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Chaos and relaxation to equilibrium in systems with long-range interactions
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In the thermodynamic limit, systems with long-range interactions do not relax to equilibrium, but become
trapped in nonequilibrium stationary states. For a finite number of particles a nonequilibrium state has a finite
lifetime, so that eventually a system will relax to thermodynamic equilibrium. The time that a system remains
trapped in a quasistationary state (QSS) scales with the number of particles as Nδ , with δ > 0, and diverges in
the thermodynamic limit. In this paper we will explore the role of chaotic dynamics on the time that a system
remains trapped in a QSS. We discover that chaos, measured by the Lyapunov exponents, favors faster relaxation
to equilibrium. Surprisingly, weak chaos favors faster relaxation than strong chaos.
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I. INTRODUCTION

Systems in which particles interact through long-range
(LR) forces remain an outstanding challenge to statistical
physics. Such systems are characterized by an interparticle
potential that decays with distance as 1/rα , where α < d and
d is the dimensionality of the embedding space [1–3]. Into
this category fall galaxies and globular clusters [4,5], two-
dimensional fluid models [6], confined plasmas [7], quantum
spin models [8], dipolar systems [9], cold atoms models
[10], and colloidal particles at interfaces [11]. LR interacting
systems are found to have a complex relaxation process, with
distinct time scales. Unlike systems in which particles interact
by short-range potentials, in the thermodynamic limit LR
systems do not relax to equilibrium but become trapped in
out-of-equilibrium quasistationary states (QSS), the lifetime
of which diverges with the number of particles. Once a system
is trapped in a QSS, two outcomes are possible: if the system
has a finite number of particles N , residual correlations will
eventually drive it to thermodynamic equilibrium (if such
equilibrium exists, which is not the case for 3D gravitational
systems) after a time t×, which scales with N as t× ∼ Nδ ,
where δ is a system-specific exponent [12–14]. On the other
hand, in the thermodynamic limit, N → ∞, the system will
remain trapped in a stationary state forever. In this collisionless
limit, the relaxation to stationarity is a result of Landau
damping [15–18], which transfers the energy of collective
oscillations to the individual particles. Once the oscillations
of the mean-field potential die out, the particles will move
in a static mean-field potential. If a system has sufficient
symmetry, the motion of particles in a static potential will
be integrable, and the ergodicity will be irrevocably broken.
This is often the case for gravitational systems whose initial
particle distribution has a spherical symmetry and satisfies the
generalized virial condition. On the other hand, if the initial
distribution is spherically symmetric, but far from virial, strong
density oscillations during the process of violent relaxation can
lead to symmetry breaking [19–21]. This means that even if
the initial distribution is spherically symmetric, the particle
distribution and the static mean-field potential of the QSS will
lack this symmetry. In general, equations of motion of a particle
in a nonspherically symmetric potential are nonintegrable and
chaotic orbits may be present. A natural question that arises
is: will presence of chaos diminish the lifetime of a QSS,
i.e., speed up the relaxation to thermodynamic equilibrium

of a gravitational system [22]? That is, will a gravitational
system in which spherical symmetry is spontaneously broken
relax to thermodynamic equilibrium faster than a system in
which this symmetry remains preserved, as suggested by
Refs. [23] and [24]? Unfortunately, slow dynamics makes
it very difficult to address this question in the context of
self-gravitating systems. We are, therefore, forced to study
simpler models that exhibit the same phenomenology as self-
gravitating systems. However, even for simplified models it is
very difficult to arrive at any analytical results. One possibility
is to explore the Lenard-Balescu equation from plasma physics
[25]. However, in order to be minimally tractable, this equation
requires integrable one-particle dynamics [26], ruling out the
possibility of studying the effects of chaos due to broken
symmetry. In this paper we will, therefore, rely on molecular
dynamics simulations to explore the effect of chaos on
collisional relaxation of QSS to thermodynamic equilibrium.

II. HAMILTONIAN MEAN-FIELD MODEL

A paradigmatic model of a system with LR interactions is
the Hamiltonian mean-field (HMF) model of particles moving
on a circle. The Hamiltonian for this system is

H =
N∑

i=1

p2
i

2
+ 1

2N

N∑
i,j=1

[1 − cos(θi − θj )], (1)

where pi and θi are the conjugate momenta and positions.
If the initial particle distribution is symmetric, i.e., for each
particle exists a particle in a symmetric position in phase
space, the order parameter of the system—the magnetization
per particle M—has only one nonzero vector component and
can be written as

M = 〈cos θ〉, (2)

where the brackets denote average over the particle
distribution. The average energy per particle, ε = H/N , can
then be expressed as

ε = 〈p2〉
2

+ 1 − M(t)2

2
, (3)

and the one-particle energy, ui = u(θi,pi), as

ui = p2
i

2
+ 1 − M(t) cos(θi), (4)
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corresponding to the energy of a single simple pendulum
in a time-dependent potential. Introduced by Konishi and
Kaneko as a symplectic map [27], modified to a continuous
time system by Inagaki and Konishi [28], and, subsequently,
presented by Antoni and Ruffo as a dynamical mean-field
version of the XY spin model [29], the HMF model has been
extensively studied in the literature. Depending on the overall
energy of the system, the HMF has two phases: a high-energy
paramagnetic (uniform) phase and a low-energy ferromagnetic
(clustered) phase. The HMF model exhibits properties such
as long-lived QSS, out-of-equilibrium phase transitions, and
slow relaxation to thermodynamic equilibrium [1,2]. Like
other LR interacting systems, the HMF model first reaches
an out-of-equilibrium, nonmixed [30], QSS through a process
of violent relaxation stabilized by Landau damping [31,32]. In
the thermodynamic limit, N → ∞, and in the ferromagnetic
(clustered) phase, after the initial mean-field oscillations die
out, the dynamics of spins (particles) becomes equivalent
to noninteracting pendulums and chaos is absent. Integrable
dynamics in the QSS prevents us from using this model to
explore the role of chaos in relaxation to equilibrium. To
address this question we, therefore, introduce a new model—
the HMF-ladder—composed of two coupled HMFs interacting
through a short-range sinusoidal potential. Since this model
has two degrees of freedom, we expect that the spin dynamics
of its QSS will be nonintegrable, allowing us to explore the
role of chaos in relaxation to thermodynamic equilibrium.

III. HMF-LADDER MODEL

The dynamics of the conjugate momenta pi = {pθi
,pφi

} and
positions qi = {θi,φi} of the HMF-ladder model is governed
by the Hamiltonian

H = Hθ + Hφ + ε

N∑
i=1

cos (θi − φi), (5)

where

Hθ =
N∑

i=1

p2
θi

2
+ N

2

(
1 − M2

θ

)
, (6)

Hφ =
N∑

i=1

p2
φi

2
+ N

2

(
1 − M2

φ

)
, (7)

and

Mα = 〈cos α〉, α = {θ,φ}. (8)

The terms given by Eqs. (6) and (7) correspond to the usual
HMF model, Eq. (1). The mean energy per “particles,” E , is
given by

E = εθ + εφ + ε〈cos(θ − φ)〉, (9)

where

εα =
〈
p2

α

〉
2

+ 1 − M2
α

2
, α = {θ,φ}. (10)

Unlike a simple HMF model in which particles have only
one degree of freedom θi , positions of the “particles” of the
HMF-ladder are described by a 2D vector qi = {θi, φi}. The
dynamics of the HMF-ladder in general, therefore, will not be

integrable even in a stationary state. The Hamilton equations
of motion of the HMF-ladder are

θ̈i = −Mθ sin(θi) + ε sin(θi − φi), (11a)

φ̈i = −Mφ sin(φi) − ε sin(θi − φi), (11b)

where Mθ and Mφ are given by Eq. (8) where time is measured
in units of τD = 1. In this case, the one-particle energy,
Ui = Ui(θi,φi,pθi

,pφi
), can be written as

Ui = p2
θi

2
+ p2

φi

2
− Mθ (t) cos(θi)

−Mφ(t) cos(φi) + ε cos(θi − φi) + 2, (12)

corresponding to the energy of two coupled pendulums in a
time-dependent potential.

IV. GENERALIZED VIRIAL CONDITION

In general, the dynamics of the HMF-ladder prior to its
relaxation to QSS is very complicated, driven by various
resonances arising from the particle-wave interactions. This
makes the study of arbitrary initial conditions very difficult.
There is, however, a class of initial conditions—called virial
initial conditions [2]—for which the relaxation to QSS is
adiabatic. Such initial distributions are particularly useful for
exploring the relaxation to equilibrium, since in these cases
the initial and QSS magnetizations will remain approximately
the same. In this paper we will, therefore, explore the role of
chaotic dynamics on the relaxation of virial initial conditions
to thermodynamic equilibrium.

The virial theorem requires that in a stationary state

〈p2〉 = −
∫

dq dpf (q,p)

[
− ∂V (q)

∂q
· q

]
, (13)

where V (q) is the mean-field potential [2]. We expect that if
the initial distribution satisfies the generalized virial condition
(GVC), the macroscopic oscillations of magnetizations will be
suppressed. Note that the fact that the distribution satisfies the
generalized virial condition does not mean that it is already
stationary. To be stationary it must be a time-independent
solution of the collisionless Boltzmann (Vlasov) equation.
Nevertheless, if the initial distribution satisfies the GVC,
relaxation to QSS should be gentler, and strong oscillations of
magnetizations should be suppressed. Furthermore, we expect
that for such distributions the initial and final magnetizations
will be almost the same.

The virial theorem for the HMF-ladder model is given by
Eq. (13) with ∂V (θ,φ)/∂θ = −θ̈ , ∂V (θ,φ)/∂φ = −φ̈, and
〈p2〉 = 〈p2

θ 〉 + 〈p2
φ〉. That is,

〈
p2

θ

〉 + 〈
p2

φ

〉 = −
∫

dθ dφ dpθ dpφ

× (θ θ̈ + φφ̈)f (θ,φ,pθ ,pφ), (14)

with θ̈ and φ̈ given by Eqs. (11). For weak coupling ε �
|Mθ,φ|, we use an ansatz that the virial theorem can be applied
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independently to θ and φ subsystems, so that

〈
p2

θ

〉 =
∫

dθ dφ dpθ dpφ[Mθθ sin θ

− εθ sin(θ − φ)]f (θ,φ,pθ ,pφ), (15)

〈
p2

φ

〉 =
∫

dθ dφ dpφ dpθ [Mφφ sin φ

+ εφ sin(θ − φ)]f (θ,φ,pθ ,pφ). (16)

Since the coupling ε is antiferromagnetic, the QSS magneti-
zations should obey Mθ = −Mφ . We, therefore, consider an
initial distribution f0(θ,φ,pθ ,pφ) composed of two antisym-
metric water bags, that is,

f0(θ,φ,pθ ,pφ) = f θ
0 (θ,pθ )f φ

0 (φ,pφ), (17)

with

f θ
0 (θ,pθ ) = ηθ�(θm − |θ |)�(pm − |pθ |), (18a)

f
φ

0 (φ,pφ) = ηφ�(φm − |φ − π |)�(pm − |pφ|). (18b)

The water-bag distributions in θ and φ are identical in momen-
tum and have the same kinetic energy. Normalization requires
that ηθ = 1/4θmpm and ηφ = 1/4φmpm. The distributions are
antisymmetric: f

φ

0 is centered around π , while f θ
0 is centered

on zero, with θm = φm so Mθ = −Mφ . If the GVC is satisfied,
the QSS magnetizations Mθ and Mφ should remain close to
their initial values,

Mθ = sin θm

θm

, (19a)

Mφ = − sin φm

φm

. (19b)

Carrying out the integration in Eqs. (15) and (16) using the
WB distribution Eqs. (18), we find

〈
p2

θ

〉 = M2
θ − Mθ cos(θm) + εMφ cos(θm) − εMφMθ, (20a)〈

p2
φ

〉 = M2
φ + Mφ cos(φm) − εMθ cos(φm) − εMφMθ, (20b)

where we have used Eqs. (19).
The QSS magnetizations of systems whose initial distribu-

tions satisfy the GVC should be approximately the same as
their initial values. We also suppose that, for a weak coupling
ε � |Mθ,φ|, the subsystems should remain roughly indepen-
dent. Thus, we may approximate ε〈cos(θ − φ)〉 ≈ εMθMφ

(its initial value). Under these constraints, by conservation
of energy 〈p2〉 = 〈p2

θ 〉 + 〈p2
φ〉 should also be preserved, and

〈p2
θ 〉 = 〈p2

φ〉 from symmetry. Therefore, we may use Eq. (9)
to write

〈
p2

θ,φ

〉 = E − 1 + M2
θ + M2

φ

2
− εMθMφ. (21)

Inserting the last expression in Eq. (20), and using Mφ = −Mθ ,
φm = θm, we obtain the GVC for the HMF-ladder, which can
be written in terms of θ ,

E − 1 + Mθ cos θm(1 + ε) = 0, (22)

or of φ,

E − 1 − Mφ cos φm(1 + ε) = 0. (23)

Both expressions are equivalent. Equations (22) and (23)
can also be written in terms of each subsystem’s mean
“energy” (without the interaction term) εθ or εφ , given by
Eq. (10). For the GVC described above, the two should be
approximately equal, so we may define ε = εθ = εφ . Then,
E = 2ε + εMθMφ = 2ε − εM2

α , α = {θ,φ}, and the GVC
reduces to

2ε − εM2
θ − 1 + Mθ cos θm(1 + ε) = 0, (24a)

2ε − εM2
φ − 1 − Mφ cos φm(1 + ε) = 0. (24b)

For ε = 0, Eqs. (24) are the same as the GVC found for the
HMF model [33,34].

In Fig. 1 we show the evolution of magnetizations for two
initial WB distributions, calculated using molecular dynamics
simulations, one of which satisfies GVC and the other one does
not. As expected the oscillations of magnetization of a system
that does not satisfy GVC are much more violent and the
final QSS magnetization differs significantly from the initial
value. On the other hand, for the WB distribution that satisfies
GVC, the initial and final magnetizations are approximately
the same.

 0.2

 0.4

 0.6

 0.8

Mθ

 0.2

 0.4

 0.6

 0.8

0 50 100 150

Mθ

t /τD

FIG. 1. Results of molecular dynamics simulations showing the
short-time oscillations of the magnetization Mθ for two initial WB
distributions. The top curve (solid line) is for the distribution that
does not satisfy the GVC. The bottom curve (solid line) is for the
initial distribution that satisfies the GVC. The horizontal dashed lines
show the value of the initial magnetization for each case. Notice
that for the distribution that satisfies the GVC, strong oscillations are
suppressed and the final magnetization is close to the initial one. In
both cases, ε = 0.1 and εθ = εφ = 0.6, and the corresponding virial
magnetization is ∼0.5. Due to symmetry, we show only Mθ and not
Mφ (Mφ ≈ −Mθ ).
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V. PARTICLE DYNAMICS

To explore the particle dynamics in a QSS we will consider
Poincaré sections of test particles moving in a fixed mean-field
potential determined by the generalized magnetizations. We
are interested to study how the chaotic dynamics influences
the relaxation of a QSS to thermodynamic equilibrium.

Lyapunov exponents

The central property of chaos is sensitivity to initial
conditions (SIC). For a dynamical system, SIC implies that
all “nearby” initial conditions result in orbits that separate
exponentially fast from the original orbit. Suppose a one-
dimensional dynamical system whose equation of motion is

ẋ = F (x). (25)

Consider a given orbit, labeled a, and a second, nearby orbit,
labeled b. For both orbits, we can write

ẋa(t) = F (xa),
(26)

ẋb(t) = F (xb).

The distance between these orbits as a function of time is
d(t) = xa(t) − xb(t), which follows the time evolution

ḋ(t) = ẋa(t) − ẋb(t) = F (xa) − F (xb). (27)

Since the second orbit begins very close to the first, we can
expand F (xb) about the nearby position xa , keeping only the
first order term:

F (xb) ≈ F (xa) + ∂F
∂x

∣∣∣∣
xa

(xb − xa), (28)

= F (xa) − ∂F

∂x

∣∣∣∣
xa

d(t). (29)

Therefore, we can write Eq. (27) as

ḋ(t) = ∂F

∂x

∣∣∣∣
xa

d(t). (30)

The largest Lyapunov exponent (LLE) λ1 is a measure of this
rate of separation: λ1 = limt→∞ 1

t
ln d(t)

d0
, where d0 = d(0) is

the initial separation. If λ1 > 0, the two nearby orbits will
separate rapidly, and we have SIC and chaos [35,36]. Compu-
tationally, we cannot wait an infinitely long integration time,
so we calculate an instantaneous Lyapunov exponent (LE) and
wait long enough for this exponent to settle approximately to
its asymptotic value. A strictly positive maximum Lyapunov
exponent is synonymous to exponential instability [37]. A
simple method of calculating the λ1 based on its instantaneous
value are provided by Benettin et al. [38]. In the case of
the HMF-ladder, there are 4N Lyapunov exponents. But, for
Hamiltonian flows, the Lyapunov exponent distribution (LED)
has a symmetry λi = −λ4N−i+1 and, since phase-space volume
must be preserved,

∑4N
i=1 λi = 0. In addition in a QSS we have

a conservation of particle energy, which, by symmetry, gives
two zeros to the LED for each particle. Therefore, it is sufficient
to calculate only the N largest LE, since the other exponents
will be either zero or negative.

 0.1

 0.2

 0.3

 0.4

 0.5

 0  100  200  300  400  500

λ1

t /τD

N=10000
N=20000
N=40000
N=80000

FIG. 2. (Color online) Evolution of the largest Lyapunov expo-
nent (LLE), λ1, to its stationary value, for the HMF model. The
convergence to the same value, λ1 	 0.45 τ−1

D , was found for different
numbers of particles. This result is in agreement with the previous
studies where the same behavior was observed and attributed to the
instability of particles near a separatrix [40].

VI. NUMERICAL RESULTS

We have integrated the equations of motion using the
fourth-order symplectic Position-Extended-Forest-Ruth-Like
(PEFRL) algorithm [39] with a time step dt = 0.1 [38].

A. Molecular dynamics simulation

For molecular dynamics (MD) simulations of the
HMF-ladder, we adopted the antisymmetric WB distribution,
Eq. (18), with energy εθ = εφ = 0.6 that satisfies the GVC,
Eq. (24). In Fig. 2 we first show the convergence of the LLE
for the usual HMF model with the number of particles N ,
ranging from N = 105 to 8 × 105. We see that the final value
is approximately the same for all N , λ1 	 0.45 τ−1

D . This is a
surprising result, since we expect that the particle dynamics
of HMF in a QSS should be completely integrable, with LLE
equal to zero. To understand better the positive value of the
LLE of the HMF, we have performed a test particle dynamics
simulation in which each particle moves in a fixed, time
independent, mean-field potential determined by the initial
particle distribution. We then calculated the LLE of each test
particle. As expected, for all the particles, the LLE is zero,
except for the particle near the separatrix, for which λ1 	
0.28 τ−1

D . This result suggests that the nonvanishing LLE value
found for the HMF model may be due to unstable behavior of
particles near the separatrix, as was also suggested in Ref. [40].
Therefore, the LLE does not provide us with an accurate
measure of the degree of chaos present in a many-body
system, since its value is dominated by one unstable particle
near a separatrix. Unfortunately, it is practically impossible
to calculate the exact LED for N = 105 particles. We expect,
however, that for initial conditions that satisfy GVC this
spectrum should be similar to the spectrum of noninteracting
test-particles moving in a fixed mean-field potential. The LED
of test particles can be easily obtained by simply calculating
the LLE of each test-particle of the initial distribution.

B. Test particle model simulation

To calculate the LED, we numerically integrated Eqs. (11)
for the initial particle distribution of WB form satisfying
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FIG. 3. (Color online) Lyapunov exponent distribution (top) and Poincaré sections (bottom) of the test-particle model for ε = 0.0 (left
column), ε = 0.5 (middle column), and ε = 1.0 (right column). The Poincaré sections corresponding to ε = 0.0, ε = 0.5, and ε = 1.0 are of
50 test particles with energy 2.5, 2.8, and 3.2, respectively, taken when pφ = 0. We see a correlation between Poincaré sections with nonchaotic
regular orbits and LED dominated by low exponents.

the GVC. The test-particles move in a time-independent
mean-field potential determined by the initial magnetizations,
Mθ and Mφ . The largest LE for each particle was obtained
using the method proposed by Benettin et al. In the upper
row of Fig. 3, we present a histogram of the LED obtained
using test particle dynamics with N = 105 and different values
of the coupling parameter ε. In the lower row, we show the
characteristic Poincaré sections for the most chaotic particles
near the separatrix. We see that there is a strong correlation
between the LED and the Poincaré plots.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  0.1  0.2  0.3  0.4  0.5  0.6

∋

<λ>

FIG. 4. Average value of the LED, 〈λ〉, vs. the coupling parameter
ε. As expected, stronger coupling is related with presence of more
chaos in the test-particle dynamics.

In Fig. 4 we plot the average value of the LED, as a function
of the coupling parameter ε. For larger values of ε, we see that
the orbits become more chaotic.

C. Relaxation exponent

To explore the relaxation to equilibrium, we study the
characteristic time scale on which a system evolves from
a QSS to thermodynamic equilibrium in MD simulations.
As discussed previously, the crossover time scales with the
number of particles as t× ∼ Nδ . We expect that the value

1.4

1.5

1.6

1.7

1.8

1.9

2.0

2.1

10-3 10-2 10-1 100 101 102 103

κ

t / 104τD

N=10000
N=20000
N=40000
N=80000

10-3 10-2 10-1 100 101 102 103

t / N1.00τD

N=10000
N=20000
N=40000
N=80000

FIG. 5. (Color online) Evolution of the kurtosis for the HMF
model (ε = 0.0) with different numbers of particles, with time
rescaled by 104τD (left) and Nδ (right), δ = 1.0. The initial particle
distribution satisfied the GVC, with magnetization M0 = 0.431 852
and mean energy εθ = εφ = 0.6. The collapse suggests δ equal to 1.0,
as predicted by the kinetic equation analysis developed in Ref. [41]
for the HMF model.
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FIG. 6. (Color online) Evolution of the kurtosis for the HMF-
ladder model with different numbers of particles, with time rescaled
by 104τD (left) and Nδ (right), δ = 0.75. The initial condition satisfied
the GVC, with magnetization M0 = 0.440 772, subsystem energy
εθ = εφ = 0.6, and a coupling of ε = 0.01.

of the exponent δ should be correlated with the degree of
chaos present in the HMF-ladder. To calculate δ, we monitor
the crossover from a QSS to thermodynamic equilibrium by
measuring the momentum kurtosis given by

κ = 〈p4〉
〈p2〉2

. (31)

For the HMF-ladder in thermodynamic equilibrium, kurtosis
has a universal value of two. In Figs. 5 and 6, we show the
temporal evolution of kurtosis for N = 103, 2 × 103, 4 × 103,
and 8 × 103 particles. When the time is scaled with t× all
the curves for different N and the same value of ε collapse onto
one curve. The exponent δ is obtained by requiring the best pos-
sible data collapse; see Figs. 5 and 6. In Fig. 7 we plot the value
of δ as a function of the average Lyapunov exponent. We see
that the exponent δ is not a monotonic function of the amount
of chaos present in a system. This is contrary to our naive
expectation that the rate of relaxation to equilibrium should be
proportional to the amount of chaos present in a QSS.

VII. CONCLUSIONS

We have explored the role of chaotic dynamics on the time
that a system with long-range interactions remains trapped
in a QSS before relaxing to thermodynamic equilibrium. The
motivation for the study is provided by self-gravitating sys-
tems, which during the process of violent relaxation can suffer
spontaneous symmetry breaking. When such systems relax

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1.05

 1.1

 0  0.01  0.02  0.03  0.04

δ

<λ>

FIG. 7. Exponent δ (from the relaxation time τ× ∼ Nδ) vs.
average value of the LED, 〈λ〉. Each pair (δ,〈λ〉) corresponds to a
different value of the coupling parameter ε (see Fig. 4). We see that
weak chaos favors relaxation to equilibrium more than strong chaos.
Error bars restrict the range of reasonable data collapse.

to QSS, the resulting mean-field potential will lack spherical
symmetry and the particle dynamics will be nonintegrable. The
question that we wanted to address in this paper is if presence
of chaotic dynamics in a nonequilibrium QSS speeds up the
collisional relaxation to thermodynamic equilibrium. Unfortu-
nately, a very slow dynamics of self-gravitating systems makes
it very difficult to explore this issue. To overcome this difficulty
we introduced a HMF-ladder model, which has a much simpler
QSS than a self-gravitating system, characterized only by two
magnetizations, Mθ and Mφ . With the help of this model, we
have discovered that a small degree of chaos, measured by the
average of LED, favors relaxation of QSS to thermodynamic
equilibrium. Surprisingly, a large amount of chaos is not as
efficient at driving a system to equilibrium as a small amount
of chaos. Clearly chaotic dynamics of noninteracting particles
cannot by itself be responsible for the relaxation to equilibrium.
Nevertheless, our results suggest that there is an optimum
amount of chaos that helps the residual two-body correlations
drive the system toward equilibrium. At the moment we do not
have any explanation for this curious behavior.
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