
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6.3.1 Fundamentals of CDSM

The communication detection of CDSM is based on two fundamental concepts,
which will be explained in this section. An overview of the operation of CDSM is shown
in Figure 6.1.

6.3.1.1 Analyzing Memory Access Behavior Through Page Faults

Memory accesses are usually handled directly by the hardware, without any knowl-
edge of the OS. However, whenever a memory address is accessed and its corresponding
page is not set as present in the page table, the OS is notified of the faulting address. We
make use of these page faults for the communication detection. The mechanism works as
follows.

Whenever a page fault is caused by the parallel application, CDSM stores the ID
of the task that generated the page fault in a hash table that is indexed by the physical
memory address that caused the fault. It is necessary to use the physical address instead
of the virtual address since different processes occupy different virtual address spaces.
Since the full address is available during the page fault, communication can be detected
using different block sizes. The memory is separated into memory blocks of an adjustable
block size. In this way, the communication detection is independent of the page size that
the hardware uses.

When another task causes a page fault in the same memory block, we add the
task ID to the hash table and consider this fault a communication event. The amount
of communication events of the parallel application is stored in a communication matrix.
Each cell (x, y) of the matrix contains the number of communication events between
processes x and y.

6.3.1.2 Increasing Detection Accuracy by Enabling Multiple Page Faults per Page

An important aspect of the detection mechanism is that, under normal circum-
stances, each process causes only one page fault per page, at the first access to the page.
To increase the accuracy of the detection and to detect changes in the communication
behavior during the execution, CDSM enables extra page faults, such that more than one
fault can happen in the same page. CDSM periodically iterates over the page tables of
the parallel application and modifies their entries.

The page table entries can be modified in different ways. A generic solution is to
clear the page present bit, which is available in most architectures that support paging.
In some architectures, such as x86_64, it is possible to modify reserved bits in the page
table entry, which leads to a page fault that is slightly easier to resolve. In any case, it is
necessary to remove the page table entry from the Translation Lookaside Buffer (TLB)
after it is modified. As the extra page faults do not represent missing information in the
page table, they can be resolved quickly by CDSM itself, without intervention from the
normal kernel routines. In this way, the overhead of these extra page faults is minimized.
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Figure 6.1: The communication detection mechanism.

6.3.1.3 Example of the Operation of CDSM

Figure 6.2 shows an example of the operation of CDSM for a parallel application
consisting of 4 tasks. On application start, CDSM allocates data structures for the new
application (a hash table and a communication matrix). After the application starts to
execute, task 0 tries to access a memory address in a page that was never accessed before
and generates a page fault. CDSM calculates the memory block of the address by bit
shifting the address with the number of bits that correspond to the block size, and adds
task 0 to the list of tasks that accessed this block. As the block has not been accessed
before, the page fault does not represent a communication event and it is resolved by the
kernel.

During the execution, CDSM enables extra page faults for the same page in the
page table of task 3. The next time task 3 tries to access the page, it will therefore
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generate an extra page fault. As the memory block has been accessed before, CDSM
will count this fault as a communication event and increment the communication matrix
in cell (0, 3), which corresponds to task IDs 0 and 3. This situation is also depicted in
Figure 6.1. CDSM is responsible for this extra page fault and resolves it by removing the
modification to the page table. It then returns directly to the application, without calling
the page fault handler of the OS.

6.3.2 Implementation

For each parallel application, two data structures need to be allocated. A hash
table, where CDSM stores information about the page faults and the task IDs that caused
them, and a communication matrix to store the number of communication events between
tasks. The size of the hash table scales linearly with the size of the main memory. For each
GByte of main memory, it consumes about 2.3 MByte of memory for the configuration
used in our experiments. We allocate a communication matrix that is sufficient to store
the number of communication events for up to 1024 tasks. Each matrix cell is 4 Bytes
wide, for a total memory consumption of 4 MByte per parallel application.

CDSM was implemented as a Linux kernel module for the x86_64 architecture.
The implementation consists of three parts: a modification to the page fault interrupt
handler, the communication detection, which is offloaded from the interrupt handler, and
a kernel thread that enables extra page faults. The description follows the sequence shown
in Figure 6.1.

The default page fault behavior of the kernel was changed by adding a kprobe (MAV-
INAKAYANAHALLI et al., 2006) to the page fault interrupt handler. When a parallel
application causes a page fault, CDSM determines in the modified handler if it was re-
sponsible for the page fault, and resolves the fault itself or lets the normal kernel routines
handle it. CDSM then schedules a work item in the kernel work queue. The item consists

Parallel application
with 4 processes starts.

CDSM allocates data
structures (hash table
and communication
matrix).

Process 0 causes page
fault at address A.

CDSM adds access
to hash table for
the memory block of
address A. Page
fault is resolved by
the kernel.

CDSM clears
page present bit
of the page that
contains address A
of process 3.

Process 3 causes page
fault at address A.

CDSM detects
communication
between processes 0
and 3 and increments
communication
matrix. Page fault
is resolved by CDSM.

time

Figure 6.2: Example of the operation of CDSM for a parallel application consisting of
multiple tasks.
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of the task ID that caused the fault and the physical address of the fault. Afterwards, the
parallel application continues to run.

The work item is analyzed by the communication detection routine. In the routine,
the physical address is bit shifted to the chosen memory block size. With the shifted
address, CDSM accesses the hash table and updates the list of task IDs that accessed the
memory block. If the memory block has been accessed before by different tasks, CDSM
increments the number of communication events in the communication matrix for each
pair of tasks that accessed the memory block. We use the relaxed communication detection
mechanism presented in Section 3.1.5, and use the same default configuration with 2 task
IDs per memory block, but on a higher granularity.

The handling of the page faults and the communication detection were separated
for two reasons. First, it allows the parallel application to continue executing earlier,
before detecting the communication. Second, it allows the communication detection to
be performed during a non-critical time, such as when the application is stalled due to a
cache miss.

To enable multiple faults per page during the execution of the parallel application,
we create a kernel thread that periodically iterates over the page tables of the parallel
application and enables extra page faults. To increase the accuracy of the detection, page
faults are only enabled in virtual memory areas that can be used for communication. For
processes, memory areas that can be used for communication are marked as shared by
the virtual memory subsystem of Linux, and the kernel thread only modifies the page
table for these shared areas. For threads, which share the same virtual address space,
communication can happen in more areas, so the kernel thread enables extra page faults
in a larger part of the virtual memory space. In both cases, extra page faults are only
enabled for data segments, not for code segments.

After identifying a suitable virtual memory area, the kernel thread enables the
faults by setting a reserved bit in the page table entry and clears the corresponding entry
in the TLB. In this way, extra page faults can be detected and resolved already in the
interrupt handler. To limit the overhead of the mechanism, the kernel thread enables
extra page faults up to a percentage of the number of pages the application accesses per
second. We selected a limit of 1% of the pages the application uses per second. This value
was chosen to provide a high level of accuracy with a negligible overhead, as will be shown
in Section 6.5, and will compare it to other limits.

6.3.3 Calculate the Task Mapping

The task mapping problem is defined as finding a mapping of tasks to processing
units (PUs) that maximizes the locality, given a description of the communication behavior
and the hardware hierarchy. Several algorithms have been suggested previously to calculate
this mapping. We selected the EagerMap mapping algorithm for CDSM, which was
described in Section 3.3, and perform the experiments with it.

We ported EagerMap to the kernel as part of CDSM. The hardware topology
(including information about caches and NUMA nodes) is generated directly from the
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information available in the kernel, without the need for external tools. During the
execution of the parallel application, CDSM periodically fetches the sharing matrix and
applies the EagerMap algorithm on the matrix and the hardware topology. The output of
EagerMap is the PU where each task should execute. CDSM then migrates the tasks to
their assigned PUs.

We selected a mapping interval of 200 ms, below which we did not measure
further gains from more migrations. Due to the high stability of EagerMap compared
to other mapping algorithms, unnecessary task migrations due to small changes in the
communication matrix are reduced (CRUZ et al., 2015).

6.3.4 Runtime Overhead of CDSM

To perform the communication detection, CDSM introduces two types of overhead
to the execution of the application. The first type of overhead consists of the extra page
faults, which require additional context switches to the OS as well as periodic accesses to
the page tables of the parallel application to enable the extra page faults. This overhead
is reduced by keeping the amount of computation in the page fault handler low. The
second type of overhead is the communication detection itself. It consists of accesses to
the hash table and the communication matrix, which have a constant time complexity.
Apart from the runtime overhead, CDSM also requires memory to store the hash table
and communication matrix, as discussed in Section 6.3.2. In Section 6.5, we will evaluate
the runtime overhead of CDSM quantitatively.

6.3.5 Summary

The communication detection part of CDSM has the following features. CDSM
is independent of the parallelization model, supporting any model that can use shared
memory to communicate, as well as applications that use several models. CDSM detects
communication online, during the execution of the parallel application, and requires no
modification to the application, its runtime system or expensive operations such as tracing.
CDSM is also highly OS and hardware independent. It can be applied to all platforms that
use virtual memory with paging, which covers most of the current computer architectures.
No architecture specific information, such as a special hardware counter, is necessary.

6.4 Methodology of the Experiments

For the evaluation of task mapping in this section, we use our main evaluation
system, the Xeon machine system described in Section 2.2. We use the MPICH2 (GROPP,
2002) MPI framework, which uses Nemesis (BUNTINAS; MERCIER; GROPP, 2006b)
for shared memory communication by default. We also verified the correct operation of
CDSM with Open MPI (GABRIEL et al., 2004). Table 6.2 summarizes the configuration
of CDSM used in the experiments.
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Table 6.2: Experimental configuration of CDSM.

Parameter Value

Detection 256 Bytes memory block size
Hash table 4 Million elements, 73 MByte memory usage
Page faults max. 1% of pages/second extra
Mapping interval 200 ms

For the experiments, we use the parallel applications presented in Section 2.1: NAS-
OMP, NAS-MPI, PARSEC, HPCC, NAS-MZ, as well as the BRAMS weather prediction
model. We execute most benchmarks with 64 threads or processes, as Xeon can execute
64 tasks simultaneously. The NAS-MZ benchmarks were executed with 4 processes and
16 threads per process. All NAS benchmarks were executed with the B input size. All
other benchmarks were executed with the input parameters specified in Section 2.1.

6.5 Evaluation of CDSM

In this section, we present two main sets of experimental results: the accuracy
of the communication patterns detected by CDSM, as well as performance and energy
consumption improvements. Furthermore, we analyze the impact of different numbers of
page faults on the gains achieved by CDSM, as well as the overhead.

6.5.1 Accuracy of Detected Communication Behavior

An important aspect of CDSM is its communication detection accuracy. Compared
to the relaxed definition of communication introduced in Section 3.1.5, CDSM has two
sources of inaccuracy. First, it uses a hash table with a small fixed size to determine the
communication, as opposed to a table with an infinite size that covers the full memory
range of the application. Second, by using a sampling mechanism that only uses a small
percentage of memory accesses as opposed to every memory access. This section evaluates
the accuracy of CDSM with the default configuration presented Section 6.4. The accuracy
and performance achieved by varying the number of extra page faults will be evaluated in
Section 6.5.4.

6.5.1.1 Methodology of the Comparison

We verify the accuracy of CDSM by comparing the generated communication
matrices of CDSM with tracing-based communication detection using the Mean Squared
Error (MSE) introduced in Section 3.1.4. For the benchmarks that are based only
MPI (NAS-MPI and HPCC), we use the eztrace tool (TRAHAY et al., 2011), since it
offers a perfectly accurate analysis of the communication behavior by instrumenting all
MPI functions that exchange data. For the other benchmarks that also use implicit
communication, we use our numalize tool presented in Chapter 5.
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Figure 6.3: Communication detection accuracy of CDSM compared to eztrace (NAS-MPI
and HPCC) and numalize (all others). The figure shows the Mean Squared Error (MSE)
between the normalized communication matrices. Lower values are better.

We performed the accuracy experiments with 64 tasks on the Xeon machine. We
begin with an evaluation of the global application behavior, comparing the communication
patterns that were detected during the whole execution. We also analyze the detection
speed of CDSM, showing how long it takes to reach a certain communication pattern. For
the NAS benchmarks, we used the A input size to limit the time during which CDSM can
detect the behavior. The HPCC and PARSEC suites were executed with their default
configuration.

6.5.1.2 Global Behavior

Figure 6.3 shows the MSE of the communication detected by CDSM and by the
eztrace/numalize tools. Lower values indicate a higher accuracy. The theoretical maximum
MSE for this configuration is 9844. All NAS-MPI benchmarks except DT-MPI and HPCC
have an MSE of almost zero, indicating a very high accuracy. Since these benchmarks
use relatively small memory areas to communicate, it is easy for CDSM to detect this
communication. For the DT-MPI benchmark, the MSE is higher since its communication
behavior changes between executions.

For the benchmarks that use implicit communication, the MSE is generally higher,
though it remains below 200 for most benchmarks. The applications with the highest
MSEs (CG-OMP, DC-OMP and Ferret) have very unstructured patterns, which increases
their susceptibility that small changes in the detected communication increase the MSE.
For all applications, the MSE is below 400, which is a comparable error with a granularity
between 1 KByte and 16 KByte, as discussed in Section 3.1.5.2. These results indicate
that CDSM’s accuracy with the presented configuration is sufficient for an optimized task
mapping.
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Figure 6.4: Dynamic detection behavior of the SP-OMP benchmark. 30 out of 200 time
steps are shown.

6.5.1.3 Dynamic Behavior

To measure the time it takes CDSM to detect a communication pattern, we execute
the SP-OMP benchmark with the A input size and track the change of the communication
matrix over time. At each 0.1 s of the execution (corresponding to about 1 time step out
of 200), CDSM writes the detected communication pattern to a file. We then calculate
the MSE for each of the patterns compared to the matrix generated with numalize.

Figure 6.4 shows the results of this experiment for the first 30 time steps, including
the matrices for the first, fourth and tenth step. After the first step, there is no visible
pattern, with homogeneous communication. On the fourth step, the pattern begins to
develop and the correct behavior with a nearest-neighbor communication pattern is already
visible. After the tenth step, the behavior is already very clear, and it changes only slightly
during the rest of the execution. This means that, with only 0.5 sec of communication
detection, CDSM was able to detect the communication behavior correctly, after about
2.5% of the application was executed.

6.5.2 Performance Results

To evaluate the performance improvements of CDSM, we measure performance
improvements as well as reduction of the number of L3 cache misses with the Intel
PCM tool (INTEL, 2012a), normalized to the OS results. We experimented with CDSM,
comparing it to three other task mapping mechanisms, the default mapping of the operating
system, a compact mapping and an oracle mapping. These mechanisms are described
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Figure 6.5: Performance results of CDSM on the Xeon machine, normalized to the OS.

in detail in Section 3.3, and we give only a brief overview here. The Operating System
(OS) mapping uses the default scheduler (CFS) of the Linux kernel version 3.8. It
represents the baseline for our experiments. In the Compact mapping, neighboring tasks
are mapped sequentially to nearby cores in the topology, similar to the compact mapping
that is available in some MPI and OpenMP frameworks (INTEL, 2012b; ARGONNE
NATIONAL LABORATORY, 2014b). This mapping is a simple mechanism to optimize
communication performance when most of the communication happens between directly
neighboring processes. The Oracle mapping represents a perfect communication-aware
mapping mechanism. We generate it by collecting communication traces and performing an
optimized static mapping of tasks to cores with the mechanism described in Chapter 5. This
mapping mechanism optimizes the execution in terms of the communication between the
processes and has no runtime overhead. CDSM was executed with the default configuration
presented in Section 6.3.

Figure 6.5 shows the results of the task mapping in terms of performance improve-
ments and reduction of L3 cache misses. The graphics are normalized to the result of the
Linux OS, our baseline. From the NAS-MPI benchmarks, we classified BT-MPI, LU-MPI,
MG-MPI and SP-MPI as having a large amount of communication between the processes.
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These applications show large improvements of execution time, reaching up to 10.8%
with CDSM for SP-MPI. DT-MPI shows relatively small improvements due to its very
low execution time. CG-MPI with its cluster communication pattern showed moderate
improvements. The EP-MPI and FT-MPI benchmarks, which we classified as having small
amounts of communication, only show small differences in execution time with all mapping
mechanisms. Likewise, IS-MPI shows only small improvements because the amounts of
communication between the processes are very similar. Due to their relatively simple
and static communication structure, most NAS-MPI benchmarks also benefit from the
Compact mapping.

The NAS Multi-Zone benchmarks show similar improvements of the performance,
with up to 21.0% for BT-MZ with CDSM. LU-MZ and SP-MZ show moderate perfor-
mance improvements with similar values for CDSM and the Oracle. On the other hand,
the Compact mapping reduces performance for both benchmarks, by 5.2% and 1.6%
respectively.

Several NAS-OMP benchmarks, such as BT-OMP, SP-OMP, and UA-OMP, have
large amounts of communication between the directly neighboring threads. In these
cases, the Oracle and CDSM produce similar performance improvements (up to 14.9% for
SP-OMP with CDSM). However, as BT-OMP and SP-OMP are imbalanced, the Compact
mapping reduces performance substantially, by about 14%. In the benchmarks where the
communication is not performed by direct neighbors, but by threads that are further away
(DC-OMP, LU-OMP, and MG-OMP), CDSM achieves much higher speedups than the
Compact mapping. EP-OMP and FT-OMP have a very low amount of communication
and therefore present only small improvements. IS-OMP can not benefit from an improved
mapping due its all-to-all communication behavior, and shows only small improvements as
well.

HPCC shows medium improvements, reducing execution time by 7.4% with CDSM.
Due to its complex and changing communication behavior, the compact mapping only
presents very small improvements.

From the PARSEC benchmarks, Blackscholes shows moderate improvements of
10.7% with CDSM. Considering only the parallel phase of the application, the speedup
is much higher, since it has a very long sequential phase (SOUTHERN; RENAU, 2015).
Raytrace, X264 and Canneal show only small improvements, due to their small amounts
of communication and homogeneous patterns. Fluidanimate with its highly structured
communication behavior shows moderate improvements despite the relatively low amount
of communication. Vips showed the highest improvements of all PARSEC benchmarks, of
19.9% with CDSM. The pipeline communication patterns of Ferret, Dedup and Stream-
cluster show also large improvements. Facesim, Freqmine and Swaptions show relatively
unstructured communication patterns and have moderate performance improvements.

It is important to note that in all cases, the improvements achieved by CDSM were
very close to the improvements of the Oracle mapping. Furthermore, even in applications
whose communication behavior can not be exploited for mapping, the performance is not
reduced. The geometric mean of all performance improvements was 5.9% using CDSM
and by 8.3% using the Oracle. The Compact mapping only improved the performance
slightly compared to the OS, with a geometric mean of 2.3%, since only benchmarks
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Figure 6.6: Energy consumption results of CDSM, normalized to the OS.

with a clear communication pattern between neighboring tasks (such as BT-OMP and
SP-OMP) can benefit from it. Most benchmarks show more complex patterns which limit
the improvements from the Compact policy. Moreover, it actually reduces performance
for some benchmarks.

The reason for the performance improvements can be seen in the reduction of
L3 cache misses in Figure 6.5. On average, CDSM reduced the number of L3 misses by
12.0%, compared to 15.1% for the Oracle and 3.1% for the compact mapping. Overall
improvements were slightly higher than the execution time. This is expected, as a
communication-aware mapping directly improves cache usage but has only an indirect
influence on the execution time, through fewer cache misses and improved usage of the
interconnections. Most of the benchmarks show improvements that are qualitatively similar
to their performance improvements.

6.5.3 Energy Consumption

Reducing the execution time will usually lead to a reduction of the energy consump-
tion in most cases. Communication-aware task mapping also causes a more efficient usage of
the processor resources, as discussed in Section 5.1.2.2, which can lead to additional energy
savings. We measure the energy consumption of the Xeon machine during the execution
of each application with the help of the Baseboard Management Controller (BMC), which
exposes the energy consumption of the system through Intelligent Platform Management
Interface (IPMI). We experiment with the same mapping mechanisms and configurations
as in the performance evaluation.

Figure 6.6 shows the results for the Xeon system energy consumption. For all
benchmarks, CDSM reduces the energy consumption. Similar to the performance results, we
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Figure 6.7: Varying the number of extra page faults of the SP-OMP benchmark (with
the A input size). Three communication matrices for different numbers of additional page
faults are shown above the performance results.

save more energy for benchmarks that have more communication with a more structured
pattern. Energy consumption was reduced most in the BT-MZ benchmark, with a
reduction of 15.1% with CDSM. On average, energy consumption was reduced by 3.4%
with CDSM and 4.5% with the Oracle. As before, the Compact mapping only reduced
energy consumption slightly (1.3% on average).

6.5.4 Varying the Number of Page Faults

The improvements of CDSM are sensitive to the number of extra page faults.
Increasing the number of extra page faults increases the detection accuracy, but also
increases the overhead on the running application. This section evaluates this tradeoff.

6.5.4.1 Methodology

We selected the SP-OMP benchmark from NAS-OMP with the A input size, since it
has the most illustrative behavior. We execute CDSM with various numbers of additional
page faults, comparing the results to the Oracle mapping and the OS.

6.5.4.2 Results

The performance results of this experiment are shown in Figure 6.7. Values are
normalized to the OS. On the horizontal axis, we show the improvements of the Oracle
and the improvements of CDSM with various numbers of extra page faults, given as a
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percentage of the original number of faults. The figure also shows the sharing matrices
for three different percentages of extra faults, 0%, 10%, and 20%. Even for 0% of extra
faults, CDSM improves performance slightly compared to the OS, despite the inconclusive
sharing matrix. The reason is that CDSM is able to reduce the number of unnecessary
thread migrations compared to the OS.

When increasing the number of extra faults, the gains from CDSM are rising as
well. At 10% of extra faults, the communication pattern already becomes visible, with
large amounts of communication between neighboring threads. At 20% of extra faults,
CDSM reaches its maximum improvements, which are very close to the Oracle. Increasing
the faults further does not improve the performance gains, and the overhead begins to
affect the application. However, even with 10,000% of extra faults (corresponding to extra
100 faults per page), performance is still higher than the OS. This experiment shows that
even with very little information about the application behavior (less than 1 extra fault
per page), task mapping can be performed effectively.

6.5.5 Comparing CDSM to Related Work

We compared CDSM to two of the state-of-the-art mechanisms that were described
in Section 6.2. For the MPI-based applications (NAS-MPI and HPCC), we used the
MPIPP toolkit (CHEN et al., 2006). MPIPP uses MPI communication traces to perform
a static mapping of MPI ranks to cores, and is therefore similar to our Oracle mapping for
the MPI-based benchmarks.

For the multithreaded applications (NAS-OMP and PARSEC), we compared CDSM
to Autopin (KLUG et al., 2008). Autopin periodically migrates the threads of the parallel
application using a set of previously generated mappings. For each application, we
executed Autopin with 5 different mappings, consisting of the mapping used by our Oracle
mechanism, the compact mapping and 3 random mappings. After an initialization phase
of 500 ms, each of the 5 mappings is executed for 200 ms. The mapping with the highest
IPC over all threads is then maintained for the next 10 seconds, after which we evaluate
the 5 mappings again. As we are not aware of a previous solution that handles hybrid
applications, we do not use the NAS-MZ applications in the comparison.

Figure 6.8 shows the performance improvements of the benchmarks. As expected,
MPIPP shows almost the same improvements as CDSM for the NAS-MPI benchmarks.
However, it is not able to fully take advantage of the dynamic communication behavior
of HPCC and achieves results that are not optimal. For the NAS-OMP benchmarks,
Autopin produces reasonably good results, due to their static communication behavior.
For PARSEC, Autopin results are much worse and actually increases execution time for
several benchmarks. Overall, the two related mechanisms achieved improvements of 4.9%
on average, compared to 11.1% for CDSM.
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6.5.6 Case Study: BRAMS

To show the operation of CDSM on a real-world scientific application, we selected
the BRAMS weather prediction model (FREITAS et al., 2009) introduced in Section 2.1,
and executed it on the Xeon machine that was used in the previous experiments in this
chapter. BRAMS is based on MPI, and we execute it with 64 processes and the light1gr
input set. All evaluation parameters, including the configuration of CDSM, are the same
as in the previous experiments.

6.5.6.1 Communication Behavior

The communication pattern of BRAMS consists of three phases, which are depicted
in Figure 6.9. In the beginning of each time step, neighboring processes communicate for
about 25% of the duration of the time step (Figure 6.9a). Until the end of each time step,
more distant processes communicate (Figure 6.9b). At the very end of each time step, a
brief period with an all-to-all pattern (Figure 6.9c). The global communication pattern,
shown in Figure 6.9d, is very similar to the pattern of the LU-MPI benchmark presented
in Section 3.4.1.3. Due to this dynamic behavior, we modify the application for the Oracle
mapping, to perform a task migration whenever the pattern changes.

6.5.6.2 Performance Results

The performance results for the BRAMS application are shown in Figure 6.10,
comparing the OS, Compact, and Oracle mappings to CDSM. On average, performance
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Figure 6.8: Application execution time when performing mapping with CDSM and related
work. The values are normalized to the results of the OS. We use MPIPP (CHEN et al.,
2006) (for NAS-MPI and HPCC) and Autopin (KLUG et al., 2008) (for NAS-OMP and
PARSEC) as related work.
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was improved by 10.9% with the Oracle and 8.6% with CDSM. Due to the dynamic
behavior, the compact mapping only improves performance by 4.0%. The results show
that CDSM not only can improve smaller benchmarks and application kernels, but also
large real-world applications with longer execution times.

6.5.7 Overhead of CDSM

Because it operates during the runtime of an application, CDSM imposes an overhead
on the execution. The overhead can be classified into three groups, the communication
detection (including the extra page faults), the calculation of the mapping and the migration
of the threads and processes. The communication detection consists of accesses to the hash
table and accesses to the page tables of the application to enable multiple page faults per
page. These extra page faults present an overhead for a small part of the memory accesses
by the application. However, extra page faults were generated for less than 0.0001% of
memory accesses of each application, corresponding to less than 25% extra faults for each
application during execution.

The communication detection overhead was measured by statically mapping each
application, and executing it only with the communication detection part of CDSM,
without the mapping algorithm and the migration. The mapping overhead consists of
the repeated execution of the mapping algorithm during the execution of the application.
It was evaluated by measuring the time spent in the mapping function. The migration
overhead consists of a small increase in cache misses for the process after the migration, as
well as performing the task migration itself in the kernel via the sched_setaffinity()
function.

The communication detection and mapping overheads are shown in Figure 6.11.
The values are the percentage of execution time of each application. For all benchmarks,
the communication detection and mapping overhead is less than 0.5%. The average
overhead of the communication detection is 0.34% and 0.23% for the mapping, for a total
average overhead of 0.57%.

For a more in-depth analysis of the overhead, we counted all events of CDSM that
happened during execution of the FT-MPI benchmark, and measured the number of cycles
spent for each event with the help of the Time Stamp Counter (TSC) of the processor.
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Figure 6.9: Communication behavior of the BRAMS application detected by CDSM.
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Figure 6.10: Performance results of BRAMS on Xeon.

FT-MPI was chosen since it had the highest overhead overall due to its large memory
usage in a very short execution time. Table 6.3 shows the statistics for the normal page
faults, extra page faults, data structure updates, calls to the mapping algorithm, and
number of task migrations. We show the numbers of each event type, the time spent for
each type, and the percentage of the total execution time of FT-MPI. We can see that the
main overhead is generated by the extra page faults, update of data structures, and the
execution of the mapping algorithm. The task migrations do not contribute significantly
to the overall overhead.
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Table 6.3: Overhead of the FT-MPI benchmark.

Value
Normal
page
faults

Extra
page
faults

Update
data
struct.

Calculate
task
mapping

Task
migration

Number of events 247,817 51,236 299,053 573 34
Absolute time 173 ms 18.3 ms 12.3 ms 15.1 ms 3.2 ms
Overhead (% of total time) — 0.31% 0.21% 0.26% 0.05%

6.6 Summary

In shared memory architectures, mapping the tasks of parallel applications according
to their communication behavior can reduce execution time and energy consumption. As
communication is performed through memory accesses, it is necessary to efficiently analyze
them. We introduced CDSM, a mechanism that performs communication-aware task
mapping during the execution of the parallel application. It needs no modifications to the
application or any previous knowledge about its behavior and works with a wide variety
of parallelization paradigms that use shared memory to communicate.

Communication is detected by analyzing the page faults of parallel applications.
CDSM enables extra page faults for the application to increase the accuracy of the detection.
These page faults can be resolved quickly without involving the normal OS routines. The
detected communication behavior is used by the mapping mechanism to calculate an
optimized task mapping and migrate the tasks.

CDSM was evaluated with the MPI, hybrid MPI+OpenMP and OpenMP implemen-
tations of the NAS Parallel Benchmarks (NPB), the HPC Challenge (HPCC) benchmark,
and the PARSEC benchmark suite. We verified that all communication patterns were
detected correctly by comparing them to message and memory tracing methods. CDSM
reduced execution time by up to 21.0% (5.9% on average) compared to the OS scheduler.
System energy consumption was reduced by up to 15.1% (3.4% on average). Improve-
ments were close to an Oracle mapping and significantly better than previously published
mechanisms. Our results also showed that a simple compact mapping of processes and
threads to cores can not achieve optimal performance for many applications. The overhead
imposed by CDSM on the applications was less than 0.8%. Based on the ideas of CDSM
that were presented here, the next chapter will introduce a combined thread and data
mapping mechanism.
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7 KMAF: INTEGRATED TASK AND DATA MAPPING
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for task and data mapping

Chapter 8: Concluding remarks

Chapter 7:
kMAF — A kernel framework
for task and data mapping

The second automatic
mapping mechanism discussed
in this thesis, the kernel Mem-
ory Affinity Framework (kMAF),
performs integrated task and
data mapping on the kernel level.
It reuses several of the ideas and
concepts developed for CDSM

and extends them for data mapping. kMAF will be presented and evaluated in this
chapter. For the reasons discussed in Section 4.1.4, we will focus only on multithreaded
applications in this chapter.

7.1 Introduction

On parallel architectures with a Non-Uniform Memory Access (NUMA) behavior, it
is necessary to allocate each memory page on a specific NUMA node. Traditional allocation
mechanism such as first-touch or interleave do not take the access pattern to the pages
into account when deciding where to map pages. Our discussion in Section 4.4 showed
that most parallel applications have a very high page access exclusivity, which suggests
that memory access locality can be improved for most of them. However, the balance of
memory access needs to be considered as well in order not to overload some NUMA nodes.

In Chapter 6, we showed that by analyzing the page faults of parallel applications,
CDSM can accurately detect the communication pattern between the tasks and perform
an optimized mapping of tasks to execution units. However, extending this mechanism to
perform data mapping is not straightforward. Multiple challenges need to be resolved.

Increasing the number of extra page faults. To perform task mapping, it is only
required to know how the tasks communicate. Therefore, it is possible to have an
accurate communication pattern with a low number of extra page faults. On average,
less than 1 extra page fault per page was introduced. For data mapping however,
the information needs to be much more precise, because it is necessary to analyze
the page usage of each page. Therefore, much more page faults must be generated
(multiple faults per page) to perform the data mapping. This increases the overhead
on the running application, both to generate the faults and evaluate the information
gained from them.

Storing the information. Similarly, we need to store the information for data mapping
for each page, and thus require an efficient way to store a large amount of data. For
task mapping, it was sufficient to manage a communication matrix and a relatively
small hash table to detect the communication. Furthermore, the information in the
hash table had a small lifetime and can be overwritten in case of a conflict. The
page usage has a much higher lifetime, because losing information would cause more
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page migrations. For these reasons, the storage overhead for data mapping will be
much higher.

Cost of page migration. Migrating pages involves copying data between nodes and has
a higher overhead than migrating tasks. Therefore, care must taken not to overload
the memory controllers with memory access operations and therefore hurting the
performance of the system. This also includes preventing unnecessary ping-ponging
of pages between nodes.

After a brief review of related work regarding data mapping, we will introduce
kMAF, followed by an evaluation using parallel benchmarks.

7.2 Related Work on Data Mapping

In addition to the related work regarding thread and process mapping that was
presented in Section 6.2, we present here the state-of-the-art in data mapping. We
divide previous research on data mapping into several broad groups according to where
information about the memory accesses behavior is collected: OS-based mechanisms,
compiler or runtime library-based mechanisms, mechanisms that operate on the hardware
level, and manual mapping.

7.2.1 OS-Based Mapping

Traditional data mapping strategies that have been employed by operating systems
on NUMA architectures are first-touch, interleave and next-touch. In the first-touch
policy (MARCHETTI et al., 1995), a page is allocated on the first NUMA node that
performs an access to the page, and the page is never migrated. This is the default policy
for most current operating systems, including Linux. In some circumstances, first-touch
can lead to overloading of NUMA nodes, for example when a single thread initializes a
large amount of data. In these cases, it can be beneficial to distribute memory pages
more equally to balance the load on the memory controllers. The most common way to
distribute pages is to use an interleave policy, which is available on Linux through the
numactl tool (KLEEN, 2004). These simple policies do not take the actual memory
access behavior of the parallel applications into account, which limits their applicability in
modern hardware architectures. In next-touch policies, a page is marked in such a way
that it will be migrated to the node that performs the next access to it. Löf et al. (LÖF;
HOLMGREN, 2005) propose such a mechanism for the Solaris operating system. Several
other proposals discuss similar techniques for the Linux kernel (GOGLIN; FURMENTO,
2009; LANKES; BIERBAUM; BEMMERL, 2010). In case a page is accessed by several
nodes, such next-touch mechanisms can lead to excessive migrations.

Policies that improve on these basic mapping strategies on the OS level focus mostly
on refining the data mapping during execution, as the OS has no prior information about
the application behavior. Most mechanisms perform an online profiling of the application
to guide mapping decisions. LaRowe et al. (1991, 1992) present an analytical model of page
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placement for early NUMA architectures without hardware cache coherence. They propose
page migration and replication policies, where the same page is stored on multiple NUMA
nodes. Implemented in the DUnX research kernel, policy decisions are performed during
page faults, with a page scanner daemon periodically triggering additional evaluations
via extra page faults. The coherence between replicated pages is maintained with the
same software mechanism that performs cache coherence. No balancing of pages or thread
mapping is performed. Furthermore, replicating pages has a much higher complexity and
overhead on modern cache-coherent NUMA (ccNUMA) machines, where cache coherence
is maintained in hardware and page coherence needs to be performed in an additional
software layer.

Verghese et al. (1996b, 1996a) propose similar dynamic page migration and replica-
tion mechanisms for SGI’s IRIX operating system, but use cache misses as a metric to
guide mapping decisions. They require information about all cache misses and migrate
pages to a node with lots of cache misses from a single task or replicate a pages if it
receives a lot of cache misses from multiple tasks. The authors also evaluate the number of
TLB misses as a metric to guide the mapping, but conclude that it is not accurate enough
for data mapping. For modern architectures, this detailed information about cache misses
can not be gathered with an acceptable overhead. Cache misses themselves are a more
indirect measure of the memory access behavior, especially regarding the node where a
page should be mapped to. On modern systems with large caches, cache misses might
indicate that the page is not used frequently from a node, which can imply that a page
should not be migrated to a node with lots of cache misses to that page. Furthermore, this
proposal has similar drawbacks as LaRowe’s, such as the lack of balance data mapping
and thread mapping policy, as well as the overhead of maintaining coherence of replicated
pages on modern systems.

More recent proposals in operating systems also use page faults for data mapping.
Modern versions of the Linux kernel (since version 3.8) include the NUMA Balancing
technique (CORBET, 2012b) for the x86_64 architecture. NUMA Balancing support was
extended to the PowerPC architecture in kernel version 3.14. A previous proposal with
similar goals was AutoNUMA (CORBET, 2012a). NUMA Balancing uses the page faults
of parallel applications to detect memory accesses and performs a sampled next-touch
strategy. Whenever a page fault happens and the page is not located on the NUMA node
that caused the fault, the page is migrated to that node. However, this mechanism keeps
no history of accesses, which can lead to a high number of migrations, and it performs no
thread mapping to improve the gains of the data mapping.

Current research uses a history of memory accesses to limit unnecessary migrations
and perform thread mapping. The Carrefour mechanism (DASHTI et al., 2013) has similar
goals as NUMA Balancing, but uses Instruction-Based Sampling (IBS) (DRONGOWSKI,
2007), available in recent AMD architectures, to detect the memory access behavior and
keeps a history of memory accesses to limit unnecessary migrations. Additionally, it allows
replication of pages that are mostly read. However, the authors need to use the sampled
accesses to predict if a page will be written to, as these writes have a large overhead due
to the coherence, and the OS keeps only very coarse-grained information about the write
permissions to pages (BASU et al., 2013). To limit the runtime overhead, Carrefour limits
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its characterization and data mapping to 30,000 pages (corresponding to about 120 MByte
of main memory with 4 KByte pages), which limits its applicability to small applications.
The authors suggest that Carrefour could be ported to Intel-based architectures via the
Precise Event Based Sampling (PEBS) framework (LEVINTHAL, 2009).

Blagodurov et al. (BLAGODUROV et al., 2010) discuss contention on NUMA
architectures and identify thread migrations between NUMA nodes as detrimental to
performance. Awasthi et al. (AWASTHI et al., 2010) propose balancing the memory
controller load by dynamically migrating pages from overloaded controllers to less loaded
ones. They estimate load from row buffer hit rates gathered through simulation. These
techniques depend on particular hardware features and are therefore difficult to apply on
new systems. In Section 7.5, we compare Carrefour and NUMA Balancing to our proposal,
since they are the two most recently-proposed mechanisms and can be applied to current
hardware architectures.

7.2.2 Compiler-Based and Runtime-Based Mapping

Other mechanisms perform mapping in user space, most of them on the compiler
or runtime level. All these techniques have in common that they only have knowledge
about a single application. Since systems usually execute several applications at the same
time, their mapping decisions can interfere between them or with the OS, which limits
their applicability to cases where execution of only a single application can be guaranteed.
Some techniques, such as the previously mentioned ForestGOMP (BROQUEDIS et al.,
2010a), are limited to specific parallelization libraries, such as OpenMP. ForestGOMP
performs data mapping by grouping OpenMP threads according to their affinity and then
allocate the data they access on the same NUMA node where they will execute. The
authors also mention that the data mapping can be improved with the help of hardware
counters, but do not describe this idea in detail.

Majo et al. (MAJO; GROSS, 2012) identify memory accesses to remote NUMA
nodes as a challenge for optimal performance and introduce a set of OpenMP directives to
perform distribution of data. The best distribution policy has to be chosen manually and
may differ between different hardware architectures. Ogasawara et al. (OGASAWARA,
2009) propose a data mapping method for object-oriented languages that use garbage
collection. During garbage collection, their mechanism collects information about which
thread accesses an object frequently, and uses this information to migrate objects to nodes
to reduce the number of remote NUMA accesses. This technique is limited to languages and
runtime environments that use garbage collection, such as Java. Piccoli et al. (PICCOLI
et al., 2014) use compiler-inserted code to predict memory access behavior in parallelized
loops and use the prediction to migrate pages before the loop is executed. No thread
mapping or balancing operations are performed. Nikolopoulos et al. (NIKOLOPOULOS
et al., 2000b; NIKOLOPOULOS et al., 2000a) propose an OpenMP library that gathers
information about thread migrations and memory statistics of parallel applications to
migrate pages between NUMA nodes when threads are migrated.
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7.2.3 Hardware-Based Mapping

Another category of mechanisms use statistics generated from hardware counters
to guide mapping decisions. These techniques are generally limited to specific hardware
architectures. Marathe et al. (MARATHE; MUELLER, 2006) present an automatic page
placement scheme for NUMA platforms by tracking memory addresses from the performance
monitoring unit (PMU) of the Intel Itanium processor. The profiling mechanism is enabled
only during the start of each application due to the high overhead and therefore loses
opportunities to handle changes during the rest of the execution.

Tikir et al. (TIKIR; HOLLINGSWORTH, 2008) use UltraSPARC III hardware
counters to provide information for the data mapping, but do not perform thread mapping.
Their proposal is limited to architectures with software-managed Translation Lookaside
Buffers (TLBs), which is only a minority of current systems. The Locality-Aware Page
Table (LAPT) (CRUZ et al., 2014b) is an extended page table that stores the memory
access behavior for each page in the page table entry. This information is updated by the
Memory Management Unit (MMU) on every TLB access. The operating system evaluates
the behavior periodically to improve the thread and data mapping. This mechanism
requires changes to the hardware, since current MMUs do not contain support for updating
the page table in this way.

7.2.4 Manual Mapping

Most proposals for manual data mapping focus on giving tools to developers to make
their application NUMA-aware or to suggest a particular mapping based on memory access
traces. Libraries that support NUMA-aware memory allocation include libnuma (KLEEN,
2004; DREPPER, 2007) and MAi (RIBEIRO et al., 2009). With these libraries, data
structures can be allocated according to the specification of the developer, such as on
a particular NUMA node, or with an interleave policy. These techniques can achieve
large improvements, but place the burden of the mapping on the developer and might
require rewriting the code for each different architecture. An evolution of MAi, the Minas
framework (RIBEIRO et al., 2010), optionally uses a source code preprocessor to determine
data mapping policies for arrays. Antony et al. (2006) discuss data mapping improvements
from explicit affinity management on UltraSPARC and AMD architectures, based on two
NUMA benchmarks.

Dupros et al. (2010) perform an in-depth analysis of Ondes3D, and suggest allocating
memory pages on the NUMA node that performs the most accesses to it with the help of
the MAi library. We compare the performance improvements of this manual optimization
to kMAF in Section 7.5.4. Previous research also uses memory access traces to perform
data mapping. In Marathe et al. (2010) present an automatic page placement scheme for
NUMA platforms by based on a hardware-assisted memory tracer that uses the performance
monitoring unit (PMU) of Itanium-2. Similarly, Bolosky et al. (1992) single-step each
instruction executed by the CPU to generate a trace.

Other proposals run entirely on the software level, through simulation (CRUZ et
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al., 2011) or Dynamic Binary Instrumentation (DIENER et al., 2015; DIENER; CRUZ;
NAVAUX, 2015). These techniques can be useful to determine the maximum gains that can
be achieved with mapping policies, but are not applicable in general due to their substantial
overhead and the fact that the access behavior might change with different input data and
different numbers of threads, among others. We used such tracing techniques to implement
an Oracle-based mapping that was presented in Chapter 5, and will compare this Oracle
to kMAF in this chapter.

7.2.5 Summary of Related Work

An overview of the main related work in data mapping is shown in Table 7.1.
Summarizing our analysis of related work, we conclude that kMAF is the first mechanism
to have all the following important properties: (1) it handles thread and data mapping
jointly, (2) it is based on the kernel level, which makes it independent of the parallelization
API and supports multiple applications executing at the same time, (3) it requires no
changes to runtime libraries, applications or the hardware, (4) it supports policies that
focus on locality or balance, and (5) it requires no prior information about the memory
access behavior.

Table 7.1: Overview of the main related work in data mapping. Each check mark indicates
support for a desirable property.
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7.3 kMAF: The Kernel Memory Affinity Framework

The kernel Memory Affinity Framework (kMAF) uses the paging-based virtual
memory implementation of modern computer architectures to analyze the memory access
behavior of parallel applications during execution and uses the generated information to
perform an improved thread and data mapping. This section presents kMAF, discusses its
implementation and examines its overhead.

7.3.1 Overview of KMAF

kMAF consists of four parts, which are shown in Figure 7.1.
1. Detect memory access behavior. The memory access behavior of the parallel application
is detected by tracing its page faults. Extra low-latency page faults are inserted throughout
the execution to improve the detection accuracy.
2. Storage and analysis of the behavior. The memory addresses and thread IDs of the page
faults are stored in two tables on the page and sub-page granularity, for data and thread
mapping, respectively. For thread mapping, kMAF also maintains a sharing matrix.
3. Perform thread mapping. The sharing matrix is evaluated periodically with a mapping
algorithm to determine if threads should be migrated between cores.
4. Perform data mapping. The access behavior to a page is analyzed during each page
fault to determine if a page should be migrated between NUMA nodes.

7.3.2 Detecting Memory Access Behavior

As for CDSM, detecting the memory access behavior of parallel applications ef-
ficiently is a critical step of kMAF, since it determines the accuracy and overhead of
the information and has a direct impact on the performance improvements that can be
achieved. As memory accesses are usually performed directly by the hardware, without a
notification to the OS, gathering information about them in a portable way is challenging.
In most architectures, the OS is notified about a memory access only when a page fault
happens. We make use of this fact in kMAF by observing the page faults of the parallel
application. We use a similar mechanism as presented in Chapter 6 to determine the
memory access behavior.

7.3.2.1 Observing Memory Accesses via Page Faults

Whenever information about a virtual-to-physical address mapping is missing from
the page table for a particular application, or when that information is invalid, the CPU
signals a page fault to the operating system, including information about the faulting
virtual address. The thread ID that caused the fault is determined by the OS. By tracking
this information, kMAF can detect the memory access behavior.

Since the faulting address is the full address, not just the address of the page,
different granularities can be applied for the detection, such as the cache line size or the
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Figure 7.1: Overview of the kMAF mechanism. Data structures are shown for a NUMA
machine with 4 nodes (N0–N3) and an application consisting of four threads (T0–T3).
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specific page size of the architecture. For this reason, the detection is also not restricted to
the page size that the hardware uses. This fact is important for the thread mapping due
to its focus on improving the usage of caches. To support multiple running applications
or processes that do not share a page table1, kMAF converts the virtual address to the
physical address for the detection, which is unique in the system.

7.3.2.2 Increasing Detection Accuracy with Extra Page Faults

An important aspect of the detection is that in normal circumstances, only one page
fault happens for each page. After the page fault has been resolved by the OS by inserting
a translation into the page table, subsequent accesses to the page will not generate further
page faults2. To overcome this restriction and to increase the accuracy of the detection,
kMAF inserts extra page faults during the execution of a parallel application, such that
multiple faults can happen for the same page. Page faults are inserted in all memory areas
that store data, but not for code segments.

To insert the additional faults, kMAF periodically iterates over the page table of the
parallel application and modifies entries in such a way that the next memory access to the
page will generate another page fault. The extra faults can be inserted in different ways.
In most architectures, each page table entry contains a present bit which indicates if an
entry is valid. To insert an extra page fault, kMAF clears this bit. As the extra page faults
do not indicate missing information in the page table, no expensive operation (such as an
allocation of a new page) has to be performed. The extra fault can be resolved by kMAF
itself, by setting the present bit, without the use of other kernel routines. This reduces
the overhead of these extra faults. To accurately characterize applications with different
memory usages, kMAF scales the number of extra faults with the memory consumption of
the application, as a percentage of the total of number pages that the application uses.

7.3.3 Storage and Analysis of the Detected Behavior

On each page fault, two pieces of information are gathered from the detection, the
complete physical address that caused the fault and the thread ID. kMAF updates the
memory access pattern with this data in two ways, on a per-page granularity for data
mapping and on a finer granularity for thread mapping.

7.3.3.1 Information for Data Mapping

Since data mapping operates on the page level, information is stored about the
memory access pattern of each page from the NUMA nodes. For each page that is allocated
(that is, which is accessed at least once), kMAF maintains a NUMA vector (NV), where

1Multithreaded applications running on Linux share a page table.
2Multiple page faults can happen for a single page in case multiple threads access the page for the first

time in parallel.
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each element NVp[n] stores the number of page faults to page p from node n. On each
page fault, the physical address is shifted to the page size with Equation 7.1.

index = physical address� log2(page size) (7.1)

The resulting index is used to access a NUMA Table (NUMAT) which stores the
NUMA vectors for the pages. The NVp of the page is then incremented for the NUMA
node on which the thread that caused the page fault is executing.

7.3.3.2 Information for Thread Mapping

For thread mapping, a different type of information is necessary. Thread mapping
has the goal of optimizing the usage of the caches in the system by mapping threads
that share data on cores that share caches, in addition to increasing the memory access
locality for pages that are shared between threads (DIENER et al., 2014). For this
reason, the page granularity, which is many times larger than the cache line size, is not
sufficient to accurately detect the sharing behavior. Furthermore, since the thread mapping
algorithm requires only an estimation of the amount of sharing between all pairs of threads
(represented as a sharing matrix), storing information about every page is not necessary.

With these considerations, we implemented a simplified sharing detection for kMAF,
similar to the one used by CDSM. We split the memory into memory blocks of a configurable
size, with a default size of 256 bytes. The sharing detection is based on a hash table, which
we call sharing table, that stores the IDs of the threads that recently accessed different
memory blocks. The index of the hash table element is calculated with Equation 7.2. We
use the default hash function provided by the Linux kernel.

index = hash(physical address� log2(block size)) (7.2)

For each block, kMAF stores a block vector (BV), which contains a short list of
the threads that previously accessed the block. In the default configuration shown in
Figure 7.1, the list has two elements, MRU and LRU. Whenever a thread accesses the
block, its ID is inserted at the MRU position, shifting a previous ID to the LRU position.
The element at the LRU position leaves the vector. kMAF increments the sharing matrix
at the column of the thread ID and the rows of the previous threads that accessed the
block.

7.3.3.3 Example of the Update of Data Structures

Figure 7.2 contains an example of the update of the data structures during a page
fault. Consider an architecture with 4 NUMA nodes, in which thread 3, executing on
node 1, causes a page fault in a block that has been previously accessed by threads 0 and 2,
with thread 0 performing the most recent access. kMAF then increments the NUMA
vector of the page that was accessed in position 1, representing node 1 (Figure 7.2a). The
block vector of the block that was accessed contains two threads. Therefore, the oldest
thread at the LRU position is removed from the BV (T2), T0 is shifted from the MRU to
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Inc. NUMA vector
NUMAT

NUMA vector
N0 N1 N2 N3

+1

(a) Data mapping.

Update block vector
SharingT

Block vector
MRU LRU
T3 T0

T3 T2

Inc. sharing matrix

+1

+1T0
T1
T2
T3

T3T2T1T0

(b) Thread mapping.

Figure 7.2: Example of the update of kMAF’s data structures. Consider that thread 3
(executing on NUMA node 1) causes a page fault in a block that has been accessed by
threads 0 and 2 before.

the LRU position, and T3 is inserted at the MRU position. Then, the sharing matrix is
incremented for thread 3 with all the threads that were stored in the BV (Figure 7.2b).

7.3.4 Thread Mapping

To calculate the thread mapping, we use the same mechanism based on the Ea-
gerMap algorithm that was described in Section 6.3.3, with the same communication
matrix and hardware description as input, as well as the same thread mapping interval of
200 ms.

7.3.5 Data Mapping

In contrast to the thread mapping, where the global communication was evaluated
periodically, the memory access behavior to pages is evaluated locally (for each page)
during every page fault. This is done for two reasons. As a parallel application can use
millions of pages, performing the data mapping for all pages at the same time is not
practical as it would lead to a substantial overhead for the calculation of the mapping
and the page migrations. Furthermore, by analyzing the access behavior and performing
eventual migrations during the page faults, there is no need for an additional context
switch from the application to the kernel.

On the first memory access to a page, kMAF maintains the traditional first-touch
semantics and allocates the page on the NUMA node that performs the first access to it.
On subsequent accesses, the data mapping is performed in three steps during the page
fault. First, the sampled exclusivity for the page is calculated from the NUMA vector,
which describes if a page is (mostly) accessed from a single NUMA node, as discussed in
Section 4.2. The exclusivity is used to apply a locality-based or balance-based mapping
policy to the page. The page is then migrated to the node returned by the mapping policy.
These steps are described in the next subsections.
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7.3.5.1 Sampled Exclusivity and Policy Selection

To determine which page migration policy should be a applied to a certain page
p, we calculate the sampled exclusivity Exclsample of the page, as shown in Equation 7.3,
where NVp is the NUMA vector of page p, N is the total number of NUMA nodes in the
system, and the max function returns the maximum value of its argument. Pages with a
high exclusivity are accessed mostly from a single NUMA node and are therefore more
suitable for locality-based mapping.

Exclsample[p] = max(NVp)∑N
i=1 NVp[i]

(7.3)

The mapping policy is then selected with Equation 7.4, based on the sampled
exclusivity.

MapPolicy[p] =


Locality, if Exclsample[p] > minLoc

Balance, if Exclsample[p] < maxBal

none, otherwise
(7.4)

For pages with a high exclusivity (> minLoc), which can benefit from increasing
the locality of memory accesses, a Locality policy is applied. If the exclusivity is low
(< maxBal), kMAF applies a Balance policy, since this page can not benefit from a
better locality. Otherwise, no mapping is performed and kMAF returns execution to
the application. This process resembles our Oracle-based mapping mechanism that was
discussed in Chapter 5.

7.3.5.2 Locality Policy

If the Locality policy is selected, kMAF applies a mapping filter to reduce the
number of page migrations in case the memory access behavior to the page changes quickly.
This filter is expressed in Equation 7.5, where NVp is the NUMA vector of page p, and the
max / max2 functions return the largest and second largest value of the vector, respectively.

MigLocal[p] =

yes, if max(NVp) ≥ 2×max2(NVp + 1)
no, otherwise

(7.5)

The idea of the equation is to prevent early migration of pages, during application
initialization when the access pattern is not established yet and might change very quickly.
After the pattern stabilizes, the equation enables quick migration of pages.

The actual NUMA node where a page should be migrated to is calculated with
Equation 7.6, where the arg max function returns the element with the highest value.

node[p] = arg max(NVp) (7.6)
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7.3.5.3 Balance Policy

kMAF limits the amount of migrations between the Balance and Locality policies
by only applying the Balance policy after the access pattern has stabilized, as expressed
by Equation 7.7, where N is the number of NUMA nodes.

MigBalance[p] =

yes, if ∑NV p > N

no, otherwise
(7.7)

If this condition is fulfilled, kMAF balances the page by using an Interleave policy,
which has shown good balancing results (see Section 5.3). The NUMA node for a page is
calculated with the help of the address of a page, as shown in Equation 7.8, where addr(p)
is the virtual address of page p.

node[p] = (addr(p)� log2(page size)) mod N (7.8)

Such an Interleave policy has two main advantages compared to more complex
techniques: (1) Since the NUMA node is calculated directly from the page address, there
is no need to store or iterate over the global state of the application (such as the NUMA
nodes or NUMA vector of all pages) to determine the node to migrate to, reducing the
overhead to calculate the mapping. (2) For the same reason, a page with a low exclusivity
is migrated only once as long as its exclusivity remains low, reducing the number of
unnecessary page migrations.

7.3.5.4 Example of Policy Behavior

To illustrate the interaction between the various data mapping policies of kMAF,
consider an example with a system consisting of N=3 NUMA nodes, minLoc = 70%,
maxBal = 60% and a single page p with the address 2. Table 7.2 shows the memory access
behavior of a parallel application for this scenario. The application executes with 1 thread
per node. In the beginning, consider that p has not been accessed before. In total, the
page is accessed 14 times, labeled a–n in the table. The behavior of the application can
be separated into several access patterns.

The page is accessed first from node N0, and is allocated on this node due to the
first-touch semantics, which are maintained by kMAF (step a). In the second phase of the
application (steps b–e), page p is accessed exclusively from node N2. In steps c and d, the
balance policy of kMAF is applied, but the page is not migrated, since Equation 7.7 is
not fulfilled. The page exclusivity is increasing, and in step e the locality Equation 7.5 is
fulfilled, such that page p is migrated to node N1.

After the migration, consider that the application enters a new phase, and all
memory accesses are now performed from node N0. This indicates that the exclusivity of
the page is decreasing again. In step f, the exclusivity is between the two limits minLoc

and maxBal, and no policy is applied. In step g, kMAF applies the balance policy and
migrates the page, since Equation 7.7 is fulfilled. The node chosen for the migration (N2)
is determined with the modulo operation (2 mod 3 = 2). Although N2 did not access
that page at all, migrating it to this node increases the memory access balance in this
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Table 7.2: Behavior of kMAF’s data mapping policy, for a single page p and a NUMA
machine consisting of 3 NUMA nodes. Consider that minLoc equals 70%, maxBal equals
60%, N=3, and the address of page p is 2. Steps a–n are discussed in the text.

NUMA vector kMAF

Steps N0 N1 N2 Excl. Policy Action

a) First memory access from N0 1 0 0 100% First-touch Allocate p on N0

b) memory access from N1 1 1 0 50% Balance —
c) memory access from N1 1 2 0 67% Balance —
d) memory access from N1 1 3 0 75% Locality —
e) memory access from N1 1 4 0 80% Locality Migrate p to N1

f ) memory access from N0 2 4 0 67% — —
g) memory access from N0 3 4 0 57% Balance Migrate p to N2
h) memory access from N0 4 4 0 50% Balance —
i) memory access from N0 5 4 0 56% Balance —
j) memory access from N0 6 4 0 60% Balance —
k) memory access from N0 7 4 0 64% — —
l) memory access from N0 8 4 0 67% — —
m) memory access from N0 9 4 0 69% — —
n) memory access from N0 10 4 0 71% Locality Migrate p to N0

example. In steps h–j, the balance policy is also applied, but the page is not migrated
since it is already located on node N2.

Between steps k and n, the exclusivity keeps on increasing, until minLoc is passed in
step n. In that step, p is migrated back to node N0. This example illustrates how kMAF
reduces a page ping-pong between nodes. With more page accesses, multiple migrations of
the same page are becoming more difficult, limiting the number of migrations of pages
with very frequent changes in the access behavior.

7.3.5.5 Performing the Page Migration

To perform the page migration, kMAF needs the virtual address of the page, as
well as the NUMA node where it should be migrated to. Before migrating, kMAF checks if
the page is not already located on the node to be migrated to, and aborts the migration in
that case. Otherwise, kMAF uses the unmap_and_move() function of the Linux kernel
to perform the actual page migration to the requested NUMA node. The virtual address
is not stored by kMAF, since it is available during the page fault and page migrations are
only performed while the fault is handled.

7.3.6 Supporting Multiple Running Applications

One important advantage of kernel-based mapping solutions such as kMAF is their
support for multiple applications that execute concurrently, in contrast to many user-space
techniques. Since kMAF bases its detection of the memory access behavior on the physical
addresses of the memory accesses, different applications executing at the same time do
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not interfere with each other, maintaining the same detection accuracy as if only one
application was running. For the thread mapping, kMAF maintains a single sharing matrix
for the applications running, and applies the thread mapping algorithm with this matrix.
The data mapping is performed without changes for multiple applications. In this way,
multiple parallel applications are handled as one larger application and neither kMAF nor
its configuration needs to be changed to support this case.

7.3.7 Implementation of KMAF

We implemented kMAF in the Linux kernel. The default page fault handler of the
kernel was modified to enable the page fault tracking mechanism and to implement the data
mapping. kMAF creates a kernel thread that enables extra page faults during execution.
Another kernel thread implements the thread mapping mechanism. Table 7.3 contains an
overview of the default configuration parameters of kMAF used in our experiments.

7.3.8 Overhead of KMAF

Since kMAF operates during the execution of parallel applications, it imposes a
storage and execution time overhead.

7.3.8.1 Storage Overhead

kMAF needs to allocate memory for the NUMA table, sharing table and sharing
matrix. The size of the NUMA table is calculated with Equation 7.9, where N is the
number of NUMA nodes in the system and P is the number of pages that the application
accesses. We store the NUMA vector with an element size of 1 byte, which can count up
to 256 page faults per node and per page. Considering a system that consists of 4 NUMA
nodes and a page size of 4 KByte, the storage overhead per page is 4/4, 096 ≈ 0.1%.

size(NUMAT ) = N × P × 1 byte (7.9)

For the hash table that stores the sharing behavior, we store two thread IDs per
block. Each ID has a size of 2 bytes to support up to 65,536 threads. In case of a hash
conflict, the old block is overwritten. Equation 7.10 shows the overhead for the hash

Table 7.3: Default configuration of kMAF used in the experiments.

kMAF part Configuration
Thread mapping Hash table: 1 million blocks, each 256 byte large

Mapping interval: 200 ms
Data mapping minLoc: 80%; maxBal: 1/N × 1.5× 100%

NUMA vector: 1 Byte per page/node
Extra page faults max. 10% of total pages/second
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table, where nBlocks is the number of blocks that can be stored in it. In the default
configuration with 1 million blocks, it has a size of 4 MByte.

size(SharingT ) = 2× 2 byte× nBlocks (7.10)

The sharing matrix used to calculate the thread mapping has a cell size of 4 byte.
The total size of the matrix can then be calculated with Equation 7.11, where T is the
number of threads of the parallel application. For an application with 1,024 threads, the
matrix has a size of 4 MByte.

size(SharingMatrix) = T 2 × 4 byte (7.11)

7.3.8.2 Execution Time Overhead

The runtime overhead consists of the time required to introduce extra page faults,
resolve these faults, calculate the thread and data mappings, and the migrations. The
complexity to introduce extra page faults increases linearly with the memory usage of the
application. Resolving an extra page fault from kMAF has a constant time complexity.
Our thread mapping algorithm has a complexity of O(T 3), where T is the number of
threads of the parallel application. For data mapping, the time complexity is O(N),
where N is the number of NUMA nodes. In Section 7.5, we will evaluate the runtime
overhead on a running application.

7.4 Methodology of the Experiments

We experimented with the NAS-OMP and PARSEC benchmarks, with the C and
native input sizes, respectively. We also discuss two scientific applications, Ondes3D and
HashSieve. Experiments were performed on our three evaluations systems, Itanium, Xeon,
and Opteron. The following mapping mechanisms were compared:

OS : The Linux OS forms the baseline for our experiments. We run an unmodified
Linux kernel, and use its default first-touch mapping policy. The NUMA Balancing
mechanism (CORBET, 2012b) is disabled in this configuration.

Compact: The compact thread mapping is a simple mechanism to improve memory
affinity by placing threads with neighboring IDs (such as threads 0 and 1) close to each
other in the memory hierarchy, such as on same cores, similar to options available in some
OpenMP environments (INTEL, 2012b).

Oracle: To calculate an oracle-based thread and data mapping, we use a memory
tracer based on the Pin Dynamic Binary Instrumentation (DBI) tool (LUK et al., 2005),
as presented in Chapter 5.

NUMA Balancing: We use the NUMA Balancing mechanism (CORBET, 2012b)
of version 3.8 of the Linux kernel, as described in Section 7.2.1. The mechanism uses a
sampling-based next-touch migration policy. Whenever a parallel application causes a
page fault, the page is migrated to the NUMA node on which the thread is executing.
NUMA Balancing is only supported on the Xeon and Opteron machines.
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Carrefour : The Carrefour mechanism (DASHTI et al., 2013) was evaluated on the
Opteron machine, since it requires hardware features that are available only on AMD
architectures. Carrefour was executed with its default configuration.

kMAF : Our proposed mechanism, kMAF, was implemented in the Linux kernel
and executed with the configuration presented in Section 7.3.7. The kernel is the kernel
used for the OS configuration, with NUMA Balancing disabled.

7.5 Results

This section presents the experimental results of kMAF. We begin with the results
of a single parallel application and multiple applications that are executing concurrently.
We then evaluate the sensitivity of kMAF to the number of extra page faults and discuss
its runtime overhead.

7.5.1 Single Applications

The results for the three machines when executing a single parallel application at a
time are shown in Figures 7.3–7.6.

7.5.1.1 Itanium

The results for the Itanium machine are shown in Figure 7.3. Most of the NAS-OMP
benchmarks benefit from an improved mapping, indicated by the substantial improvements
compared to the OS. The highest improvements were achieved for the CG-OMP benchmark,
of up to 65% with the Oracle policy. Due to the relatively low number of NUMA nodes (2)
and the simple memory access pattern of most NAS-OMP benchmarks, performing only
the Compact thread mapping already results in high speedups. For the majority of the
NAS-OMP benchmarks, the results of kMAF are between the Compact and Oracle policies.
Only two of the PARSEC benchmarks, Facesim and X264, are suitable for mapping on
this architecture, with similar performance improvements for kMAF and the Oracle. For
Ferret and X264, the Compact policy results in substantial performance losses compared
to the OS. The geometric mean of the improvements of all benchmarks is 1.7%, 14.3%,
and 9.4% for Compact, Oracle, and kMAF, respectively.

7.5.1.2 Xeon

Figure 7.4 shows the performance results for the Xeon machine. From the NAS-
OMP benchmarks, the highest improvements were achieved for the SP-OMP benchmark,
with similar improvements for the Oracle, NUMA Balancing and kMAF. Despite the good
improvements for some benchmarks (DC-OMP, IS-OMP and SP-OMP), NUMA Balancing
causes significant slowdowns for others that can not benefit from mapping (CG-OMP,
LU-OMP, MG-OMP and UA-OMP). The lack of an access history causes unnecessary
page migrations and increases the runtime overhead. The Compact thread mapping only
has minimal improvements, indicating the importance of data mapping. Several PARSEC
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Figure 7.3: Performance improvements on Itanium, normalized to the results of the OS.
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Figure 7.4: Performance improvements on Xeon, normalized to the results of the OS.

benchmarks benefit from mapping on Xeon. Dedup’s performance was improved by up to
100%. Due to their lower memory usage, many PARSEC applications can benefit from
thread mapping only, as evidenced by the results of the Compact mapping. For most
PARSEC benchmarks, kMAF has the closest results to the Oracle of all policies. The
geometric mean of the improvements of all benchmarks is 6.7%, 17.7%, 0.8%, and 13.6%
for Compact, Oracle, NUMA Balancing, and kMAF, respectively.

The QuickPath Interconnect (QPI) traffic between processors, measured with the
help of the Intel performance counter monitor (PCM), is shown in Figure 7.5. The
reduction of the QPI traffic, with an average of 19.0% for kMAF, happened due to the
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Figure 7.5: QPI traffic reduction on Xeon, normalized to the results of the OS.

optimized thread and data affinity, as the data is located more often in the local memory
banks, removing the need to transfer data between processors. QPI reduction results
correlate well with the performance improvements show in Figure 7.4.

7.5.1.3 Opteron

The results for the Opteron machine are shown in Figure 7.6. Overall, the highest
performance improvements of the three machines were achieved on Opteron, due to its
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Figure 7.6: Performance improvements on Opteron, normalized to the results of the OS.
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many NUMA nodes and high NUMA factor. Similar to Xeon, SP-OMP achieved the
highest gains of the NAS-OMP benchmarks, of nearly 300% with kMAF. As before,
kMAF had the closest results to the Oracle. Due to the high memory usage of the
applications, the Carrefour mechanism had only low improvements since it limits itself to
30,000 pages (corresponding to 120 MByte with 4 KByte pages). The Compact thread
mapping had negligible improvements except for CG-OMP. For the PARSEC benchmarks,
Carrefour shows improvements that are closer to kMAF and the Oracle, since many
PARSEC applications have a lower memory consumption (about 110 MByte in the case of
Streamcluster, for example). However, both NUMA Balancing and kMAF have higher
gains for most PARSEC benchmarks. The geometric mean of the improvements of all
benchmarks is 7.7%, 42.0%, 11.6%, 10.4%, and 29.8%, for Compact, Oracle, Carrefour,
NUMA Balancing, and kMAF, respectively.

7.5.1.4 Summary

Results show that simple ways to improve memory affinity, such as the Compact
thread mapping, do not result in significant gains compared to the OS in most cases. Fur-
thermore, mechanisms that keep no access history (NUMA Balancing) or limit the number
of pages that they characterize (Carrefour) also do not result in optimal performance.
Our kMAF mechanism provided the highest improvements overall, with substantial gains
compared to the OS, close to the Oracle mechanism, on all three machines.

7.5.2 Energy Consumption

As discussed in Section 5.1.2.2, improved mappings can also result in higher energy
efficiency. We evaluate the energy consumption improvements of the Xeon machine by using
the Baseboard Management Controller (BMC), which exposes the energy consumption of
the whole system through IPMI. The experimental methodology is the same as before.

The energy consumption, normalized to the results of the OS, is shown in Figure 7.7.
As expected, the benefits are similar to the performance improvements, with applications
that benefit more from mapping having higher energy savings. The highest improvements
(of about 50%) were achieved for the SP-OMP and Dedup benchmarks. Similar to the
performance results, the Compact thread mapping and NUMA Balancing did not achieve
consistent improvements and actually reduce energy efficiency in several cases.

7.5.3 Multiple Applications

An important feature of kMAF is that it seamlessly supports multiple parallel
applications that are executing concurrently, as discussed in Section 7.3.6, in contrast to
solutions that operate in user space. We evaluate the support for multiple applications in
this section.
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Figure 7.7: Energy consumption results on Xeon, normalized to the OS.
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Figure 7.8: Running multiple applications on the Xeon machine. All benchmarks execute
with 64 threads. In the sequential configuration, applications run one after the other, and
the total execution time is shown. In the parallel configuration, both applications start at
the same time, and the execution time until both finish is shown.

7.5.3.1 Methodology

We selected two pairs of parallel applications, SP-OMP+SP-OMP, and SP-OMP+EP-
OMP. SP-OMP is executed with the C input size, as before, but we use the D input size for
EP-OMP to achieve comparable execution times and thereby maximize contention between
the applications. All applications were executed with 64 threads each on the Xeon machine.
Four mapping mechanisms (OS, Compact, NUMA Balancing and kMAF) and 2 different
configurations (Sequential and Parallel) were compared. In the sequential configuration,
the second application starts after the first one terminates. In this configuration, there
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is less interference between applications and less contention for resources such as caches,
interconnections, memory controllers and functional units. However, the utilization of
resources may not be optimal in this case. For example, when a thread stalls while waiting
for a memory request, another thread might make use of functional units at that time. In
the parallel configuration, both applications are started at the same time, and we measure
the time until both terminate. This configuration has the opposite characteristics of the
sequential case, with higher contention for resources, but potentially more efficient usage.

7.5.3.2 Results

Figure 7.8 shows the execution time of the experiment. In the SP-OMP+SP-
OMP case (Figure 7.8a), two memory-hungry applications are running, which leads to
performance reductions for the OS in the parallel configuration. Since kMAF additionally
performs thread mapping, it is able to reduce the overall contention and gains performance
from the parallel execution as well. In the SP-OMP+EP-OMP case (Figure 7.8b), since
EP-OMP is a CPU-bound application, it only competes for the functional units, not for
memory accesses. For this reason, there is less overall contention, and even the OS can
benefit from parallel execution, in addition to kMAF. The results for NUMA Balancing
show that performing only data mapping is not sufficient for optimal results since the
thread mapping can help to reduce contention.

7.5.4 Case Study: Ondes3D

As discussed in Section 1.3.2, manual changes to the source code of applications
can be used to improve the memory access behavior in NUMA architectures. In this
section, we compare kMAF to such a manual optimization of source code using the main
numerical kernel extracted from the Ondes3D application (DUPROS et al., 2008). Ondes3D
simulates the propagation of seismic waves. Aochi et al. discuss this numerical stencil in
detail (AOCHI et al., 2013). In shared memory architectures, a common way to extract
parallelism of this stencil is to exploit the triple nested loops of the three-dimensional
problem. This allows a straightforward use of OpenMP directives.

Classic manual optimizations to such stencils rely on improvements using a first-
touch data allocation policy. By exploiting the regular memory access pattern of the
application, we can make sure that the memory accessed by each thread is allocated close
to the thread (DUPROS et al., 2010). We experiment with two versions of Ondes3D,
which differ in the way the input matrix is initialized in a parallel loop that iterates over
all its elements. In the unmodified version, each thread initializes a part of the matrix
that is determined by the OpenMP runtime environment. In the optimized version, we
force each thread to initialize the part of the matrix that he will work on for the rest of
the application. In this way, the optimized version has a better behavior considering a
first-touch policy.
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Table 7.4: Page usage statistics of Ondes3D for 4 NUMA nodes.

Ondes3D version
Metric unmodified optimized
Application exclusivity 98.73% 99.74%
First-touch memory access locality 26.63% 82.98%
First-touch memory access balance 241.29 37.16

7.5.4.1 Memory Access Behavior

The communication matrix of Ondes3D is depicted in Figure 7.9. Both versions
of Ondes3D have very similar patterns with a clear maximum for neighboring threads.
However, both versions also have a very low communication ratio (<1%), such that
we can expect only limited gains from an improved thread mapping policy. Both the
communication and load of Ondes3D are balanced.

Table 7.4 shows the page usage statistics of both Ondes3D versions. Both versions
show a very high application exclusivity of more than 98%. The optimized version increases
the exclusivity slightly by 1% due to the better initialization. The main improvements
happen for the memory access locality and balance with the first-touch policy. First-touch
locality was improved drastically due to the more correct first-touch in the initialization
loop. The unmodified version of Ondes3D allocates the majority of data on NUMA node 1
and has therefore an unbalanced memory access behavior. This imbalance is reduced
significantly with the optimized version. Despite these improvements, we can notice that
the behavior is not perfect yet, which leaves some room for additional gains from other
mapping techniques such as kMAF. We did not notice any significant dynamicity in
communication or page usage behavior.

7.5.4.2 Results

Table 7.5 shows the absolute execution times of Ondes3D with different mapping
mechanisms when executing the unmodified and the optimized code. For all mechanisms,
the optimized version of Ondes3D is faster than the unmodified one. As predicted by
our analysis of the communication behavior, the Compact thread mapping only improves
performance slightly compared to the OS. For the optimized version, the Interleave and
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Figure 7.9: Communication pattern of both versions of Ondes3D.
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Table 7.5: Execution time of the unmodified and optimized versions of Ondes3D on the
Xeon machine with 64 threads.

Ondes3D version
Mapping technique unmodified optimized
OS 184.89 s 65.55 s
Compact 175.54 s 64.39 s
Interleave 79.17 s 73.03 s
Oracle 60.49 s 59.85 s
NUMA Balancing 93.20 s 70.38 s
kMAF 61.38 s 61.35 s

NUMA Balancing mechanism increase execution time compared to the OS, since the
behavior is already well balanced. kMAF and the Oracle achieve the highest speedups,
with improvements of more than 3× for the unmodified code. Differences between these
two mechanisms are less than 2.5%. These results show that an automatic mechanism can
achieve results that are very close to an Oracle, even for very large scientific applications.
We can also see that even the optimized code can be improved by a better mapping
mechanism, by 6.4% with kMAF.

7.5.5 Case Study: HashSieve

HashSieve is an example of a scientific application with a large, irregular memory
access behavior (MARIANO; LAARHOVEN; BISCHOF, 2015), and therefore presents
a contrast to Ondes3D, whose behavior was much more regular. HashSieve’s main data
structures are large hash tables that get accessed from all threads. Due to the hashing, the
memory access behavior is extremely unstructured and changes on most memory accesses.

7.5.5.1 Memory Access Behavior

The communication matrix of HashSieve is depicted in Figure 7.10. We can see that
the behavior is very homogeneous, as expected, and we predict few improvements from a
thread mapping policy. Both the communication and load of HashSieve are balanced.
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Figure 7.10: Communication pattern of HashSieve.

The page usage statistics of HashSieve shown in Table 7.6 also confirm our intuition
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regarding the behavior. The application has a very low exclusivity of only 62.2% and
its first-touch behavior has a reasonable locality of 85.0%. However, the memory access
balance is low, with about 48% of memory accesses handled by NUMA node 1. These
results indicate that HashSieve can benefit only slightly from a locality-based data mapping
policy, but we expect higher gains from improving the memory access balance.

Table 7.6: Page usage statistics of HashSieve for 4 NUMA nodes.

Metric Value
Application exclusivity 62.23%
First-touch memory access locality 85.04%
First-touch memory access balance 120.67

7.5.5.2 Results

Table 7.7: Execution time of HashSieve on the Xeon machine with 64 threads.

Mapping technique Execution time
OS 354.97 s
Compact 331.77 s
Interleave 254.72 s
Oracle 243.19 s
NUMA Balancing 312.13 s
kMAF 267.49 s

The execution time of HashSieve with various mapping mechanisms is presented in
Table 7.7. The Compact policy only results in small improvements, similar to Ondes3D.
The Interleave and Oracle mappings result in the highest gains, reducing execution time
by about 30% compared to the OS. Both NUMA Balancing and kMAF also significantly
improve performance. Compared to the mappings with prior information, their gains are
lower due to the later migration and higher runtime overhead. Nevertheless, kMAF gets
the closest to the Oracle, within 7% of the execution time reduction.

7.5.6 Mechanism Sensitivity

kMAF’s improvements are sensitive to the number of extra page faults. Increasing
the number of extra page faults increases the detection accuracy, but also increases the
overhead on the running application. Furthermore, kMAF’s improvements also depend
on the equation used to determine if a page should be migrated with a Locality policy
(Equation 7.5). This section evaluates the impact of these two kMAF parameters.
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Figure 7.11: Performance improvements of kMAF when varying the number of additional
page faults on the Xeon machine, with the SP-OMP benchmark (C input size). All values
are normalized to the OS. The percentages on the x-axis indicate the number of additional
page faults compared to the baseline without additional faults.

7.5.6.1 Sensitivity to the Number of Extra Page Faults

We evaluate the impact of the number of extra page faults on the performance gains
of kMAF with the SP-OMP benchmark from NAS-OMP on the Xeon machine, comparing
the results to the Oracle mapping and the OS.

Figure 7.11 shows the results of kMAF when varying the number of extra faults.
Even with 200% extra faults, only small improvements can be achieved. The gains reach a
maximum at 2,000% – 4,000% extra faults, becoming close to the Oracle mechanism. The
default configuration of kMAF used in this thesis generates about 2,000% extra faults.
Increasing the number of faults beyond 4,000% reduces the application performance due
to the increasing overhead. However, even with 40,000% extra faults (that is, 400 faults
per page on average), performance is still substantially higher than the OS.

7.5.6.2 Sensitivity to the Locality Formula

kMAF determines the NUMA node with a locality policy using Equation 7.5. This
equation is reproduced below as Equation 7.12 in a slightly modified form. The purpose
of the equation is to prevent excessive page migrations between nodes for pages with a
dynamic access pattern. Here, the factor variable is used to limit these migrations, as
discussed in Section 7.3.5.2. factor has a default value of 2, which is used in our experiments.
Higher values of factor make it harder to move a page multiple times between nodes, but
might lose more opportunities for improvements since pages are migrated later. In this
section, we evaluate the influence of this factor on two applications, SP-OMP and Ferret.
We use a Compact thread mapping to eliminate thread migrations and focus only on
the data mapping. Several values of factor are evaluated: 0 (which might migrate pages
on every page fault, similar to the NUMA Balancing mechanism, which keeps no access
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(a) SP-OMP. (b) Ferret.

Figure 7.12: Performance improvements when modifying the factor of the locality formula
on the Xeon machine.

history), 1, 2 (default), 3, 4, 5, 10, 15, and 20. Apart from the changing the factor , we
maintain kMAF at its default configuration.

MigLocal[p] =

yes, if max(NVp) ≥ factor ×max2(NVp + 1)
no, otherwise

(7.12)

The performance compared to the OS for the two benchmarks on the Xeon machine
are shown in Figure 7.12. For SP, a lower factor always results in higher improvements.
This indicates that the memory access behavior of SP-OMP is very structured, and explains
the slightly higher gains of NUMA Balancing for this application. For Ferret, the results
show a different tendency. With low values for factor , performance is actually reduced
compared to the OS. When increasing the factor , performance increases until reaching a
maximum improvement between a value of 2–5. This behavior explains why the NUMA
Balancing mechanism resulted in performance reductions for this benchmark.

7.5.7 Performing Thread and Data Mapping Separately

In Section 1.2.2, we discussed why thread mapping is a requirement for data
mapping and evaluated the joint improvements from both types of mappings in a simulator
in Section 5.1. To evaluate the influence of thread and data mapping on a real machine,
we executed kMAF only with the thread mapping and data mapping part on the Xeon
system. Three configurations were evaluated: thread and data mapping managed by the
OS (baseline), kMAF thread mapping + OS data mapping, OS thread mapping + kMAF
data mapping. All other parameters are the same as for our main experiments.

Figure 7.13 shows the execution time for the three configurations, normalized to the
baseline. For most benchmarks, the improvements from the thread mapping only are higher
than for the data mapping only. On average, data mapping reduced execution time by 2.7%,
thread mapping by 5.9%. It is important to note that the improvements from performing
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Figure 7.13: Performance improvements when running kMAF with only thread or data
mapping on the Xeon machine, normalized to the OS.

thread and data mapping jointly, where kMAF achieved an average improvement of 13.6%
as shown in Section 7.5.1.2, are higher than the sum of improvements when performing
the mapping separately. This shows that integrated mechanisms are necessary for optimal
results.

7.5.8 Performance Improvements with Larger Pages

As discussed in Sections 1.1.2 and 4.4.1.1, large pages present challenges for data
mapping, since the granularity of migration decisions is increasing. However, large pages
result in a more efficient execution due to less and more efficient page faults (ARCANGELI,
2010), and less TLB misses (BASU et al., 2013). We evaluate the impact of large pages
on kMAF with the help of the Transparent Huge Page support of the Linux kernel (AR-
CANGELI, 2010), which allows applications to benefit from large pages automatically
without changing the applications themselves. We selected the SP-OMP benchmark and
execute it with the OS mapping and kMAF with two page sizes, small (4 KByte) and
large pages (2 MByte). The same kMAF configuration was used in both cases.

The results of this experiment are shown in Figure 7.14. We measured execution time,
data TLB store and load misses, as well as page faults, with the Linux perf tool (MELO,
2010). By only enabling large pages and letting the OS handle thread and data mapping,
performance is already improved substantially, by 36%. However, improvements are still
higher with kMAF, even with small pages (71%). Running kMAF with large pages only
increases performance slightly, to 89% compared to the OS with small pages and 39% with
the large pages. These results confirm our intuition that larger pages reduce the impact
of data mapping, reducing the improvements by half. Nevertheless, data mapping still
remains important.
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Figure 7.14: Performance results of SP-OMP when running with small (4 KByte) and
large pages (2 MByte).

The larger pages result in much fewer TLB misses, about 60% less, both for store
and load memory accesses. kMAF has a very similar TLB miss behavior as the OS, with
very small improvements. Page faults with 2 MByte pages are reduced by about 50% with
the OS. As before, kMAF increases the number of page faults compared to the baseline,
but maintains a similar reduction of extra faults with larger pages.

7.5.9 Overhead of KMAF

Since it operates during the execution of parallel applications, kMAF imposes a
runtime overhead. Figure 7.15 shows the number of execution cycles of a single event of
each type of operation that kMAF performs, measured using the time stamp counter (TSC)
on the Xeon machine. For each type of operation, the box plot shows the maximum,
upper quartile, median, lower quartile, and minimum value. The median values are also
shown above each category. We can confirm that the overhead of an extra page fault,
which consists of the time to create and resolve it, is significantly lower than the overhead
of the normal faults. In absolute terms, performing the page and thread migration and
calculating the thread mapping have the highest computational demand. However, these
are infrequent operations.

To evaluate the combined performance overhead during the execution of an ap-
plication, we measure the total overhead of each category when executing the SP-OMP
benchmark, which had the highest overhead in our experiments. Table 7.8 contains the
number of events for each event type, absolute time spent for each event, and the overhead
in % of the total execution time of SP-OMP. The results show that the overhead on the
application is dominated by three categories, the extra page faults, the update of data
structures and the page migrations. The total overhead corresponds to 2.4% of the total
execution time of SP-OMP.

The total overhead for the evaluated benchmarks is presented in Table 7.9. Over
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Table 7.8: Overhead of the SP-OMP benchmark, measured on the Xeon machine.

Value
Normal
page
faults

Extra
page
faults

Update
data
struct.

Page
migr.

Calculate
thread
mapping

Thread
migr.

Number of events 235,520 4,828,171 5,063,691 176,194 3,487 370
Absolute time 0.15 s 2.19 s 1.95 s 4.01 s 0.13 s 0.017 s
% of total time 0.04% 0.63% 0.56% 1.15% 0.04% 0.01%

Table 7.9: Overhead of kMAF in % of the total execution time of each benchmark.
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all applications, the geometric mean of the overhead is 1.5%, which indicates a very low
impact on the performance.

7.6 Summary

In this chapter, we introduced kMAF, which is a framework that automatically
performs thread and data mapping on the operating system level. It requires no hardware
changes and is compatible with all architectures that use virtual memory with paging.
Furthermore, it requires no previous information about the applications’ behavior, and
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no changes to the applications themselves or their runtime libraries. kMAF itself is an
extension of CDSM, which was presented in Chapter 6.

Experiments with a wide range of parallel applications with different memory access
characteristics showed that kMAF was able to improve performance substantially on
three different NUMA machines, with performance improvements of up to 300%. Energy
consumption was also reduced, by up to 34.6% (9.3% on average). Results were close to
an Oracle mechanism, and substantially better than previous work and simple mechanisms
that do not take the application behavior into account. We also show that combining thread
and data mapping can lead to higher improvements than performing them separately.
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8 CONCLUDING REMARKS
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Parallel architectures with
complex memory access charac-
teristics represent the state-of-
the-art. These hierarchies are
formed by multiple cache levels
on the processors, as well as sev-
eral main memories in NUMA
machines. To fully benefit from

these architectures, it is important to analyze the memory access characteristics of parallel
applications and use this information to optimize the locality and balance of memory
accesses. This can be done in two complementing ways: by running tasks that access
shared data close to each other in the memory hierarchy (task mapping) and to place
memory pages on the NUMA node that accesses them the most (data mapping). This
thesis advances the field of mapping in two ways. First, we presented a technique to
analyze parallel applications to determine their suitability for various types of mappings.
Second, we introduced automatic mechanisms that perform the mapping automatically on
the kernel level.

8.1 Summary of Main Results

In this thesis, we presented metrics and a methodology to analyze the memory
access behavior of parallel applications to determine their potential for task and data
mapping. We introduced CDSM, which is a kernel extension to detect communication of
parallel applications and use this information to perform an optimized, communication-
aware mapping of tasks to the processing units of the hardware architecture. We extended
CDSM for kMAF, which is a framework that automatically performs data mapping in
addition to the task mapping. Both mechanisms require no hardware changes and are
compatible with all architectures that use virtual memory with paging. Furthermore, they
require no previous information about the behavior of the parallel applications, and no
changes to the applications themselves or their runtime libraries.

Experiments with a wide range of parallel applications with different memory access
characteristics showed that the mechanisms were able to improve performance and energy
consumption substantially on a variety of NUMA architectures. On our main evaluation
system, the task mapping performed by CDSM improved performance by up to 21% (6%
on average). On the same machine, kMAF was able to improve performance by up to 90%
(14% on average). We also showed that task mapping is a prerequisite for data mapping.
Combining both mappings can lead to higher improvements than performing both of them
separately.

Results were close to an oracle mechanism, which has complete information about
all memory accesses and has no runtime overhead, and substantially better than simpler
mechanisms that do not take the actual application behavior into account. Since CDSM
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is performing only task mapping, it is simpler to implement than kMAF. Furthermore, its
runtime overhead is much smaller than kMAF’s, both on the execution time and memory
consumption, since it needs to create more extra page faults and needs to store the usage
pattern of each page. Nevertheless, kMAF only caused an execution time overhead of less
than 3% for all benchmarks, compared to less than 1% with CDSM.

8.2 Released Software

Several pieces of software were developed as part of this thesis, which were described
in detail in the previous chapters. This section contains a brief summary of this software.
All software is released as open source, licensed under the GPL-v2 license.

1. Numalize. Numalize is a trace-based mechanism to analyze the communication and
page usage of parallel applications, and can calculate optimized task and data mappings
with various mapping policies. Numalize was used for the characterizations in Chapters 3
and 4, and for the Oracle mapping mechanism described in Section 5.4 and evaluated in
Sections 6.5 and 7.5. It is available at <https://github.com/matthiasdiener/numalize>.
2. CDSM. CDSM is a module for the Linux kernel to perform automatic task mapping

and is discussed in Chapter 6. CDSM is available at <https://github.com/matthiasdiener/
cdsm>.
3. kMAF. kMAF is a module for the Linux kernel for automatic task and data mapping,
discussed in Chapter 7. It is available at <https://github.com/matthiasdiener/kmaf>.

8.3 Research Perspectives

Several opportunities were identified to extend the research that was presented in
this thesis.

1. Task and data mapping in embedded systems. This thesis focuses on perform-
ing mapping in large traditional computer architectures with HPC characteristics, which
shows high improvements due to their high parallelism. However, the parallelism in
embedded system, such as in Multi-Processor System-on-Chip (MPSoC) is also increasing,
which leads to opportunities for task mapping in these architectures. Many current MPSoC
systems, such as Infineon’s Aurix platform (INFINEON, 2014) also contain a Non-Uniform
Memory Access Behavior (PAPAGIANNOPOULOU et al., 2013), which can make data
mapping important as well. Perform mapping on these architectures has some specific
issues, such as restrictions on the latency of applications, that can increase the challenges.
2. Hybrid mapping mechanisms. The automatic mechanisms presented in this thesis

have a limitation compared to other mechanisms such as the Oracle or a manual mapping
in that they have no prior information about application behavior and need to detect
it during execution. Although CDSM and kMAF showed gains that were very close to
the mechanisms with prior information for all applications that were evaluated, this is
not necessarily true for all possible application behaviors. For example, programs with a

https://github.com/matthiasdiener/numalize
https://github.com/matthiasdiener/cdsm
https://github.com/matthiasdiener/cdsm
https://github.com/matthiasdiener/kmaf


175

very short execution time or a very dynamic behavior might benefit substantially from
prior information. However, current solutions that perform mapping with prior behavior
execute in user-space, which severely limits their applicability in general-purpose systems.
Multiple running applications can not be supported in user-space for instance, and mapping
decisions would be interfering with each other.

For this reason, a hybrid mechanism can be an interesting solution to combine the
prior information generated in user-space with the mapping decisions performed by the
kernel during runtime. In this way, the analysis of the memory access behavior can be
performed before execution by the compiler, the developer or a trace-based mechanism.
This information can then be passed to the operating system kernel, which uses the
analyzed behavior to perform mapping decisions. The kernel can refine the mapping
during execution, due to changes external to the application (such as starting another
application, memory is added or removed from the system, among others), or internal
changes (such as when the provided memory access behavior is incorrect). For such a
refinement of the mapping, mechanisms such as kMAF can be used.

3. Task mapping in manycore architectures. As mentioned in Section 1.1.2, many-
core architectures with thousands of cores create interesting challenges, particularly for
task mapping. It will not be possible to execute a global task mapping algorithm, such
as the one used in this thesis, to optimize the communication behavior, due to the large
runtime overhead. Two solutions can be used to overcome this issue. First, by partitioning
the manycore processor into several blocks and then applying such an algorithm to each
part can reduce the overhead of the task mapping. In case an application does not use the
full number of cores, this can be a viable solution. Second, by performing the mapping
locally, that is, for only a small subset of tasks, no global mapping needs to be calculated.
For example, when the kernel notices that two tasks are communicating a lot, it can
migrate one task closer to the other, without affecting the other tasks. This resembles
the spirit of our data mapping policy, which migrates single pages without calculating a
global access behavior.

4. Heterogeneous architectures. In this thesis, we assumed that architectures are
homogeneous, that is, PUs have the same number of functional units, processors have a
symmetrical cache hierarchy and there is only a simple local/remote hierarchy of memory
controllers. However, modern systems are starting to have a heterogeneous behavior. For
example, processors such as ARM’s big.LITTLE have some cores that have a higher
computational power and energy consumption than other cores on the same chip. A
solution could be to add this information to the task mapping algorithm. Furthermore,
architectures with multiple memory controllers on the same chip, such as the Opteron
machine used in this thesis, include a hierarchical NUMA behavior, with memory accesses
to the local NUMA node, a remote node on the same chip and a remote node on a different
chip. This hierarchy issue was not explored in this thesis, but can be added to the data
mapping policies, for example by reducing data migrations between NUMA nodes on the
same chip.

5. Integrate mechanisms deeper into kernel. Even though CDSM and kMAF are
integrated into the Linux kernel, it is interesting to integrate them more tightly with
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the kernel itself to improve the efficiency of operations and remove duplication of code
and data structures. For task mapping, our mapping algorithm overrides the normal
scheduler of Linux and only takes communication into account to generate a mapping. An
alternative could be to provide information generated from the communication detection
(such as the communication matrix) to the task scheduler, which can then calculate an
optimized mapping that takes into account the communication, load balance, and other
factors. For data mapping, where we store information about every page, information
about the memory access pattern to the pages could be stored directly in the struct
page structure instead of a separate hash table. In this way, the memory usage and
complexity of data mapping can be reduced significantly.

6. Hardware-assisted application analysis. The analysis of our mapping mecha-
nisms is based on the observation and introduction of page faults during execution. Such
a mechanism has the advantage of being easily portable between different hardware ar-
chitectures, as virtual memory management with demand paging is the most common
technique in modern systems. However, using page faults to detect memory accesses
has some drawbacks, which make mapping mechanisms have a higher complexity and
overhead. For example, introducing additional page faults creates an overhead for the
running application. Furthermore, great care has to be taken to distinguish these extra
faults from faults that indicate that a page is located in swap, further complicating the
implementation of such a mechanism.

These disadvantages could be solved by a dedicated mechanism that provides
sampled memory addresses to the operating system. The operating system could then
use these addresses instead of page faults to characterize communication and page us-
age of the applications. Several previous mechanisms discussed in this thesis (such as
Marathe et al. (2006)) already use PMU statistics for mapping, but suffer from a substan-
tial overhead. A more modern replacement could be based on proposals such as AMD’s
Lightweight Profiling (LWP) (AMD, 2010), which allows sampling of memory accesses
with full addresses and a configurable sampling granularity.

8.4 Publications

The following papers (listed in reverse chronological order) were published since
entering the PhD program and contain material that is relevant to this thesis:

1. Matthias Diener, Eduardo H. M. Cruz, Marco A. Z. Alves, Mohammad S. Alha-
keem, Philippe O. A. Navaux, Hans-Ulrich Heiß. “Locality and Balance for
Communication-Aware Thread Mapping in Multicore Systems.” Euro-Par,
August 2015.

2. Matthias Diener, Eduardo H. M. Cruz, Laércio L. Pilla, Fabrice Dupros, Philippe O.
A. Navaux. “Characterizing Communication and Page Usage of Parallel
Applications for Thread and Data Mapping.” Performance Evaluation, June
2015.
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3. Eduardo H. M. Cruz, Matthias Diener, Philippe O. A. Navaux. “Communication-
Aware Thread Mapping Using the Translation Lookaside Buffer.” Concur-
rency and Computation: Practice and Experience, 2015.

4. Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux, Anselm Busse, Hans-
Ulrich Heiß. “Communication-Aware Process and Thread Mapping Using
Online Communication Detection.” Journal of Parallel Computing (PARCO),
March 2015.

5. Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux. “Locality vs. Bal-
ance: Exploring Data Mapping Policies on NUMA Systems.” Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), March 2015.

6. Eduardo H. M. Cruz, Matthias Diener, Laércio L. Pilla, Philippe O. A. Navaux. “An
Efficient Algorithm for Communication-Based Task Mapping.” Euromicro
International Conference on Parallel, Distributed, and Network-Based Processing
(PDP), March 2015. (Best Paper Award)

7. Eduardo H. M. Cruz, Matthias Diener, Marco A. Z. Alves, Laércio L. Pilla, Philippe
O. A. Navaux. “Optimizing Memory Locality Using a Locality-Aware Page
Table.” International Symposium on Computer Architecture and High Performance
Computing (SBAC-PAD), October 2014.

8. Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux, Anselm Busse, Hans-
Ulrich Heiß. “kMAF: Automatic Kernel-Level Management of Thread and
Data Affinity.” International Conference on Parallel Architectures and Compilation
Techniques (PACT), August 2014.

9. Eduardo H. M. Cruz, Matthias Diener, Marco A. Z. Alves, Philippe O. A. Navaux.
“Dynamic thread mapping of shared memory applications by exploiting
cache coherence protocols.” Journal of Parallel and Distributed Computing
(JPDC), March 2014.

10. Matthias Diener, Eduardo H. M. Cruz, Philippe O. A. Navaux. “Communication-
Based Mapping using Shared Pages.” International Parallel & Distributed
Processing Symposium (IPDPS), May 2013.

11. Eduardo H. M. Cruz, Matthias Diener, Philippe O. A. Navaux. “Using the
Translation Lookaside Buffer to Map Threads in Parallel Applications
Based on Shared Memory.” International Parallel & Distributed Processing
Symposium (IPDPS), May 2012.
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