
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

ALEXANDER JAVIER BENAVIDES ROJAS

Heuristics for Flow Shop Scheduling:
Considering Non-Permutation Schedules

and a Heterogeneous Workforce

Thesis presented in partial fulfillment
of the requirements for the degree of
Doctor of Computer Science

Prof. Dr. rer. nat. Marcus Ritt
Advisor

Prof. Dr. Cristóbal Miralles
Coadvisor

Porto Alegre, December 2015

CIP – CATALOGING-IN-PUBLICATION

Benavides Rojas, Alexander Javier

Heuristics for Flow Shop Scheduling: Considering Non-
Permutation Schedules and a Heterogeneous Workforce /
Alexander Javier Benavides Rojas. – Porto Alegre: PPGC
da UFRGS, 2015.

189 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande
do Sul. Programa de Pós-Graduação em Computação,
Porto Alegre, BR–RS, 2015. Advisor: Marcus Ritt;
Coadvisor: Cristóbal Miralles.

1. Heuristics. 2. Scheduling. 3. Flow shop. 4. Non-
permutation. 5. Heterogeneous workers. I. Ritt, Marcus.
II. Miralles, Cristóbal. III. Heuristics for Flow Shop Schedul-
ing: Considering Non-Permutation Schedules and a Hetero-
geneous Workforce.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Pró-Reitor de Coordenação Acadêmica: Prof. Rui Vicente Oppermann
Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento
Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb
Coordenador do PPGC: Prof. Luigi Carro
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

A mi hija Manuela, nueva razón y alegría de mi vida.

A mis padres Carmen y Oscar, y a mi bisabuelo Manuel,

quienes me enseñaron lo que significa la perseverancia

y el trabajo duro.

ACKNOWLEDGMENTS

This work is supported by CAPES-Brazil and MEC-Spain (project CAPES-DGU258-

12/PHB-0012-PC), by Petrobras (project 6741/PRH-PB217), by CNPq (project

478847/2013-0), and by the National Center for Supercomputing at UFRGS.

Quiero expresar en estas líneas mi gratitud y reconocimiento a todas las personas

que hicieron posible esta tesis.

En primer lugar, me gustaría dar las gracias a mis a mis orientadores, Marcus

Ritt y Cristóbal Miralles, por la paciencia, la guia y el apoyo brindados durante estos

años. Mi investigación no habría llegado tan lejos sin ellos. Especialmente agradezco

a Marcus, por trabajar codo a codo conmigo en muchas oportunidades para mejorar

los resultados y lograr las publicaciones.

Agradezco también a los profesores Luciana Buriol, Rubén Ruiz, Marcelo Nagano,

y Paulo França, por sus invaluables comentarios durante la evaluación de esta tesis.

Especialmente agradezco a Luciana, por la oportunidad que me dio cuando orientó

mi maestría, y por después acompañar de lejos mi crecimiento como investigador

científico.

También le debo mucho a innumerables amigos que conocí durante estos años:

funcionarios, profesores y estudiantes de la UFRGS y miembros de la Comunidad

Salesiana de Porto Alegre. Agradezco especialmente a doña Graça Fuhrmann, Padre

Marcio Lacoski, Lucas Volpatto, Mario Machado, Rafael Borges, Rodrigo Wilkens,

Fernando Stefanello, Arton Dorneles, Ali Karaali, y Aasim Khurshid, por su apoyo

y amistad desinteresada.

Finalmente, quiero expresar el amor y gratitud que le tengo a mi grande familia.

Agradezco a mis padres, Oscar y Carmen, mi hermano, Eduardo, mi hermana Boni, y

a mis abuelos, tíos, y primos, por el amor, los ánimos y el apoyo que me dieron en los

momentos difíciles. Y en especial, quiero agradecer con todo mi amor a mi esposa,

Nicole, por la paciencia que me tiene y por los momentos felices que trae a mi vida

constantemente.

ABSTRACT

HEURISTICS FOR FLOW SHOP SCHEDULING:

CONSIDERING NON-PERMUTATION SCHEDULES

AND A HETEROGENEOUS WORKFORCE

The flow shop scheduling problem (or FSSP) is a very common model of

production systems that is well studied in the literature. However, almost all the

literature focuses on the permutation FSSP, disregarding optimal and near optimal

solutions that are non-permutation schedules. Besides, common practice standardizes

the processing times of each operation, even when those times may vary depending

on different capabilities of the machine operators, whose diversity must be considered

in the scheduling process when it is significant, e.g., in Sheltered Work centers for

Disabled (SWDs). In this thesis, we propose methods to solve the non-permutation

FSSP, using the same time and effort as state-of-the-art methods for the permutation

FSSP, and producing non-permutation schedules with better quality than permutation

and non-permutation schedules produced by state-of-the-art methods. We also

propose methods to solve the combined heterogeneous workforce assignment and

flow shop scheduling problem (or Het-FSSP), producing solutions that compensate

the different capabilities and disabilities of the workers with minor or null losses in

the productivity objectives. Moreover, the heterogeneous workforce assignment may

be integrated into other shop scheduling models, as we did with the heterogeneous

workforce assignment and job shop scheduling problem (or Het-JSSP) with similar

results.

Keywords: Heuristics, scheduling, flow shop, non-permutation, heterogeneous

workers.

RESUMO

HEURÍSTICAS PARA ESCALONAMENTO EM FLOW SHOPS:

CONSIDERANDO ESCALONAMENTOS NÃO-PERMUTACIO-

NAIS E TRABALHADORES HETEROGÊNEOS

O problema de escalonamento num flow shop (ou flow shop scheduling problem,

FSSP) é um modelo de sistemas de produção muito comum que é bem estudado

na literatura. No entanto, quase toda a literatura foca-se em escalonamentos

permutacionais, desconsiderando soluções ótimas e quase ótimas que são escalo-

namentos não-permutacionais. Além disso, a prática comum padroniza os tempos

de processamento de cada operação, mesmo que estes tempos variem dependendo

das diferentes capacidades dos operadores das máquinas, cuja diversidade deve

ser considerada no processo de escalonamento quando seja significativa, e.g., em

centros de emprego para deficientes (CEDs). Nesta tese, propomos métodos para

resolver o FSSP não-permutacional, usando o mesmo tempo e esforço que os métodos

do estado da arte usam para o FSSP permutacional, e produzindo escalonamentos

não-permutacionais com melhor qualidade do que escalonamentos permutacionais e

não-permutacionais produzidos por métodos do estado da arte. Também propomos

métodos para resolver o problema combinado de designação de trabalhadores

heterogêneos e escalonamento de tarefas num flow shop (ou heterogeneous workforce
assignment and flow shop scheduling problem, Het-FSSP), produzindo soluções que

compensam as diferentes capacidades e deficiências dos trabalhadores com pequenas

perdas nos objetivos da produção. Além do mais, a designação de trabalhadores

heterogêneos pode ser integrada em outros problemas de escalonamento, como

fizemos com o problema combinado de designação de trabalhadores heterogêneos

e escalonamento de tarefas num job shop (ou heterogeneous workforce assignment and
job shop scheduling problem, Het-JSSP).

Palavras-chave: Heurísticas, escalonamento de tarefas, flow shop, não-permuta-

cional, trabalhadores heterogêneos.

LIST OF FIGURES

2.1 Semi-active and active schedules. 35
2.2 Venn diagram of classes of schedules. 35
2.3 Gantt chart of an optimal schedule for the 3 × 3 JSSP instance arranged

by jobs. 37
2.4 Gantt chart of an optimal schedule for the 3 × 3 JSSP instance arranged

by machines. 37
2.5 A disjunctive graph representation for the 3× 3 JSSP instance. 37
2.6 A graph representation of the optimal solution for the 3×3 JSSP instance

from Figure 2.4. 37
2.7 A cycle in an invalid graph representation of the 3× 3 JSSP instance. . . 39
2.8 Decodification of a job permutation with m-repetitions of an optimal

solution for the 3× 3 JSSP instance. 39
2.9 An operation permutation of an optimal solution for the 3 × 3 JSSP

instance as an intermediate decodification. 40
2.10 Optimal non-permutation and best possible permutation schedules for

minimizing makespan. 41

3.1 Neighbourhood of Nowicki & Smutnicki. 59

4.1 Optimal non-permutation and best possible permutation schedules for
minimizing makespan. 66

4.2 Optimal non-permutation and best possible permutation schedules for
minimizing total completion time. 66

4.3 Possible positions to insert a job that the NEH heuristic evaluates. 68
4.4 Example of job insertions with anticipation in non-permutation schedules. 68
4.5 Example of job insertions with delay in non-permutation schedules. . . . 68

5.1 Example for perturbation scheme in permutation schedules. 73
5.2 Examples for local search neighbourhoods. 74
5.3 Example of job insertions in non-permutation schedules. 78

6.1 Two examples of an insertion without job passing at position 4 into
non-permutation schedules. 89

6.2 Calibration of (a) the percentage p of the jobs inserted without job
passing and (b) of the parameters d and α. 94

7.1 Permutation representation π and Gantt chart of a permutation schedule
for the 6× 6 FSSP instance given in Table 7.1. 105

7.2 Permutation representation π′ with job division and Gantt chart of a
non-permutation schedule for the 6× 6 FSSP instance given in Table 7.1. 105

8.1 Optimal schedule for the 4× 4 FSSP instance. 136
8.2 Best schedule for the 4 × 4 Het-FSSP instance obtained by assigning the

workers while maintaining the optimal flow shop schedule. 138
8.3 Best schedule for the 4× 4 Het-FSSP instance obtained by solving a FSSP

with a fixed assignment of workers that minimizes the sum of processing
times. 138

8.4 Optimal non-permutation schedule for the 4× 4 Het-FSSP instance. . . . 138
8.5 Best permutation schedule for the 4× 4 Het-FSSP instance. 138

9.1 Example of positional combination with preservation of common elements.148

11.1 Optimal schedule for the PFSISP instance. 162
11.2 Optimal schedule for the HPFSISP instance 162

LIST OF TABLES

2.1 3× 3 instance of the JSSP. 35

3.1 Best known total completion times for the largest instances of Taillard. . 52

4.1 2× 4 instance of the FSSP. 66
4.2 2× 3 instance of the FSSP. 66

5.1 Time scales for the experiments. 80
5.2 Calibration of parameters. 81
5.3 Comparison to the best heuristic reported by Pan & Ruiz (2012). 82
5.4 New upper bounds on the total completion time for permutation schedules. 82
5.5 Comparison to the multi-restart ILS reported by Dong et al. (2013). . . . 83
5.6 Quality of permutation (PS) and non-permutation (NPS) schedules. . . . 84
5.7 Average (b) and maximum (B) buffer sizes of permutation (PS) and

non-permutation (NPS) schedules. 86

6.1 Comparison of variants of the proposed iterated greedy algorithm on the
instances of Taillard (1993). 93

6.2 Comparison of constructive heuristics on the instances of Taillard (1993). 95
6.3 Overview of recent heuristic approaches for the FSSP. 96
6.4 Comparison to Lin & Ying (2009) and Rossi & Lanzetta (2013b) on the

instances of Demirkol, Mehta & Uzsoy (1998). 96
6.5 Comparison to Yagmahan & Yenisey (2010) and Rossi & Lanzetta (2013b)

on 28 instances of Taillard (1993). 98
6.6 Complete results on the instances of Taillard (1993). 99
6.7 Comparison to state-of-the-art heuristics from the literature for permuta-

tion schedules on the instances of Taillard (1993). 99
6.8 Comparison of buffer sizes for permutation and non-permutation

solutions on the instances of Taillard (1993). 101

7.1 6× 6 instance of the FSSP. 105
7.2 Makespan values for inserting job J3 into the partial non-permutation

schedule π = (J5, J4, J2, J1) of the 6× 6 instance given in Table 7.1. . . . 111
7.3 Values ei,j and qi,j for schedule π′′ = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) of the

6× 6 instance given in Table 7.1. 111
7.4 Makespan values for inserting job J6 into the partial non-permutation

schedule π′′ = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) of the 6× 6 instance given in
Table 7.1. 111

7.5 Makespan values for first iteration of the BRN local search on the
schedule π = (J5, J4, J6, J2, J1, J3) of the 6× 6 instance given in Table 7.1. 116

7.6 Average relative percentage deviations for the NEH and NEHBR heuristics. 119
7.7 Average relative percentage deviations for the NEHBR heuristic compared

to tie-breaking mechanisms. 119
7.8 Average running times (ms) for the NEH and NEHBR heuristics. 120
7.9 Average relative percentage deviations for the heuristics NEH and NEHBR

compared to the heuristics FRB and FRBBR. 121
7.10 Average running times (ms) for the FRB and FRBBR heuristics. 122
7.11 Average relative percentage deviations for the proposed iterated greedy

algorithms for the non-permutation FSSP. 123
7.12 Average relative percentage deviations for the iterated greedy algorithm

IGb for the non-permutation FSSP with different constructive heuristics
as seeds. 123

7.13 Average number of iterations (in thousands) for the proposed iterated
greedy algorithms with stop criterion of n(m/2)90 ms. 125

7.14 Overview of the state-of-the-art methods for the FSSP. 125
7.15 Average relative percentage deviations for the methods for permutation

FSSP with time limit of n(m/2)τ ms. 127
7.16 Average relative percentage deviations for the methods for non-permu-

tation FSSP with time limit of n(m/2)τ ms. 127
7.17 Best known solutions for permutation (P) from Taillard (2004) and

non-permutation (NP) from Vaessens (1996), and best non-permutation
from our results. 130

8.1 4× 4 instance of the FSSP. 136
8.2 An instance of the Het-FSSP. 136

9.1 Results for the Carlier instances with processing times between in [p, 2p]. 150
9.2 Results for the Taillard instances with processing times in [p, 2p]. 150
9.3 Results for the Carlier instances with processing times in [p, 5p]. 151
9.4 Results for the Taillard instances with processing times in [p, 5p]. 151
9.5 Results for the Taillard instances of the original non-permutation FSSP. . 153

10.1 Average results for the Taillard instances with processing times in [p, 2p]. 158
10.2 Average results for the Taillard instances with processing times in [p, 5p]. 158

11.1 An instance of the PFSISP. 162
11.2 An instance of the HPFSISP. 162

LIST OF ALGORITHMS

3.1 NEH constructive heuristic for PFSSP. 45
3.2 FRB2 constructive heuristic for PFSSP. 47
3.3 FRB4k constructive heuristic for PFSSP. 48

4.1 A NEH-like constructive heuristic for the non-permutation FSSP. 69

5.1 Iterated local search. 72
5.2 Perturbation scheme for permutation schedules. 72
5.3 Randomized shift local search. 74
5.4 Swap local search. 75
5.5 Iterated local search for permutation schedules. 76
5.6 Iterated greedy algorithm. 77
5.7 Perturbation scheme for non-permutation schedules. 77
5.8 Iterated greedy algorithm for non-permutation schedules. 79

6.1 Constructive heuristic NFS for the non-permutation FSSP. 88
6.2 Insertion into a non-permutation schedule. 90

7.1 A constructive heuristic for the non-permutation FSSP. 107
7.2 A best-improvement reduced-neighbourhood non-permutation local

search for the FSSP. 113
7.3 Iterated greedy algorithm. 117

9.1 A heuristic based on scatter search for the Het-FSSP. 145
9.2 Randomized constructive heuristic for Het-FSSP. 145
9.3 Update reference sets. 147

10.1 A multi-start local search for the Het-JSSP. 155
10.2 A construction heuristic for the Het-JSSP. 156

LIST OF ACRONYMS

SWD Sheltered Work centers for Disabled 20

Optimization Criteria:

Cmax Makespan or maximum completion time 30

Csum Total completion time 30

Scheduling problems:

FSSP Flow Shop Scheduling Problem 31

JSSP Job Shop Scheduling Problem 31

OSSP Open Shop Scheduling Problem 31

Het-FSSP Heterogeneous workforce assignment and Flow Shop
Scheduling Problem 135

Het-JSSP Heterogeneous workforce assignment and Job Shop
Scheduling Problem 135

PFSISP Permutation Flow Shop Insertion and Scheduling Problem 161

HPFSISP Hybrid Permutation Flow Shop Insertion and Scheduling Problem 161

Heuristic methods:

BRN Best-improvement Reduced-neighbourhood local search for
the Non-permutation FSSP 112

IGA Iterated Greedy Algorithm 76

ILS Iterated Local Search 71

NEH Constructive heuristic of Nawaz, Enscore & Ham (1983) 44

NFS Constructive heuristic for the Non-permutation FSSP 88

SBP Shifting Bottleneck Procedure 57

CONTENTS

I Introduction 17
1 INTRODUCTION . 19
1.1 Motivation . 19
1.1.1 Considering non-permutation schedules in flow shops 19
1.1.2 Considering disabilities as workforce heterogeneity in scheduling . . . 20
1.2 Research objective and contribution 22
1.2.1 Objective of this research . 22
1.2.2 Contribution of this research . 23
1.2.3 Contribution to the literature . 23
1.3 Scope of the thesis . 24
1.4 Overview of the thesis . 25
2 THEORETICAL CONCEPTS RELATED TO FLOW SHOP SCHEDULING . . . 27
2.1 Shop Scheduling Characterization and Classification 27
2.1.1 Machine Environment (α field) . 28
2.1.2 Job Characteristics (β field) . 29
2.1.3 Optimality criterion (γ field) . 30
2.2 Formulations for the Main Shop Scheduling Problems 31
2.2.1 The Flow Shop Scheduling Problem . 31
2.2.2 The Job Shop Scheduling Problem . 32
2.2.3 The Open Shop Scheduling Problem 33
2.3 Other Theoretical Concepts . 34
2.3.1 Semi-active, active and non-delay schedules 34
2.3.2 A simple 3× 3 job shop example . 35
2.3.3 Disjunctive graph representation . 36
2.3.4 Makespan, critical paths and blocks of operations 38
2.4 Data structures for representing schedules 38
2.4.1 Binary representation . 38
2.4.2 Permutation representation with m-partitions 38
2.4.3 Permutation representation with m-repetitions 39
2.4.4 Operation permutation representation 40
2.5 Multi-objective optimization . 40
2.6 Concluding remarks . 42
3 LITERATURE REVIEW . 43
3.1 The permutation flow shop scheduling problem 44
3.1.1 The constructive heuristic NEH for the PFSSP with makespan criterion 44
3.1.2 The constructive heuristics FRB for the PFSSP with makespan criterion 46

3.1.3 Metaheuristics applied to the PFSSP with makespan criterion 48
3.1.4 Constructive heuristics for PFSSP with total completion time criterion . 49
3.1.5 Metaheuristics applied to the PFSSP with total completion time criterion 50
3.1.6 Metaheuristics applied to the bi-objective PFSSP with makespan and

total completion time criteria . 51
3.2 The non-permutation flow shop scheduling problem 53
3.3 The job shop scheduling problem . 57
3.3.1 The neighbourhood of Nowicki & Smutnicki for the JSSP 58
3.4 Benchmarks from the literature . 59
3.5 Heterogeneous workforce in the literature 60
3.6 Concluding remarks . 62

II Heuristics for the non-permutation flow shop scheduling
problem with makespan and total completion time criteria 63
4 THE PERMUTATION AND NON-PERMUTATION FLOW SHOPS 65
4.1 Non-permutation insertion with anticipation or delay 67
4.2 Concluding remarks . 69
5 ITERATED LOCAL SEARCH HEURISTICS FOR MINIMIZING THE TOTAL

COMPLETION TIME IN PERMUTATION AND NON-PERMUTATION FLOW
SHOPS . 71

5.1 An iterated local search for the permutation FSSP 71
5.1.1 Perturbation scheme for permutation schedules 72
5.1.2 Local search scheme for permutation schedules 73
5.1.3 Acceptance criterion . 75
5.1.4 Complete iterated local search for the permutation FSSP 76
5.2 An iterated greedy algorithm for the non-permutation FSSP 76
5.2.1 Perturbation scheme for non-permutation schedules 77
5.2.2 Complete iterated greedy algorithm for the non-permutation FSSP . . . 78
5.3 Evaluation of schedules . 79
5.4 Computational Experiments . 80
5.4.1 Experimental methodology . 80
5.4.2 Calibration of parameters . 80
5.4.3 Quality of permutation schedules . 81
5.4.4 Quality of non-permutation schedules 83
5.4.5 Job reordering and buffer sizes . 85
5.5 Concluding remarks . 86
6 A FIRST APPROACH TO MINIMIZE THE MAKESPAN IN THE NON-

PERMUTATION FLOW SHOP SCHEDULING PROBLEM 87
6.1 Heuristics for the non-permutation FSSP 87
6.1.1 A constructive heuristic for the non-permutation FSSP 87
6.1.2 Inserting jobs efficiently into non-permutation schedules 89
6.1.3 A local search heuristic for the non-permutation FSSP 91
6.1.4 An iterated greedy algorithm for the non-permutation FSSP 92
6.2 Computational Results . 92
6.2.1 Test instances and experimental methodology 92
6.2.2 Parameter setting . 93

6.2.3 Experiment 1: Effectiveness of the constructive heuristic 94
6.2.4 Experiment 2: Effectiveness of the iterated greedy algorithm 95
6.2.5 Experiment 3: Comparison to permutation schedules 97
6.2.6 Amount of job reordering and buffer sizes 100
6.3 Concluding remarks . 102

7 NOVEL PERMUTATION REPRESENTATION AND HEURISTICS FOR
THE NON-PERMUTATION FLOW SHOP SCHEDULING PROBLEM WITH
MAKESPAN CRITERION . 103

7.1 A new permutation representation for non-permutation schedules
using pseudo-jobs . 103

7.2 Fast heuristics for the non-permutation FSSP 106
7.2.1 A constructive heuristic for the non-permutation FSSP with time

complexity O(n2m) . 106
7.2.2 An insertion local search for the non-permutation FSSP with time

complexity O(n2m) per neighbourhood 112
7.2.3 A best-improvement reduced-neighbourhood non-permutation (BRN)

local search for the FSSP . 112
7.3 An iterated greedy algorithm for the non-permutation FSSP 116
7.4 Computational Results . 118
7.4.1 Experimental methodology . 118
7.4.2 Calibration of the constructive heuristic NEHBR 118
7.4.3 Comparison of the constructive heuristic NEHBR with other NEH variations119
7.4.4 Comparison of the constructive heuristic NEHBR with the heuristics FRB 121
7.4.5 Comparison of local search heuristics within the iterated greedy

algorithms . 122
7.4.6 Comparison of constructive heuristics as seeds of the iterated greedy

algorithms . 124
7.4.7 Performance of the iterated greedy algorithms 124
7.4.8 State-of-the-art methods for the permutation and non-permutation FSSP 125
7.4.9 Comparison of the methods for the permutation FSSP 126
7.4.10 Comparison of the methods for the non-permutation FSSP 128
7.4.11 Comparison of the methods for the permutation and non-permutation

FSSP . 129
7.5 Concluding remarks . 129

III Heuristics for the heterogeneous workforce assignment and
flow shop scheduling problem 133
8 SHOP SCHEDULING WITH A HETEROGENEOUS WORKFORCE 135
8.1 An example of a FSSP with heterogeneous workers 135
8.2 Mathematical formulations . 139
8.2.1 A mathematical formulation of the Het-FSSP 139
8.2.2 A mathematical formulation of the Het-JSSP 140
8.3 Size of the search space . 141
8.4 New instances . 141
8.5 Concluding remarks . 142

9 A SCATTER SEARCH WITH PATH RELINKING FOR THE HET-FSSP 143
9.1 Scatter search and path relinking . 143
9.2 A scatter search with path relinking for the Het-FSSP 144
9.2.1 Solution representation . 144
9.2.2 Diversification generation method . 145
9.2.3 Improvement method . 146
9.2.4 Reference set update method . 146
9.2.5 Subset selection and solution combination with path relinking 147
9.3 Computational Experiments . 148
9.3.1 Experimental methodology . 148
9.3.2 Numerical results . 149
9.4 Concluding remarks . 154
10 A MULTI-START LOCAL SEARCH FOR THE HET-JSSP 155
10.1 A multi-start local search for the Het-JSSP 155
10.1.1 Construction heuristic . 156
10.1.2 Local search heuristic . 156
10.2 Computational Experiments . 157
10.2.1 Experimental methodology . 157
10.2.2 Numerical results . 157
10.3 Concluding remarks . 160
11 RELATED RESEARCH: INCLUDING WORKERS WITH DISABILITIES IN

FLOW SHOPS . 161
11.1 Inserting a single worker with disabilities into a flow shop 161
11.2 Inserting two workers into a hybrid flow shop 163
11.3 A pooled iterated local search for the PFSISP 163
11.4 Solving the two-machine subproblem 163
11.5 Results and remarks . 164

IV Concluding remarks and future research 165
12 CONCLUDING REMARKS AND FUTURE RESEARCH 167
APPENDIX A HEURíSTICAS PARA ESCALONAMENTO EM FLOW SHOPS:

CONSIDERANDO ESCALONAMENTOS NÃO-PERMUTACIONAIS E TRA-
BALHADORES HETEROGÊNEOS . 187

Part I

Introduction

19

1 INTRODUCTION

This chapter introduces our research, and presents its motivation, objectives,

contributions, and scope. In the last section it describes the organization of the thesis.

1.1 Motivation

1.1.1 Considering non-permutation schedules in flow shops

Scheduling is a decision-making process used in many manufacturing and service

industries. It consists in allocating limited resources to activities that must be

accomplished. Resources may be machines in an assembly plant, CPU, memory and

I/O devices in a computer system, runways at an airport, crews at a repair-shop, etc.

Activities may be manufacturing process operations, computer programs, landings

and take-offs, and so on. The optimal allocation will optimize the objectives of the

enterprise, reducing time and costs. Thus, efficient scheduling is critical for the

industries to survive in the competitive business market.

Scheduling problems are considered among the hardest combinatorial optimiza-

tion problems. The flow shop scheduling problem (or FSSP) is one of the most studied

scheduling problems in the last six decades. In a flow shop, there are n jobs that must

be processed on m machines following the same machine sequence. Each job Jj has

a specific processing time pij on each machine Mi. A schedule is an allocation of the

jobs to the machines over the time. The FSSP consists in finding an schedule such that

some criteria are optimized. Minimizing the completion time of the last job on the

last machine (or makespan) and minimizing the sum of the completion times of all

the jobs on the last machine (or total completion time) are the two most commonly

studied optimization criteria in the literature.

A permutation schedule has the same processing order of jobs for all machines,

and a non-permutation schedule may have a different processing order of jobs for

20

some machines. The non-permutation (or general) FSSP allows permutation and

non-permutation schedules, while the permutation FSSP only allows permutation

schedules. The consideration of only one permutation of jobs for the processing

order of all the machines, instead of a different permutation of jobs for each machine,

reduces substantially the number of candidate schedules, making the FSSP easier to

approach, but it also eliminates the best candidate schedules, even eliminating all

optimal schedules in some cases. Thus, the reduction of the FSSP to permutation

schedules pays the price of significantly inferior solutions, and the consideration of

non-permutation schedules is necessary to obtain optimal or near-optimal solutions

for most of the FSSP instances (TANDON; CUMMINGS; LEVANU, 1991). Nevertheless,

almost all the literature on the FSSP focuses on the permutation FSSP, as Chapter 3

shows.

We have observed that optimal or near-optimal non-permutation schedules result

in many cases from limited job reordering between machines, conserving almost the

same permutation of jobs for the processing order of all the machines. Thus, we

want to use this observation to reduce the number of candidate schedules without

eliminating optimal or near-optimal non-permutation schedules, in order to find

near-optimal non-permutation schedules with the same time and effort that other

researchers use to find the best possible permutation schedules.

1.1.2 Considering disabilities as workforce heterogeneity in scheduling

A disability does not influence the person’s general capacity to work, it only

restrains his capability to perform certain tasks. Even though some disabled persons

with the right opportunities, adaptations and support are able to make a major

contribution at all levels of the economy and society, a disabled person is not always

considered suitable for employment. The International Labour Organization estimates

that the number of persons with disabilities is about one billion, or 15 per cent, of the

world’s population, out of whom between 785 and 975 million are estimated to be of

working age, and usually suffering much higher unemployment rates and economic

inactivity compared to non-disabled persons (ILO, 2012).

Many governments have implemented different policies for the vocational

rehabilitation and integration of persons with disabilities into the labour market,

such as reserving a percentage of jobs in companies, or creating Sheltered Work

centers for Disabled (SWDs). SWDs facilitate jobs for disabled workers, both as

stable workplaces and as transition workplaces for training and rehabilitation towards

complete social employment integration. This model of socio-labour integration

removes the traditional stereotype that considers disabled people as unable to develop

21

continuous professional work, by overcoming certain prejudices, and by considering

the workforce as heterogeneous as it actually is, taking into account their limitations

and aiming to evolve positively their capabilities and capacities (MIRALLES et al.,

2010).

Although SWDs receive some institutional support, they compete in real labour

markets where they need to be efficient and competitive. Besides their survival, SWDs

also must be able to grow, to give better conditions to their current workers, and to

promote new job opportunities for persons with higher levels of disability.

Most of the management science approaches and tools standardize the processing

time of every operation assuming that any worker would perform the same operation

in the same average time. This assumption is not realistic and may cause serious

planning and control problems. For instance, the master schedule definition and the

workplace assignments become harder when the production manager has to cope with

rigid information systems that disregard the heterogeneity of the workforce’s skills.

Knowing the clear differences between the reality and the scenarios defined in the

information systems, the production manager may try to compensate manually the

existing deviations of the workers performance with rules of thumb or with a not very

efficient “worst case” scenario.

These rectifications result in the adoption of suboptimal solutions and in the loss

of the control and validation of the corresponding indicators, due to the differences

between the modeled scenarios and the reality, to the aggregated effects from the

planning compensations, and because of rush adaptations made by the workers

themselves.

The correct and more reliable approach would be to assume the workers

heterogeneity, to estimate a priori the deviations, and to feed the planning/scheduling

process with more realistic data that introduces this heterogeneity in the information

systems.

The term “machine” in the flow shop literature usually refers to a work center

in which the process performed may be automated or manual. In a flow shop

environment where the workers are heterogeneous, the processing time of an

operation performed on a machine will also depend on the worker assigned to operate

it. Furthermore, in such a scenario, the complete solution of the problem consists of

two elements: as usual, a schedule of jobs that optimizes a given objective function,

and, additionally, the optimal allocation of workers to work centers (or machines) that

helps to get the best possible solution.

22

The scheduling and rescheduling caused by worker rotation, turnover and

absenteeism, demand a rapid response of production managers, mainly in SWDs

where periodical health and psychological support are mandatory. Therefore,

sophisticated solution methods are necessary in order to obtain an optimal worker

allocation and the corresponding optimal schedule in reasonable computation time.

Section 3.5 presents examples in the literature that successfully introduce human

diversity in the planning and scheduling processes of productive systems. To the best

of our knowledge, the joint problem of assigning diverse workers when scheduling

jobs in flow shop systems has not been addressed in the literature. Thus, we want

to contribute to narrow the gap between research and practice with our work in this

problem.

1.2 Research objective and contribution

1.2.1 Objective of this research

The main focus of this research is to propose heuristic methods to solve the flow

shop scheduling problem, considering non-permutation schedules and heterogeneous

workers, in order to reduce the makespan and the total completion time.

Specific objectives of this research include:

• Identify the theoretical concepts and state-of-the-art literature that are relevant

to the non-permutation flow shop scheduling problem and to the integration of

the heterogeneous workforce assignment problem and the flow shop scheduling

problem.

• Propose heuristics to solve the non-permutation FSSP with the makespan

criterion with the same computational effort and better result than state-of-the-

art methods for the permutation FSSP.

• Propose heuristics to solve the non-permutation FSSP with the total completion

time criterion with the same computational effort and better result than state-

of-the-art methods for the permutation FSSP.

• Formulate the integrated problem of heterogeneous workforce assignment and

flow shop scheduling, together with a mathematical model and a benchmark of

instances.

• Propose heuristics to solve the integrated problem of heterogeneous workforce

assignment and flow shop scheduling.

23

• Generalize the method used to integrate the heterogeneous workforce assign-

ment and flow shop scheduling problem for other scheduling problems, e.g., for

the job shop scheduling problem.

1.2.2 Contribution of this research

This thesis presents two major contributions. The first contribution is the proposal

and comparison of heuristics to solve flow shop scheduling problems, considering

non-permutation schedules, using the same time and effort that state-of-the-art

methods use to solve simplified permutation flow shop scheduling problems, and

producing non-permutation schedules with better quality than permutation and

non-permutation schedules produced by state-of-the-art methods. The second

contribution is the integration of heterogeneous workers and the problem of their

assignment into the shop scheduling problems, with the proposal of new models, test

instances and heuristics for the heterogeneous workforce assignment and flow shop

scheduling problem (or Het-FSSP) and the heterogeneous workforce assignment and

job shop scheduling problem (or Het-JSSP).

1.2.3 Contribution to the literature

The publications to be considered for the partial fulfillment of the requirements for

the degree of Ph.D. are:

• BENAVIDES, A. J.; RITT, M.; MIRALLES, C. Flow shop scheduling with

heterogeneous workers. European Journal of Operational Research, Elsevier,

v. 237, n. 2, p. 713–720, 2014.

The European Journal of Operational Research (EJOR) has an Impact Factor

of 2.358 and a 5-Year Impact Factor of 2.911, and it is classified by the CAPES

WebQualis as A1 for the computer science area. According to Google Scholar,

this article has been already cited seven times in the first two years of its

publication. The contributions of this article are explained in Chapers 8 and 9.

• BENAVIDES, A. J.; RITT, M. Two simple and effective heuristics for minimizing

the makespan in non-permutation flow shops. Computers & Operations Research,

Elsevier, v. 66, p. 160–169, 2016.

The Computers & Operations Research (COR) journal has an Impact Factor of

1.861 and a 5-Year Impact Factor of 2.454, and it is classified by the CAPES

WebQualis as A1 for the computer science area. The contributions of this article

are explained in Chaper 6.

24

• BENAVIDES, A. J.; RITT, M. Iterated local search heuristics for minimizing total

completion time in permutation and non-permutation flow shops. In: Twenty-
Fifth International Conference on Automated Planning and Scheduling. Jerusalem,

Israel: AAAI Publications, 2015. p. 34–41.

The International Conference on Automated Planning and Scheduling (ICAPS)

has an H-index of 49 and a 5-Year H-index of 25, and it is classified by the CAPES

Qualis as A2 for the computer science area. The contributions of this article are

explained in Chaper 5.

Another publication, which was presented in an international workshop not classi-

fied by the CAPES Qualis, and whose contributions are explained in Chapter 10, is:

• BENAVIDES, A. J.; RITT, M.; MIRALLES, C. Heterogeneous workforce in job

shop scheduling. In: VIII ALIO/EURO Workshop on Applied Combinatorial
Optimization. Montevideo, Uruguay: ALIO/EURO, 2014.

Another paper with the contributions explained in Chapter 7 is being prepared to

be submited to the European Journal of Operational Research (EJOR).

1.3 Scope of the thesis

There are several issues that could be considered in scheduling and worker

assignment problems. We had to limit some of them for different reasons. Here,

we list some limitations and their implications.

We initially wanted to integrate the heterogeneous workforce assignment problem

with the three most important shop scheduling problems (flow shop, job shop, and

open shop). We could also consider other extended shop scheduling models that allow

reentrant or missing operations, or that allow parallel machines in some stages of the

shop like the hybrid flow shop and the flexible job shop. But this ambitious goals were

mainly limited to the flow shop scheduling problem, with a small extension to the job

shop scheduling problem.

There are different optimization criteria for scheduling problems in the literature,

such as minimizing flowtime, lateness, or tardiness. But many of them require

additional data that is not available with the commonly used benchmarks, such as

release dates, due dates, or weight factors for the jobs. Thus, we limit our research

25

to the minimization of the makespan and the total completion time criteria, because

they only need the processing times of the operations for their calculations, and they

are the most commonly studied in the literature.

The literature presents different approaches to deal with heterogeneous workers,

such as their classification into categories (newbie, regular, expert), or with

proportionally related execution times. There are also different approaches in the

case of inclusion of workers with disabilities, such as inserting a low percentage of

heterogeneous workers, assigning them into working cells (or groups), and taking

into account their inability to operate a subset of the machines (for therapeutic or

strategic reasons). We limit our research to a model that assumes personalized

operation processing times for each worker and contemplates their inabilities, because

we believe that it is general enough to be adapted to other models.

1.4 Overview of the thesis

This thesis is organized in four parts.

The first part introduces the flow shop scheduling problem and has three chapters.

This chapter introduces and describes the motivation, objectives, contribution, and

context of this research. Chapter 2 describes the shop scheduling problems, with

their characteristics and formulations, focusing on the flow shop scheduling problem

and its two variations: permutation and non-permutation. It also presents theoretical

concepts of shop scheduling that may be applied to the non-permutation flow shop

scheduling problem. Chapter 3 presents a brief review of the literature on the

permutation and the non-permutation flow shop scheduling problem. It also reviews

the relevant literature on the job shop scheduling problem and on the inclusion of the

diversity of workers in production planning.

The second part presents heuristics for the non-permutation FSSP and has four

chapters. Chapter 4 explores the theoretical differences between the permutation and

non-permutation FSSP, and introduces the concept of non-permutation insertion of

a job with anticipation or delay that is used in the other three chapters of this part.

We study the practical differences between the permutation and the non-permutation

FSSP with the total completion time criterion in Chapter 5, and with the makespan

criterion in Chapter 6. To this end, we study in both chapters the degree of effort

needed to find good non-permutation schedules with the proposed iterated local

search and iterated greedy heuristics, we compare the buffer requirements for the

resulting permutation and non-permutation schedules, and we assess the amount of

job reordering in the resulting non-permutation schedules. In Chapter 7, we propose

26

a novel permutation representation for non-permutation schedules, an acceleration

method to calculate the makespan that results of a job insertion in a constructive

heuristic for non-permutation schedules, and two local searches for non-permutation

schedules. The proposed heuristics are embedded in iterated greedy algorithms to

evaluate their effectiveness in finding good non-permutation schedules.

The third part present heuristics for the heterogeneous workforce assignment in

scheduling problems and has four chapters. Chapter 8 introduces the combined

problem of flow shop scheduling and worker assignment with a didactic example. It

also mathematically defines the heterogeneous workforce assignment and flow shop

scheduling problem (or Het-FSSP) and the heterogeneous workforce assignment and

job shop scheduling problem (or Het-JSSP), discusses their complexity, and introduces

new instances for them. We propose a scatter search with path relinking for solving the

Het-FSSP in Chapter 9 and a multi-start local search heuristic for solving the Het-JSSP

in Chapter 10. In both chapters we describe the components of the proposed methods

and study their effectiveness. Chapter 11 briefly describes a related research on the

inclusion of one or two heterogeneous workers in a flow shop that was performed by

a fellow Master’s degree student.

The final part, Chapter 12, presents the concluding remarks of this research, and

the possible routes for research in the near future.

27

2 THEORETICAL CONCEPTS RELATED TO FLOW SHOP

SCHEDULING

This chapter describes the shop scheduling problems and their characteristics,

focusing on the flow shop scheduling problem and its variations. With this aim,

the characteristics of the scheduling problems are introduced in Section 2.1, and

formulations for the main shop scheduling problems are presented in Section 2.2. As

the general flow shop scheduling problem may be considered a special case of the job

shop scheduling problem, Section 2.3 describes theoretical concepts that apply to both

problems, such as active and semi-active schedules, disjunctive graph representation,

and critical paths, and Section 2.4 shows representations for job shop schedules

that can symbolize non-permutation flow shop schedules. Section 2.5 introduces

theoretical concepts of multi-objective optimization.

2.1 Shop Scheduling Characterization and Classification

In a general scheduling problem, a given set of jobs must be processed on a set

of machines, and the problem consists in finding an efficient schedule according to

one or more optimization criteria. An schedule is an allocation of jobs to machines

over time. The scheduling problems usually aim to optimize production time and thus

reduce costs. General characteristics of the scheduling problems in this thesis are:

• Each job is independent of the others.

• Each job consists of a set of operations.

• Each operation is processed on one machine for a known processing time.

• Each job is processed no more than once on any machine, i.e., different

operations of the same job can not be processed on the same machine.

• Each job is processed only on one machine at a time, i.e., no parallel operations

of the same job are allowed.

28

• Each machine can process at most one operation at a time, i.e., operations of

different jobs can not be processed on the same machine at the same time.

Besides these, many parameters define a specific scheduling problem, for example

machine characteristics, job characteristics, flow pattern, optimization criteria,

scheduling environment. Graham et al. (1979) introduced a classification of

scheduling problems. The characteristics of each scheduling problem are described

by a three-field notation α|β|γ. The α field describes the machine environment, the β

field describes jobs and constraints, and the γ field denotes an optimality criterion or

objective function.

To explain this classification, we must define first some data associated to jobs. We

refer to jobs with the subscript j and to machines with the subscript i.

A processing time (pij) is the time that machine Mi will spend to process job Jj. The

subscript i is omitted when machines are homogeneous.

A release date (rj) is the earliest time at which job Jj can start its processing.

A due date (dj) is the latest time for the completion of job Jj without penalization. A

later completion may be acceptable, but will be penalized. A hard deadline (d̄j)

is a due date that must be respected.

A weight (wj) is a priority factor that reflects the importance of a job Jj.

2.1.1 Machine Environment (α field)

Machines are classified as parallel or dedicated. Parallel machines have the same

capabilities, for example, multiple CPUs in a server or a grid system. In contrast, a

dedicated machine is specialized for the execution of a single task, for example cutting,

sewing, ironing machines in a tailor’s shop. The α field contains a single parameter α ∈
{1, Pm,Qm,Rm,Fm, Jm,Om}, where m indicates the number of machines (when m

is omitted, any number of machines is permited). Next, we explain the machine

environments.

Single machine (1). In this case, there is only one machine that will process every

job only once.

Identical parallel machines (Pm). There are m identical machines processing in

parallel at the same speed. Each job Jj has a single operation that may be

processed on any of the m machines.

29

Uniform parallel machines (Qm). There are m machines processing in parallel, but

they operate at different speeds. The speed of each machine Mi is determined by

a factor si. The execution time is pij = pj/si where pj is the standard processing

time for job Jj.

Unrelated parallel machines (Rm). There are m machines processing in parallel,

and there is no relation between their speeds. Thus, the execution time depends

on the processed job and the corresponding machine.

Flow shop (Fm). There are m different dedicated machines. All the jobs follow the

same processing order through the machines.

Job shop (Jm). There are m different dedicated machines. Each job has its own

processing order through the machines.

Open shop (Om). There are m different dedicated machines. Each job must be

processed on each machine exactly once. The processing order is arbitrary.

2.1.2 Job Characteristics (β field)

The description of jobs and constraints may contain multiple entries:

Preemption (pmtn). If pmtn is included in the β field, job preemption (splitting) is

allowed. Jobs can be preempted and later resumed, possibly on a different

machine (in a parallel machine environment). Otherwise, if pmtn is not included

in the β field, once a job operation initiates on a given machine, it must be

processed to completion without interruption.

No wait (no−wait). Indicates that jobs are not allowed to wait between operations

on successive machines. If no−wait is not specified, the jobs can wait between

operations for an unlimited time.

Precedence constraints (prec, chains, intree, outtree, tree, sp−graph). A precedence

constraint indicates that some jobs must be completed before certain other jobs

can initiate their processing. Precedence constraints can be represented as a

directed acyclic graph, where each node represents a job and each arc indicates

that the job at the tail must be processed before the job at the head. The shape of

the directed acyclic graph that represents the precedence constraints is described

by different entries. The most general constraint, prec, indicates a directed

acyclic graph. chains indicates that every job has in-degree and out-degree of

at most 1. intree indicates that every job in the graph has out-degree of at

most 1. outtree indicates that every job in the graph has in-degree of at most

30

1. tree indicates an intree or an outtree. sp−graph indicates that the graph is a

series-parallel graph. If none of these entries is specified, jobs are not subject to

precedence constraints.

Release dates (rj). This entry indicates that every job has a different release time. If

it is not specified, the release time of every job is zero.

Processing times (pj). This entry indicates that the processing times of each job are

restricted. pj = p indicates that all jobs have processing times equal to p units.

p ≤ pj ≤ p̄ indicates that no pj is less than p or greater than p̄. If it is not

specified, jobs have arbitrary processing times.

Deadlines (d̄). This entry indicates that deadlines are imposed on the jobs. If it is not

specified, no deadlines are assumed, however, due dates may be defined as part

of the optimality criteria.

Number of operations in jobs (nj). This entry applies only to job shop problems.

The inequality nj ≤ k indicates that each job is limited to at most k operations.

If it is not present, the number of operations is unrestricted.

2.1.3 Optimality criterion (γ field)

The optimality criterion is the cost function that must be minimized or maximized.

An optimality criterion is called regular if it is a non-decreasing function of the

completion times of the jobs. The γ field represents the optimality criterion. The

following entries are regular optimality criteria:

Makespan (Cmax). The goal is to minimize the makespan or maximum completion

time over all jobs Cmax = max{C1, . . . , Cn}, where Cj is the completion time of

job Jj.

Total completion time (
∑
wjCj,

∑
Cj, Csum). The goal is to minimize the total

weighted completion time (denoted by
∑
wjCj) or the total unweighted

completion time (denoted by
∑
Cj or by Csum).

Total flowtime (
∑
wjFj,

∑
Fj). The flowtime is defined as Fj = Cj − rj. The goal

is to minimize the total weighted flowtime (denoted by
∑
wjFj) or the total

unweighted flowtime (denoted by
∑
Fj). When all release dates are rj = 0, the

flowtime criterion is equivalent to the completion time criterion.

Maximum lateness (Lmax). The goal is to minimize the maximum lateness Lmax =

max{L1, . . . , Ln}, where Lj = Cj − dj is the lateness of job Jj.

31

Total tardiness (
∑
wjTj,

∑
Tj). The goal is to minimize the total weighted tardiness

(denoted by
∑
wjTj) or the total unweighted tardiness (denoted by

∑
Tj),

where Tj = max{Cj − dj, 0} is the tardiness of a job Jj.

Number of tardy jobs (
∑
wjUj,

∑
Uj). The goal is to minimize the total weighted

number of jobs that complete late (denoted by
∑
wjUj) or the total unweighted

number of jobs that complete late (denoted by
∑
Uj), where Uj = 1 if Cj > dj

and 0 otherwise.

To illustrate the α|β|γ notation, we present some examples. The prob-

lem 1|rj, dj|Lmax is to find a preemptive schedule on one machine for a set of

jobs with a given release times rj and a due date dj that minimizes the maximum

lateness Lmax. The problem R|prec|
∑
wjCj minimizes the total weighted completion

time on a variable number of unrelated parallel machines, where the jobs are subject

to precedence constraints. The problem J3|pij = 1|Cmax is to minimize the maximum

completion time of jobs with unit processing times in a job shop with three machines.

2.2 Formulations for the Main Shop Scheduling Problems

Besides the models of single and parallel machines, scheduling problems in the

production industry usually involve different machines for different purposes. Shop

scheduling problems are well known to model environments with dedicated machines.

We can separate them based on the flow pattern that jobs follow through the machines.

The most studied and well known models are the Flow Shop Scheduling Problem

(FSSP), the Job Shop Scheduling Problem (JSSP) and the Open Shop Scheduling

Problem (OSSP). Next we explain them.

2.2.1 The Flow Shop Scheduling Problem

The flow shop scheduling problem (F ||Cmax) is defined as follows. Given n jobs to

be processed on m machines in the same order, a schedule must be found, such that

the maximum completion time is minimized.

Formally, let xij be the starting time of job Jj on machine Mi, let variable yijj′ ∈
{0, 1} indicate that job Jj, precedes job Jj′ on machine Mi, and let M be a large

32

constant, then an integer linear program for the FSSP is

min. Cmax, (2.1)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (2.2)

xij + pij ≤ x(i+1)j, ∀i ∈ [m− 1], j ∈ [n], (2.3)

xij + pij ≤ xij′ +M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (2.4)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (2.5)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (2.6)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n]. (2.7)

In this formulation constraints (2.2) define the makespan, constraints (2.3) require

a job to finish its process on a machine before starting on the following one,

constraints (2.4) require the jobs Jj and J ′j to be processed in the order defined by

the variables yijj′ for each machine Mi, and constraint (2.5) forces a linear ordering

of the jobs on all machines.

It is common in the literature to limit the solutions to schedules that process

all jobs in the same order on all machines. This variation of the problem is called

Permutation Flow Shop Scheduling Problem (PFSSP). An integer linear program for

the PFSSP reduces the number of constraints and variables by replacing yijj′ by yjj′ for

all machines as follows

min. Cmax, (2.8)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (2.9)

xij + pij ≤ x(i+1)j, ∀i ∈ [m− 1], j ∈ [n], (2.10)

xij + pij ≤ xij′ +M(1− yjj′), ∀i ∈ [m], j 6= j′ ∈ [n], (2.11)

yjj′ + yj′j = 1, ∀j 6= j′ ∈ [n], (2.12)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (2.13)

yjj′ ∈ {0, 1}, ∀j 6= j′ ∈ [n]. (2.14)

We discuss and compare the use of permutation and non-permutation schedules in

Chapter 4.

2.2.2 The Job Shop Scheduling Problem

The job shop scheduling problem (J ||Cmax) is defined as follows. Given n jobs to

be processed on m machines in a different order for each job, a schedule must be

found, such that the maximum completion time is minimized.

33

Formally, let Rj = {(i, i′)|oij ≺ oi′j} be the set of precedence relations of all pairs

of consecutive operations oij, oi′j that belong to job Jj, let xij be the starting time of

job Jj on machine Mi, let variable yijj′ ∈ {0, 1} indicate that job Jj precedes job Jj′

on machine Mi, and let M be a large constant, then an integer linear program for the

JSSP is

min. Cmax, (2.15)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (2.16)

xij + pij ≤ xi′,j, ∀(i, i′) ∈ Rj, j ∈ [n], (2.17)

xij + pij ≤ xij′ +M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (2.18)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (2.19)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (2.20)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n]. (2.21)

In this formulation constraints (2.16) define the makespan, constraints (2.17) require

a job to finish its processing on a machine before starting on the following one

according to the precedence order of each job, constraints (2.18) require the jobs Jj
and J ′j to be processed in the order defined by the variables yijj′ for each machine Mi,

and constraint (2.19) forces a linear ordering of the jobs on all machines. For

an n-jobs, m-machines job shop instance, there exist n!m possible solutions.

2.2.3 The Open Shop Scheduling Problem

The open shop scheduling problem(O||Cmax) is defined as follows. Given n jobs

to be processed on m machines without any specific order, a schedule must be found,

such that the maximum completion time is minimized.

Formally, let xij be the starting time of job Jj on machine Mi, let variable yijj′ ∈
{0, 1} indicate that job Jj precedes job Jj′ on machine Mi, let variable zii′j ∈ {0, 1}
indicate that job Jj is processed on machine Mi before machine Mi′, and let M be a

large constant, then an integer linear program for the OSSP is

min. Cmax, (2.22)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (2.23)

xij + pij ≤ xij′ +M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (2.24)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (2.25)

xij + pij ≤ xi′j +M(1− zii′j), ∀i 6= i′ ∈ [m], j ∈ [n], (2.26)

zii′j + zi′ij = 1, ∀i 6= i′ ∈ [m], j ∈ [n], (2.27)

34

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (2.28)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n], (2.29)

zii′j ∈ {0, 1}, ∀i 6= i′ ∈ [m], j ∈ [n]. (2.30)

In this formulation constraints (2.23) define the makespan, constraints (2.24) require

the jobs Jj and J ′j to be processed in the order defined by the variables yijj′ for each

machine Mi, constraints (2.25) forces a linear ordering of the jobs on each machine,

constraints (2.26) require each job Jj to be processed in the order defined by the

variables zii′j on machines Mi and Mi′, and constraints (2.27) forces a linear ordering

of each job on all machines.

2.3 Other Theoretical Concepts

The general flow shop scheduling problem may be considered a special case of the

job shop scheduling problem, where machine Mi must process the i-th operation of

every job. For this reason, this section presents some theoretical concepts that apply

to both problems.

2.3.1 Semi-active, active and non-delay schedules

A semi-active schedule has no operation that can start and finish earlier without

changing the processing order or violating its feasibility. In other words, every

operation is processed as early as the schedule commands. Figure 2.1a shows a

Semi-active schedule. Creating an idle time on machine M2 by delaying job J2

would produce an example of a schedule that is not semi-active.

An active schedule has no operation that can start and finish earlier by changing

the processing order without forcing another operation to start and finish later

or violating its feasibility. In other words, there is no operation that fits into

an earlier idle time. An active schedule is also semi-active, but not otherwise.

Figure 2.1b shows an active schedule, because both operations on machine M2

would be affected by a change in their processing order. If we change the

processing order on machine M2 of Figure 2.1a, only one operation is earlier and

the other remains at the same time slot. Thus, Figure 2.1a shows a semi-active

schedule that is not active.

A non-delay schedule has no idle time on any machine when an operation is waiting

for processing. In other words, if a machine is free, it will start processing any

available operation as soon as possible. A non-delay schedule is also active and

35

M1

M2

M3

0 2 4 66 t

a. Semi-active schedule.

J1

J2

M1

M2

M3

0 2 4 66 t

b. Active schedule.

Figure 2.1: Semi-active and active schedules.

Op
Active Non-delay

Semi-active

Schedules

Figure 2.2: Venn diagram of classes of schedules. Set Op are optimal schedules for
regular criteria.

hence semi-active, but not otherwise. Figure 2.1b shows an active schedule that

is not non-delay, because there is an operation available to start processing on

machine M2 at time 1 that waits. An example of a non-delay schedule can be

obtained by changing the processing order on machine M2.

Figure 2.2 shows a Venn diagram of the different types of schedules. Optimal

schedules for regular criteria are represented by the small grey set. All optimal

schedules are active, but not every optimal schedule is non-delay.

2.3.2 A simple 3× 3 job shop example

Table 2.1 introduces a simple instance of a JSSP given by Yamada & Nakano

(1997). For each job’s operation, it presents the required machine and the processing

Table 2.1: 3× 3 instance of the JSSP.

Jobs Operations
Machine (processing time)

J1 M1 (3) M2 (3) M3 (3)
J2 M1 (2) M3 (3) M2 (4)
J3 M2 (3) M1 (2) M3 (1)

36

time. Each job has a different machine order. Usually the size of a shop scheduling

instance is represented by n×m, where n is the number of jobs and m is the number

of machines. This instance must process three jobs on three machines, thus we refer

to this instance as a 3× 3 instance.

A solution for a JSSP instance is a job shop schedule and there are many ways to

represent it. A Gantt chart is the most explanatory visual representation for a schedule.

Figures 2.3 and 2.4 presents Gantt charts of an optimal solution for the 3× 3 instance.

A Gantt chart is a type of bar chart that illustrates in the x-axis the start and completion

times for each operation. The y-axis may be arranged by jobs (Figure 2.3) to show

their progress, or by machines (Figure 2.4) to show their occupation.

2.3.3 Disjunctive graph representation

A disjunctive graph G = (V,C ∪D) formally describes a JSSP instance. Figure 2.5

presents a disjunctive graph for the 3×3 instance. A disjunctive graph comprises three

sets:

The set of vertices (V) represents the set of all operations. Two artificial operations

are added to this set: a source 0 and a sink ∗ that represent the begin and the

end of the schedule. The vertex of operation oij is weighted with the processing

time pij of job Jj on machine Mi.

The set of conjunctive arcs (C) represents the constraints of the given processing

sequence for the operations through the machines. These arcs are represented

by the arrows in Figure 2.5.

The set of disjunctive arcs (D) represents the constraints that require an order

among operations to be processed on the same machine. These undirected arcs

are represented by dashed lines in Figure 2.5. Note that the set of disjunctive

arcs forms m complete subgraphs (cliques), one for each machine.

The shop scheduling problem consists in defining a processing order for the

operations that cannot be processed at the same time. A selection of one direction for

each disjunctive arc that does not produce a cycle in the graph defines a processing

order for those operations. Such a selection consequently represents a solution for the

shop scheduling problem. In Figure 2.6, each disjunctive arc of the 3×3 JSSP instance

has been replaced by a directed grey arc. The topological sort of the directed graph

that results of this selection defines the processing order of the optimal solution from

Figure 2.4. A schedule obtained from a consistent complete selection is semi-active.

37

M1

M2

M3

J1

J2

J3

0 5 10 12 t

Figure 2.3: Gantt chart of an optimal schedule for the 3 × 3 JSSP instance arranged
by jobs.

J1

J2

J3

M1

M2

M3

0 5 10 12 t

Figure 2.4: Gantt chart of an optimal schedule for the 3 × 3 JSSP instance arranged
by machines. Dashed lines surround each block of operations of the critical path.

0 o12

p12 = 2

o32

p32 = 3

o22

p22 = 4

o11

p11 = 3

o21

p21 = 3

o31

p31 = 3

o23

p23 = 3

o13

p13 = 2

o33

p33 = 1

∗

Figure 2.5: A disjunctive graph representation for the 3× 3 JSSP instance.

0 o12

p12 = 2

o32

p32 = 3

o22

p22 = 4

o11

p11 = 3

o21

p21 = 3

o31

p31 = 3

o23

p23 = 3

o13

p13 = 2

o33

p33 = 1

∗

Figure 2.6: A graph representation of the optimal solution for the 3× 3 JSSP instance
from Figure 2.4. The critical path is marked in grey.

38

2.3.4 Makespan, critical paths and blocks of operations

The makespan is defined as the maximum completion time, or as the completion

time of the latest job. In the graph representation, the makespan is determined by a

path from the source 0 to the sink ∗ with the greatest sum of vertex weights. Such a

path is called critical path and it is the longest sequence of consecutive operations in

the schedule, as highlighted in Figure 2.6. The operations in a critical path are called

critical operations. A sequence of consecutive critical operations on the same machine

is called a critical block. The Gantt chart in Figure 2.4 shows the critical operations in

two critical blocks surrounded by dashed lines.

2.4 Data structures for representing schedules

2.4.1 Binary representation

In the disjunctive graph representation, the selection of one direction of a

disjunctive arcs defines the precedence order of two operations. A disjunctive arc

that connects operations oij and oij′, corresponds to the variables yijj′ of the integer

linear program formulation. Thus, a representation may be defined as a binary string

of length mn(n−1)/2 that lists the values of the corresponding disjunctive arcs in a

fixed order. For example, the string S = 011100001 is a binary representation of the

optimal schedule from Figure 2.6, where the list of variables yijj′ that correspond to

the disjunctive arcs from operation oij to oij′ such that j < j′ and ordered by i, j,

and j′.

This binary representation shares the inconsistency problem with the disjunctive

graph representation. A binary string may represent a cyclic selection in the

disjunctive arcs of the graph, and consequently represents no valid schedule. For

example, the string 010101010 represents no valid schedule, because it produces at

least one cycle in each machine of the disjunctive graph from Figure 2.5. Modifications

to a binary string may represent neighbourhoods to be explored, but also may generate

inconsistencies that must be prevented or corrected.

2.4.2 Permutation representation with m-partitions

A schedule can also be represented by a sequence of m separated permutations

of jobs S = (π1(1), . . . , π1(n), π2(1), . . . , π2(n), . . . , πm(1) . . . , πm(n)), where each

permutation πi gives the processing order for machine Mi. For example, the sequence

S = (

π1︷ ︸︸ ︷
2, 1, 3,

π2︷ ︸︸ ︷
3, 1, 2,

π3︷ ︸︸ ︷
2, 3, 1) is a permutation representation with m-partitions of the

39

0 o12

p12 = 2

o32

p32 = 3

o22

p22 = 4

o11

p11 = 3

o21

p21 = 3

o31

p31 = 3

o23

p23 = 3

o13

p13 = 2

o33

p33 = 1

∗

Figure 2.7: A cycle in an invalid graph representation of the 3× 3 JSSP instance.

optimal schedule from Figure 2.6. Even though each permutation defines the

processing order of a machine without producing a cycle in it, they may produce a

cycle among the machines. For example, the sequence (2, 3, 1, 1, 3, 2, 2, 3, 1) represents

no valid schedule, because it produces a cycle as shown in Figure 2.7. Thus,

inconsistencies introduced by a modification in a permutation representation with

m-partitions must be prevented or corrected.

2.4.3 Permutation representation with m-repetitions

Another representation of a schedule is the permutation of a multiset (set with

repeated elements) that results from the union of the m sets of jobs. A multiset

permutation ρ = (ρ(1), ρ(2), . . . , ρ(n×m)) contains nm job numbers where each

job number is repeated m times. For example, the permutation with m-repetitions

ρ = (2, 3, 2, 1, 3, 3, 1, 2, 1) represents the optimal schedule from Figure 2.6. Figure 2.8

shows the decodification method for this representation. Starting from the left, the

k-th occurrence of a job number refers to its k-th operation, and the processing order

determines the machine that processes this operation. Then, the schedule is created

by following the available operations from left to right. In contrast to the permutation

representation with m-partitions, all the job numbers of all machines are mixed in the

J1 = {M1,M2,M3}
J2 = {M2,M1,M3}
J3 = {M1,M3,M2}

M1

M2

M3

0 5 10 12 t

ρ = (2, 3, 2, 1, 3, 3, 1, 2, 1)

J2

J3

J2

J1 J3

J3

J1 J2

J1

Figure 2.8: Decodification of a job permutation with m-repetitions of an optimal
solution for the 3×3 JSSP instance. The processing order for each job Jj is on the left.

40

J1 = {M1,M2,M3}
J2 = {M2,M1,M3}
J3 = {M1,M3,M2}

M1

M2

M3

0 5 10 12 t

ρ = (2, 3, 2, 1, 3, 3, 1, 2, 1)

τ = (4, 7, 5, 1, 8, 9, 2, 6, 3)

J2

J3

J2

J1 J3

J3

J1 J2

J1

Figure 2.9: An operation permutation of an optimal solution for the 3×3 JSSP instance
as an intermediate decodification.

multiset permutation, eliminating the inconsistencies in the processing order for the

operations of a job. Thus, any permutation of this representation produces a valid

semi-active schedule without inconsistencies.

2.4.4 Operation permutation representation

If we assign a number from 1 to nm to each operation, such that

m(j−1)+1,m(j−1)+2, . . . ,mj are the operations of job Jj, a permutation of all

the operations represents a schedule. An operation permutation may be seen as

an intermediate representation between a job permutation representation and its

decoded schedule. A job permutation with m-repetitions ρ = (2, 3, 2, 1, 3, 3, 1, 2, 1)

can be rewritten as an operation permutation τ = (4, 7, 5, 1, 8, 9, 2, 6, 3) by replacing

the k-th occurrence of a job number with its respective operation number, as

shown in Figure 2.9. The processing order is completely specified in an operation

permutation, then there is no need for decodification. On the other hand,

violations of the job processing order must be eliminated. For example, the

permutation (4, 7, 5, 1, 9, 8, 2, 6, 3) is invalid due to the order of operations 8 and 9.

2.5 Multi-objective optimization

In a multi-objective optimization problem, a solution x must be found in the set

X of feasible solutions such that a set of functions f1(x), f2(x), . . . , fk(x) is optimized.

The objective functions are said to be conflicting if there is no single solution that

simultaneously optimizes all the objectives. Figure 2.10 shows two solutions with

two conflicting objective functions. Each solution is better than the other in different

objective functions, i.e., neither solution is absolutely better than the other. The next

definitions are necessary to deal with conflicting objectives.

41

x1

x2

f1

f2

f1(x1) < f1(x2)

f2(x1) > f2(x2)
f2(x1) > f2(x2)

Figure 2.10: Optimal non-permutation and best possible permutation schedules for
minimizing makespan.

Pareto dominance. A solution x ∈ X is said to Pareto dominate another solution

x′ ∈ X if fi(x) ≤ fi(x
′) ∀i ∈ [k] and if ∃i ∈ [k] such that fi(x) < fi(x

′).

Non-dominated solution. A solution x ∈ X is called Pareto optimal or non-dominated
if there is no x′ ∈ X that dominates x.

Non-dominated set. A set of solutions is said to be a non-dominated set if no member

of the set is dominated by any other member.

Pareto frontier. The Pareto frontier or Pareto optimal set contains all the non-dominated

solutions in X.

Objectives scalarization. The scalarization of objectives is the formulation of a single-

objective function based on the multiple objectives, such that an optimal solution

of the scalarized single-objective optimization problem is part of the Pareto

frontier of the multi-objective optimization problem. Note that only one optimal

solution in the Pareto frontier is obtained with each scalarization.

Approaches for solving multi-objective optimization problems are divided into three

classes:

A priori approach. The preferences of the decision maker are given a priori by a

weighted combination of the objective functions. Thus, the multi-objective

optimization problem is described as a scalarized single-objective optimization

problem

min. w1f1(x) + w2f2(x) + · · ·+ wkfk(x), (2.31)

s.t. x ∈ X. (2.32)

A posteriori approach. The decision maker selects a posteriori his preferred solution

from the non-dominated set of the best solutions that the solving process was

42

able to find by optimizing all the objectives simultaneously. Thus, the multi-

objective optimization problem is described as

min. f1(x), f2(x), . . . , fk(x), (2.33)

s.t. x ∈ X. (2.34)

Interactive approach. The decision maker introduces his preferences at each step of

the solving process, and the process determines the best solutions according to

the introduced preferences and asks to the decision maker for new preferences

before continuing the search.

2.6 Concluding remarks

The permutation and non-permutation variations of the flow shop scheduling are

very similar, their only difference is the permutation restriction. This chapter described

the shop scheduling problems and their characteristics, focusing on the flow shop

scheduling problem. The non-permutation FSSP is special case of the JSSP, they

share similar characteristics. This chapter also presented theoretical concepts of shop

scheduling that may be applied to the non-permutation flow shop scheduling problem.

43

3 LITERATURE REVIEW

Six decades have passed since the initial paper of Johnson (1954) on the two

machines flow shop scheduling problem was published. During the first two decades

after that, many scheduling problems were modeled (such as the flow shop scheduling

problem or FSSP and the job shop scheduling problem or JSSP), and the main research

efforts were in polynomial-time algorithms for small problems (such as two machines

or two jobs), enumeration algorithms (such as branch-and-bound), and lower bounds

(based on relaxations of the problems).

After the development of computational complexity theory, the publications of

Garey, Johnson & Sethi (1976) and Garey & Johnson (1979) proved that the

flow shop, job shop, and other scheduling problems are NP-complete, and the

publication of Graham et al. (1979) surveyed the scheduling literature, classified

the existing problems with the corresponding complexity, and proposed a three-field

notation α|β|γ to describe their characteristics (as explained in Section 2.1). The

NP-completeness of the problems led the following scheduling research to focus

on approximation and heuristic algorithms that produce near optimal solutions in

a reasonable computation time, limiting the research on exact methods to small

instances, and to cases that can (or need to) afford a considerable computation time.

Thus, the computational complexity and the classification helped the scheduling to

become a well structured research field with many growing research areas as we know

today.

In this chapter, we review the most important contributions in the literature that

are relevant to our research. We review the literature on the permutation flow

shop scheduling problem (or PFSSP) in Section 3.1, and on the non-permutation

(or general) FSSP in Section 3.2. As the non-permutation FSSP can be considered

a specific case of the JSSP, Section 3.3 presents some relevant literature on the JSSP.

Section 3.4 presents benchmarks of the commonly used instances for the flow shop

and the job shop scheduling problems. Finally, Section 3.5 presents examples in the

44

literature that successfully introduce human diversity in the planning and scheduling

processes of productive systems.

The research field of shop scheduling is vast. Web of Science reports more than

7800 publications on flow shop and job shop scheduling, and Scopus reports more

than 10000 publications. Thus, we limit our literature review to the most relevant

and recent research in the area. If the reader wishes to have more detail on some

area, we recommend the following bibliography. For more information on scheduling

problems, we refer the reader to the reviews of Potts & Strusevich (2009) and Zobolas,

Tarantilis & Ioannou (2008), and the books of Brucker (2004), Błażewicz et al. (2007),

Pinedo (2012), and Framinan, Leisten & Ruiz García (2014). For more information on

flow shop scheduling problems, we refer the reader to the reviews of Framinan, Gupta

& Leisten (2004), Reza Hejazi & Saghafian (2005), Ruiz & Maroto (2005), Gupta &

Stafford (2006), and Tyagi, Varshney & Chanramouli (2013), and the book of Emmons

& Vairaktarakis (2012). The review of Pan & Ruiz (2013) presents more information

on flow shop scheduling minimizing total completion time. For more information on

multicriteria scheduling including the flow shop, we refer the reader to the reviews of

Hoogeveen (2005), Minella, Ruiz & Ciavotta (2008) Sun et al. (2011), and Yenisey &

Yagmahan (2014), and the book of T’kindt & Billaut (2006).

3.1 The permutation flow shop scheduling problem

Web of Science reports more than 3700 publications for a search of the words “flow

shop” or “flowshop” in the topic, and the most important among them (with more

than 800 citations) is the publication of Nawaz, Enscore & Ham (1983) that proposed

the NEH constructive heuristic.

3.1.1 The constructive heuristic NEH for the PFSSP with makespan criterion

Algorithm 3.1 presents a pseudocode for the NEH constructive heuristic. First,

the jobs are arranged to create a priority order πo, according to a non-increasing

value of their total processing time, which is defined as
∑

i∈[m] pij for each job Jj.

Then, a schedule is constructed by iteratively inserting the jobs into the current partial

solution π at the position that minimizes the makespan until π becomes a complete

solution. Assuming that π is the current sequence already determined for the first j−1

jobs, there are j insertion places for job πo(j) that produce j candidate sequences, and

the sequence that yields the minimum makespan becomes the current sequence for

the next iteration.

45

Algorithm 3.1 NEH constructive heuristic for PFSSP.

Input: The processing times pij for each job Jj on each machine Mm.
Output: A permutation schedule π.

1: function NEH_CONSTRUCTIVE_HEURISTIC()
2: πo := (πo(1), . . . , πo(n)) in non-increasing total processing time
3: π := (πo(1))
4: for πo(j), j ∈ [2, n] do
5: evaluate all the insertion positions of job πo(j) into π
6: insert job πo(j) into π at the position which minimizes Cmax

7: end for
8: return π
9: end function

The makespan calculation of a schedule has a complexity of O(mn), as the

completion time of all the n jobs in all the m machines must be calculated. Taillard

(1990) proposed an acceleration that calculates the makespan of the n sequences that

result of a job insertion with a complexity of O(mn), by calculating the times of heads

and tails for every insertion position once in O(nm). This acceleration reduces the

complexity of the NEH heuristic from O(n3m) to O(n2m).

Formally, the insertion of a job Jl into the partial permutation schedule

π = (π(1), . . . , π(k)) results into another partial (or complete) permutation π′ =

(π′(1), . . . , π′(k + 1)), and the acceleration of Taillard calculates the makespan values

M1, . . . ,Mk+1 for the insertion of job Jl into each position j ∈ [k + 1] as follows. The

earliest completion time ei,j of each job π(j) on each machine i is defined as

ei,j = max{ei,j−1, ei−1,j}+ pi,π(j), (3.1)

for i ∈ [m] and j ∈ [k], with e0,j = 0 and ei,0 = 0. Similarly, the time qi,j between

the end of processing and the latest starting time of each job j on each machine i is

defined as

qi,j = max{qi,j+1, qi+1,j}+ pi,π(j), (3.2)

for i ∈ [m] and j ∈ [k], with qm+1,j = 0 and qi,k+1 = 0. After the insertion of job Jl into

π′ at position j ∈ [k + 1], the earliest completion times of the jobs before the position

j remain unchanged, and they are used to calculate the earliest relative completion

time fi,j of job Jl (if it is inserted at position j) on machine i as

fi,j = max{fi−1,j, ei,j−1}+ pi,l, (3.3)

for i ∈ [m] and j ∈ [k+1], with f0,j = 0 and ei,0 = 0. Then, the makespan Mj of the

permutation schedule π′ that result of the insertion of job Jl at position j ∈ [k + 1] is

46

defined as

Mj = maxi∈[m]{fi,j + qi,j}. (3.4)

Many researchers have proposed modifications to improve the results of NEH,

for example: Nagano, Moccellin et al. (2002) Kalczynski & Kamburowski (2008),

Dong, Huang & Chen (2008), Ribas, Companys & Tort-Martorell (2010), Fernandez-

Viagas & Framinan (2014), and Vasiljevic & Danilovic (2015). The modifications add

a very small computational cost by evaluating different initial priority orders, and

by breaking ties in the initial priority order and in the selection of the insertion

position. The current best constructive heuristic with complexity O(n2m) is the

initial priority order of Dong, Huang & Chen (2008) followed by the tie-breaking

mechanism of Fernandez-Viagas & Framinan (2014) with an average relative percent

deviation of 2.897 from the best known values. The best constructive method with

complexity O(Ln2m) with L ≤ 26 and with an average relative percent deviation of

2.465 from the best known values was proposed by Vasiljevic & Danilovic (2015).

Their method is not deterministic, they implement different versions of NEH with

random tie breaks and keep the best result. The NEH algorithm has even been

accelerated by implementing it into a GPU by Metlicka et al. (2014), presenting an

average speedup factor of 1.62 and a largest speedup factor of 5.18 when compared to

a CPU implementation.

3.1.2 The constructive heuristics FRB for the PFSSP with makespan criterion

Farahmand Rad, Ruiz & Boroojerdian (2009) proposed a set of five heuristics

based on modifications of the NEH heuristic that evaluate the reinsertion of already

inserted jobs. Algorithm 3.2 shows the FRB2 heuristic. It sorts all the operations in

non-increasing order of their processing times. After that, it inserts the job of each

operation just like the NEH heuristic. If the job was already inserted, it is removed

and its reinsertion is evaluated. The FRB2 heuristic inserts or reinserts each one of

the n jobs at most m times, and each time with a time complexity of O(nm) using the

acceleration of Taillard. Thus, it has a time complexity of O(n2m2).

The FRB1 heuristic is similar to the FRB2 heuristic, but calculates the makespan

using secondary values of the processing times that are initially zero. At each iteration,

it copies the processing time of the current operation, and inserts (or reinserts)

the corresponding job at the best position. The FRB1 heuristic has the same time

complexity of the FRB2 heuristic, and obtained better results than NEH, but worse

results than the other heuristics FBR.

47

Algorithm 3.2 FRB2 constructive heuristic for PFSSP.

Input: The processing times pij for each job Jj on each machine Mm.
Output: A permutation schedule π.

1: function FRB2_CONSTRUCTIVE_HEURISTIC()
2: PV := {p11, p21, . . . , pm,1, p1,2, p2,2, . . . , pm,2, . . . , p1,n, p2,n, . . . , pm,n}
3: sort PV in non-increasing processing time
4: π := (PV [1])
5: lastjob := job(PV [1])
6: for step := 2 to mn do
7: j := job(PV [1])
8: if lastjob 6= j then
9: if j ∈ π then

10: remove j from π
11: end if
12: evaluate all the insertion positions of job πo(j) into π
13: insert job πo(j) into π at the position which minimizes Cmax

14: end if
15: end for
16: return π
17: end function

The last three heuristics explore the reinsertion of jobs after each new job is

inserted. The FRB3 heuristic reinserts all the previously inserted jobs, while the

FRB4 heuristic reinserts jobs that are at a distance of at most k positions from the

last inserted job. We refer to each FRB4 heuristic with a different k as FRB4k.

Algorithm 3.3 shows the FRB4k heuristic. Heuristic FRB3 is equivalent to FRB4n. First,

it orders the jobs by their non-increasing total processing time. At each iteration, it

inserts the next job πo(j) in the best position p and reinserts the jobs that are at most at

k positions after or before position p. The inner reinsertion loop has a time complexity

of O(knm), and the outer loop has a time complexity of O(kn2m). With small values

k � n, the time complexity of the FRB4k heuristic is the same as NEH O(n2m), but

the computational effort grows with the value of k. The time complexity of FRB3 is

O(n3m). The FRB4k heuristic was tested with k ∈ {2, 4, 6, 8, 10, 12}. All the FRB4k
heuristics tested were faster than FRB2. FRB410 and FRB412 obtained better average

results than FRB2, showing that FRB412 has the best cost/benefit. The FRB3 heuristic

obtained the second best results among the proposed heuristics, but it is also the

second most expensive.

The FRB5 heuristic explores the reinsertion of already inserted jobs after each

new job is inserted with an insertion local search. It obtained the best results among

the proposed heuristics, but it is also the most expensive. Farahmand Rad, Ruiz &

Boroojerdian (2009) also tested the FRB2, FRB3, and FRB5 heuristics as seeds for the

48

Algorithm 3.3 FRB4k constructive heuristic for PFSSP.

Input: The processing times pij for each job Jj on each machine Mm,
a limit k of adjacent job to be reinserted.

Output: A permutation schedule π.
1: function FRB4_CONSTRUCTIVE_HEURISTIC(k)
2: πo := (πo(1), . . . , πo(n)) in non-increasing total processing time
3: π := (πo(1))
4: for πo(j), j ∈ [2, n] do
5: evaluate all the insertion positions of job πo(j) into π
6: insert job πo(j) into π at the position p which minimizes Cmax

7: for step2 := max(1, p−k) to min(|π|, p+k) do
8: remove job Jj′ = π(step2) from π
9: evaluate all the reinsertion positions of job Jj′ into π

10: reinsert job Jj′ into π at the position p which minimizes Cmax

11: end for
12: end for
13: return π
14: end function

simulated annealing of Osman & Potts (1989), the ant colony algorithm of Rajendran

& Ziegler (2004), the genetic algorithm of Ruiz, Maroto & Alcaraz (2006), and the

iterated greedy algorithm of Ruiz & Stützle (2007). The use of the FRB5 heuristic as

seed for the tested metaheuristics produced the best results.

3.1.3 Metaheuristics applied to the PFSSP with makespan criterion

The NEH constructive heuristic is fast and efficient, but it still leaves room

for improvement with other methods. NEH gives the initial sequence for many

metaheuristics in the literature, such as tabu search (GRABOWSKI; WODECKI, 2004;

EKŞIOĞLU; EKŞIOĞLU; JAIN, 2008), scatter search (NOWICKI; SMUTNICKI, 2006;

HAQ et al., 2007), genetic algorithms (NAGANO; RUIZ; LORENA, 2008; CHEN et

al., 2012; CHANG et al., 2013b), particle swarm optimization (TASGETIREN et

al., 2007), ant colony optimization (RAJENDRAN; ZIEGLER, 2004; AHMADIZAR,

2012), artificial bee colonies (LIU; LIU, 2013; PAN et al., 2014), differential

evolution (ONWUBOLU; DAVENDRA, 2006; PAN; TASGETIREN; LIANG, 2008),

evolutionary algorithms (CHANG et al., 2013a; HSU; CHANG; CHEN, 2015), iterated

greedy algorithms (RUIZ; STÜTZLE, 2007; FERNANDEZ-VIAGAS; FRAMINAN, 2014;

VALLADA; RUIZ, 2009), artificial immune systems (CHEN; CHANG; LIN, 2014),

teaching learning optimization (XIE et al., 2014), cuckoo search (MARICHELVAM,

2012; DASGUPTA; DAS, 2015), hybrids of these methods (LIN; YING, 2009; TSENG;

LIN, 2009; ZOBOLAS; TARANTILIS; IOANNOU, 2009). This list is just a small sample

of the many algorithms in the literature. The iterated greedy algorithm of Fernandez-

49

Viagas & Framinan (2014) is currently the best performing method. They proposed

the use of their tie-breaking scheme in an iterated greedy algorithm based on that

proposed by Ruiz & Stützle (2007). Vallada & Ruiz (2009) proposed a parallel

cooperative iterated greedy algorithm that run the iterated greedy algorithm proposed

by Ruiz & Stützle (2007) in up to 12 processors. This method allows the parallel

algorithm to share the best results among them and continue exploring in different

areas of the search space. This parallel method produces better results.

3.1.4 Constructive heuristics for PFSSP with total completion time criterion

Pan & Ruiz (2013) compared 14 simple and 13 composite heuristics proposed in

the literature for the permutation flow shop scheduling problem with total completion

time criterion. They studied the quality of the solutions (average relative percentage

deviation over the best known solution) and the CPU time (in seconds) of each

heuristic as a bi-criteria optimization problem to create a set of non dominated

heuristics. Many of the compared heuristics are based on the LR(k) heuristic of Liu

& Reeves (2001), that has a computational complexity of O(kn3m). Fernandez-Viagas

& Framinan (2015) proposed a new heuristic FF(k) with a computational complexity

of O(kn2m) that can replace LR(k) in all the derived heuristics with better results

in shorter time. This new set of heuristics based on FF for the PFSSP with total

completion time criterion is the current state of the art in the literature.

The LR heuristic of Liu & Reeves (2001) iteratively appends an unscheduled jobs

at the end of a partial permutation schedule. To do so, they use an index function ξjk
to estimate the suitability for a job Jj to be appended after the already k scheduled

jobs. It is defined as

ξjk = (n− k − 2)ITjk + ATjk, (3.5)

for a job Jj to be appended on position where ITjk estimates the idle time induced by

the scheduling of job Jj at position k + 1, and is defined as

ITjk = m
m∑
i=2

max{Ci−1,π(k+1) − Ci,π(k), 0}
i+ k(m− i)/(n− 2)

, (3.6)

and ATjk = Cm,j + Cm,a is an artificial flowtime defined as the sum of the completion

time Cm,j of job Jj to be appended at position k+1 and the completion time Cm,a of an

artificial job Ja that would be appended at position k + 2, which has processing times

that are the average of the processing times of the unscheduled jobs excluding job

Jj to be appended at position k + 1. Fernandez-Viagas & Framinan (2015) observed

that the creation of an artificial job and the calculation of its completion time has a

50

complexity of O(mn), and that it does not influence the objective function as directly

as the other two elements. Thus, they proposed a new index function ξ′jk defined as

follows:

ξ′jk =
n− k − 2

a
IT ′jk + AT ′jk, (3.7)

IT ′jk = m

m∑
i=2

max{Ci−1,π(k+1) − Ci,π(k), 0}
i− b+ k(m− i+ b)/(n− 2)

, (3.8)

AT ′jk = Cm,j, (3.9)

also introducing two parameters a and b to balance the influence of idle times and

completion time of the newly inserted job.

3.1.5 Metaheuristics applied to the PFSSP with total completion time criterion

Pan & Ruiz (2012) proposed four iterated local search based methods. The

proposed iterated local search (ILS) has a perturbation scheme based on random shift

of some jobs, and a local search based on the shift neighbourhood. The proposed

iterated greedy algorithm (IGA) has a perturbation scheme based on the removal and

reinsertion of a random subset of jobs, and it also applies the local search based on

the shift neighbourhood. The other two methods are a population based iterated

local search (pILS) and a population based iterated greedy algorithm (pIGA). The

four methods use the acceptance criterion proposed by Metropolis et al. (1953).

The proposed methods were compared to twelve state-of-the-art metaheuristics that

include the discrete differential evolution of Pan, Tasgetiren & Liang (2008), the

hybrid genetic algorithm of Zhang, Li & Wang (2009), the iterated local shearch of

Dong, Huang & Chen (2009), the asynchronous genetic local search of Xu, Xu & Gu

(2011), the discrete artificial bee colony of Tasgetiren et al. (2011), the stochastic

local search of Dubois-Lacoste, López-Ibáñez & Stützle (2011). Their computational

results show that the iterated greedy algorithm outperformed the other methods.

Dong, Huang & Chen (2009) proposed an iterated local search that has a

perturbation scheme based on the swap of pairs of random adjacent jobs, and a local

search based on the shift neighbourhood. Later, Dong et al. (2013) proposed a multi-

restart scheme to enhance their iterated local search (or MRSILS). At each iteration,

the MRSILS perturbs a solution randomly selected from a pool that maintains the

best local minima found during the search. Their computational results show that

MRSILS performs better when compared to the iterated local search of Dong, Huang

& Chen (2009), the discrete differential evolution of Pan, Tasgetiren & Liang (2008),

the hybrid genetic algorithm of Zhang, Li & Wang (2009), and the discrete artificial

bee colony of Tasgetiren et al. (2011).

51

Recently, Dong et al. (2015) proposed a self-adaptive perturbation and multiple

neighbourhood local search to enhance the iterated local search. The self-adaptive

strategy evaluates the neighbourhoods around the local optimum and adjusts the

perturbation strength according to this evaluation. The multiple neighbourhood

local search explores the swap and the shift neighbourhoods. They evaluated the

contribution to the performance of the multi-neighbourhood search and the self-

adaptive perturbation independently, concluding that the best performing results are

obtained with the use of the multi-neighbourhood search, although the self-adaptive

perturbation gives a small improvement when used with the multi-neighbourhood

search. The proposed iterated local search is compared to those of Dong et al. (2013),

and Pan & Ruiz (2012). The method of Dong et al. (2015) clearly outperforms

the method of Dong et al. (2013). The methods of Dong et al. (2015) and Pan

& Ruiz (2012) present no significant difference for times of ρmn milliseconds (ρ ∈
{30, 60, 90}), but Dong et al. (2015) is superior for a larger time scale of ρmn3

milliseconds (ρ ∈ {0.004, 0.012, 0.02}).

Other notorious methods are the differential evolution algorithm for permutations

of Santucci, Baioletti & Milani (2014), the particle swarm optimization of Zhang

& Wu (2014), and the hybrid particle swarm optimization of Akhshabi, Tavakkoli-

Moghaddam & Rahnamay-Roodposhti (2014). Czapiński (2010) proposed a parallel

simulated annealing with a genetic enhancement that found the best known values

for almost all the instances of the Taillard’s benchmark, and they are still the best

known values for the first 90 instances. Since then, the methods of Pan & Ruiz (2012),

Akhshabi, Tavakkoli-Moghaddam & Rahnamay-Roodposhti (2014), Santucci, Baioletti

& Milani (2014), and Dong et al. (2015) have found new best known values for the 30

largest instances. Table 3.1 presents the current best known values for the 30 largest

instances of the Taillard’s benchmark and the methods that found them. A direct

comparison to the methods of Dong et al. (2015) and Pan & Ruiz (2012) is difficult

due to the different running times of Santucci, Baioletti & Milani (2014) and Akhshabi,

Tavakkoli-Moghaddam & Rahnamay-Roodposhti (2014) and the lack of reference for

the relative deviations of Zhang & Wu (2014). Thus, a future practical comparison of

those methods is necessary.

3.1.6 Metaheuristics applied to the bi-objective PFSSP with makespan and total

completion time criteria

We have reviewed the literature for the PFSSP with a single objective function:

minimizing makespan or minimizing total completion time. Now, we review the

literature that consider both criteria in a Pareto frontier approach. The review of

52

Table 3.1: Best known total completion times for the largest instances of Taillard.

Inst. Best Csum Method Inst. Best Csum Method Inst. Best Csum Method

ta091 1046314 SA ta101 1224734 ILS ta111 6677283 ILS
ta092 1034195 SA ta102 1239246 DEA ta112 6723548 PSO
ta093 1045706 DEA ta103 1254162 PSO ta113 6697443 ILS
ta094 1029580 DEA ta104 1233443 DEA ta114 6741759 ILS
ta095 1034027 SA ta105 1220117 DEA ta115 6715997 ILS
ta096 1006195 SA ta106 1223238 DEA ta116 6723435 ILS
ta097 1052786 DEA ta107 1237116 DEA ta117 6674684 ILS
ta098 1044875 SA ta108 1235460 PSO ta118 6746086 ILS
ta099 1023315 DEA ta109 1225186 DEA ta119 6674879 ILS
ta100 1029198 DEA ta110 1244200 DEA ta120 6733095 ILS

SA: Simulated annealing of Czapiński (2010).
DEA: Differential evolution algorithm of Santucci, Baioletti & Milani (2014).
PSO: Particle swarm optimization of Akhshabi, Tavakkoli-Moghaddam & Rahnamay-

Roodposhti (2014).
ILS: Iterated local search of Dong et al. (2015).

Minella, Ruiz & Ciavotta (2008) identified the multi-objective simulated annealing

(MOSA-II) of Varadharajan & Rajendran (2005) as the most effective method by that

time. After that, many authors have reimplemented it to compare their methods,

such as the genetic algorithm with heterogeneous population (hMGA) of Yandra &

Tamura (2007), the iterated greedy search (MOIGS) of Framinan & Leisten (2008),

the simulated annealing (M-MOSA) of Mokotoff (2009), the ant colony algorithm

(MOACA) of Rajendran & Ziegler (2009), the memetic algorithm (impr-MA) of Chiang

& Fu (2010), the restarted iterated Pareto greedy (RIPG) of Minella, Ruiz & Ciavotta

(2011), the two phase and Pareto local search (TP+PLS) of Dubois-Lacoste, López-

Ibáñez & Stützle (2011), the bi-objective multi-start simulated annealing (BMSA) of

Lin & Ying (2013). All these publications give to their reimplementation of MOSA-II a

second place after their own methods. The best results are obtained by the methods of

Chiang & Fu (2010), Minella, Ruiz & Ciavotta (2011), Dubois-Lacoste, López-Ibáñez &

Stützle (2011), and Lin & Ying (2013), but they cannot be directly compared because

of the different quality measures and running times that were used.

A recent study by Bezerra, López-Ibáñez & Stützle (2014) reimplemented many

generic multi-objective evolutionary algorithms and evaluated their effectiveness on

solving the PFSSP under the same conditions, concluding that the genetic algorithm

(NSGA-II) of Deb et al. (2002) is the best performing among the evaluated, but their

study excludes state-of-the-art methods such as the specific genetic algorithm (hMGA)

of Yandra & Tamura (2007), although hMGA has already claimed better results than

NSGA-II.

53

3.2 The non-permutation flow shop scheduling problem

The publication of Heller (1960) was the first that used the term “flow shop”.

He studied the distribution of the makespan over randomly generated schedules for

two instances. He evaluated 3000 permutation schedules for the 100 × 10 instance,

12000 permutation and 9037 non-permutation schedules for the 20 × 10 instance.

The average makespan of the random non-permutation schedules were four times

larger than that of the random permutation schedules. Thus, they concluded that

it is better to search for schedules which have the same ordering on all machines.

Since then, almost all the researches on the FSSP focus their efforts on finding

permutation schedules of good quality. For example, Web of Science reports more than

3700 publications for a search of the words “flow shop” or “flowshop” in the topic,

and only 37 of them have the words “non-permutation” or “nonpermutation” in the

topic. Even though there is no loss of generality for the case of two machines, or for

three machines if minimizing makespan, this simplification excludes better (optimal)

non-permutation schedules for the FSSP with more machines.

Krone & Steiglitz (1974) proposed a two phase heuristic for the FSSP with

average completion time criterion. The first phase builds a random permutation

schedule, that is improved by a shift local search. The second phase improves the

permutation schedule by exploring job passing neighbours, thus creating a slightly

better non-permutation schedule. They concluded that the second phase gives a

small but important improvement in 80% of the tested permutation schedules, just

by considering non-permutation schedules.

Tandon, Cummings & LeVanu (1991) compared the quantity and quality of

permutation and non-permutation schedules. The schedules were obtained by

enumerative search for small problems (up to 6 jobs or 6 machines), and by simulated

annealing for medium problems (up to 8 jobs or 11 machines). They observed that the

number of non-permutation schedules better than permutation schedules increases

with the number of either jobs or machines, and the quality improvement from

permutation to non-permutation schedules depends on the range of processing times

and on the size of the problem, concluding that the consideration of non-permutation

schedules is necessary to find optimal or near optimal schedules.

Potts, Shmoys & Williamson (1991) were the first to estimate the gap between the

makespan of permutation and non-permutation schedules and they presented a family

of instances for which the makespan of the best permutation schedule is worse than

that of the optimal non-permutation schedule by a factor Ω(
√
m), leaving the upper

bound of this function as an open question. This question was recently answered by

54

Nagarajan & Sviridenko (2009) with a Θ(min{
√
m,
√
n}) approximation algorithm for

the PFSSP with makespan and with average completion time criteria.

Raman (1995) considered heuristic methods to minimize tardiness in the FSSP,

and the results show that, although producing non-permutation schedules require

more computational effort, non-permutation schedules are generally superior and

thus worthy.

Koulamas (1998) proposed a two phase heuristic called HFC for the FSSP with

makespan criterion. The first phase creates a permutation schedule with a job priority

order based on the solution of the two machine FSSP with the rule of Johnson (1954)

for each of the m(m− 1)/2 pairs of machines. The second phase considers job passing

for all the adjacent pairs of jobs in the permutation schedule produced within the

first phase, using the values calculated with the rule of Johnson (1954), and only if

it improves the current solution. The HFC is compared to NEH heuristic with Taillard

acceleration (O(n2m)). Although the HFC has a time complexity of O(n2m2), it is

faster than NEH for instances with 20 machines or less. It finds schedules with a

shorter makespan in 90% of the instances, and half of them are non-permutation

schedules. Later studies do not confirm these results on larger sets of instances (RUIZ;

MAROTO, 2005), but the conclusion concerning the improvement achieved with the

consideration of non-permutation schedules is still valid.

Jain & Meeran (2002) proposed a multilevel hybrid system called core and shell

framework (CSF) for the non-permutation FSSP. The CSF was originally designed for

the JSSP by Jain & Meeran (1998). Based on concepts of scatter search, CSF consists

of a core that intensifies the search over the reference solutions, and layered shells

that combine the solutions in different manners to produce new diverse solutions

for the core. The system core has local search with a high degree of intensification,

mainly based on the reduced neighbourhood (explained in Section 3.3) of Nowicki &

Smutnicki (1996), and a dynamic tabu tenure. The system shells are neighbourhood

search methods with different degrees of diversification, based on concepts of path

relinking, recombination of schedules, and bottleneck scheduling of the machine with

most critical operations. The CSF showed better results when compared to other

methods for JSSP, like the tabu search of Nowicki & Smutnicki (1996), using FSSP

instances.

Liao, Liao & Tseng (2006) proposed a tabu search that explores a shift

neighbourhood with a best improvement strategy. The shift neighbourhood is reduced

to reinsert a job in a place with a distance of at most n/2 from its original position.

Liao, Liao & Tseng (2006) reimplemented the genetic algorithm of Reeves (1995) for

comparison. After a permutation schedule is generated, a non-permutation schedule is

55

generated iteratively by fixing the scheduling sequence in the previous machines and

using a new sequence for the current and following machines. The new sequences are

also generated by the associated algorithm (either tabu search or genetic algorithm).

Liao, Liao & Tseng (2006) evaluated the deviations between the best permutation and

non-permutation schedules found by the tabu search and the genetic algorithm for

six different optimization criteria that include makespan, total completion time and

total tardiness. Their computational results show that tabu search finds better results

than the genetic algorithm. Non-permutation schedules present little improvements

for the completion-time based criteria, but the improvement is significant with respect

to due-date based criteria. The time invested to produce non-permutation schedules

grows greatly with the instance size. Liao, Liao & Tseng (2006) concluded that

the time investment may be worthy depending on the obtained improvement, for

example with the total tardiness criterion. Later, Liao & Huang (2010) studied

the non-permutation FSSP with the total tardiness criterion, proposing three mix

integer linear programming models and two tabu search algorithms with custom

neighbourhoods for non-permutation schedules. The best model solved optimally

instances with five machines and up to eight jobs and within 24 hours. The optimal

solutions presented similar job sequences for adjacent machines, and the position

of the jobs varied slightly. The proposed tabu search algorithms explore the swap

of adjacent operations of the same jobs in different machines, producing good

quality non-permutation schedules that are better than the permutation schedules,

for instances of n ∈ {20, 50, 100} jobs and m ∈ {5, 10, 20} machines.

Haq et al. (2007) proposed a scatter search for the FSSP with an operation

shift neighbourhood as intensification method and a voting system as a combination

method. Their scatter search showed better results when compared to the CSF of

Jain & Meeran (2002) and the tabu search (for JSSP) of Nowicki & Smutnicki (1996),

using FSSP instances.

Ying & Lin (2007) proposed a multi-heuristic desirability ant colony system

(MHD-ACS) for the non-permutation FSSP and compared it to simple constructive

heuristics. A non-permutation schedule is constructed by finding a shortest path that

visits all the nodes in the disjunctive graph representation. A desirability function

influences the decision of an ant to choose a path, and the multi-heuristic desirability

is based on a set of schedules generated with dispatching rules. Later, Ying (2008)

proposed an iterated greedy that was superior than the MHD-ACS. Lin & Ying (2009)

proposed a hybrid simulated annealing and tabu search that was superior than

the MHD-ACS and to the separated simulated annealing and tabu search. Both,

the iterated greedy and the hybrid simulated annealing and tabu search, use a

representation of three permutations for each schedule: one permutation for the first

56

two machines, another for the last two machines, and a third permutation for the

middle machines (machines M3 to Mm−2, if m > 4). This representation reduces

the number of candidate solutions from m!n to m!3, achieving results faster, but also

ignoring possibly better candidate solutions.

Sadjadi, Bouquard & Ziaee (2008) also presented an ant colony algorithm

algorithm for the permutation FSSP, and applied a non-permutation local search to the

obtained permutation solution. The non-permutation local search explores exchanges

of two jobs on the first k or the last k machines. The exchanged two jobs must

be adjacent themselves or at most adjacent to a common third job. Permutation

and non-permutation results are superior compared to other permutation methods.

Non-permutation results improve permutation results with a small computational cost.

Zheng & Yamashiro (2010) proposed a quantum differential evolutionary algo-

rithm (QDEA) for the non-permutation FSSP. They also use three permutations to

represent each schedule. QDEA shows better results compared to the CSF of Jain &

Meeran (2002), the MHD-ACS of Ying & Lin (2007), and the scatter search of Haq et

al. (2007).

Zhang et al. (2013) proposed a reinforcement learning algorithm for the non-

permutation FSSP with makespan criterion. To do this, they formulated the problem

as a Semi-Markov Decision Process, defining states with features, actions based

on heuristic and dispatching rules, and a reward system based on the average

machine idle time. The reinforcement learning algorithm was compared to the

MHD-ACS of Ying & Lin (2007) and the iterated greedy of Ying (2008), showing

small improvements in quality.

Rossi & Lanzetta (2014) proposed a native non-permutation ant colony system

(NNP-ACS) for the non-permutation FSSP and compared it to the MHD-ACS of Ying

& Lin (2007). A desirability function influences the decision of an ant to choose a

path. Besides a different desirability function (earliest starting time), NNP-ACS uses

an adaptive parameter q0 equivalent to the number of iterations without improvement

divided by the limit of maximum number of iterations without improvement, while

MHD-ACS set this parameter to q0 = 0.9. NNP-ACS also improves each produced

schedule with the local search (for JSSP) of Nowicki & Smutnicki (1996). The

results showed that NNP-ACS is superior to MHD-ACS. In another publication,

Rossi & Lanzetta (2013a) compared the NNP-ACS to other ACOs like Rajendran &

Ziegler (2004) (for permutation FSSP) and Sadjadi, Bouquard & Ziaee (2008) (for

non-permutation FSSP), showing better results. These comparisons were unfair with

the other methods, because NNP-ACS has a stop criterion based on stability that allows

significantly larger running times.

57

Gharbi, Labidi & Louly (2014) proposed lower and upper bounds for the

non-permutation FSSP. They described two adjustment procedures from the literature

based on disjunction and preemption principles. They also proposed three new

adjustment procedures based on the principles of disjunction, semi-preemption, and

the same permutation on the first (or last) two-machines of the optimal schedule.

These adjustments are used to create a new lower bounding procedure and five

heuristics that produce upper bounds. Their procedure found better lower bounds

compared to the one machine based lower bound for the majority of the instances,

but with a higher computational cost. They created a set of instances with n ∈
{10, 20, 30, 40, 50, 60, 70, 80} jobs and m ∈ {4, 5, 6} machines for testing. Their

heuristics presented a reduced gap to the lower bounds, finding the optimal values for

many of the instances, but with a high computational cost. Their methods solved many

instances of the non-permutation FSSP, but they do not present any statistic about

differences between permutation and non-permutation in the produced schedules.

Finally, the consideration of non-permutation schedules has lead to better solutions

in other special cases of the FSSP, for example with missing operations (RAJENDRAN;

ZIEGLER, 2001; PUGAZHENDHI et al., 2003; PUGAZHENDHI et al., 2004a;

PUGAZHENDHI et al., 2004b; TSENG; LIAO; LIAO, 2008; ROSSI; LANZETTA, 2013b),

with limited buffers (BRUCKER; HEITMANN; HURINK, 2003; RONCONI, 2004;

FÄRBER; COVES MORENO, 2006; FÄRBER; SALHI; COVES MORENO, 2008), with

uncertain processing times (SWAMINATHAN et al., 2007), with sequence dependent

setup times (LIN; YING; LEE, 2009; YING et al., 2010; MEHRAVARAN; LOGENDRAN,

2012), with dual resources (MEHRAVARAN; LOGENDRAN, 2013), with learning

effects (VAHEDI-NOURI; FATTAHI; RAMEZANIAN, 2013b; VAHEDI-NOURI; FATTAHI;

RAMEZANIAN, 2013a; VAHEDI-NOURI et al., 2014).

3.3 The job shop scheduling problem

The first paper about JSSP was published by Jackson (1956). This paper

generalizes the algorithm of Johnson (1954) to the JSSP. Since then, many researchers

have published works on the JSSP. Web of Science reports more than 4100 publications

for a search of the words “job shop” or “jobshop” in the topic, and the most important

among them (with about 600 citations) is the publication of Adams, Balas & Zawack

(1988) that proposed the shifting bottleneck procedure (SBP). The SBP is the most

important constructive heuristic for the JSSP. The SBP iteratively identifies and

schedules the bottleneck machine. To do this, it solves the one-machine sequencing

problem with release and due dates that minimizes the maximum lateness for each

unscheduled machine, identifies the machine with the worst maximum lateness as

58

the bottleneck machine, and schedules this bottleneck machine. After the scheduling

of each machine, an optional reoptimization may be applied, by trying to reschedule

each previously scheduled machine, one by one, solving the one-machine sequencing

problem with updated release and due dates, and updating the partial schedule if

there is a better one. This process is repeated until all machines are scheduled. Wenqi

& Aihua (2004) proposed an improved version of the SBP that produces only feasible

schedules, eliminating the deadlocks that the SBP had to detect and avoid. The

improved SBP creates better solutions than the SBP, but with a higher computational

cost.

Many metaheuristic approaches have been applied to the JSSP, such as tabu search

(NOWICKI; SMUTNICKI, 1996; NOWICKI; SMUTNICKI, 2005; NASIRI; KIANFAR,

2012), genetic algorithms (VÁZQUEZ; WHITLEY, 2000; PÉREZ; POSADA; HERRERA,

2012; GONÇALVES; RESENDE, 2014; AMIRGHASEMI; ZAMANI, 2015), greedy ran-

domized adaptive search procedure (BINATO et al., 2002; AIEX; BINATO; RESENDE,

2003), evolutionary algorithms (ESQUIVEL et al., 2002), artificial immune systems

(COELLO; RIVERA; CORTÉS, 2003), ant colony optimization (PIN; XIAO-PING;

HONG-FANG, 2004; ZHANG et al., 2006; HEINONEN; PETTERSSON, 2007), particle

swarm optimization (GE et al., 2005; PONGCHAIRERKS; KACHITVICHYANUKUL,

2009), variable neighbourhood search (SEVKLI; AYDIN, 2006), global equilibrium

search (PARDALOS; SHYLO, 2006), artificial bee colonies (CHONG et al., 2006;

BANHARNSAKUN; SIRINAOVAKUL; ACHALAKUL, 2012), differential evolution (LIU

et al., 2009; PONSICH; COELLO, 2010), backbone and big valley properties

(PARDALOS; SHYLO; VAZACOPOULOS, 2010), cuckoo search (SINGH; SINGH,

2015), and hybrids of these methods (ZHANG et al., 2008; HUANG; LIAO, 2008;

PONSICH; COELLO, 2013; ZHAO et al., 2015).

3.3.1 The neighbourhood of Nowicki & Smutnicki for the JSSP

One of the most important advances for the JSSP is the neighbourhood proposed

by Nowicki & Smutnicki (1996). This neighbourhood is reduced to the interchange of

the first two (or the last two) operations in a block that belongs to a single (arbitrarily

selected) critical path, excluding the first two (and the last two) operations of that

critical path. Figure 3.1 presents an example for the four moves allowed by this

neighbourhood in a job shop schedule. The critical path of the schedule presents

three blocks of operations that are surrounded by dashed lines. The first block on

machine M3 only interchanges its last two operations of jobs 5 and 2. The last block

on machine M2 only interchanges its first two operations of jobs 6 and 1. The block

59

M1

M2

M3

0 2 4 6 8 10 12 14 16 18 20 t

6

6

6

3

3

3

5

5

5

2

2

2

1

1

1

4

4

4

Figure 3.1: Neighbourhood of Nowicki & Smutnicki. Arrows indicate the possible
movements. Dashed lines surround the blocks of the critical path.

on machine M1 interchanges its first two operations of jobs 2 and 3 and its last two

operations of jobs 5 and 6.

Nowicki & Smutnicki (1996) implemented this neighbourhood in a tabu search

algorithm with back jump tracking (or TSAB), that stores each improved solution with

its unexplored neighbourhood and the current tabu list, for future intensification in

restarts after the search becomes stagnant. Their computational results showed that

TSAB was capable of solving the large instances in very shorter times, performing

better than all the contemporaneous methods in the known benchmarks, and

becoming the base for future research.

Nowicki & Smutnicki (2005) improved the TSAB using a path relinking for

diversification and proposed the i-TSAB. Watson, Howe & Whitley (2006) presented

a detailed study of the i-TSAB and its components. They concluded that the good

performance of i-TSAB is due to both the reduced neighbourhood operator and

a balanced combination of intensification and diversification, showing that other

methods that use the reduced neighbourhood achieve similar performance. Thus,

since the publication of Nowicki & Smutnicki (1996), almost every intensification

method uses their reduced neighbourhood.

3.4 Benchmarks from the literature

The most widely used benchmarks for scheduling problems were proposed by

Taillard (1993). The benchmark of Taillard (1993) for FSSP comprises 120 instances,

10 instances for each size (20 × 5, 20 × 10, 20 × 20, 50 × 5, 50 × 10, 50 × 20, 100 × 5,

100×10, 100×20, 200×10, 200×20, and 500×20). The benchmark of Taillard (1993)

for JSSP comprises 80 instances, 10 instances for each size (15× 15, 20× 15, 20× 20,

30× 15, 30× 20, 50× 15, 50× 20, and 100× 20). The benchmark of Taillard (1993) for

the open shop comprises 60 instances, 10 instances for each size (4 × 4, 5 × 5, 7 × 7,

60

10 × 10, 15 × 15, and 20 × 20). The literature usually refers to the 120 Taillard FSSP

instances are ta001–ta120, and to the 80 Taillard JSSP instances are tai01–tai80.

The next most commonly used benchmark for FSSP and JSSP was proposed by

Demirkol, Mehta & Uzsoy (1998). They presented many instances with additional

data for setup times and lateness, but many researchers use only the processing times

and precedence constrains for completion time criteria. These and other commonly

used benchmarks such as those proposed by Reeves (1995), Adams, Balas & Zawack

(1988), Fischer & Thompson (1963), Carlier (1978), Applegate & Cook (1991),

are available at the Operations Research Library maintained by Beasley (2005) with

exception of Demirkol instances that are available at the websites of Oddi (2005) and

Shylo (2005).

Recently, Vallada, Ruiz & Framinan (2015) discussed that the reduced number

of open instances (or instances with unknown optimum and different upper and

lower bounds), in the Taillard’s benchmark for the FSSP, and the small relative

deviations from the optimum obtained by heuristic methods difficult the evaluation

and comparison of new methods. Consequently, they proposed a new benchmark,

with 240 large instances for testing of heuristics (10 of each size with n ∈
{100, 200, . . . , 800} and m ∈ {20, 40, 60}), and 240 small instances for testing of exact

methods (10 of each size with n ∈ {10, 20, . . . , 60} and m ∈ {5, 10, 15, 20}).

3.5 Heterogeneous workforce in the literature

The research regarding workforce planning focuses in many cases on mathematical

models, disregarding the real life consequences of the simplifications made during

the modeling process. The research regarding workforce management gives an

extensive description of the human implications of management decisions, but fail

to use customized mathematical models to provide support to their decisions. The

area of Operations Research and the Management Sciences is progressively proposing

approaches that address human diversity in the procedures for design, planning

and control of productive systems. Next, we describe some examples of diversity

inclusion that contribute to narrow the gap between research models and practice. De

Bruecker et al. (2015) presented a review and classification of the literature regarding

workforce planning problems incorporating skills.

Daniels, Mazzola & Shi (2004) studied the assignment problem of skilled workers

to each operation of a the FSSP. The processing time of an operation depends on

the number of workers assigned to the corresponding work station (machine) in that

period. Only trained (skilled) workers can be assigned to a station, and each worker

61

is trained to work on at least one station. They proposed small instances of this new

problem and a branch-and-bound algorithm that solves them optimally.

Zhang, Song & Wu (2012) studied an stochastic model for the JSSP with

minimization of the expected total weighted tardiness as optimization criterion. In

their model, the processing times are independent random variables with known

expected value and variance. They proposed a particle swarm optimization with two

stages for the problem. In the first stage, the solutions are evaluated with a fast

lower bound and are improved with a local search, quickly converging to high-quality

regions in the solution space. The second stage focuses the search on finding the

best solutions, evaluating them with a more accurate (but expensive) Monte Carlo

simulation. The method finds solutions of good quality.

Wang & Zhang (2015) studied the PFSSP with minimization of the weighted sum

of makespan and total completion time with learning effects. The learning effect

decreases the processing time of the operations as workers gain more experience.

They proposed a constructive heuristic and a branch and bound algorithm for the

problem. The constructive heuristic finds near optimal solutions in short time.

Li & Womer (2009) studied a project scheduling problem with assignment of

multi-skilled personnel. The personnel members have (or miss) certain skills from

a determined set of skills, and they have a limited availability. The jobs of the project

have release and due dates, and may be performed only by personnel that fulfill the

required skills. A hybrid algorithm that combines mixed-integer linear programming

(MILP) and constraint programming (CP) was used to solve instances of the new

problem, showing better results compared to pure MILP or CP methods.

Fırat & Hurkens (2012) studied the assignment of technicians to tasks with multi-

level skill requirements proposed in the 2007 ROADEF Challenge. The technicians

have different levels of specialization for each skill and are not available on all days

of the planning horizon. Each task has a fixed duration, precedence relations, and the

number of technicians for each skill level that it requires for its execution. Thus, a

schedule must present the processing time for the tasks and the groups of technicians

with the necessary skills to process each task. They proposed a flexible matching

model to solve this problem that produces solutions of good quality.

Regarding assembly lines, the basic hypothesis of standardized task times was

totally assumed in the classic literature with the only exception of Mansoor (1968)

and Bartholdi & Eisenstein (1996), that analyzed the case in which workers have

different work speeds in a particular assembly line, the Toyota Swen System. Later,

Gel, Hopp & Van Oyen (2002) and Hopp, Tekin & Van Oyen (2004) studied the case

where the workers were categorized as fast or slow according to their performance,

62

and Erel, Sabuncuoglu & Sekerci (2005) studied an stochastic model for the assembly

line balancing problem that presents a random variation in the processing times from

item to item, due to the experience, willingness, distractions, fatigue and other factors

affecting the performance of the workers. They proposed a beam search that finds

good configurations for the assembly line minimizing the expected total costs. Also

Corominas, Pastor & Plans (2008) studied the assembly line balancing problem to

minimize the number of required temporary workers that must be hired to attain a

production goal. They categorize the workers as skilled (permanent) and unskilled

(temporary). The unskilled workers can only perform a subset of tasks with a

processing time larger than that of a permanent worker by a fixed factor. The problem

was taken from a real motorcycle assembly plant. The problem was modeled using

binary linear programming and was optimally solved using the CPLEX optimizer.

Following this trend, Miralles et al. (2007) defined the Assembly Line Worker

Assignment and Balancing Problem (ALWABP) that focuses in the heterogeneity of

task times and the presence of incompatibilities, defining a new set of realistic

hypotheses. The objective was the minimization of the cycle time given a set of

tasks to be assigned to heterogeneous workers in successive stations, as it was

the most common situation at SWD assembly lines that originally inspired the

problem. The philosophy was to assign the workers those tasks they can handle

while trying to avoid those more difficult or impossible tasks, thus making invisible

the disabilities while maximizing productivity. Due to the problem complexity,

other authors focused on heuristic and metaheuristic approaches such as clustering

search (CHAVES; MIRALLES; LORENA, 2007; CHAVES; LORENA; MIRALLES, 2009),

tabu search (MOREIRA; COSTA, 2009), beam search (BLUM; MIRALLES, 2011),

constructive heuristics (MOREIRA et al., 2012), genetic algorithms (MOREIRA et al.,

2012; MUTLU; POLAT; SUPCILLER, 2013), and branch and bound based methods

(MIRALLES et al., 2008; VILÀ; PEREIRA, 2014; BORBA; RITT, 2014).

3.6 Concluding remarks

In this chapter we presented a brief survey on the flow shop scheduling problem,

showing that the 99% of the literature focus on the permutation variation. We also

presented a more detailed survey on the non-permutation variation of the flow shop

scheduling problem. As the general flow shop scheduling problem may be considered

a special case of the job shop scheduling problem, we also reviewed the literature

on the job shop scheduling problem. Finally, we presented many examples in the

literature that successfully introduce human diversity in the planning and scheduling

processes of productive systems.

63

Part II

Heuristics for the non-permutation
flow shop scheduling problem

with makespan and total completion
time criteria

65

4 THE PERMUTATION AND NON-PERMUTATION FLOW SHOPS

As defined in Section 2.2.1, a flow shop that has the same processing order on

all machines, such as the schedule in Figure 4.1b, is called a permutation flow shop,

because only one permutation of the jobs is necessary to represent a schedule. A flow

shop that allows different processing orders on the machines is called non-permutation
flow shop, general flow shop, or plainly flow shop, such as the schedule in Figure 4.1a

that has two different processing orders, one on the two first and another on the two

last machines.

Chapter 3 shows that almost all of the research on flow shop scheduling has

focused on the development of procedures to obtain permutation schedules. The

most probable reason is that the general or non-permutation version of the FSSP

is more difficult than the permutation version. The number of feasible schedules

is n!m for a flow shop instance with n jobs and m machines. The consideration of

the same job permutation on all machines reduces the space of solutions to n! possible

permutations, disregarding the number of machines.

This enormous reduction of the search space is a direct consequence of

excluding m − 1 permutations, but the other direct consequence is the elimination of

possible better non-permutation schedules. For example, the instance of the flow shop

problem in Table 4.1 has a best possible permutation schedule with a makespan of 11

(Figure 4.1b), but if we also consider non-permutation schedules, there is a better

non-permutation schedule with a makespan of 10 (Figure 4.1a) that is the optimal

for this instance. Potts, Shmoys & Williamson (1991) give a family of flow shop

instances whose makespan values between the best permutation schedule and the

optimal non-permutation schedule may differ by a factor greater than 1/2(
√
m+ 1/2).

Other practical studies such as Tandon, Cummings & LeVanu (1991) and Liao, Liao &

Tseng (2006) show that the makespan of non-permutation schedules is in average 2%

shorter than the makespan of permutation schedules for the tested instances.

66

Table 4.1: 2× 4 instance of the FSSP.

Jobs Operations
M1 M2 M3 M4

J1 1 3 3 1
J2 3 1 1 3

M1

M2

M3

M4

10 t

a. Non-permutation flow shop.

M1

M2

M3

M4

11 t

b. Permutation flow shop.

Figure 4.1: Optimal non-permutation and best possible permutation schedules for
minimizing makespan.

Table 4.2: 2× 3 instance of the FSSP.

Jobs Operations
M1 M2 M3

J1 1 4 4
J2 4 1 1

M1

M2

M3

7 11 t

a. Non-permutation flow shop.

M1

M2

M3

9 10 t

b. Permutation flow shop.

Figure 4.2: Optimal non-permutation and best possible permutation schedules for
minimizing total completion time.

67

The situation is similar when considering the total completion time criterion in flow

shop scheduling problems. The instance of the flow shop problem in Table 4.2 has a

best possible permutation schedule with a total completion time of 19 (Figure 4.2b),

but if we also consider non-permutation schedules, there is a better non-permutation

schedule with a total completion time of 18 (Figure 4.2a) that is the optimal for this

instance.

Conway, Maxwell & Miller (1967) proved that there exists an optimal solution

having the same processing order (permutation) on the first two machines for any

regular optimality criterion such as makespan and total completion time. As the

makespan flow shop problem is symmetric, i.e., it is equivalent to the reverse problem

with an inverted order of machines, they also proved that there exists an optimal

solution having the same processing order on the last two machines for the makespan

criterion. These properties reduce the number of feasible flow shop schedules

to n!(m−2) for the makespan criterion, and to n!(m−1) for the total completion time

criterion. These properties also show that the instances of Tables 4.1 and 4.2 are the

smallest examples for the makespan and the total completion time criteria respectively,

that present better non-permutation schedules.

4.1 Non-permutation insertion with anticipation or delay

We observed in preliminary experiments that non-permutation schedules with

the shortest makespan values have similar processing orders in subsequent machines,

with one or two jobs changing their positions in the processing order. An easy way

to create non-permutation schedules with this characteristic is to modify the NEH

heuristic (described in Section 3.1.1) to insert jobs with a slight difference in the

processing order between two intermediate machines.

The NEH heuristic evaluates the insertion of the next job into a partial schedule

straight in the same position on all machines, as shown in Figure 4.3. Now, we may

choose to insert a job with anticipation after an intermediate machine as shown in

Figure 4.4. An insertion with anticipation means that we insert a job in a certain

position k on the first machines, and after some intermediate machine, we hold

the operation scheduled immediately before position k, and insert the new job in

position k − 1 on the next machines. We also may choose to insert a job with

delay after an intermediate machine as shown in Figure 4.5. An insertion with delay

means that we insert a job in a certain position k on the first machines, and after

some intermediate machine, we anticipate the operations scheduled immediately after

position k and insert the new job in position k + 1 on the next machines.

68

M1

M2

M3

M4

0 5 10 11 t

k0

k0

k0

k0

M1

M2

M3

M4

0 5 10 12 t

k1

k1

k1

k1

M1

M2

M3

M4

0 5 10 11 t

k2

k2

k2

k2

M1

M2

M3

M4

0 5 10 13 t

k3

k3

k3

k3

Figure 4.3: Possible positions to insert a job that the NEH heuristic evaluates. Note
that the job is inserted straight in the same position on all machines.

M1

M2

M3

M4

0 5 10 12 t

k

k

k − 1

k − 1

a. Insertion of a job at position k = 2 with
anticipation after machine M2.

M1

M2

M3

M4

0 5 10 12 t

k′

k′

k′ − 1

k′ − 1

b. Insertion of a job at position k′ = 3 with
anticipation after machine M2.

Figure 4.4: Example of job insertions with anticipation in non-permutation schedules.

M1

M2

M3

M4

0 5 10 11 t

k

k

k + 1

k + 1

a. Insertion of a job at position k = 2 with
delay after machine M2.

M1

M2

M3

M4

0 5 10 13 t

k′

k′

k′ + 1

k′ + 1

b. Insertion of a job at position k′ = 1 with delay after
machine M2.

Figure 4.5: Example of job insertions with delay in non-permutation schedules.

69

Algorithm 4.1 A NEH-like constructive heuristic for the non-permutation FSSP.

Input: The processing times pij for each job Jj on each machine Mm.
Output: A permutation schedule π.

1: function NEH_LIKE_CONSTRUCTIVE_HEURISTIC()
2: πo := (πo(1), . . . , πo(n)) in non-increasing total processing time
3: π := (πo(1))
4: for πo(j), j ∈ [2, n] do
5: for all insertion positions k ∈ [j] do
6: evaluate insertion of πo(j) at k with anticipation after Mi with i ∈ [2,m− 2]
7: evaluate insertion of πo(j) at k with delay after Mi with i ∈ [2,m− 2]
8: evaluate insertion of Jj at k straight
9: end for

10: Apply the best insertion of job ρo(j) into π which minimizes Cmax

11: end for
12: return π
13: end function

Algorithm 4.1 presents a NEH-like heuristic for the non-permutation FSSP that

evaluates insertions with anticipation and delay, besides the straight insertions of

the original NEH. The number of different insertion possibilities grows from O(n)

to O(nm) due to the evaluation of anticipation and delay on different machines for

each insertion position. If each total completion time evaluation costs O(nm), a NEH-

like heuristic for the non-permutation FSSP inserts n jobs with a time complexity

of O(n3m2). The acceleration technique of Taillard reduces the time complexity of

NEH from O(n3m) to O(n2m), but it cannot be used directly with representations for

non-permutation schedules, as we show in Chapter 6.

4.2 Concluding remarks

The main conclusion of this chapter is that the elimination of non-permutation

schedules reduces the search space of the flow shop scheduling problem, but it

also eliminates optimal non-permutation schedules. We propose a non-permutation

insertion with anticipation or delay that introduces small changes in the processing

order of subsequent machines to create non-permutation schedules with a NEH-like

heuristic. We use this idea to propose heuristics for the non-permutation FSSP in

the next three chapters. We redefine this idea in each chapter according to the

corresponding representation and optimization criteria.

70

71

5 ITERATED LOCAL SEARCH HEURISTICS FOR MINIMIZ-

ING THE TOTAL COMPLETION TIME IN PERMUTATION AND

NON-PERMUTATION FLOW SHOPS

Section 2.2.1 has defined the permutation and non-permutation FSSP formally,

and Chapter 4 has explored the theoretical differences between the permutation and

non-permutation FSSP. The permutation FSSP is easier to solve, but also eliminates

the posibility of finding a better (or an optimal) non-permutation schedule. Optimal

non-permutation schedules only show small changes in the processing order of

subsequent machines. This observation may be exploited to reduce the search space

of the non-permutation FSSP.

This chapter studies the practical differences between the permutation and the

non-permutation FSSP with the total completion time criterion, and the degree of

effort needed to find good non-permutation schedules with the proposed heuristics.

Section 5.1 introduces the concepts of iterated local search, and describes the

components of the iterated local search that is proposed to solve the permutation FSSP.

Section 5.2 introduces the basic concepts of iterated greedy algorithms, and describes

the iterated greedy algorithm that is proposed to solve the non-permutation FSSP.

Section 5.4 presents and analyzes computational experiments. Finally, we conclude in

Section 5.5. This chapter corresponds to the publication of Benavides & Ritt (2015).

5.1 An iterated local search for the permutation FSSP

An iterated local search (ILS) is an stochastic local search that uses iteratively

an embedded heuristic with small perturbations, producing better solutions than by

randomly repeating the same heuristic. Algorithm 5.1 presents the general structure

of an ILS. The main components of an ILS are the perturbation scheme, the local search
scheme and the acceptance criterion. ILS starts from an initial local minimum obtained

72

Algorithm 5.1 Iterated local search.

Input: An initial solution s.
Output: The best solution s∗ found during the search.

1: function ILS(s)
2: s := LOCAL_SEARCH(s)
3: repeat
4: s′ := PERTURB(s)
5: s′ := LOCAL_SEARCH(s′)
6: if ACCEPTANCE_CRITERION(s, s′) then
7: s := s′

8: Update s∗ if necessary
9: end if

10: until some stopping criterion is satisfied
11: return s∗

12: end function

from a local search. Then, ILS repeatedly applies a perturbation to escape from the

current local minimum, followed by a local search to find another local minimum,

until some stopping criterion is satisfied. If the new local minimum is better than

the current one, the corresponding solution is accepted. Sometimes, the acceptance

criterion allows a slightly worse new local minimum to become the current local

minimum, in order to diversify the search. Finally, ILS returns the best solution found

during the search. The performance of an ILS depends on the perturbation strength,

on the structure of the neighbourhoods, and on the pliability of the acceptance

criterion. Next, we explain the ILS components to produce permutation schedules.

5.1.1 Perturbation scheme for permutation schedules

A perturbation which is too weak may lead to stagnation, while a too strong

perturbation can turn the algorithm into a randomized multi-start local search.

The perturbation strength of our algorithm is calibrated with the parameter d, that

Algorithm 5.2 Perturbation scheme for permutation schedules.

Input: A permutation schedule π, a number d of jobs to perturb.
Output: A perturbed permutation schedule π′.

1: function PERTURB_PERMUTATION_SCHEDULE(π,d)
2: remove d random jobs J1, . . . , Jd from π to get π′

3: for j ∈ [d] do
4: insert Jj into π′ at the position which minimizes Csum(π′)
5: end for
6: return π′

7: end function

73

M1

M2

M3

M4

0 5 10 12 t

job k was removed

a. Permutation schedule with a removed job.

M1

M2

M3

M4

0 5 10 11 t

k0

k0

k0

k0

M1

M2

M3

M4

0 5 10 12 t

k1

k1

k1

k1

M1

M2

M3

M4

0 5 10 11 t

k2

k2

k2

k2

M1

M2

M3

M4

0 5 10 13 t

k3

k3

k3

k3

b. Possible job reinsertions that produce a permutation schedule.

Figure 5.1: Example for perturbation scheme in permutation schedules.

represents the number of reconstructed jobs in the schedule. Algorithm 5.2 presents

the perturbation scheme used to produce permutation schedules. It starts with a

complete solution π, and removes d random jobs to create a partial solution π′.

Then, it iteratively reinserts the removed jobs with a greedy construction heuristic

into a position that minimizes the objective function of the partial schedule, until

the solution is complete. Figure 5.1 gives an example for the permutation scheme:

Figure 5.1a shows an schedule with a removed job, and Figure 5.1b shows the possible

permutation schedules that result from the different job reinsertions.

5.1.2 Local search scheme for permutation schedules

The most common neighbourhoods for local search on permutation schedules are

swapping two arbitrary pairs of jobs and shifting a job to another position. They have

repeatedly been identified as the most effective ones (PAN; RUIZ, 2013; DUBOIS-

LACOSTE; LÓPEZ-IBÁÑEZ; STÜTZLE, 2011; TASGETIREN et al., 2011; RAJENDRAN;

ZIEGLER, 2004; JARBOUI; EDDALY; SIARRY, 2009). Preliminary tests showed that

the order in which the neighbours are evaluated has a small but consistent effect

on the quality of the final solution. Consequently, our implementations visit each

neighbourhood in a specific order. We also impose a repetition limit r on the number

of neighbours to be evaluated within a run of each local search. Next we present

details about both neighbourhoods and the corresponding local search algorithms.

74

π = { }J1, J2, J3, J4, J5, J6

π = { }J1, J2, J3, J4, J5, J6
a. Shift neighbourhood moves.

π = { }J1, J2, J3, J4, J5, J6
b. Complete shift neighbourhood.

π = { }J1, J2, J3, J4, J5, J6
c. Complete swap neighbourhood.

π = { }J1, J2, J3, J4, J5, J6

π = { }J1, J2, J3, J4, J5, J6

π = { }J1, J2, J3, J4, J5, J6

π = { }J1, J2, J3, J4, J5, J6

.

.

.

π = { }J1, J2, J3, J4, J5, J6
d. Incremental distance exploration
for swap neighbourhood.

Figure 5.2: Examples for local search neighbourhoods.

5.1.2.1 Randomized shift local search

For a permutation schedule π, where π is a permutation of the index set [n] of the

jobs, a shift of the job at position i ∈ [n] to position j ∈ [n + 1] \ {i, i + 1} results

in the permutation (π(1), . . . , π(j − 1), π(i), π(j), . . . , π(i − 1), π(i + 1), . . . , π(n)). For

example, Figure 5.2a shows possible shifts from jobs J5 and J3 to other positions in the

permutation, and Figure 5.2b shows all the possible moves in the shift neighbourhood.

The size of the shift neighbourhood is (n−1)2. Algorithm 5.3 describes our randomized

shift local search. It iteratively evaluates the relocation of a job in every position of

the permutation. Note that the jobs to be relocated are examined in a random order.

The parameter r limits the number of neighbours to be evaluated within a run of the

local search.

Algorithm 5.3 Randomized shift local search.

Input: A permutation schedule π, a repetition limit r.
Output: A permutation schedule π′ with Csum(π′) ≤ Csum(π).

1: function RANDOMIZED_SHIFT_LOCAL_SEARCH(π,r)
2: repeat at most r times
3: for j ∈ [n] in some random order do
4: let π′ be the result of the best shift of job π(j)
5: let π:=π′ if Csum(π′) < Csum(π)
6: return π, if the last n shifts did not improve
7: end for
8: until π did not improve
9: return π

10: end function

75

5.1.2.2 Swap local search

For a permutation schedule π, where π is a permutation of the index set [n]

of the jobs, a swap of positions i, j ∈ [n] exchanges the jobs π(i) and π(j). For

example, Figure 5.2c shows all the possible moves in the swap neighbourhood. The

size of the swap neighbourhood is
(
n
2

)
. Algorithm 5.4 describes our swap local

search. It iteratively evaluates the exchange of two jobs in the permutation, starting

with adjacent jobs and later swapping jobs with an increasing distance, as shown in

Figure 5.2d. When an improvement is found, the distance of the swapped jobs is reset

to 1. Again, the parameter r limits the number of neighbours to be evaluated within a

run of the local search.

Algorithm 5.4 Swap local search.

Input: A permutation schedule π, a repetition limit r.
Output: A permutation schedule π′ with Csum(π′) ≤ Csum(π).

1: function SWAP_LOCAL_SEARCH(π,r)
2: d := 1
3: while d ≤ n and up to rn2 swaps do
4: for j ∈ [n− d] do
5: swap jobs π(j) and π(j + d) to get π′

6: let π := π′, if Csum(π′) < Csum(π)
7: end for
8: d := d+ 1
9: if π improved then reset d := 1

10: end while
11: return π
12: end function

5.1.3 Acceptance criterion

The acceptance criterion is based on that proposed by Metropolis et al. (1953).

The new solution s′ replaces the current solution s with probability

P [acceptance_criterion(s, s′)] = min{e−(Csum(s′)−Csum(s))/T , 1}

for a temperature T = αpn/10, where p =
∑

j∈[n]
∑

i∈[m] pij/nm is the average

processing time of an operation. The pliability of the acceptance criterion is calibrated

with the parameter α. A similar criterion has been proposed by Osman & Potts (1989)

for a simulated annealing heuristic to minimize the makespan in permutation flow

shops and has been successfully applied in several iterated local search algorithms.

The temperature has been adjusted by a factor of n to take into account the higher

values of the total completion time function.

76

5.1.4 Complete iterated local search for the permutation FSSP

Algorithm 5.5 presents our iterated local search for permutation schedules.

The initial schedule is obtained by the constructive heuristic LR(n/m) of Liu &

Reeves (2001) applied to n/m initial sequences, and the random shift local search.

Then, the current solution is repeatedly perturbed and improved by a local search.

Both local searches are used alternately to take advantage of their complementary

neighbourhoods. The acceptance criterion determines the replacement of the current

solution π by the newly produced solution π′. Finally, the ILS returns the best

permutation schedule found before the stopping criterion was satisfied.

Algorithm 5.5 Iterated local search for permutation schedules.

Input: A number d of jobs to perturb, a repetition limit r.
Output: The best permutation schedule π∗ found during the search.

1: function ILS(d,r)
2: π := LR(n/m)
3: π := RANDOM_SHIFT_LOCAL_SEARCH(π, r)
4: repeat
5: π′ := PERTURB_PERMUTATION_SCHEDULE(π, d)
6: if current iteration is even then
7: π′ := SWAP_LOCAL_SEARCH(π′, r)
8: else
9: π′ := RANDOM_SHIFT_LOCAL_SEARCH(π′, r)

10: end if
11: π := π′, with probability P [acceptance_criterion(π, π′)]
12: π∗ := π, if π is better than π∗

13: until some stopping criterion is satisfied
14: return s∗

15: end function

5.2 An iterated greedy algorithm for the non-permutation FSSP

An Iterated Greedy Algorithm (IGA) is a stochastic local search that iteratively

produces solutions by perturbing a solution using a greedy construction heuristic.

IGA is closely related to ILS with a greedy construction as the underlying heuristic.

Algorithm 5.6 presents the general structure of an IGA. An IGA starts from some initial

solution that may also be constructed with the greedy construction heuristic. Then,

it repeatedly applies a perturbation to the current solution, by eliminating some of

its elements in a destruction phase, to later reconstruct a new complete solution by

applying a greedy construction phase. This is repeated until some stopping criterion

is satisfied. If the new solution is better than the current one, it is accepted. As in

the ILS, the acceptance criterion sometimes allows an slightly worse new solution to

77

Algorithm 5.6 Iterated greedy algorithm.

Input: A number d of elements to perturb.
Output: The best solution s∗ found during the search.

1: function IGA(d)
2: s := GENERATE_INITIAL_SOLUTION()
3: repeat
4: sp := DESTRUCTION_PHASE(s, d)
5: s′ := GREEDY_CONSTRUCTION_PHASE(sp, d)
6: if ACCEPTANCE_CRITERION(s, s′) then
7: s := s′

8: Update s∗ if necessary
9: end if

10: until some stopping criterion is satisfied
11: return s∗

12: end function

become the current solution, in order to diversify the exploration. Finally, an IGA

returns the best solution found during the search.

5.2.1 Perturbation scheme for non-permutation schedules

The main component of an IGA is the perturbation scheme that consists of the

destruction and reconstruction phases. Algorithm 5.7 presents the perturbation

scheme used to produce non-permutation schedules. The parameter d adjusts

the number of elements to be destructed and reconstructed, thus calibrating the

Algorithm 5.7 Perturbation scheme for non-permutation schedules.

Input: A non-permutation schedule s = (π1, . . . , πm),
a number d of jobs to perturb.

Output: A perturbed non-permutation schedule s′ = (π′1, . . . , π
′
m).

1: function PERTURB_NON_PERMUTATION_SCHEDULE(s,d)
2: remove d random jobs J1, . . . , Jd from each πi ∈ s to get π′i ∈ s′
3: for j ∈ [d] do
4: for all positions k ∈ [n] do
5: evaluate insertion of Jj at k with anticipation

after machine Mi with i ∈ [2,m− 1]
6: evaluate insertion of Jj at k with delay

after machine Mi with i ∈ [2,m− 1]
7: evaluate insertion of Jj at k straight
8: end for
9: apply the best insertion of Jj to s′

10: end for
11: return s′

12: end function

78

M1

M2

M3

M4

0 5 10 12 t

k

k

k

k

a. Insertion of a job at a straight position k = 2.

M1

M2

M3

M4

0 5 10 12 t

k

k

k − 1

k − 1

b. Insertion of a job at position k = 2 with
anticipation after machine M2.

M1

M2

M3

M4

0 5 10 11 t

k

k

k + 1

k + 1

c. Insertion of a job at position k = 2 with
delay after machine M2.

Figure 5.3: Example of job insertions in non-permutation schedules.

strength of our perturbation. It starts with a complete non-permutation schedule

s = (π1, . . . , πm), and it removes d random jobs to create a partial solution s′ =

(π′1, . . . , π
′
m). Then, it iteratively reinserts the removed jobs with a greedy construction

heuristic until a new non-permutation schedule is complete.

Our main hypothesis for finding good non-permutation schedules is that only

limited changes to the processing order between two consecutive machines need to be

considered during the search. We propose an extended job insertion procedure which

reflects this principle. When inserting a job at some position into a partial schedule,

we evaluate job passing: the processing of a job may be anticipated or delayed at some

intermediate machine. Figure 5.3 gives examples of job insertions without job passing,

with anticipation, and with delay. Formally, let π1, . . . , πm be a partial non-permutation

schedule, with j jobs. Inserting a job J at position k ∈ [2, j + 1] with anticipation after

machine Mi with i ∈ [2,m − 1] results in putting job J at position k into π1, . . . , πi,

and at position k − 1 into πi+1, . . . , πm. Similarly, inserting a job J at position k ∈ [j]

with delay after machine Mi with i ∈ [2,m − 1] results in putting job J at position k

into π1, . . . , πi, and at position k + 1 into πi+1, . . . , πm.

5.2.2 Complete iterated greedy algorithm for the non-permutation FSSP

Algorithm 5.8 presents our iterated greedy algorithm for non-permutation

schedules. It starts from some permutation schedule obtained by ILS. Then, the

current solution is repeatedly destructed and reconstructed by the perturbation

scheme for non-permutation schedules until a stopping criterion is satisfied. The

acceptance criterion to determine the current solution replacement is the same of

ILS. Finally, the IGA returns the best solution found during the search.

79

Algorithm 5.8 Iterated greedy algorithm for non-permutation schedules.

Input: A number d of jobs to perturb, a repetition limit r.
Output: A non-permutation schedule s = (π1, . . . , πm).

1: function IGA(d,r)
2: π := ILS()
3: let s := (π, π, . . . , π)
4: repeat
5: s′ := PERTURB_NON_PERMUTATION_SCHEDULE(s, d)
6: s := s′, with probability P [acceptance_criterion(s, s′)]
7: s∗ := s, if s is better than s∗

8: until some stopping criterion is satisfied
9: return s∗

10: end function

5.3 Evaluation of schedules

A non-permutation schedule s = (π1, . . . , πm) is defined by the permutations πi
of the job index set [n] on each of the m machines. A permutation schedule may be

represented by a non-permutation schedule s = (π1 = π, . . . , πm = π) with the same

permutation πi = π for all the machines. Then, πi(k) is the k-th job on machine Mi

and its completion time is

Ci,πi(k) = max{Ci,πi(k−1), Ci−1,πi−1(k)}+ pi,πi(k),

where Ci,πi(0) = 0 and C0,π0(k) = 0. The completion time of job Jj is Cj = Cm,j

and the total completion time is Csum =
∑

j∈[n]Cj. Consequently, computing the

total completion time needs time Θ(nm) for any permutation or non-permutation

schedules.

Clearly, when the order of some operations has changed, only the modified

completion times have to be updated. Moreover, Duan et al. (2013) observed that

the completion times of the operations on the last machines depend only on the

completion times of the operations on the critical path. These speed-up techniques

can be used to reduce the number of completion times that must be updated. We use

both techniques in our algorithms to compute updated total completion times.

The number of resulting schedules after the insertion of a job in a permutation

schedule is O(n), and the total time required to find the insertion position such that

the total completion is minimized is O(n2m). The insertion of a job with anticipation

or delay after some machine increases the number of resulting non-permutation

schedules to O(nm). Thus, the total time required to find the insertion position and

the machine after which the job must be anticipated or delayed, such that the total

completion is minimized is O(n2m2).

80

5.4 Computational Experiments

We report the results of two computational tests. The first compares the quality

of the permutation schedules obtained by our iterated local search to state-of-the-art

methods from the literature. The second test compares the quality of non-permutation

schedules to permutation schedules. Additionally, we study the amount of job

reordering between consecutive machines in non-permutation schedules, and we

compare the buffer requirements of permutation and non-permutation schedules.

5.4.1 Experimental methodology

We have tested our algorithms on the 120 instances proposed by Taillard

(1993) and described in Section 3.4, which are the standard benchmark in the

literature. We present the quality of the results as relative percentage deviations

(Csum − C∗sum)/C∗sum × 100 from the best known values C∗sum reported by Pan & Ruiz

(2012).

It is common to compare metaheuristics for flow shops using a time limit of

τnmms, for some constant τ . We use three different time scales in our experiments,

as shown in Table 5.1. For the ILS we adopt the shortest time scale τ = 30 used

in the literature. We further use a time scale of τ = 60 for the ILS and the IGA,

since this is the total time needed for the two phases of the IGA. Finally, since finding

non-permutation schedules is considerably harder, we report results for a longer time

limit of 30nm2 for the IGA.

Table 5.1: Time scales for the experiments.

FSSP heuristic
ILS IGA

(permutation) (non-permutation)

Time limit
(milliseconds)

30nm
60nm 60nm

30nm2

Our algorithms have been implemented in C++, compiled with g++ version 4.7.3

and run on a PC with an eight-core AMD FX-8150 processor running at 3.6 GHz and

with 32 GB of main memory, using only one core in each execution.

5.4.2 Calibration of parameters

Both shift and swap local searches use a repetition limit r = 3 to control the

number of evaluated neighbours. This value was calibrated from the set {1, 2, 3, 4,∞}

81

in preliminary tests, confirming the value obtained by Dubois-Lacoste, López-Ibáñez

& Stützle (2011).

Both ILS and IGA depend on two parameters: the number of jobs d to

remove and reinsert in a perturbation and the temperature factor α. We use

the R package irace (LÓPEZ-IBÁÑEZ et al., 2011) which implements an iterative

F-Race (BALAPRAKASH; BIRATTARI; STÜTZLE, 2007) to tune these parameters.

An F-Race generates random parameters settings and compares their performance

by applying the non-parametric Friedman test for comparing multiple blocks and

treatments and post-hoc tests to identify the best parameter settings. The iterated

version repeats this process using the best parameter settings from the previous

iteration to generate new ones. We chose the three hard instances ta061, ta071, and

ta081 for these tests. The racing algorithm was run with a budget of 2000 executions

for both ILS and IGA. Table 5.2 shows the tested ranges of values and the values

obtained after the calibration for both ILS and IGA. The parameter search ranges were

chosen based on values of the literature and preliminary tests.

Table 5.2: Calibration of parameters.

Permutation ILS Non-permutation IGA

Parameter Tested Obtained Tested Obtained

α [0.01, 0.25] 0.2353 [0.0125, 2.0] 0.146
d [1, 15] 8 [1, 10] 2

5.4.3 Quality of permutation schedules

Table 5.3 compares our results to the best heuristic (PR) reported by Pan &

Ruiz (2012) for the same time limits of 30nmms and 60nmms. PR is an iterated

greedy algorithm reported as the best of 4 proposed heuristics and better than the

re-implementation of 12 methods by Pan, Tasgetiren & Liang (2008), Tseng & Lin

(2009), Tseng & Lin (2010), Zhang, Li & Wang (2009), Dong, Huang & Chen (2009),

Jarboui, Eddaly & Siarry (2009), Xu, Xu & Gu (2011), Dubois-Lacoste, López-Ibáñez &

Stützle (2011), Tasgetiren et al. (2011). The table reports the average of the relative

percentage deviation from the best known values reported by Pan & Ruiz (2012). Each

line of the table reports the average of 10 replications and 10 instances for our ILS,

and of 5 replications and 10 instances for PR.

The machine of Pan & Ruiz (2012) is about 10% faster than our machine, but the

average relative deviations of our algorithm in 30nmms is still better than that of PR

in 60nmms. Indeed, in 89 of the 120 instances the average total completion time of

82

Table 5.3: Comparison to the best heuristic reported by Pan & Ruiz (2012).

Size Our ILS PR

n×m 30nm 60nm 30nm 60nm

20×5 0.00 0.00 0.00 0.00
20×10 0.00 0.00 0.00 0.00
20×20 0.00 0.00 0.00 0.00
50×5 0.23 0.17 0.51 0.46
50×10 0.33 0.27 0.75 0.70
50×20 0.41 0.36 0.75 0.67

100×5 0.61 0.52 1.03 0.91
100×10 0.83 0.69 1.43 1.23
100×20 0.98 0.88 1.49 1.35
200×10 0.67 0.57 1.08 0.93
200×20 0.60 0.41 1.00 0.82
500×20 0.36 0.30 0.52 0.45

Averages 0.42 0.35 0.71 0.63

Table 5.4: New upper bounds on the total completion time for permutation schedules.

Instance Csum Instance Csum

ta099 1025946 ta115 6728404
ta103 1268383 ta118 6771654
ta109 1234115 ta119 6710587

our algorithm is less than that of PR obtained in about the double of the time. Our

algorithm found 6 new upper bounds on the total completion time, which are reported

in Table 5.4.

We also compare our results to the multi-restart iterated local search (MRSILS) of

Dong et al. (2013). They report a slightly better average relative deviation compared

to the heuristics of Tasgetiren et al. (2011) and Pan, Tasgetiren & Liang (2008), that

are also dominated by PR of Pan & Ruiz (2012). Dong et al. (2013) report the best

values over 10 replications found in their experiments for instances with 50 and 100

jobs for a time limit of 400nmms. We compare these values to the best values of our

ILS for time limits of 30nmms and 60nmms over 10 replications in Table 5.5. Each

line of the table reports the average for 10 instances of the best value of each instance.

The machine of Dong et al. (2013) is about a factor of 3 slower than ours, but their

time limit corresponds to about 130nmms on our hardware. After taking into account

that factor, our method produces comparable results in about a quarter of the time of

MRSILS, and consistently better results in half of the time.

83

Table 5.5: Comparison to the multi-restart ILS reported by Dong et al. (2013).

Size This paper MRSILS

n×m 30nm 60nm 400nm∗

50×5 0.10 0.07 0.09
50×10 0.13 0.09 0.17
50×20 0.18 0.17 0.21

100×5 0.44 0.39 0.45
100×10 0.58 0.41 0.53
100×20 0.61 0.59 0.55

Averages 0.34 0.29 0.34
∗: about 130nmms on our hardware.

We cannot directly compare to the recent particle swarm optimization heuristic of

Zhang & Wu (2014), since neither the total completion times nor the upper bounds

used to compute the relative deviations are available. They report an average relative

deviation about 0.5% less than that of the particle swarm optimization of Tasgetiren et

al. (2007) in instances with up to 100 jobs. Pan, Tasgetiren & Liang (2008) report an

improvement of about 0.75% over the latter method for their heuristic, which in turn

is dominated by PR of Pan & Ruiz (2012). Therefore, PR very likely is comparable to

or dominates the particle swarm optimization of Zhang & Wu (2014).

In summary, the results show that our iterated local search is competitive with the

currently best methods, and thus can serve as a fair baseline in the comparison to

non-permutation schedules.

5.4.4 Quality of non-permutation schedules

In our second experiment we compare the quality of permutation and non-permu-

tation schedules. Table 5.6 reports average relative deviations for all 12 instance

groups for the ILS for permutation schedules with a time limit of 60nmms, and for

the IGA for non-permutation schedules with the same time limit. We also report the

results for the IGA for a longer time limit of 30nm2 ms. The longer time limit has been

chosen to study the convergence of the search, since the non-permutation problem is

considerably more difficult to solve. All values are averages of 10 replications for 10

instances. Negative relative deviations indicate an improvement over the current best

upper bound for permutation schedules.

The comparison shows that non-permutation schedules achieve a relative deviation

which is in average about 0.44% less within the same time limit of 60nmms. The

84

Table 5.6: Quality of permutation (PS) and non-permutation (NPS) schedules.

Size PS NPS

n×m 60nm 60nm 30nm2

20×5 0.00 -0.60 -0.62
20×10 0.00 -1.18 -1.28
20×20 0.00 -1.01 -1.19
50×5 0.17 0.08 0.06
50×10 0.27 -0.01 -0.10
50×20 0.36 -0.38 -0.48

100×5 0.52 0.50 0.43
100×10 0.69 0.47 0.43
100×20 0.88 0.39 0.22
200×10 0.57 0.45 0.38
200×20 0.41 0.06 -0.08
500×20 0.30 0.18 -0.01

Averages 0.35 -0.09 -0.19

improvement over permutation schedules is larger for smaller instances, and for

instances with a larger number of machines.

Of the 120 instances, 114 non-permutation schedules have a smaller total

completion time than the permutation schedules found with the same time limit of

60nmms. The average total completion in 10 replications is better than the best

upper bound for the permutation schedules in 49 instances, and overall 79 shorter

non-permutation schedules have been found.

Non-permutation schedules improve about 1% over the presumably best possible

(or optimal) permutation schedules for the instances with 20 jobs.

The longer time limit of 30nm2 ms improves mostly the instances with a large

number of machines, which are harder to optimize, and results in an overall

improvement of 0.54%, that is 0.1% more. Of the 120 instances, 66 non-permutation

schedules are shorter in average, and 88 instances permit a shorter schedule than

the best known permutation schedule. Non-permutation schedules improve about

1.2% over the presumably best possible (or optimal) permutation schedules for the

instances with 20 jobs.

In summary, non-permutation schedules notably improve over permutation sched-

ules, and given the current quality of heuristics for permutation schedules, additional

optimization time is better invested into finding non-permutation schedules.

85

5.4.5 Job reordering and buffer sizes

Next, we investigated the amount of job operations that change their processing

order in the non-permutation schedules from our second experiment. To do this, we

defined the job reordering index of an schedule s = (π1, . . . , πm) as the number of

job inversions between adjacent machines normalized by the number of jobs and the

number of adjacent machine pairs. This is defined mathematically as

JRI(s) =

∑m−1
i=1 τ(πi, πi+1)

n(m− 1)
,

where we used the Kendall’s τ distance between two permutations π and σ, that

is defined as the number of element pairs that are in different order in the two

permutations, or

τ(π, σ) = |{(i, j) : π−1(i) < π−1(j) ∧ σ−1(i) > σ−1(j)}|,

where i, j ∈ [n], and π−1 and σ−1 are the inverse permutations.

We observed that the average JRI is 3.3% and the maximum JRI is 6% among 2400

non-permutation schedules, with the exception of the schedules of the instance ta003

that present JRI between 6% and 9%. We also counted the number of inversions that

each job has on each schedule, and we observed that 83.7% of the jobs change their

position only once in a schedule, 12.5% changes twice, 3.2% changes three times, and

the rest (0.6%) changes between four and sixteen times mainly in the instances of

200 jobs or more. This confirms the hypothesis that strategic operation reordering

improves the total completion time in non-permutation flow shop schedules. Another

observation is that 30% of the job reordering take place between the second and the

third machine, and the 70% is equally disperse over the third machine. This may be

taken into account for future research.

Finally, Table 5.7 compares the buffer requirements of permutation and non-permu-

tation schedules. It reports the average buffer size b and the maximum buffer

size B for all permutation and non-permutation schedules found in the first two

experiments. The buffer size of a single schedule is defined as the largest buffer

necessary between any two machines. As in the previous experiments, the values

are averages over 10 replications. The results show that the average and maximum

buffer sizes depend mainly on the number of jobs and machines of the instance, and

do not vary significantly with the quality of the heuristic solution. In particular,

non-permutation schedules do not lead to larger buffer sizes, and therefore can be

implemented in practice without technological changes.

86

Table 5.7: Average (b) and maximum (B) buffer sizes of permutation (PS) and
non-permutation (NPS) schedules.

PS NPS

Size 30nm 60nm 60nm 30nm2

n×m b B b B b B b B

20×5 2.0 2.0 2.0 2.0 2.0 2.1 2.0 2.0
20×10 2.2 2.2 2.2 2.2 2.2 2.3 2.1 2.4
20×20 2.7 2.7 2.7 2.7 2.4 2.8 2.4 2.9
50×5 2.8 3.3 2.7 3.2 2.7 3.4 2.8 3.3
50×10 3.1 3.8 3.1 3.9 3.0 3.5 3.1 3.8
50×20 3.9 5.2 4.0 4.9 3.8 4.6 3.8 4.8

100×5 3.9 4.6 3.9 4.6 3.9 4.7 3.7 4.4
100×10 4.4 5.6 4.3 5.0 4.3 5.2 4.4 5.3
100×20 5.7 6.9 5.6 6.5 5.5 6.3 5.6 6.8
200×10 5.2 6.3 5.3 6.2 5.2 6.4 5.0 6.1
200×20 6.5 7.9 6.4 7.6 6.4 7.7 6.4 7.7
500×20 9.3 10.4 9.1 10.1 9.2 10.3 8.9 9.9

Averages 4.3 5.1 4.3 4.9 4.2 4.9 4.2 5.0

5.5 Concluding remarks

In this chapter we have studied heuristics based on iterated local search for

minimizing the total completion time in permutation and non-permutation flow

shop schedules. We have proposed an ILS for permutation schedules and an IGA

for non-permutation schedules. ILS produces permutation schedules that are about

0.3% better than state-of-the-art methods, and it found 6 new upper bounds for the

instances of Taillard (1993). IGA produces non-permutation schedules that are 0.44%

better than the permutation schedules produced by ILS in the same time, and improves

a little more with a larger time limit. IGA found 88 non-permutation schedules

of less total completion time than the current best upper bounds for permutation

schedules, and they improve up to 1.2% over the presumably best possible (or optimal)

permutation schedules for the instances with 20 jobs. Thus, additional computation

time after 30nmms is better invested in finding non-permutation schedules.

Our main conclusion is that non-permutation schedules can be found within the

same time than permutation schedules, and they are even better than the presumably

best possible (or optimal) permutation schedules. We also confirmed that strategic

operation reordering improves the total completion time in non-permutation flow

shop schedules, and that non-permutation flow shop schedules can be implemented

in practice without technological changes.

87

6 A FIRST APPROACH TO MINIMIZE THE MAKESPAN IN THE

NON-PERMUTATION FLOW SHOP SCHEDULING PROBLEM

Section 2.2.1 has defined the permutation and non-permutation FSSP formally,

Chapter 4 has explored the theoretical differences between the permutation and

non-permutation FSSP, and Chapter 5 has studied the practical differences between

the permutation and the non-permutation FSSP with the total completion time

minimization criterion.

In this chapter, we propose a constructive heuristic and an iterated local search

heuristic for the non-permutation flow shop scheduling problem with makespan

minimization criterion. Both heuristics are based on the observation that optimal

non-permutation schedules often result from a few local job inversions in a

permutation structure. These heuristics are described in Section 6.1. The

computational experiments in Section 6.2 compare our heuristics to the best heuristics

in the literature for finding non-permutation and permutation flow shop schedules,

and evaluate the reduction in makespan and buffer size that can be achieved by

non-permutation schedules. Finally, we conclude in Section 9.4. This chapter

corresponds to the publication of Benavides & Ritt (2016). The detailed computational

results of this chapter are available online at <http://www.inf.ufrgs.br/algopt/npfs>.

6.1 Heuristics for the non-permutation FSSP

6.1.1 A constructive heuristic for the non-permutation FSSP

The best constructive heuristic for the permutation FSSP is the NEH heuristic

proposed by Nawaz, Enscore & Ham (1983) with the acceleration technique of Taillard

(1990). This method is described in Section 3.1.1. It builds a permutation schedule

by repeatedly inserting the jobs in some order into a partial permutation schedule at

http://www.inf.ufrgs.br/algopt/npfs

88

Algorithm 6.1 Constructive heuristic NFS for the non-permutation FSSP.

Input: The fraction p of insertions without job passing, a job order ρ.
Output: A non-permutation schedule S = {π1, π2, . . . , πm}.

1: function NFS()
2: Let S be the empty schedule
3: for j = 1, . . . , bpnc do
4: Insert job ρj at the optimal position k ∈ [j] into S
5: end for
6: for j = bpnc+1, . . . , n do
7: for all positions k ∈ [j] do
8: Evaluate insertion of ρj at k with anticipation after machine 2, . . . ,m− 1
9: Evaluate insertion of ρj at k with delay after machine 2, . . . ,m− 1

10: Evaluate insertion of ρj at k
11: end for
12: Apply the best insertion of ρj into S
13: end for
14: return S
15: end function

the position which produces the smallest makespan. We extend this method to create

non-permutation schedules by allowing job passing when inserting a job.

Algorithm 6.1 shows the proposed constructive heuristic NFS. For each job to

be inserted, and for each candidate position, we evaluate insertions without job

passing, with anticipation, or with delay after some intermediate machine. After the

evaluations, the job is inserted at the position and with the anticipation or delay that

minimizes the makespan. We explained the insertion of a job with anticipation and

delay in Section 5.1.1. If there are several optimal positions, ties can be broken by

any of the rules proposed in the literature, e.g. KK2 of Kalczynski & Kamburowski

(2009). Any remaining ties are broken by giving preference to insertions with earliest

anticipation, followed by an insertion without job passing, followed by insertions with

earliest delay.

We have observed that allowing job passing is more beneficial for jobs inserted

later. For this reason, we allow to specify a fraction p of the jobs, which will be

inserted first without job passing.

The speedup technique of Taillard (1990) finds the best insertion of a job

into a permutation schedule in time O(nm). It cannot be applied directly to the

non-permutation case, because some head and tail values become invalid during

the evaluation. Then, the evaluation of one insertion with anticipation or delay is

evaluated in time O(n2m). Additionally, we have to test nm instead of n possible

89

insertions. Thus, the proposed constructive heuristic NFS has time complexity

O(n3m2).

6.1.2 Inserting jobs efficiently into non-permutation schedules

In this section we propose a speedup technique to reduce the complexity of the

constructive heuristic NFS. We first propose a technique for the fast calculation of

the invalid heads and tails to insert jobs without job passing into non-permutation

schedules, and we finally generalize this technique to arbitrary insertions. In the

following, if not mentioned otherwise, we use index i ∈ [m] for machines, index

j ∈ [n] for jobs, and index k ∈ [n] for positions of jobs.

Consider an insertion without job passing at position k into a non-permutation

schedule. This will increase the completion times of jobs at positions k′ ≥ k in the

current schedule. Different from the permutation case, such a job may occur at a

position k′′ < k on later machines. In this case, the head eik′′ is invalid, and Taillard’s

optimization cannot be applied. Similarly, the tail of a job at position k′ ≥ k on

machine i is invalid, if it occurs at a position k′′ < k on a later machine. In both cases,

a job which occurs after the inserted job on some machine i, but is anticipated to occur

before it on some later machine i′ > i, has an invalid tail on i and an invalid head on

i′. Moreover, an invalid head or tail on some machine may lead to more invalid heads

or tails on later or earlier machines. Figure 6.1 gives two examples of an insertion

without job passing which leads to a different number of invalidated heads.

The set of invalid heads and tails can be found efficiently as follows. Let π1, . . . , πm
be the current non-permutation schedule with n jobs. Thus, the kth job on machine i

is πik, and we will write π−1ij for the position of job Jj on machine i. For a set of jobs

T ⊆ [n], let li(T) = minj∈T π
−1
ij be the smallest index of some job in T on machine i,

and Li(T) = maxj∈T π
−1
ij the largest index of some job in T on machine i. Furthermore

let S(π, k) = {πk, . . . , πn} be the suffix of permutation π starting at position k, and

P (π, k) = {π1, . . . , πk−1} be the prefix of permutation π ending at position k − 1.

Pos. 1 2 3 4
M1 4 3 2 1
M2 4 3 2 1
M3 4 1 3 2
M4 3 1 4 2
M5 3 1 4 2

Pos. 1 2 3 4
M1 4 3 2 1
M2 4 3 2 1
M3 2 1 3 4
M4 2 1 3 4
M5 2 1 3 4

Figure 6.1: Two examples of an insertion without job passing at position 4 into
non-permutation schedules. Permutations on each machine are shown with the jobs
whose heads are invalidated in bold.

90

Let lik = li+1(S(πi, k)) be the smallest index of some job in S(πi, k) on machine

i+ 1. Values lik can be computed in time O(nm) by

li,n+1 =∞; lik = min{π−1i+1,πik
, li,k+1}.

Then the first invalid head position µi on machine i is given by

µ1 = k; µi+1 = li,µi . (6.1)

Similarly, let Lik = Li−1(P (πi, k)) be the largest index of some job in P (πi, k) on

machine i− 1. Values Lik can be computed in time O(nm) by

Li1 = −∞; Lik = max{π−1i−1,πi,k−1
, Li,k−1}.

Then the first valid tail position νi on machine i is given by

νm = k; νi−1 = Li,νi + 1. (6.2)

Given the information on the position of the first invalid head and the first valid

tail, we can compute the makespan of an insertion without job passing of job Jj

at position k as shown in Algorithm 6.2. For each machine i, the algorithm finds

the first valid head ei,µi−1, and then computes the completion times Ci,πi(k′) for all

subsequent jobs πi(k′) up to the first valid tail qi,νi, including the newly inserted job.

This computation can also be understood as computing an extended relative head ri.

Algorithm 6.2 Insertion into a non-permutation schedule.
Input: A non-permutation schedule (π1, . . . , πm), a job Jj and a position k for insertion.
Output: The new makespan after the insertion without job passing of Jj at position k.

1: Let C0j := 0 for all j.
2: for i ∈ [m] do
3: ri := ei,µi−1
4: for k′ ∈ [µi, k − 1] do
5: ri := Ci,πi(k′) := max{ri, Ci−1,πi(k′)}+ pi,πi(k′)
6: end for
7: ri := Cij := max{ri, Ci−1,j}+ pij
8: for k′ ∈ [k, νi − 1] do
9: ri := Ci,πi(k′) := max{ri, Ci−1,πi(k′)}+ pi,π(k′)

10: end for
11: end for
12: Cmax := maxi∈[m] ri + qi,νi

91

Observe that for permutation schedules, we have µi = νi = k and the procedure

reduces to Taillard’s insertion procedure. In general let W = maxi∈[m] νi − µi be the

“width” of the invalid heads and tails. Then the complexity of an insertion is O(mW),

and all Θ(nm) insertions can be computed in time O(nm2W), since the values lik and

Lik have to be computed only once.

Finally, consider insertions into non-permutation schedules with anticipation or

delay. More generally, when inserting a new job j at position ki on machine i, we

obtain the first invalid head position and the first valid tail position by considering the

insertion position ki in eqs. (6.1) and (6.2)

µ1 = k1, µi+1 = min{li,µi , ki+1}; (6.3)

νm = km, νi−1 = max{Li,νi + 1, ki−1}. (6.4)

A NEH-like insertion procedure now has overall complexity O(n2m2W), i.e. we

have a speedup of n/W over the naïve insertion into non-permutation schedules, and

a slowdown ofmW compared to the permutation procedure. In the worst caseW = n,

but since the number of inversions of a non-permutation schedule is usually limited,

W tends to be a small constant. Empirically, for the instances used in the experiments

in Section 6.2, W correlates with the buffer size, and we find W ≈ 10, in average.

6.1.3 A local search heuristic for the non-permutation FSSP

To reduce the makespan of a job shop schedule, the order of at least two operations

in some block of the critical path must be inverted. The neighbourhood of Nowicki &

Smutnicki (1996) limits the inversions to the first two operations of a block, except

the first block, and the last two operations of a block, except the last block, because

only those inversions may reduce the makespan directly.

Our local search extends the neighbourhood proposed by Nowicki & Smutnicki

(1996) to permit local job passing in a flow shop schedule as follows. For each

pair of candidate jobs J1 and J2 for an inversion on machine Mi according to the

above neighbourhood, we analyze three kinds of neighbours obtained by inverting

the order of the jobs J1 and J2 on machines M1, . . . ,M
′
i for all i′ ≥ i, on machines

M ′′
i , . . . ,Mm for all i′′ ≤ i, and only on machines Mi. Note that this includes the

complete inversion of jobs J1 and J2 on all machines M1, . . . ,Mm. A neighbour is

only considered if J1 and J2 are consecutive on the corresponding machines. The

local search uses a best improvement strategy, i.e., it repeatedly passes to the best

neighbour, until the solution is a local minimum. To speed up the evaluation of

each neighbour, we estimate its makespan using the technique of Taillard (1990),

92

and evaluate it completely only if the estimation is promising. If there are several

critical paths, we choose the bottommost in the Gantt chart, i.e., when building the

critical path from the last operation backwards and the current operation has several

preceding critical operations, we choose the one on the same machine.

6.1.4 An iterated greedy algorithm for the non-permutation FSSP

The main principle of an iterated greedy algorithm is to repeatedly remove some

random elements from the current solution, and insert them again into the partial

solution using a greedy algorithm. An iterated greedy algorithm is similar to an

iterated local search, but performs the perturbation by removing and reconstructing

some elements.

The proposed iterated greedy algorithm for the FSSP starts with an initial solution

which is the best solution obtained by applying the constructive heuristic NFS of

Section 6.1.1 to the standard and reverse instance. It then repeatedly selects d out of

the n jobs, removes them from the current schedule, and reconstructs a new, complete

schedule, by reinserting them into the partial schedule. The reinsertion uses the same

greedy strategy as the constructive heuristic NFS, inserting the job into the position

which produces the smallest makespan, considering all insertions with anticipation,

without job passing, and with delay.

After a new complete schedule has been constructed, we improve it with a local

search, described below. The solution obtained after local search is accepted according

to a Metropolis criterion, i.e., either if it improves the current solution or with

probability exp(−∆/T), for an increase of the makespan by ∆ = Cmax(s
′)− Cmax(s).

The temperature is set to a fixed value of T = αp/10 during the execution, for an

average processing time of p =
∑

j∈[n]
∑

i∈[m] pij/nm and a parameter α.

6.2 Computational Results

6.2.1 Test instances and experimental methodology

We tested our algorithms on two sets of instances: 120 instances proposed by

Taillard (1993) and 40 instances proposed by Demirkol, Mehta & Uzsoy (1998). and

described in Section 3.4, which are the standard benchmark in the literature.

In the experiments we compare the solution quality of different algorithms within

a fixed time limit. Heuristics for the PFSSP are usually compared with a time limit

that is a small multiple of 10nm ms. Since the FSSP is considerably more difficult to

93

solve, we adopt a standard time limit of 30nm2 ms for our search heuristic. This time

limit is adjusted when necessary to make the computation times comparable to results

from the literature.

We measure solution quality by the relative percentage deviation from the best

known value C∗max defined as RPD = 100× (Cmax − C∗max)/C
∗
max.

Our algorithms have been implemented in implemented in C++, compiled with

GNU C++ Compiler version 4.7.3 with maximum optimization, and run on a PC with

an AMD FX-8150 processor running at 3.6 GHz, and with 32 GB of main memory, using

only one core in each execution.

6.2.2 Parameter setting

As explained before, it can be advantageous to insert a percentage p of the jobs

regularly to produce a partial permutation schedule, and then insert the remaining

jobs allowing job passing to produce a non-permutation schedule. We have tested our

constructive heuristic using the insertion order and tie-breaking rule KK2 of Kalczynski

& Kamburowski (2009) for p ∈ {0.0, 0.1, . . . , 0.9, 1.0} on the 120 instances of Taillard

(1993). Observe that p = 1.0 corresponds to the NEHKK2 heuristic of Kalczynski

& Kamburowski (2009) for the PFSSP. The results of these tests are summarized in

Figure 6.2a, which plots the average execution time versus the average RPD from the

best known values for the PFSSP for the different values of p. Based on these results,

we chose p = 0.4 which produces the best values in an acceptable time.

To calibrate the IGA algorithm we first compared different combinations of the

algorithmic components, and then tuned the parameters.

Table 6.1 shows the average RPD over the 120 instances of Taillard (1993) for four

variants: the IGA starting from the identical permutation (“IGA”), the IGA starting

from the solution obtained by our constructive heuristic (“NFS+IGA”), the IGA starting

from the identical permutation, applying local search in each iteration (“IGA(LS)”),

and the IGA starting from the solution obtained by our constructive heuristic and

Table 6.1: Comparison of variants of the proposed iterated greedy algorithm on the
instances of Taillard (1993).

Variant Avg.

IGA 0.33
NFS+IGA 0.31
IGA(LS) 0.22
NFS+IGA(LS) 0.19

94

(a) (b)

Figure 6.2: Calibration of (a) the percentage p of the jobs inserted without job passing
and (b) of the parameters d and α.

applying local search in each iteration (“FS+IGA(LS)”). We can see that all algorithmic

components contribute to the performance of the algorithm. The contribution of the

initial solution, however, is, as expected, rather small, while adding the local search

leads to an average RPD which is about 0.1% lower. The experiments which follow

have been done with the best variant NFS+IGA(LS).

To calibrate the IGA we ran a full factorial experiment on all combinations of

values d ∈ {2, . . . , 7} and α ∈ {0.2, . . . , 0.8} with five replications for each parameter

setting on a random instance of each of the 12 instance groups of Taillard (1993).

The parameter ranges have been chosen based on the optimal values of d = 4 and

α = 0.5 determined by Ruiz & Stützle (2007) for their IGA for the PFSSP. The results

are summarized in Figure 6.2b. Our results confirm the values found by Ruiz & Stützle

(2007), with a slight advantage for d = 3 in the non-permutation case. We therefore

set d = 3 and α = 0.5 in our experiments.

6.2.3 Experiment 1: Effectiveness of the constructive heuristic

Our first experiment evaluates the effectiveness of the constructive heuristic. The

currently best constructive heuristic for the FSSP has been proposed by Koulamas

(1998). Ruiz & Maroto (2005) have compared 18 constructive heuristics for the

permutation and non-permutation FSSP, including the heuristic of Koulamas (1998),

and found the heuristic NEH of Nawaz, Enscore & Ham (1983) to perform best.

Fernandez-Viagas & Framinan (2014) recently have proposed a tie-breaking rule

which obtains (statistically) significantly better results than previous methods. In

95

Table 6.2: Comparison of constructive heuristics on the instances of Taillard (1993).

Grp. Size NEH KK2 KM FF NFS

ta01 20×5 2.49 2.48 7.68 2.29 2.02
ta02 20×10 4.17 4.17 11.82 4.15 3.03
ta03 20×20 3.36 3.57 11.89 3.31 3.21
ta04 50×5 0.58 0.44 4.03 0.92 0.28
ta05 50×10 4.97 5.38 12.13 5.15 4.55
ta06 50×20 5.85 6.22 14.93 6.21 5.43
ta07 100×5 0.38 0.25 3.12 0.38 0.21
ta08 100×10 2.02 2.17 7.50 2.18 1.53
ta09 100×20 5.20 5.32 14.04 5.02 4.96
ta10 200×10 1.15 1.13 5.09 0.98 1.01
ta11 200×20 4.20 4.22 11.60 4.04 3.92
ta12 500×20 1.98 1.90 6.82 1.78 1.89

Averages 3.03 3.10 9.22 3.03 2.67

Table 6.2 we compare the solution quality of the heuristic of Koulamas (1998)

(column “KM”), as reported by Ruiz & Maroto (2005), the heuristic of Fernandez-

Viagas & Framinan (2014) (column “FF”), to our implementation of NEH and NEHKK2

(KALCZYNSKI; KAMBUROWSKI, 2009) (columns “NEH” and “KK2”), and our heuristic

(column “NFS”). For the last three we report the best value from an application to the

standard and the reverse instance.

The results show that NFS can improve the permutation schedules of the best

constructive methods for the PFSSP by about 0.3%. The makespans of NFS are the

shortest in all twelve instance groups, except two (ta10 and ta12) when compared

to heuristic FF. Given the difficulty of finding better constructive heuristics for the

PFSSP, this can be considered a reasonable improvement. Note, however, that the

improvement over heuristic FF could be slightly smaller, since it has not been applied

to the reverse instance. Our algorithm has a worst case time complexity of O(n3m2)

and thus it is no surprise that its average execution time of about 2.2 s is much slower

than that of the other algorithms which run in about 10 ms. However, the execution

time is still reasonably short.

6.2.4 Experiment 2: Effectiveness of the iterated greedy algorithm

In this section we compare our method to the state-of-the-art heuristics for the

FSSP shown in Table 6.3. For each heuristic, the table provides the set of test instances

and the computing environment used in the computational experiments.

96

Table 6.3: Overview of recent heuristic approaches for the FSSP.

Reference. Instances Environment

Lin & Ying (2009) de Pentium 4, 1.4 GHz
Yagmahan & Yenisey (2010) ta001–ta028 Pentium M760, 2 GHz
Rossi & Lanzetta (2013b) ta001–ta028, de Pentium 4, 3 GHz
This paper ta, de AMD FX-8150, 3.6 GHz

Table 6.4: Comparison to Lin & Ying (2009) and Rossi & Lanzetta (2013b) on the
instances of Demirkol, Mehta & Uzsoy (1998).

Time LY/6 Time 30nm2 ms

Grp. Size LY RL Min. Avg. Max. Min. Avg. Max.

de01 20×15 0.00 4.45 -1.91 -1.52 -1.08 -2.11 -1.99 -1.82
de02 20×20 0.00 5.11 -2.54 -2.23 -1.87 -2.72 -2.66 -2.60
de03 30×15 0.00 7.73 -1.96 -1.45 -0.83 -2.18 -2.03 -1.83
de04 30×20 0.00 7.56 -2.76 -2.37 -1.88 -3.05 -2.88 -2.68
de05 40×15 0.00 8.59 -1.68 -1.26 -1.00 -2.10 -1.76 -1.50
de06 40×20 0.00 10.62 -2.00 -1.55 -1.12 -2.44 -2.19 -1.87
de07 50×15 0.00 9.27 -1.17 -0.71 -0.34 -1.69 -1.42 -1.08
de08 50×20 0.00 10.62 -1.83 -1.45 -0.91 -2.51 -2.17 -1.94

Averages 0.00 7.99 -1.98 -1.57 -1.13 -2.35 -2.14 -1.92

We first compare to the two best heuristics of Lin & Ying (2009) and Rossi &

Lanzetta (2013b) which report results on the instances of Demirkol, Mehta & Uzsoy

(1998). The machine of Lin & Ying (2009) is about 6 times slower than our machine,

that of Rossi & Lanzetta (2013b) is about 3 times slower than our machine. The

running times of Rossi & Lanzetta (2013b) (reported in Rossi & Lanzetta (2013a))

are, after normalization, a factor of about 1.7 larger than those of Lin & Ying (2009).

For this reason we report results for our heuristic for two different time limits: the time

limit as reported by Lin & Ying (2009), corrected by a factor of 6, which corresponds

to a maximum execution time of 45 s on the largest instances, and our standard time

limit of 30nm2 ms.

Table 6.4 reports for each group of instances the average RPD for Lin & Ying (2009)

(column “LY”) and Rossi & Lanzetta (2013b) (column “RL”), and the minimum,

average, and maximum RPD of our method for both time limits. The values from

Lin & Ying (2009) are the best of five replications, the values from Rossi & Lanzetta

(2013b) are the best of ten replications, and our values are the best, average, and

worst of ten replications.

97

Our method is able to find new best values for all 40 instances, with an average

RPD of 1.57% below the current best known values, which have been obtained by the

best of five runs of the method of Lin & Ying (2009). Neither the best nor the average

of our values is directly comparable to Lin & Ying (2009), because of the different

number of replications. However, when we select the five worst of our ten runs, the

average makespan of all 40 instances is still shorter than the best known values, with

an average RPD of 1.36% below their values. Compared to Rossi & Lanzetta (2013b),

even the worst of our ten runs is about 8% better than their best result in ten runs.

We next compare to the heuristics of Yagmahan & Yenisey (2010) and Rossi &

Lanzetta (2013b) which report results on the first 28 instances of Taillard (1993).

We base our comparison on results reported by Rossi & Lanzetta (2013b) and report

results for two time limits: a time limit of 30nm ms and our standard time limit of

30nm2 ms. The first time limit has been chosen such that the computation time is, after

correction for different machine speeds, safely less than that of the other approaches,

based on the values reported in Rossi & Lanzetta (2013a) and Yagmahan & Yenisey

(2010).

Table 6.5 reports for each instance the best known value (column “BKV”), the

RPD of the best in ten runs for Yagmahan & Yenisey (2010) (column “YY”), the best

and average RPD over ten runs of Rossi & Lanzetta (2013b) (columns “RL”), and the

minimum, average and maximum RPD of our method for the above time limits. We

report in Table 6.6 the results for all 120 instances for our method, in average over

each group of ten instances of the same size.

Our method finds 32 new best values, 13 of them in the first 28 instances. The

worst makespan in ten runs obtained with the shorter time limit is in average about

5% better than the best in ten runs of the methods of Yagmahan & Yenisey (2010) and

Rossi & Lanzetta (2013b). On all 120 instances we obtain an overall RPD of 0.19% for

the shorter time limit, and −0.10% for the longer time limit.

6.2.5 Experiment 3: Comparison to permutation schedules

In our final experiment we want to assess the makespan obtainable by non-permu-

tation schedules in comparison to permutation schedules and to compare the

performance of our heuristic to that of the best heuristics for the PFSSP. We chose

four state-of-the-art methods for this comparison: the hybrid algorithm NEGAVNS

of Zobolas, Tarantilis & Ioannou (2009), the particle swarm optimization PSO of

Tasgetiren et al. (2007), the hybrid genetic algorithm HGA RMA of Ruiz, Maroto

& Alcaraz (2006), and the iterated greedy method of Fernandez-Viagas & Framinan

(2014).

98

Table 6.5: Comparison to Yagmahan & Yenisey (2010) and Rossi & Lanzetta (2013b)
on 28 instances of Taillard (1993).

RL Time 30nm ms Time 30nm2 ms

Name Size BKV YY Min. Avg. Min. Avg. Max. Min. Avg. Max.

ta001 20×5 1278 1.49 0.94 1.18 0.00 0.00 0.00 0.00 0.00 0.00
ta002 20×5 1358 1.84 2.28 2.28 0.00 0.00 0.00 0.00 0.00 0.00
ta003 20×5 1073 12.12 2.52 3.68 0.00 0.00 0.00 0.00 0.00 0.00
ta004 20×5 1292 6.58 4.02 4.66 0.08 0.08 0.08 0.08 0.08 0.08
ta005 20×5 1231 6.50 1.54 2.25 0.32 0.32 0.32 0.00 0.19 0.32
ta006 20×5 1193 4.36 2.01 2.62 0.00 0.00 0.00 0.00 0.00 0.00
ta007 20×5 1234 5.59 1.94 2.07 0.16 0.38 0.41 0.16 0.36 0.41
ta008 20×5 1199 5.50 3.00 3.63 0.00 0.00 0.00 0.00 0.00 0.00
ta009 20×5 1210 7.69 3.97 5.40 0.00 0.00 0.00 0.00 0.00 0.00
ta010 20×5 1103 6.89 2.18 3.85 0.00 0.00 0.00 0.00 0.00 0.00
ta011 20×10 1560 7.76 8.53 10.87 -0.38 0.15 0.71 -0.38 -0.24 0.00
ta012 20×10 1644 6.39 8.58 9.46 0.00 0.09 0.30 0.00 0.01 0.06
ta013 20×10 1486 4.58 6.53 7.44 -1.08 -0.79 -0.13 -1.21 -1.20 -1.08
ta014 20×10 1368 8.92 6.14 8.06 -0.22 0.05 0.58 -0.37 -0.22 -0.15
ta015 20×10 1413 2.97 7.29 8.05 -1.27 -0.86 -0.35 -1.42 -1.30 -1.27
ta016 20×10 1369 14.24 5.55 7.25 0.00 0.02 0.22 0.00 0.00 0.00
ta017 20×10 1428 11.34 6.72 8.16 0.21 0.29 0.56 -0.07 -0.04 0.21
ta018 20×10 1527 4.45 8.06 8.96 0.00 0.00 0.00 0.00 0.00 0.00
ta019 20×10 1586 6.49 4.60 6.00 0.00 0.09 0.38 0.00 0.00 0.00
ta020 20×10 1559 10.26 7.12 7.61 0.00 0.09 0.45 0.00 0.00 0.00
ta021 20×20 2293 5.89 4.49 5.32 -2.31 -2.03 -1.88 -2.35 -2.34 -2.31
ta022 20×20 2092 9.03 6.36 7.05 -1.82 -1.32 -0.76 -1.86 -1.69 -1.39
ta023 20×20 2313 8.73 5.75 6.55 -2.98 -2.46 -1.51 -3.33 -3.20 -3.03
ta024 20×20 2223 3.42 5.53 6.20 -2.02 -1.75 -1.44 -2.16 -2.09 -2.02
ta025 20×20 2291 7.94 6.46 7.40 -2.01 -1.62 -1.00 -2.23 -2.00 -1.88
ta026 20×20 2221 5.31 4.95 5.65 -2.66 -2.35 -1.89 -2.93 -2.74 -2.66
ta027 20×20 2267 4.90 7.10 8.25 -1.94 -1.77 -1.63 -2.16 -2.10 -2.07
ta028 20×20 2183 10.77 6.32 7.45 -1.37 -0.93 -0.27 -1.37 -1.33 -0.96

Averages 6.86 5.02 5.98 -0.69 -0.51 -0.25 -0.77 -0.71 -0.63

99

Table 6.6: Complete results on the instances of Taillard (1993).

Time 30nm ms Time 30nm2 ms

Size Min. Avg. Max. Min. Avg. Max.

20×5 0.06 0.08 0.08 0.02 0.06 0.08
20×10 -0.27 -0.09 0.27 -0.34 -0.30 -0.22
20×20 -2.14 -1.73 -1.22 -2.30 -2.18 -1.98
50×5 0.00 0.01 0.03 0.00 0.00 0.00
50×10 0.26 0.52 0.80 0.14 0.23 0.38
50×20 -0.28 0.15 0.65 -1.04 -0.74 -0.46

100×5 0.00 0.02 0.04 0.00 0.01 0.02
100×10 0.22 0.37 0.56 0.06 0.17 0.29
100×20 0.73 1.03 1.43 0.21 0.42 0.60
200×10 0.06 0.20 0.31 0.01 0.07 0.14
200×20 0.84 1.14 1.43 0.61 0.74 0.89
500×20 0.50 0.64 0.80 0.31 0.38 0.47

Averages 0.00 0.19 0.43 -0.19 -0.10 0.02

Table 6.7: Comparison to state-of-the-art heuristics from the literature for permutation
schedules on the instances of Taillard (1993).

Time 30nm ms Time 30nm2 ms

Size Gap HGA PSO NGV FF Min. Avg. Max. Min. Avg. Max.

20×5 0.00 0.04 0.03 0.00 0.03 -0.35 -0.33 -0.32 -0.38 -0.34 -0.32
20×10 0.00 0.05 0.02 0.01 0.06 -1.57 -1.39 -1.03 -1.64 -1.60 -1.52
20×20 0.00 0.04 0.05 0.02 0.06 -2.42 -2.00 -1.49 -2.57 -2.45 -2.25
50×5 0.00 0.01 0.00 0.00 0.01 -0.17 -0.16 -0.14 -0.17 -0.16 -0.16
50×10 0.00 0.62 0.57 0.82 0.44 0.12 0.38 0.66 -0.01 0.08 0.23
50×20 1.58 1.03 1.36 1.08 1.05 -0.28 0.15 0.65 -1.04 -0.74 -0.46

100×5 0.00 0.01 0.00 0.00 0.01 -0.14 -0.12 -0.10 -0.14 -0.13 -0.12
100×10 0.00 0.19 0.18 0.14 0.15 0.06 0.22 0.40 -0.09 0.01 0.13
100×20 0.83 1.30 1.45 1.40 1.12 0.73 1.03 1.43 0.21 0.42 0.60
200×10 0.00 0.06 0.18 0.16 0.09 -0.01 0.13 0.24 -0.05 0.00 0.07
200×20 0.19 1.25 1.35 1.25 1.05 0.84 1.14 1.43 0.61 0.74 0.89
500×20 0.02 0.45 0.71 0.45 0.50 0.64 0.80 0.31 0.38 0.47

Averages 0.22 0.42 0.47 0.47 0.38 -0.22 -0.03 0.21 -0.41 -0.32 -0.20

100

Heuristics for the PFSSP are usually compared on the instances of Taillard (1993),

so we limit this experiment to these instances. Table 6.7 shows the summarized results

for all twelve instance groups of different size (column “Size” in n×m). Column “Gap”

reports the relative deviation of the best known values from the best lower bounds as

reported in Taillard (2004). We obtained the average RPD over 10 replications for

NEGAVNS and PSO from the study of Zobolas, Tarantilis & Ioannou (2009) (columns

“NGV”, “PSO”), and the average RPD over 5 replications from Fernandez-Viagas &

Framinan (2014). The study of Zobolas, Tarantilis & Ioannou (2009) has taken care

that the computation time of the methods are comparable, and uses a time limit of

100nm ms on a Pentium 4 running at 2.4 MHz. Since our machine is about a factor

3 faster, we ran our method with a time limit of 30nm ms, and report the minimum,

average and maximum RPD from the best known values in percent over 10 replications

(columns “Min.”, “Avg.” and “Max.”). For validation we have implemented the method

HGA-RMA of Ruiz, Maroto & Alcaraz (2006) and ran 10 replications with the same

time limit of 30nm ms in our environment, and report the averages (column “HGA”). A

comparison with the results reported by Zobolas, Tarantilis & Ioannou (2009) shows

that the above assumption on the relative machine speeds are sound. From the results

of Fernandez-Viagas & Framinan (2014) we chose the best results for a time limit of

30nm ms, since their machine is about 25% faster than ours. We further report the

relative deviations of the results for our standard time limit of 30nm2 ms.

We can see that our heuristic is competitive with current heuristics for the PFSSP. It

obtains a slightly negative average RPD compared to about 0.4% to 0.5% for the PFSSP

heuristics. It can improve in particular the smaller instances and obtains negative

relative deviations in five groups in average, and seven groups considering the best of

ten runs. In all of these seven groups, except 50×20, the best known values for the

PFSSP are optimal, and their average improvement is 0.7%. A comparison with the

larger time scale shows that the minimum, average, and maximum RPD improve by

another 0.3%. The overall average is now −0.32%, and in each group better than the

average RPD of the methods for the PFSSP.

6.2.6 Amount of job reordering and buffer sizes

To validate our hypothesis that good non-permutation schedules exhibit only a

few inversions of jobs, we have measured the number of operations that change

their position in the non-permutation schedules found by our method. For all

1200 non-permutation schedules obtained in the previous experiment with a time

limit of 30nm ms we determined the job reordering index of a schedule defined in

Section 5.4.5 In average over all schedules the job reordering index was less than

101

Table 6.8: Comparison of buffer sizes for permutation and non-permutation solutions
on the instances of Taillard (1993).

Schedule type
Permutation non-permutation

Size Min. Avg. Max. Min. Avg. Max.

20×5 2.10 2.48 3.10 2.10 2.41 3.10
20×10 2.30 2.44 2.70 2.10 2.42 2.80
20×20 2.30 2.41 2.50 2.00 2.31 2.90
50×5 5.30 6.44 7.70 4.50 5.59 6.60
50×10 3.10 3.97 4.90 3.00 3.88 4.70
50×20 3.50 4.14 4.90 3.50 4.03 5.10

100×5 9.30 11.25 13.70 6.30 8.00 10.00
100×10 6.10 7.09 8.40 5.40 6.49 7.90
100×20 5.50 6.55 7.90 5.30 6.27 7.40
200×10 9.50 11.54 14.70 8.10 9.71 11.60
200×20 7.60 9.09 11.40 6.90 8.46 10.60
500×20 13.30 16.19 21.30 12.10 13.78 16.40

Averages 5.83 6.97 8.60 5.11 6.11 7.42

0.08, i.e., less than one inversion for every 10 jobs between adjacent machines, with a

maximum of 0.325.

We finally compare the buffer sizes obtained by non-permutation schedules

to those of permutation schedules. The non-permutation schedules have been

obtained by our heuristic, the permutation schedules have been produced by our

implementation of the IGA of Ruiz & Stützle (2007). We compare the minimum,

average, and maximum buffer sizes on the instances of Taillard (1993), in 10

replicates obtained with a time limit of 30nm ms in Table 6.8. The results show that

the buffer requirements of non-permutation schedules are consistently slightly smaller

than those of the corresponding permutation schedules, independent of the reduction

of the makespan.

In summary, allowing non-permutation schedules yields better or comparable

makespans to those of methods for the PFSSP, in a comparable time, and with a

reduced buffer size. If we invest a factor of 10 more time, non-permutation schedules

with about 0.7% shorter makespans, can be achieved. This is a good improvement

compared to that of recent PFSSP methods, and produces makespans below the lower

bound for permutation schedules for all except the largest instances.

102

6.3 Concluding remarks

Tandon, Cummings & LeVanu (1991) and Liao, Liao & Tseng (2006) have

compared improved non-permutation schedules to permutation schedules obtained

by the same methods. Tandon, Cummings & LeVanu (1991) find 1%–3% shorter

makespans, in average, while the average improvement found by Liao, Liao & Tseng

(2006) is only 0.1%–0.5% We have compared non-permutation schedules on standard

instances to best known permutation schedules. Our results confirm the order of

magnitude of these findings and lie with an average improvement of 0.75% between

them. For instances with known optimal values, we obtain average improvements

of 0.7%, ranging from 0.06% to 2.5%. This shows that considering non-permutation

schedules can be beneficial. We also have found that the reduced makespan in

non-permutation schedules can reduce buffer requirements.

To obtain non-permutation schedules we have proposed a constructive heuristic,

a generalization of Taillard’s method for efficiently computing makespans, and an

iterated greedy algorithm based on the insertion of jobs with local job passing. Overall,

they obtain results better or comparable to those of current heuristics for the PFSSP,

and, with a modest amount of additional time, strictly better results, with a makespan

often below the best lower bounds. Both heuristics produce significantly better results

than all current heuristics for the FSSP.

Our study suggests some future research. First, there have been extensive

studies of insertion order and tie-breaking rules for NEH, and their impact during

construction and iterated destruction and reconstruction has found to be different

(KALCZYNSKI; KAMBUROWSKI, 2011; DONG; HUANG; CHEN, 2008; FERNANDEZ-

VIAGAS; FRAMINAN, 2014). It remains open if the same differences apply to the

non-permutation case or if better rules can be found. Second, it may be interesting

to study a similar method for limited buffer space. Finally, Liao, Liao & Tseng (2006)

have found larger improvements in solution quality for non-permutation schedules

when minimizing total flowtime, tardiness or total tardiness, and Pugazhendhi et al.

(2003) observed the same for instances with missing operations. Thus, it may be

interesting to generalize our method to other objective functions.

103

7 NOVEL PERMUTATION REPRESENTATION AND HEURIS-

TICS FOR THE NON-PERMUTATION FLOW SHOP SCHEDUL-

ING PROBLEM WITH MAKESPAN CRITERION

Section 2.2.1 has defined the permutation and non-permutation FSSP formally,

Chapter 4 has explored the theoretical differences between the permutation and

non-permutation FSSP, and Chapters 5 and 6 have studied the practical differences

between the permutation and the non-permutation FSSP with total completion time

minimization and makespan minimization. At this point of the thesis, it is clear

that non-permutation schedules are better than permutation schedules for the FSSP,

although additional computational efforts are required to create them.

The methods proposed in this chapter reduce that computational effort. We pro-

pose a new permutation representation for the non-permutation FSSP in Section 7.1.

we propose three new heuristics for the non-permutation FSSP in Section 7.2: a

constructive heuristic NEHBR with the same time complexity O(n2m) than NEH, a

non-permutation insertion local search with the same time complexity O(n2m) (per

neighbourhood) than the permutation insertion local search, and a best-improvement

reduced-neighbourhood non-permutation (BRN) local search with a time complexity

of O(nm) (per neighbourhood). We also propose four iterated greedy algorithms

for the permutation and non-permutation FSSP in Section 7.3. Section 7.4 shows

our computational results and we conclude in Section 7.5. The methods and results

presented in this chapter are being prepared as a journal paper for future publication.

7.1 A new permutation representation for non-permutation sched-

ules using pseudo-jobs

Permutation flow shop schedules are usually represented by a single permutation

π = (π(1), . . . , π(n)) of n jobs. Section 2.4 presents representations for job shop

104

schedules that may be used to represent non-permutation flow shop schedules.

For example, non-permutation schedules may be represented by a sequence S =

(π1(1), . . . , π1(n), π2(1), . . . , π2(n), . . . , πm(1) . . . , πm(n)) of m permutations, where

each permutation πi gives the processing order for machine Mi, by a permutation

ρ = (ρ(1), ρ(2), . . . , ρ(n×m)) of the n jobs which are repeated m times, or by a single

permutation τ = (τ(1), τ(2), . . . , τ(n×m)) of the n×m operations. These permutations

may represent any non-permutation flow shop schedule, even non-permutation

schedules with many differences between machines that are unlikely to be good

solutions. Also, the acceleration technique of Taillard (1990) cannot be applied

directly on these representations of non-permutation flow shop schedules.

In this section, we propose a new representation that uses a permutation of jobs

to represent permutation schedules, and that splits a job into blocks of operations

when it is necessary to represent non-permutation schedules. To this end, we define a

pseudo-job Jj[i, i′] that represents a block of operations of job Jj from machine Mi to

machine Mi′, and without operations before machine Mi and after machine Mi′. We

use permutations of pseudo-jobs to represent non-permutation flow shop schedules.

We still write Jj for a pseudo-job Jj[1,m] that contains all the operations to simplify

the notation. In the following we use index i to refer to a machine Mi, and index j

to refer to a job pseudo-job Jj or to a pseudo-job π(j) in the j-th position of π. The

only requirement for this representation to be a valid schedule is that the pseudo-jobs

with operations of the same job must appear in order and not consecutively. If two

pseudo-jobs Jj[i, i′] and Jj[i′, i′′] with operations of the same job became adjacent, they

must rejoin into one pseudo-job Jj[i, i′′].

For example, consider the 6× 6 FSSP instance given in Table 7.1. The permutation

π = (J5, J4, J6, J2, J1, J3) represents the permutation schedule of Figure 7.1. There are

some gaps in this permutation schedule that may be reduced by changing the order

of some jobs after intermediate machines. If we anticipate job J3 before job J1 on

machines M5 and M6, and delay job J6 after job J4 on machines M4, M5, and M6,

we obtain the shorter non-permutation schedule of Figure 7.2. Now, jobs J1 and J6

are divided by jobs J3 and J4 respectively. To use a permutation representation for

the non-permutation schedule, we must split these job into blocks of operations and

represent them as pseudo-jobs. Thus, job J1 is divided into two pseudo-jobs: J1[1, 4]

that contains the operations for the machines M1, M2, M3, and M4; and J1[5, 6] that

contains the operations for the machines M5 and M6. Likewise, job J6 is divided into

two pseudo-jobs: J6[1, 3] that contains the operations for the machines M1, M2, and

M3; and J6[4, 6] that contains the operations for the machines M4, M5, and M6. Using

those pseudo-jobs, the non-permutation schedule of Figure 7.2 is represented by the

permutation π′ = (J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6]).

105

Table 7.1: 6× 6 instance of the FSSP.

Jobs Operations
M1 M2 M3 M4 M5 M6

J1 3 6 3 3 4 3
J2 4 3 5 3 5 2
J3 6 5 2 2 2 4
J4 4 5 2 2 5 5
J5 2 2 5 6 3 5
J6 2 3 5 5 3 3

M1

M2

M3

M4

M5

M6

0 5 10 15 20 25 30 35 40 t

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

π = (J5, J4, J6, J2, J1, J3)

Figure 7.1: Permutation representation π and Gantt chart of a permutation schedule
for the 6× 6 FSSP instance given in Table 7.1.

M1

M2

M3

M4

M5

M6

0 5 10 15 20 25 30 35 40 t

1

1

1

1

1

1

2

2

2

2

2

2

3

3

3

3

3

3

4

4

4

4

4

4

5

5

5

5

5

5

6

6

6

6

6

6

π = (J5, J4, J6, J2, J1, J3)

π′ = (J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6])

Figure 7.2: Permutation representation π′ with job division and Gantt chart of a
non-permutation schedule for the 6× 6 FSSP instance given in Table 7.1.

106

7.2 Fast heuristics for the non-permutation FSSP

7.2.1 A constructive heuristic for the non-permutation FSSP with time complex-

ity O(n2m)

The best constructive heuristic for the permutation FSSP is the NEH heuristic

proposed by Nawaz, Enscore & Ham (1983) with the acceleration technique of Taillard

(1990). This method is described in Section 3.1.1. It builds a permutation schedule

by iteratively inserting the jobs into a partial permutation schedule at the position

which produces the smallest makespan. We extend this method to allow the insertion

of jobs with an anticipation or a delay after some intermediate machine to create

non-permutation schedules, and we extend the acceleration technique of Taillard

(1990) to reduce the time complexity of the new constructive heuristic to the same of

the NEH heuristic.

Algorithm 7.1 shows the proposed NEHBR constructive method to produce

non-permutation schedules. NEHBR uses the same priority order πo of NEH, i.e.,

non-increasing total processing time
∑

i∈[m] pij for each job Jj. The division of the

larger jobs during the first insertions with anticipation or delay may introduce many

pseudo-jobs with large gaps in the schedule, and a later insertion of a smaller jobs

may be unable to completely fill an existing large gap without delaying the other

occupied machines, creating larger schedules. To avoid this, NEHBR inserts only

a percentage p of the jobs considering anticipation or delay after an intermediate

machine respectively (lines 11 to 27), after inserting the first larger jobs into straight

positions like the NEH heuristic (lines 5 to 10).

NEHBR iteratively inserts the current job πo(j
′′) into a partial non-permutation

schedule at the position which produces the smallest makespan until a schedule

is complete. To determine the best position, it calculates the makespan values

MCj, MC ′i,j′, and MC ′′i,j′ for inserting the current job into a straight position,

with anticipation, and with delay after an intermediate machine respectively.

NEHBR gives preference to straight insertions. Suppose that we are inserting

job Jj′ into the partial non-permutation schedule π = (π(1), . . . , π(n′). If the

new makespan is MCj, job Jj′ is inserted straight before position j ∈ [|π|+1],

producing the permutation π′ = (π(1), . . . , π(j−1), Jj′ , π(j), . . . , π(n′)). If the new

makespan is MC ′′ij, job Jj′ is inserted before position j ∈ [|π|] with a delay after

the i-th machine, i.e., job Jj′ is split into two pseudo-jobs: Jj′ [1, i] that is inserted

before job π(j) and Jj′ [i+1,m] that is inserted after job π(j), producing the

permutation π′ = (π(1), . . . , π(j−1), Jj′ [1, i], π(j), Jj′ [i+1,m], π(j+1), . . . , π(n′))). The

job in position j may represent a pseudo-job π(j)[i′, i′′] that defines processing times

107

Algorithm 7.1 A constructive heuristic for the non-permutation FSSP.

Input: The percentage p ∈ (0, . . . , 100) of jobs inserted considering job passing.
Output: A schedule π.

1: function NEHBR(p)
2: πo := (πo(1), . . . , πo(n)) in non-increasing total processing time
3: π := (πo(1))
4: j′′ := 2
5: while j′′ ≤ bp× n/100c do
6: Calculate MCj for the insertion positions j ∈ [|π|+1] of job πo(j′′) into π
7: Cmax := minj∈[|π|+1]{MCj}
8: π′ := (π(1), . . . , π(j−1), πo(j

′′), π(j), . . . , π(n′))
9: j′′ := j′′+1

10: end while
11: while j′′ ≤ n do
12: Calculate MCj for the insertion of job πo(j′′) into π before position j ∈ [|π|+1]
13: Calculate MC ′i,j′ for the insertion of job πo(j′′) into π after position j′ ∈ [|π|]

with an anticipation after the i-th machine, i ∈ [2,m− 2].
14: Calculate MC ′′i,j′ for the insertion of job πo(j′′) into π before position j′ ∈ [|π|]

with a delay after the i-th machine, i ∈ [2,m− 2].
15: Cmax := min{minj∈[|π|+1]{MCj},mini∈[2,m−2],j′∈[|π|]{MC ′i,j′ ,MC ′′i,j′}}
16: if ∃j|MCj = Cmax then
17: π′ := (π(1), . . . , π(j−1), πo(j

′′), π(j), . . . , π(n′))
18: else
19: if ∃i, j|MC ′ij = Cmax then
20: π′ := (π(1), . . . , π(j−1), π(j)[i′, i], πo(l), π(j)[i+1, i′′], π(j+1), . . . , π(n′)))
21: else (∃i, j|MC ′′ij = Cmax)
22: π′ := (π(1), . . . , π(j−1), πo(l)[1, i], π(j), πo(l)[i+1,m], π(j+1), . . . , π(n′)))
23: end if
24: end if
25: π := π′

26: l := l + 1
27: end while
28: return π
29: end function

108

only for the operations from machine Mi′ to machine Mi′′ (where 1≤i′≤i<i′′≤m),

and the operations for other machines are missing. If the new makespan is

MC ′ij, job Jj′ is inserted after position j ∈ [|π|] with an anticipation after the

i-th machine, i.e., pseudo-job π(j)[i′, i′′] is split into two pseudo-jobs π(j)[i′, i]

and π(j)[i + 1, i′′], and job Jj′ is inserted in between, producing the permutation

π′ = (π(1), . . . , π(j−1), π(j)[i′, i], Jj′ , π(j)[i+1, i′′], π(j+1), . . . , π(n′))).

NEHBR was designed without any complicated tie-breaking mechanism just as the

original NEH heuristic. During the creation of the priority order πo, both heuristics

preserve the original order of the jobs with the same total processing time. They also

select the first position when there is more than one insertion point that produces the

smallest makespan.

The acceleration technique of Taillard (1990) reduces the time complexity of the

NEH heuristic to O(n2m). This acceleration technique might be used with the new

representation of permutation of pseudo-job, but the number of elements |π| may

be greater than the number of inserted jobs and some pseudo-job may have missing

operations due to the division of some jobs. Next, we redefine the acceleration

technique of Taillard (1990) for pseudo-jobs to calculate the makespan MCj for

inserting the current job before a straight position j. The processing time of the

operation of pseudo-job π(j) on machine Mi is pi,π(j), we write @ pi,π(j) when the

operation of pseudo-job π(j) on machine Mi is missing.

The earliest completion time ei,j of pseudo-job π(j) on machine Mi is defined as

ei,j =

{
max{ei,j−1, ei−1,j}+ pi,π(j), if ∃ pi,π(j),

ei,j−1, if @ pi,π(j),
(7.1)

for i ∈ [m] and j ∈ [|π|], with e0,j = 0 and ei,0 = 0. Similarly, the time qi,j between the

end of processing and the latest starting time of job π(j) on machine Mi is defined as

qi,j =

{
max{qi,j+1, qi+1,j}+ pi,π(j), if ∃ pi,π(j),

qi,j+1, if @ pi,π(j),
(7.2)

for i ∈ [m] and j ∈ [|π|], with qm+1,j = 0 and qi,k+1 = 0.

The earliest completion times of the jobs before the position j ∈ [|π|+ 1] will

remain unchanged after the insertion of job Jj′ into π at that position, thus they are

used to calculate the earliest relative completion time fi,j of job Jj′ on machine Mi (if

it is inserted at position j) as

fi,j = max{fi−1,j, ei,j−1}+ pi,πo(l), (7.3)

109

for i ∈ [m], j ∈ [|π| + 1] with f0,j = 0. Then, the makespan MCj of the permutation

schedule π′ after the insertion of job Jj′ before position j ∈ [|π|+ 1] is

MCj = maxi∈[m]{fi,j + qi,j}. (7.4)

At this point, we could insert job Jj′ into an straight position j of π that produces

the best makespan minj∈[|π|+1]{MCj} like NEH heuristic, but we must evaluate the

insertion of the job with anticipation or delay on some intermediate machine. Next, we

extend the acceleration technique to calculate the makespan values MC ′i,j′ and MC ′′i,j′

for inserting the current job with anticipation and with delay after an intermediate

machine respectively.

The relative time gi,j between the end of processing and the latest starting time of

job Jj′ (if it is inserted at position j) on machine Mi is defined as

gi,j = max{gi+1,j, qi,j}+ pi,πo(l), (7.5)

for i ∈ [m] and j ∈ [|π| + 1], with gm+1,j = 0. Now we calculate the makespan MC ′i,j

for inserting job Jj′ after position j with an anticipation after machine Mi as

MC ′i,j =

max{fi,j+1 + gi+1,j,

max
i′∈[i]
{gi′,j+1 + ei′,j},

max
i′′∈[i+1,m]

{fi′′,j + qi′′,j}}, if ∃pi,π(j) ∧ ∃pi+1,π(j),

∞, if @pi,π(j) ∨ @pi+1,π(j),

(7.6)

for i ∈ [2,m− 2] and j ∈ [|π|].

We define the earliest completion time e′i,j of job π(j) on machine Mi when

scheduled right after job Jj′ as

e′i,j =

{
max{e′i−1,j, fi,j}+ pi,π(j), if ∃ pi,π(j),

fi,j, if @ pi,π(j),
(7.7)

for i ∈ [m] and j ∈ [|π|], with e′0,j = 0. Similarly, we define the time qi,j between

the end of processing and the latest starting time of job π(j) on machine Mi when

scheduled right before job Jj′ as

q′i,j =

{
max{q′i+1,j, gi,j+1}+ pi,π(j), if ∃ pi,π(j),

gi,j+1, if @ pi,π(j),
(7.8)

for i ∈ [m] and j ∈ [|π|], with q′m+1,j = 0.

110

Now we calculate the makespan MC ′′i,j for inserting job Jj′ before position j with

a delay after machine Mi as

MC ′′i,j =

max{e′i,j + q′i+1,j,

max
i′∈[i]
{fi′,j + qi′,j},

max
i′′∈[i+1,m]

{gi′′,j+1 + ei′′,j}}, if ∃pi,π(j) ∧ ∃pi+1,π(j),

∞, if @pi,π(j) ∨ @pi+1,π(j),

(7.9)

for i ∈ [2,m− 2] and j ∈ [|π|],

Then, the new makespan is

Cmax = min{minj∈[n]{MCj},mini∈[2,m−2],j∈[n]{MC ′i,j,MC ′′i,j}}, (7.10)

and job Jj′ is inserted into π to produce π′ accordingly.

The proposed constructive heuristic NEHBR calculates three times the quantity of

values that NEH calculates, and the number of pseudo-jobs n′ in a non-permutation

schedule is greater than the number of jobs n due to the division of jobs, thus each

calculation has a time complexity of O(n′m). Although a job may be divided in

many pseudo-jobs, not all the jobs are divided, and each job insertion performs at

most one division in two pseudo-jobs, thus the number of elements n′ = |π| in a

non-permutation schedule π satisfies n ≤ n′ < 2n. Consequently, the complexity

of the proposed NEHBR heuristic is also O(n2m), although it is expected to be at least

three times more expensive than NEH in practice. For example, the maximum number

of pseudo-jobs n′ in our tests is observed for instances with 20 machines, and this

number increases with a smaller pace than number of jobs n from n′ = 38 for n = 20

to n′ = 580 for n = 500.

Now, let us apply the proposed NEHBR heuristic to create a schedule for the 6 × 6

instance given in Table 7.1. NEHBR uses the priority order πo = (J4, J5, J1, J2, J3, J6)

and creates the partial schedule π = (J5, J4, J2, J1) in the first iterations in the same

way as the NEH heuristic, because the minimum makespans are produced by straight

insertions. Job J3 is the next to be inserted. The makespan values MCj, MC ′i,j,

and MC ′′i,j in Table 7.2 would be the result after the insertion at position j straight,

with anticipation, or with delay after the i-th machine, respectively. This time, the

minimum makespan Cmax = MC ′4,4 = 38 is shorter than the minimum value MC5 = 39

for a straight insertion. Consequently, Job J3 is inserted after job J1 at position

j = 4 with an anticipation after machine M4 that splits job J1 in two pseudo-jobs

J1[1, 4] and J1[5, 6], producing the partial schedule π′′ = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]).

After this insertion, the calculations differ from the original acceleration of Taillard.

Table 7.3 shows the heads ei,j and tails qi,j for the partial schedule π′′, and highlights in

111

Table 7.2: Makespan values for inserting job J3 into the partial non-permutation
schedule π = (J5, J4, J2, J1) of the 6× 6 instance given in Table 7.1.

MC

j MCj

1 44
2 41
3 40
4 40
5 39

MC ′

j MC ′2,j MC ′3,j MC ′4,j

1 46 43 41
2 41 40 40
3 43 40 40
4 40 39 38

MC ′′

j MC ′2,j MC ′3,j MC ′4,j

1 46 46 46
2 42 41 41
3 42 42 42
4 44 44 44

Table 7.3: Values ei,j and qi,j for schedule π′′ = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) of the
6× 6 instance given in Table 7.1.

ei,j

j e1,j e2,j e3,j e4,j e5,j e6,j

1 2 4 9 15 18 23
2 6 11 13 17 23 28
3 10 14 19 22 28 30
4 13 20 23 26 28 30
5 19 25 27 29 31 35
6 19 25 27 29 35 38

qi,j

j q1,j q2,j q3,j q4,j q5,j q6,j

1 38 35 33 28 22 19
2 36 32 24 21 19 14
3 31 27 22 17 14 9
4 27 24 17 14 9 7
5 24 18 13 11 9 7
6 0 0 0 0 7 3

Table 7.4: Makespan values for inserting job J6 into the partial non-permutation
schedule π′′ = (J5, J4, J2, J1[1, 4], J3, J1[5, 6]) of the 6× 6 instance given in Table 7.1.

M

j MCj

1 43
2 42
3 41
4 43
5 46
6 48
7 44

MC ′

j MC ′2,j MC ′3,j MC ′4,j

1 45 47 45
2 46 46 46
3 44 46 46
4 47 47 46
5 51 51 51
6 48 48 48

MC ′′

j MC ′2,j MC ′3,j MC ′4,j

1 45 48 46
2 42 40 44
3 46 46 45
4 49 48 45
5 50 47 47
6 44 44 48

112

bold the values that are repeated in successive machines due to divided pseudo-jobs.

The last job to be inserted is J6, and the makespan values that would result from

its insertion are shown in Table 7.4. The final makespan Cmax = MC ′′3,2 = 40 is

shorter than the minimum value M3 = 41 for a straight insertion. Consequently,

job J6 is inserted before job J4 at position j = 2 with a delay after machine

M3, i.e., job J6 is divided in two pseudo-jobs: J6[1, 3] that is inserted before

job J4 and J6[4, 6] that is inserted after job J4, producing the complete schedule

π′ = (J5, J6[1, 3], J4, J6[4, 6], J2, J1[1, 4], J3, J1[5, 6]) of Figure 7.2. The NEH heuristic

would insert the last two jobs into straight positions, producing the schedule of

Figure 7.1 with makespan Cmax = 43.

7.2.2 An insertion local search for the non-permutation FSSP with time

complexity O(n2m) per neighbourhood

The most commonly used local search for the permutation FSSP explores the

insertion neighbourhood (also called shift neighbourhood) that removes a job from

the schedule and reinserts it into another position. This neighbourhood can use the

acceleration of Taillard to calculate the best insertion position, examining the (n− 1)2

permutation insertion neighbours in a time of complexity O(n2m).

An insertion neighbourhood for the non-permutation FSSP removes a job from

the schedule and reinserts it into another position: straight, with anticipation or with

delay after an intermediate machine. The extended acceleration technique explained

in Section 7.2.1 evaluates the (n− 1)2(2m− 5) non-permutation insertion neighbours

in a time of complexity O(n2m).

The non-permutation insertion local search evaluates the reinsertion of jobs in a

random cyclic order determined at the beginning of the search. In each iteration,

it evaluates the reinsertion of the current job into a position that minimizes the

makespan, straight, with anticipation or with delay, and the best schedule is updated

with any improvement in the neighbourhood. The local search stops when there are

no improvements found in the reinsertion of the n jobs.

7.2.3 A best-improvement reduced-neighbourhood non-permutation (BRN)

local search for the FSSP

Algorithm 7.2 shows the proposed new local search for the non-permutation

FSSP. We refer to this local search as BRN, standing for Best-improvement,

Reduced-neighbourhood and Non-permutation. First, it determines the reduced

neighbourhood R of pairs of adjacent jobs whose inversion may improve the

113

Algorithm 7.2 A best-improvement reduced-neighbourhood non-permutation local
search for the FSSP.
Input: A non-permutation schedule π′ with makespan Cmax(π

′).
Output: A local optimum schedule π∗ with makespan Cmax(π

∗) ≤ Cmax(π
′).

1: function BRN_LOCAL_SEARCH(π′)
2: π∗ := π′

3: Cmax(π
∗) := Cmax(π

′)
4: repeat
5: π := π′

6: Cmax(π) := Cmax(π
′)

7: Compute ei,j and qi,j for all i ∈ [m] and j ∈ [|π|]
8: R := {(π(j), π(j + 1))|∃i,

ei,j + qi+1,j = Cmax(π) ∨ ei,j+1 + qi+1,j+1 = Cmax(π)}
9: Cmax(π

′) :=∞
10: for each pair of adjacent jobs (π(j), π(j + 1)) ∈ R do
11: Calculate MCj, MC ′i,j and MC ′′i,j for i ∈ [2,m− 2]
12: Cj := min{Cmax(π

′),MCj,mini∈[2,m−2]{MC ′i,j,MC ′′i,j}}
13: Cmax(π

′) := Cj
14: end for
15: if Cmax(π

′) < Cmax(π) then
16: if ∃j|MCj = Cmax(π

′) then
17: π′ := (π(1), . . . , π(j − 1), π(j + 1), π(j), π(j + 2), . . . , π(n′)))
18: else
19: if ∃i, j|MC ′ij = Cmax(π

′) then
20: π′ := (π(1), . . . , π(j − 1), π(j + 1)[1, i], π(j), π(j + 1)[i+ 1,m], π(j + 2), . . . , π(n′)))

21: else (∃i, j|MC ′′ij = Cmax(π
′))

22: π′ := (π(1), . . . , π(j − 1), π(j)[1, i], π(j + 1), π(j)[i+ 1,m], π(j + 2), . . . , π(n′)))

23: end if
24: end if
25: if Cmax(π

′) < Cmax(π
∗) then

26: π∗ := π′

27: Cmax(π
∗) := Cmax(π

′)
28: end if
29: end if
30: until Cmax(π

′) ≥ Cmax(π)
31: return π∗

32: end function

114

makespan. Then, it evaluates the inversion of the processing order of each pair of

adjacent jobs (π(j), π(j + 1)) ∈ R completely, before, or after some intermediate

machine. Finally, it applies the best inversion if it produces a shorter makespan. Those

steps are repeated until the local search cannot reduce the makespan.

To determine the reduced neighbourhood R of the current schedule π, the BRN

local search first calculates the earliest completion times ei,j and the time qi,j between

the end of processing and the latest starting time of each job π(j) on the i-th machine

according to Equations (7.1) and (7.2). A critical operation of job π(j) on the i-th

machine satisfies ei,j−1 + qi,j = Cmax(π) if it follows another critical operation on the

same machine, or ei−1,j + qi,j = Cmax(π) if it follows another critical operation of the

same job. Thus, the reduced neighbourhood R of the BRN local search only includes

a pair of jobs (π(j), π(j + 1)) if any of them has two consecutive critical operations on

machines in positions i ∈ [2,m − 2] and i + 1, this means ei,j + qi+1,j = Cmax(π) or

ei,j+1 + qi+1,j+1 = Cmax(π). This is based on the neighbourhood proposed by Nowicki

& Smutnicki (1996) for the job shop scheduling problem that limits the changes of

processing order to the inversion of the first two and the last two operations of each

block in the critical path, with exception of the first two and the last two operations

of the schedule, because only those inversions may directly reduce the makespan of a

job shop schedule.

The BRN local search performs the following calculations to evaluate the inversion

of the processing order of a pair of consecutive jobs (π(j), π(j + 1)) ∈ R. The

completion time e′i,j of the operation of job π(j + 1) on the i-th machine if scheduled

before π(j) is defined as

e′i,j =

{
max{ei,j−1, e′i−1,j}+ pi,π(j+1), if ∃ pi,π(j+1)

ei,j−1, if @ pi,π(j+1)

(7.11)

for i ∈ [m], with e′0,j = 0. The time q′i,j between the end of processing and the latest

starting time of the operation of job π(j) on the i-th machine if scheduled after π(j+1)

is defined as

q′i,j =

{
max{qi,j+2, q

′
i+1,j}+ pi,π(j), if ∃ pi,π(j),

qi,j+2, if @ pi,π(j),
(7.12)

for i ∈ [m], with q′m+1,j = 0. Thus, the makespan MCj of the permutation schedule π′

that result of the exchange of the pair of consecutive jobs (π(j), π(j + 1)) defined as

MCj = maxi∈[m]{e′i,j + q′i,j}. (7.13)

115

The completion time e′′i,j of the operation of job π(j) on the i-th machine if

scheduled after π(j + 1) is defined as

e′′i,j =

{
max{e′i,j, e′′i−1,j}+ pi,π(j), if ∃ pi,π(j),

e′i,j−1, if @ pi,π(j),
(7.14)

for i ∈ [m], with e′′0,j = 0. The time q′′i,j between the end of processing and the latest

starting time of the operation of job π(j + 1) on the i-th machine if scheduled before

π(j) is defined as

q′′i,j =

{
max{q′i,j, q′′i+1,j}+ pi,π(j+1), if ∃ pi,π(j+1)

q′i,j, if @ pi,π(j+1)

(7.15)

for i ∈ [m], with q′′m+1,j = 0.

The makespan MC ′i,j for dividing the pseudo-job π(j + 1)[i′, i′′] after the i-th

machine in two pseudo-jobs π(j + 1)[i′, i] and π(j + 1)[i + 1, i′′] (where 1 ≤ i′ ≤ i <

i′′ ≤ m) and inserting job π(j) between them is defined as

MC ′i,j =

max{e′′i,j + qi+1,j,

max
i′∈[i]
{e′i′,j + q′i′,j},

max
i′′∈[i+1,m]

{ei′′,j + qi′′,j+1}}, if ∃pi,π(j) ∧ ∃pi+1,π(j),

∞, if @pi,π(j) ∨ @pi+1,π(j),

(7.16)

for i ∈ [2,m − 2], and the makespan MC ′′i,j for dividing the pseudo-job π(j)[i′, i′′]

after the i-th machine in two pseudo-jobs π(j)[i′, i] and π(j)[i + 1, i′′] (where

1 ≤ i′ ≤ i < i′′ ≤ m) and inserting job π(j + 1) between them is defined as

MC ′′i,j =

max{ei,j+1 + q′′i+1,j,

max
i′∈[i]
{ei′,j + qi′,j+1},

max
i′′∈[i+1,m]

{e′i′′,j + q′i′′,j}}, if ∃pi,π(j) ∧ ∃pi+1,π(j),

∞, if @pi,π(j) ∨ @pi+1,π(j),

(7.17)

for i ∈ [2,m− 2],

After those calculations, the new makespan Cmax(π
′) is defined as

Cmax(π
′) = min

j|(π(j),π(j+1))∈R
{MCj,mini∈[2,m−2]{MC ′i,j,MC ′′i,j}}, (7.18)

and the current schedule π is modified accordingly to create the new schedule π′.

116

Table 7.5: Makespan values for first iteration of the BRN local search on the schedule
π = (J5, J4, J6, J2, J1, J3) of the 6× 6 instance given in Table 7.1.

MC

j MCj

1 46
2 44
3 43
4 42
5 42

MC ′

j MC ′2,j MC ′3,j MC ′4,j

1 49 49 49
2 44 42 46
3 46 48 48
4 47 47 47
5 46 46 46

MC ′′

j MC ′2,j MC ′3,j MC ′4,j

1 48 45 44
2 48 48 48
3 46 46 46
4 45 45 45
5 43 42 41

The calculations of the earliest completion times ei,j and the time qi,j between the

end of processing and the latest starting time of each job π(j) on the i-th machine

have a time complexity of O(nm). The other calculations are performed for each

pair of adjacent jobs (π(j), π(j + 1)) in the reduced neighbourhood R with a time

complexity of O(|R|m), where the size of the neighbourhood is limited by the number

of jobs in the schedule |R| < n. Finally, with the extended acceleration technique, the

BRN local search evaluates the n(2m− 5) neighbours in a time of complexity O(nm).

Now, let us apply the BRN local search to the schedule π = (J5, J4, J6, J2, J1, J3) of

Figure 7.1. Neighbourhood R contains all pairs of adjacent jobs, because jobs J4, J6,

J2, and J1 have consecutive critical operations in successive machines. The makespan

values MCj, MC ′i,j, and MC ′′i,j in Table 7.5 result from inverting the processing order

of two consecutive jobs (π(j), π(j + 1)) ∈ R completely, before, or after the i-th

machine, respectively. The new makespan Cmax(π
′) = MC ′′4,5 = 41 is shorter than the

minimum value M4 = 42 for a complete inversion. Consequently, job J1 at position

j = 5 is divided after machine M4 into two pseudo-jobs: J1[1, 4] that stays at the same

position j = 5 and J1[5, 6] that is inserted after job J3, producing the new schedule

π′ = (J5, J4, J6, J2, J1[1, 4], J3, J1[5, 6]). The next iteration of the BRN local search will

produce the optimal schedule of Figure 7.2, and one last iteration will confirm that it

is a local minimum to finish the search.

7.3 An iterated greedy algorithm for the non-permutation FSSP

Algorithm 7.3 shows a general iterated greedy algorithm. It starts by constructing

an initial solution with a constructive heuristic. Then, it repeatedly removes d

elements from the current solution, and reinserts them with a constructive heuristic

to produce a perturbed solution. Optionally, a local search may improve each new

solution. The new solution replaces the current solution according to an acceptance

criterion. Finally, it returns the best solution found.

117

Algorithm 7.3 Iterated greedy algorithm.

Input: A number d of elements to perturb, and temperature T parameter.
Output: The best solution s∗ found during the search.

1: function IGA(d, T)
2: s := CONSTRUCTIVE_HEURISTIC()
3: s := LOCAL_SEARCH(s)
4: repeat
5: sp := REMOVE_ELEMENTS(s, d)
6: s′ := CONSTRUCTIVE_HEURISTIC(sp)
7: s′ := LOCAL_SEARCH(s′)
8: if ACCEPTANCE_CRITERION(s, s′, T) then
9: s := s′

10: Update s∗ if necessary
11: end if
12: until some stopping criterion is satisfied
13: return s∗

14: end function

The acceptance criterion is based on that proposed by Metropolis et al. (1953).

The new solution s′ replaces the current solution s if it is better, or with probability

P [acceptance_criterion(s, s′)] = min{e−(Cmax(s′)−Cmax(s))/T , 1} for a temperature T =

αp/10, where p =
∑

j∈[n]
∑

i∈[m] pij/nm is the average processing time of an operation

and a parameter α.

Two parameters control the performance of the iterated greedy algorithm: the

temperature factor α that controls the pliability of the acceptance criterion, and the

number of jobs d to be reconstructed that controls the strength of the perturbation.

We set the number of jobs to d = 4 and the temperature factor to α = 0.4 in our

implementations, following the calibration of Ruiz & Stützle (2007).

To create an iterated greedy algorithm for the non-permutation FSSP, we embed

the constructive heuristic NEHBR, the insertion local search, and the BRN local

search that were proposed in the previous section. The NEHBR heuristic has a

simple deterministic tie-breaking mechanism. Vasiljevic & Danilovic (2015) used

random tie breaks to improve the results of NEH, with better results than complicated

mechanisms. For this reason, our iterated greedy algorithm randomly breaks any tie

found in the reconstruction and local search phases, after the first solution is complete.

We propose three variations of the iterated greedy algorithm that use the

constructive heuristic NEHBR and differ in the used local search: IGi uses the proposed

insertion local search, IGb uses the proposed BRN local search, and IGbi uses both

the BRN local search and the insertion local search successively. We refer to our

implementation of IG_RSLS for the permutation FSSP as IGp, it also breaks ties

randomly after the first solution is complete.

118

7.4 Computational Results

7.4.1 Experimental methodology

The proposed heuristics were implemented in C++, compiled with GNU C++

Compiler version 4.9.2 with optimization level 2 (-O2), and run on a PC with an

AMD Opteron 6238 processor running at 2.9 GHz, and with 64 GB of main memory,

using only one core in each execution. We have tested our algorithms on the 120

instances proposed by Taillard (1993) that were described in Section 3.4, and are the

standard benchmark in the literature. We repeat each test once for the deterministic

constructive heuristics and twenty times for the iterated greedy algorithms.

We present the quality of each result as the relative percentage deviation

100× (Cmax − C∗max)/C
∗
max from the best known value C∗max, and as the average

relative percentage deviations of the grouped instances and replications. The best

known values are those reported by Taillard (2004) and listed in column “P” of

Table 7.17. The best known values C∗max may be improved by other researchers, and

the comparison is impossible without the identification of the values used to calculate

the relative percentage deviations. The NEH relative deviation in Table 7.6 or the

average C∗max in Tables 7.15 and 7.16 may confirm rapidly if other publications use the

same best known values. We ran the iterated greedy algorithms for time n(m/2)ρ ms

with ρ ∈ {30, 60, 90}. The values of ρ were selected to match the running time of the

compared methods.

7.4.2 Calibration of the constructive heuristic NEHBR

First, we study the percentage p of jobs that the NEHBR heuristic shall insert using

non-permutation insertions after the permutation insertion of the first 100−p percent

of jobs. To do this, we vary the percentage p ∈ {0, 10, . . . , 100}, where a percentage

p = 0 represents a complete run of the original NEH heuristic for the permutation

FSSP, and a percentage p = 100 represents a complete run of the NEHBR heuristic

considering non-permutation insertions for every job. Both NEH and NEHBR heuristics

are deterministic, thus we run them once on each instance. Table 7.6 shows the

average (over 10 instances with the same size) of the relative percentage deviations

for the NEHBR heuristic with a percentage p of non-permutation insertions. The best

overall average result is 2.789 achieved by the NEHBR heuristic with a combination of

40 percent of permutation insertions followed by p = 60 percent of non-permutation

insertions. Thus, we use this combination for the NEHBR to initialize the iterated

greedy algorithms for the non-permutation FSSP.

119

Table 7.6: Average relative percentage deviations for the NEH and NEHBR heuristics.

Instances
NEH Percentage p of jobs that consider non-permutation insertions NEHBR

0 10 20 30 40 50 60 70 80 90 100

20×5 3.300 3.268 2.992 3.114 2.817 2.809 2.836 2.796 2.796 2.796 2.796
20×10 4.601 4.135 3.769 3.535 3.206 3.405 2.637 3.262 3.574 3.427 3.441
20×20 3.731 3.585 3.431 2.860 2.729 2.841 2.727 2.928 2.902 2.790 2.349
50×5 0.727 0.684 0.775 0.718 0.631 0.708 0.690 0.698 0.741 0.741 0.758
50×10 5.073 4.783 4.695 4.649 4.673 5.025 4.795 5.044 4.802 4.080 4.141
50×20 6.648 6.224 5.882 5.769 5.656 5.688 5.200 5.714 5.366 5.477 5.357

100×5 0.527 0.465 0.340 0.327 0.330 0.381 0.404 0.404 0.404 0.404 0.404
100×10 2.215 2.126 1.980 1.878 1.921 1.620 1.758 1.872 1.969 2.145 1.873
100×20 5.345 5.238 5.046 5.067 4.987 4.811 5.135 5.147 5.340 5.338 5.142
200×10 1.258 1.106 1.040 1.181 1.129 1.190 1.062 1.166 1.219 1.191 1.193
200×20 4.408 4.294 4.194 4.179 4.346 4.195 4.196 4.054 4.175 4.115 4.186
500×20 2.066 2.071 2.005 2.115 2.152 2.146 2.033 2.067 2.072 2.120 2.051

Averages 3.325 3.165 3.012 2.949 2.881 2.902 2.789 2.929 2.947 2.885 2.808

7.4.3 Comparison of the constructive heuristic NEHBR with other NEH variations

Next, we compare the NEHBR heuristic with different tie-breaking mechanisms

for the NEH heuristic proposed in the literature. Table 7.7 shows the average

relative percentage deviations for the original NEH heuristic and the proposed NEHBR

heuristic, together with those reported by Fernandez-Viagas & Framinan (2014) for

three tie-breaking mechanisms: NEHD proposed by Dong, Huang & Chen (2008),

Table 7.7: Average relative percentage deviations for the NEHBR heuristic compared
to tie-breaking mechanisms.

Instances NEH NEHD NEHFF NEHD-FF NEHBR

20×5 3.300 2.655 2.293 2.559 2.836
20×10 4.601 4.661 4.152 3.543 2.637
20×20 3.731 3.443 3.305 3.331 2.727
50×5 0.727 0.497 0.922 0.749 0.690
50×10 5.073 5.082 5.150 4.905 4.795
50×20 6.648 6.091 6.207 5.812 5.200

100×5 0.527 0.459 0.378 0.412 0.404
100×10 2.215 2.065 2.182 1.719 1.758
100×20 5.345 5.235 5.021 5.147 5.135
200×10 1.258 1.182 0.984 0.987 1.062
200×20 4.408 3.901 4.037 3.885 4.196
500×20 2.066 1.779 1.776 1.713 2.033

Averages 3.325 3.088 3.034 2.897 2.789

120

NEHFF proposed by Fernandez-Viagas & Framinan (2014), and NEHD-FF that uses the

priority order of Dong, Huang & Chen (2008) and the tie-breaking mechanism of

Fernandez-Viagas & Framinan (2014). The NEHFF and NEHD-FF heuristics have the

best average results on the larger instances (with 100 jobs or more). Nevertheless,

the proposed NEHBR heuristic finds the best overall results with a smaller average

relative percentage deviation by 0.1. The insertion of a job to create a non-permutation

schedule produces better results than calculating complicated tie breaks to create a

permutation schedule.

Table 7.8 shows the average running times (in milliseconds) of the original

NEH heuristic that only considers permutation insertions, the NEHBR heuristic with

p = 60 percent of non-permutation insertions that shows the best results, and the

NEHBR heuristic with p = 100 percent of non-permutation insertions that is the most

expensive. It reports running times for instances of size 100×10 or larger. The running

times for smaller instances are less than one millisecond. The NEHBR heuristic with

p = 100 expends approximately three times the running time of the NEH heuristic.

This is consistent with the fact that both heuristics have the same time complexity

O(n2m) and that NEHBR with p = 100 is a factor three more expensive than NEH. The

NEHBR heuristic with p = 60 is 20% faster than with p = 100 and obtains the best

results.

Table 7.8: Average running times (ms) for the NEH and NEHBR heuristics.

Instances
NEH NEHBR NEHBR

p = 0 p = 60 p = 100

100×10 0.8 1.7 2.1
100×20 1.3 3.6 4.7
200×10 3.2 6.9 8.3
200×20 5.5 14.0 18.1
500×20 34.3 83.8 106.9

The NEHBR heuristic was designed without any complicated tie-breaking mecha-

nism just as the original NEH heuristic. The NFS heuristic from Section 6.1.1 proposes

different tie-breaking mechanisms, and produces non-permutation schedules with an

average relative percentage deviation of 2.67, but it has a time complexity of O(n3m2).

The NEHI heuristic proposed by Vasiljevic & Danilovic (2015) applies five different

insertion tie breaks for each of five different priority orders, and produces permutation

schedules with an average relative percentage deviation of 2.465, but runs random

variations of NEH up to 26 times. It would be unfair to compare NEHBR with NFS and

NEHI because of their higher running times. Besides, the same techniques may be

implemented within NEHBR to improve its results.

121

Table 7.9: Average relative percentage deviations for the heuristics NEH and NEHBR

compared to the heuristics FRB and FRBBR.

Instances
Permutation Non-permutation

NEH FRB2 FRB3 FRB5 NEHBR FRB2BR FRB3BR FRB5BR

20×5 3.300 1.933 1.200 1.099 2.836 1.478 1.242 0.929
20×10 4.601 1.880 2.174 1.965 2.637 1.339 1.068 1.059
20×20 3.731 2.520 1.904 2.004 2.727 1.544 0.802 0.481
50×5 0.727 0.552 0.332 0.196 0.690 0.369 0.212 -0.118
50×10 5.073 3.341 3.006 2.476 4.795 2.598 1.838 1.606
50×20 6.648 4.251 3.534 3.417 5.200 3.663 2.956 2.450

100×5 0.527 0.255 0.186 0.115 0.404 0.137 0.102 0.071
100×10 2.215 1.170 0.947 0.902 1.758 1.077 0.739 0.494
100×20 5.345 3.413 3.242 2.578 5.135 3.070 2.511 2.268
200×10 1.258 0.757 0.539 0.345 1.062 0.608 0.323 0.170
200×20 4.408 2.640 2.321 1.880 4.196 2.476 1.962 1.615
500×20 2.066 1.197 1.091 0.774 2.033 1.101 0.837 0.620

Averages 3.325 1.992 1.706 1.479 2.789 1.622 1.216 0.970

7.4.4 Comparison of the constructive heuristic NEHBR with the heuristics FRB

In Table 7.9 we compare the heuristics NEH and NEHBR with our implementations

of the heuristics FRB2, FRB3, and FRB5. This set of heuristics was proposed by

Farahmand Rad, Ruiz & Boroojerdian (2009) and described in Section 3.1.2. We

also implemented non-permutation versions FRB2BR, FRB3BR, and FRB5BR, using our

non-permutation insertion with anticipation and delay in the last 60% of the insertions,

like in NEHBR. To ensure that our implementations are deterministic, they use the

same simple tie-breaking mechanisms of NEHBR, and the insertion neighbourhood

explores the reinsertion of the jobs in the order they were inserted.

The heuristics FRB2, FRB3, and FRB5 produce better solutions than NEH. The best

average results among the permutation constructive heuristics are for FRB5. The small

differences between the results of Farahmand Rad, Ruiz & Boroojerdian (2009) and

our implementations may be attributed to different tie-breaking mechanisms. The

heuristics FRB2BR, FRB3BR, and FRB5BR produce better solutions than NEHBR, but

only FRB3BR, and FRB5BR produce better solutions than the constructive heuristics for

permutation schedules. The best average results among all the constructive heuristics

are for FRB5BR, that produces better solutions than the best known permutation

schedules in 13 of the instances, 6 of them have size 50×5, producing the only negative

average in Table 7.9.

122

Table 7.10: Average running times (ms) for the FRB and FRBBR heuristics.

Instances
Permutation Non-permutation

FRB2 FRB3 FRB5 FRB2BR FRB3BR FRB5BR

100×10 13.9 53.7 78.4 26.8 122.8 203.2
100×20 51.0 92.0 169.1 104.8 251.1 601.4
200×10 57.7 431.9 549.7 107.6 961.2 1375.3
200×20 211.2 748.4 1441.3 434.4 1971.1 4709.7
500×20 1285.4 11344.4 19076.5 2498.3 27644.0 55778.7

The techniques proposed by Farahmand Rad, Ruiz & Boroojerdian (2009) to

improve the results of NEH also apply and improve the results of NEHBR, but they

require larger times for their execution. Table 7.10 shows the average running times

(in milliseconds) of of the heuristics FRB and FRBBR. For the largest instances, the

heuristics FRB2 and FRB2BR reguire a factor 30 more time than the corresponding

NEH and NEHBR. This factor is 240 for the heuristics FRB3 and FRB3BR, and 500 for

the heuristics FRB5 and FRB5BR. This makes a direct comparison with NEH and NEHBR

unfair. These larger processing times are still smaller than the shortest time limit of

n(m/2)30 ms for our iterated greedy algorithms. The heuristic FRB3BR requires 18%

and the heuristic FRB5BR requires 37% of that time limit for the largest instances. This

allows the use of these heuristics as seeds for our iterated greedy algorithms.

7.4.5 Comparison of local search heuristics within the iterated greedy algo-

rithms

Now we study how the use of the different proposed local searches influences

the results and performance of the iterated greedy algorithm. Table 7.11 shows the

average relative percentage deviations (over ten instances and twenty replications

for each instance) for the three versions of our iterated greedy algorithm for the

non-permutation FSSP proposed in Section 7.3 with time limits of n(m/2)ρ ms,

ρ ∈ {30, 60, 90}. IGb uses the BRN local search and IGi uses the insertion local search.

IGb produces consistently the best results for all three time limits and almost all the

instances. IGb produces the best average results for all three time limits, and IGi

produces the worst average results. The use of both BRN and insertion local searches

in IGbi shows slightly better results than using the insertion local search alone, but the

use of the BRN local search alone is much better. Moreover, the average results of IGb

in time n(m/2)30 ms are better than that of both IGi and IGbi in twice that time.

123

Table 7.11: Average relative percentage deviations for the proposed iterated greedy
algorithms for the non-permutation FSSP.

Instances
Time n(m/2)30 ms Time n(m/2)60 ms Time n(m/2)90 ms

IGi IGbi IGb IGi IGbi IGb IGi IGbi IGb

20×5 -0.385 -0.382 -0.359 -0.386 -0.387 -0.389 -0.387 -0.391 -0.391
20×10 -1.368 -1.423 -1.428 -1.424 -1.461 -1.491 -1.442 -1.495 -1.551
20×20 -1.990 -2.102 -2.145 -2.045 -2.195 -2.234 -2.081 -2.237 -2.253
50×5 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165
50×10 0.106 0.110 0.012 0.017 0.032 -0.009 -0.011 -0.013 -0.027
50×20 -0.073 -0.104 -0.320 -0.282 -0.322 -0.551 -0.413 -0.445 -0.649

100×5 -0.119 -0.117 -0.108 -0.119 -0.120 -0.123 -0.122 -0.122 -0.123
100×10 0.026 0.049 0.013 -0.018 -0.004 -0.046 -0.039 -0.026 -0.063
100×20 0.768 0.779 0.438 0.516 0.557 0.307 0.430 0.437 0.232
200×10 -0.022 -0.007 -0.038 -0.036 -0.033 -0.051 -0.044 -0.044 -0.058
200×20 1.025 1.078 0.679 0.849 0.880 0.553 0.752 0.779 0.500
500×20 0.490 0.518 0.354 0.417 0.430 0.305 0.381 0.383 0.292

Averages -0.142 -0.147 -0.256 -0.223 -0.232 -0.325 -0.262 -0.278 -0.355

Table 7.12: Average relative percentage deviations for the iterated greedy algorithm
IGb for the non-permutation FSSP with different constructive heuristics as seeds.

Instances
Time n(m/2)30 ms Time n(m/2)60 ms Time n(m/2)90 ms

NEHBR FRB3BR FRB5BR NEHBR FRB3BR FRB5BR NEHBR FRB3BR FRB5BR

20×5 -0.359 -0.356 -0.365 -0.389 -0.371 -0.391 -0.391 -0.383 -0.392
20×10 -1.428 -1.424 -1.375 -1.491 -1.474 -1.451 -1.551 -1.489 -1.502
20×20 -2.145 -2.081 -2.100 -2.234 -2.152 -2.208 -2.253 -2.216 -2.233
50×5 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165 -0.165
50×10 0.012 0.054 0.048 -0.009 0.015 0.003 -0.027 -0.006 -0.019
50×20 -0.320 -0.288 -0.351 -0.551 -0.524 -0.530 -0.649 -0.639 -0.657

Averages -0.734 -0.710 -0.718 -0.807 -0.778 -0.790 -0.839 -0.816 -0.828

100×5 -0.108 -0.120 -0.121 -0.123 -0.121 -0.123 -0.123 -0.123 -0.123
100×10 0.013 0.007 0.012 -0.046 -0.035 -0.039 -0.063 -0.070 -0.065
100×20 0.438 0.396 0.375 0.307 0.236 0.210 0.232 0.140 0.128
200×10 -0.038 -0.026 -0.029 -0.051 -0.040 -0.043 -0.058 -0.052 -0.046
200×20 0.679 0.663 0.575 0.553 0.548 0.482 0.500 0.489 0.433
500×20 0.354 0.342 0.300 0.305 0.275 0.247 0.292 0.251 0.235

Averages 0.223 0.210 0.185 0.158 0.144 0.123 0.130 0.106 0.094

Total Avg. -0.256 -0.250 -0.266 -0.325 -0.317 -0.334 -0.355 -0.355 -0.367

124

7.4.6 Comparison of constructive heuristics as seeds of the iterated greedy

algorithms

Table 7.12 shows the average relative percentage deviations (over ten instances

and twenty replications for each instance) for the iterated greedy algorithm IGb for

the non-permutation FSSP with three different constructive heuristics as seeds: the

heuristics FRB3BR and FRB5BR that obtained the best results in Table 7.9, and the

simpler heuristic NEHBR. The seed FRB5BR produces the best average results for all

three time limits, but these results are not consistent for all the instances. The seed

NEHBR produces the best average results for instances with 20 or 50 jobs, while the

seed FRB5BR produces the best average results for instances with 100 jobs or more.

The differences between the averages in Table 7.12 are ten times smaller than those

in Table 7.11, thus, the performance of the IGs depend more on the use of different

local searches than on the use of different seeds. We want to keep our methods as

simple as possible, thus we use the heuristic NEHBR as initial solution of our iterated

greedy algorithms for comparisons in the rest of the chapter.

7.4.7 Performance of the iterated greedy algorithms

Table 7.13 shows the average number of iterations (in thousands, over ten

instances and twenty replications for each instance) for the three versions of our

iterated greedy algorithm for the non-permutation FSSP and for our IGp for the

permutation FSSP, all with the time limit of n(m/2)90 ms. IGp performs three times

the number of iterations of IGi. This is expected, because the reconstuction and the

local search phases of IGp use the permutation insertion of the NEH heuristic, and

those of IGi use the non-permutation insertion of the NEHBR heuristic that performs

three times the number of calculations. IGbi performs 6% more iterations than IGi, this

indicates that the BRN local search slightly shortens the search for the insertion local

search. IGb is fastest, performing from 6 to 132 times more iterations than IGi.

The number of iterations for our iterated greedy algorithms decreases when the

size of the instance increases, with the exception of IGb algorithm that keeps an

average of 180 thousands of iterations. The reconstruction phase of our iterated

greedy algorithm uses a non-permutation insertion with a time complexity of O(nm).

The non-permutation insertion local search explores a neighbourhood in a time of

complexity O(n2m). Thus, the performance of both IGi and IGbi are absorbed by the

insertion local search that consumes between 88.1 and 99.5 percent of the running

time. The BRN local search explores a neighbourhood in a time of complexity O(nm).

That is comparable to the reconstruction phase. Consequently, in IGb algorithm, the

BRN local search consumes only between 18 and 42 percent of the running time, and

125

Table 7.13: Average number of iterations (in thousands) for the proposed iterated
greedy algorithms with stop criterion of n(m/2)90 ms.

Instances IGp IGi IGbi IGb

20×5 61.2 29.2 29.6 180.1
20×10 81.0 24.0 24.9 161.3
20×20 101.7 22.6 23.5 151.1
50×5 31.9 15.9 16.3 205.3
50×10 31.1 9.9 10.8 165.9
50×20 37.8 8.5 9.7 144.4

100×5 17.8 9.2 9.3 219.3
100×10 19.1 7.3 7.7 192.0
100×20 17.7 4.8 5.5 154.3
200×10 10.9 4.4 4.6 209.3
200×20 9.3 2.9 3.2 173.2
500×20 4.4 1.5 1.6 203.4

Averages 35.3 11.7 12.2 180.0

the reconstruction phase consumes the remaining time. The number of iterations of

IGb appears to be constant because the time complexity O(nm) of the reconstruction

phase and the BRN local search increase with the size of the instance at the same pace

as its time limit that is a multiple of nm ms.

7.4.8 State-of-the-art methods for the permutation and non-permutation FSSP

Table 7.14 gives an overview of the state-of-the-art methods to be compared:

the iterated greedy algorithm IG+TBFF proposed by Fernandez-Viagas & Framinan

(2014) that reimplements the iterated greedy algorithm with insertion local search

IG_RSLS of Ruiz & Stützle (2007) and includes their tie-breaking mechanism TBFF, the

Table 7.14: Overview of the state-of-the-art methods for the FSSP.

Source Algorithm Prm. Environment %S

Fernandez-Viagas &
Framinan (2014)

IG+TBFF P Core i7-930 2.8GHz -3

Vallada & Ruiz (2009) CIG12i (12 islands) P 12 Core2 Duo 2.4 Ghz -17
This chapter IGp P Opteron 6238 2.9GHz 0
Sadjadi, Bouquard &
Ziaee (2008)

ACO+NLS N Pentium 4 1.7GHz -41

Rossi & Lanzetta (2013a) NNP−ACS N Pentium 4 3GHz 3
Benavides & Ritt (2016) NFS+IGA(LS) N AMD FX-8150 3.6GHz 24
This chapter IGb N Opteron 6238 2.9GHz 0

126

cooperative iterated greedy algorithm CIG12i proposed by Vallada & Ruiz (2009) uses

the islands model of parallel optimization to evolve and later share solutions among

12 parallel iterated greedy algorithms IG_RSLS of Ruiz & Stützle (2007), the ant colony

optimization algorithm with a non-permutation local search ACO+NLS proposed by

Sadjadi, Bouquard & Ziaee (2008), the ant colony system for native non-permutation

flow shop NNP−ACS proposed by Rossi & Lanzetta (2014), our iterated greedy

algorithm for non-permutation flow shop NFS+IGA(LS) described in the previous

chapter (BENAVIDES; RITT, 2016), and our iterated greedy algorithms IGp and IGb for

the permutation and non-permutation FSSP respectively. The column “Prm.” describes

if the method was proposed for the permutation (“P”) or for the non-permutation

(“N”) FSSP. The table also shows the hardware environment used for the tests by the

researchers with its percentual speed factor defined as %S = 100% × (sp − sp0)/sp0,
where sp is the speed of their hardware and sp0 is our hardware. Positive values

indicate a faster hardware and negative values indicate slower hardware.

7.4.9 Comparison of the methods for the permutation FSSP

Table 7.15 shows average relative percentage deviations: for the IG+TBFF, with a

time limit of n(m/2)90 ms, average over ten instances and five replications for each

instance; for our iterated greedy algorithm IGp, with time limits n(m/2)ρ ms, ρ ∈
{30, 60, 90}, average over ten instances and twenty replications for each instance; and

for the CIG12i, with a time limit of n(m/2)60 ms, average over one replication and ten

instances. Table 7.15 also shows the average of the best known values C∗max of Taillard

(2004) used to calculate the relative percentage deviations.

Vallada & Ruiz (2009) tested their CIG12i in twelve parallel processors that are

20% slower than ours, and compared it with the best of twelve independent runs of

their iterated greedy algorithm. The best average results of our IGp in n(m/2)90 ms

are at most 0.01 percent worse than that of the CIG12i in less than the double of their

adjusted time (90 ms < 2(2.4/2.9)60 ms), but it would be unfair to compare the results

of twelve processors against one. For this reason, we isolated for each instance the

best result among the first twelve replications of our IGp, and included their average

relative percentage deviations over ten instances in Table 7.15. The “best of 12” results

of our IGp reduce the relative percentage deviations for CIG12i from 0.22 to 0.195 in

n(m/2)30 ms, and to 0.154 in n(m/2)90 ms.

Fernandez-Viagas & Framinan (2014) tested their IG+TBFF on a hardware with

similar performance than ours, where it reaches an average relative percentage

deviation of 0.350 in n(m/2)90 ms. Our IGp reaches a better average relative

percentage deviation of 0.304 in a third of that time, and of 0.230 in that time.

127

Table 7.15: Average relative percentage deviations for the methods for permutation
FSSP with time limit of n(m/2)τ ms.

Instances
Average IG+TBFF IGp CIG12i IGp (best of 12)

C∗max τ=90 τ=30 τ=60 τ=90 τ=60 τ=30 τ=60 τ=90

20×5 1221.9 0.041 0.025 0.010 0.002 0.00 0.000 0.000 0.000
20×10 1513.6 0.024 0.012 0.002 0.002 0.00 0.000 0.000 0.000
20×20 2235.0 0.035 0.013 0.009 0.007 0.00 0.000 0.000 0.000
50×5 2736.4 0.004 0.000 0.000 0.000 0.00 0.000 0.000 0.000
50×10 2983.4 0.438 0.371 0.328 0.304 0.30 0.301 0.259 0.259
50×20 3710.3 0.858 0.656 0.539 0.485 0.50 0.388 0.339 0.290

100×5 5244.5 0.001 0.000 0.000 0.000 0.00 0.000 0.000 0.000
100×10 5627.4 0.169 0.116 0.075 0.058 0.04 0.023 0.021 0.018
100×20 6298.1 1.096 0.938 0.762 0.684 0.65 0.581 0.493 0.445
200×10 10670.3 0.078 0.057 0.046 0.041 0.04 0.026 0.026 0.026
200×20 11256.3 1.026 0.984 0.852 0.786 0.78 0.684 0.627 0.544
500×20 26362.8 0.428 0.480 0.422 0.395 0.37 0.336 0.282 0.265

Averages 6655.0 0.350 0.304 0.254 0.230 0.22 0.195 0.171 0.154

Table 7.16: Average relative percentage deviations for the methods for non-permu-
tation FSSP with time limit of n(m/2)τ ms.

Instances
Average NNP−ACS ACO+NLS NFS+IGA(LS) IGb

C∗max T=NR τ=90 τ=60 τ=60m τ=30 τ=60 τ=90

20×5 1221.9 1.90 -0.075 -0.33 -0.34 -0.359 -0.389 -0.391
20×10 1513.6 6.50 -0.009 -1.39 -1.60 -1.428 -1.491 -1.551
20×20 2235.0 6.90 -0.073 -2.00 -2.45 -2.145 -2.234 -2.253
50×5 2736.4 2.43 0.027 -0.16 -0.16 -0.165 -0.165 -0.165
50×10 2983.4 11.74 0.496 0.38 0.08 0.012 -0.009 -0.027
50×20 3710.3 14.51 1.120 0.15 -0.74 -0.320 -0.551 -0.649

100×5 5244.5 1.96 -0.007 -0.12 -0.13 -0.108 -0.123 -0.123
100×10 5627.4 7.93 0.363 0.22 0.01 0.013 -0.046 -0.063
100×20 6298.1 14.36 0.327 1.03 0.42 0.438 0.307 0.232
200×10 10670.3 6.33 NR 0.13 0.00 -0.038 -0.051 -0.058
200×20 11256.3 15.07 NR 1.14 0.74 0.679 0.553 0.500
500×20 26362.8 11.60 NR 0.64 0.38 0.354 0.305 0.292

Averages 6655.0 8.44 -0.03 -0.32 -0.256 -0.325 -0.355

NR: not reported.

128

We attribute the better results of IGp to a better implementation of the algorithm.

Both IG+TBFF and our IGp are reimplementations of the IG_RSLS of Ruiz & Stützle

(2007) with different tie-breaking mechanisms. A deeper research on tie-breaking

mechanisms is necessary to confirm if the higher diversification caused by the random

tie-breaking mechanism in our permutation reinsertion or the random visiting order

of our local search produce better results than the tie-breaking mechanisms of

Fernandez-Viagas & Framinan (2014). Nevertheless, we will be able to fairly compare

in Section 7.4.11 the results of IGp with those of the iterated greedy algorithms

proposed for the non-permutation FSSP.

7.4.10 Comparison of the methods for the non-permutation FSSP

Table 7.16 shows the average relative percentage deviations: for the NNP−ACS,

with processing time not reported, average over ten instances and the best of ten

replications for each instance; for the ACO+NLS, with a time limit of n(m/2)90 ms for

the ACO plus 10 s for the non-permutation local search, average over one replication

on ten instances; for the NFS+IGA(LS), with time limits of n(m/2)ρ ms, ρ ∈ {60, 60m},
average over ten instances and ten replications for each instance; and for our iterated

greedy algorithm IGb, with time limits n(m/2)ρ ms, ρ ∈ {30, 60, 90}, average over ten

instances and twenty replications for each instance. A negative relative percentage

deviation indicates that the makespan of some non-permutation schedules are shorter

than that of the best known permutation schedules. Table 7.16 also shows the

average of the best known values C∗max of Taillard (2004) used to calculate the relative

percentage deviations.

Rossi & Lanzetta (2013a) did not report their processing times, and reported

average relative deviations to best known non-permutation schedules. The average

relative percentage deviations reported here were recalculated using those values as

reference. All the average relative percentage deviations for NNP−ACS are positive.

This means that the non-permutation schedules produced by NNP−ACS are worse

than the best known permutation schedules.

The average results for ACO+NLS improve over the best known permutation

schedules for instances with 20 jobs, and 100 jobs and 5 machines, and they are very

close to the best known permutation schedules for the other instances. The ant colony

algorithm of Sadjadi, Bouquard & Ziaee (2008) has a good performance, producing

good permutation schedules for the non-permutation local search, but a short run of

10 s of the non-permutation local search is not enough to find better non-permutation

schedules for large instances.

129

The average relative percentage deviation for NFS+IGA(LS) in n(m/2)60 ms

is −0.03, and for IGb is −0.325 in that time. The NFS+IGA(LS) needs m times that

time to produce results close to our IGb. We attribute the better results of our IGb to

the acceleration technique used in the calculation of the insertion position, and to the

faster BRN local search.

7.4.11 Comparison of the methods for the permutation and non-permutation

FSSP

We can compare the relative percentage deviations for the permutation and

non-permutation FSSP in Tables 7.16 and 7.15, because they were calculated with

the same best known values. We focus on our iterated greedy algorithms IGp and IGb

that show the best average results for the permutation and non-permutation FSSP,

respectively.

The average relative percentage deviation for IGp with time limit of n(m/2)30 ms

is 0.304. IGp finds the best known value for 62 of the instances within that time, mostly

for instances with 20 jobs or 5 machines. The average relative percentage deviation for

IGb with that time limit is−0.256, i.e., shorter than that of the best known permutation

schedules. In that time, IGb finds the best known values for 13 of the instances, and

finds non-permutation schedules that are better than the best known values for 67 of

the instances, mostly for instances with up to 50 jobs or up to 10 machines.

IGp it reduces the average relative percentage deviation to 0.254 in n(m/2)60 ms

and to 0.230 in n(m/2)90 ms, but it fails to find more best known values after

n(m/2)30 ms. IGb also reduces the average relative percentage deviation to −0.325 in

n(m/2)60 ms and to −0.355 in n(m/2)90 ms, and finds more solutions with makespan

equal or better than the best known solutions with more time. IGb finds the best

known values for 15 of the instances, and finds non-permutation schedules that are

better than the best known permutation schedules for 72 of the instances within

n(m/2)90 ms. Table 7.17 shows the best non-permutation results of our IGb, together

with the best known values for the permutation FSSP obtained from Taillard (2004),

and for the non-permutation FSSP obtained from Vaessens (1996).

7.5 Concluding remarks

This chapter proposed a new permutation representation for non-permutation

flow shop schedules and three new heuristics for the non-permutation FSSP: a

constructive heuristic NEHBR, an insertion local search, and a best-improvement

reduced-neighbourhood non-permutation (BRN) local search. The new permutation

130

Table 7.17: Best known solutions for permutation (P) from Taillard (2004) and
non-permutation (NP) from Vaessens (1996), and best non-permutation from our
results.

P NP IGb P NP IGb P NP IGb

20
×

5

1278 1278 1278

20
×

10

1582 1560 1554

20
×
2
0

2297 2293 2237
1359 1358 1358 1659 1644 1640 2099 2092 2061
1081 1073 1073 1496 1486 1468 2326 2313 2243
1293 1292 1293 1377 1368 1360 2223 2223 2175
1235 1231 1231 1419 1413 1394 2291 2291 2250
1195 1193 1193 1397 1369 1371 2226 2221 2160
1234 1234 1234 1484 1428 1432 2273 2267 2223
1206 1199 1199 1538 1527 1527 2200 2183 2159
1230 1210 1210 1593 1586 1586 2237 2227 2184
1108 1103 1103 1591 1559 1566 2178 2178 2122

50
×

5

2724 2724 2724

50
×
10

2991 2991 3010

50
×
20

3850 3856 3803
2834 2834 2834 2867 2867 2868 3704 3707 3669
2621 2612 2612 2839 2832 2840 3640 3643 3617
2751 2751 2751 3063 3063 3061 3723 3731 3688
2863 2853 2853 2976 2976 2966 3611 3619 3578
2829 2825 2825 3006 2991 2991 3681 3687 3649
2725 2716 2716 3093 3093 3093 3704 3706 3663
2683 2683 2683 3037 3026 3025 3691 3700 3673
2552 2545 2545 2897 2887 2882 3743 3755 3699
2782 2776 2776 3065 3065 3073 3756 3767 3717

1
00
×
5

5493 5493 5493

10
0
×
10

5770 5759 5759

10
0
×
20

6202 6228 6205
5268 5257 5257 5349 5349 5350 6183 6210 6184
5175 5173 5175 5676 5673 5661 6271 6271 6277
5014 4993 4996 5781 5759 5779 6269 6269 6250
5250 5247 5247 5467 5455 5457 6314 6319 6323
5135 5135 5135 5303 5293 5293 6364 6403 6345
5246 5232 5232 5595 5584 5578 6268 6292 6274
5094 5083 5086 5617 5617 5615 6401 6423 6391
5448 5442 5442 5871 5852 5858 6275 6275 6276
5322 5318 5318 5845 5845 5845 6434 6434 6437

2
00
×
1
0

10862 10857 10857

2
00
×
20

11195 11195 11237

50
0
×
2
0

26059 26059 26139
10480 10480 10467 11203 11223 11245 26520 26520 26615
10922 10922 10922 11281 11337 11362 26371 26371 26434
10889 10862 10871 11275 11299 11297 26456 26456 26532
10524 10524 10493 11259 11260 11280 26334 26334 26375
10329 10329 10331 11176 11189 11223 26477 26477 26502
10854 10836 10854 11360 11386 11382 26389 26389 26412
10730 10727 10728 11334 11334 11369 26560 26560 26615
10438 10419 10419 11192 11192 11218 26005 26005 26061
10675 10675 10675 11288 11313 11309 26457 26457 26510

131

representation for the non-permutation FSSP uses pseudo-jobs to represent blocks of

operations of divided jobs. The constructive and local search heuristics are based

on the new permutation representation for the non-permutation FSSP and on an

extension of the acceleration technique of Taillard (1990). This chapter also proposed

four iterated greedy algorithms that embed the proposed constructive and local search

heuristics.

The proposed NEHBR constructive heuristic for the non-permutation FSSP shows

the best overall results among the compared heuristics and tie-breaking mechanisms,

and has the same time complexity of O(n2m) than the NEH heuristic. The proposed

insertion local search for the non-permutation FSSP has the same time complexity of

O(n2m) per neighbourhood than the insertion local search for the permutation FSSP.

The proposed BRN local search for the non-permutation FSSP has a time complexity

of O(nm) per neighbourhood. The iterated greedy algorithm IGb uses the BRN

local search and produces the best average results when compared to IGi and IGbi

algorithms that use the insertion local search.

Although IGp has the best performance among the methods to solve the

permutation FSSP, IGb finds better non-permutation schedules in the same time, which

are shorter than the best known permutation schedules in many cases. Thus IGb

produces the best average results compared to the state-of-the-art methods for the

permutation and the non-permutation FSSP.

The NEHBR heuristic was designed without any complicated tie-breaking mecha-

nisms just as the original NEH heuristic, and our iterated greedy algorithms break

ties randomly after the first schedule is complete. Fernandez-Viagas & Framinan

(2014) and Vasiljevic & Danilovic (2015) improve the results of the NEH and the

iterated greedy algorithm for the permutation FSSP by applying different tie-breaking

mechanisms. We wish to study in a near future how different tie-breaking mechanisms

influence the results of the NEHBR heuristic and the iterated greedy algorithms for the

non-permutation FSSP.

132

133

Part III

Heuristics for the heterogeneous
workforce assignment and

flow shop scheduling problem

135

8 SHOP SCHEDULING WITH A HETEROGENEOUS WORK-

FORCE

Section 1.1.2 has introduced and motivated the consideration of the heterogeneity

of the workforce in the scheduling process, and Section 3.5 has presented examples

in the literature that successfully introduce human diversity in the planning and

scheduling processes of productive systems. This chapter introduces the combined

problem of flow shop scheduling and worker assignment. Section 8.1 motivates

treating these problems jointly with an example of the problem of finding a

flow shop schedule when the workforce is heterogeneous. Section 8.2.1 defines

the heterogeneous workforce assignment and flow shop scheduling problem (or

Het-FSSP). Section 8.2.2 defines the heterogeneous workforce assignment and job

shop scheduling problem (or Het-JSSP). Section 8.3 shows the complexity of these

problems, and a new set of instances which models the situation of heterogeneous

workers for these problems is defined in Section 8.4.

8.1 An example of a FSSP with heterogeneous workers

Let us begin with a simple example of the flow shop scheduling problem. Table 8.1

shows the processing times of four jobs that must be processed on four machines in a

flow shop configuration. Figure 8.1 shows an optimal schedule for this instance that

has a makespan of 15.

Now, let us explain a flow shop environment where the workers are heterogeneous.

We represent this scenario in Table 8.2. In this scenario, the processing time of an

operation performed on a machine will also depend on the worker assigned to operate

it. We have four workers, which we want to assign to the four machines. The workers

may have different performance for the same operations, and this is represented by

different processing times. In this example, we chose processing times randomly

in the interval [p, 2p], for a processing time of p in the original flow shop instance

136

Table 8.1: 4× 4 instance of the FSSP.

Machine
Job M1 M2 M3 M4

J1 3 1 1 3
J2 3 1 3 3
J3 1 2 1 2
J4 1 3 3 1

J1
J2
J3
J4

M1

M2

M3

M4

0 5 10 1515 t

Figure 8.1: Optimal schedule for the 4× 4 FSSP instance.

Table 8.2: An instance of the Het-FSSP.

Worker w1 Worker w2 Worker w3 Worker w4

Job M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 5 2 2 4 ∞ 2 1 6 5 1 2 4 4 1 2 3
J2 3 2 4 3 ∞ 2 3 5 5 1 6 6 4 1 6 4
J3 1 4 2 3 ∞ 4 1 4 1 3 2 4 1 2 2 3
J4 1 5 6 1 ∞ 6 3 2 1 5 5 2 1 3 4 1

137

given in Table 8.1. Additionally, some workers may be unable to operate a subset

of the machines (for therapeutic or strategic reasons). In the example, worker w2 is

unable to operate machine M1, and this is represented by processing times of ∞ for

all operations on this machine.

With the selection of processing times in the interval [p, 2p], we can expect the

processing times and the makespan to increase in average by 50%. In our example, the

increase in the average of the processing times (excluding incompatibilities) is 50.8%.

Thus, we could expect to achieve a makespan of about 22.

If we evaluate all the 18 valid allocations of workers to machines fixing the schedule

of Figure 8.1 that is optimal for the standard times of Table 8.1, we get an average

makespan of 23.7, and a worst makespan of 27. The best makespan that can be

obtained this way is 19, with the workers w4, w3, w2, and w1 assigned to the machines

in this order, as shown in Figure 8.2.

If we minimize the sum of the processing times for the assigned workers, the

average result of all the 18 valid allocations is 48.3 and the worst is 56. The best sum

is 38 with the workers w3, w4, w2, and w1 assigned to the machines in this order. If we

fix this worker assignment to later solve the scheduling problem, the best makespan

that can be obtained is 18, as shown in Figure 8.3.

If we consider the heterogeneity of the workers jointly with the scheduling process,

we can find an optimal solution with a makespan of 16. This optimal solution is shown

in Figure 8.4. Note that this is a non-permutation schedule, since jobs J1 and J4

exchange their processing order on machine M3. The best makespan that can be

obtained with a permutation schedule is 17, and this schedule is shown in Figure 8.5.

The workers w1, w3, w2, and w4 are assigned to the machines in this order for both

solutions, and the sum of the processing times is 39 for this assignment of workers.

Neither the schedule nor the worker assignment are optimal if those problems are

treated separately, the examples of Figures 8.2 and 8.3 produce worse makespans

of 19 and 18 respectively.

The example shows that the problems of scheduling and assignment of workers are

related, and that the consideration of both problems as one joint problem can improve

over strategies that consider them separately. In this case the optimal solution of 16

is 11% less than the best assignment for the optimal original flow shop schedule,

and 15% less than the best schedule for the worker assignment with the minimal

sum of processing times. The example also shows that considering non-permutation

schedules can improve the results of permutation schedules. The makespan of the

optimal non-permutation schedule is 6% less than the best possible permutation

schedule in this case.

138

J1
J2
J3
J4

M1, w4

M2, w3

M3, w2

M4, w1

0 5 10 15 2020 t

Figure 8.2: Best schedule for the 4 × 4 Het-FSSP instance obtained by assigning the
workers while maintaining the optimal flow shop schedule.

J1
J2
J3
J4

M1, w3

M2, w4

M3, w2

M4, w1

0 5 10 15 2020 t

Figure 8.3: Best schedule for the 4× 4 Het-FSSP instance obtained by solving a FSSP
with a fixed assignment of workers that minimizes the sum of processing times.

J1
J2
J3
J4

M1, w1

M2, w3

M3, w2

M4, w4

0 5 10 15 2020 t

Figure 8.4: Optimal non-permutation schedule for the 4× 4 Het-FSSP instance.

J1
J2
J3
J4

M1, w1

M2, w3

M3, w2

M4, w4

0 5 10 15 2020 t

Figure 8.5: Best permutation schedule for the 4× 4 Het-FSSP instance.

139

8.2 Mathematical formulations

8.2.1 A mathematical formulation of the Het-FSSP

This section presents a mathematical formulation of the Het-FSSP. We use index i

for machines, j for jobs, and w for workers, and the notation [n] = {1, . . . , n}. An

integer linear program for the Het-FSSP can be formulated as

min. Cmax, (8.1)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (8.2)

xij + pij ≤ x(i+1)j, ∀i ∈ [m− 1], j ∈ [n], (8.3)

xij + pij ≤ xij′ +M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (8.4)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (8.5)

pij =
∑
w∈[m]

pijwziw, ∀i ∈ [m], j ∈ [n], (8.6)

∑
w∈[m]

ziw = 1, ∀i ∈ [m], (8.7)

∑
i∈[m]

ziw = 1, ∀w ∈ [m], (8.8)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (8.9)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n], (8.10)

ziw ∈ {0, 1}, ∀i, w ∈ [m]. (8.11)

In this formulation, the auxiliary variables xij and pij represent the starting time

and the processing time of the operation of job Jj that must be executed on

machine Mi. Constraints (8.2)–(8.5) treat the flow shop subproblem for a fixed

worker allocation: constraint (8.2) defines Cmax as the latest completion time, and

constraints (8.3) and (8.4) set the starting time of all operations according to their

precedence constraints. The constantM in constraint (8.4) should be sufficiently large

(e.g.
∑

i∈[m]

∑
j∈[n] maxw∈[m] pijw). We introduce a binary decision variable yijj′ for

each pair of operations of different jobs Jj and Jj′ that must be processed on the same

machine Mi. The variable yijj′ equals 1 if job Jj precedes job Jj′ on machine Mi. Thus,

constraint (8.5) enforces the precedence relations for the operations on the same

machine. The processing time pij of an operation depends on the worker assigned

to its machine, and is defined in constraint (8.6) based on the processing time pijw
of the operation of job Jj on machine Mi when executed by worker w, and on a

binary assignment variable ziw which equals 1 if worker w is assigned to machine Mi.

140

Constraints (8.7) and (8.8) ensure that the assignment of workers to machines is

bijective.

Note that this formulation is identical to that of the FSSP in Section 2.2.1,

excluding constraints (8.6)–(8.8) and (8.11). Furthermore, any mathematical

formulation for a shop scheduling problem that does not multiply the processing

times pij with other variables can be extended to the heterogeneous case by adding

constraints (8.6)–(8.8) and (8.11). For example, this applies to the formulations

of Manne (1960) and Liao & You (1992) for the JSSP, and our formulations in

Section 2.2.

8.2.2 A mathematical formulation of the Het-JSSP

This section presents a mathematical formulation of the Het-JSSP that extends the

formulation for the JSSP of Section 2.2.2. We use index i for machines, j for jobs,

and w for workers. We also use the precedence relation set Rj = {(i, i′)|oij ≺ oi′j}
for the precedence of all pairs of consecutive operations that belong to job Jj. The

precedence relation set Rj is the only difference with the mathematical formulation

of the Het-FSSP. An integer linear program for the Het-JSSP can be formulated as

min. Cmax, (8.12)

s.t. xmj + pmj ≤ Cmax, ∀j ∈ [n], (8.13)

xij + pij ≤ xi′,j, ∀(i, i′) ∈ Rj, j ∈ [n], (8.14)

xij + pij ≤ xij′ +M(1− yijj′), ∀i ∈ [m], j 6= j′ ∈ [n], (8.15)

yijj′ + yij′j = 1, ∀i ∈ [m], j 6= j′ ∈ [n], (8.16)

pij =
∑
w∈[m]

pijwziw, ∀i ∈ [m], j ∈ [n], (8.17)

∑
w∈[m]

ziw = 1, ∀i ∈ [m], (8.18)

∑
i∈[m]

ziw = 1, ∀w ∈ [m], (8.19)

xij ≥ 0, ∀i ∈ [m], j ∈ [n], (8.20)

yijj′ ∈ {0, 1}, ∀i ∈ [m], j 6= j′ ∈ [n], (8.21)

ziw ∈ {0, 1}, ∀i, w ∈ [m]. (8.22)

In this formulation, the auxiliary variables xij and pij represent the starting time and

the processing time of the operation of job Jj that must be executed on machine Mi.

Constraints (8.13)–(8.16) treat the job shop subproblem for a fixed worker allocation.

Constraint (8.13) defines Cmax as the latest completion time, and constraints (8.14)

141

and (8.15) set the starting time of all operations according to their precedence

constraints. The precedence between two operations of a job j that are executed

consecutively on machines i and i′ is fixed by constraint (8.14). The constant M

in constraint (8.15) should be sufficiently large (e.g.
∑

i∈[m]

∑
j∈[n] maxw∈[m] pijw). We

introduce a binary decision variable yijj′ for each pair of operations of different jobs Jj
and Jj′ that must be processed on the same machine Mi, and whose precedence is not

fixed. If job Jj precedes job Jj′ on machine Mi, then variable yijj′ equals 1. Thus,

constraint (8.16) enforces the precedence relations for the operations on the same

machine. Constraint (8.17) defines the processing time of an operation depending on

the worker assigned to its machine, based on the processing time pijw of the operation

of job Jj on machine Mi when executed by worker w, and on a binary assignment

variable ziw which equals 1 if worker w is assigned to machine Mi. Constraints (8.18)

and (8.19) ensure that the assignment of workers to machines is bijective.

8.3 Size of the search space

Chapter 4 mention that the number of possible solutions for non-permutation

FSSPs are n!(m−2) for the makespan criterion, and n!(m−1) for the total completion

time criterion. Those numbers are closer to the n!m possible solutions for the JSSP,

than to the n! possible solutions for the permutation FSSP. But the limitation to

only permutation schedules also eliminates the possibility of reaching some optimal

solutions.

The additional worker assignment problem increases the number of possible

solutions of the shop scheduling problems by a factor of m!. Thus, the number

of possible solutions of the Het-FSSP are m!n!(m−2) for the makespan criterion

and m!n!(m−1) for the total completion time criterion. Those numbers are close to

the m!n!m possible solutions of the Het-JSSP. The FSSP and the JSSP are NP-hard.

The Het-FSSP and the Het-JSSP include the FSSP and the JSSP respectively as special

cases. Thus, the Het-FSSP and the Het-JSSP are also NP-hard, and are more difficult

than the FSSP and the JSSP. Even a permutation Het-FSSP is NP-hard, and it has m!n!

possible solutions, but we focus on the non-permutation Het-FSSP, because the best

solutions are more beneficial to the shop floor.

8.4 New instances

We created instances for the Het-FSSP, based on the well-known FSSP instances

proposed by Carlier (1978) and Taillard (1993). We also created instances for the

142

Het-JSSP based on the JSSP instances of Taillard (1993), and on the instance ft10 of

Fischer & Thompson (1963). The instances of Taillard (1993) are the most used for the

FSSP and JSSP. The instances of Carlier (1978) and Fischer & Thompson (1963) were

selected for their smaller size. To create the instances, we replicated the processing

times pij of a FSSP (or JSSP) instance for our workers and, assuming that they are

processing times of a standard worker, we modified these times in two ways: First, the

processing times were randomized to simulate the different abilities of the workers.

Second, a fixed percentage of incompatibilities is introduced to represent the case

of workers that are unable to operate some machines (for example, worker w2 on

machine M1 in the instance given in Table 8.2). This procedure is repeated m times

to create m different workers. Based on experiences with existing SWDs, we chose

to generate instances with 0%, 10% and 20% of incompatibilities per worker, and we

randomly increased the standard times p in the interval [p, 2p] or [p, 5p] for all the

operations.

We refer to the created instances by the name of the base instance, followed by an i

for processing times in [p, 2p] or an I for processing times in [p, 5p], and the percentage

of incompatibilities. For example, tai21i20 is a Het-JSSP with processing times

in [p, 2p] and 20% of incompatibilities, and ta021I00 is a Het-FSSP with processing

times in [p, 5p] and no incompatibilities. The Het-FSSP instances are available

at <http://inf.ufrgs.br/algopt/hetFS>, and the Het-JSSP instances are available at

<http://inf.ufrgs.br/~ajbenavides/hetJS>.

8.5 Concluding remarks

This chapter proposes the heterogeneous workforce assignment and flow shop

scheduling problem (or Het-FSSP), an extension of the flow shop scheduling problem

that considers the assignment problem of heterogeneous workers to the machines. The

motivation to treat these problems jointly is presented by an example of the problem

of finding a flow shop schedule when the workforce is heterogeneous. Mathematical

models for the Het-FSSP and the Het-JSSP are given as extensions of the FSSP and the

JSSP respectively, showing that these extensions can easily be applied to other models

of shop scheduling problems. Finally, a new set of instances for the new combined

problems is presented to be used for computational experiments in the next chapters.

http://inf.ufrgs.br/algopt/hetFS
http://inf.ufrgs.br/~ajbenavides/hetJS

143

9 A SCATTER SEARCH WITH PATH RELINKING FOR THE

HET-FSSP

Chapter 8 has introduced the heterogeneous workforce assignment and flow shop

scheduling problem (or Het-FSSP), together with its theoretical definition, search

space size and new instances. In this chapter, we propose a scatter search with path

relinking for solving the Het-FSSP. First, Section 9.1 introduces the basic concepts

of scatter search and path relinking. Section 9.2 describes the proposed heuristic

and its components. Section 9.3 presents computational experiments. Finally, we

analyze and discuss the results and conclude in Section 9.4. This chapter corresponds

to the publication of Benavides, Ritt & Miralles (2014a). The tested instances

as well as the detailed computational results of this chapter can be obtained at

<http://inf.ufrgs.br/algopt/hetFS>.

9.1 Scatter search and path relinking

Scatter search is a meta-heuristic that explores the search space by systematically

selecting, combining and evolving a set of reference solutions. It was originally

proposed by Glover (1977). A good overview of scatter search can be found in Laguna

& Martí (2003). A basic scatter search procedure has five main elements:

1. A diversification generation method that produces diverse solutions for the initial

pool.

2. An improvement method that is optionally applied to enhance each solution in

the pool.

3. A reference set update method that builds and maintains a reference set of

solutions. The solutions of the pool are included into the reference set for their

good quality or their high diversity.

http://inf.ufrgs.br/algopt/hetFS

144

4. A subset generation method that forms subsets of reference solutions that will be

combined.

5. A solution combination method that generates new solutions using the solutions

in each subset. The new solutions form a new pool and the next iteration starts

again with the improvement method.

Scatter search may use path relinking as a solution combination method. Path

relinking is a strategy that explores trajectories between two solutions. One solution

serves as the starting point of the trajectory, and the other as a guiding solution. The

trajectory between them is explored by repeatedly applying to the current solution the

best local modification that makes it more similar to the guiding solution. Formally,

if N(s) is the set of neighbours of the current solution s, and d(s, s′) is a distance

measure between solution s and the guiding solution s′, then the path relinking

explores the directed neighbourhood D(s) = {s′′ ∈ N(s)|d(s′′, s′) < d(s, s′)}. Path

relinking is called forward when the better of the two solutions is the starting solution,

and backward otherwise. For a good review of scatter search with path relinking see

Resende et al. (2010).

9.2 A scatter search with path relinking for the Het-FSSP

An overview of the scatter search procedure that we propose is shown in

Algorithm 9.1. It maintains a reference set of high quality solutions as well as a

reference set of diverse solutions. Pairs of solutions from these two sets will be

combined using a positional combination method for the worker permutations, and

a path relinking for the sequence of operations. A local search improves the new

solutions. The scatter search stops after a fixed number of iterations or after a time

limit is exceeded. Next, we explain the individual components of the proposed scatter

search in detail.

9.2.1 Solution representation

A solution of the Het-FSSP consists of an assignment of workers to machines, and

the sequence of the operations on each machine. A solution will be represented by S =

(ρ, π1, . . . , πm), where ρ is a permutation of the workers which defines the assignment

to the machines, and πi is the permutation of the operations on machine Mi.

145

Algorithm 9.1 A heuristic based on scatter search for the Het-FSSP.
Input: Initial pool size t.
Output: Best found solution Sbest.

1: Create an initial pool T of t solutions.
2: repeat
3: Update reference sets RS1 and RS2 with elements of T (Algorithm 9.3)
4: T ← ∅
5: for ∀S1 ∈ RS1 do
6: for ∀S2 ∈ RS2 do
7: combine solutions S1 and S2 into solution Snew
8: apply local search to Snew
9: T ← T ∪ {Snew}

10: update Sbest with Snew if necessary
11: end for
12: end for
13: until stopping criterion is satisfied
14: return Sbest

9.2.2 Diversification generation method

Our diversification method is a randomized constructive heuristic shown in

Algorithm 9.2. First, it generates a feasible random assignment of the workers to

the machines, and a random permutation πo of the jobs. Then, starting from an empty

schedule, it iteratively inserts the next job from πo at the position that minimizes

the makespan of the partial schedule, until a permutation schedule is complete. The

permutation schedule is replicated for every machine, and together with the worker

assignment, they form a complete solution for the Het-FSSP. This method produces

permutation schedules that form the initial pool. Note that, after the assignment of

Algorithm 9.2 Randomized constructive heuristic for Het-FSSP.

Input: The processing times pijw for each job Jj on each machine Mm

when worker w is assigned to that machine.
Output: A complete solution S.

1: function RANDOMIZED_CONSTRUCTIVE_HEURISTIC()
2: ρ := feasible random assignment of workers
3: πo := (πo(1), . . . , πo(n)) with a random order
4: π := (πo(1))
5: for πo(j), j ∈ [2, n] do
6: evaluate all the insertion positions of job πo(j) into π
7: insert job πo(j) into π at the position which minimizes Cmax

8: end for
9: πj := π, j ∈ [m]

10: return S := (ρ, π1, . . . , πm)
11: end function

146

workers and the initial random priority order, the job insertion method is the same of

the NEH heuristic from Algorithm 3.1.

9.2.3 Improvement method

Our improvement method is a local search that explores the reduced neighbour-

hood proposed by Nowicki & Smutnicki (1996) explained in Section 3.3.1. The local

search iteratively chooses the best neighbour to replace the current solution, and it

stops when there are no better solutions in the neighbourhood. The solution obtained

after local search is inserted into the pool T to later update the reference sets.

9.2.4 Reference set update method

Our scatter search maintains two reference sets RS1 and RS2. Reference set RS1

contains high quality solutions of a certain diversity, and reference set RS2 contains

more diverse solutions of lower quality. Diversity is guaranteed by maintaining a

minimum distance between the solutions.

The distance of the solutions is defined as the sum of the Kendall-tau distances of

the permutations of the operations for each machine, plus the number of workers that

have been assigned to different machines. Formally, the Kendall-tau distance between

two n-permutations π and π′ is defined as

d(π, π′) =
∑

1≤i<j≤n

[π(i) < π(j) and π′(i) > π′(j)]. (9.1)

Consequently, the distance between two solutions S = (ρ, π1, . . . , πm) and S ′ =

(ρ′, π′1, . . . , π
′
m) is defined as

d(S, S ′) =
∑

1≤k≤m

d(πk, π
′
k) + [ρ(k) 6= ρ′(k)]. (9.2)

To guarantee diverse solutions in the reference sets, RS1 only admits solutions with

a distance of at least d1 to all solutions in the set. Similarly, a solution may be added

to RS2 only if it has a distance of at least d2 to the current solutions in RS1 ∪ RS2. A

higher diversity of solutions in RS2 is achieved by setting d2 > d1.

The reference sets are continually rebuilt with solutions from the current solution

pool T . The reference set update procedure is shown in Algorithm 9.3. It constructs

the two reference sets from scratch by extracting solutions from the solution pool.

Reference set RS1 is constructed by adding the solutions from the pool T in order

of non-increasing quality, when they satisfy the diversity criterion explained above.

147

Algorithm 9.3 Update reference sets.
Input: Solution pool T , reference set sizes rs1, rs2, minimum distances d1, d2.
Output: Reference sets RS1, RS2.

1: RS1 ← { best element of T}; T ← T \RS1.
2: while |RS1| < rs1 and |T | > 0 do
3: Sc ← best element of T ; T ← T \ {Sc}.
4: if minr∈RS1 d(Sc, r) ≥ d1 then
5: RS1 ← RS1 ∪ {Sc}
6: end if
7: end while
8: RS2 ← ∅.
9: while |RS2| < rs2 and |T | > 0 do

10: Sc ← best element of T ; T ← T \ {Sc}.
11: if minr∈RS1∪RS2 d(Sc, r) ≥ d2 then
12: RS2 ← RS2 ∪ {Sc}
13: end if
14: end while
15: fill RS2 with diverse generated solutions, if necessary
16: return RS1, RS2

A solution which has less distance than required is discarded. Reference set RS2 is

constructed in the same manner using the remaining solutions in the pool. If the

solution pool is exhausted during the construction, the missing elements of reference

set RS2 are completed by new solutions produced with the diversification generation

method. The new solutions are not required to satisfy the diversity criterion. This

guarantees that the construction of the reference sets is always successful.

9.2.5 Subset selection and solution combination with path relinking

A new solution for the pool is created by combining solution subsets from the

reference sets. Each subset has one solution of both reference sets RS1 and RS2. The

two solutions are combined in two steps: The first step is to reassign workers, and

the second step is to combine the schedules with path relinking while maintaining the

new worker assignment.

We use a positional combination method to create a new worker assignment ρ′′

from the two worker permutations ρ and ρ′. An example of the positional combination

is given in Figure 9.1. First, a worker that has been assigned to the same machine in

both permutations will also be assigned to this machine in the new permutation ρ′′.

Next, we attempt to assign to each free machine a worker assigned to the same

machine randomly from either ρ or ρ′. If the chosen worker has not been assigned

yet, he is assigned in ρ′′, otherwise the machine remains free. The workers assigned in

148

Reference permutation ρ :

Reference permutation ρ′ :

Partial permutation :

Partial permutation :

New permutation ρ′′ :

6 2 7 8 4 9 3 1 5

6 8 2 5 4 7 9 1 3

6 4 1

6 2 − 5 4 7 3 1 −
6 2 9 5 4 7 3 1 8

Figure 9.1: Example of positional combination with preservation of common elements.
Common elements are highlighted in light grey. Elements in the same position
randomly chosen from one of the two reference solutions in dark grey. Other elements
are randomly assigned.

the resulting partial permutation are in the same positions than in at least one of the

reference permutations. Finally, the yet unassigned workers are assigned randomly to

the remaining free machines in ρ′′.

Our path relinking explores the trajectory between two solutions. The solution

from RS1 serves as the starting point, and the solution from RS2 is the guiding

solution. Path relinking uses the new worker assignment to evaluate all the schedules.

The neighbourhood of a solution consists of all solutions that can be obtained

by swapping the order of two consecutive operations on the critical path, whose

processing order is inverted in the guiding solution. In each step the current solution

is substituted by its best neighbour. Path relinking may swap any two consecutive

operations in the critical path, even when it does not necessarily improves the

current solution, because it must get closer to the guiding solution. The exploration

finishes when there are no more possible swaps in the critical path that get closer

to the guiding solution. Finally, the best solution found on the explored trajectory

is improved with a local search, and included into the pool as the newly combined

solution.

9.3 Computational Experiments

9.3.1 Experimental methodology

The proposed scatter search was implemented in C++, and compiled with GNU

C++ with optimization level 2 (-O2). All computational tests were executed on a PC

with an AMD Opteron 6238 processor running at 2.9 GHz, and with 64 GB of main

memory.

We use the following parameters for scatter search: an initial pool size of t = 60,

minimum distances d1 = 10 and d2 = 20, and reference set sizes rs1 = 6 and

149

rs2 = 4. Those parameters were the best in preliminary tests on 12 Taillard

instances (1, 6, . . . , 56) and all 6 combinations of incompatibilities and processing

time variations. They have been obtained by varying each distance independently

in {5, 10, . . . , 30} and each reference set size in {2, 4, . . . , 10}.

We also tested forward and backward path relinking strategies. Both strategies

produced very similar results. We chose backward path relinking, since it performed

with an average relative deviation of 1.5% from the best known value slightly better

than forward path relinking with a value of 1.6%.

Scatter search was given a time limit of ten minutes as a stopping criterion. Since

scatter search makes random choices when initializing and updating the reference

sets, we replicated each experiment 50 times and report averages. We compare the

solutions obtained by scatter search to those obtained by solving the mathematical

model of Section 8.2.1. The mathematical model has been solved with CPLEX 12.4

running with a single thread and a time limit of one hour.

For the comparison, we use the instances created for the Het-FSSP that were

described in Section 8.4, based on the well-known flow shop instances proposed by

Carlier (1978) and Taillard (1993).

9.3.2 Numerical results

Tables 9.1–9.4 present results for the CPLEX solver with the proposed model and

for the scatter search. Tables 9.1 and 9.3 show results for Carlier instances, and

Tables 9.2 and 9.4 for the Taillard instances of 20 or 50 jobs. Tables 9.1 and 9.2

present the results for instances with processing times in [p, 2p], and Tables 9.3 and 9.4

for instances with processing times in [p, 5p]. All tables report the size of the instances

(n×m), the best known upper bound ub, the relative deviation in percent of a solution

with makespan Cmax from the best known solution %R = 100%× (Cmax − ub)/ub, the

percentage relative gap (gap%) between the lower and upper bounds found by CPLEX,

the average time t that scatter search takes to reach the best value of each test, and

the percentage of tests where scatter search reached the best known solution (%ub).

Tables 9.1 and 9.3 also present in the last two columns the results for solving the

scheduling and assignment problems separately, we explain these results in the last

paragraph of this section. The presented values are also presented as averages when

grouped by instances or replications, e.g., ub, gap%, %R.

CPLEX only solves optimally the instances car7i00, car7i10, and car7i20 in 333,

195 and 133 seconds, respectively. In the remaining instances CPLEX does not reach

optimal solutions within an hour. The gap between the lower and the upper bound

150

Table 9.1: Results for the Carlier instances with processing times between in [p, 2p].

CPLEX SS+PR WA-SS SS-WA
Instance n×m ub %R gap% t %R %ub %R %R

car1i00 11×5 9952 0.00 9.6 0.0 0.00 100 6.20 2.58
car1i10 11×5 9952 0.00 12.3 0.0 0.00 100 6.20 2.58
car1i20 11×5 9952 0.00 11.9 0.0 0.00 100 0.00 2.58
car2i00 13×4 10224 0.00 23.6 0.2 0.00 100 6.53 5.09
car2i10 13×4 10224 0.00 27.0 0.1 0.00 100 6.53 5.09
car2i20 13×4 10398 0.00 27.6 0.2 0.00 100 4.75 3.70
car3i00 12×5 10268 2.21 25.4 1.9 0.00 100 0.89 4.54
car3i10 12×5 10359 0.37 23.9 1.5 0.00 100 0.00 3.62
car3i20 12×5 10359 0.00 18.7 1.5 0.00 100 0.00 3.62
car4i00 14×4 11613 0.00 40.5 0.0 0.00 100 0.00 3.06
car4i10 14×4 11846 0.70 41.2 0.1 0.00 100 2.25 1.03
car4i20 14×4 11876 0.21 41.7 0.4 0.00 100 1.99 1.20
car5i00 10×6 10589 2.05 15.4 122.2 0.00 100 1.98 7.79
car5i10 10×6 10589 2.63 17.3 11.1 0.00 100 3.35 10.16
car5i20 10×6 10848 1.13 11.3 0.3 0.00 100 2.71 8.43
car6i00 8×9 11044 1.80 11.3 6.0 0.00 100 0.02 1.58
car6i10 8×9 11044 4.21 12.4 3.0 0.00 100 3.00 2.30
car6i20 8×9 11118 1.74 11.9 172.0 0.10 84 4.12 2.20
car7i00 7×7 8558 0.00 0.0 14.2 0.00 100 1.90 2.77
car7i10 7×7 8558 0.00 0.0 6.6 0.00 100 1.90 2.77
car7i20 7×7 8558 0.00 0.0 6.8 0.00 100 1.90 3.25
car8i00 8×8 11533 2.02 8.7 41.4 0.00 100 4.12 0.62
car8i10 8×8 11659 0.79 7.0 163.4 0.00 100 2.99 1.36
car8i20 8×8 11742 0.00 8.3 3.3 0.00 100 2.27 0.89

Averages 0.83 17.0 23.2 0.00 99 2.73 3.45

Table 9.2: Results for the Taillard instances with processing times in [p, 2p].

CPLEX SS+PR
Instance n× m ub %R gap% t %R %ub

ta001i00-ta010i00 20× 5 1727.7 5.70 60.7 96.7 0.15 57
ta001i10-ta010i10 20× 5 1731.4 6.58 60.9 85.9 0.06 75
ta001i20-ta010i20 20× 5 1741 7.24 61.9 75.2 0.03 74
ta011i00-ta020i00 20×10 2086.3 16.49 61.1 310.1 0.65 8
ta011i10-ta020i10 20×10 2091 17.81 61.4 297.1 0.68 4
ta011i20-ta020i20 20×10 2101 17.56 60.9 314.4 0.88 6
ta021i00-ta030i00 20×20 3047.8 43.09 63.6 329.6 1.35 1
ta021i10-ta030i10 20×20 3039.4 43.20 63.6 322.0 1.40 2
ta021i20-ta030i20 20×20 3037.6 43.02 63.3 338.4 1.25 2
ta031i00-ta040i00 50× 5 3993.4 28.89 86.9 224.0 0.35 14
ta031i10-ta040i10 50× 5 3995.8 35.99 87.7 231.8 0.37 11
ta031i20-ta040i20 50× 5 4007.6 44.50 87.9 244.1 0.35 10
ta041i00-ta050i00 50×10 4352.8 203.73* 92.2* 351.9 1.87 1
ta041i10-ta050i10 50×10 4356 1175.55* 92.6* 353.5 2.00 0
ta041i20-ta050i20 50×10 4356.2 987.68* 92.9* 344.2 2.13 0
ta051i00-ta060i00 50×20 5567.6 – – 361.6 2.10 1
ta051i10-ta060i10 50×20 5563.1 – – 378.2 2.13 2
ta051i20-ta060i20 50×20 5565.2 – – 374.0 2.14 2

Averages 178.47* 73.2* 279.6 1.11 15

* Average only over instances that found solutions.

151

Table 9.3: Results for the Carlier instances with processing times in [p, 5p].

CPLEX SS+PR WA-SS SS-WA
Instance n×m ub %R gap% t %R %ub %R %R

car1I00 11×5 19508 0.00 21.7 0.0 0.00 100 0.00 1.60
car1I10 11×5 19831 0.00 22.4 0.0 0.00 100 1.26 6.31
car1I20 11×5 19831 0.00 11.1 0.0 0.00 100 1.26 6.77
car2I00 13×4 19876 0.01 27.7 1.0 0.00 100 6.98 5.59
car2I10 13×4 19876 1.35 26.4 0.6 0.00 100 6.98 5.59
car2I20 13×4 19876 0.00 30.2 0.4 0.00 100 6.98 5.59
car3I00 12×5 19498 0.29 23.7 140.2 0.10 2 8.70 7.15
car3I10 12×5 19498 0.29 25.1 158.5 0.07 2 8.70 7.15
car3I20 12×5 19498 0.29 23.1 201.9 0.03 90 8.70 12.38
car4I00 14×4 20381 0.00 29.0 0.0 0.00 100 0.00 8.45
car4I10 14×4 22270 0.00 32.9 0.2 0.00 100 1.03 9.27
car4I20 14×4 22270 6.21 26.0 0.2 0.00 100 1.03 9.27
car5I00 10×6 18693 4.46 19.0 0.5 0.00 100 0.00 7.68
car5I10 10×6 18693 0.12 14.6 0.4 0.00 100 0.00 7.68
car5I20 10×6 19468 4.71 22.2 0.9 0.00 100 0.00 10.74
car6I00 8×9 20070 4.14 18.6 34.7 0.00 100 12.87 6.81
car6I10 8×9 20070 2.82 15.4 14.8 0.00 100 12.87 6.81
car6I20 8×9 20070 0.34 11.2 4.3 0.00 100 5.35 13.88
car7I00 7×7 16423 0.00 11.8 0.8 0.00 100 3.28 5.85
car7I10 7×7 17067 0.00 6.6 4.3 0.00 100 2.60 7.72
car7I20 7×7 17257 0.16 9.5 0.9 0.00 100 1.65 7.87
car8I00 8×8 19159 3.84 19.3 1.3 0.00 100 8.27 7.46
car8I10 8×8 19159 0.92 11.7 1.7 0.00 100 8.27 7.46
car8I20 8×8 19791 2.67 16.1 216.2 1.17 18 0.00 10.75

Averages 1.36 19.8 32.7 0.06 88 4.45 7.74

Table 9.4: Results for the Taillard instances with processing times in [p, 5p].

CPLEX SS+PR
Instance n× m ub %R gap% t %R %ub

ta001I00-ta010I00 20× 5 3296.6 6.36 62.1 136.9 0.29 49
ta001I10-ta010I10 20× 5 3311.7 7.49 62.2 133.2 0.18 56
ta001I20-ta010I20 20× 5 3343.7 6.64 61.1 122.7 0.22 41
ta011I00-ta020I00 20×10 3917.2 20.35 65.4 314.7 1.46 2
ta011I10-ta020I10 20×10 3944.3 21.09 65.3 316.3 1.38 2
ta011I20-ta020I20 20×10 3995 19.97 64.4 305.3 1.49 2
ta021I00-ta030I00 20×20 5742.8 123.55 76.6 317.1 2.48 2
ta021I10-ta030I10 20×20 5756.7 81.74 71.2 302.0 2.41 2
ta021I20-ta030I20 20×20 5773.7 64.91 70.5 314.4 2.14 2
ta031I00-ta040I00 50× 5 7853.4 47.41 89.2 274.7 0.52 20
ta031I10-ta040I10 50× 5 7860.2 46.40 89.0 281.9 0.47 17
ta031I20-ta040I20 50× 5 7875.9 47.91 88.0 279.7 0.65 29
ta041I00-ta050I00 50×10 8445.1 227.59* 93.3* 305.8 4.85 0
ta041I10-ta050I10 50×10 8449.3 181.23* 91.7* 297.5 5.00 0
ta041I20-ta050I20 50×10 8488.1 205.74* 92.7* 284.2 4.75 0
ta051I00-ta060I00 50×20 11120 – – 302.6 4.18 1
ta051I10-ta060I10 50×20 11151.4 – – 290.6 4.01 1
ta051I20-ta060I20 50×20 11152.5 – – 270.5 4.12 0

Averages 73.89* 76.2* 269.5 2.26 13

* Average only over instances that found solutions.

152

ranges from 6 to 42 percent in the remaining Carlier instances that are not solved

optimally. CPLEX finds solutions for all the Carlier instances, and finds the best known

solution in 20 of the 48 instances.

For the Taillard instances, the gap increases with the size of the instance from 60

to 94 percent. CPLEX finds solutions for all the Taillard instances up to size 50 × 5,

but only for 36 of the 60 instances of size 50× 10, and it is not able to solve any of the

Taillard instances greater than 50× 20 within the time limit. Different from the FSSP,

even the small Carlier instances of Het-FSSP cannot be solved optimally within one

hour. This is expected since the number of possible solutions is a factor of m! larger

due to the additional worker assignment.

Scatter search in ten minutes reaches better solutions than CPLEX in one hour for

all the tested instances. All best known values reported in the tables have been found

by scatter search. In 43 of the 48 Carlier instances scatter search finds the same best

makespan in all replications. For the remaining Carlier instances the average relative

deviation from the best known value is less than 1.2%. All the best values were found

in less than four minutes.

Scatter search also finds solutions for all the Taillard instances. Since the instances

are substantially larger than the Carlier instances, the time to find the best value is

larger, and varies from about one to six minutes with increasing size of the instance.

Scatter search also exhibits more variation in the quality of the solutions for the

Taillard instances: the average relative deviation reaches up to 5%, with larger gaps for

increasing instance size, and the best known value is found in 20% of the replications.

To further evaluate the performance of the scatter search, we tested it on the first

60 homogeneous non-permutation FSSP instances of Taillard. Table 9.5 shows the best

known value (BKV), the best solution found (BS), and the average relative percentage

deviation %R over the best known value of the non-permutation FSSP. These best

known values of the non-permutation FSSP are the smaller than the best known values

for the permutation FSSP from Taillard (2004), and than the results from Vaessens

(1996). Our method finds 12 new best solutions (in bold) and has an average relative

deviation of 1.2% in a time comparable to other approaches (LIN; YING, 2009; ROSSI;

LANZETTA, 2013b). Given that the method was designed for a different problem, this

indicates that it is reasonably effective in finding solutions of good quality.

The numerical results also indicate that the difficulty of solving the problem

depends mainly on the instance size, and to a much lesser extent on the processing

time variation and the percentage of incompatibilities. The average relative deviation

from the best known value for instances with processing time in [p, 2p], compared

153

Table 9.5: Results for the Taillard instances of the original non-permutation FSSP.

BKV BS %R BKV BS %R BKV BS %R
20
×

5
1278 1278 0.00

20
×
1
0

1560 1569 1.52

2
0
×
20

2293 2255 -0.84
1358 1358 0.00 1644 1654 1.59 2092 2070 -0.40
1073 1073 0.00 1486 1476 1.04 2313 2294 0.19
1292 1293 0.08 1368 1375 1.30 2223 2188 -1.03
1231 1235 0.32 1413 1391 -0.04 2291 2257 -0.73
1193 1193 0.13 1369 1369 1.70 2221 2160 -1.55
1234 1234 0.31 1428 1436 1.60 2267 2231 -0.40
1199 1199 0.00 1527 1532 0.96 2183 2164 0.11
1210 1210 0.00 1586 1590 0.96 2227 2201 -0.55
1103 1103 0.00 1559 1575 2.54 2178 2128 -1.07

50
×
5

2724 2724 0.00

50
×
10

2991 3051 2.55

50
×
20

3850 3949 3.33
2834 2838 0.26 2867 2923 2.64 3704 3795 3.42
2612 2620 0.54 2832 2902 3.27 3640 3745 3.71
2751 2751 0.06 3063 3085 1.35 3723 3801 3.32
2853 2854 0.13 2976 3016 2.14 3611 3690 3.42
2825 2828 0.27 2991 3052 2.37 3681 3783 3.23
2716 2719 0.68 3093 3133 1.87 3704 3816 3.73
2683 2683 0.60 3026 3061 1.52 3691 3801 3.58
2545 2550 0.75 2887 2933 2.34 3743 3818 3.21
2776 2776 0.00 3065 3121 2.56 3756 3821 2.91

to instances with processing time in [p, 5p], differs less than 3%, and less than 0.5%

between instances with a different percentage of incompatibilities.

Finally, we were interested in assessing the benefit of solving the combined

workforce assignment and scheduling problem, compared to simpler approaches. To

this aim, we focused on the Carlier instances that can be solved optimally with the

branch and bound method of Brucker, Jurisch & Sievers (1994) in short time. We

computed two solutions: one (column “SS-WA”) that first finds the best homogeneous

non-permutation schedule, and then assigns the workers such that the makespan

of this schedule is minimized, and another (column “WA-SS”) that first finds the

worker assignment that minimizes the total processing time of the jobs, and then

determines the best non-permutation schedule. The makespan of the first solution is in

average 2.7% (4.4%) longer than the best known values of the Het-FSSP for processing

times chosen in the interval [p, 2p] ([p, 5p]). The average increase is 3.4% (7.7%) for the

second solution. This comparison shows that, while the variations of the processing

times due to the disabilities of the workers will obviously increase the makespan,

the solution of the combined problem is able to compensate a part of it, making

the production process more efficient than solving the subproblems separately. The

improvement over other ad hoc methods for scheduling heterogeneous workers, e.g.

154

determining a flow shop schedule for the worst case processing times, is likely to be

even worse.

9.4 Concluding remarks

This chapter proposed a scatter search with path relinking to solve the Het-FSSP.

To solve it, one must find an optimal assignment of the workers to the workstations as

well as an optimal schedule of the operations, whose processing times depend on the

assignment of the workers. The Het-FSSP is considerably harder than the traditional

FSSP, and therefore even small instances of its mathematical model cannot be solved

by standard software. However, computational tests show that the problem can be

solved satisfactorily by scatter search. The tests also indicate that its difficulty depends

mainly on the size of the instance, and, to a much lesser extent, to the two variations

levels of the processing times or the three levels of worker-machine incompatibilities

that were introduced in our instances.

From a practical point of view, our proposal can be especially beneficial when

all workers have different execution times, and when the optimal schedule varies

depending on the available resources and the workplaces assignment, as it happens

in sheltered work centers for disabled. The computational tests show that solving the

combined workforce assignment and scheduling problem in such cases has benefits,

compared to simpler methods that deal with these problems separately.

But this first approximation to worker heterogeneity within flow shop systems

is also crucial for those ordinary companies willing to integrate just a percentage

of disabled workers as part of their policies of Corporate Social Responsibility. Our

main conclusion is that companies can contribute to integrate people with disabilities

in their production systems without important losses in productivity, and a very

interesting further research line will be to study in detail the correlation between

the degree of workers integration and the supposed productivity decrease. Extending

this study to other configurations like open shops and job shops can also be interesting

future lines of research.

155

10 A MULTI-START LOCAL SEARCH FOR THE HET-JSSP

Chapter 8 has introduced the heterogeneous workforce assignment and job shop

scheduling problem (or Het-JSSP), also showing its theoretical definition, search space

size and new instances. In this chapter, we propose a multi-start local search heuristic

for solving the Het-JSSP. First, Section 10.1 describes the multi-start local search

heuristic. Section 10.2 presents computational experiments. Finally, we analyze and

discuss the results and conclude in Section 10.3. This chapter corresponds to the

publication of Benavides, Ritt & Miralles (2014b).

10.1 A multi-start local search for the Het-JSSP

Our multi-start local search heuristic for the Het-JSSP is shown in Algorithm 10.1.

At each iteration of the multi-start local search, a construction heuristic generates

a different initial solution, that is improved by a local search. The multi-start local

search returns the best overall solution that it finds in all iterations. The multi-start

local search stops after a fixed number of iterations or after a time limit is exceeded.

Multi-start heuristics are efficient for problems where solutions are constructed easily,

but their neighbourhoods are difficult to be explored by local search methods. Martí,

Resende & Ribeiro (2013) give a detailed description of multi-start methods.

Algorithm 10.1 A multi-start local search for the Het-JSSP.
Output: Best solution found Sbest

1: repeat
2: Create a new solution Snew
3: Apply a local search to Snew
4: Update Sbest with Snew if necessary
5: until stopping criterion is satisfied
6: return Sbest

156

10.1.1 Construction heuristic

Our construction heuristic is shown in Algorithm 10.2. It first generates a random

worker assignment and fixes the processing times of the assigned workers on the

machines for the incumbent JSSP. After that, it creates a solution for that JSSP

with the shifting bottleneck procedure (or SBP). The SBP was proposed by Adams,

Balas & Zawack (1988) for the job shop scheduling problem. The SBP schedules

iteratively the machine that is considered a bottleneck. To do this, it solves the one-

machine sequencing problem with release and due dates that minimizes the maximum

lateness for each unscheduled machine, and schedules the machine with the worst

maximum lateness, i.e., the bottleneck machine. After each machine is scheduled, the

procedure applies a reoptimization over all the previously scheduled machines. The

reoptimization consists in trying to reschedule each previously scheduled machine

one by one, and updates the partial schedule if there is a better one. This process is

repeated until all machines are scheduled. The final schedule is then improved by a

local search.

Algorithm 10.2 A construction heuristic for the Het-JSSP.
Output: Constructed solution

1: Assign workers randomly
2: repeat
3: for all unscheduled machines do
4: Solve the one-machine sequencing problem
5: end for
6: Schedule the bottleneck machine
7: Reoptimize all the previously scheduled machines
8: until all machines are scheduled
9: return constructed solution

10.1.2 Local search heuristic

Our improvement method is a local search that explores the reduced neighbour-

hood proposed by Nowicki & Smutnicki (1996) explained in Section 3.3.1. The local

search iteratively chooses the best neighbour to replace the current solution, and it

stops when there are no better solutions in the neighbourhood. The best solution over

all iterations is saved by the multi-start local search.

157

10.2 Computational Experiments

10.2.1 Experimental methodology

We compare the solutions obtained by the multi-start local search to those obtained

by solving the mathematical model of Section 8.2.2. For the comparison, we use the

instances created for the Het-JSSP that were described in Section 8.4, based on the

well-known job shop instances of Taillard (1993) and on the instance ft10 of Fischer

& Thompson (1963).

The stopping criterion of the multi-start local search is one thousand iterations.

This number of iterations was chosen for being large enough to reach a convergence

of the method without running a long time. Our multi-start local search was

implemented in C++, and compiled with GNU C++ 4.7.3 with optimization level 2 (-

O2). We use the SBP implementation of Applegate & Cook (1991). The mathematical

model has been solved with CPLEX 12.5 running with a single thread and a time

limit of one hour. All computational tests were executed on a PC with an AMD

Opteron 6238 processor running at 2.9 GHz and 64 GB of main memory.

10.2.2 Numerical results

Tables 10.1 and 10.2 present results for the CPLEX solver with the proposed model

and for the multi-start local search. Table 10.1 presents results for instances with

processing times in [p, 2p], and Table 10.2 for instances with processing times in

[p, 5p]. Each line of the tables reports averages over 10 instances, grouped by size

and percentage of incompatibility.

All tables report the size of the instances (n ×m), the average of the best known

upper bounds (ub) obtained by this or by previous preliminary experiments, the

average (%R) of the relative deviation %R = 100% × (Cmax − ub)/ub in percent of

a solution with makespan Cmax from the best known solution, and the average of the

percentage relative gap (gap%) between the lower and upper bounds found by CPLEX.

For the multi-start local search, we present the average time t in seconds, the average

deviation for the best solution found (%R) and for all the one thousand independent

solutions (%RI) obtained by each iteration of construction and local search.

CPLEX was able to find solutions for all the instances, but it was not able to prove

the optimality of any of them within the time limit of one hour. CPLEX finds the best

known upper bound in 100 of the Taillard instances, 51 among the 60 instances of

15 jobs, 49 among the 120 instances of 20 jobs, and none of the 120 instances of 30

jobs. The relative deviation %R increases with the size of the instance from 0.06%

158

Table 10.1: Average results for the Taillard instances with processing times in [p, 2p].

CPLEX Multi-start
Instances n× m ub %R gap% t %R %RI

tai01i00 - tai10i00 15×15 1783.2 0.26 30.22 61.9 2.22 12.34
tai01i10 - tai10i10 15×15 1794.8 0.07 30.25 61.3 1.70 11.61
tai01i20 - tai10i20 15×15 1797.8 0.76 30.58 62.0 1.80 11.33
tai11i00 - tai20i00 20×15 2095.1 2.77 42.37 112.8 0.18 8.82
tai11i10 - tai20i10 20×15 2088.9 3.79 42.18 112.5 0.19 9.25
tai11i20 - tai20i20 20×15 2096.2 3.80 41.93 114.4 0.00 8.96
tai21i00 - tai30i00 20×20 2494.1 1.65 38.15 256.9 0.64 8.05
tai21i10 - tai30i10 20×20 2496.6 2.20 38.25 253.8 0.40 7.97
tai21i20 - tai30i20 20×20 2494.5 2.18 37.93 254.6 0.12 8.07
tai31i00 - tai40i00 30×15 2769.9 16.80 60.35 298.5 0.00 7.78
tai31i10 - tai40i10 30×15 2771.7 16.16 59.92 299.6 0.00 7.65
tai31i20 - tai40i20 30×15 2786.0 17.14 60.29 298.6 0.00 7.14
tai41i00 - tai50i00 30×20 3119.3 26.81 59.39 649.1 0.00 7.84
tai41i10 - tai50i10 30×20 3128.7 21.42 57.69 639.2 0.00 7.46
tai41i20 - tai50i20 30×20 3125.6 20.12 56.94 633.5 0.00 7.56

Averages 9.06 45.76 0.48 8.79

Table 10.2: Average results for the Taillard instances with processing times in [p, 5p].

CPLEX Multi-start
Instances n× m ub %R gap% t %R %RI

tai01I00 - tai10I00 15×15 3407.9 0.19 35.83 62.7 5.86 20.65
tai01I10 - tai10I10 15×15 3396.6 0.41 35.22 62.4 6.33 21.35
tai01I20 - tai10I20 15×15 3448.8 0.06 34.91 62.2 4.75 19.47
tai11I00 - tai20I00 20×15 4028.4 1.27 46.99 115.0 1.72 15.49
tai11I10 - tai20I10 20×15 4029.7 1.56 46.61 117.0 1.66 15.45
tai11I20 - tai20I20 20×15 4065.5 2.48 46.59 116.7 1.03 14.48
tai21I00 - tai30I00 20×20 4766.4 1.59 42.53 261.8 3.31 15.13
tai21I10 - tai30I10 20×20 4802.1 0.70 41.74 270.2 2.95 14.37
tai21I20 - tai30I20 20×20 4822.4 0.48 41.30 269.7 2.74 13.86
tai31I00 - tai40I00 30×15 5445.2 15.38 63.47 302.8 0.00 10.83
tai31I10 - tai40I10 30×15 5428.1 16.42 63.40 303.9 0.00 10.94
tai31I20 - tai40I20 30×15 5407.4 15.06 62.32 304.5 0.00 11.31
tai41I00 - tai50I00 30×20 6186.2 23.13 62.09 711.6 0.00 10.06
tai41I10 - tai50I10 30×20 6208.6 19.69 60.83 682.1 0.00 9.70
tai41I20 - tai50I20 30×20 6178.2 21.66 60.91 711.9 0.00 10.39

Averages 8.00 49.65 2.02 14.23

159

to 27%, and the gap between the CPLEX lower and upper bound increases with the

size of the instance from 30% to 61%. The average relative deviation from the best

known value for instances with processing time in [p, 2p], compared to instances with

processing time in [p, 5p], differs about 1%, and less than 0.8% between instances with

a different percentage of incompatibilities. This indicates that the difficulty of solving

the problem depends mainly on the instance size, and to a much lesser extent on the

introduced variations on the processing times or the percentage of incompatibilities.

Even the small Het-JSSP instance based on ft10 cannot be solved optimally by

CPLEX within the time limit of one hour, returning a gap of 21% after that time.

Considering that the optimal value for the original ft10 JSSP instance is found in less

than 10 minutes, and its optimality is proven in less than 15 minutes, this indicates

that the Het-JSSP is considerably harder than the normal JSSP. This is expected since

the Het-JSSP extends the JSSP with the additional worker assignment.

The multi-start local search reaches the best known values for 200 instances, all

the 120 instances of 30 jobs, 71 among the 120 instances of 20 jobs, and 9 among the

90 instances of 15. The processing time of the multi-start local search increases from

1 to 12 minutes with the size of the instance. The average deviation of the best found

solution %R for the instances with processing times in [p, 2p] (or [p, 5p]) decreases

from 2.3% to 0% (or from 6.4% to 0%), and the average deviation of all the created

solutions %RI decreases from 12.4% to 7.1% (or from 21.4% to 9.7%).

Our simple multi-start local search is effective enough to find solutions of good

quality that are in average 7% better than the produced by the exact method, and

in less than a fifth of the time. Furthermore, one iteration of construction and local

search produces better results than CPLEX for the instances of 30 jobs in less than

one second. The local search gives a relative improvement of less than 0.7% to the

constructed solutions, but also the average time that it consumes is less than 4% of

the total running time. This indicates that, although a local search is necessary to

guarantee that the final solution is a local minimum, the constructive heuristic alone

is thorough and creates solutions of good quality.

Finally, the largest variation between our upper bounds and the expected increased

makespan obtained by multiplying the best known values of the original JSSP by

a factor of 1.5 for instances with processing time in [p, 2p] (and by a factor of 3

for instances with processing time in [p, 5p]) is less than 7%. Thus, the disabilities

and different capabilities of the workers are compensated effectively without a great

increase in the makespan.

160

10.3 Concluding remarks

In this chapter, we proposed a multi-start local search to solve the Het-JSSP. To

solve it, one must find an optimal assignment of the workers to the workstations as

well as an optimal schedule of the operations, whose processing times depend on the

assignment of the workers. The Het-JSSP is considerably harder than a traditional

job shop problem. The Het-JSSP mathematical model cannot be solved by standard

software even for small instances of size 10× 10. However, computational tests show

that the problem can be solved satisfactorily by a multi-start local search.

This results confirm that the models and methods for the Het-JSSP and the

Het-FSSP may be extended to other scheduling problems. Consequently, our proposal

may be beneficial to the operations management area, when all (or some) workers

perform their tasks with different execution times, and when both the optimal

schedule and the optimal assignment of workers vary depending on each other.

CPLEX finds better solutions for many of the small instances, and our construction

method is thorough. Therefore, there is still a need for other more suitable heuristics

that may improve the results in comparable reasonable computational times. In future

research, we may use a swifter construction method and invest better this time in other

local search and diversification methods.

161

11 RELATED RESEARCH: INCLUDING WORKERS WITH DIS-

ABILITIES IN FLOW SHOPS

Chapters 8 and 9 have studied the heterogeneous workforce assignment and flow

shop scheduling problem (or Het-FSSP) where there is a heterogeneous worker to

be assigned to each workstation (or machine). A natural variation is the particular

case of the inclusion of one or two workers with disabilities in one of the stations

along with regular workers. This variation was studied jointly with Germano Carniel

as the topic of his Master’s degree research. This chapter briefly describes the results

of his research from the publication of Carniel et al. (2015). The main contributions

presented in this chapter are by Germano, and they are presented in this thesis for

completeness.

11.1 Inserting a single worker with disabilities into a flow shop

Table 11.1 represents the situation where one worker with disabilities (WWD)

must be integrated into a regular workforce in a flow shop. Besides the times that

regular workers take to perform the operations, we have particular times for a WWD

that may exceed the time of the regular workers. In the example, the times of the

WWD were chosen randomly in the interval [p, 2p], for a processing time of p of a

regular worker. The WWD may also be unable to operate some of the machines. In

the example, this is the case for machine M4, and it is represented by processing times

of ∞ on this machine. The problem of inserting a WWD into a flow shop is defined

as follows: we have to assign the WWD to a machine she is able to operate, and

find a valid schedule of the jobs, such that the makespan is minimized. Carniel et al.

(2015) call the variant restricted to permutation schedules the Permutation Flow Shop
Insertion and Scheduling Problem (PFSISP).

Figure 11.1 presents an optimal solution for the PFSISP instance in Table 11.1. This

solution assigns the WWD to the machine M3, which becomes a bottleneck, increasing

162

Table 11.1: An instance of the PFSISP.

Regular Worker WWD w
Job M1 M2 M3 M4 M1 M2 M3 M4

J1 1 2 2 1 2 4 2 ∞
J2 1 1 2 2 1 1 4 ∞
J3 2 1 1 2 4 2 1 ∞
J4 1 3 2 1 1 4 2 ∞
w: Worker with disabilities.

J1
J2
J3
J4

M1

M2

M3, w

M4

0 5 10 12 t

Figure 11.1: Optimal schedule for the PFSISP instance of makespan 12 which assign
the WWD to machine M3. The optimal regular schedule has makespan 11.

Table 11.2: An instance of the HPFSISP.

Regular Worker WWD w1 WWD w2

Job M1 M2 M3 M4 M1 M2 M3 M4 M1 M2 M3 M4

J1 1 2 2 1 2 4 2 ∞ 2 3 3 ∞
J2 1 1 2 2 1 1 4 ∞ 2 2 3 ∞
J3 2 1 1 2 4 2 1 ∞ 4 1 1 ∞
J4 1 3 2 1 1 4 2 ∞ 2 5 4 ∞
w: Worker with disabilities.

J1
J2
J3
J4

M1

M2

M3, w1

M3, w2

M4

0 5 10 11 t

Figure 11.2: Optimal schedule for the HPFSISP instance of makespan 11.

163

the makespan to 12, while the optimal schedule considering only regular workers has

a makespan of 11.

11.2 Inserting two workers into a hybrid flow shop

When assigning a single, slow worker to a machine in a flow shop, she will likely

be a bottleneck and increase the makespan. An alternative is to assign two WWDs

to a single stage with two parallel machines into a hybrid flow shop. This allows to

integrate more WWDs into the production line and has the potential to compensate

for their increased execution times. Carniel et al. (2015) refer to this variant as the

Hybrid Permutation Flow Shop Insertion and Scheduling Problem (HPFSISP). Table 11.2

represents this situation, consisting of a set of processing times for the regular workers,

and two sets of processing times for WWDs. Figure 11.2 presents a solution for the

HPFSISP. A solution is given by an assignment of the two workers to some stage, and a

processing order of the jobs. In the permutation version, the jobs are required to obey

the processing order on each of the parallel machines. Note that the parallel stage was

able to compensate for the longer processing times of the WWDs and the schedule has

makespan 11, as in the regular case.

11.3 A pooled iterated local search for the PFSISP

Carniel et al. (2015) propose a pooled iterated local search for the PFSISP. It

initially creates a pool with m candidate solutions, each of which assigns the WWDs to

one of the m stages and applies the NEH heuristic to obtain an initial solution. Then,

it improves every candidate solution in the pool with an IGA for a fixed time t, to later

eliminate the worst solution from the pool. These steps are repeated until there is only

one solution left in the pool. The total running time is therefore
(
m
2

)
t, and the k-th

best solution receives a time (m+ 1− k)t. This ensures that more promising solutions

receive more time to keep improving.

11.4 Solving the two-machine subproblem

A solution of the HPFSISP assigns two workers to a stage with two parallel

machines, and must additionally solve the subproblem of finding an optimal schedule

for this stage. This subproblem can be formulated as a head-body-tail problem on two

unrelated machines as follows. For a permutation π of jobs, and an assignment of

the WWDs to stage k, define heads rj as the earliest completion time of job j in the

164

previous stage k − 1, and tails qj as the shortest time from the start of job j on the

next stage k+ 1 to the completion of the last operation. Then, the problem consists in

finding starting times Sj ≥ rj for the jobs j ∈ [n] on the two machines that minimize

Cmax = maxj(Sj + pj + qj). Since the order of the permutation flow shop π is imposed

on all machines, the problem is reduced to find an optimal assignment of the jobs to

the parallel machines. This problem is NP-hard, but can be solved heuristically by a

greedy assignment or exactly by dynamic programming in time O(nC) for some upper

bound C on the makespan.

11.5 Results and remarks

Carniel et al. (2015) also proposed mathematical models for the PFSISP and the

HPFSISP that were tested with CPLEX 12.5 with a time limit of one hour. The PFSISP

was also solved with the LOMPEN branch-and-bound algorithm of Companys & Mateo

(2007) by assigning the WWD to each stage separately with a time limit of two hours.

The proposed heuristics and the mathematical models were compared using new

instances based on the benchmarks of Carlier (1978) and Taillard (1993).

The heuristics find close to optimal solutions in a short time for both the PFSISP

and the HPFSISP. The different heuristics strategies have only a small impact on

solution quality. Carniel et al. (2015) observed that inserting a single worker

introduces a large overhead. In contrast, the disabilities of two workers can be

concealed when they are assigned to two parallel machines in one stage of the flow

shop.

From a practical point of view, when the WWD is about or less than 50% slower

than the regular workers, she can be included into a flow shop with a small overhead,

and the assignment of two WWDs to a parallel stage with two machines can even

reduce the makespan. In summary, the insertions of WWDs are feasible with small

impact in the production efficiency. This suggests that companies can contribute

to integrate persons with disabilities in their production systems with moderate or

without losses in productivity.

165

Part IV

Concluding remarks
and future research

167

12 CONCLUDING REMARKS AND FUTURE RESEARCH

In this thesis, we described the permutation and the non-permutation flow shop

scheduling problem (FSSP), and the theoretical benefit of considering non-permutation

schedules, together with other related shop scheduling concepts and models. We

explained the assignment problem of heterogeneous workers, and the reasons for

considering it with the shop scheduling as a combined problem. We mathematically

defined the heterogeneous workforce assignment and flow shop scheduling problem

(or Het-FSSP) and the heterogeneous workforce assignment and job shop scheduling

problem (or Het-JSSP), we explained their complexity, and presented a new set

of instances. We proposed and implemented different heuristic methods to solve

the problems, such as iterated local search and iterated greedy algorithms for the

permutation and non-permutation FSSP with makespan and total completion time

criteria, a scatter search with path relinking for the Het-FSSP, and a multi-start local

search for the Het-JSSP. We showed the results obtained by various experiments

executed during the research.

The experiments studied different issues such as the quality of the permutation

schedules obtained by our methods compared to state-of-the-art methods for

the permutation FSSP, the quality of the non-permutation schedules obtained

by our methods compared to state-of-the-art methods for the permutation and

non-permutation FSSP, the technical differences between the permutation and

non-permutation schedules obtained by our methods, the quality of the solutions

obtained by our methods for the Het-FSSP and Het-JSSP, the influence of the

heterogeneity of workers in the schedules for the Het-FSSP and Het-JSSP.

The two major concluding remarks of this thesis are presented next. First, the

consideration of non-permutation schedules to solve the FSSP with the proposed

methods is possible, using the same time and effort that state-of-the-art methods

use to solve the permutation FSSP, and producing non-permutation schedules with

better quality than permutation and non-permutation schedules produced by state-of-

168

the-art methods. Second, the integration of the problem of heterogeneous workers

assignment into the shop scheduling problems is possible and advantageous. The

Het-FSSP and Het-JSSP can be solved satisfactorily by the proposed methods, and

the produced solutions compensate the disabilities and different capabilities of the

workers with insignificant or no losses in the productivity objectives.

Next, ideas and suggestions for possible trends for future research are presented,

starting with concrete future research and ending with more general ideas.

Bi-objective permutation flow shop scheduling

In this thesis we have presented separated methods for the permutation FSSP with

the makespan and the total completion time criteria that are comparable to or better

than the state-of-the-art methods for the permutation FSSP. A natural extension of

this work is to consider the bi-objective permutation FSSP with makespan and total

completion time criteria.

We are already working in this idea. We implemented a hybrid iterated Pareto local

search that hybridizes the principles of iterated local search and Pareto local search.

It uses a population P to maintain the Pareto frontier or Pareto local optimum set. It

starts with a population P that contains two initial solutions π0 and π1 that are created

by good heuristics for each objective function, such as short runs of our iterated greedy

algorithms for makespan and total completion time. Then, the algorithm repeatedly

selects an unvisited solution π ∈ P and a normalized weight vector ~λ = (λ, 1 − λ)

with 0 ≤ λ ≤ 1, and iteratively applies scalarized versions of a perturbation scheme

and a Pareto local search, such as those of our iterated greedy algorithm described in

Section 5.1, with a modification to verify the inclusion of each visited neighbour into

the Pareto frontier P . These versions minimize a scalarized single-objective function

f~λ(π) = λCmax(π) + (1 − λ)Csum(π). Preliminary tests were executed with instances

with 100 jobs and 20 machines of Taillard (1993), that are considered the hardest

for both makespan and total completion time criteria. The results are promising

when compared to the results of Dubois-Lacoste, López-Ibáñez & Stützle (2011) and

Minella, Ruiz & Ciavotta (2011).

Bi-objective non-permutation flow shop scheduling

In this thesis we have presented separated methods for the non-permutation

FSSP with the makespan and the total completion time criteria that are based on

strategic job reordering, and that dominate the state-of-the-art methods for both the

permutation and the non-permutation FSSP. Another natural next step is to extend

169

these results to the bi-objective non-permutation FSSP, including methods that take

into account strategic operation reordering in permutation schedules to create better

non-permutation schedules.

Tie-breaking mechanisms for non-permutation FSSP

The proposed methods for the non-permutation FSSP used tie-breaking mecha-

nisms that were originally proposed for permutation FSSP, or used random-breaking

mechanisms. We plan to study in a near future how different tie-breaking mechanisms

influence the results of the constructive heuristics and the iterated greedy algorithms

for the non-permutation FSSP with the makespan and the total completion time

criteria.

Heterogeneous workers in flow shop scheduling with makespan and total

completion time criteria

In this thesis we have presented the heterogeneous workforce assignment and flow

shop scheduling problem (or Het-FSSP) where there is a heterogeneous worker to be

assigned to each workstation (or machine) and a flow shop schedule must be found

with the objective of minimizing the makespan. We also have presented methods for

the FSSP with total completion time criterion. The next step is to extend these results

to the Het-FSSP with total completion time criterion and to the bi-objective Het-FSSP.

Further research lines

An unexplored research area is the use of exact algorithms such as branch-and-

bound to find optimal solutions for the non-permutation flow shop using the results of

this research to design dominance rules, lower and upper bounds that easily discard

major reorders of jobs in subsequent machines.

Our research may also be expanded by taking into consideration:

• other optimization criteria such as minimizing flowtime, earliness, lateness or

tardiness;

• other shop scheduling models such as job shop, open shop and even more

general partial order shop models;

• other models for heterogeneous workers, such as categorized (e.g. newbie,

regular, expert) or even with proportional models for related execution times;

170

• other models for insertion of heterogeneous workers in a homogeneous work

environment, such as a small percentage of workers and the use of parallel

workstations for them, following the example of Chapter 11;

• other specific models for insertion of heterogeneous workers in the regular

industry, such as working cells (or groups) in a stage or when workers control

subsets of parallel machines in a stage.

171

REFERENCES

ADAMS, J.; BALAS, E.; ZAWACK, D. The shifting bottleneck procedure for job shop
scheduling. Management science, INFORMS, v. 34, n. 3, p. 391–401, 1988.

AHMADIZAR, F. A new ant colony algorithm for makespan minimization in
permutation flow shops. Computers & Industrial Engineering, Elsevier, v. 63, n. 2, p.
355–361, 2012.

AIEX, R. M.; BINATO, S.; RESENDE, M. G. Parallel grasp with path-relinking for job
shop scheduling. Parallel Computing, Elsevier, v. 29, n. 4, p. 393–430, 2003.

AKHSHABI, M.; TAVAKKOLI-MOGHADDAM, R.; RAHNAMAY-ROODPOSHTI, F. A
hybrid particle swarm optimization algorithm for a no-wait flow shop scheduling
problem with the total flow time. The International Journal of Advanced Manufacturing
Technology, Springer, v. 70, n. 5-8, p. 1181–1188, 2014.

AMIRGHASEMI, M.; ZAMANI, R. An effective asexual genetic algorithm for solving
the job shop scheduling problem. Computers & Industrial Engineering, Elsevier, v. 83,
p. 123–138, 2015.

APPLEGATE, D.; COOK, W. A computational study of the job-shop scheduling
problem. ORSA Journal on computing, INFORMS, v. 3, n. 2, p. 149–156, 1991.

BALAPRAKASH, P.; BIRATTARI, M.; STÜTZLE, T. Improvement strategies for the
F-Race algorithm: Sampling design and iterative refinement. In: BARTZ-BEIELSTEIN,
T. et al. (Ed.). Hybrid Metaheuristics. Dortmund, Germany: Springer, 2007, (Lecture
Notes in Computer Science, v. 4771). p. 108–122.

BANHARNSAKUN, A.; SIRINAOVAKUL, B.; ACHALAKUL, T. Job shop scheduling with
the Best-so-far ABC. Engineering Applications of Artificial Intelligence, Elsevier, v. 25,
n. 3, p. 583–593, 2012.

BARTHOLDI, J. J.; EISENSTEIN, D. D. A production line that balances itself.
Operations Research, INFORMS, v. 44, n. 1, p. 21–34, 1996.

BEASLEY, J. ORLib–Operations Research Library. 2005. Available from Internet:
<http://people.brunel.ac.uk/~mastjjb/jeb/info.html>.

BENAVIDES, A. J.; RITT, M. Iterated local search heuristics for minimizing total
completion time in permutation and non-permutation flow shops. In: Twenty-Fifth
International Conference on Automated Planning and Scheduling. Jerusalem, Israel:
AAAI Publications, 2015. p. 34–41.

http://people.brunel.ac.uk/~mastjjb/jeb/info.html

172

BENAVIDES, A. J.; RITT, M. Two simple and effective heuristics for minimizing the
makespan in non-permutation flow shops. Computers & Operations Research, Elsevier,
v. 66, p. 160–169, 2016.

BENAVIDES, A. J.; RITT, M.; MIRALLES, C. Flow shop scheduling with heterogeneous
workers. European Journal of Operational Research, Elsevier, v. 237, n. 2, p. 713–720,
2014.

BENAVIDES, A. J.; RITT, M.; MIRALLES, C. Heterogeneous workforce in job shop
scheduling. In: VIII ALIO/EURO Workshop on Applied Combinatorial Optimization.
Montevideo, Uruguay: ALIO/EURO, 2014.

BEZERRA, L. C. T.; LÓPEZ-IBÁÑEZ, M.; STÜTZLE, T. Deconstructing multi-objective
evolutionary algorithms: An iterative analysis on the permutation flow-shop problem.
In: PARDALOS, P. M. et al. (Ed.). Learning and Intelligent Optimization. Gainesville,
Florida: Springer, 2014, (Lecture Notes in Computer Science, v. 8426). p. 157–172.

BINATO, S. et al. A GRASP for job shop scheduling. In: RIBEIRO, C. C.; P, H.
(Ed.). Essays and Surveys in Metaheuristics. New York: Springer, 2002, (Operations
Research/Computer Science Interfaces Series, v. 15). p. 59–79.

BŁAŻEWICZ, J. et al. Handbook on scheduling: from theory to applications. New York:
Springer, 2007. (International Handbook on Information Systems).

BLUM, C.; MIRALLES, C. On solving the assembly line worker assignment and
balancing problem via beam search. Computers & Operations Research, v. 38, n. 1, p.
328 – 339, 2011.

BORBA, L.; RITT, M. A heuristic and a branch-and-bound algorithm for the assembly
line worker assignment and balancing problem. Computers & Operations Research,
Elsevier, v. 45, p. 87–96, 2014.

BRUCKER, P. Scheduling algorithms. 4th. ed. New York: Springer, 2004.

BRUCKER, P.; HEITMANN, S.; HURINK, J. Flow-shop problems with intermediate
buffers. OR Spectrum, Springer, v. 25, n. 4, p. 549–574, 2003.

BRUCKER, P.; JURISCH, B.; SIEVERS, B. A branch and bound algorithm for the
job-shop scheduling problem. Discrete applied mathematics, Elsevier, v. 49, n. 1, p.
107–127, 1994.

CARLIER, J. Ordonnancements à contraintes disjonctives. Revue française
d’automatique, d’informatique et de recherche opérationnelle. Recherche opérationnelle,
EDP Sciences, v. 12, n. 4, p. 333–350, 1978.

CARNIEL, G. C. et al. Inclusion of workers with disabilities in flow shop scheduling
problems. In: 11th IEEE International Conference on Automation Science and
Engineering. Gothenburg, Sweden: IEEE, 2015. (to be published).

CHANG, P.-C. et al. A block-based evolutionary algorithm for flow-shop scheduling
problem. Applied Soft Computing, Elsevier, v. 13, n. 12, p. 4536–4547, 2013.

173

CHANG, P.-C. et al. A block mining and re-combination enhanced genetic algorithm
for the permutation flowshop scheduling problem. International Journal of Production
Economics, Elsevier, v. 141, n. 1, p. 45–55, 2013.

CHAVES, A. A.; LORENA, L. A. N.; MIRALLES, C. Hybrid metaheuristic for the
assembly line worker assignment and balancing problem. In: BLESA, M. J. et al.
(Ed.). Hybrid Metaheuristics. Berlin: Springer, 2009, (Lecture Notes in Computer
Science, v. 5818). p. 1–14. ISBN 978-3-642-04917-0.

CHAVES, A. A.; MIRALLES, C.; LORENA, L. A. N. Clustering search approach for the
assembly line worker assignment and balancing problem. In: Proceedings of the 37th
international conference on computers and industrial engineering. Alexandria, Egypt:
Elsevier, 2007. p. 1469–1478.

CHEN, M.-H.; CHANG, P.-C.; LIN, C.-H. A self-evolving artificial immune system
II with T-cell and B-cell for permutation flow-shop problem. Journal of Intelligent
Manufacturing, Springer, v. 25, n. 6, p. 1257–1270, 2014.

CHEN, Y.-M. et al. Extended artificial chromosomes genetic algorithm for permutation
flowshop scheduling problems. Computers & Industrial Engineering, Elsevier, v. 62,
n. 2, p. 536–545, 2012.

CHIANG, T.-C.; FU, L.-C. An improved multiobjective memetic algorithm for
permutation flow shop scheduling. In: IEEE. Congress on Evolutionary Computation
(CEC). Barcelona, 2010. p. 1–8.

CHONG, C. S. et al. A bee colony optimization algorithm to job shop scheduling. In:
Proceedings of the 38th Conference on Winter Simulation. Monterey, California: Winter
Simulation Conference, 2006. (WSC ’06), p. 1954–1961.

COELLO, C. A. C.; RIVERA, D. C.; CORTÉS, N. C. Use of an artificial immune system
for job shop scheduling. In: TIMMIS, J.; BENTLEY, P. J.; HART, E. (Ed.). Artificial
Immune Systems. Edinburgh, UK: Springer, 2003, (Lecture Notes in Computer
Science, v. 2787). p. 1–10.

COMPANYS, R.; MATEO, M. Different behaviour of a double branch-and-bound
algorithm on Fm|prmu|Cmax and Fm|block|Cmax problems. Computers &
Operations Research, Elsevier, v. 34, n. 4, p. 938–953, 2007.

CONWAY, R. W.; MAXWELL, W. L.; MILLER, L. W. Theory of scheduling. Massachusetts:
Addison-Wesley, 1967.

COROMINAS, A.; PASTOR, R.; PLANS, J. Balancing assembly line with skilled and
unskilled workers. Omega, Elsevier, v. 36, n. 6, p. 1126–1132, 2008.

CZAPIŃSKI, M. Parallel simulated annealing with genetic enhancement for flowshop
problem with Csum. Computers & Industrial Engineering, Elsevier, v. 59, n. 4, p.
778–785, 2010.

DANIELS, R. L.; MAZZOLA, J. B.; SHI, D. Flow shop scheduling with partial resource
flexibility. Management Science, INFORMS, v. 50, n. 5, p. 658–669, 2004.

174

DASGUPTA, P.; DAS, S. A discrete inter-species cuckoo search for flowshop scheduling
problems. Computers & Operations Research, Elsevier, v. 60, p. 111–120, 2015.

DE BRUECKER, P. et al. Workforce planning incorporating skills: state of the art.
European Journal of Operational Research, Elsevier, v. 243, n. 1, p. 1–16, 2015.

DEB, K. et al. A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE
Transactions on Evolutionary Computation, IEEE, v. 6, n. 2, p. 182–197, 2002.

DEMIRKOL, E.; MEHTA, S.; UZSOY, R. Benchmarks for shop scheduling problems.
European Journal of Operational Research, Elsevier, v. 109, n. 1, p. 137–141, 1998.

DONG, X. et al. A multi-restart iterated local search algorithm for the permutation
flow shop problem minimizing total flow time. Computers & Operations Research,
Elsevier, v. 40, n. 2, p. 627–632, 2013.

DONG, X.; HUANG, H.; CHEN, P. An improved NEH-based heuristic for the
permutation flowshop problem. Computers & Operations Research, Elsevier, v. 35,
n. 12, p. 3962–3968, 2008.

DONG, X.; HUANG, H.; CHEN, P. An iterated local search algorithm for the
permutation flowshop problem with total flowtime criterion. Computers & Operations
Research, Elsevier, v. 36, n. 5, p. 1664–1669, 2009.

DONG, X. et al. Self-adaptive perturbation and multi-neighborhood search for
iterated local search on the permutation flow shop problem. Computers & Industrial
Engineering, Elsevier, 2015.

DUAN, J.-h. et al. A speed-up method for calculating total flowtime in permutation
flow shop scheduling problem. In: IEEE. 25th Chinese Control and Decision Conference
(CCDC). Guiyang, China, 2013. p. 2755–2758.

DUBOIS-LACOSTE, J.; LÓPEZ-IBÁÑEZ, M.; STÜTZLE, T. A hybrid TP+PLS algorithm
for bi-objective flow-shop scheduling problems. Computers & Operations Research,
Elsevier, v. 38, n. 8, p. 1219–1236, 2011.

EKŞIOĞLU, B.; EKŞIOĞLU, S. D.; JAIN, P. A tabu search algorithm for the
flowshop scheduling problem with changing neighborhoods. Computers & Industrial
Engineering, Elsevier, v. 54, n. 1, p. 1–11, 2008.

EMMONS, H.; VAIRAKTARAKIS, G. Flow shop scheduling: theoretical results,
algorithms, and applications. New York: Springer, 2012. (International Handbook on
Information Systems, v. 182).

EREL, E.; SABUNCUOGLU, I.; SEKERCI, H. Stochastic assembly line balancing using
beam search. International Journal of Production Research, Taylor & Francis, v. 43,
n. 7, p. 1411–1426, 2005.

ESQUIVEL, S. et al. Enhanced evolutionary algorithms for single and multiobjective
optimization in the job shop scheduling problem. Knowledge-Based Systems, Elsevier,
v. 15, n. 1, p. 13–25, 2002.

175

FARAHMAND RAD, S.; RUIZ, R.; BOROOJERDIAN, N. New high performing
heuristics for minimizing makespan in permutation flowshops. Omega, Elsevier, v. 37,
n. 2, p. 331–345, 2009.

FÄRBER, G.; COVES MORENO, A. M. Performance study of a genetic algorithm for
sequencing in mixed model non-permutation flowshops using constrained buffers. In:
Computational Science and Its Applications-ICCSA 2006. Glasgow, UK: Springer, 2006,
(Lecture Notes in Computer Science, v. 3982). p. 638–648.

FÄRBER, G.; SALHI, S.; COVES MORENO, A. M. Semi-dynamic demand in a
non-permutation flowshop with constrained resequencing buffers. In: Large-Scale
Scientific Computing. Sozopol, Bulgaria: Springer, 2008, (Lecture Notes in Computer
Science, v. 4818). p. 536–544.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. On insertion tie-breaking rules in
heuristics for the permutation flowshop scheduling problem. Computers & Operations
Research, Elsevier, v. 45, p. 60–67, 2014.

FERNANDEZ-VIAGAS, V.; FRAMINAN, J. M. A new set of high-performing heuristics
to minimise flowtime in permutation flowshops. Computers & Operations Research,
Elsevier, v. 53, p. 68–80, 2015.

FIRAT, M.; HURKENS, C. A. J. An improved MIP-based approach for a multi-skill
workforce scheduling problem. Journal of Scheduling, Springer, v. 15, n. 3, p.
363–380, 2012.

FISCHER, H.; THOMPSON, G. L. Probabilistic learning combinations of local
job-shop scheduling rules. In: MUTH, J. F.; THOMPSON, G. L. (Ed.). Industrial
Scheduling. Englewood Cliffs, New Jersey: Prentice Hall, 1963, (International series
in management). p. 225–251.

FRAMINAN, J. M.; GUPTA, J. N.; LEISTEN, R. A review and classification of heuristics
for permutation flow-shop scheduling with makespan objective. Journal of the
Operational Research Society, Nature Publishing Group, v. 55, n. 12, p. 1243–1255,
2004.

FRAMINAN, J. M.; LEISTEN, R. A multi-objective iterated greedy search for flowshop
scheduling with makespan and flowtime criteria. OR Spectrum, Springer, v. 30, n. 4,
p. 787–804, 2008.

FRAMINAN, J. M.; LEISTEN, R.; RUIZ GARCÍA, R. Manufacturing Scheduling Systems:
An Integrated View on Models, Methods and Tools. London: Springer, 2014.

GAREY, M. R.; JOHNSON, D. S. Computers and intractability: a guide to the theory of
NP-completeness. San Francisco: W. H. Freeman, 1979.

GAREY, M. R.; JOHNSON, D. S.; SETHI, R. The complexity of flowshop and jobshop
scheduling. Mathematics of Operations Research, INFORMS, v. 1, n. 2, p. 117–129,
1976.

GE, H. et al. A particle swarm optimization-based algorithm for job-shop scheduling
problems. International Journal of Computational Methods, World Scientific, v. 2,
n. 03, p. 419–430, 2005.

176

GEL, E. S.; HOPP, W. J.; VAN OYEN, M. P. Factors affecting opportunity of
worksharing as a dynamic line balancing mechanism. IIE Transactions, Taylor &
Francis, v. 34, n. 10, p. 847–863, 2002.

GHARBI, A.; LABIDI, M.; LOULY, M. A. The nonpermutation flowshop scheduling
problem: Adjustment and bounding procedures. Journal of Applied Mathematics,
Hindawi Publishing Corporation, v. 2014, 2014.

GLOVER, F. Heuristics for integer programming using surrogate constraints. Decision
Sciences, Blackwell Publishing Ltd, v. 8, n. 1, p. 156–166, 1977.

GONÇALVES, J. F.; RESENDE, M. G. An extended Akers graphical method with
a biased random-key genetic algorithm for job-shop scheduling. International
Transactions in Operational Research, Wiley Online Library, v. 21, n. 2, p. 215–246,
2014.

GRABOWSKI, J.; WODECKI, M. A very fast tabu search algorithm for the permutation
flow shop problem with makespan criterion. Computers & Operations Research,
Elsevier, v. 31, n. 11, p. 1891–1909, 2004.

GRAHAM, R. et al. Optimization and approximation in deterministic sequencing and
scheduling: a survey. Annals of Discrete Mathematics, Elsevier, v. 5, p. 287–326, 1979.

GUPTA, J. N.; STAFFORD, E. F. Flowshop scheduling research after five decades.
European Journal of Operational Research, Elsevier, v. 169, n. 3, p. 699–711, 2006.

HAQ, A. N. et al. A scatter search approach for general flowshop scheduling problem.
The International Journal of Advanced Manufacturing Technology, Springer, v. 31,
n. 7-8, p. 731–736, 2007.

HEINONEN, J.; PETTERSSON, F. Hybrid ant colony optimization and visibility studies
applied to a job-shop scheduling problem. Applied Mathematics and Computation,
Elsevier, v. 187, n. 2, p. 989–998, 2007.

HELLER, J. Some numerical experiments for an M×J flow shop and its decision-
theoretical aspects. Operations Research, INFORMS, v. 8, n. 2, p. 178–184,
1960.

HOOGEVEEN, H. Multicriteria scheduling. European Journal of Operational Research,
Elsevier, v. 167, n. 3, p. 592–623, 2005.

HOPP, W. J.; TEKIN, E.; VAN OYEN, M. P. Benefits of skill chaining in serial
production lines with cross-trained workers. Management Science, INFORMS, v. 50,
n. 1, p. 83–98, 2004.

HSU, C.-Y.; CHANG, P.-C.; CHEN, M.-H. A linkage mining in block-based evolutionary
algorithm for permutation flowshop scheduling problem. Computers & Industrial
Engineering, Elsevier, v. 83, p. 159–171, 2015.

HUANG, K.-L.; LIAO, C.-J. Ant colony optimization combined with taboo search for
the job shop scheduling problem. Computers & Operations Research, Elsevier, v. 35,
n. 4, p. 1030–1046, 2008.

177

ILO. Inclusion of persons with disabilities. International Labour Organization,
2012. Available from Internet: <http://www.ilo.org/skills/areas/
inclusion-of-persons-with-disabilities/lang--en/index.htm>.

JACKSON, J. R. An extension of Johnson’s results on job IDT scheduling. Naval
Research Logistics Quarterly, Wiley Online Library, v. 3, n. 3, p. 201–203, 1956.

JAIN, A. S.; MEERAN, S. A multi-level hybrid framework for the deterministic job-shop
scheduling problem. Tese (Doutorado) — University Of Dundee, Scotland, UK, 1998.

JAIN, A. S.; MEERAN, S. A multi-level hybrid framework applied to the general
flow-shop scheduling problem. Computers & Operations Research, Elsevier, v. 29,
n. 13, p. 1873–1901, 2002.

JARBOUI, B.; EDDALY, M.; SIARRY, P. An estimation of distribution algorithm
for minimizing the total flowtime in permutation flowshop scheduling problems.
Computers & Operations Research, Elsevier, v. 36, n. 9, p. 2638–2646, 2009.

JOHNSON, S. M. Optimal two-and three-stage production schedules with setup times
included. Naval research logistics quarterly, Wiley Online Library, v. 1, n. 1, p. 61–68,
1954.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. An improved NEH heuristic to minimize
makespan in permutation flow shops. Computers & Operations Research, Elsevier,
v. 35, n. 9, p. 3001–3008, 2008.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. An empirical analysis of the optimality rate of
flow shop heuristics. European Journal of Operational Research, Elsevier, v. 198, n. 1,
p. 93–101, 2009.

KALCZYNSKI, P. J.; KAMBUROWSKI, J. On recent modifications and extensions of
the NEH heuristic for flow shop sequencing. Foundations of Computing and Decision
Sciences, v. 36, n. 1, p. 17, 2011.

KOULAMAS, C. A new constructive heuristic for the flowshop scheduling problem.
European Journal of Operational Research, Elsevier, v. 105, n. 1, p. 66–71, 1998.

KRONE, M. J.; STEIGLITZ, K. Heuristic-programming solution of a flowshop-
scheduling problem. Operations Research, INFORMS, v. 22, n. 3, p. 629–638,
1974.

LAGUNA, M.; MARTÍ, R. Scatter Search: Methodology and Implementations in C. New
York: Springer, 2003. (Operations Research/Computer Science Interfaces Series,
v. 24).

LI, H.; WOMER, K. Scheduling projects with multi-skilled personnel by a hybrid
MILP/CP benders decomposition algorithm. Journal of Scheduling, Springer, v. 12,
n. 3, p. 281–298, 2009.

LIAO, C. J.; LIAO, L. M.; TSENG, C. T. A performance evaluation of permutation
vs. non-permutation schedules in a flowshop. International Journal of Production
Research, Taylor & Francis, v. 44, n. 20, p. 4297–4309, 2006.

http://www.ilo.org/skills/areas/inclusion-of-persons-with-disabilities/lang--en/index.htm
http://www.ilo.org/skills/areas/inclusion-of-persons-with-disabilities/lang--en/index.htm

178

LIAO, C.-J.; YOU, C.-T. An improved formulation for the job-shop scheduling problem.
The Journal of the Operational Research Society, Palgrave Macmillan Journals, v. 43,
n. 11, p. 1047–1054, 1992.

LIAO, L.-M.; HUANG, C.-J. Tabu search for non-permutation flowshop scheduling
problem with minimizing total tardiness. Applied Mathematics and Computation,
Elsevier, v. 217, n. 2, p. 557–567, 2010.

LIN, S.-W.; YING, K.-C. Applying a hybrid simulated annealing and tabu search
approach to non-permutation flowshop scheduling problems. International Journal of
Production Research, Taylor & Francis, v. 47, n. 5, p. 1411–1424, 2009.

LIN, S.-W.; YING, K.-C. Minimizing makespan and total flowtime in permutation
flowshops by a bi-objective multi-start simulated-annealing algorithm. Computers &
Operations Research, Elsevier, v. 40, n. 6, p. 1625–1647, 2013.

LIN, S.-W.; YING, K.-C.; LEE, Z.-J. Metaheuristics for scheduling a non-permutation
flowline manufacturing cell with sequence dependent family setup times. Computers
& Operations Research, Elsevier, v. 36, n. 4, p. 1110–1121, 2009.

LIU, F. et al. Discrete differential evolution algorithm for the job shop scheduling
problem. In: ACM. Proceedings of the first ACM/SIGEVO Summit on Genetic and
Evolutionary Computation. New York: ACM, 2009. (GEC ’09), p. 879–882.

LIU, J.; REEVES, C. R. Constructive and composite heuristic solutions to the P//
∑
Ci

scheduling problem. European Journal of Operational Research, Elsevier, v. 132, n. 2,
p. 439–452, 2001.

LIU, Y.-F.; LIU, S.-Y. A hybrid discrete artificial bee colony algorithm for permutation
flowshop scheduling problem. Applied Soft Computing, Elsevier, v. 13, n. 3, p.
1459–1463, 2013.

LÓPEZ-IBÁÑEZ, M. et al. The irace package, iterated race for automatic algorithm
configuration. Belgium, 2011. (IRIDIA – Technical Report Series, TR/IRIDIA/2011-
004).

MANNE, A. S. On the job-shop scheduling problem. Operations Research, INFORMS,
v. 8, n. 2, p. pp. 219–223, 1960.

MANSOOR, E. Assembly line balancing-a heuristic algorithm for variable operator
performance levels. Journal of Industrial Engineering, v. 19, n. 12, p. 618, 1968.

MARICHELVAM, M. An improved hybrid cuckoo search (IHCS) metaheuristics
algorithm for permutation flow shop scheduling problems. International Journal of
Bio-Inspired Computation, Inderscience Publishers Ltd, v. 4, n. 4, p. 200–205, 2012.

MARTÍ, R.; RESENDE, M. G.; RIBEIRO, C. C. Multi-start methods for combinatorial
optimization. European Journal of Operational Research, Elsevier, v. 226, n. 1, p. 1–8,
2013.

MEHRAVARAN, Y.; LOGENDRAN, R. Non-permutation flowshop scheduling in
a supply chain with sequence-dependent setup times. International Journal of
Production Economics, Elsevier, v. 135, n. 2, p. 953–963, 2012.

179

MEHRAVARAN, Y.; LOGENDRAN, R. Non-permutation flowshop scheduling with dual
resources. Expert Systems with Applications, Elsevier, v. 40, n. 13, p. 5061–5076, 2013.

METLICKA, M. et al. GPU accelerated NEH algorithm. In: IEEE. Symposium on
Computational Intelligence in Production and Logistics Systems (CIPLS). Orlando,
Florida, 2014. p. 114–119.

METROPOLIS, N. et al. Equation of state calculations by fast computing machines.
The journal of chemical physics, AIP Publishing, v. 21, n. 6, p. 1087–1092, 1953.

MINELLA, G.; RUIZ, R.; CIAVOTTA, M. A review and evaluation of multiobjective
algorithms for the flowshop scheduling problem. INFORMS Journal on Computing,
INFORMS, v. 20, n. 3, p. 451–471, 2008.

MINELLA, G.; RUIZ, R.; CIAVOTTA, M. Restarted iterated pareto greedy algorithm
for multi-objective flowshop scheduling problems. Computers & Operations Research,
Elsevier, v. 38, n. 11, p. 1521–1533, 2011.

MIRALLES, C. et al. Advantages of assembly lines in sheltered work centres for
disabled: A case study. International Journal of Production Economics, Elsevier, v. 110,
n. 1, p. 187–197, 2007.

MIRALLES, C. et al. Branch and bound procedures for solving the assembly line
worker assignment and balancing problem: Application to sheltered work centres for
disabled. Discrete Applied Mathematics, v. 156, n. 3, p. 352 – 367, 2008.

MIRALLES, C. et al. Operations research/management science tools for integrating
people with disabilities into employment: A study on Valencia’s sheltered work
centres for disabled. International Transactions in Operational Research, Blackwell
Publishing Ltd, v. 17, n. 4, p. 457–473, 2010.

MOKOTOFF, E. Multi-objective simulated annealing for permutation flow shop
problems. In: CHAKRABORTY, U. K. (Ed.). Computational Intelligence in Flow
Shop and Job Shop Scheduling. Berlin: Springer, 2009, (Studies in Computational
Intelligence, v. 230). p. 101–150.

MOREIRA, M. C. O.; COSTA, A. M. A minimalist yet efficient tabu search algorithm for
balancing assembly lines with disabled workers. In: Anais do XLI Simpósio Brasileiro
de Pesquisa Operacional. Porto Seguro, Brasil: SBPO, 2009. p. 660–671.

MOREIRA, M. C. O. et al. Simple heuristics for the assembly line worker assignment
and balancing problem. Journal of heuristics, Springer, v. 18, n. 3, p. 505–524, 2012.

MUTLU, O.; POLAT, O.; SUPCILLER, A. A. An iterative genetic algorithm for the
assembly line worker assignment and balancing problem of type-II. Computers &
Operations Research, v. 40, n. 1, p. 418 – 426, 2013.

NAGANO, M.; MOCCELLIN, J. et al. A high quality solution constructive heuristic
for flow shop sequencing. Journal of the Operational Research Society, Palgrave
Macmillan, v. 53, n. 12, p. 1374–1379, 2002.

180

NAGANO, M. S.; RUIZ, R.; LORENA, L. A. N. A constructive genetic algorithm for
permutation flowshop scheduling. Computers & Industrial Engineering, Elsevier, v. 55,
n. 1, p. 195–207, 2008.

NAGARAJAN, V.; SVIRIDENKO, M. Tight bounds for permutation flow shop
scheduling. Mathematics of Operations Research, INFORMS, v. 34, n. 2, p. 417–427,
2009.

NASIRI, M. M.; KIANFAR, F. A guided tabu search/path relinking algorithm for the
job shop problem. The International Journal of Advanced Manufacturing Technology,
Springer, v. 58, n. 9-12, p. 1105–1113, 2012.

NAWAZ, M.; ENSCORE, E. E.; HAM, I. A heuristic algorithm for the m-machine, n-job
flow-shop sequencing problem. Omega, Elsevier, v. 11, n. 1, p. 91–95, 1983.

NOWICKI, E.; SMUTNICKI, C. A fast taboo search algorithm for the job shop problem.
Management Science, INFORMS, v. 42, n. 6, p. 797–813, 1996.

NOWICKI, E.; SMUTNICKI, C. An advanced tabu search algorithm for the job shop
problem. Journal of Scheduling, Springer, v. 8, n. 2, p. 145–159, 2005.

NOWICKI, E.; SMUTNICKI, C. Some aspects of scatter search in the flow-shop
problem. European Journal of Operational Research, Elsevier, v. 169, n. 2, p. 654–666,
2006.

ODDI, A. Demirkol job shop scheduling instances. 2005. Available from Internet:
<http://pst.istc.cnr.it/~angelo/OUdata/>.

ONWUBOLU, G.; DAVENDRA, D. Scheduling flow shops using differential evolution
algorithm. European Journal of Operational Research, Elsevier, v. 171, n. 2, p.
674–692, 2006.

OSMAN, I.; POTTS, C. Simulated annealing for permutation flow-shop scheduling.
Omega, Elsevier, v. 17, n. 6, p. 551–557, 1989.

PAN, Q.-K.; RUIZ, R. Local search methods for the flowshop scheduling problem with
flowtime minimization. European Journal of Operational Research, Elsevier, v. 222,
n. 1, p. 31–43, 2012.

PAN, Q.-K.; RUIZ, R. A comprehensive review and evaluation of permutation flowshop
heuristics to minimize flowtime. Computers & Operations Research, Elsevier, v. 40,
n. 1, p. 117–128, 2013.

PAN, Q.-K.; TASGETIREN, M. F.; LIANG, Y.-C. A discrete differential evolution
algorithm for the permutation flowshop scheduling problem. Computers & Industrial
Engineering, Elsevier, v. 55, n. 4, p. 795–816, 2008.

PAN, Q.-K. et al. A novel discrete artificial bee colony algorithm for the hybrid
flowshop scheduling problem with makespan minimisation. Omega, Elsevier, v. 45, p.
42–56, 2014.

http://pst.istc.cnr.it/~angelo/OUdata/

181

PARDALOS, P. M.; SHYLO, O. V. An algorithm for the job shop scheduling problem
based on global equilibrium search techniques. Computational Management Science,
Springer, v. 3, n. 4, p. 331–348, 2006.

PARDALOS, P. M.; SHYLO, O. V.; VAZACOPOULOS, A. Solving job shop scheduling
problems utilizing the properties of backbone and “big valley”. Computational
Optimization and Applications, Springer, v. 47, n. 1, p. 61–76, 2010.

PÉREZ, E.; POSADA, M.; HERRERA, F. Analysis of new niching genetic algorithms
for finding multiple solutions in the job shop scheduling. Journal of Intelligent
manufacturing, Springer, v. 23, n. 3, p. 341–356, 2012.

PIN, Z.; XIAO-PING, L.; HONG-FANG, Z. An ant colony algorithm for job shop
scheduling problem. In: IEEE. Fifth World Congress on Intelligent Control and
Automation, 2004. WCICA 2004. Hangzhou, China, 2004. v. 4, p. 2899–2903.

PINEDO, M. L. Scheduling: theory, algorithms, and systems. 4th. ed. New York:
Springer, 2012.

PONGCHAIRERKS, P.; KACHITVICHYANUKUL, V. A two-level particle swarm
optimisation algorithm on job-shop scheduling problems. International Journal of
Operational Research, Inderscience Publishers, v. 4, n. 4, p. 390–411, 2009.

PONSICH, A.; COELLO, C. A. C. Testing the permutation space based geometric
differential evolution on the job-shop scheduling problem. In: SCHAEFER, R. et al.
(Ed.). Parallel Problem Solving from Nature, PPSN XI. Kraków, Poland: Springer, 2010.
(Lecture Notes in Computer Science, v. 6239), p. 250–259.

PONSICH, A.; COELLO, C. A. C. A hybrid differential evolution—tabu search
algorithm for the solution of job-shop scheduling problems. Applied Soft Computing,
Elsevier, v. 13, n. 1, p. 462–474, 2013.

POTTS, C. N.; SHMOYS, D. B.; WILLIAMSON, D. P. Permutation vs. non-permutation
flow shop schedules. Operations Research Letters, Elsevier, v. 10, n. 5, p. 281–284,
1991.

POTTS, C. N.; STRUSEVICH, V. A. Fifty years of scheduling: a survey of milestones.
Journal of the Operational Research Society, Nature Publishing Group, v. 60, p.
S41–S68, 2009.

PUGAZHENDHI, S. et al. Performance enhancement by using non-permutation
schedules in flowline-based manufacturing systems. Computers & Industrial
Engineering, Elsevier, v. 44, n. 1, p. 133–157, 2003.

PUGAZHENDHI, S. et al. Generating non-permutation schedules in flowline-based
manufacturing sytems with sequence-dependent setup times of jobs: a heuristic
approach. The International Journal of Advanced Manufacturing Technology, Springer,
v. 23, n. 1-2, p. 64–78, 2004.

PUGAZHENDHI, S. et al. Relative performance evaluation of permutation and
non-permutation schedules in flowline-based manufacturing systems with flowtime
objective. The International Journal of Advanced Manufacturing Technology, Springer,
v. 23, n. 11-12, p. 820–830, 2004.

182

RAJENDRAN, C.; ZIEGLER, H. A performance analysis of dispatching rules and a
heuristic in static flowshops with missing operations of jobs. European Journal of
Operational Research, Elsevier, v. 131, n. 3, p. 622–634, 2001.

RAJENDRAN, C.; ZIEGLER, H. Ant-colony algorithms for permutation flowshop
scheduling to minimize makespan/total flowtime of jobs. European Journal of
Operational Research, Elsevier, v. 155, n. 2, p. 426–438, 2004.

RAJENDRAN, C.; ZIEGLER, H. A multi-objective ant-colony algorithm for permutation
flowshop scheduling to minimize the makespan and total flowtime of jobs. In:
CHAKRABORTY, U. (Ed.). Computational Intelligence in Flow Shop and Job Shop
Scheduling. Berlin: Springer, 2009, (Studies in Computational Intelligence, v. 230). p.
53–99.

RAMAN, N. Minimum tardiness scheduling in flow shops: construction and evaluation
of alternative solution approaches. Journal of Operations Management, Elsevier, v. 12,
n. 2, p. 131–151, 1995.

REEVES, C. R. A genetic algorithm for flowshop sequencing. Computers & Operations
Research, Elsevier, v. 22, n. 1, p. 5–13, 1995.

RESENDE, M. G. et al. Scatter search and path-relinking: Fundamentals, advances,
and applications. In: GENDREAU, M.; POTVIN, J.-Y. (Ed.). Handbook of Metaheuristics.
2nd. ed. New York: Springer, 2010, (International Series in Operations Research &
Management Science, v. 146). p. 87–107.

REZA HEJAZI, S.; SAGHAFIAN, S. Flowshop-scheduling problems with makespan
criterion: a review. International Journal of Production Research, Taylor & Francis,
v. 43, n. 14, p. 2895–2929, 2005.

RIBAS, I.; COMPANYS, R.; TORT-MARTORELL, X. Comparing three-step heuristics for
the permutation flow shop problem. Computers & Operations Research, Elsevier, v. 37,
n. 12, p. 2062–2070, 2010.

RONCONI, D. P. A note on constructive heuristics for the flowshop problem with
blocking. International Journal of Production Economics, Elsevier, v. 87, n. 1, p. 39–48,
2004.

ROSSI, A.; LANZETTA, M. Nonpermutation flow line scheduling by ant colony
optimization. Artificial Intelligence for Engineering Design, Analysis and Manufacturing,
Cambridge Univ Press, v. 27, n. 04, p. 349–357, 2013.

ROSSI, A.; LANZETTA, M. Scheduling flow lines with buffers by ant colony digraph.
Expert Systems with Applications, Elsevier, v. 40, n. 9, p. 3328–3340, 2013.

ROSSI, A.; LANZETTA, M. Native metaheuristics for non-permutation flowshop
scheduling. Journal of Intelligent Manufacturing, Springer, v. 25, n. 6, p. 1221–1233,
2014.

RUIZ, R.; MAROTO, C. A comprehensive review and evaluation of permutation
flowshop heuristics. European Journal of Operational Research, Elsevier, v. 165, n. 2,
p. 479–494, 2005.

183

RUIZ, R.; MAROTO, C.; ALCARAZ, J. Two new robust genetic algorithms for the
flowshop scheduling problem. Omega, Elsevier, v. 34, n. 5, p. 461–476, 2006.

RUIZ, R.; STÜTZLE, T. A simple and effective iterated greedy algorithm for the
permutation flowshop scheduling problem. European Journal of Operational Research,
Elsevier, v. 177, n. 3, p. 2033–2049, 2007.

SADJADI, S.; BOUQUARD, J.-L.; ZIAEE, M. An ant colony algorithm for the flowshop
scheduling problem. Journal of Applied Sciences, v. 8, n. 21, p. 3938–3944, 2008.

SANTUCCI, V.; BAIOLETTI, M.; MILANI, A. A differential evolution algorithm for
the permutation flowshop scheduling problem with total flow time criterion. In:
BARTZ-BEIELSTEIN, T. et al. (Ed.). Parallel Problem Solving from Nature – PPSN XIII.
Ljubljana, Slovenia: Springer, 2014, (Lecture Notes in Computer Science, v. 8672). p.
161–170.

SEVKLI, M.; AYDIN, M. E. A variable neighbourhood search algorithm for job shop
scheduling problems. In: GOTTLIEB, J.; RAIDL, G. (Ed.). Evolutionary Computation
in Combinatorial Optimization. Budapest, Hungary: Springer, 2006, (Lecture Notes in
Computer Science, v. 3906). p. 261–271.

SHYLO, O. Demirkol job shop scheduling instances: Best known lower and upper bounds.
2005. Available from Internet: <http://optimizizer.com/DMU.php>.

SINGH, S.; SINGH, K. Cuckoo search optimization for job shop scheduling problem.
In: DAS, K. N. et al. (Ed.). Proceedings of Fourth International Conference on Soft
Computing for Problem Solving. Silchar, India: Springer, 2015. (Advances in Intelligent
Systems and Computing, v. 335), p. 99–111.

SUN, Y. et al. Multi-objective optimization algorithms for flow shop scheduling
problem: a review and prospects. The International Journal of Advanced Manufacturing
Technology, Springer, v. 55, n. 5-8, p. 723–739, 2011.

SWAMINATHAN, R. et al. Impact of permutation enforcement when minimizing total
weighted tardiness in dynamic flowshops with uncertain processing times. Computers
& Operations Research, Elsevier, v. 34, n. 10, p. 3055–3068, 2007.

TAILLARD, E. Some efficient heuristic methods for the flow shop sequencing problem.
European journal of Operational research, Elsevier, v. 47, n. 1, p. 65–74, 1990.

TAILLARD, E. Benchmarks for basic scheduling problems. European Journal of
Operational Research, Elsevier, v. 64, n. 2, p. 278–285, 1993.

TAILLARD, E. 2004. Best known lower and upper bounds of the PFSSP for Taillard’s
instances. Available from Internet: <http://mistic.heig-vd.ch/taillard/problemes.
dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt>.

TANDON, M.; CUMMINGS, P.; LEVANU, M. Flowshop sequencing with non-
permutation schedules. Computers & Chemical Engineering, Elsevier, v. 15, n. 8, p.
601–607, 1991.

http://optimizizer.com/DMU.php
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt
http://mistic.heig-vd.ch/taillard/problemes.dir/ordonnancement.dir/flowshop.dir/best_lb_up.txt

184

TASGETIREN, M. F. et al. A particle swarm optimization algorithm for makespan
and total flowtime minimization in the permutation flowshop sequencing problem.
European Journal of Operational Research, Elsevier, v. 177, n. 3, p. 1930–1947, 2007.

TASGETIREN, M. F. et al. A discrete artificial bee colony algorithm for the total
flowtime minimization in permutation flow shops. Information Sciences, Elsevier,
v. 181, n. 16, p. 3459–3475, 2011.

T’KINDT, V.; BILLAUT, J.-C. Multicriteria scheduling: theory, models and algorithms.
2nd. ed. Berlin: Springer, 2006.

TSENG, C.-T.; LIAO, C.-J.; LIAO, T.-X. A note on two-stage hybrid flowshop scheduling
with missing operations. Computers & Industrial Engineering, Elsevier, v. 54, n. 3, p.
695–704, 2008.

TSENG, L.-Y.; LIN, Y.-T. A hybrid genetic local search algorithm for the permutation
flowshop scheduling problem. European Journal of Operational Research, Elsevier,
v. 198, n. 1, p. 84–92, 2009.

TSENG, L.-Y.; LIN, Y.-T. A genetic local search algorithm for minimizing total flowtime
in the permutation flowshop scheduling problem. International Journal of Production
Economics, Elsevier, v. 127, n. 1, p. 121–128, 2010.

TYAGI, N.; VARSHNEY, R.; CHANRAMOULI, A. Six decades of flowshop scheduling
research. International Journal of Scientific & Engineering Research, v. 4, n. 9, 2013.

VAESSENS, R. J. 1996. Best known lower and upper bounds of the permutation and
non-permutation FSSP for Taillard’s instances, mirror by M. Lanzetta. Available from
Internet: <http://www2.ing.unipi.it/lanzetta/aco/vaessens.txt>.

VAHEDI-NOURI, B.; FATTAHI, P.; RAMEZANIAN, R. Hybrid firefly-simulated
annealing algorithm for the flow shop problem with learning effects and flexible
maintenance activities. International Journal of Production Research, Taylor & Francis,
v. 51, n. 12, p. 3501–3515, 2013.

VAHEDI-NOURI, B.; FATTAHI, P.; RAMEZANIAN, R. Minimizing total flow time for the
non-permutation flow shop scheduling problem with learning effects and availability
constraints. Journal of Manufacturing Systems, Elsevier, v. 32, n. 1, p. 167–173, 2013.

VAHEDI-NOURI, B. et al. A general flow shop scheduling problem with consideration
of position-based learning effect and multiple availability constraints. The
International Journal of Advanced Manufacturing Technology, Springer, v. 73, n. 5-8, p.
601–611, 2014.

VALLADA, E.; RUIZ, R. Cooperative metaheuristics for the permutation flowshop
scheduling problem. European Journal of Operational Research, Elsevier, v. 193, n. 2,
p. 365–376, 2009.

VALLADA, E.; RUIZ, R.; FRAMINAN, J. M. New hard benchmark for flowshop
scheduling problems minimising makespan. European Journal of Operational
Research, Elsevier, v. 240, n. 3, p. 666–677, 2015.

http://www2.ing.unipi.it/lanzetta/aco/vaessens.txt

185

VARADHARAJAN, T.; RAJENDRAN, C. A multi-objective simulated-annealing
algorithm for scheduling in flowshops to minimize the makespan and total flowtime
of jobs. European Journal of Operational Research, Elsevier, v. 167, n. 3, p. 772–795,
2005.

VASILJEVIC, D.; DANILOVIC, M. Handling ties in heuristics for the permutation flow
shop scheduling problem. Journal of Manufacturing Systems, Elsevier, v. 35, p. 1–9,
2015.

VÁZQUEZ, M.; WHITLEY, D. A comparison of genetic algorithms for the static job
shop scheduling problem. In: SCHOENAUER, M. et al. (Ed.). Parallel Problem Solving
from Nature, PPSN VI. Paris, France: Springer, 2000. (Lecture Notes in Computer
Science, v. 1917), p. 303–312.

VILÀ, M.; PEREIRA, J. A branch-and-bound algorithm for assembly line worker
assignment and balancing problems. Computers & Operations Research, v. 44, p. 105 –
114, 2014.

WANG, J.-J.; ZHANG, B.-H. Permutation flowshop problems with bi-criterion
makespan and total completion time objective and position-weighted learning effects.
Computers & Operations Research, Elsevier, v. 58, p. 24–31, 2015.

WATSON, J.-P.; HOWE, A. E.; WHITLEY, L. D. Deconstructing Nowicki and
Smutnicki’s i-TSAB tabu search algorithm for the job-shop scheduling problem.
Computers & Operations Research, Elsevier, v. 33, n. 9, p. 2623–2644, 2006.

WENQI, H.; AIHUA, Y. An improved shifting bottleneck procedure for the job shop
scheduling problem. Computers & Operations Research, Elsevier, v. 31, n. 12, p.
2093–2110, 2004.

XIE, Z. et al. An effective hybrid teaching-learning-based optimization algorithm
for permutation flow shop scheduling problem. Advances in Engineering Software,
Elsevier, v. 77, p. 35–47, 2014.

XU, X.; XU, Z.; GU, X. An asynchronous genetic local search algorithm for the
permutation flowshop scheduling problem with total flowtime minimization. Expert
Systems with Applications, Elsevier, v. 38, n. 7, p. 7970–7979, 2011.

YAGMAHAN, B.; YENISEY, M. M. A multi-objective ant colony system algorithm for
flow shop scheduling problem. Expert Systems with Applications, Elsevier, v. 37, n. 2,
p. 1361–1368, 2010.

YAMADA, T.; NAKANO, R. Job-shop scheduling. In: . Genetic algorithms in
engineering systems. London: The Institution of Electrical Engineers, 1997. (Control
Engineering Series, v. 55), cap. 7, p. 134–160.

YANDRA; TAMURA, H. A new multiobjective genetic algorithm with heterogeneous
population for solving flowshop scheduling problems. International Journal of
Computer Integrated Manufacturing, Taylor & Francis, v. 20, n. 5, p. 465–477, 2007.

YENISEY, M. M.; YAGMAHAN, B. Multi-objective permutation flow shop scheduling
problem: Literature review, classification and current trends. Omega, Elsevier, v. 45,
p. 119–135, 2014.

186

YING, K.-C. Solving non-permutation flowshop scheduling problems by an effective
iterated greedy heuristic. The International Journal of Advanced Manufacturing
Technology, Springer, v. 38, n. 3-4, p. 348–354, 2008.

YING, K.-C. et al. Permutation and non-permutation schedules for the flowline
manufacturing cell with sequence dependent family setups. International Journal of
Production Research, Taylor & Francis, v. 48, n. 8, p. 2169–2184, 2010.

YING, K.-C.; LIN, S.-W. Multi-heuristic desirability ant colony system heuristic
for non-permutation flowshop scheduling problems. The International Journal of
Advanced Manufacturing Technology, Springer, v. 33, n. 7-8, p. 793–802, 2007.

ZHANG, C. Y. et al. A very fast TS/SA algorithm for the job shop scheduling problem.
Computers & Operations Research, Elsevier, v. 35, n. 1, p. 282–294, 2008.

ZHANG, J. et al. Implementation of an ant colony optimization technique for job shop
scheduling problem. Transactions of the Institute of Measurement and Control, SAGE
Publications, v. 28, n. 1, p. 93–108, 2006.

ZHANG, L.; WU, J. A PSO-based hybrid metaheuristic for permutation flowshop
scheduling problems. The Scientific World Journal, Hindawi Publishing Corporation,
v. 2014, 2014.

ZHANG, R.; SONG, S.; WU, C. A two-stage hybrid particle swarm optimization
algorithm for the stochastic job shop scheduling problem. Knowledge-Based Systems,
Elsevier, v. 27, p. 393–406, 2012.

ZHANG, Y.; LI, X.; WANG, Q. Hybrid genetic algorithm for permutation flowshop
scheduling problems with total flowtime minimization. European Journal of
Operational Research, Elsevier, v. 196, n. 3, p. 869–876, 2009.

ZHANG, Z. et al. Flow shop scheduling with reinforcement learning. Asia-Pacific
Journal of Operational Research, World Scientific, v. 30, n. 05, p. 1350014–1–
1350014–25, 2013.

ZHAO, F. et al. A hybrid differential evolution and estimation of distribution algorithm
based on neighbourhood search for job shop scheduling problems. International
Journal of Production Research, Taylor & Francis, n. ahead-of-print, p. 1–22, 2015.

ZHENG, T.; YAMASHIRO, M. A novel quantum differential evolutionary algorithm
for non-permutation flow shop scheduling problems. In: IEEE. Electrical Engineering
Computing Science and Automatic Control (CCE), 2010 7th International Conference
on. [S.l.], 2010. p. 357–362.

ZOBOLAS, G.; TARANTILIS, C. D.; IOANNOU, G. Exact, heuristic and meta-heuristic
algorithms for solving shop scheduling problems. In: Metaheuristics for Scheduling in
Industrial and Manufacturing Applications. [S.l.]: Springer, 2008. p. 1–40.

ZOBOLAS, G.; TARANTILIS, C. D.; IOANNOU, G. Minimizing makespan in
permutation flow shop scheduling problems using a hybrid metaheuristic algorithm.
Computers & Operations Research, Elsevier, v. 36, n. 4, p. 1249–1267, 2009.

187

APPENDIX A HEURÍSTICAS PARA ESCALONAMENTO EM

FLOW SHOPS: CONSIDERANDO ESCALONAMENTOS NÃO-

PERMUTACIONAIS E TRABALHADORES HETEROGÊNEOS

O problema de escalonamento de tarefas num flow shop (ou flow shop scheduling
problem, FSSP) é um modelo de sistemas de produção muito comum que é bem

estudado na literatura. No entanto, quase toda a literatura foca-se em escalonamentos

permutacionais, como se mostra no Capítulo 3, desconsiderando soluções ótimas e

quase ótimas que são escalonamentos não-permutacionais, como mostra o exemplo

da Seção 4. Além disso, a prática comum padroniza os tempos de processamento

de cada operação, mesmo que estes tempos variem dependendo das diferentes

capacidades dos operadores das máquinas. A diferença entre as capacidades e

deficiências dos trabalhadores em centros de emprego para deficientes (CEDs) é

significativa, e consequentemente, esta diversidade deve ser considerada no processo

de escalonamento. A seção 8.1 mostra com um exemplo claro a necessidade e os

benefícios de tratar os problemas de escalonamento das tarefas e de designação de

trabalhadores conjuntamente.

O foco principal da nossa pesquisa é propor métodos para resolver o problema de

escalonamento de tarefas em flow shops, considerando escalonamentos não-permuta-

cionais e trabalhadores heterogêneos, com o fim de minimizar o tempo de

processamento das tarefas.

O Capítulo 1 apresenta a tese, descrevendo a motivação da nossa pesquisa, nossos

principais objetivos e contribuições, e as limitações no escopo da pesquisa.

O Capítulo 2 descreve os problemas de escalonamento em shops, junto com as

características e formulações deles. Como o problema de escalonamento em flow

shops pode ser considerado um caso especial do problema de escalonamento em job

shops (ou job shop scheduling problem, JSSP), o capítulo também descreve outros

conceitos teóricos relevantes ao JSSP. Finalmente, o capítulo descreve as principais

188

diferenças teóricas entre a variante permutacional e a variante não-permutacional do

FSSP.

O Capítulo 3 apresenta uma breve revisão da literatura no FSSP permutacional e

não-permutacional. Também revisa a literatura relevante ao JSSP, e à inclussão da

diversidade dos trabalhadores no processo de planificação da produção.

O Capítulo 8 apresenta o problema combinado de designação de trabalhadores e de

escalonamento de tarefas num flow shop com um exemplo didático. Também define

matematicamente o problema de designação de trabalhadores heterogêneos e de

escalonamento de tarefas num flow shop (ou heterogeneous workforce assignment and
flow shop scheduling problem, Het-FSSP) e o problema de designação de trabalhadores

heterogêneos e de escalonamento de tarefas num job shop (ou heterogeneous workforce
assignment and job shop scheduling problem, Het-JSSP), discute a complexidade destes

problemas e introduz novas instâncias para eles.

No Capítulo 9 propomos uma heurística scatter search com path relinking para

resolver o Het-FSSP, descrevemos os componentes do método proposto, e estudamos

a efetividade dele, concluindo que é possível produzir soluções que compensam as

diferentes capacidades e deficiências dos trabalhadores com pequenas perdas nos

objetivos da produção. Além do mais, a designação de trabalhadores heterogêneos

pode ser integrada em outros problemas de escalonamento, como fizemos no

Capítulo 10 onde propomos uma busca local multi-start para resolver o Het-JSSP com

resultados similares.

O Capítulo 11 descreve brevemente uma pesquisa relacionada na inclusão de

um ou dois trabalhadores heterogêneos num flow shop que foi executada por um

estudante de mestrado do nosso grupo de pesquisa, Germano Carniel. Embora as

principais contribuições sejam do Germano, este capítulo é incluído na tese por

completude.

A seguir estudamos as diferenças práticas entre o FSSP permutacional e

não-permutacional, com o objetivo de minimizar a soma total dos tempos de conclusão

das tarefas (ou total completion time) no Capítulo 5, e com o objetivo de minimizar

o tempo de conclusão da última tarefa (ou makespan) no Capítulo 6. Para isso, nos

dois capítulos estudamos o grau de esforço necessário para encontrar escalonamentos

não-permutacionais de boa qualidade com as heurísticas propostas, comparamos

os requerimentos de armazenamento intermediário (ou buffers) dos escalonamentos

permutacionais e não-permutacionais obtidos e avaliamos a quantidade de reordena-

mento de tarefas nos escalonamentos não-permutacionais obtidos.

189

No Capítulo 7 propomos uma representação permutacional para escalonamentos

não-permutacionais, um método acelerado para calcular o makespan que resulta

da inserção de uma tarefa numa heurística construtiva para escalonamentos

não-permutacionais, e duas buscas locais para escalonamentos não-permutacionais.

As heurísticas propostas são embutidas em algoritmos iterated greedy para avaliar a

efetividade deles em encontrar escalonamentos não-permutacionais de boa qualidade.

Finalmente, o Capítulo 12 apresenta as conclusões desta pesquisa, e possíveis rotas

para pesquisa no futuro. A duas principais conclusões desta tese são apresentadas a

seguir.

Primeiro, a integração do problema de designação de trabalhadores heterogêneos

nos problemas de escalonamento de tarefas é possível e vantajosa. O Het-FSSP

e o Het-JSSP podem ser resolvidos satisfatoriamente pelos métodos propostos, e

as soluções produzidas compensam as deficiências e as diferentes capacidades dos

trabalhadores, com poucas ou sem perdas na produtividade.

Segundo, a consideração de escalonamentos não-permutacionais para resolver

o FSSP com os métodos propostos é possível, usando o mesmo tempo que

métodos do estado da arte usam para resolver o FSSP permutacional, e produzindo

escalonamentos não-permutacionais com melhor qualidade do que escalonamentos

permutacionais e não-permutacionais produzidos por métodos do estado da arte.

	I Introduction
	Introduction
	Motivation
	Considering non-permutation schedules in flow shops
	Considering disabilities as workforce heterogeneity in scheduling

	Research objective and contribution
	Objective of this research
	Contribution of this research
	Contribution to the literature

	Scope of the thesis
	Overview of the thesis

	Theoretical concepts related to flow shop scheduling
	Shop Scheduling Characterization and Classification
	Machine Environment (field)
	Job Characteristics (field)
	Optimality criterion (field)

	Formulations for the Main Shop Scheduling Problems
	The Flow Shop Scheduling Problem
	The Job Shop Scheduling Problem
	The Open Shop Scheduling Problem

	Other Theoretical Concepts
	Semi-active, active and non-delay schedules
	A simple 33 job shop example
	Disjunctive graph representation
	Makespan, critical paths and blocks of operations

	Data structures for representing schedules
	Binary representation
	Permutation representation with m-partitions
	Permutation representation with m-repetitions
	Operation permutation representation

	Multi-objective optimization
	Concluding remarks

	Literature review
	The permutation flow shop scheduling problem
	The constructive heuristic NEH for the PFSSP with makespan criterion
	The constructive heuristics FRB for the PFSSP with makespan criterion
	Metaheuristics applied to the PFSSP with makespan criterion
	Constructive heuristics for PFSSP with total completion time criterion
	Metaheuristics applied to the PFSSP with total completion time criterion
	Metaheuristics applied to the bi-objective PFSSP with makespan and total completion time criteria

	The non-permutation flow shop scheduling problem
	The job shop scheduling problem
	The neighbourhood of Nowicki & Smutnicki for the JSSP

	Benchmarks from the literature
	Heterogeneous workforce in the literature
	Concluding remarks

	II Heuristics for the non-permutation flow shop scheduling problem with makespan and total completion time criteria
	The permutation and non-permutation flow shops
	Non-permutation insertion with anticipation or delay
	Concluding remarks

	Iterated local search heuristics for minimizing the total completion time in permutation and non@let@token --permutation flow shops
	An iterated local search for the permutation FSSP
	Perturbation scheme for permutation schedules
	Local search scheme for permutation schedules
	Acceptance criterion
	Complete iterated local search for the permutation FSSP

	An iterated greedy algorithm for the non-permutation FSSP
	Perturbation scheme for non-permutation schedules
	Complete iterated greedy algorithm for the non-permutation FSSP

	Evaluation of schedules
	Computational Experiments
	Experimental methodology
	Calibration of parameters
	Quality of permutation schedules
	Quality of non-permutation schedules
	Job reordering and buffer sizes

	Concluding remarks

	A first approach to minimize the makespan in the non-permutation flow shop scheduling problem
	Heuristics for the non-permutation FSSP
	A constructive heuristic for the non-permutation FSSP
	Inserting jobs efficiently into non-permutation schedules
	A local search heuristic for the non-permutation FSSP
	An iterated greedy algorithm for the non-permutation FSSP

	Computational Results
	Test instances and experimental methodology
	Parameter setting
	Experiment 1: Effectiveness of the constructive heuristic
	Experiment 2: Effectiveness of the iterated greedy algorithm
	Experiment 3: Comparison to permutation schedules
	Amount of job reordering and buffer sizes

	Concluding remarks

	Novel permutation representation and heuristics for the non-permutation flow shop scheduling problem with makespan criterion
	A new permutation representation for non@let@token --permutation schedules using pseudo-jobs
	Fast heuristics for the non@let@token --permutation FSSP
	A constructive heuristic for the non@let@token --permutation FSSP with time complexity O(n2m)
	An insertion local search for the non@let@token --permutation FSSP with time complexity O(n2m) per neighbourhood
	A best-improvement reduced-neighbourhood non@let@token --permutation (BRN) local search for the FSSP

	An iterated greedy algorithm for the non@let@token --permutation FSSP
	Computational Results
	Experimental methodology
	Calibration of the constructive heuristic NEHBR
	Comparison of the constructive heuristic NEHBR with other NEH variations
	Comparison of the constructive heuristic NEHBR with the heuristics FRB
	Comparison of local search heuristics within the iterated greedy algorithms
	Comparison of constructive heuristics as seeds of the iterated greedy algorithms
	Performance of the iterated greedy algorithms
	State-of-the-art methods for the permutation and non@let@token --permutation FSSP
	Comparison of the methods for the permutation FSSP
	Comparison of the methods for the non@let@token --permutation FSSP
	Comparison of the methods for the permutation and non@let@token --permutation FSSP

	Concluding remarks

	III Heuristics for the heterogeneous workforce assignment and flow shop scheduling problem
	Shop scheduling with a heterogeneous workforce
	An example of a FSSP with heterogeneous workers
	Mathematical formulations
	A mathematical formulation of the Het-FSSP
	A mathematical formulation of the Het-JSSP

	Size of the search space
	New instances
	Concluding remarks

	A scatter search with path relinking for the Het-FSSP
	Scatter search and path relinking
	A scatter search with path relinking for the Het-FSSP
	Solution representation
	Diversification generation method
	Improvement method
	Reference set update method
	Subset selection and solution combination with path relinking

	Computational Experiments
	Experimental methodology
	Numerical results

	Concluding remarks

	A multi-start local search for the Het-JSSP
	A multi-start local search for the Het-JSSP
	Construction heuristic
	Local search heuristic

	Computational Experiments
	Experimental methodology
	Numerical results

	Concluding remarks

	Related research: Including workers with disabilities in flow shops
	Inserting a single worker with disabilities into a flow shop
	Inserting two workers into a hybrid flow shop
	A pooled iterated local search for the PFSISP
	Solving the two-machine subproblem
	Results and remarks

	IV Concluding remarks and future research
	Concluding remarks and future research
	APPENDIX A Heurísticas para escalonamento em Flow Shops: Considerando escalonamentos não-permutacionais e trabalhadores heterogêneos

