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Abstract
Tumor cells and structure both evolve due to heritable variation of cell behaviors and selec-

tion over periods of weeks to years (somatic evolution). Micro-environmental factors exert

selection pressures on tumor-cell behaviors, which influence both the rate and direction of

evolution of specific behaviors, especially the development of tumor-cell aggression and re-

sistance to chemotherapies. In this paper, we present, step-by-step, the development of a

multi-cell, virtual-tissue model of tumor somatic evolution, simulated using the open-source

CompuCell3D modeling environment. Our model includes essential cell behaviors, micro-

environmental components and their interactions. Our model provides a platform for explor-

ing selection pressures leading to the evolution of tumor-cell aggression, showing that

emergent stratification into regions with different cell survival rates drives the evolution of

less cohesive cells with lower levels of cadherins and higher levels of integrins. Such re-

duced cohesivity is a key hallmark in the progression of many types of solid tumors.

Introduction
Tumor cells and tumor structure both evolve over periods of weeks to years (somatic evolu-
tion). Microenvironmental factors such as levels of nutrients and oxygen, growth factors, host
immune response and the structure and composition of the extracellular matrix (ECM), exert
selection pressures on tumor cells, which influence both the rate and direction of evolution of
specific behaviors (often designated hallmarks), especially the development of tumor-cell ag-
gression and resistance to chemotherapies [1]. A particular problem for cancer treatment is
that recurrent tumors are typically more aggressive than primary tumors, and that tumors
often become resistant to chemotherapeutic agents. Thus treatment may have the iatrogenic ef-
fect of making the cancer more aggressive and less treatable. Cells within a single tumor vary in
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their morphological and molecular features. The tumor microenvironment is also heteroge-
neous, with marked spatial and temporal variations in the concentrations of metabolites and
therapeutics, confounding efforts to assess how specific selection pressures favor particular cell
phenotypes in vivo.

Somatic evolution can also lead to apparently paradoxical responses to treatment. e.g., met-
ronomic chemotherapy, the near continuous administration of cytotoxic drugs at low doses
with no extended interruption, induces dormancy in some types of cancers [2], though the ef-
fectiveness of metronomic therapy is greater in chemo-naïve than in previously-treated pa-
tients. Nutrient starvation (e.g. due to antiangiogenics) can cause tumor cells to shrink and
enter a state of reversible dormancy, resuming active growth and proliferation when the micro-
environment changes and more nutrients become available [3]. Starvation often (but not al-
ways) reduces the effectiveness of chemotherapies. Thus the same treatment may help some
patients with a given tumor type and harm others. Despite the growing number of available
tests for specific markers in tumors, in many cases, we cannot predict which patients a treat-
ment regime will benefit and which it will harm. Understanding the interacting evolutionary
pressures within a tumor will therefore be an essential step in enabling personalized and more
effective treatment regimes. Because resources are limited and the number of potential treat-
ment regimes limitless, exhaustive combinatoric patient-based trials with different combina-
tions and regimes of drugs range from impractical to impossible. In addition, such studies can
only determine optimal conditions for population-average responses and not for personalized
treatment of individuals. Ideally, we would like to be able to predict how a tumor in a specific
patient will react to a given treatment regime based on easily measured biomarkers. Virtual-tis-
sue models of tumors may provide a pathway to developing such predictions.

Hybrid virtual-tissue models of tumor growth (e.g. [4] and review in [5]) are mathematical
frameworks which can capture the complex interactions of tumor growth with intercellular
and intracellular signaling across the multiple scales modulating cancer progression. The Gla-
zier-Graner-Hogeweg (GGH) model [6] is a multi-cell hybrid virtual-tissue model that imple-
ments cell behaviors and interactions to predict tissue-scale dynamics. GGHmodel
applications include embryonic development and development-related diseases, including an-
giogenesis [7–10], choroidal neovascularization in the retina [11], avascular [12] and vascular
[7] tumor growth, chick-limb growth [13] and somitogenesis [14].

CompuCell3D (CC3D) [15] is a free, fully open-source modeling environment for develop-
ing and running GGH-based multi-cell, multi-scale virtual-tissue simulations. CC3D provides
many multi-cell virtual-tissue model components, including GGH solvers for cell movement,
PDE solvers for chemical fields, reaction-kinetics solvers for biochemical networks, visualiza-
tion tools, etc. CC3D supports compact model specification using a combination of Compu-
Cell3D Markup Language(CC3DML) and Python scripting. CC3D allows specification of
arbitrary subcellular signaling, regulatory and metabolic dynamic network models using SBML
and executes these models and their control of cell-level and tissue-level behaviors. CC3D also
supports large-scale/macroscopic continuum models via Python scripting. CompuCell3D
users can easily share models, which stimulates simulation code reuse and facilitates collabora-
tive model development. CC3D’s use of CC3DML and Python for model specification greatly
reduces the effort to develop biological simulations compared to traditional simulation devel-
opment using C++ or Fortran. The CompuCell3D website (www.compucell3d.org) provides
free downloads of the CompuCell3D environment for the Windows, OSX and Linux operating
systems and all model code.

This paper demonstrates step-by-step, the creation and execution of a multi-cell virtual-tis-
sue computational model of tumor growth and evolution, providing a platform for the study of
the influence of micro-environmental factors on tumor progression. The Appendix provides
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Table 1. Reference parameter set. The entire model is available at www.compucell3d.org/Models—listed
as Emergent Stratification Model. For an explanation of the effective units of these parameters see text.

Parameter description Value

Lattice Dimension 500x500x1

Cell Mambrane Fluctuation (Tm) 50

Voxel Copy Neighbor Order 3

Simulation Duration (in MCS) 1000001

Initial density of FN molecule in Medium, see Eq (8) 16.0

Initial density of Cad molecule in PCancer, see Eq (8) 8.0

Initial density of Int molecule in PCancer, see Eq (8) 8.0

Initial density of Cad molecule in QCancer, see Eq (8) 8.0

Initial density of Int molecule in QCancer, see Eq (8) 8.0

Initial density of Cad molecule in PStem, see Eq (8) 8.0

Initial density of Int molecule in PStem, see Eq (8) 8.0

Initial density of Cad molecule in QStem, see Eq (8) 8.0

Initial density of Int molecule in QStem, see Eq (8) 8.0

Cad-Cad binding parameter—km, n, see Eq (8) 2.0

Int-FN binding parameter—km, n, see Eq (8) 0.2

Glucose diffusion constant, see Eq (15) 13500.0

Glucose decay constant, see Eq (15) 0.45

QStem glucose max. uptake rate, see Eq (14) 1.69

QStem Michaelis-Menten-Coefficient, see Eq (14) 0.00256

PStem glucose max. uptake rate, see Eq (14) 2.25

PStem Michaelis-Menten coefficient, see Eq (14) 0.00256

QCancer glucose max. uptake rate, see Eq (14) 1.69

QCancer Michaelis-Menten-Coefficient, see Eq (14) 0.00256

PCancer glucose max. uptake rate, see Eq (14) 2.25

PCancer Michaelis-Menten coefficient, see Eq (14) 0.00256

Uniform glucose secretion rate—Medium 0.145

Initial target volume (ip.Vo) 16.0

Initial target surface (ip.S0) 16.0

Lambda volume—lvols (ip.LBD_V0) 15.0

Lambda surface—lsur
s (ip.LBD_S0) 5.0

Growth-rate factor (ip.incvol)—k see Eq (21) 0.2

Shrinkage-rate factor (ip.decvol)—dNecroticV see Eq (25) 0.01

Cancer-cell doubling volume (self.volmaxmit) 32

Stem-cell doubling volume (self.Svolmaxmit) 32

Maximum number of divisions (ip.maxdiv) 8

Probablilty of daughter cell becoming stem cell (ip.probstem) 0.2

Probability of cadherin mutation—pm (ip.probmut) 0.1

Width (δd = δam) of cadherin value distribution function, see Eq (26) 2.0

Initial relaxation threshold (ip.MCSThr) 50

Concentration threshold for PCancer cells’ growth (ip.PGrThr0) 0.032

Concentration threshold for PStem cells’ growth (ip.SGrThr0) 0.032

PCancer-to-Necrotic-transition damage threshold (ip.PNeThr0) 102.0

QCancer-to-Necrotic-transition damage threshold (ip.QNeThr0) 204.0

PStem-to-Necrotic-transition damage threshold (ip.SNeThr0) 408.0

(Continued)
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listings of all models in this paper. Our model focuses on small, early-stage benign tumors and
on early development of metastases rather than on developed primary tumors, to identify the
pattern of cell-behavior selection. While the average number of cells in our 2D model is less
than 1000 at any time and the total cell turnover is on the order of tens of thousands of cells,
much fewer than in even a small real tumor, we can map these simplified model tumors onto
real tumors either by considering each model cell to represent an ensemble of hundreds or
thousands of real cells or by considering each model tumor to represent a peripheral micro-
portion of a much larger tumor mass.

Methods: Multi-Cell Virtual-Tissue Models of Tumor Evolution
Our model includes multiple cell agents of different types. Each cell agent has a set of defining
properties, including its volume, surface area, intrinsic motility and two distinct classes of ad-
hesion molecules on its membrane. Each cell interacts with neighboring cells and surrounding
ECM and stromal tissue primarily by adhesion. We model ECM and stromal tissue as a simple
uniform medium, rather than representing individual ECM fibers and stromal cells explicitly
and model cells’ adhesion to ECM fibers and stromal cells using appropriate contact-energy co-
efficients—see later sections. We also include a diffusive growth-limiting nutrient (glucose). In
our model, sufficient glucose availability promotes cell growth and proliferation, while glucose
depletion causes accumulating cell damage, which may lead to cell death. We assume that all
cells except stem-like cancer cells can undergo a limited number of cell cycles (Senescence). We
represent the effects of all heritable genetic and epigenetic mutations as random variations of
the parameters controlling cell behaviors, with variation occurring immediately after a
cell division.

Outline: We first describe briefly model components (i.e., objects and processes) and their
biological relevance and background. We then discuss the simplifying assumptions that allow
us to abstract solid-tumor biology to construct a biomodel. Appendix 1 provides an implemen-
tation of this biomodel as a simulation, specified in CC3DML and Python. Finally, we compare
the simulation results to experiments to estimate the model’s parameters.

Biological Components
Cells

Biomodel: Our generic solid tumor includes two main classes of generalized cells: tumor
cells and stromal tissue. Tumor cells have two subtypes: stem-like cancer cells and somatic can-
cer cells. All tumor cells assume one of three possible states: Proliferating cancer cells—PCan-
cer (PC), PStem (PS), which grow and divide, quiescent cancer cells—QCancer (QC),
QStem (QS), which do not grow, and Necrotic cells (N), which die. An extracellular Medi-
um (M) represents an aggregate of stromal cells and extracellular matrix (ECM).

We define a separate CC3D cell type for each class of cells which has a distinct set of biologi-
cal behaviors and properties. While all cells of a given type have the same initial list of defining

Table 1. (Continued)

Parameter description Value

QStem-to-Necrotic-transition damage threshold (ip.QSNeThr0) 916.0

QCancer-to-PCancer-transition health threshold (ip.QPThr0) 79.5

QStem-to-PStem-transition health threshold (ip.QSSThr0) 79.5

Damage accumulation threshold (ip.GluD) 0.0032

doi:10.1371/journal.pone.0127972.t001
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parameters, the properties of each cell of a given type can change during a simulation. We usu-
ally limit the number of cell types to no more than 15 to make the model intelligible (For our
specific CC3D implementation of cell types, see Table 2).

Fields
Biomodel: Tumor growth in vivo depends on the levels of multiple diffusing substances, in-

cluding blood nutrients (e.g. glucose and fatty acids), tissue oxygen, growth factors and pH. In
our model, we assume that glucose is the main growth-limiting nutrient and include a diffusing
field (G) representing glucose (see “Glucose Transport” section for details).

Biological Processes
Cell Motility, Time and the Glazier-Graner-Hogeweg Model

Biomodel: Cells move by making cytoskeletally-driven membrane protrusions and retrac-
tions and by making and breaking connections with their neighbors and the ECM. In the ab-
sence of external stimuli (e.g., gradients of chemical attractants or substrate properties), cells
like fibroblasts migrate in a persistent random-walk pattern, where the cell typically moves at
least one cell diameter in a given direction before changing direction. In our model, we assume
that tumor cells in a cluster migrate via a random walk without a prespecified
persistence length.

To simulate the dynamic motility of cells, we use the GGHmodel, also known as the Cellu-
lar Potts Model (CPM), a multi-cell, lattice-based, stochastic methodology for representing tis-
sues. The GGHmodel uses spatially-extended domains of voxels on a fixed cell lattice to
represent cells. Since such domains may also represent cell subcomponents, clusters of cells or
portions of ECM, we call the domains generalized cells. Each voxel in the cell lattice has a posi-
tion~x and an index σ (~x) denoting the index of the generalized cell to which it belongs. For
convenience, we also assign a cell type τ (σ) to each generalized cell σ. One or more generalized
cells can represent a single biological cell. In the latter case, the biological cell corresponds to a
cluster of generalized subcells, which we can use to represent cell compartments or cell polarity,
or to assemble cells with complex shapes.

To model the dynamics of generalized cells, we associate an effective energy term with each
generalized-cell behavior which involves motion (e.g., chemotaxis), force-mediated interaction
(e.g., cell-cell adhesion, an external force), or size or shape constraint (e.g., the cell volume),
etc.. . . In some cases, an effective energy term represents a physical interaction energy, e.g.,
cell-cell adhesion. In other cases, (e.g., chemotaxis) the effective energy is a shorthand to pro-
duce the desired behavior of cells and does not correspond to an actual energy.

To model a motile cell that has a defined volume and surface area, we use two effective ener-
gy terms in the form of constraints: the cell-volume (first term) and cell-surface constraints (sec-
ond term):

H ¼
X
s

lvol

s
ðvs � VsÞ2 þ

X
s

lsur
s
ðss � SsÞ2; ð1Þ

where vσ and sσ denote a generalized-cell’s instantaneous volume or instantaneous surface area
and Vσ and Sσ denote a generalized-cell’s target volume and target surface area, respectively.

The constraints are quadratic and vanish when vσ = Vσ and sσ = Sσ. l
vol
s and lsurs are the con-

straint strengths which correspond to elastic moduli (the higher lvols or lsurs the more energy a
given deviation from the target volume or surface area costs).

The GGHmodel represents cytoskeletally-driven cell motility as a series of stochastic voxel-

copy attempts. For each attempt, we randomly select a target site,~i , in the cell lattice, and a

neighboring source site~j . If different generalized cells occupy these two sites, we calculate
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change in the energy (ΔH) that would occur if we were to copy the index in the the source-site
voxel onto the target-site voxel. For almost all cell behaviors and interactions, the evaluation of
ΔH requires calculations localized to the vicinity of the target voxel only.

The probability of accepting a voxel-copy attempt (i.e., overwriting the value in the target-
site voxel) is:

Pðs~i ! s~jÞ ¼
(

1; for DH � 0

f ðDHÞ; for DH > 0;
ð2Þ

where f (ΔH) is a decreasing function, bounded between 0 and 1. Here as in most GGHmodels,
we set

f ðDHÞ ¼ e�
DH
Tm ð3Þ

where Tm is a parameter describing the amplitude of cell-membrane fluctuations. Tm can be a
global parameter, cell specific or cell-type specific.

The net effect of the GGH voxel-copy algorithm is to lower the effective energy of the gener-
alized-cell configuration in a manner consistent with the biologically-relevant “guidelines” in
the effective energy: cells maintain volumes close to their target values, mutually-adhesive cells
stick together, mutually repulsive cells separate, etc..... The ability to make voxel copies which
temporarily increase the effective energy helps avoid trapping the configuration in local effec-
tive-energy minima. The algorithm evolves the cell-lattice configuration to simultaneously sat-
isfy the constraints, to the extent to which they are compatible. Generalized-cell movements
are perfectly damped (i.e., average velocities are proportional to applied forces), which makes
the updating method numerically stable, making the GGHmodel a robust tool for building vir-
tual-tissue models [16].

The average value of the ratio DH
Tm

for a given generalized cell determines the amplitude of

fluctuations of the generalized-cell’s boundaries. High DH
Tm

results in rigid, barely- or non-motile

generalized cells and little cell rearrangement. For low DH
Tm

, large fluctuations allow a high degree

of generalized-cell motility and rearrangement. For extremely low DH
Tm

, generalized cells may

fragment in the absence of a constraint sufficient to maintain the integrity of the borders be-
tween them. Because DH

Tm
is a ratio, we can achieve appropriate generalized-cell motility by vary-

ing either Tm or ΔH. Varying Tm allows us to explore the impact of global changes in
cytoskeletal activity. Varying ΔH allows us to control the relative motility of the cell types or of

individual generalized cells by varying, for example, lvols , lsurs , Vσ, or Sσ.
The generalized cell representing the stromal material around the tumor has unconstrained

volume and surface area. Medium voxels can be both source voxels, e.g., during retraction of
the trailing-edge of a generalized cell, and target voxels, e.g. during formation of lamellipodia.
Since Medium represents largely passive material, We use the amplitude of cytoskeletal fluctua-
tions of the non-Medium target or source generalized cell to determine the acceptance proba-
bility for a voxel-copy involving Medium.

GGH simulations measure simulation time in terms of Monte Carlo Step units (MCS),
where MCSs are N voxel-copy attempts, where N is the number of voxels in the cell lattice, and
sets the natural unit of time in the model. The conversion between MCS and experimental time
depends on the average cell motility. In biologically-meaningful situations, MCSs and experi-
mental time are proportional.

Parameter Estimation: In CC3D, the size of the cell-lattice voxel sets the spatial resolution
of the simulation. Here a square cell-lattice voxel (2D) represents 16 μm2. Our tumor cells have

AMulti-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

PLOSONE | DOI:10.1371/journal.pone.0127972 June 17, 2015 6 / 40



an initial volume of 256 μm2. We relate the simulation’s MCS time-scale to minutes by com-
paring cell-migration speeds in simulations to typical cell-migration speeds in experiments.
Simulated tumor cells migrate at speeds of about 0.1 voxel/MCS. Experimentally, tumor-cell
migration speeds range between 2 μm/hour to 12 μm/hour [17]. Matching the experimental
value of 4 μm/hour sets one MCS to 6 min. Both [18] and [19] find that the active cells that
lead to metastases move with relatively high speeds.

ECM fibers play a crucial role in enabling such rapid cell-migration. Cancer invasion mod-
els based on game theory reach similar conclusions [20], as do other CA models (e.g., [21]) that
focus on the relative significance of the rates of cell death, proliferation and migration on
tumor growth and spread. However, none of these models captures the role of cell adhesion
changes (one of the classical hallmarks of cancer progression) on the initiation of the cancer in-
vasion. Our model concentrates on the evolution of cell adhesion in tumors due to the tumor’s
changing microenvironment. While, it does not explicitly represent ECM fibers or the intracel-
lular signaling pathways that help control cell migration [19], we hope to include these more
detailed submodels in future studies.

Cell Adhesion
Biomodel: Cell adhesion due to molecular binding of transmembrane adhesion receptors on

one cell to either ligand transmembrane adhesion receptors on another cell or to the ECM is
one of the most important interactions during tissue morphogenesis and maintenance [22]. A
wide variety of adhesion molecules can mediate both cell-cell and cell-ECM adhesion. Detailed
models of adhesion are complex because of the multiple interactions affecting these molecules,
which occur in both the cytoplasmic and extracellular domains [23, 24]. Here, we assume that
a single cadherin species mediates cell-cell adhesion via homotypic cadherin-cadherin binding
and a single integrin species mediates cell-stromal tissue adhesion via heterotypic integrin-fi-
bronectin binding. We simplify the strength of adhesion as the product of the number of bonds
between two adhering objects and the strength per bond. Bond formation contributes a nega-
tive energy to the total effective energy in the model, and breaking a bond requires an energy at
least equal to this binding energy. represent inter-cellular adhesive interactions, we add adhe-
sion term to the effective-energy in Eq (1):

H ¼
X
~x

XNmax

~y

Jsð~xÞ;sð~yÞð1� dsð~xÞ;sð~yÞÞ þ
X
s

lvol
s
ðvs � VsÞ2 þ

X
s

lsur

s
ðss � SsÞ2: ð4Þ

The outer sum of the (first) adhesion term iterates over all cell-lattice voxels. We refer to the
closest voxels to~x as 1st order (nearest neighbor) voxels, and voxels further away as 2nd, 3rd

order, etc.... neighbors of voxel~x . The inner sum (over~y) iterates over all voxels in the neigh-
borhood of voxel~x up to order Nmax. Jsð~xÞ;sð~yÞ is the adhesion energy per unit contact area be-

tween two generalized cells—σ (~x) and σ (~y). δ is the Kronecker delta function:

dðx; yÞ ¼
(
0; for x 6¼ y

1; for x ¼ y
ð5Þ

and the ð1� dsð~xÞ;sð~yÞÞ factor ensures that we only count energies between voxels belonging to

different cells. Inclusion of the adhesion term in Eq. (4) reduces the amount of cell-cell contact
between generalized cells with high values of Jsð~xÞ;sð~yÞ and increases the amount of contact be-

tween generalized cells with low values of Jsð~xÞ;sð~yÞ . In our model, we express Jsð~xÞ;sð~yÞ as a func-

tion of the adhesion-molecule concentrations on generalized-cells’ surfaces. As we noted
above, several classes of adhesion molecules can reside on a generalized-cell’s surface and we
treat the ECM and stromal cells as a generalized cell. The binding energy per unit area between
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two adhering generalized cells due to integrin-like or cadherin-like adhesion molecules is:

~Ei;j
m;n ¼ km;nF ðNi

m;N
j
nÞ; ð6Þ

where, for cells i and j,m and n are classes of adhesion molecules, km, n the affinity coefficient
for those species, Ni

m and Nj
n their densities (the number of adhesion molecules of classesm

and n, respectively, per unit area), and F is a function which describes the phenomenological
relationship between the densities and the binding energy. In our model, we set

F ðx; yÞ ¼ min ðx; yÞ; ð7Þ

which assumes that each molecule of classm on cell i can bind only once to a molecule n on
cell j.

Including all possible combinations of bonds between different classes of adhesion mole-
cules, the adhesion energy per unit area is:

~Ei;j ¼
X
m;n

km;n min ðNi
m;N

j
nÞ: ð8Þ

To calculate the net contribution of adhesion to the effective energy, we sum the adhesion
energies at every cell-cell and cell-stroma (cell-Medium) interface:

Eadh ¼
X
~x

XNmax

~y

~Esð~xÞ;sð~yÞð1� dsð~xÞ;sð~yÞÞ; ð9Þ

where we have replaced indicies i and j with σ (~x) and σ (~y) respectively, following the notation
of Eq (1). Comparing Eqs. (4), (8) and (9), we see that:

Jsð~xÞ;sð~yÞ ¼ ~Esð~xÞ;sð~yÞ ¼
X
m;n

km;n min ðNsð~xÞ
m ;Nsð~yÞ

n Þ: ð10Þ

Using Eq (10) we can express the GGH effective energy as:

H ¼
X
~x

XNmax

~y

X
m;n

km;n min ðNsð~xÞ
m ;Nsð~yÞ

n Þð1� dsð~xÞ;sð~yÞÞ

þ
X
s

lvol

s
ðvs � VsÞ2 þ

X
s

lsur
s
ðss � SsÞ2:

ð11Þ

See Table 3 for the CC3DML implementation of the adhesion energy and for initial
parameter estimates.

Parameter Estimation: To form an initially cohesive solid tumor, we set (see Table 3) the
AdhesionMoleculeDensity and the homotypic and heterotypic BindingPara-
meters to values that produce a positive surface tension between tumor cells and Medium,
which we calculate using the surface tension formula:

g ¼ �min ðInt;FNÞ � BindingParameterðInt;FNÞ

þ min ðCad;CadÞ �BindingParameterðCad;CadÞ
2

:
ð12Þ

A high positive γ produces a cohesive cluster of tumor cells, while zero (non-cohesive cells)
or negative γ (invasive cells) indicates that tumor cells can separate from the tumor cluster and
invade the surrounding Medium. Positive surface tension corresponds to cell-lattice configura-
tions where replacing cell-cell interfaces with cell-Medium interfaces requires energy input—
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hence, in the absence of external stimuli, cells stick together, while negative surface tension
causes cells to tend to separate, because creating cell-medium interfaces is
energetically favorable.

We assume that heterotypic adhesion is weaker than homotypic adhesion and limit both
Int and Cad densities to 16 units. Higher Int and Cad densities can cause generalized cells
to fragment and introduce cell-lattice-alignment artifacts (see CC3D manual for details). In
our model, the initial cohesive solid tumor has a γ of about 2.4. Later in the simulation, some
cells evolve to express lower levels of Cad and higher levels of Int, reducing the surface ten-
sion and causing the cells to invade the Medium.

Glucose Transport
Biomodel: The blood vessels in biologically-normal stromal tissue supply nutrients at a rate

which depends on the metabolic needs of the tissue, keeping nutrient levels in stromal tissue
within physiologically-normal ranges. In our model, Medium supplies G at a constant rate α.
Since Medium represents the normal cells in the stromal tissue as well as the ECM, it also takes
up glucose at a rate proportional to the local glucose concentration G(x):

UECM
G ¼ a� �GðxÞ; ð13Þ

where � is the first-order glucose uptake rate. In the absence of tumor cells, G approaches the
equilibrium glucose concentration for normal stroma. Tumor cells take up glucose at a rate
which is a Michaelis-Menten function of the local glucose concentration G(x), cell-type (τ) and
cell-state (s):

Utumor
G ðxÞ ¼ � umax ðt; sÞGðxÞ

GðxÞ þ Kðt; sÞ ; ð14Þ

where umax(τ, s) is the maximum uptake rate and K(τ, s) is a Michaelis constant, both of which
depend on the cell-type (τ) and cell-state (s).

Glucose diffuses at a constant rate DG, with time-dependent secretion and uptake:

@GðxÞ
@t

¼ DGr2GðxÞ þ dðtðsðxÞÞ; tumorÞUtumor
G ðxÞ

þdðtðsðxÞÞ;MediumÞUMedium
G ðxÞ;

ð15Þ

where,

dðtðsðxÞÞ;TumorÞ ¼ 1 inside tumor cells ðtypes : PC; QC; PS; QSÞ ð16Þ

and

dðtðsðxÞÞ; MediumÞ ¼ 1in stromal tissue ðMediumÞ: ð17Þ

CompuCell3D includes a steady-state diffusion-equation solver, which is appropriate for a
fast-diffusing species like glucose. Table 4 shows how the model specifies the behavior of glu-
cose using this solver.

Parameter Estimation: We set the Glucose diffusion coefficient to 600 μm2/s which corre-
sponds to 13500 voxel2/MCS. In the absence of tumor cells, Glucose concentration in the
simulated stromal tissue approaches an equilibrium Glucose concentration of 5mM. 3D
does not impose specific units for field concentration. We use femto-mole (fmol) per voxel as
our unit and impose a scaling factor so that 5mM corresponds to 0.32 fmol/voxel.

Experimentally, cell glucose consumption rates are about 0.1 fmol/cell/s, which corresponds
to 2.25 fmol/voxel/MCS, so we set the Glucose consumption rate of tumor cells in their
queiscent phase to be 0.75 of that of tumor cells in their proliferating phase (1.69 fmol/voxel/
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MCS). We assume that stromal cells (represented implicitly by Medium) are the same size as
tumor cells, occupy 20% of the stromal volume, and consume Glucose at 1

3
the rate of tumor

cells (0.75 fmol/voxel/MCS). For these parameters, Mediummust supply Glucose at a rate
of 0.145 fmol/voxel/MCS to maintain a stationary and uniform Glucose concentration of
0.32 fmol/voxel over the entire Medium in the absence of a tumor. If the Glucose concentra-
tion is stationary and uniform, both the left-hand side of Eq (15) and the diffusion term on the
right hand side are zero, so the decay coefficient of Glucose (the first-order consumption
rate), � = 0.45. We set the Michaelis constant of Glucose (MichaelisMentenCoef) to
0.04 mM (0.00256 fmol/voxel).

Cell-State Transitions
Biomodel: Experimentally, microenvironmental factors including mechanical stress, hydro-

static pressure, low pH and starvation can cause temporary or permanent changes in tumor
cells [25, 26]. In our model, however, we include only cell-state transitions due to nutrient
availability. During a period of starvation (in a low-nutrient regime), tumor cells accumulate
damage at rates that depend on their local nutrient levels. When accumulated damage in a cell
passes a threshold which depends on the cell type and state, the cell dies (an irreversible cell-
type transition). When a tumor cell divides, it resets its damage level to zero, so daughter cells
do not inherit any accumulated damage from their parent.

Real quiescent tumor cells become proliferative only when they experience sufficient levels
of nutrients for long enough periods (refractory behavior) [3]. We model this refractory behav-
ior of individual quiescent-state tumor cells by requiring them to accumulate health, which bio-
logically corresponds to repair of damage due to hypoxia or other harsh microenvironmental
conditions. Cells that experience higher nutrient concentrations accumulate health at a faster
rate, which saturates for high nutrient concentrations. Fig 1 shows how glucose supply induces
transitions between model cell states and presents related flowcharts for the simulation code.

To simulate transitions between normal and damaged cell states, we calculate the accumu-
lated starvation factor, the cumulative effect of a suboptimal level of nutrients on the cell.
When the starvation factor reaches a critical threshold, tumor cells (PC, QC, PS, QS) become
necrotic cells. Different cell types have different starvation thresholds, xthresh. To calculate the
cumulative starvation factor, we periodically check the glucose concentration at the center of
mass of each cell. If the concentration is lower than the cell’s concentration threshold, the cell
accumulates starvation damage at a rate increasing with the difference between the concentra-
tion threshold and the glucose concentration, x = xthresh −G according to a Michaelis-Menten
function with a saturation limit,m:

MðxÞ ¼ m
x

x þ k
; ð18Þ

wherem is the maximum uptake rate of glucose in a given cell and k is a Michaelis constant.
Note thatM kð Þ ¼ m

2
,M xð Þ � m

k
x for x� k andM(x)�m for x� k. Table 5 shows the Python

code for this function.
When, during a single MCS, the available glucose concentration is lower than xthresh the

cell’s actual uptake of glucose is less than its uptake at a concentration of xthresh. Because cell
starvation occurs when the glucose concentration falls below this threshold value, we define
the starvation-factor increment as:

DSðxÞ ¼
( jMðxÞ �MðxthreshÞj; for x < xthresh;

0; for x � xthresh:
ð19Þ
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In an analogous way, we define a cumulative “health” factor for cells:

DQðxÞ ¼
(
MðxÞ �MðxthreshÞ; for x < xthresh;

0; for x � xthresh:
ð20Þ

In our model, at each MCS we check the concentration of glucose, G(xCOM), at each cell’s cen-
ter of mass, then increase either the cell’s cumulative starvation factor by ΔS or the cell’s cumu-
lative health factor by ΔQ, depending on whether the cell’s xthresh is greater or less than x.

We then iterate over each generalized cell in the simulation and determine whether the star-
vation coefficient is above the type-transition threshold for that generalized-cell’s type, in
which case we change the generalized-cell type to Necrotic. The parameters ip.PNeThr0,
ip.QNeThr0, ip.SNeThr0 and ip.QSNeThr0 store the starvation thresholds for PCan-
cer, QCancer, PStem and QStem generalized-cell types respectively. For quiescent cells
(generalized-cell types QCancer and QStem) we also check the health factor. If it is above the

Fig 1. A) Model cell-state transitions as a function of the glucose supply. As implemented in the simulation: (B) Flowchart for (Q)uiescent (S or C) cell
transitions; (C) Flowchart for (P)roliferative (C)ancer cell transitions; (D) Flowchart for (P)roliferative (S)tem cell transitions.

doi:10.1371/journal.pone.0127972.g001
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threshold for that generalized-cell state (ip.QPThr0 and ip.QSSThr0, respectively), we
change the generalized-cell state to PCancer and PStem respectively. After a cell-type transi-
tion, we reset the health factor to zero. Table 6 presents the Python implementation of the
model’s cell-type transitions, based on the starvation coefficients calculated in Table 7 in the
Appendix.

Parameter Estimation: We assume that cells starve and accumulate damage when the Glu-
cose concentration drops below 0.5 mM (0.032 fmol/voxel) (compare to [25, 26]). We calculate
PNeThr0 and SNeThr0 based on the assumption that the cells die if they experience a glu-
cose concentration of zero for 24 hours (damage accumulates at its highest rate for 24
hours = 102 MCS) [25, 26]. We assume that QCancer and QStem cells are more resistant to
starvation than proliferating cells, so that both QNeThr0 and QSNeThr0 are twice as large as
PNeThr0. We calculate QPThr0 and QSSThr0 based on the assumption that QCancer and
Qstem cells that experience 5mM glucose for 24 hours switch to a proliferative state.

Cell Growth and Cell Death
Biomodel: A subpopulation of tumor cells proliferates when it has access to sufficient levels

of nutrients. In our model, only PC and PS generalized cells grow and divide (via mitosis) once
they reach their doubling volume. PC and PS generalized cells grow by consuming glucose. PC
and PS generalized cells grow only when the glucose supply is above a threshold and these gen-
eralized cells grow faster for higher glucose levels. Necrotic generalized cells shrink at a con-
stant rate, which is independent of the level of nutrients. In our model, once a generalized cell
becomes Necrotic it cannot change back into any other generalized-cell type. Quiescent
cancer cells (QC) and quiescent stem-like cells (QS) neither grow nor shrink. A generalized-
cell’s volume and surface constraint parameters remain unchanged from the time its state
changes to QC or QS.

We implement generalized-cell growth and shrinkage by manipulating generalized-cells’
Vis, Sis and λs in Eq (1).

Proliferating cancer cells (PC) and proliferating stem (PS) cells grow at a rate:

DVi ¼ kyðGð~xi
COMÞ � GthreshÞ½Gð~xi

COMÞ � Gthresh	; ð21Þ

where ΔVi is the increase in the target volume of generalized cell i per MCS.~xi
COM is the center

of mass of generalized cell i and G ~xi
COM

� �
is the glucose concentration at this point. Gthresh is

the minimum glucose concentration which allows cells to grow. k is the growth speed and θ the
Heaviside step function:

yðxÞ ¼
(
0; for x � 0

1; for x > 0
: ð22Þ

We update the generalized-cells’ target volumes once per MCS. To maintain the generalized-
cells’ surface-to-volume ratios, we adjust the generalized-cells’ target surface area as:

Si ¼ qs;v
ffiffiffiffiffi
Vi

p
; ð23Þ

where qs, v = 4 is a scaling factor derived on the assumption that cells in the simulation should
be nearly circular in shape. In our 2D simulations, the relationship between surface area and
volume for a circular generalized cell is:

S ¼ ffiffiffiffiffiffi
4p

p ffiffiffiffi
V

p
: ð24Þ

Necrotic generalized cells shrink and disappear by reducing their target volumes at a

AMulti-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

PLOSONE | DOI:10.1371/journal.pone.0127972 June 17, 2015 12 / 40



constant shrinkage rate until their target volumes reach 0:

DVi
Necrotic ¼ �min ðdNecrotic

V ;ViÞ; ð25Þ

where dV
Necrotic ¼ 0:05 is the constant shrinkage rate for necrotic cells and Vi is the current target

volume of the Necrotic generalized cell. Once a generalized-cell’s target volume reaches 0, it
will disappear as neighboring generalized cells overwrite its voxels. Table 8 shows the Python
implementation for these mechanisms.

Parameter Estimation: We assume that PC and PS generalized cells that experience 5mM
glucose take 24 hours to reach their doubling volume and divide. We set g in Eq (21) to 0.34
fmol/voxel and set k(incvol) = 0.2 so it increases the generalized-cells’ target volume by 16
voxels in 24 hours. To allow elongated generalized-cell shapes and prevent alignment of gener-
alized-cell boundaries along the cell-lattice’s symmetry axes, we set qs, v = 4, slightly higher

than
ffiffiffiffiffiffi
4p

p
in Eq (24).

Mitosis, Senescence and Mutation
Biomodel: When a growing cell reaches its doubling volume, it undergoes mitosis. Depend-

ing on the type of cell undergoing mitosis and the number of cell cycles it has completed, the
two daughter cells may change their types and cadherin and integrin expression levels.

Mitosis splits cells into two daughter cells of roughly equal volumes. The Python code in
Table 9 sweeps through all generalized cells once per MCS to identify generalized cells that
should divide.

In our model, we refer to a cell just before mitosis as a parent cell. Mitosis divides the voxels
of the parent generalized cell roughly equally between a generalized cell which keeps the identi-
ty of the parent generalized cell and a new daughter generalized cell. While this usage differs
from the biological terminology, it reflects the actual bookkeeping in the simulation. Mitosis re-
sets the parent and daughter generalized-cells’ target volumes and target surface areas to their
reference values, and their cumulative damage and health to 0. In the model only two general-
ized-cell types grow and divide: PC, PS. A senescence counter, nd, counts the number of divi-
sions a PC or QC generalized cell has undergone since its transition from a PS generalized cell.
We assume that cancer cells typically undergo a maximum number of divisionsmd. On each
division of a PC parent generalized cell we pick R from a Gaussian distribution r:

r x; md; ddð Þ ¼ 1

dd
�

x �md

dd

� �
; ð26Þ

where r (x;md, δd) is the Gaussian probability distribution of variable x with meanmd and stan-
dard deviation δd and

�ðxÞ ¼ 1ffiffiffiffiffiffi
2p

p e�
x2
2 : ð27Þ

If nd > R both the parent and daughter generalized cells become Necrotic. For PC general-
ized cells,md = 8 and δd = 2.

When a PS generalized cell divides, the parent generalized cell becomes a QS generalized
cell and the daughter generalized cell has a probability of 1 – ip.probstem of becoming a
QC generalized cell and of ip.probstem of becoming a QS generalized cell. We normally set
ip.probstem = 0.2. As the “Cell-State Transitions” section describes, high nutrient avail-
ability induces quiescent stem cells (QS) to become proliferating stem generalized cells (PS).
Our simulation implements the senescence and stem generalized cell! cancer generalized cell
transition using the Python updateAttributes function in Table 10.
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CompuCell3D calls the updateAttributes function immediately after a parent gener-
alized cell divides. The function first resets the parent and daughter generalized-cells’ Vis, Sis
and λs. ip.V0 stores their reference target volume and ip.LBD_V0 and ip.LBD_S0 store
their reference λvol and λsur (see Eq (1)).

During mitosis, we also simulate random changes in the surface expression of adhesion
molecules. Each parent generalized cell has a small probability (pm = 0.1 stored in ip.prob-
mut) of randomly changing its adhesion-molecule expression levels. We scale expression levels
of cadherins and integrins to the range 0 to 16. After mitosis, we draw a number R from a
gaussian distribution r (x;jam, δam), where jam is the current adhesion-molecule expression level
for the parent generalized cell and δam is the standard deviation of the gaussian distribution. In
our simulations, we set δam = 2.0. We store the cadherin expression level in the jcadh variable
and the integrin expression level in jint. ip.cadhstdev stores the value of δam, which we
assume is the same for cadherins and integrins.

When R is within the allowed expression-level interval ([0, 16]) we set:

jam ¼ R; ð28Þ
otherwise, we reject the mutation. Our model varies only the levels of cadherin and integrin
and not the level of fibronectin (FN)—i.e., the adhesion molecule associated with Medium.
Daughter generalized cells inherit their parent generalized-cell’s adhesion molecule expression
levels. Table 11 shows Python code implementing this mutation mechanism.

Parameter Estimation: We limit the AdhesionMoleculeDensity of both Int and
Cad to values between 0 and 16 because this range produces both positive (cohesive) and nega-
tive (invasive) surface tensions and minimizes cell-lattice artifacts that can occur for large, posi-
tive surface tensions. Our algorithm rejects adhesion-molecule expression-level changes if they
would cause the adhesion-molecule expression level to fall outside the allowed interval, which
eliminates bias towards the end-values of the interval. Setting expression levels that fall outside
the allowed interval to end-values causes a bias towards the end-values of the interval. For any
initial value, in the absence of selection, random mutation leads the population average to drift
towards the middle of the interval. Distinguishing such random-walk drift from evolution due
to selection pressure is difficult, so we set the initial adhesion-molecule expression levels to 8,
the middle of the allowed interval.

To facilitate simulation of the cell processes and behaviors described in this paper our simu-
lations include modules which the center of mass and set of voxels belonging to each general-
ized cell. Appendix A. (Table 12) shows CC3DML implementation of these modules.

As an initial condition, we place an 82-voxel quiescent stem (QS) generalized cell in the mid-
dle of the cell lattice. Table 13 shows the CC3DML implementation of this initial condition.

Table 14 shows the CC3DML to define the cell-lattice dimensions (<Dimensions>), type
of boundary conditions (<Boundary_x>, <Boundary_y>), average amplitude of cell
membrane fluctuations (<Temperature>), neighbor range used to pick source and target
voxels for voxel-copy attempts (<NeighborOrder>), simulation duration in MCS
(<Steps>) and the seed for random number generator (<RandomSeed>).

Results

Size and Shape Dynamics
In our simulations, the initial cancer stem (QS) generalized cell grows into a cohesive solid
tumor that reaches a maximum diameter of about 500 μm during the first simulated month.
During the next simulated 10 days (day 30 to day 40), tumor generalized cells at the center of
the tumor die and form a necrotic core that is about 250 μm in diameter (Fig 2A.1 and 2B.1).
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Fig 2. Simulation snapshots. Row A) Generalized-cell type: dark green: QCancer, light green: PCancer, dark red: QStem, light red: Pstem, Light purple:
Necrotic. Row B) Accumulated damage due to starvation. Row C) Surface tension between tumor generalized cells and Medium, see Eq (12). Times: first
column:* 40 days, second column:* 1 year, third column:* 3 years. CompuCell3D code that we used to generate this figure can be downloaded from
www.compucell3d.org/Models. See also Table 1 for the list of parameters used to generate this figure.

doi:10.1371/journal.pone.0127972.g002
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At this stage, some PS generalized cells at the periphery also die through senescence after
reaching their maximum number of divisions. Since we do not model angiogenesis, the total
amount of Glucose the Medium supplies limits the diameter of a compact tumor to under
500 μm. This nutrient-limited regime lasts between four and twelve simulated months. As
tumor generalized cells progressively become less cohesive (due to mutations accumulated dur-
ing mitosis) (Fig 2A.2), the tumor becomes less spherical and elongates, usually leading to split-
ting of the tumor into two clusters that are nearly equal in size. The less cohesive cluster then
usually outgrows the more cohesive cluster, because its elongated shape has more contact area
with Medium, which allows higher rates of Glucose transport into the cluster (Fig 2B.2).
Any clusters that do not contain stem generalized cells eventually disappear. Tumor general-
ized cells become potentially invasive if they express low levels of cadherin and high levels of
integrin. When such invasive generalized cells come to the edge of their cluster and contact the
Medium, they can leave their clusters and invade the Medium (Fig 2A.2). Generalized cells
that have invaded the Medium proliferate faster than those remaining in a cluster (see popula-
tion plots in Fig 3A–3B), since glucose levels outside clusters are significantly higher than levels
inside or at the periphery of clusters. Thus the spreading invasive cells eventually outcompete
nearby tumor because they have higher probability of survival than generalized cells in a
larger cluster.

For the reference set of parameters, predominantly dispersed, invasive generalized cells be-
come dominant after about 3 simulated years (Fig 2A.3)—see section “Parameter Effects on
Tumor Growth and Evolution” for detailed studies of the parameter space. After this stage,
small clusters (less than 20 cells) continuously form and disintegrate, as stem-like generalized
cells leave their clusters or die due to rapid accumulation of damage. Even though we did not
vary the fraction of stem-like offspring of stem-like generalized cells or allow this fraction to
evolve in this paper, the fraction of stem-like generalized cells in the total population gradually
increases with time. We will present our studies of the effects of evolutionary change on the
fraction of stem-like generalized cells in a future paper.

Fig 3. Tumor generalized-cell populations by generalized-cell type as a function of time (each plot shows results from a single simulation replica).
The fraction of stem-like cancer generalized cells increases steadily in all simulations.

doi:10.1371/journal.pone.0127972.g003
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Starvation and Evolution of Cell Adhesion
In our model, invasion of Medium is a winning strategy for generalized cells. Generalized cells
gain invasive behaviors in two key phases. In the initial phase, as long as generalized cells re-
main in clusters, differential cell adhesion leads to cell-sorting in which generalized cells ex-
pressing lower levels of cadherins and higher levels of integrins (relative to the typical levels in
the cluster) move to the surface of the cluster and generalized cells expressing higher levels of
cadherins (relative to typical values in the cluster) move towards the center of the cluster (the
black arrow in Fig 4C). As generalized cells move towards the center of the cluster, they cease
to proliferate, starve and eventually die. Thus generalized cells which remain on the surface of
the cluster proliferate more rapidly than those in the interior of the cluster, selecting for the
least cohesive generalized cells in the cluster. Since a generalized cell’s cadherin level has a
greater effect on its radial position in the cluster than its integrin level, initial selection predom-
inantly favors generalized cells with decreased cadherin levels (Fig 4A). Because starvation se-
lects for lower relative adhesion between generalized cells, the typical cadherin level of the
generalized cells in the cluster decreases continuously until, in the second phase, the least cohe-
sive generalized cells (those with high levels of integrin and low levels of cadherin) in the cluster
are able to migrate out of the cluster. This invasive phenotype corresponds to a negative surface
tension between Medium and tumor generalized cells (Fig 2C.2, Fig 4B–4C). As we discussed
in section “Size and Shape Dynamics”, invasive generalized cells then come to dominate the
tumor-cell population, and spread throughout the Medium.

Parameter Effects on Tumor Growth and Evolution
Our model of emergent tumor stratification has about 50 parameters. Some parameters values
are available in the cancer literature, others are not, including the probability of a random mu-
tation of a generalized-cell’s cadherin expression and the distribution of changes in cadherin
expression on mutation. In any case, because we are simulating a much smaller number of gen-
eralized cells than the number of cells we would find in a real tumor, we must greatly increase
the probability of mutation per generation and the magnitude of the typical phenotypic conse-
quence of a mutation, if we wish to observe a significant evolution of the phenotype. Since the
goal of this work is to examine how specific types of selection pressure contribute to the emer-
gence of specific tumor morphologies, we care more about relative rates of mutation than abso-
lute rates and the sequence of evolutionary events rather than their absolute times of
occurrence. Despite these caveats, we observe patterns of changes of cell behavior which should
be robust if we were to reduce the overall rates of mutation and increase the simulation size to
more realistic values. As long as all cells are sufficiently cohesive that they remain attached to
the primary cluster, selection favors cells with lower relative cell-cell adhesivity and higher cell-
stroma adhesivity. Because only cells with lower relative adhesivity benefit, the mean absolute
adhesivity decreases until cells are able to separate from their cluster and invade the surround-
ing tissue. To check the robustness of this evolutionary pattern to the mutation rate and ampli-
tude parameters, we varied the probability of cadherin-level and integrin-level mutation Pm
and the standard deviation δam of the Gaussian probability distribution used to select the mu-
tated cadherin and integrin expression levels (see eqs. (26) and (28)), using the same Pm and
δam for both cadherin and integrin.

For each value of Pm (from the set {0.1, 0.2, 0.3}) and each value of δam (from the set {0.5,
1.0, 1.5, 2.0}) we ran 10 simulation replicas with different random seeds. We then correlated
Pm and δam values with the typical behavior of the replicas. As we would expect, larger Pm and
δam decreased the time until the first appearance of generalized cells able to invade the sur-
rounding stromal tissue and increased the average number of clusters at a given time. Despite
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Fig 4. Evolution of typical generalized-cell cohesivity vs. time. A) Average density of cadherin (Cad) of
tumor generalized cells in arbitrary units (AU) vs. time. B) Average density of integrin (Int) of tumor
generalized cells in arbitrary units (AU) vs. time. C) Average surface tension between tumor generalized cells
and Medium vs. time.

doi:10.1371/journal.pone.0127972.g004
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these quantitative differences, the qualitative series of changes in generalized-cell and cluster
properties were independent of the mutation rate and amplitude.

Parameter Scan Methodology
To facilitate parameter scans, we developed a parameter-scan module for CompuCell3D that
automatically runs multiple replicas of a simulation over a user-defined parameter space. We
analyzed our parameter-scan results using Python scripts employing the 3rd-party tools Pan-
das (http://pandas.pydata.org/), numpy (http://www.numpy.org) and scikit-learn (http://
scikit-learn.org/).

The key to efficient management of studies which require long simulations is to store suffi-
cient information to support flexible postprocessing. Otherwise, a change to the analysis proto-
col can require time-consuming rerunning of all replicas in the entire simulation set. We
therefore store, every 1000 MCS, a summary file (a data snapshot) including each generalized-
cell’s index, type, volume, surface area, cadherin and integrin levels, and center-of-mass posi-
tion. Although a typical simulation replica has only a few hundred generalized cells at any
time, a typical run generates between 20,000 and 50,000 tumor generalized cells as cells divide
and die. In addition, generalized cells frequently change type (see Fig 1). When we approximate
generalized-cell-type-dependent metrics, e.g., the average distance generalized cells of a given
type travel over a fixed time, we bin the data for that generalized cell based on the type it had
when it first appeared in a snapshot. While a recording interval of 1000 MCS is too slow for
some types of measurement, it suffices for evolutionary changes, which happen on an even
slower time scale.

To aggregate the behaviors of multiple simulation replicas with identical Pm and δam, for
each simulation metric we used envelop plots showing the minimum, maximum, and median
metric value as a function of time. In a substantial number of cases, the behavior of a few repli-
cas differs significantly from the behavior of a typical replica (see cluster plots for e.g., Pm = 0.1
and δam = 1.0). However, none of these cases refutes our basic conclusions about the evolution
of invasive phenotypes.

Generalized-Cell-Type Populations
The number and fraction of generalized cells of each type changes with time. The number of
Necrotic generalized cells increases as the cluster grows, then decreases once generalized
cells begin to invade the surrounding tissue, see Fig 5. For Pm = 0.1, δam = 0.5 and for Pm = 0.1,
δam = 1.0 the number of Necrotic generalized cells decreases slowly, while for other combi-
nations of Pm and δam the number of Necrotic generalized cells decreases rapidly. A cluster
must contain at least one stem-like generalized cell to survive, so we expect the fraction of
stem-like generalized cells to increase as the number of clusters increases and the cluster size
decreases. The number of stem-like generalized cells increases continuously. For Pm = 0.1, δam
= 0.5 and Pm = 0.1, δam = 1.0 the number of stem-like generalized cells increases more slowly
than for other combinations of parameters (see Figs. 6 and 7). As more generalized cells devel-
op an invasive phenotype, the initial cluster gives way to many smaller clusters. Because these
clusters are small, almost all generalized cells receive sufficient glucose and the number of ne-
crotic generalized cells decreases as the number of proliferating non-stem cancer generalized
cells begins to saturate (see Fig 8). We see a clear distinction if we compare the numbers of qui-
escent (Fig 9) and proliferating (Fig 8) non-stem cancer generalized cells. Both saturate and
begin to decrease, the former as soon as a few generalized cells establish new clusters, the latter
only when small clusters fill the entire tissue.
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Fig 5. Number of Necrotic generalized cells as a function of time. In all replicas, the number of Necrotic generalized cells decreases after
generalized cells begin to invade the stromal tissue.

doi:10.1371/journal.pone.0127972.g005
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Fig 6. Number of quiescent cancer stem-like generalized cells as a function of time. In all replicas, the number of quiescent cancer stem-like
generalized cells increases in time.

doi:10.1371/journal.pone.0127972.g006
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Fig 7. Number of proliferating cancer stem-like generalized cells as a function of time. In all cases, the number of proliferating cancer stem-like
generalized cells increases in time.

doi:10.1371/journal.pone.0127972.g007
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Fig 8. Number of proliferating non-stem cancer generalized cells as a function of time. The number of proliferating non-stem cancer generalized cells
saturates and even to decrease when most generalized cells are able to invade the stromal tissue, forming numerous tumor small clusters.

doi:10.1371/journal.pone.0127972.g008
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Fig 9. Number of quiescent non-stem cancer generalized cells as a function of time. The number of quiescent non-stem cancer generalized cells
saturates and begins to decrease once a few generalized cells are able to invade the stromal tissue and the mean cluster size begins to decrease.

doi:10.1371/journal.pone.0127972.g009
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Number of Clusters
To count the number of generalized-cell clusters, we used the DBSCAN algorithm [27] in the
scikit-learn Python package (http://scikit-learn.org). DBSCAN views clusters as areas of high
density, separated by areas of low density. We defined a cluster as a group of at least five gener-
alized cells whose centers of mass are at most 6 voxels from their nearest cluster-mate (Fig 10)
and configure DBSCAN algorithm accordingly. The number of clusters increases in time once
generalized cells become able to invade the stromal tissue and establish new clusters. If we de-
fine the aggressiveness of the tumor as the rate at which new clusters develop, the aggres-
siveness increases for larger Pm and δam. For many combinations of Pm and δam, the number of
clusters eventually peaks and then decreases when medium-sized clusters split into isolated
generalized cells and transient associations of fewer than five generalized cells. We can under-
stand this second transition if we remember that the mean motility of the generalized cells in-
creases continuously in time. When this motility is too small, all of the generalized cells remain
condensed in a single cluster. For larger motilities, the large cluster breaks up into multiple me-
dium-sized clusters. However, still larger motilities lead to a second phase transition in which
all clusters become unstable, reducing the number of clusters (5 or more generalized cells sepa-
rated a COM-to-COM distance of at most 6 voxels) that DBSCAN algorithm detects. If we also
count transient associations of 2, 3 and 4 generalized cells (Fig 11) and also include isolated
generalized cells as separate clusters (Fig 12), the number of clusters increases and eventually
saturates, when it reaches the maximum the available space permits.

The surface tension between generalized cells determines whether they can invade the sur-
rounding stromal tissue. For Pm = 0.1,0.2 and δam = 0.5, the average surface tension stays posi-
tive at all times (see Fig 13). For all other combinations of Pm and δam, the average surface
tension eventually decreases below zero, after which the number of clusters rapidly increases.
The number of Necrotic generalized cells decreases a short time later. These observations
show that, even in the absence of other factors stimulating invasiveness, a high rate of cadherin
mutation enables rapid metastasis. Consequently, studies of the regulation of adhesion mole-
cules may give researchers clues to designing therapies to slow the rate of increase of tumor in-
vasiveness. Such therapies would be especially useful to patients undergoing any of the many
treatments, which can increase the invasiveness of surviving tumor tissue.

Average Lifetime and Total Travel Distance of Generalized Cells
Fig 14 shows the lifetimes for different initial generalized-cell types for different values of Pm
and δam. As we expect, Necrotic generalized cells have short lifetimes and total travel dis-
tances, so the period a generalized cell spends in necrosis has a small effect on its total lifetime
and travel distance. Quiescent non-stem generalized cells (QC) clearly have a lower probability
of dying by senescence than proliferating non-stem generalized cells, since they do not divide,
but, since quiescent generalized cells are closer to glucose-depleted regions than proliferating
generalized cells, we might expect them also to have a higher probability of entering a glucose-
depleted region and becoming necrotic, shortening their lifetime. However, in all cases, the
proliferating non-stem-like generalized cells have a shorter lifetime than the quiescent non-
stem-like generalized cells, indicating that necrosis is more important than starvation in deter-
mining their lifetime. As a result, initially quiescent non-stem-like generalized cells travel a lon-
ger total distance than initially proliferating non-stem-like generalized cells (Fig 15). Since
stem-like generalized cells do not die from senescence, but are otherwise identical in properties
to non-stem-like generalized cells, we would expect them to live longer than non-stem-like
generalized cells, and, indeed, the typical lifetime of stem-like generalized cells is several-fold
greater than that of non-stem-like generalized cells. As a result, initially proliferating stem-like
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Fig 10. Number of clusters with at least five generalized cells as a function of time. The number of clusters increases in time once generalized cells
become able to invade the stromal tissue and establish new clusters.

doi:10.1371/journal.pone.0127972.g010

AMulti-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

PLOSONE | DOI:10.1371/journal.pone.0127972 June 17, 2015 26 / 40



Fig 11. Number of transient associations of 2, 3 and 4 generalized cells and clusters of five or more generalized cells as a function of time. The
number of clusters increases continuously until it reaches the maximum the available space permits.

doi:10.1371/journal.pone.0127972.g011

AMulti-Cell, Virtual-Tissue Model of Tumor Evolution Using CompuCell3D

PLOSONE | DOI:10.1371/journal.pone.0127972 June 17, 2015 27 / 40



Fig 12. Number of isolated generalized cells, transient associations of 2, 3 and 4 generalized cells and clusters of five or more generalized cells as
a function of time. The number of clusters increases continuously until it reaches the maximum the available space permits.

doi:10.1371/journal.pone.0127972.g012
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Fig 13. Average surface tension of tumor cells as a function of time.Only simulations with Pm = 0.1 and δam = 0.5 or δam m = 1.0 have positive average
surface tension at all times. In all other cases, the average surface tension eventually drops below zero and the generalized cells invade the stromal tissue.

doi:10.1371/journal.pone.0127972.g013
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Fig 14. Average lifetime of generalized cells, by initial generalized-cell type. In each bar, the black-red boundary is the minimum generalized-cell
lifetime, the red-blue boundary is the median generalized-cell lifetime and the top of the blue portion is the maximum generalized-cell lifetime, all averaged
over all cells of the specified initial generalized-cell type and over all replicas for a given Pm and δam.

doi:10.1371/journal.pone.0127972.g014
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Fig 15. Average total distance traveled by generalized cells, by initial generalized-cell type. In each bar, the black-red boundary is the minimum total
distance, the red-blue boundary is the median total distance and the top of the blue portion is the maximum total distance, all averaged over all cells of the
specified initial generalized-cell type and over all replicas for a given Pm and δam.

doi:10.1371/journal.pone.0127972.g015
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generalized cells travel a longer total distance than proliferating non-stem-like generalized cells
and quiescent stem-like generalized cells travel a longer total distance than quiescent non-
stem-like generalized cells (Fig 15). The relationship between proliferating and quiescent stem-
like generalized cells is more complex. Since these cells generalized do not experience senes-
cence we would expect that proliferating stem-like generalized cells would have longer lifetimes
than quiescent stem-like generalized cells. We see this relationship only for Pm = 0.2, δam = 0.5,
Pm = 0.3, δam = 0.5 and Pm = 0.3 and δam = 1.0. In addition, for stem-like generalized cells, the
relative lifetimes do not strictly correspond to the total travel distances, with the longer-lived
type having a shorter total travel distance for Pm = 0.1, δam = 0.5, Pm = 0.2, δam = 0.5, Pm = 0.3,
δam = 0.5.

Conclusion
As in clinical and experimental cancer progression, simulation replicas of our model with the
same parameters can produce a range of outcomes. However, for all replicas in the parameter
range we studied, the qualitative evolution of adhesivity and initiation of metastasis agree with
experimental observations of cell-behavior evolution in tumors, with single generalized cells or
clusters of generalized cells developing high motility and detaching from the primary tumor
[19], showing that the evolutionary trend and its consequences are robust. Together, these re-
sults suggest that weakening cell-cell adhesion and strengthening cell-stromal-tissue adhesion
are primary enablers of metastasis.

Future Work
Our simple model provides an easy-to-extend framework for exploring additional determi-
nants of tumor evolution, some of which are difficult or impossible to measure or control in
vitro and in vivo. The model enables tracking of cell-scale population heterogeneity and dy-
namics, cell-lineages, fitness and selection pressures. Most importantly, it also allows prediction
of population-level drift (rates of evolution) of cell behaviors as a function of a limited number
of experimentally-accessible parameters. These predicted population-level drifts can identify
the factors most likely to promote or retard cancer progression and thus optimize cancer thera-
pies. Thus extensions of our model can provide deeper insight into what drives tumor evolu-
tion, especially when we couple signaling and metabolic network models with cell- and tissue-
behavior models. This coupling bridges the gap between molecular-scale observations and tis-
sue-scale tumor progression. e.g., in real tumors, changes in the adhesive properties of cells re-
sult from both heritable changes in the form or number of cell adhesion molecules and from
cells’ response to hypoxia in tumors [28]. We are conducting simulations to explore the differ-
ences in tissue-level phenotype of these two mechanisms, alone and in combination. We are
also simulating the effect on tumor phenotypes of variations in the fraction of stem-like proge-
ny of stem-like-cell divisions, which prior computational studies have suggested promote in-
creased agressiveness in surviving tumor tissue after therapy [21]. Adding a model of ECM
alignment due to tension forces created by the tumor cells would be another natural extension
of our model, since in in vitro experiments, cells follow aligned ECM fibers when they leave the
primary tumor [19].

Appendix: Simulation Implementation
This appendix presents the CC3D simulation implementation of the biomodels from the main
text. The listings are in CC3DML and Python.
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Generalized-Cell Type Specification
The simulation defines six generalized-cell types (Medium, proliferating non-stem (PCan-
cer), quiescent non-stem (QCancer), Necrotic, proliferating stem (PStem) and quies-
cent stem (QStem) generalized cells, which we abbreviate as M, PC, QS, N, PS, QS in the
text) (see subsection “Cells” under “Biological Components”). Table 2 defines these generalized
cell types in CC3DML:

Generalized-Cell Adhesion
Table 3 defines the generalized cells’ type-dependent initial molecular densities of cadherin
and integrin adhesion molecules:

Table 2. Generalized-cell type definitions in CC3DML.

<Plugin Name=“CellType”>
<CellType TypeName=“Medium”TypeId=“0”/>
<CellType TypeName=“PCancer”TypeId=“1”/>
<CellType TypeName=“QCancer”TypeId=“2”/>
<CellType TypeName=“Necrotic”TypeId=“3”/>
<CellType TypeName=“PStem”TypeId=“4”/>
<CellType TypeName=“QStem”TypeId=“5”/>

</Plugin>

doi:10.1371/journal.pone.0127972.t002

Table 3. Initial adhesionmolecule density definition in CC3DML.

<Plugin Name=“AdhesionFlex”>
<AdhesionMolecule Molecule=“Cad”/>
<AdhesionMolecule Molecule=“Int”/>
<AdhesionMolecule Molecule=“FN”/>
<AdhesionMoleculeDensity CellType=“PCancer”Molecule=“Cad”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“PCancer”Molecule=“Int”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“PCancer”Molecule=“FN”Density=“0”/>
<AdhesionMoleculeDensity CellType=“QCancer”Molecule=“Cad”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“QCancer”Molecule=“Int”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“QCancer”Molecule=“FN”Density=“0”/>
<AdhesionMoleculeDensity CellType=“NCancer”Molecule=“Cad”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“Necrotic”Molecule=“Int”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“Necrotic”Molecule=“FN”Density=“0”/>
<AdhesionMoleculeDensity CellType=“Medium”Molecule=“FN”Density=“16.0”/>
<AdhesionMoleculeDensity CellType=“PStem”Molecule=“Cad”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“PStem”Molecule=“Int”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“PStem”Molecule=“FN”Density=“0”/>
<AdhesionMoleculeDensity CellType=“QStem”Molecule=“Cad”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“QStem”Molecule=“Int”Density=“8.0”/>
<AdhesionMoleculeDensity CellType=“QStem”Molecule=“FN”Density=“0”/>
<BindingFormula Name=“Binary”>
<Formula>min(Molecule1, Molecule2)</Formula>
<Variables>
<AdhesionInteractionMatrix>
<BindingParameter Molecule1=“Cad”Molecule2=“Cad”>2.0</BindingParameter>
<BindingParameter Molecule1=“Int”Molecule2=“FN”>0.2</BindingParameter>

</AdhesionInteractionMatrix>
</Variables>

</BindingFormula>
<NeighborOrder>3 </NeighborOrder>

</Plugin>

doi:10.1371/journal.pone.0127972.t003
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We first define the internal adhesion-molecule names Cadherin (Cad), Integrin
(Int), and Fibronectin (FN). The AdhesionMoleculeDensity tags describe the ini-
tial concentration of adhesion molecules at the surface of generalized cells of the type specified
as a CellType attribute. In the <BindingFormula> section we specify the mathematical

formula for F Ni
m;N

j
n

� �
—see Eq (7)—as:

<Formula>min(Molecule1, Molecule2)</Formula>
In the <AdhesionInteractionMatrix> section we specify km, n, the affinity coeffi-

cients between different adhesion molecule classes. Unspecified combinations of adhesion clas-
ses have their affinity coefficient set to 0. Finally, we set Nmax in Eq (9) using the
<NeighborOrder> tag.

Glucose Transport
Since Glucose diffusion is fast compared to the rate of cell reorganization, Glucose reaches
its steady-state distribution. Consequently we set the left-hand side of Eq (15) to zero and use
the following CC3DML syntax for the CC3D steady-state diffusion solver:

Generalized Cell Health and Damage Algorithm
In the StarvationDamageAcumulator Python steppable we defineM (x), see Eq (18) as:

Table 4. Steady state diffusion solver expressed in CC3DML

<Steppable Type=“SteadyStateDiffusionSolver2D”Frequency=“10”>
<DiffusionField>
<DiffusionData>
<FieldName>Glucose</FieldName>
<DiffusionConstant>13500.0</DiffusionConstant>
<DecayConstant>0.45</DecayConstant>

</DiffusionData>
<SecretionData>
<Uptake Type=“QStem” MaxUptake=“1.69”MichaelisMentenCoef=“0.00256”/>
<Uptake Type=“PStem” MaxUptake=“2.25”MichaelisMentenCoef=“0.00256”/>
<Uptake Type=“QCancer” MaxUptake=“1.69”MichaelisMentenCoef=“0.00256”/>
<Uptake Type=“PCancer” MaxUptake=“2.25”MichaelisMentenCoef=“0.00256”/>
<Secretion Type=“Medium”>0.145</Secretion>

</SecretionData>
</DiffusionField>

</Steppable>

doi:10.1371/journal.pone.0127972.t004

Table 5. Steady state diffusion solver expressed in CC3DML

def MM(self, x, m, k):
return (m
x/(x + k))

doi:10.1371/journal.pone.0127972.t005
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For PCancer, QCancer, PStem, QStem cells, we increment their starvation and health
factors using the Python code as follows:

The ip.GluD variable stores the xthresh value for the critical glucose concentration for
PCancer cells. ip.PUgMax is the maximum uptake rate of glucose (m in Eq (18)) and ip.
GluK is the constant k in Eq (18). Similarly ip.QUgMax, ip.SUgMax and ip.QSUgMax
are the maximum uptake rates for QCancer, PStem and QStem respectively.

Generalized Cell Type Transition Algorithm
We specify the algorithm to implement generalized-cell type changes as follows:

Table 6. Python implementation of starvation and health factor calculations.

for cell in self.cellList:
if cell.type!= self.NECROTIC:
cellDict = CompuCell.getPyAttrib(cell)
pt = getCellCOMPoint3D(cell)
conc = glucoseField.get(pt)

if cell.type == self.PCANCER:
if conc < ip.GluD:

cellDict[“Starv”]+=abs(self.MM(conc, ip.PUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.PUgMax, ip.GluK))

else:
cellDict[“Health”]+=self.MM(conc, ip.PUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.PUgMax, ip.GluK)

if cell.type == self.QCANCER:
if conc < ip.GluD:

cellDict[“Starv”]+=abs(self.MM(conc, ip.QUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.QUgMax, ip.GluK))

else:`
cellDict[“Health”]+=self.MM(conc, ip.QUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.QUgMax, ip.GluK)

if cell.type == self.PSTEM:
if conc < ip.GluD:

cellDict[“Starv”]+=abs(self.MM(conc, ip.SUgMax, ip.GluK)\
else:

cellDict[“Health”]+=self.MM(conc, ip.SUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.SUgMax, ip.GluK)

if cell.type == self.QSTEM:
if conc < ip.GluD:

cellDict[“Starv”]+=abs(self.MM(conc, ip.QSUgMax, ip.GluK)\
- self.MM(ip.GluD, ip.QSUgMax, ip.GluK))

else:
cellDict[“Health”]+=self.MM(conc, ip.QSUgMax, ip.GluK)\\
- self.MM(ip.GluD, ip.QSUgMax, ip.GluK)

doi:10.1371/journal.pone.0127972.t006
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Generalized-Cell Growth and Death Algorithm
The generalized-cell growth and death algorithm can be conveniently expressed in Python
code as follows:

After each MCS, we iterate over all generalized cells in the simulation and shrink Necrot-
ic generalized cells by a constant amount (ip.decvol) provided that their volume is greater
than their current target volume (cell.targetVolume). PCancer and PStem general-
ized cells grow according to Eq (21) where ip.PGrThr0 and ip.SGrThr0 store values of
Gthresh from Eq (21) for PCancer and PStem generalized cells respectively and ip.incvol
stores the value of k from Eq (21). ip.ktgs stores the value for qs.v (see Eq (23)).

Table 7. Python implementation of cell-growth algorithm.

for cell in self.cellList:
cellDict = CompuCell.getPyAttrib(cell)
if cell.type == self.PCANCER:
if cellDict[“Starv”] > ip.PNeThr0:
cell.type = self.NECROTIC
cellDict[“Health”]=0

if cell.type==self.QCANCER:
if cellDict[“Starv”] > ip.QNeThr0:
cell.type = self.NECROTIC
cellDict[“Health”]=0

if cellDict[“Health”] > ip.QPThr0:
cell.type = self.PCANCER
cellDict[“Health”]=0

if cell.type == self.PSTEM:
if cellDict[“Starv”] > ip.SNeThr0:
cell.type = self.NECROTIC
cellDict[“Health”]=0

if cell.type == self.QSTEM:
if cellDict[“Starv”] > ip.QSNeThr0:
cell.type = self.NECROTIC
cellDict[“Health”]=0

if cellDict[“Health”] > ip.QSSThr0:
cell.type = self.PSTEM
cellDict[“Health”]=0

doi:10.1371/journal.pone.0127972.t007

Table 8. Python implementation of generalized-cell growth and death.

for cell in self.cellList:
pt = getCellCOMPoint3D(cell)
conc = glucoseField.get(pt)
cellDict = CompuCell.getPyAttrib(cell)
if cell.type == self.NECROTIC:

cell.targetVolume-=min(ip.decvol, cell.targetVolume)
cell.targetSurface = ip.ktgs
sqrt(cell.targetVolume)

if cell.type == self.PCANCER:
cell.targetVolume+=ip.incvol
max(0, conc—ip.PGrThr0)
cell.targetSurface = ip.ktgs
sqrt(cell.targetVolume)

if cell.type == self.PSTEM:
cell.targetVolume+=ip.incvol
max(0, conc—ip.SGrThr0)
cell.targetSurface = ip.ktgs
sqrt(cell.targetVolume)

doi:10.1371/journal.pone.0127972.t008
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Mitosis, Aging and Mutation Algorithms

ip.volmaxmit stores the value of the doubling volume for PCancer and QCancer gener-
alized cells whereas ip.Svolmaxmit stores the doubling volume for PStem and QStem
generalized cells. The first for loop builds a list of generalized cells to divide and division
takes place in the second for loop. In our model quiescent generalized cells do not grow how-
ever, a growing proliferating generalized cell with a volume close to doubling volume can be-
come quiescent. In this special situation quiescent generalized cell can divide.

Table 9. Python code selecting generalized cells which will undergomitosis.

def step(self, mcs):
ip = self.parameters
cells_to_divide=[]
for cell in self.cellList:

if ((cell.type==self.PCANCER or cell.type==self.QCANCER)\
and cell.volume > ip.volmaxmit)\
or ((cell.type==self.PSTEM or cell.type==self.QSTEM)\
and cell.volume > ip.Svolmaxmit):
cells_to_divide.append(cell)

for cell in cells_to_divide:
self.divideCellRandomOrientation(cell)

doi:10.1371/journal.pone.0127972.t009

Table 10. Python implementation (partial) of the updateAttributes function whichmodifies the
properties of parent and daughter generalized cells after mitosis.

def updateAttributes(self):
parentCell = self.mitosisSteppable.parentCell
childCell = self.mitosisSteppable.childCell
parentCell.targetVolume = ip.V0
childCell.targetVolume = ip.V0
parentCell.targetSurface = ip.ktgs
sqrt(parentCell.targetVolume)
childCell.targetSurface = ip.ktgs
sqrt(childCell.targetVolume)
parentCell.lambdaVolume = ip.LBD_V0
parentCell.lambdaSurface = ip.LBD_S0
childCell.lambdaVolume = ip.LBD_V0
childCell.lambdaSurface = ip.LBD_S0
parentCellDict = CompuCell.getPyAttrib(parentCell)
childCellDict = CompuCell.getPyAttrib(childCell)
if parentCell.type == self.PCANCER:

temp = random.gauss(ip.maxdiv,2)
if parentCellDict[“Counter”] <= temp:

parentCell.type = self.QCANCER # both cells are QC after mitosis
childCell.type = self.QCANCER
parentCellDict[“Counter”]+=1
childCellDict[“Counter”]=deepcopy(parentCellDict[“Counter”])
if parentCellDict[“Counter”] > temp:

parentCell.type = self.NECROTIC
childCell.type = self.NECROTIC

if parentCell.type == self.PSTEM or parentCell.type == self.QSTEM:# Stem cell
parentCellDict[“Counter”]+=1
parentCell.type = self.QSTEM # One is QS and
childCell.type = self.QCANCER # the other is QC
if random.random() <= ip.probstem: # 0.2 chance for a 2nd QS

childCell.type = self.QSTEM
childCellDict[“Counter”]=0

parentCellDict[“Starv”]=0
childCellDict[“Starv”]=0
parentCellDict[“Health”]=0
childCellDict[“Health”]=0

doi:10.1371/journal.pone.0127972.t010
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Helper CompuCell3D modules, initial conditions and basic GGH
parameters
Here we present the CC3DMLmodules which track centers of mass and monitor sets of pixels
belonging to each individual generalized cell:

As an initial condition, we single 3x3 voxel quiescent stem cell located in the middle of the
lattice:

Table 11. Python implementation of updateAttributes function (continuation of Table 10) to randomly mutate cadherin expression levels.

#getting current Cad and Int values
jcadh = self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex(parentCell,0)
jint = self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex(parentCell,1)
jFN = self.adhesionFlexPlugin.getAdhesionMoleculeDensityByIndex(parentCell,2)
#probability for mutation
if parentCell.type!= self.NECROTIC:
r = random.random()
if r < ip.probmut:

new_cadh = random.gauss(jcadh, ip.cadhstdev)
if new_cadh >= 0 and new_cadh <= 16:
jcadh = new_cadh

r = random.random()
if r < ip.probmut:

new_int = random.gauss(jint, ip.cadhstdev)
if new_int >= 0 and new_int <= 16:
jint = new_int

# setting new adhesion density for product cell
self.adhesionFlexPlugin.assignNewAdhesionMoleculeDensityVector(parentCell, \ [jcadh, jint, jFN])
self.adhesionFlexPlugin.assignNewAdhesionMoleculeDensityVector(childCell, \ [jcadh, jint, jFN])

doi:10.1371/journal.pone.0127972.t011

Table 12. CC3DML instantiation of center of mass and pixel tracker modules.

<Plugin Name=“CenterOfMass”/>
<Plugin Name=“PixelTracker”/>

doi:10.1371/journal.pone.0127972.t012

Table 13. CC3DML specification of initial generalized cell layout.

<Steppable Type=“UniformInitializer”>
<Region>
<BoxMin x=“250”y=“250”z=“0”>
<BoxMax x=“253”y=“253”z=“1”>
<Width>3</Width>
<Gap>0</Gap>
<Types>QStem</Types>

</Region>
</Steppable>

doi:10.1371/journal.pone.0127972.t013
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Finally, we specify thelattice dimensions (<Dimensions>), boundary conditions
(<Boundary_x>, <Boundary_y>), average amplitude of generalized-cell membrane fluc-
tuation (<Temperature>), neighbor range used to pick source and target voxels for the
voxel copy attempt (<NeighborOrder>), duration of the simulation in MCS (<Steps>)
and the seed for the random number generator (<RandomSeed>) in CC3DML as follows:

Simulation parameters
For completeness, Table 1 lists the parameters that generated Fig 2.
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