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Abstract
In the multidisciplinary field of Network Science, optimization of procedures for efficiently

breaking complex networks is attracting much attention from a practical point of view. In this

contribution, we present a module-based method to efficiently fragment complex networks.

The procedure firstly identifies topological communities through which the network can be

represented using a well established heuristic algorithm of community finding. Then only

the nodes that participate of inter-community links are removed in descending order of their

betweenness centrality. We illustrate the method by applying it to a variety of examples in

the social, infrastructure, and biological fields. It is shown that the module-based approach

always outperforms targeted attacks to vertices based on node degree or betweenness

centrality rankings, with gains in efficiency strongly related to the modularity of the network.

Remarkably, in the US power grid case, by deleting 3% of the nodes, the proposed method

breaks the original network in fragments which are twenty times smaller in size than the

fragments left by betweenness-based attack.

Introduction
Network theory and its applications pervade many scientific fields, like physics, sociology,
engineering, epidemiology, biology, and many others. In this context, three important concepts
have received much attention recently: interdependent graphs [1, 2], communities (or mod-
ules) [3–8], and robustness of networks facing targeted attacks [9–12]. In the present work we
address and bring together these last two concepts.

The resilience of networks against failures or targeted attacks to its components and the sub-
sequent impact of these attacks on the performance of the system have become important prac-
tical issues in the last years [13–18]. The robustness of a network is generally associated to the
structural functionality of the system, so it is directly related to the fraction of vertices or edges
that should be removed in order to stop the network from functioning as a whole—for exam-
ple when information cannot propagate over the entire network. For instance, the failure of
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Internet routers [19, 20], the vaccination of individuals to prevent the spread of a disease [21,
22], and the fight against organized crime and terrorist groups [23, 24] can all be described by
procedures in which a certain number of vertices in the network is removed. In terms of the
attacking procedure, the challenge is to find a list of vertices or edges whose removal would
cause high damage to the network. On the other hand, if the aim is to protect a network from
attacks, knowing such a list would help to devise an efficient strategy of defense. Hence, the
question we want to address in this contribution is: How to cause the same damage as the one
resulting of a traditional centrality-based attack on a given network, but removing a smaller
amount of nodes or edges?

Pursuing this idea, several centrality indexes have been proposed aimed to measure the
structural importance of nodes and edges [25, 26]. For instance, the concept of bridging nodes
in the topology of complex networks has been brought to discussion recently [27]. Hwang et al.
[28] define a bridging centrality in order to characterize the location of central nodes among
vertices with high degree. The method succeeds in identifying functional modules but does not
show significantly better results than betweenness-based attacks when it comes to atomize
complex networks. Marcus and Hilgetag [29] speculated that connections between clusters
might be generally important for predicting vulnerability and that their position can be identi-
fied using the edge frequency measure (i.e. betweenness centrality). Later, Bu et al. [30] have
studied how the removal of bridging edges affects the epidemics size, but with focus on local
strategies with limited knowledge of the network topology. Broadly speaking, these last contri-
butions identify the nodes connecting distinct communities as the ones with high betweenness
centrality. Besides, those works were published before the widespread availability of topological
community detection algorithms and so the authors did not extract communities from the net-
works in the formal sense generally used today. More recently, Shai et al. [31] have studied ana-
lytically the vulnerability of modular Erdös-Rényi networks to both random failures and
targeted attacks to bridge nodes. Thus, bringing together previous ideas on attacking bridges
among communities and recent developments in community extraction algorithms from com-
plex graphs [32, 33] draws a promising pathway in shaping attack strategies. Even though
some major advances have been made in the last few years, the effects of community-based
attacks on real complex networks is still an open subject. This is precisely the topic we want to
address in this contribution.

In general, communities or modular structures are topological partitions of graphs with
dense internal connections but weakly connected among them [34]. In other words, the con-
centration of links within the modules is greater than the concentration of links connecting
them. This structural configuration allows us to identify which are the nodes and edges that
connect the modules, i.e. the bridge connections. These bridges are, then, the candidates to be
removed in order to effectively detach the communities of a network. For example, in Fig 1 we
depict one possible community structure for the Western United States power grid, illustrating
the weak connections among clusters that otherwise are densely connected internally. Fig 1A
uses nodes to represent a generator, a transformer, or a substation, while edges represent a
power supply line. Different colors are used to identify the modules in which that network can
be partitioned. In Fig 1B each module is represented by a colored node and edges are shown
whenever there is a connection between nodes in different modules (irrespective of how many
edges exists). Fig 1C shows the detailed connection between two selected communities display-
ing all the links among them.

The work is organized as follows: first we address some generalities about attacking complex
networks, next we describe our proposed method of attack; then, the results of the procedure
applied to ten real networks are reported, and after that conclusions are summarized.
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Network Attack
In general, we can fragment a network by removing either nodes or edges. Removing nodes has
an advantage over deleting edges since the removal of a vertex always results in the deletion of
all edges attached to it. However, depending on the real system studied, vertex or edge attack
may not make sense. For instance, in the case of a road network one may envisage blocking the
traffic between two cities, while removing a node would mean to erase an entire village. On the
other hand, in biological systems node deletion makes sense since individual metabolites are
susceptible to be removed. Later, we will present results regarding both approaches, but from
now on, except when explicitly denoted, we will not make such distinction.

A theoretical way of getting the ordered list of targeted nodes to be removed would be by
brute force: try all the possible lists until finding the one that reduces the network to a desired
size with the minimum number of node deletions. However, this is unfeasible because it means
checking N! possible lists, which is computational prohibited for any network with N>=12. On

the other hand, the simplest but not efficient strategy is the random selection of nodes. This
generally results in approximate linear degradation of the network, consequently the atomiza-
tion of the network is a very slow process in this case. A more efficient and doable way of
attacking a graph consists in the deletion of vertices in order of their importance in the

Fig 1. Graph representation of theWestern US power grid (A), one possible module representation (B), and the internal structure of nodes and edges inside
two selected modules, plus edges connecting nodes between the two modules (C).

doi:10.1371/journal.pone.0142824.g001
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structural functioning of the network. In this sense, traditional attacks focus on sorting nodes
in decreasing order of some centrality index—the so called Centrality-Based Attack (CBA),
which performs much better than random attacks [25–30].

Even though most attack methods focus on centrality ranking, real networks tend to group
into sparsely connected clusters. In this sense, the modularity of a partition of an unweighted
network can be defined as the density of links inside communities as compared to links
between communities [5], as follows:

Q ¼ 1

2m

X
i;j

Aij �
kikj
2m

� �
dðci; cjÞ ð1Þ

where Aij is the adjacency matrix (taking the value 1 when there is a link between nodes i and j,
0 otherwise), ki is the vertex degree of node i and ci represents the community to which this
node belongs. The δ-function δ(u, v) is 1 if u = v, 0 otherwise andm is the total number of
edges. Thus Q is a scalar value between -1 and 1 that measures the modularity degree of a net-
work. In other words it gives the actual fraction of the edges inside a community above the
expected value of them. The behavior of Q is illustrated by S1 Fig which shows the high correla-
tion between the modularity and the fraction of intercommunity edges. In this sense, the
removal of few bridging structures in highly modular networks should be able to detach large
chunks of densely connected nodes, leading to “fast” fragmentation of complex networks as we
shall see in the next section. The term “fast” is used here to refer to a steep response of the net-
work to the removal of nodes, i.e. when a small fraction of nodes is removed, a large fraction of
the network is disconnected.

Module-based attack
The structural importance of a node depends both on local and non-local measures. Hence, in
the scope of the method proposed in this paper, centrality and community detection are the
topics that we address to characterize and sort nodes in order to develop the attack. As pointed
out in the works by Iyer et al. [25] and Holme et al. [35] nodes with high betweenness and high
degree are usually strongly correlated and both attacks have similar efficiency. Besides, the
mentioned work by Iyer shows that for real networks betweenness-based methods are in gen-
eral the most efficient. Thence, from now on we take the betweenness centrality attack as our
reference or null method.

Likewise, vertices connecting different communities generally have high betweenness cen-
trality since many shortest paths pass through them. On the other hand, as fewer connections
are expected among communities, the nodes that connect them are not necessarily the ones
with highest degree. Therefore, in order to detach communities in a more efficient way, we pro-
pose a Module-Based Attack (MBA) that loosely resembles the original idea of weak ties pro-
posed by Granovetter [36] for social networks and later developed in the framework of
topological communities by De Meo, Ferrara et al. [37].

The MBA procedure consists of the following steps:

1. Extract communities using a heuristic detection algorithm (see S1 Text for details).

2. Choose either to attack nodes or edges.

3. Make a list with the nodes (or edges) that participate in intercommunity connections.

4. Sort the list according to (node or edge) betweenness centrality in descending order.

5. Delete nodes (or edges) one by one, starting from the first in the list.

Fast Fragmentation of Networks Using Module-Based Attacks
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6. While focusing on node removal, once a node from a link between two communities is
deleted, its counterpart is skipped from the list (there is no need to remove it), unless it also
participates in other intercommunity connections.

7. The attack is always restricted to the largest connected component of the network. In other
words, if at some point the next node (edge) in the list does not belong to the remaining
largest connected component that node (edge) is skipped.

Notice that the list of nodes to be deleted is obtained only once, before the attacking proce-
dure begins, in what is called simultaneous attack. Sequential attacks (or cascading attacks)
[15] are in general more effective because measurements are updated after each deletion. This
means that the community detection and betweenness measurement steps have to be rerun
after each node (edge) removal. This implies a multiplication of the computation time by the
number of nodes to be deleted, making the sequential attack unpractical for large real networks.
Besides, due to the recalculation of every topological characteristic after each deletion, we
expect all methods of attack to produce more damage per step [25]. Therefore, we would expect
the differences between MBA and CBA procedures to decrease (preliminary tests made by us
in some cases support such claim). It also should be noted that simultaneous attacks exploit
structural weaknesses of networks, which is the main topic of study in this work, while sequen-
tial attacks are more related to dynamical properties of complex networks. Therefore, although
in this contribution we focus only on simultaneous attacks, the effects of MBA on sequential
attacks is an important issue that should be addressed in future works.

Results
With the aim to demonstrate the validity of the MBA method we apply it to ten real networks
with different topological structures and considering all of them as undirected graphs without
multiple edges or loops. In order to quantify the effect of the attacks on the networks [38], we
define G as an initial network of size N, and Gr as the network that results after the removal of

a fraction ρ of vertices. Then we denote by Lr the largest connected component of Gr, whose

size is indicated by NL. We define the order parameter sðrÞ ¼ NL
N
which allows us to quantify

the response of a network to an attack, measured by the relative size of the remainder network
as a function of the fraction of nodes (or edges) deleted. In this way, with some method as a
null reference, the efficiency gain is defined pointwise for each value of ρ as:

gðrÞ ¼ snullðrÞ
sðrÞ ð2Þ

This quantity increases as the attack method becomes more efficient than the reference one.
The example networks we have chosen to study are of three types: infrastructural (US power
grid, Euro road, Open flights and US airports) [39–46], biological (Yeast protein, C elegans and
H pylori) [47–49] and social (Facebook, Google+ and Twitter) [50–53]. In the Euro road net-
work, nodes represent European cities and edges represent roads. Power grid stands for the
electrical power grid of the Western States of the United States of America. An edge represents
a power supply line and a node is either a generator, a transformer, or a substation. The Yeast
Protein interaction network is the same as in [47]. In the metabolic network of the roundworm
Caenorhabditis elegans nodes are metabolites (e.g., proteins) and edges are interactions
between them. TheHelicobacter pylori is the same protein-protein interaction map as in [48].
In the Facebook user-user friendship network (NIPS) nodes represent users and edges repre-
sent friendship. Similarly, in the Google+ network, an edge means that one user has the other
user in her/his circles, while in the Twitter network an edge indicates that both users follow
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each other. The topological relevant information about the ten networks is presented in
Table 1.

From this point on, it was chosen the data corresponding to the most efficient module-
based attack over ten seeds of Infomap [32] and ten seeds of Louvain [33] community detec-
tion algorithms as detailed at S1 Text. Before presenting the results, we illustrate on the attack
procedure with a case where the MBA performance is remarkably better than previous and
well accepted attacking prescriptions. That example is the power grid of Western USA. Fig 2A
summarizes the result of our method of attack as compared to betweenness centrality attack,
degree centrality attack, and longest pathway attack [26] for the power grid system. It can also
be seen in the figure, the node and modular representations of the US power grid network (Fig
2B) and the snapshots of the network when 1%, 2%, and 3% of nodes are removed by between-
ness centrality attack and by the module-based method (Fig 2C). Noteworthy, the present
method breaks the original network of 4941 nodes in many fragments smaller than 210 nodes
(� 4% of the original size) by removing mere 142 nodes (less than 3%) identified by the proce-
dure. By comparison, in any degree or centrality-based procedure, deleting the same amount of
nodes, removes only 18% of the original network, i.e. more than 4000 nodes continue to be
connected after that. Such extreme atomization of the network is well evident in the last snap-
shot of Fig 2C. Besides, it is quite clear that the community structure of this network is far from
trivial (Fig 2B).

Fig 3 displays the results of the vertex MBA applied to the ten networks. Simulations show
that vertex MBA always outperforms the traditional betweenness attack. Initially both methods
are similar but, as bridges are deleted, whole communities start to detach from the core of the
graph, resulting in large atomization of the network and hence in an abrupt decrease of σ (mean-
ing an abrupt increase of the efficiency gain γ). Results for the same networks, but in the edge
MBA procedure, are shown in Fig 4. In this case, as we erase solely edges connecting modules,
the initial phase of the attacks is less efficient than CBA attacks for some networks. In these cases
we observe a plateau in σ before whole modules are effectively detached. After that point is
reached, σ decreases abruptly, relatively large communities are detached extremely fast, and the
whole network falls apart. In both node and edge MBA procedures, attacks stop when the list of
nodes or edges is exhausted, i.e. at the point when σ reaches the minimal ending value σe. In the

Table 1. Topological data for the ten real networks studied. size of the networks (N), number of edges (E), mean degree (hki), modularity (Q), relative size
of the largest community (Nmax

mod), fraction of edges linking distinct communities (Einter), and the overall efficiency gain of the MBAmethod (η, see Eq (3) for defi-
nition). For the four parameters related with community detection we display the values corresponding to the most efficient case among ten seeds of infomap
(I) and ten seeds of Louvain (L). These data is presented for node and edge attacks.

Node Attack Edge Attack

Network N E hki Q Nmax
mod Einter η Q Nmax

mod Einter η

Facebook 2888 2981 2.06 0.81 0.262 0.012 4.19 (L) 0.81 0.262 0.012 4.19 (L)

Twitter 23370 32831 2.81 0.82 0.018 0.169 38.44 (I) 0.83 0.018 0.168 38.30 (I)

Google Plus 23628 39194 3.32 0.69 0.070 0.279 22.80 (I) 0.69 0.070 0.279 22.80 (I)

US power grid 4941 6594 2.67 0.94 0.049 0.033 111.02 (L) 0.82 0.007 0.178 72.92 (I)

Euro roads 1174 1417 2.41 0.79 0.016 0.203 108.40 (I) 0.79 0.014 0.198 95.16 (I)

Open flights 2939 15677 10.67 0.65 0.184 0.142 8.30 (L) 0.65 0.182 0.139 8.14 (L)

US airports 1574 17215 21.87 0.35 0.296 0.363 4.16 (L) 0.34 0.267 0.341 4.10 (L)

Yeast Protein 1846 2203 2.39 0.77 0.025 0.223 36.14 (I) 0.77 0.025 0.220 35.14 (I)

H pylori 724 1403 3.88 0.54 0.124 0.364 19.59 (L) 0.49 0.047 0.485 14.35 (I)

C elegans 453 2025 8.94 0.43 0.163 0.423 12.04 (L) 0.43 0.163 0.423 12.04 (L)

doi:10.1371/journal.pone.0142824.t001

Fast Fragmentation of Networks Using Module-Based Attacks

PLOS ONE | DOI:10.1371/journal.pone.0142824 November 16, 2015 6 / 15



edge removal case se ¼ Nmax
mod , whereN

max
mod is the ratio between the largest community and net-

work sizes. On the other hand, the final or ending fraction of edges removed is ρe = Einter, where
Einter represents the ratio between the number of edges connecting modules and the total number
of edges (see Table 1). In the node removal case Nmax

mod only represent an upper limit for the ending
value of σ, because additional nodes are detached as a side effect of the procedure, breaking the
internal structure of communities—σe is in general well below that limit. Besides, in this case ρe
is far below Einter, because at each node deletion all its edges are removed.

Summarizing the point (ρe, σe) (the intersection of the blue dashed lines in Figs 3 and 4),
which depends on the particular modular structure of each network, marks where all commu-
nities are detached with no targeted node or edge left in the remaining clusters. We can safely
say that the network stops functioning as a whole at this point—for instance, information
would be stacked within the communities and these structures would not be able to communi-
cate with each other.

The results presented in Fig 3 can be summarized by means of the relation between ρ and γ
(the efficiency gain of MBA compared to CBA), as displayed in Fig 5 for all the networks. Noto-
riously, this figure shows that the efficiency is more than doubled for most networks with less
than 7% of nodes removed. The most outstanding case is the US power grid with almost 20
times of gain with approximately 3% of nodes removed. Even in the worst cases (H pylori, C
elegans, and US airports) we obtain efficiency gains from 3 to 8 times (relative to CBA method)
for 14%-16% of vertices deleted. For instance, the less damaged network in both cases is the US
airport network with a final remaining connected fragment of 10% in the node MBA case and
of 25% in the edge MBA case. Another feature that emerges from Fig 5 is the clear existence of
a “threshold” for the efficiency gain, i.e. a value of ρ at which the present procedure clearly
departs from the betweenness centrality-based attack.

Fig 2. Comparison between the effect of betweenness-based attack, degree-based attack, longest path attack, random attack, andmodule-based
attack for theWestern US power grid network. (A) Size of the biggest connected component in terms of the initial size, σ, as function of fraction of
removed nodes, ρ. (B) Network and modular representations of US power grid. (C) Snapshots of the node-representation of the US power grid when 1%, 2%
and 3% of nodes are removed using CBA and MBAmethods.

doi:10.1371/journal.pone.0142824.g002
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Fig 3. Size of the biggest connected component in terms of the initial size, σ, as function of fraction of removed nodes, ρ. Vertex Module-based-
attack (black squares), betweenness-based attack (red circles). (A) Western US power grid. (B) Euro Road. (C) Open flights. (D) US airports. (E) Facebook.
(F) Twitter. (G) Google Plus. (H) Yeast protein. (I) H pylori. (J) C elegans. The intersection of the dashed blue lines corresponds to the point (σe, ρe) of
maximum damage on the network using MBA. Network data details are given in Table 1.

doi:10.1371/journal.pone.0142824.g003

Fig 4. Size of the biggest connected component in terms of the initial size, σ, as function of fraction of removed edges, ρ. Edges Module-based-
attack (black squares), betweenness-based attack (red circles). (A) Western US power grid. (B) Euro road. (C) Open flights. (D) US airports. (E) Facebook.
(F) Twitter. (G) Google Plus. (H) Yeast protein. (I) H pylori. (J) C elegans. The intersection of the dashed blue lines corresponds to the point (σe, ρe) of
maximum damage on the network using MBA. Network data details are given in Table 1.

doi:10.1371/journal.pone.0142824.g004
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The overall final performance of the MBA procedure, relative to CBA, may be measured by
how fast our method reaches the ending point in comparison with the null CBA method, so we
define the overall efficiency gain as:

Z ¼ gðreÞ �
rnullðseÞ

re

ð3Þ

In Fig 6 we show the results for η as a function of Q for both type of attacks, vertex and edge
MBA, applied to the ten networks. It is quite evident in those figures the existence of a high cor-
relation between η and Q. Indeed, in both cases, η increases steeply with Q. This is a highly
desirable feature although not easily foreseen. A linear or even a quadratic relation between the
overall gain in efficiency η and the modularity Q would have been easily explained through S1
Fig, which shows a quadratic (inverse) relation between interedges fraction and modularity.
However, the gain observed in Fig 6 goes far beyond that expectation. Such a remarkable

Fig 5. Efficiency gain of vertex MBA, compared to vertex CBA (γ = σnull/σ), as a function of the fraction of removed nodes, ρ. The network code is
Facebook (FB), Twitter (TW), Google Plus (G+), US power grid (PG), Euro road (ER), Open flights (OF), US airports (UA), Yeast protein (YP), H pylori (HP),
and C elegans (CE). Infrastructural networks are colored red, biological are colored green, and social are colored blue.

doi:10.1371/journal.pone.0142824.g005
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Fig 6. Overall efficiency gain (η) of the MBAmethod relative to the CBAmethod as function of
modularity,Q, for nodes and edges removal. The vertical axis is in logarithmic scale and the horizontal
axis is linear. The networks attacked are Facebook (FB), Twitter (TW), Google Plus (G+), US power grid
(PG), Euro road (ER), Open flights (OF), US airports (UA), Yeast protein (YP), H pylori (HP), and C elegans
(CE).

doi:10.1371/journal.pone.0142824.g006
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outcome of η and specially its dependence with Qmay be ascribed to more than one feature of
the attack method proposed in this paper. In particular, steps 6 and 7 of our method have a
good part of the merit in increasing η, by skipping unnecessary nodes from the list during the
removal procedure (step 6 only considers inter-modules links, which is exclusive of conducting
a module-based attack), and by focusing the attack only in the remaining largest component
(step 7 skips nodes from the original list, whose removal at that point would not affect the larg-
est connected component). These two features make a significant reduction on the list of tar-
geted nodes, increasing the efficiency of the method (Fig 2C illustrates on this point for the US
power grid example). Yet, there is a particular case which is clearly outside the curve, the Face-
book subnetwork. This network is composed of a relative small number of well identified mod-
ules (see S3 Fig), all of them organized around highly connected and highly central nodes
which happen to be the bridges among communities. Indeed, we can clearly see in Fig 3E that
the three first targeted nodes in MBA and CBA are the same nodes; by removing these three
nodes the network is reduced to 25% of its original size with no relative gain of the MBA at that
point. It can be appreciated how peculiar is this case noting that the whole MBA process ends
with just five nodes removed and a final size of�6% of the original size. It takes three more
nodes for the CBA to reach the same point. Thus, almost any kind of attack, being module-
based or centrality-based, has similar effect, even when this network shows a high modularity.

Discussion
In this work, we have presented a module-based attack method which consists of extracting
communities of a given network, then erasing only the nodes that connect distinct modules
ordered by betweenness centrality. Computational simulations on many real networks show
that the MBA method is more efficient in atomizing networks than traditional procedures
based on centrality criteria. Henceforth, one may say that the most connected vertex or the
nodes that have the highest value of betweenness centrality are not necessarily the most impor-
tant for the network survival. Nodes linking distinct communities are structurally more impor-
tant and crucial for the cohesion of the network than hubs or highly central nodes. If we attack
these nodes or its edges, the damage produced to the network is mostly greater than using tra-
ditional methods by eliminating the same amount of structures.

The aim of applying the present module-based attack to a given network is to unveil its
structural vulnerability, measuring how fast one can attain the regime where the network’s
communities are all disconnected. Hence, we propose to characterize the modular vulnerability
of complex networks precisely by how fast the ending point ρe (where all modules are discon-
nected) is reached. Outstandingly, the present work shows that the overall gain in efficiency η
increases quickly with the modularity Q of the network, i.e. the higher the modularity, the
more fragile the network is.

Regarding community detection, the resolution limit of modularity-based algorithms is a
topic of debate. However, in connection with the attack method proposed here, it is not highly
relevant. The scope of the damage that one can infringe upon a network is related to the num-
ber and size of the modules that can be drawn from it. For instance, when large modules are
detected, it means the network is decomposed in a few modules, which is good because a large
part of the network is disconnected when a module is detached from others. The drawback is
that the last module could be still large compared to the original network, as in the US airport
network in which the final largest connected component is still of 10% or 25% of the original
network, for vertex and edge MBA attacks respectively. On the other hand, a decomposition
into many small communities has the advantage of ending with a highly fragmented network,
but at the expense of taking more steps than in the other scenario. Therefore, the optimum
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situation is somehow in the middle, a compromise solution in terms of the average module size
and the network size, i.e. a biggest module of let say 5% of the unperturbed network.

The identification of communities from the networks, by using the module detection algo-
rithms, is the essential ingredient of our method. And independently of the particular algo-
rithm used to identify the communities, the presented module-based attack method performs
always better than traditional methods in fragmenting real networks. Therefore, although these
topological modules have no direct relation to real communities, they can eventually disclose
some relevant information about the structural functionality of these complex networks.

As a final remark, we want to emphasize the potentiality of the present module-based
method in performing attacks on real systems such as disease propagation and terrorists or
criminal networks.

Supporting Information
S1 Fig. Modularity and the fraction of bridging links. As a preliminary test of our method
we show the relation between the fraction of nodes that connect different modules, Eint, and
the modularity, Q. The data correspond to the ten real networks studied in this work: Facebook
(FB), Twitter (TW), Google Plus (G+), US power grid (PG), Euro roads (ER), Open flights
(OF), US airports (UA), Yeast protein (YP), H pylori (HP) and C elegans (CE). As expected, we
observe a high (negative) correlation between Eint and Q, which is precisely the desired feature
that makes the method potentially well posed. The community extraction were performed
using either Louvain or Infomap methods as detailed in Table 1.
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S1 Text. Concerning the choice of the community detection algorithm.
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S2 Fig. Sensibility of MBA to different community detection algorithms.We show here the
results of different runs of module-based attacks on the US power grid network after commu-
nity extraction using Louvain and Infomap methods. For each algorithm ten different indepen-
dent realization were acquired.
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S3 Fig. Networks with high modularity but internally weak. S3 Fig shows the community
structure of the Facebook subgraph network. The structure is quite simple, with most of the
bridging nodes corresponding to the ones with higher degree. Besides, the internal structure of
modules are extremely weak with almost all nodes connected to few vertices or even to only
one central node.
(TIFF)
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