
!

THÈSE
Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE
GRENOBLE
prépareé dans le cadre d’une cotutelle entre
l’Université Grenoble Alpes et l’Universidade
Federal do Rio Grande do Sul
Spécialité : Informatique

Arrêté ministériel : le 6 janvier 2005 -7 août 2006

Présentée par

Stéfano Drimon KURZ MÓR

Thèse dirigée par Bruno RAFFIN
codirigée par Jean-Louis ROCH et Nicolas MAILLARD

préparée au Laboratoire d’Informatique de Grenoble dans le cadre
de l’Ecole Doctorale Mathématiques, Sciences et
Technologies de l’Information, Informatique et au Laboratoire
de Parallelisme et Distribution dans le cadre du Programme de
Doctorat en Informatique

Analyse des synchronisations
dans un programme parallèle
ordonnancé par vol de travail.
Applications à la génération
déterministe de nombres
pseudo-aléatoires.

Université Joseph Fourier / Université Pierre Mendès France /  
Université Stendhal / Université de Savoie / Grenoble INP

!

Thèse soutenue publiquement le 26 Octobre 2015,
devant le jury composé de :

M. Philippe O. A. NAVAUX
Professeur, Universidade Federal do rio Grande do Sul, Président
M. Avelino Francisco ZORZO
Professeur, Pontifícia Universidade Católica RS, Rapporteur
M. Emmanuel JEANNOT
Directeur de Recherche, INRIA, Rapporteur
M. Gérson Geraldo H. CAVALHEIRO
Maître de Conférences, Universidade Federal de Pelotas, Examinateur
M. Bruno RAFFIN
Chargé de Recherche, Université de Grenoble, Directeur de Thèse
M. Jean-Louis ROCH
Maître de Conférences, Université de Grenoble, Directeur de Thèse
M. Nicolas Bruno MAILLARD
Maître de Conférences, Universidade Federal do Rio Grande do Sul,
Directeur de Thèse

Université Joseph Fourier / Université Pierre Mendès France /  
Université Stendhal / Université de Savoie / Grenoble INP

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

STÉFANO DRIMON KURZ MÓR

Analysis of Synchronizations in

Greedy-Scheduled Executions and

Applications to Efficient Generation

of Pseudorandom Numbers in Parallel

Thesis prepared in a co-tutelle agreement

and presented in partial fulfillment

of the requirements for the degree of

Doctor of Computer Science

Advisor: Prof. Dr. Jean-Louis ROCH

Coadvisor: Prof. Dr. Nicolas MAILLARD

Porto Alegre

November 2015

CIP – CATALOGING-IN-PUBLICATION

KURZ MÓR, Stéfano Drimon

Analysis of Synchronizations in Greedy-Scheduled Execu-

tions and Applications to Efficient Generation of Pseudoran-

dom Numbers in Parallel / Stéfano Drimon KURZ MÓR. –

Porto Alegre: PPGC da UFRGS, 2015.

184 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande

do Sul. Programa de Pós-Graduação em Computação,

Porto Alegre, BR–RS, 2015. Advisor: Jean-Louis ROCH;

Coadvisor: Nicolas MAILLARD.

1. Parallel Algorithms. 2. Work-Stealing. 3. Logical

Clocks. 4. Pseudorandom Numbers. 5. Nondeterministic Ex-

ecutions. I. ROCH, Jean-Louis. II. MAILLARD, Nicolas.

III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb

Coordenador do PPGC: Prof. Luigi Carro

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

“There exists, in Math, only one situation in which two plus two is not four.

It is when the mathematician has made a mistake.”

— Edgar de Souza Mór

CONTENTS

LIST OF FIGURES... 9
ABSTRACT .. 13
1 INTRODUCTION .. 3
1.1 A Brief Survey on Parallel Programming Trends.................................... 4
1.2 Part I - The Tools of Analysis: Synchronizations in Greedy Scheduled

and Work-Stealing Scheduled Parallel Algorithms............................... 6
1.2.1 Motivation ..6
1.2.2 Contributions..7
1.3 Part II - The Product of Practice: Applications to Parallel Pseudo-

random Number Generation .. 8
1.3.1 Motivation ..8
1.3.2 Contributions..9
1.4 Outline, Conventions, and Principles .. 10
1.4.1 Outline..11
1.4.2 Conventions ..14
1.4.3 Principles..17
1.5 Institutional... 18
1.6 Closing Remarks ... 19
2 BACKGROUND... 21
2.1 Underlying Machines... 22
2.1.1 Parallel Machine Architectures...23
2.1.2 Parallel Machine Models...24
2.2 Foundations of Parallel Programming ... 25
2.2.1 Parallel Execution Model ...25
2.2.2 Scheduling ..30
2.3 The Art of Writing Parallel Programs .. 35
2.3.1 Parallelization...35
2.3.2 Middlewares: Libraries and Runtimes ..38
2.4 Closing Remarks ... 40
3 STATE OF THE ART .. 45
3.1 Analysis of Parallel Algorithms... 45
3.1.1 The Analysis of Work-Stealing Schedulers ...45
3.1.2 Potential Function Analysis..51
3.1.3 Implementation of Work-Stealing Schedulers ...54
3.1.4 Lamport’s Logical Clocks ...58
3.1.5 Current Trends on Analysis..60
3.2 Parallel Pseudorandom Number Generation... 62
3.2.1 State-based PRNGs..62
3.2.2 Counter-based PRNGs ...63
3.2.3 Deterministic Parallel Runtime ..65
3.2.4 Current Trends ...66
3.3 Closing Remarks ... 68
I The Tools of Analysis:

Synchronizations in Greedy Scheduled and Work-Stealing Scheduled Parallel
Algorithms ..69

4 SIPS.. 71
4.1 Definitions ... 71
4.2 The Minimum Clock Strategy... 74

4.3 The Random Selection Strategy.. 75
4.4 Workload Partition Schemes ... 78
4.5 Asymmetrical Parallelism.. 80
4.6 Work-Efficiency and Work-Optimality .. 82
4.7 Closing Remarks ... 83
5 CASE STUDY: ADAPTIVE ALGORITHMS

AND POLYNOMIAL EVALUATION SCHEMES............................. 85
5.1 Definition of Adaptive Algorithms .. 85
5.2 Components and Organization of Adaptive Algorithms........................ 87
5.3 A Simplified Approach .. 90
5.4 An Adaptive Polynomial Evaluation Scheme and Its Analysis 96
5.5 Simulations.. 103
5.6 Closing Remarks ... 107
II The Product of Practice:

Applications to Parallel Pseudorandom Number Generation109
6 A PARALLEL API FOR

SEQUENTIAL PSEUDORANDOM NUMBER GENERATORS –
PAR-R.. 111

6.1 Preliminary Definitions ... 111
6.2 Primary Operations... 113
6.2.1 Next..113
6.2.2 Generate ...113
6.2.3 Jump ..114
6.3 Secondary Operations ... 115
6.3.1 Constructor/Seed/Reseed...116
6.3.2 Copy/Assignment ...117
6.4 Closing Ramarks ... 118
7 DESIGN AND ANALYSIS OF

AN ADAPTIVE GENERATION ALGORITHM 119
7.1 The Naïve Version... 119
7.2 The Work-Efficient Version ... 121
7.3 The Work-Optimal Version ... 124
7.4 Closing Remarks ... 125
8 ALGORITHMS & BENCHMARKS .. 127
8.1 Environment and Runtime .. 128
8.2 Evaluation ... 129
8.3 Generate.. 129
8.3.1 Implementation...130
8.3.2 Theoretical Analysis ...130
8.3.3 Experimental Results ...130
8.4 Introspective Sort.. 132
8.4.1 Implementation...132
8.4.2 Theoretical Analysis ...135
8.4.3 Experiments..136
8.5 Maximal Independent Set: Luby’s Method... 136
8.5.1 Implementation...138
8.5.2 Theoretical Analysis ...141
8.5.3 Experiments..141
8.6 Randomized Fibonacci .. 141
8.6.1 Implementation...143
8.6.2 Theoretical Analysis ...146

8.6.3 Experiments..146
8.7 Closing Remarks ... 148
9 CONCLUSIONS ... 149
9.1 Summary, Considerations, and Advancements 149
9.1.1 Part I, SIPS..149
9.1.2 Part II, Par-R...150
9.2 Limitations .. 151
9.2.1 Part I, SIPS..151
9.2.2 Part II, Par-R...152
9.3 Future Works and Research .. 153
9.3.1 Part I, SIPS..153
9.3.2 Part II, Par-R...154
9.4 Final Remarks ... 155
APPENDICES... 157
A EXPANDED BACKGROUND.. 159
A.1 Parallel Machine Architectures .. 159
A.2 Parallel Machine Models .. 160
A.3 Parallelization... 161
A.4 Middlewares: Libraries and Runtimes.. 162
A.4.1 PThreads ...163
A.4.2 OpenMP ..165
A.4.3 Threading Building Blocks ..167
A.4.4 Kaapi ...168
A.4.5 Message-Passing Interface..172
REFERENCES .. 177

LIST OF FIGURES

Figure 2.1 Stack of background requeriments for the thesis. ...22

Figure 2.2 DAG example. ..28

Figure 2.3 Flowchart for the micro-loop on the busy-leaves algorithm.32

Figure 2.4 Flowchart for the micro-loop and nano-loop on the work-stealing algorithm.33

Figure 2.5 Fibonacci in Cilk Plus. ...40

Figure 3.1 Gantt chart for work-stealing. ..52

Figure 3.2 Linear and cactus stacks...58

Figure 4.1 Example of a global clock...73

Figure 4.2 Four parallel programs, fa, fb, fc, and fd. ...81

Figure 4.3 Execution stack and double-ended queue (deque) for fk variations.82

Figure 5.1 Procedures extract_seq and extract_par. ..89

Figure 5.2 Procedures extract_seq and extract_par, Cilk Plus version....................93

Figure 5.3 Number of successful steals of all sizes for randomized scheduler.105

Figure 5.4 Number of successful steals of all sizes for minimum clock scheduler.106

Figure 7.1 Parallel generate algorithm: naïve version. ..120

Figure 7.2 Parallel generate algorithm: work-efficient version.....................................122

Figure 7.3 Parallel generate algorithm: work-optimal version.125

Figure 8.1 Absolute time execution for Generate. ...131

Figure 8.2 Absolute time execution for Introsort. ...137

Figure 8.3 Absolute time execution for Maximal Independent Set..............................142

Figure 8.4 Absolute time execution for Fibonacci. ..147

Figure A.1 Fibonacci in PThreads (C)..165

Figure A.2 Fibonacci in OpenMP (C)...166

Figure A.3 Fibonacci in Threading Building Blocks (TBB) (C++)............................168

Figure A.4 Fibonacci in Kernel for Adaptative, Asynchronous Parallel and Interac-
tive programming (Kaapi), structured version (C++). ..171

Figure A.5 Fibonacci in Kaapi, pragma-annotated version (C).172

ACRONYMS

SPAA ACM Symposium on Parallelism in Algorithms and Architectures . . .61

PRNG Pseudorandom Number Generator . 8

BBS Blum Blum Shub . 13

SIPS Strictly Increasing Per Synchronization . 7

CSP Concurrent Sequential Processess . 42

CPU Central Processing Unit . 4

GPU Graphical Processing Unit . 23

GPGPU General Purpose Graphical Processing Unit . 159

PRAM Parallel Random-Access Machine . 25

DSM Distributed Shared Memory . 24

SMP Simultaneous Multi-Processors .4

DAG Directed Acyclic Graph . 6

SIMD Single Instruction Multiple Data. .67

SFMT SIMD-oriented Fast Mersenne Twister . 117

GPPD Grupo de Processamento Paralelo e Distribuído. .14

ENSIMAG École d’Ingénieurs Mathemátiques Appliquées Télécommunications . 18

Grenoble-INP Institut Polytechnique de Grenoble . 18

MOAIS Parallel Algorithms, Programming Models, Scheduling and Interactive

Computing . 18

LICIA International Laboratory on High Performance Computing and

Environmental Informatics . 18

MIT Massachusetts Institute of Technology . 39

CAPES Coordenação de Aperfeiçoamento de Pessoal de Ensino Superior 18

CNPQ Conselho Nacional de Desenvolvimento Científico e Tecnológico 18

UFRGS Universidade Federal do Rio Grande do Sul . 4

PPGC Programa de Pós-Graduação em Ciência da Computação 18

LIG Laboratoire d’Informatique de Grenoble . 18

UGA Université Grenoble Alpes . 4

deque double-ended queue. .9

ABI Application Binary Interface . 163

API Application Program Interface . 9

NIST The United States’ National Institute of Standards and Technologies12

LAN Local Area Network . 23

WAN Wide Area Network . 23

OS Operating System . 6

OpenMP Open Multiprocessing . 38

MPI Message-Passing Interface . 10

TBB Threading Building Blocks. .9

Kaapi Kernel for Adaptative, Asynchronous Parallel and Interactive

programming . 9

GPGPU General-Pourpose Graphichs Processing Unit . 159

SPMD Single Program, Multiple Data . 174

IO Input/Output . 174

UMA Uniform Memory Access .14

NUMA Non-Uniform Memory Access . 23

PBBS Problem-Based Benchmark Suite . 138

MIS Maximum Independene Set . 136

STL C++’s Standard Template Library . 107

TLMM Thread-Local Memory Mapping . 57

ABSTRACT

We present two contributions to the field of parallel programming.

The first contribution is theoretical: we introduce SIPS analysis, a novel approach to

estimate the number of synchronizations performed during the execution of a parallel

algorithm. Based on the concept of logical clocks, it allows us: on one hand, to deliver

new bounds for the number of synchronizations, in expectation; on the other hand, to

design more efficient parallel programs by dynamic adaptation of the granularity.

The second contribution is pragmatic: we present an efficient parallelization strategy for

pseudorandom number generation, independent of the number of concurrent processes

participating in a computation. As an alternative to the use of one sequential generator

per process, we introduce a generic API called Par-R, which is designed and analyzed

using SIPS. Its main characteristic is the use of a sequential generator that can perform

a “jump-ahead” directly from one number to another on an arbitrary distance within the

pseudorandom sequence. Thanks to SIPS, we show that, in expectation, within an exe-

cution scheduled by work stealing of a “very parallel” program (whose depth or critical

path is subtle when compared to the work or number of operations), these operations

are rare. Par-R is compared with the parallel pseudorandom number generator DotMix,

written for the Cilk Plus dynamic multithreading platform. The theoretical overhead of

Par-R compares favorably to DotMix’s overhead, what is confirmed experimentally, while

not requiring a fixed generator underneath.

Keywords: Parallel Algorithms. Work-Stealing. Logical Clocks. Pseudorandom Num-

bers. Nondeterministic Executions.

RESUMO

Análise de Sincronizações em Execuções por Escalonamento Guloso e

Aplicações para Geração Eficiente de Números Pseudoaleatórios em Paralelo

Nós apresentamos duas contribuições para a área de programação paralela.

A primeira contribuição é teórica: nós introduzimos a análise SIPS, uma nova abor-

dagem para a estimar o número de sincronizações realizadas durante a execução de um

algoritmo paralelo. SIPS generaliza o conceito de relógios lógicos para contar o número

de sincronizações realizadas por um algoritmo paralelo e é capaz de calcular limites do

pior caso mesmo na presença de execuções paralelas não-determinísticas, as quais não são

geralmente cobertas por análises no estado-da-arte. Nossa análise nos permite estimar

novos limites de pior caso para computações escalonadas pelo popular algoritmo de roubo

de tarefas e também projetar programas paralelos e adaptáveis que são mais eficientes.

A segunda contribuição é pragmática: nós apresentamos uma estratégia de paraleliza-

ção eficiente para a geração de números pseudoaleatórios. Como uma alternativa para

implementações fixas de componentes de geração aleatória nós introduzimos uma API

chamada Par-R, projetada e analisada utilizando-se SIPS. Sua principal idea é o uso da

capacidade de um gerador sequencial R de realizar um “pulo” eficiente dentro do fluxo de

números gerados; nós os associamos a operações realizadas pelo escalonador por roubo de

tarefas, o qual nossa análise baseada em SIPS demonstra ocorrer raramente em média.

Par-R é comparado com o gerador paralelo de números pseudoaleatórios DotMix, escrito

para a plataforma de multithreading dinâmico Cilk Plus. A latência de Par-R tem com-

paração favorável à latência do DotMix, o que é confirmado experimentalmente, mas não

requer o uso subjacente fixado de um dado gerador aleatório.

Palavras-chave: Algoritmos paralelos, roubo de tarefas, relógios lógicos, números pseudo-

aleatórios, execuções não-determinísticas.

RÉSUMÉ

Analyse des synchronisations dans un programme parallèle ordonnancé par

vol de travail. Applications à la génération déterministe de nombres

pseudo-aléatoires.

Nous présentons deux contributions dans le domaine de la programmation parallèle.

La première est théorique : nous introduisons l’analyse SIPS, une approche nouvelle

pour dénombrer le nombre d’opérations de synchronisation durant l’exécution d’un algo-

rithme parallèle ordonnancé par vol de travail. Basée sur le concept d’horloges logiques,

elle nous permet : d’une part de donner de nouvelles majorations de coût en moyenne;

d’autre part de concevoir des programmes parallèles plus efficaces par adaptation dy-

namique de la granularité.

La seconde contribution est pragmatique : nous présentons une parallélisation générique

d’algorithmes pour la génération déterministe de nombres pseudo-aléatoires, indépendam-

ment du nombre de processus concurrents lors de l’exécution. Alternative à l’utilisation

d’un générateur pseudo-aléatoire séquentiel par processus, nous introduisons une API

générique, appelée Par-R qui est conçue et analysée grâce à SIPS. Sa caractéristique prin-

cipale est d’exploiter un générateur séquentiel qui peut “sauter” directement d’un nombre

à un autre situé à une distance arbitraire dans la séquence pseudo-aléatoire. Grâce à

l’analyse SIPS, nous montrons qu’en moyenne, lors d’une exécution par vol de travail d’un

programme très parallèle (dont la profondeur ou chemin critique est très petite devant le

travail ou nombre d’opérations), ces opérations de saut sont rares. Par-R est comparé au

générateur pseudo-aléatoire DotMix écrit pour Cilk Plus, une extension de C/C++ pour

la programmation parallèle par vol de travail. Le surcout théorique de Par-R se compare

favorablement au surcoput de DotMix, ce qui apparait aussi expériemntalement. De plus,

étant générique, Par-R est indépendant du générateur séquentiel sous-jacent.

Mots-clef: Algorithmes parallèle, vol de travail, horloges logiques, nombres pseudo-

aléatoire, exécutions non-déterministes.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

STÉFANO DRIMON KURZ MÓR

Analysis of Synchronizations in

Greedy-Scheduled Executions and

Applications to Efficient Generation

of Pseudorandom Numbers in Parallel

Thesis prepared in a co-tutelle agreement

and presented in partial fulfillment

of the requirements for the degree of

Doctor of Computer Science

Advisor: Prof. Dr. Jean-Louis ROCH

Coadvisor: Prof. Dr. Nicolas MAILLARD

Porto Alegre

November 2015

CIP – CATALOGING-IN-PUBLICATION

KURZ MÓR, Stéfano Drimon

Analysis of Synchronizations in Greedy-Scheduled Execu-

tions and Applications to Efficient Generation of Pseudoran-

dom Numbers in Parallel / Stéfano Drimon KURZ MÓR. –

Porto Alegre: PPGC da UFRGS, 2015.

184 f.: il.

Thesis (Ph.D.) – Universidade Federal do Rio Grande

do Sul. Programa de Pós-Graduação em Computação,

Porto Alegre, BR–RS, 2015. Advisor: Jean-Louis ROCH;

Coadvisor: Nicolas MAILLARD.

1. Parallel Algorithms. 2. Work-Stealing. 3. Logical

Clocks. 4. Pseudorandom Numbers. 5. Nondeterministic Ex-

ecutions. I. ROCH, Jean-Louis. II. MAILLARD, Nicolas.

III. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Pós-Graduação: Prof. Vladimir Pinheiro do Nascimento

Diretor do Instituto de Informática: Prof. Luis da Cunha Lamb

Coordenador do PPGC: Prof. Luigi Carro

Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

3

1 INTRODUCTION

This thesis is concerned with the performance of computer algorithms written to run

on current parallel hardware. In what follows, we expect the reader to have at least a

bachelor degree’s knowledge level in Computer Science. Although no further knowledge

is mandatory, a reader with a consistent background in parallel programming and high-

performance computation is more likely to profit from the whole material.

This work is centered around concurrent algorithms, informally defined to be any al-

gorithm whose set of instructions or its subsets may execute concurrently. We define two

specializations of it: parallel algorithms, informally defined to be any concurrent algorithm

with a corresponding meaningful sequential version, and distributed algorithms, defined

to be any concurrent algorithm without a corresponding meaningful sequential version.

Examples of parallel algorithms are reduction, sorting, search, and transform. Exam-

ples of distributed algorithms are snapshot, consensus, leader election, and decentralized

scheduling. Since there is no unison position in the literature (see, for instance, (JAJA,

1992; KUMAR, 2002; CASANOVA; LEGRAND; ROBERT, 2008; HERLIHY; SHAVIT,

2008; FORUM, 2012)) about this taxonomy, we chose to define one that suits our work

and is coherent with the problems we investigate.

The discussion that follows is over the discipline of parallel programming in the sense

that the “front-end” algorithms we analyze, the applications of our principles, are parallel.

However, we also discuss distributed algorithms that manage the parallel execution — e.g.,

decentralized scheduling of parallel programs — and its analysis — e.g., logical clocks.

Given that discussion is meaningless without context — and its associated motivation

—, we examine the scenario in breadth through a brief survey on parallel programming

trends (Section 1.1). After that, we present this thesis’ two main contributions.

The first contribution is theoretical (Section 1.2): we introduce a novel approach to an-

alyze the number of synchronizations performed during a given execution of a concurrent

algorithm named SIPS. The number of synchronizations is essentially the communication

cost for a parallel algorithm, what allows one to estimate the overhead introduced by the

parallelization. Through the generalization of the concept of logical clocks in asynchronous

systems, we can deliver new worst-case bounds on these operations.

The second contribution is pragmatic (Section 1.3): we present a parallelization of

generic algorithms for pseudorandom number generation in current hardware. We ex-

plore the fact that we can “jump-ahead” on the generated sequence faster than a serial

4

generation and propose synchronization techniques to produce deterministic sequences in

parallel. Both design and analysis of these algorithms are performed using SIPS.

We introduce each topic separately, providing individual motivation and description of

the contribution. Nonetheless, the parts are abridged into a derivative sequence. The link

between the two parts is the design of the algorithms, whose efficiency and generalization

are only possible through the estimation of the synchronization bounds.

The present chapter intends to give an accurate scope for the ensuing discussion and

rationale. This scope is both semantical — regarding motivation, enlisting of problems,

and proposal of solutions — and syntactic — regarding structural premises and outlining

of contents (Section 1.4). At the end of the chapter, contextual information on the insti-

tutional relationship is provided, scoping the work in a co-direction agreement between

Universidade Federal do Rio Grande do Sul (UFRGS) in Brazil and Université Grenoble

Alpes (UGA) in France (Section 1.5).

The chapter finishes with closing remarks (Section 1.6).

1.1 A Brief Survey on Parallel Programming Trends

Programming courses first teach a student to program sequentially. First and fore-

most, it is easier to write and to maintain sequential code. Besides, until circa 2000,

sequential programs could extract the best the hardware had to offer: deep pipelines, out

of order dispatch, speculative executions, etc. With the advent of superscalar architec-

tures performance profited from parallelism in an oblivious fashion. (ASANOVIC et al.,

2009)

Explicit parallelism became mainstream with the arrival of multi and many-core hard-

ware architectures. The primary resource is the core, a processing unit. It varies in quan-

tity and type. As for quantity, it increases every day, and several resources are grouped

in processors. As for type, it makes available different sets of operations (specialized) and

speed (clock frequency or microinstructions). Resources evolve fast in shape and com-

prehension: Simultaneous Multi-Processors (SMP) are the current standard paradigm in

the implementation of a general-purpose Central Processing Unit (CPU); accelerators are

a larger set of specialized cores; vectorial machines offer single instructions over whole

vectors; Clusters (PFISTER, 1998) (resp. Grids (FOSTER; KESSELMAN, 1999)) are a

grouping of homogeneous (resp. heterogenous) machines whose resources are parallel.

Parallelism is also omnipresent in computational devices, being the default for stan-

5

dard personal computers (including laptop, desktops, workstations, etc) and in portable

computing devices, mainly smartphones and, more recently, smart watches. It is also

available in large-scale items like cars and refrigerators.

Moore’s Law (SCHALLER, 1997), viz .

“The complexity for minimum component costs has increased at a rate

of roughly a factor of two per year. Certainly over the short term this

rate can be expected to continue, if not to increase. Over the longer

term, the rate of increase is a bit more uncertain, although there is no

reason to believe it will remain nearly constant for at least 10 years.”

still dictates the growth of hardware, transistor-wise. His reasoning was based on

an empirical log-linear relationship between device complexity and time, observed over

three data points. He revised his rate of circuit complexity doubling to 18 months and

projected from 1975 onwards at this reduced rate. Today, parallel hardware conforms

almost linearly to Moore’s Law. To obtain nearly linear performance increase implies to

profit from the linear growth in the number of transistors.

Parallel hardware requires adequate software. Concurrency of resources enables simul-

taneous execution of programs and their parts. (Simultaneous executions of programs are

approached in the implementation of operating systems.) Concurrent decomposition of

single programs have several pre-requisites: suitable parallel algorithms; proper resource

management (e.g., scheduling); hardware-based scalability (performant in changing the

number of processors, cost of communication, etc); and software-based scalability (per-

formant in changing of input’s size, out-of-order execution), etc.

The overall objective of parallel software is to minimize the makespan, i.e., total

execution time. Further examination requires a differentiation between performance and

throughput (PATTERSON; HENNESSY, 2008):

Performance. Execution of a fixed set of tasks in less time. Example applications:

physical simulations, weather forecast, DNA sequencing, gaming, audio and video

decomposition.

Throughput. Execution of a larger set of tasks in same time. Example applications:

traffic analysis, swarm algorithms (bioinformatics), genetic algorithms.

The concepts correlate. (This implies correlation of the given examples as well.) Faster

algorithms allow a larger set of their kindred to run simultaneously in fixed time. Con-

versely, decomposing a program in parallel tasks (an atomic sequence of operations) allows

6

a program to run faster on larger throughput. Ergo, performance and throughput are syn-

ergic.

Expressing a sequential program as a system of disjoint components allows one to

increase both performance and throughput. Here we consider the following decomposition

outline:

1. State the problem in terms of concurrent tasks. A task is an indivisible procedure,

although it may spawn other tasks.

2. Execute the program on the given hardware, allocating ready tasks to idle workers

as the execution goes on. This is known as dynamic scheduling.

To identify sequential dependencies among tasks is much of a parallel programmer’s work

— correct parallelization must overall ensure the same semantics of the parallel version,

what is determined by respecting the dependencies. It personifies the importance of this

particular topic; the programmer is unable to profit from the performance offered by the

hardware unless he knows to decompose its programs in tasks and allocate them appro-

priately. The details of steps (1) and (2) are the objects of discussion at this thesis.

The ultimate goal of our contribution is to provide new insights in the analysis of sched-

ulers and draw performance through it in important fields, like pseudorandom number

generation.

Next, we discuss motivation and contributions of the central topics of this thesis.

The work is structured in two intersectional parts, and so we provide motivation and

contribution for each separately.

1.2 Part I - The Tools of Analysis: Synchronizations in Greedy Scheduled and

Work-Stealing Scheduled Parallel Algorithms

1.2.1 Motivation

Scenario. Many parallel algorithms that are described by a set of tasks rely on

a greedy scheduler to maximize processor utilization and throughput: at any time each

resource is performing an operation, either one from the parallel algorithm or one from the

scheduling algorithm. Among greedy schedulers, a non-preemptive task scheduler (not to

be confused with an Operating System (OS) process/thread scheduler) maintains a pool of

tasks; when a processor is idle it extracts some task from the pool and executes it. This

distributed algorithm is described by a Directed Acyclic Graph (DAG) (CASANOVA;

7

LEGRAND; ROBERT, 2008), where every node represents some task, and a directed

edge represents some precedence. A task is ready when all its predecessors in the DAG

are complete. The DAG begins with all tasks in it. When the program executes a task

the corresponding action on the DAG is to remove it and all its outgoing edges. The

implementation has to specify the scheduling operations a processor performs when it

completes its current task or creates a new ready task.

Scientific Gap. Classical analysis considers a fixed DAG for the same algorithm and

input (LEISERSON, 2009; FRIGO; LEISERSON; RANDALL, 1998; FRIGO et al., 1999;

ARORA; BLUMOFE; PLAXTON, 1998; BLUMOFE, 1994; BLUMOFE; LEISERSON,

1999; TCHIBOUKDJIAN et al., 2010). However, algorithms may be random or work on

the top of random parts and certain events can occur in an unpredictable order within

concurrent algorithms. Besides, the number of processes in the concurrent algorithm is

fixed to the number of computing resources (or cores), based on a one-to-one mapping of

processes to resources. The Classical analysis provides loose bounds in these cases. Our

work aims to fill this gap.

1.2.2 Contributions

We present Strictly Increasing Per Synchronization (SIPS) analysis. It is used to

analyze the number of given specific operations performed by a concurrent algorithm.

The idea of SIPS already existed prior to this thesis by the unpublished works of Jean-

Louis Roch and the MOAIS Team (ROCH, 2012). Besides organizing and presenting the

concept of SIPS, this thesis delivers a new analysis of expectation and the associated

upper-bounds for the number of synchronisations on parallel computations through SIPS

clocks. It also validates these and previous bounds over the parallel middleware Cilk

Plus and a discrete event simulator written by ourselves to emulate other middlewares’

behavior.

Contrary to classical analysis, SIPS assumes a parallel architecture with an unbounded

number of workers and resources (eventually heterogeneous) and a non-deterministic

DAG. Classical measurement on the field is based solely on the work (total number

of operations) and the depth (number of operations that must run sequentially) of a par-

allel algorithm. This limits a given DAG to be dependent only on the input and not

on execution parameters. Thus, the graph must be fixed for a particular input, neither

allowing random components nor dynamic, adaptable — architecture-wise — algorithms.

8

SIPS is based on the idea of using upper-bounds on logical clocks to deliver an upper-

bound on the number of operations performed either by the parallel algorithm or by the

scheduler. In fact, it is especially useful in upper-bounding the synchronization operations

between workers. This allows us to deliver new bounds for algorithms scheduled by the

randomized work-stealing scheduling algorithm. It is also especially useful in the analysis

of adaptive algorithms, which may dynamically change based on execution parameters.

As a guiding example, we propose an adaptive implementation of polynomial eval-

uation by Horner’s Method (KNUTH, 1997b). Parallel implementations of polynomial

evaluation are usually based on a less efficient method named Estrin’s (ESTRIN, 1960).

We use SIPS do demonstrate that our proposed implementation is more efficient in both

total number of operations performed and parallel overhead introduced. Finally, we show

how the analysis can be used to design more efficient algorithms, which is used to write

efficient random number generators on the second part of the thesis.

1.3 Part II - The Product of Practice: Applications to Parallel Pseudorandom

Number Generation

1.3.1 Motivation

Scenario. Dynamic multithreading is a parallel programming model that provides

a (thread-based) processor-oblivious framework, where keywords enable parallelism on

the serial code without any reference to the number of available processors. A non-

blocking randomized work-stealing scheduler manages the execution. Dynamic-scheduled

multithread platforms guarantee deterministic computations, despite the intrinsic non-

determinism introduced by the scheduler. Nonetheless, this guarantee is not extended

to the parallel execution, what breaks determinism in state-based components. Such is

the case of Pseudorandom Number Generators (PRNGs) (BARKER; KELSEY, 2012).

Sometimes called “quasi-random number generator” or “random bit generator”, a PRNG

is a stream-based structure that provides random numbers deterministically from a given

initial seed. It is useful to ensure reproducibility to random experiments and also in the

debugging of randomized algorithms.

Scientific Gap. State-of-the-art PRNGs for dynamic multithreaded environments

overcomes the lack of determinism guarantees in work-stealing schedulers by fixing a tai-

lored generation algorithm, trading-off particular generator properties (e.g., randomness,

9

cryptography, regularity, etc.) for performance.

1.3.2 Contributions

As an alternative to fixed implementations for parallel PRNGs, we propose a generic

parallel Application Program Interface (API) called Par-R. It is designed with the upper-

bounds on work-efficient algorithms obtained by SIPS in mind and ensures deterministic

parallel executions on dynamic multithreading platforms. Par-R uses as underlying engine

a sequential PRNG named R, state or counter-based, and inherits its qualities without

compromising parallel efficiency. This is done through the discipline of generic program-

ming (STEPANOV; MCJONES, 2009), which allows us to write one algorithm that works

for a family of types. Its main insight is the use of R’s capability of “jumping-ahead” in

the generated stream to ensure determinism; the application partitions the random se-

quence on-the-fly among the parallel tasks, and each task re-seeds its PRNG through

a jump-ahead to generate only random numbers belonging to its subsequence. To en-

sure efficiency, these re-seeds occur only when triggered by a steal operation performed

by the work-stealing scheduler. We prove through SIPS analysis that this method in-

troduces an overhead upper-bounded by the parallel work (work-efficiency) even when

efficient jump-ahead is absent, and that the theoretical re-seeding overhead is polylog-

arithmic (work-optimality) whenever R provides at least logarithmic jump operations in

the random sequence.

The core benefit of Par-R is its performance. Because the determinism overhead is only

“paid” at steal operations, our SIPS-based theoretical analysis shows that in expectation

it does not occur many times. Otherwise, the introduced overhead is adaptively mitigated

by the available parallelism. Par-R can be used as a component in parallel libraries both

because of its generic requirements and because its operations do not produce side-effects,

by design. Benchmarks are taken over classical random algorithms like Musser’s Introsort

(MUSSER, 1997) or Luby’s Maximum Independent Set (FERREIRA; SCHABANEL,

1999).

Par-R is compared with the stateful PRNG DotMix, written for the Cilk Plus dynamic

multithreading platform. DotMix supports infinite simulations, but requires any execution

to match the same DAGs and produces side-effects. Par-R does support non-deterministic

DAGs, but only finite computations. Also contrary to DotMix — whose implementation is

fixed —, our approach can be made secure by using underlying cryptographic generators.

10

The polylog overhead of Par-R compares favorably with the linear cost of DotMix re-

seedings.

The core limitation of Par-R is its dependency on an estimation of how many ran-

dom numbers are to be generated. This imposes a narrower range of useful algorithms

benefiting from it, although the range is not narrow itself. Examples go from generating

algorithms — e.g., static generation, stream-based generation — and finite step algo-

rithms — e.g., genetic algorithms for crossing over — to selection-based algorithms —

e.g., randomized quicksort, maximal independent set, Monte-Carlo. Graph algorithms

are especially suitable for this kind of approach. As we will see, one can frequently rely

on overestimation of the generated numbers to benefit from Par-R. The performance gain

usually surpasses the introduced overhead.

1.4 Outline, Conventions, and Principles

Present work is a thesis by monograph, in opposition to a thesis by publications.

Notwithstanding, there are two relevant publications associated with it:

2011. In “International Journal on High Performance Systems Architecture”: Dynamic

workload balancing deques for branch and bound algorithms in the message passing

interface (MOR; MAILLARD, 2011). This is a paper that follows the preliminary

thesis plan delivered to UFRGS — the Ph.D. studies begun during the second

semester of 2010. The proposal’s theme is the development of an “algebra of tasks”

whose sequential dependencies are given by the semantics of classical data structures

like lists, sets, and priority queues — a “container” in our terminology. We present

in the paper the first container implementation, a library where the container of

tasks defined by the programmer is a queue. The balancing of work between each

process queue without the programmer’s intervention is discussed. Profiting from

a ring structure offered by the distributed memory runtime (an implementation of

the Message-Passing Interface (MPI)), the analysis of the steals is somewhat easier

than the general case, but yet it provides useful bounds and guarantees on the

expected number of retries. It shows, in this context, that if any steal of workload

performed by the scheduler is unsuccessful, then the computation will end in finite

time proportional to the number of processors.

2014. In “Euro-Par 2014 Parallel Processing - 20th International Conference”: Generic

Deterministic Random Number Generation in Dynamic-Multithreaded Platforms (MOR;

11

ROCH; MAILLARD, 2014). This is a condensed version of this thesis. The focus

is to present the results obtained in Part II. However, a good part of it is dedicated

to introducing a narrower version of SIPS named “synchronization counters”. This

summarized content is employed to justify the design of the algorithms and their

analysis since it is built on the top of Part I.

The 2011 paper was planned as the first one in a series, each covering a different data

structure (container). However, this work was not feasible with the bounds for synchro-

nization operations the literature provided at the time. A more general framework was

needed to encompass the analysis. In this sense, a more ambitious goal was traced to the

advent of international co-direction, shifting the focus to the analysis of synchronizations

in parallel executions and the applicability of those bounds to the design of algorithms.

Once this work reaches full maturity, we will be able to review and analyze the algebra

of tasks concept once again.

1.4.1 Outline

Besides this introductory chapter, two other ones compose our core concepts. They

discuss fundamental concepts — along with their associated vocabulary — and current

literature on the subject. A chapter-by-chapter description follows.

Chapter 2. Background. A chapter that discuss parallel programming concepts. Con-

tents are arranged in a stacked sequence ranging from parallel machine architectures

at the bottom to parallelization of algorithms on the top. The chapter approaches

topics such as parallel machine models, programming artifacts, DAG, and schedul-

ing.

Chapter 3. State Of The Art. Lists and discusses related works both in the analysis

of parallel algorithms (theme of Part I) and advances on pseudorandom number

generators (as seen in Part II). We use this discussion to establish comparison cri-

teria between our methods and up-to-date literature. Implementation factors are

discussed whenever possible.

Two self-contained chapters compose the first part. First, at the central chapter of

the thesis, we develop our solution to a class of generalized problems. Then, we present

the concept of adaptive algorithms and show how SIPS analysis can be used to estimate

their overhead:

12

Chapter 4. SIPS: A Technique to Analyze Synchronizations in Greedy Scheduled Algo-

rithms. We introduce SIPS, an analysis framework that aims to bound different

aspects of a parallel program’s execution through an upper-bound on the num-

ber of synchronizations. The focus is computations scheduled by the work-stealing

algorithm. Distinct modalities on victim selection are analyzed, such as global min-

imum/maximum SIPS value and random choice. Also, the bounds bridge diverse

extraction methods from victim’s work list, like top-most task, half of tasks, and

any k tasks. Finally, two classes of adaptive algorithms are introduced in respect to

the inserted overhead, work-efficient and work-optimal algorithms.

Chapter 5. Case Study: Adaptive Algorithms and Polynomial Evaluation Schemes. We

discuss adaptive algorithms, capable of changing themselves dynamically, providing

efficiency by combining parallel and sequential implementations over the available

resources. The rationale is traced over Horner’s Method, the most efficient known

algorithm for polynomial evaluation. We show that an adaptive version of it is

usually more efficient than classical implementation for parallel evaluation.

Part II is composed of three chapters that, although coherent, are not self-contained,

since they depend on the analysis methods discussed in Part I. Its primary concern is

to establish the basis and develop algorithms for parallel generation and the family of

algorithms built on the top of it:

Chapter 6. A Parallel API for Sequential Pseudorandom Number Generators - Par-R.

We introduce an API for state-based generators named Par-R. This embodies the

basis for the programmable artifacts used to provide a stream of random numbers in

parallel. Each design is modelled for maximum flexibility and mirrors current stan-

dards in diverse areas such as pragmatical implementation — e.g., C++ standard

library (PLAUGER et al., 2000) — and specifications — e.g., The United States’

National Institute of Standards and Technologies (NIST) directives (BARKER;

KELSEY, 2012). By the advent of generic programming and adaptor interfaces,

we are able to provide compile-time dispatch for a vast myriad of state of the art

generators orthogonally to our algorithms. Considerations about the asymptotic

complexity of the primitives are also displayed, being essential for the design of al-

gorithms presented in the next chapters. An interface for the sequential generating

algorithm is also shown.

Chapter 7. Design and Analysis of an Adaptive Generation Algorithm. We use SIPS to

13

design and analyze an adaptive generation algorithm. The algorithm relies on an

API named Par-R to use any sequential PRNG implementing R as the underlying

generator. The main feature we explore is the ability of a given sequential pseudo-

random number generator to jump ahead n terms on the generated stream of random

numbers to directly produce term n + 1 at least as fast as the successive genera-

tion of n numbers before generating term n + 1. Whenever the adaptive algorithm

changes from sequential to parallel implementation, what occurs on successful steals

performed by the scheduler, a jump is performed for pairing the disjoint sequences

between workers. Thanks to bounds provided by SIPS we are able to build two fast

algorithms: one work-efficient, when the provided jump complexity is linear, and

one work-optimal, when the jump complexity is at least logarithmic.

Chapter 8. Algorithms & Benchmarks. This chapter provides experimental evidence

that the asymptotic limits shown previously do not excessively penalize the exe-

cution with their hidden constants and if they are competitive with state of the

art parallel PRNG DotMix. DotMix relies on pedigrees, thread-unique numerical

labels, a feature its authors persuaded Intel to include in its Cilk Plus parallel

framework implementation. We compare our generic solution with a tailored de-

sign and reason about the abstraction penalty of using generic PRNGs. Along

with parallel generation we implement other adaptive algorithms: introspective

sort (MUSSER, 1997), randomized Fibonacci (LEISERSON; SCHARDL; SUKHA,

2012), and a maximal independent set of vertices in a graph (FERREIRA; SCHA-

BANEL, 1999). As sequential underlying generators we use Boost Library versions

for classical Mersenne Twister (HARAMOTO; MATSUMOTO; L’ECUYER, 2008),

Tausworth (L’ECUYER, 1996), and Linear Congruential (KNUTH, 1997b), along

with our own implementation for the crypto generator Blum Blum Shub (BBS)

(BLUM; BLUM; SHUB, 1986). SIPS is used to analyse the algorithms in work-

efficient and work-optimal versions (when the generator is suitable) and a direct

makespan comparison is made against DotMix, with a competitive performance.

The thesis ends with a conclusions chapter:

Chapter 9. Conclusions. We summarize the thesis and trace correlations between its

topics and our current research. Points for improvement are delimited and, from

those, future works are established, like unification of work-efficient and work-

optimal algorithms into a single procedure, the development of a theory for semi-

14

associative operations, or combining our solutions with the use of pedigrees from

DotMix. Finally, we take a position about future trends in the area.

Finally, there is an appendix:

Chapter A. Expanded Background. This appendix expands Chapter 2. The informed

reader may skip its parts in conformance to his previous knowledge on the topic. Its

contents are aimed at the reader not familiarized with multithreaded parallel pro-

gramming and scheduling theory. It details concepts that while not wholly pertinent

to the contents in depth, may be useful when analyzing the topics in breadth.

All chapters present a brief introduction to their theme and outline at the beginning

and a section called “Closing Remarks”, summarizing its contents, at the end. Some

chapters will have an extended closing remarks section, which expands and comments the

bibliographical references on that chapter on a historical and interconnected perspective.

This optional extension is aimed at giving the reader contextual inspection of the chapter’s

content.

1.4.2 Conventions

All experiments in the chapters ahead are performed on a machine called “Turing”. It

is an Uniform Memory Access (UMA) machine owned by the Grupo de Processamento

Paralelo e Distribuído (GPPD) (UFRGS, Brazil):

• Operating System: Linux 3.2.0-40-generic #64-Ubuntu SMP x86_64.

• CPUs: Intel Xeon X7550 2GHz ×32 (2 thread per core), data cache of 32K, instruc-

tion cache/levels of 32 KB/256 KB/18,432 KB.

• Memory: 132,018,988 KB.

Benchmarks are written in C++11. The language is widely used to write multi-

core/multithreaded middleware, like Cilk, OpenMP and Threading Building Blocks, all

discussed ahead. The concepts are not directly presented in C++11 to spare the reader

from unimportant implementation details. Instead, we use a dialect derived directly from

it. This dialect will be presented gradually, guided by use. Nonetheless, all language-

specific resources are also readily available in C++11, and the code runs over an updated

C++ compiler as long as adequate macros are provided. Deriving C++ allows us to

implement efficient yet abstract algorithms. This way, it enables us to reason accurately

about the impact of the algorithms in actual machines, compiler-wise and architecture-

15

wise, without losing abstraction facilities.

We employ generic algorithms, procedures around a family of types with standard

mathematical properties, to glue together different components of the program. Through

generic programming, efficiency and further desired properties are kept whenever the

middleware fulfills a (rather small) set of requirements. It provides orthogonality between

data types and algorithms by removing type constraints in favor of “concepts”, a family of

types. A concept is defined as a set of requirements to a type. Fundamentally, concepts

are to types what types are to values. By correctly specifying a concept — e.g., “bi-

nary integer” — we make our algorithms support a myriad of types like int, long int,

gmp_int, etc. (This is the base rationale to define a generic API at Chapter 6).

As example of code writing, let us examine the implementation of the calculus of the

n-th term on Fibonacci’s sequence, {0, 1, 1, 2, 3, 5, 8, . . . , }. In it, each term is the sum of

the two previous, except for the two first ones; the zeroth term is zero, and the first term

is one. A recursive naïve implementation:

1 concepts <Integer N>
2 fib (N n) -> N
3 // precondition : n >= N (0)
4 {
5 if (n < N (2)) return n ;
6 N x = fib (n - N (1)) ;
7 N y = fib (n - N (2)) ;
8 return x + y ;
9 }

10

This listing:

1. On line 1 declares a concept called Integer, modeling integer numbers, and states

N as the concrete type with operations defined by integer arithmetic. That means

the user can invoke the function with any type for N as long as it has defined:

• assignment (in terms of copy construction),

• total ordering,

• integer arithmetics.

It is valid for types like int, short int, and char and even for objects like mpz_t,

the integer type of large number library GNU GMP. The return type of the function

is deduced at compile time because it is the same of at least one of the parameters.

A user simply do something like { int a = 5 ; int b = fib (a) ; } and the

compiler generates code identical to the one we wrote, but without the first line and

with all occurrences of N replaced by int. (This mechanism is the same as C++’s

16

template for the familiarized reader.)

2. On line 2 declares the function signature itself. Its name is fib, receives as parameter

(by value) a value named n of integer type N and returns an unnamed value also of

integer type N. In mathematical notation, fib : N→ N .

3. On line 3 declares its preconditions, i.e. the facts over the inputs that must be

true in order to allow the algorithm to work properly. (It is possible also to declare

postconditions — that always hold after the algorithm ends — and invariants —

that are always true during the execution of the algorithm.) The declarations are

made in form of comments because even though some conditions are easy to assert

on runtime (e.g., “is positive”’), others are impossible (e.g., “has inverse”) or could

demand exponential time (e.g., “is prime”). All preconditions must be true for the

algorithm to work properly (it is assumed a logical conjunction between precondi-

tions). Whenever a program violates a precondition, the correspondent behavior is

unpredictable. At this instance, it would return the value without any calculation

— whether this is useful or not is at judgment of the programmer. The example at

hand could demand a NonNegativeInteger instead of Integer as a concept, but

it would not allow the program to use types that allow negative values — like int

— even if we used only its positive values. In this case we exchange a small degree

of safety for a large amount of flexibility. This is a general rule we follow to accept

as many types as possible.

4. On lines 4 to 9 lies the de facto implementation. Line 5 returns the index itself if

the input is zero or one, because the index and value coincide in this case. The N(2)

is a type casting (written in a function call style) that will convert the input from

whatever type the compiler assumes for the literal 2 and returns the correspondent

value on the integer type N in compile time. We avoid implicit casting both because

its rules are complex — sometimes inconsistent — and because this enables us to

describe algebraic structures — e.g., we may write the neutral element of monoid

type T as T(0). Lines 6 and 7 declare two variables of integer type N and initializes

it with the correspondent recursive Fibonacci calculations. The compiler does not

perform an assignment in this case (unless the programmer re-defines operator =)

but uses copy construction to calculate the value “in-place”. Finally, on line 8 the

value is returned by copy, unless the compiler finds out it is safe to return the value

directly on an eventual target variable — e.g., when the function appears on the

right side of an assignment.

17

We count on abstract code to be converted into concrete, parametrized code at compile

time. This implies in no overhead to the execution.

The presented algorithms and data structures are independent of the multicore middle-

ware. Few underlying primitives are necessary, all present in current libraries. Nonethe-

less, those primitives can be easily abstracted.

1.4.3 Principles

This work follows a set of principles, sorted by order of precedence:

Reproducibility. All results and methodologies must be reproducible by the reader. All

source code, libraries, binaries and manuscripts are readily available to download

at <http://www.inf.ufrgs.br/~sdkmor/Thesis>. Besides the program, a set of cor-

rectness tests and benchmarks is also provided. In addition, third-party libraries

for statistical evaluation of results provides transparency; e.g. the GNU R scripts

are also available.

Focus on performance. Execution time (in number of operations or physical time) is

the primary criteria for comparison. We compare absolute time against relative time

whenever possible.

Faithfulness. A parallel program should respect the semantics of the sequential version

whenever possible. It is allowed to deviate in exceptional cases, e.g., associativity

for parallel reduction may not be required in sequential. This includes (but not re-

stricts to): side-effects or their absence; interfaces; parameters and output format;

determinism from outputs and execution. Parallel code shall be made as simple as

possible, introducing the smallest possible set of changes to the sequential program-

ming source code. The notion of elision code is useful; if one removes parallelism

directives what remains is valid sequential code. It is implemented in multithreaded

middlewares OpenMP and Cilk Plus through compiling directives.

Abstractness. The algorithms should perform over a set of similar types whenever those

types provide the required mathematical properties. For instance, integer-based al-

gorithms should run over any types defined over integers’ arithmetic, like short int

or size_t of C or Integer of Java.

Efficiency-wise, we follow the sub-principle that one shall not pay for resources it does

not use. This guides our designs in various ways that will be detailed at the proper

http://www.inf.ufrgs.br/~sdkmor/Thesis

18

time. For instance, no parallelism overhead on sequential execution, even for parallel

code (in implementation of adaptive algorithms); overhead is moved to operations on the

critical path and not on parallel work (the work-first principle); and lock-free (HERLIHY;

SHAVIT, 2008) implementations are always preferable.

1.5 Institutional

This thesis is directed by joint supervision between the Brazilian university UFRGS

and the French university UGA. It is directed by

• Nicolas Maillard, PhD., academic and administrative director at the Brazilian side.

Associate Professor/Researcher at Programa de Pós-Graduação em Ciência da Com-

putação (PPGC) / UFRGS. Head of International Relations Office at UFRGS and

co-director of the International Laboratory on High Performance Computing and

Environmental Informatics (LICIA).

• Jean-Louis Roch, PhD., academic director at the French side. Associate Profes-

sor/Researcher at École d’Ingénieurs Mathemátiques Appliquées Télécommunica-

tions (ENSIMAG) / Institut Polytechnique de Grenoble (Grenoble-INP). Project

Leader of the Parallel Algorithms, Programming Models, Scheduling and Interactive

Computing (MOAIS) Team, associated to Laboratoire d’Informatique de Greno-

ble (LIG), INRIA and UGA.

• Bruno Raffin, PhD., administrative director at the French side. Research Scientist

(CR1-HDR) at MOAIS Team, associated to INRIA.

The thesis is written in the context of a long-lasting relationship between French and

Brazilian laboratories in Porto Alegre/Brazil and Grenoble/France. This partnership

was consolidated in 2010 with the creation of LICIA, a joint laboratory between the

two countries for qualification and mutual scientific cooperation between researchers from

both sides.

The work was funded by three distinct scholarships throughout its development, from

several agencies:

2010-2011. Doctoral scholarship from Coordenação de Aperfeiçoamento de Pessoal de

Ensino Superior (CAPES)/Brazil.

2011-2012. Doctoral scholarship from Conselho Nacional de Desenvolvimento Científico

e Tecnológico (CNPQ)/Brazil.

19

2012-2013. Doctoral scholarship from The French Ministry of Foreign Affairs and Inter-

national Development/France (Eiffel Excellence Scholarship Programme).

2013-2014. Doctoral scholarship from CNPQ/Brazil.

We thank Brazilian agencies CAPES and CNPQ for the support. It is highlighted

that the student was selected as an Eiffel Laureatte from the Eiffel Excellence Scholarship

Program, awarded by the French government, that we also thank.

Finally, several research missions Brazil-France were taken during the Ph.D. thanks

to funding of two projects:

• Équipes Associées. From INRIA, provides funding to INRIA teams in order to

interact with high-level laboratories around the world.

• High-Performance Computing for Geophysics Applications (HPC-GA). The HPC-

GA project gathers an international, multidisciplinary consortium of leading Eu-

ropean and South American researchers featuring complementary expertise to face

the challenge of designing high-performance geophysics simulations for parallel ar-

chitectures.

1.6 Closing Remarks

Most of our assertions over the evolving of parallel computing until the beginning of the

decade is corroborated by a famous six-year-old paper from Asanovic et al. (ASANOVIC

et al., 2009). It states, in its introduction, that prior to 2009 an implicit contract existed

in which programmers would keep sequential semantics in exchange for an increase in the

performance guaranteed by hardware people. Transistor number and power consumption

would be neglected in favor of this “gentlemen’s agreement”. This paper not only gave

an accurate view of parallel programming up until 2009 but also assembled a forecast of

what would come for the next five to ten years after its publishing.

This chapter restates the current hardware trend to be still following Moore’s Law.

It was stated in the 19 April 1965 issue of Electronics magazine, within the article

“Cramming more components onto integrated circuits.” by Gordon E. Moore, director at

Fairchild Semiconductors. He was asked to predict what would happen over the next 10

years in the semiconductor components industry. His article speculated that circa 1975

it would be possible to cram as many as 65.000 components. Robert Schallar performs

an in-depth analysis of the impact of Moore’s Law in a 1997 paper (SCHALLER, 1997).

20

At p. 58 of this document there is a discussion about Moore’s Law uniqueness and pos-

sible applications to other fields or knowledge, with an insightful comparison to aerial

transportation. The paper also explains, in p. 54, the log-linear extrapolation done by

Moore.

The discussion issued at the end of the parallel computing survey section about syn-

ergy between performance and throughput is discussed in the book by Patterson and Han-

nesy (PATTERSON; HENNESSY, 2008) when arguing about processor pipelines on Sec-

tion 4.5 — where the term “speed-up” (not to be confused with the speedup concept

defined on Chapter 2) is used interchangeably with the term “performance”. Their “laun-

dry” analogy for pipelining is insightful in illustrating the differences between the concepts.

The third edition of the book took the question in depth, proposing an elucidating exercise

on the differentiation between performance and throughput and showing their synergy.

Generic Programming is a facility approached in details by Stepanov and McJones

in their 2009 book, Elements of Programming (STEPANOV; MCJONES, 2009). The

most influential chapters in this thesis are the first, Foundations, because of the notion

of Regularity; the second, Transformations and Their Orbits, because of the unexpected

link between fixed-point functions and PRNGs; and the sixth, Iterators, because it is

how we describe a polynomial on Chapter 5 and a list of random numbers in Chapter 7.

We do not employ its theory in full range, but we too use a simplified version of a

real programming language to expose implementations and on the writing of algorithms

in terms of conceptual types. Not only it abstracts the reader from details like the

number of bytes of a floating point type, but it also exposes the mathematical underlying

concepts that the algorithm requires to work properly. Nevertheless, we must state that

abstracting these concepts is not at the price of losing efficiency. On the contrary, since

type instantiation is made at runtime, the implementations have equivalent performance

to hand-written code with a given target type. Also, by using a subset of C++ we

can discuss architectural influences on implementations and necessary optimizations a

compiler is supposed to apply.

21

2 BACKGROUND

This chapter provides mandatory background concepts on concurrent programming for

the topics discussed next. Here we discuss the scenario on which we operate, introducing

topics like parallel machine models, programming artifacts, DAG, and scheduling. At

each section, we begin by picking the interesting concepts the reader should have in mind

to progress in the thesis and expand it in a comprehensive yet trimmed fashion.

A stack-based approach walks from parallel machine architectures at the bottom to

parallelization of algorithms on the top. The concepts are layered as displayed in Fig-

ure 2.1. Each layer is connected to the other by an abstraction level, where the concept

at the bottom provides primitives and hide implementation details from the top. On the

right side, we have domains, displayed as stacked boxes, each corresponding to a subsec-

tion of this chapter. The domains are grouped in sections, two-by-two, represented by

linked edges named accordingly.

The first part (Section 2.1), Underlying Machines, describes the parallel hardware,

both physically (Parallel Machine Architectures) and logically (Parallel Machine Models).

We focus on streamlined concepts to the standard reader of concurrent programming-

focused works. This topic is expanded in further details to the less familiarized reader on

Appendix A.

The second part (Section 2.2), Foundations of Parallel Programming, provides uni-

formity of notation for the execution of parallel programs (Parallel Execution Models)

and the central problem (Scheduling) for the reasoning ahead. Since the definitions in it

correspond to the axioms employed on Chapter 4, the respective blocks are marked with

bold lines.

The third part (Section 2.3), The Art of Writing Parallel Programs, contains classical

parallelization techniques for sequential algorithms (Parallelization) and a description of

the selected parallel runtime to display our rationale, Cilk Plus (Middlewares and Run-

times). Both topics are not stacked because there is no hierarchical coupling; it is funda-

mental for a programmer to combine parallelization techniques and a chosen middleware

in harmony. A brief description of the most popular parallel programming frameworks

(middlewares) and further information on parallelization is available on Appendix A.

Although the Algorithms domain should also be described in the third section, being

the central part of the thesis, it is progressively developed in the remaining chapters —

for this reason, it is marked with dashed lines.

22

Parallel Machine Architectures

Parallel Machine Models

Algorithms

Parallel Execution Model

Scheduling

Underlying Machines

Foundations of Parallel Programming

Parallelization Middlewares

The Art of Writing Parallel Programs

Figure 2.1: Stack of background requirements for the thesis. Bold lines denote mandatory
reading. Dashed lines denote concepts expanded in further chapters.

The chapter ends with a more detailed bibliographical analysis of its contents (Sec-

tion 2.4).

Henceforward the domains are discussed in bottom-up order.

2.1 Underlying Machines

The fast evolution of hardware requires abstractions to be used in scalable software.

First, one elaborates ideas over theoretical virtual machines that should hold properly

in real machines. Second, one shows empirically that its solution indeed keeps desired

properties, like correctness and performance. Algorithms to be decoupled from the un-

derlying hardware results in facilities for abstraction. Nevertheless, software does not run

in thin air. Abstraction and performance are not by all means dichotomic, even if not

always simultaneously optimal. To achieve efficient abstractions, however, implies know-

ing implementation details. Thus, even abstracted parallel algorithms need to consider

elementary aspects of their underlying structure. For this reason, we start background

analysis by a taxonomy of parallel hardware. We then generalize the device concepts in

an (implied) theoretical machine that allows efficient abstraction.

23

2.1.1 Parallel Machine Architectures

Parallel machine architectures are the lowest level of our hierarchy, being the hardware

on which we operate.

We work over shared-memory MIMD, following Flynn’s taxonomy (FLYNN, 1972).

General-purpose machines are usually built around one or more multicore processors.

(Nowadays, not only the CPU but also the Graphical Processing Unit (GPU) and ac-

celerators fall in this category.) Shared-memory communication subtracts much concern

about remote memory access, latency, and protocols that are not related to the techniques

we want to display.

MIMD machines specialize in two types (PACHECO, 2011):

Shared Memory. There is one global memory shared by all processors. In the case of

SMP, identical interconnected processors share the same memory, although each

one may possess its own private cache. Access time subdivides the class. UMA

machines deliver the same access time for any memory location. It is the case

of Multiprocessor Systems (MPSoC) and Multicores. Non-Uniform Memory Access

(NUMA) machines offer different access times for different memory locations. Access

to local memory is faster. The access time differs among different remote parts.

Distributed Memory. Each processor has its own private memory. Machines have

the notion of local and remote memory. There is no guarantee on memory ac-

cess time. Communication latency and dedication of resources subdivide the class.

Clusters are dedicated homogeneous machines interconnected by a fast Local Area

Network (LAN) (e.g., Myrinet). Grids are part-time heterogeneous machines inter-

connected by an Wide Area Network (WAN). The original idea was to incorporate

an abstract processing power on volunteer computation from idle resources. How-

ever, the de facto implementation of Grids nowadays is a group of heterogeneous

clusters interconnected. This concept eventually evolved as a part of the concept of

Cloud Computing, defined by Google circa 2000.

More recently, machines incorporated some hybridism in this schema. For instance,

there are clusters whose nodes are a composition of MIMD CPUs and SIMD GPUs. The

European project Grid-5000 is such an example.

The physical design of these systems may not match the logical layout. Parallel

programming models and their proper runtime make the bridge.

24

2.1.2 Parallel Machine Models

A model express the underlying logical machine the programmer sees when program-

ming. It defines data partition, execution flow, synchronization, communication, etc.

A hardware model usually induces a logical model, due to negligent overhead for

converting logical commands into physical commands. However, there are exceptions like

Distributed Shared Memory (DSM), the Go programming language, and remote memory

access.

Models based on hardware constraints are similar to the ones shown in the previous

section:

Shared Memory. General purpose machines with shared address space in memory. All

processors may write and read all memory words, independently and asynchronously.

Particular executions flows are defined by processes — mainly their lightweight de-

scriptor, the thread — a descriptor for a flow inside a process. It holds a computa-

tion’s state, but not shared raw data. The state is defined in low-level abstractions

by concepts like the program counter, registers, and flags. Communication are per-

formed through shared variables in the global memory space. The runtime may

guarantee the existence of private local variable to each thread, either explicitly or

through programming language mechanisms. A process can usually wait for other

processes to progress through synchronization directives. Punctual variations on

the order of access to shared variables may result in execution inconsistencies — a

situation known as “race condition”.

Distributed Memory. General purpose machines with distinct address space in mem-

ory. The communications system unfolds parallelism, used to share data (input,

partial computations, or output). Communications are peer-based, although the

middleware may, oblivious to the programmer, use circuit pathways to both over-

come interconnection limitations and increase performance. Two major types fami-

lies of communication primitives:

Point-to-point. One processor communicates with another processor directly. Cen-

tral primitives are in send/receive style. There are others, however, like set/get

or read/subscribe.

Collective. Generalizes many-to-many communication types. Primitives are fre-

quently tied to conventional concurrent algorithms procedures like broadcast

25

(one process sends message to all others), all-to-all (all processes send data to

all others), scatter/gather (shares and groups data), and reduction (one process

combines sub computations made by others).

By adding constraints to the general models above we deliver frameworks for theoret-

ical validation of parallel algorithms. The interested reader will find in Appendix A a dis-

cussion over two of such models: Parallel Random-Access Machine (PRAM) (KRUSKAL;

RUDOLPH; SNIR, 1990) and LogP (CULLER et al., 1993).

We work over shared-memory parallel machines. By choosing a logical model iden-

tical to the hardware we extract maximum efficiency without loss of abstraction to the

algorithms we are interested. The usual approach for modeling theoretical machines on

multicores is PRAM since it is useful to demonstrate bounds on algorithms. However,

the kernel of our work is a theoretical device that enables us to deliver precise bounds

even when the workers are completely asynchronous. In this sense, we opted for the least

restraining model constraint to serve as our abstracted machine.

2.2 Foundations of Parallel Programming

We discuss parallel programming “in a nutshell”. Contents are organized and dis-

tributed to provide to the reader a minimal common ground. Next we discuss the repre-

sentation and execution of parallel programs over an abstracted hardware.

2.2.1 Parallel Execution Model

Sequential algorithms express their execution time through a function on input’s

length. Although there are other executed-related factors as caches, OSs, and memory

access, this is the dominant cost.

Simplified execution models exist for accounting of fundamental operations performed

by parallel algorithms. Ideally this execution models are simple enough to be analyzed

but sophisticated enough to model relevant aspects of the computation. They provide a

comparison tool for some selected criteria.

Execution models are not only useful to compare parallel and sequential implemen-

tations, but also distinct parallel ones. They also provide a proof system for complexity

statements like optimality, lower/upper bounds, and asymptotic growth.

We use definitions from a shared memory machine model to model an asynchronous

26

system. Our results do not depend on the guarantees offered by models like PRAM.

(Nevertheless they hold since those are more constrained models.)

We begin by defining a glossary of definitions that serve as the building blocks for all

thesis. First, the most fundamental entities:

Task. A task is an indivisible set of machine instructions. Consumes an input and gener-

ates an output. Two tasks can be executed in parallel unless related by a sequential

dependency. Tasks are performed by workers.

Worker. An entity that executes/consumes a task. A synonym for execution unit: re-

source/processor/thread/etc (it is context-dependent). A worker is inactive when

it is idle and active otherwise.

Top. A top is a totally ordered time stamp – represented by an integer — regarding the

execution of a parallel program. Current top is denoted s, previous top s− and next

top s+. The top before the execution is 0, and the first top is 1.

Now we define classical parallel programming notation in terms of those entities

(JAJA, 1992; CASANOVA; LEGRAND; ROBERT, 2008):

Sequential Work. We denote it Wseq. It is the number of tasks of the best sequential

algorithm. We also use the notation Wseq(n) to make the relation between the input

length n explicit. Also referred as “work” of the sequential algorithm or “sequential

work” of the parallel algorithm.

Sequential Time. We denote it Tseq. It is the execution time of Wseq expressed in

number of tops.

Parallel Work. We denote it W . It is the total number of tasks of the parallel algo-

rithm. Also referred as “work” of the parallel algorithm or “parallel work” of the

algorithm. It accounts extra operations from straightforward parallelization. We

also use the notation W (n) to make the relation between the input length n ex-

plicit. For instance, initialization of middleware, conditional branching, indexed

access, etc.

Parallel Overhead. We denote it V . It is the sequential overhead introduced by syn-

chronizations on the parallel algorithm. It represents the extra operations accounted

for the parallel work. Also referred as “overhead” of the parallel algorithm or “syn-

chronization overhead” of the algorithm. We also use the notation V (n) to make

the relation between the input length n explicit.

27

Parallel Time. We denote it TP . It is the execution time of W with P workers.

The parallel execution is represented as an abstract container of tasks in the task-based

parallel programming model. By abstract container we describe a data structure that

represents the parallel computation but it is not necessarily addressable by the program.

It can be generated a priori (through code analysis) or a posteriori (through trace). A

representation of it may be kept by the runtime during the execution to make decisions

about operations that may impact performance. e.g., to resolve scheduling dependencies.

The dependencies between tasks are made explicit. There is a twofold implication.

First, one can reason efficiently about the proposed parallelization. Second, one can derive

notions not self-evident without a representation of dependencies, such as the critical path

(which we explain more ahead). Thus, it allows one to reason about central topics, such

as scheduling, synchronizations and overall parallel multicore executions.

We use a precedence DAG (PACHECO, 1996; PACHECO, 2011) as the logical repre-

sentation of the execution where:

Nodes = tasks,

Edges = sequential dependencies between tasks.

To exemplify, consider the calculus of the distance between points p1 = (a1, b1, c1, d1)

and p2 = (a2, b2, c2, d2) on a R
4 Euclidean Space:

x =
√

(a2 − a1)2 + (b2 − b1)2 + (c2 − c1)2 + (d2 − d1)2

On Figure 2.2 we display one possible precedence DAG describing the computation of this

formula. In order to hold temporary values we use four auxiliary variables: a, b, c, and d.

For illustrative reasons the tasks are numerically labeled accordingly to a valid sequential

execution, but this is not mandatory. An edge connecting nodes i and j means “task i

must execute before task j”, or, conversely, s(i) < s(j). The constraint may be given by

factors as the correctness of the algorithm, memory synchronization (as in the lock-free

algorithms), etc. In this case, the dependency is established due to a necessary order in

reading and writing of variables. For instance, values of variables c and d in task 5 must

first be squared on tasks 2 and 3, respectively.

A precedence DAG generalizes the intuition of sequential dependency. Therefore, it

delivers the notion of ready task, a task whose all precedent tasks were already executed.

If execution of i makes j ready, we say “j is enabled by i” or “i enables j”. In Figure 2.2

tasks 4 and 5 enable task 6.

28

a← a× a

a← a2 − a1

a← a + b

b← b× b

b← b2 − b1

a← a + c

c← c + d

d← d× d

d← d2 − d1

x← √a

c← c2 − c1

c← c× c

3

1

2

4

5

6 7

Figure 2.2: Possible execution DAG for the distance between two points on a R
4 Euclidean

Space. Nodes are the tasks and edges the sequential dependencies between them.

We call sources of the DAG all nodes without an ongoing edge. We call sinks of the

DAG all nodes without an outgoing edge. The sources begin the computation readies.

The sinks are the last tasks to be executed and deliver the output of the computation. In

Figure 2.2 tasks 1, 2, and 3 are sources, and task 7 is the only sink.

Execution DAGs enables us to define the depth of a parallel computation (JAJA,

1992):

Depth. We denote it D. It is the longest path in the DAG from any source to any sink.

This longest path is named the “critical path”. It is equivalent to the execution time

with an unbounded number of workers, and can be also denoted by T∞.

We highlight that tasks do not all have the same size or take the same time to execute.

For instance, tasks 5, 6, and 7 each performs two high-level programming instructions (one

arithmetic and one assignment). Tasks 1, 2, and 3 all perform four instructions. Task 4

performs three programming instructions. Nonetheless, even the number of instructions

is not a precise estimate of time a task takes to execute. Although tasks 5, 6, and 7

all have the same number of instructions, tasks 5 and 6 perform an addition and then

an assignment, while task 7 performs a square root operation, what is typically more

expensive than additions on modern machines.

The notion of determinism may also be defined in terms of DAGs as well. A parallel

computation is: deterministic if its DAG is fixed for a given input and non-deterministic

29

otherwise. A DAG may change for the same input, for instance, when the algorithm

spawn tasks obeying random criteria.

We now define the notion of speedup, enabling us to compare different parallel algo-

rithms (CASANOVA; LEGRAND; ROBERT, 2008). Speedup is the ratio between best

sequential time and the obtained parallel time when solving the same problem:

Speedup = Tseq/TP . (2.1)

Equation 2.1 measures parallelism gain. The alternative ratio Speedup = T1/TP , where

T1 is the time of the parallel version with one worker, may be used to measure scalability.

If Speedup = P , we name it linear speedup. If Speedup > P , we name it superlinear

speedup. Superlinearity is achievable, for instance, by using algorithms with some ran-

domness in either its code or in its input (e.g., find the first occurrence of an element of

an array). Hardware optimizations like cache also allow this type of observation.

The speedup is a useful tool to compare parallelization of the same sequential algo-

rithm. The reader must be aware, however, that different parallel/sequential ratios are

not comparable. The sequential algorithm can be, even unintentionally, penalized and,

thus, the comparison would be artificially improved.

Unfortunately, linearity is not a lower bound for speedup. Amdahl’s Law (AMDAHL,

1967) makes a correlation between the portion of a program that can be parallelized

and the maximum speedup obtained. For instance, if a program needs 20 hours using

a single worker, and a particular portion of the program that takes 1 hour to execute

cannot be parallelized, while the remaining 19 hours (95%) of execution time can be

parallelized, then regardless of how many workers are devoted to a parallelized execution

of this program, the minimum execution time cannot be less than 1 hour. Hence, the

speedup is limited to at most 20×. Formally, considering B ∈ [0, 1] the fraction of the

algorithm that is strictly sequential, the time an algorithm takes to execute using P

workers over an input of size n is

TP ≤ T1

(

B +
1−B

P

)

and the maximum theoretical speedup would be, therefore,

Speedup ≤ Tseq

TP

=
Tseq

Tseq

(

B + 1−B
P

) =
1

B + 1−B
P

30

2.2.2 Scheduling

A step-by-step precedence DAG execution may be obtained by updating the DAG at

each top. A ready task without in-edges that is executed is taken out of the graph along

with its out-edges (KUMAR, 2002; HERLIHY; SHAVIT, 2008).

Let us consider two workers. At top s = 0 the execution has not begun yet, and

the workers are idle, what is denoted by “−”. Thus, a possible assignment in Figure 2.2

top-by-top is:

Top s 0 1 2 3 4 5

Worker A - 1 2 5 6 -

Worker B - 3 4 - - 7.

In this small example, we assigned tasks to workers by convenience. However, a com-

putational system must follow established criteria and follow an algorithm for scheduling

task to workers on each top. Thus, we define:

Scheduler. Is an algorithm that assigns tasks to workers on each top.

A scheduler is also known as “workload balancer”.

For P workers and n tasks, there are two possible scenarios during a parallel execution:

1. n ≤ P , trivial scheduling. Single programs with fewer tasks will share the workers

with other programs for maximum resource profiting.

2. n > P , non-trivial scheduling. Programs with a large number of tasks, on a dedi-

cated environment. usually, n≫ P , known as “parallel slackness”.

If the number of tasks is fixed, a static scheduler operates a priori. Nevertheless, the

runtime may be able to create new tasks as the computation progresses. In this case,

a dynamic scheduler operates. If a dynamic scheduler has to manage a large number of

tasks at once, it may impact in non-negligible management overhead due to, e.g., data

copy, synchronization, manipulation of meta-task data structures, etc. The scheduler is

usually provided by the runtime, although implementations may embed it inside their

algorithms.

Next we introduce an important class of schedulers, greedy schedulers.

Definition 1 (Greedy Scheduler.) A greedy scheduler is any scheduler where the fol-

lowing holds: if there are n ready tasks and P idle workers in top s,

31

1. If n > P at s, then exactly P are executed at s+.

2. If n ≤ P at s, then exactly n are executed at s+. ✷

Graham (GRAHAM, 1969) and Brent (BRENT, 1974) provide a lower-bound for any

greedy scheduler, whose proof derives from Definition 1:

Theorem 1 (Graham and Brent’s Theorem) For any parallel computation with work

W and depth D, and for any number of workers P , any greedy P -worker execution

achieves

TP ≤
W

P
+ D. (2.2)

Proof In Definition 1, condition (1) may happen at most W/P times. Conversely,

condition (2) may happen at most D times. Thus, W
P

+D is an upper-bound to execution

time. �

Theorem 1 directly derives the centralized list scheduling algorithm, also known as

“busy-leaves” (BLUMOFE; LEISERSON, 1999). In that, all source tasks are initially

placed on one worker. All workers share a list of tasks. Active workers that produce tasks

put them on the list’s front. Idle workers obtain tasks from the list’s back. Computation

ends when all workers are idle. This cycle of running, pushing, and popping is called

“micro-loop” and runs inside each worker throughout the computation. The programmer

writes the tasks, and the middleware deploy them to the micro-loop inside each worker.

Figure 2.3 shows a flowchart for the micro-loop busy-leaves algorithm operating in each

worker. Since one worker starts with the initial task, we added a dashed line from the

“start” to the “run task” block. All the remaining workers start testing if the execution

is over, i.e. if all other workers are idle. The only task that runs without being popped

first is the initial task. Also, once popped, a task is immediately executed.

Centralized list scheduling is optimal within Graham and Brent’s, but does not scale

well. There is contention due to mutual exclusion on list’s top and bottom. Distributed

list scheduling mitigates this cost and stays asymptotically optimal.

Work-stealing is the distributed generalization of busy-leaves. It provides efficient

scheduling for irregular parallel problems within an optimal asymptotic bound of The-

orem 1. By irregular, we mean dynamic scheduled problems with no previously known

pattern of task spawning. The optimal solution to this problem is in the NP-Hard class.

32

Run (popped) task*.

Pop-back shared list.

no

Is execution over?
yes

Is shared list empty? End.
yes

no

Start.

*May push new tasks to shared list’s front.

Figure 2.3: Flowchart for the micro-loop on the busy-leaves algorithm.

The work-stealing algorithm is based on the existence of local and remote task lists.

Each worker owns a local list. An idle worker gets new tasks from its local list. If the

local list is empty, the worker becomes a thief and selects a non-idle victim worker to get

tasks from its remote list.

The local/remote list is implemented as a deque. Henceforward its ends are named

front and back. Active workers push ready tasks to local deque’s front. Inactive workers

pop ready tasks from local deque’s front as well. Thieves pop tasks from a remote deque’s

back. Tasks in any deque are stacked in sequential order. Ergo, if no steals occur, then

one has strict sequential execution. The computation begins with one worker holding the

initial task and P − 1 idle workers. The computation ends when all workers are idle.

In work-stealing, if the thief chooses an idle victim it chooses another one until the

selected victim has tasks on its deque or the computation is terminated by one of the work-

ers. Eventually, a given idle worker may become active because it performs a successful

steal. In this case, it can be selected again to be a victim. This process of re-choosing,

running for all workers, is named “nano-loop” and is inside the micro-loop. Figure 2.4

shows the micro and nano-loops algorithms that run on each worker, with the nano-loop

components highlighted in bold lines.

Let us discuss ABP (ARORA; BLUMOFE; PLAXTON, 1998), the de-facto algorithm

in parallel multicore task scheduling (the name comes from its authors; Arora, Blumofe,

and Plaxton). We highlight three key elements of their approach: the random selection

of victim, work-first principle, and non-blocking implementation.

33

Pop local deque’s front.

Select victim.

Is victim idle?

Pop remote deque’s back.

no

Is local deque empty? Is execution over?

no

End.

yes

noyes

yes
Start.

*May push new tasks to local deque’s front.

Run (popped) task*.

Figure 2.4: Flowchart for the micro-loop and nano-loop on the work-stealing algorithm.
Bold lines indicates the boxes belonging to the nano-loop.

Random selection of victim. A thief selects its victim randomly. If the victim is also

idle, retry until success or computation ends. This eliminates victim selection over-

head. The expected number of steals attempts is O(PD). Makespan is

TP ≤
W

P
+ O(D)

which holds resemblance with Theorem 1, except for the Big-O hiding an associated

contant on the depth D.

The Work-First Principle. In work-stealing, the idle workers are the agents of load

balancing. Active workers contribute to the computation itself by decreasing the

workload and should not deviate from it under performance loss penalty. Therefore,

the scheduling overhead should be paid by the inactive workers, contributing to the

critical path overhead. This is, in general lines, the work-first principle, a heuristic

for scheduling algorithms. Assuming parallel slackness and since the number of

steals is proven small — in the order of PD — scheduling overhead is only paid

when actual parallelism unfolds. Whenever parallel tasks are executed sequentially,

they should not pay any additional costs. A concrete example of an application of

this heuristic is the slow and fast clone strategy. Tasks pushed into a deque’s front

are replaced by a fast clone with no synchronization operations. If it executes locally,

by being popped from the front, a minimum overhead is paid. However, whenever

34

a task is stolen — popped from a deque’s back — the thief acquires a slow clone of

it, embedded with full synchronization and task management overhead. This lazy

strategy delays effective full task creation procedure until a steal occurs and only

move pointers in local execution. It implies that parallel execution with one worker

is almost equal to sequential execution for large inputs.

Non-blocking implementation. The work-first principle is based on the fact that there

are much more pops on a given deque’s front than on its back. The parallel overhead

(task creation, task management, and mutual exclusion, etc.) is moved to those

operations. They may (in fact, should) occur concurrently and, by no means, are

allowed to “lock” the computation due to mutual exclusion. Thus, it is imperative

that a non-blocking protocol is followed by concurrent thieves trying to steal the

same victim.

Regarding the structural dependency relation supported by ABP, its authors enumer-

ate their implementation as fully-strict and bounded fan-out. Fully-strict communication

means direct spawner-spawned (“parent-child”) communication. (When communication is

between indirect spawner-spawned (“ancestor-descendant”), it is called strict.) Bounded

fan-out means that if at most k workers trying to steal a non-idle victim at the same time

will get tasks; the remaining ones will have to proceed on the nano-loop.

Taking into account the limitations of the original paper, an array of extensions

emerged. For instance,

GPU. Extensions of ABP to work on GPUs (CHATTERJEE et al., 2013).

Idempotent. New semantics guaranting that each inserted task is eventually extracted at

least once-instead of exactly once (MICHAEL; VECHEV; SARASWAT, 2009). It is

used for applications that allow for relaxed semantics, because either the application

already explicitly checks that no work is repeated, or the application can tolerate

repeated work.

Help-first It inverts the execution order, proceeding to run the spawner and running the

spawnies after it ends (GUO et al., 2009).

We work over greedy and work-stealing schedulers. Greedy schedulers are optimal.

Work stealing schedulers are asymptotically optimal and popular in middleware for mul-

ticore parallel programming. Since our theory is aimed at both models, they are the

natural choice to go.

35

2.3 The Art of Writing Parallel Programs

2.3.1 Parallelization

To design a parallel solution to a given problem involves roughly two non-dichotomic

options:

1. to parallelize existent sequential algorithms by removing sequential constraints where

there are no actual sequential dependencies; or

2. to create a new algorithm that operates in parallel, sometimes less efficient than the

sequential one for a small number of workers.

Parallelization of sequential algorithms often adds constraints to implementations,

such as work grouping, data distribution, workload balancing, communication overhead,

and parallelism overhead. To partition a sequential program in terms of its parallel tasks

is straightforward for simple problems. It may be hard for complex algorithms, though.

We describe parallel programs in terms of parallel tasks, to provide uniformity to the

reader. What changes between approaches is how tasks are defined and how sequential

dependencies are introduced.

There are plenty of parallelization strategies regarding the identification of sequential

dependencies. This is a somewhat more specific question than the task mapping schema

described above. We highlight three common partition arrangements: bag-of-tasks, com-

municating (discussed on Appendix A) and recursion-based (KUMAR, 2002), which we

approach next. There are more. In fact, within a single program one can usually find a

combination of these and other paradigms.

The recursion approach uses the natural division of a program in its procedural com-

ponents. If function calls are not nested, they may naturally be executed in parallel

since there are no dependencies. In this case a “function” shall be implemented accord-

ing to its mathematical meaning (a functional relation between two sets). A function

must be preferably pure in the sense it is deterministic and produces no collateral effects.

Some flexibility is allowed, but there must be no overlaps that produce race conditions.

Synchronizations may be needed when combining the outputs of these functions. As pre-

sented, recursion-based approaches introduce sequential dependencies in a “parent-child”

style. Therefore, they unfold a tree-shaped representational structure where predecessor

nodes depend on the conclusion of successor nodes. However, there are systems that allow

arbitrary graph dependencies to be stated.

36

Recursion is the paradigm we use to illustrate all the techniques we discuss in the

thesis, since it allows: a simple yet expressive way to consider ordering of operations on

source code; short writing of complex parallel algorithms by encapsulation; straightfor-

ward elision version of parallel source code by omitting the parallelism-unfold keywords;

and correctness proofs easier to write and read. Our algorithms are simple enough to

be implemented recursively. This will provide us higher-level, shorter code. Discussion

benefits, since we can model our underlying interface as an algebra of functors, i.e., higher-

order function programming. We do not loose efficiency when doing so. Optimizations

like the elimination of tail recursion at compile-time are discussed, and the middleware

usually encapsulates function calls. The solutions, however, are designed to hold on other

paradigms as well, with small adaptations.

Our rationale follows the simple yet powerful fork-join operations of UNIX processes:

Fork. Receives as argument a function and its parameters. Tells the runtime that this

procedure should be executed in parallel along with the caller and other forked

functions whenever possible.

Join. Receives as arguments references to forked functions. (May be implicit; e.g., all

the functions forked at the given scope.) Tells the runtime to stop the execution

flow until all referenced functions have returned.

Each time we write “fork/join” we refer to this behavior, but with a specific ordering in

mind: if a forked function is not immediately scheduled, the forker function continues

execution on its worker, while the forked function waits until scheduled.

Nevertheless, we seldom speak of fork/join in this thesis. usually we will refer to a

similar paradigm, spawn/sync. We differentiate spawn from fork by their ordering: if

a spawned function is not immediately scheduled, then the spawned function continues

execution on the current worker while the spawner function waits to be executed. Thus,

spawn is a preemptive operation, because the spawner is preempted in favor of the spawned

within its executing worker. Join and sync are exactly the same operation; we use one or

another to be consistent with the correspondent fork or spawn.

Granularity control is perhaps the most important technique to mitigate parallelism

overhead. Parallelism introduces overhead in various levels — e.g., middleware manage-

ment, extra tests, communication, etc. This cost is “paid” by the performance gain of

parallelizing the program. From this, a threshold between the overhead cost and paral-

lelization gain emerges. To achieve nearly optimal overhead mitigation, a parallel program

37

may choose to execute a given task using the sequential algorithm if its computational

cost is small enough. This cuts off the overhead for small tasks. This rationale can be

applied to distinct instances for some definition of “computational cost”, “small enough”

and “task”. For instance, when sorting recursively in parallel, one may call sequential

quicksort over chunks smaller than the square roof of the original input size. Or, since

network communication is usually the dominating overhead in multicomputers, one may

choose to execute small tasks locally instead of sending it to another worker.

When speaking of granularity we will by default mean the minimal input size (ac-

knowledging pseudo-polynomial complexity) a parallel algorithm should observe to be

efficiently executed. We call a “grain” to be a task within this minimal size (the task

is indivisible). We call “granularity” the measuring of grains in quantity; it has “high

granularity” when the grain is small and, therefore, there are more grains. The converse

adjective is being “granular”, a small number of large grains. (Here again, “small” and

“large” are about the problem at hand and the gained performance, not a global evalu-

ation of optimality.) The size of the grain is sometimes referred as the “threshold”, the

bound separating sequential from parallel execution. Threshold definition may be static

or dynamic. There is usually a conditional structure inside the parallel program deciding

which algorithm to perform at a given step. However, to reach an optimal value for it

is usually a process of trial-and-error, since it depends on the actual machine, algorithm

behavior, input, etc. The decision-making process in each step regarding threshold be-

tween different algorithms is generalized into the notion of Adaptive Algorithms, discussed

in depth in Chapter 5. The theory behind adaptive algorithms allows one to leave the

granularity adjustments to the algorithm itself, with little to no guessing.

Simultaneous access to data may change its value non-deterministically (race condi-

tions). To avoid it, synchronizations are used. Synchronization is a broad concept usually

meaning the “sequentialization” of some parts of a parallel program to assure seman-

tic correctness. The idea is to create mutually exclusive chunks of monoprocessed code.

There are mechanisms provided by the middleware that use atomic hardware operations

or software protocols (proven) to ensure mutual exclusion. For instance, there are mutexes

(based on atomic locks and unlocks on a boolean variable), semaphores (based on a queue

of workers trying to access a mutual-exclusion region), monitors (mutual exclusive access

of procedures provided by the language/framework). Those mechanisms should be used

with caution, since undisciplined use may lead to deadlocks (all process are locked in a

circular way), performance issues (blocking implementations), starvation (a process waits

38

for an unconstrained amount of time), etc. Distinct algorithms may not need mutual ex-

clusion in different degrees, being lock-free (no blocking synchronizations), wait-free (no

worker waits a resource) (HERLIHY; SHAVIT, 2008). Synchronizations between workers

are central to our contribution. We see the implications more ahead.

2.3.2 Middlewares: Libraries and Runtimes

A runtime and the associated middleware encompass the parallel program. It provides

yet another level of abstraction, creating a “virtual environment” that provides guarantees

and resource management to the programmer. For instance, a runtime may be in charge

of: managing distributed memory between workers; making standard parallel algorithm

available for a given worker, such as “obtain my id” or “store how many workers participate

in this computation”; hiding implementation issues not related to the algorithm at hand,

in things like scheduling, initialization, conversions, communication. A runtime may be

fine — e.g., system-level threads use the actual OS to perform simple operations like

interruption handling or mutual exclusion — or coarse — e.g., a distributed memory

process manager has to manage all execution and raw communication underneath.

Runtimes coexist and are usually accessed through dedicated software libraries. Con-

versely, there are libraries that rely on a companion runtime to work.

We work over Intel’s Cilk Plus as the underlying middleware. It fits with all the

previous selections we have made, is widespread in the scientific community, and allows

the simpler parallelization among all alternatives. We describe other middlewares in detail

at Appendix A, such as Open Multiprocessing (OpenMP) and TBB.

“Cilk” (FRIGO; LEISERSON; RANDALL, 1998) refers to a family of multithreaded

runtimes whose main idea is to schedule user threads (a task) using the ABP work-

stealing. The runtime works as a small extension to C and C++, adding three keywords

that unfold parallelism:

1. cilk_spawn. The “spawn” primitive defined in Subsection 2.3.1.

2. cilk_sync. The “sync” primitive defined in Subsection 2.3.1.

3. cilk_for. Replace the traditional loop construct for by the analogous parallel one,

distributing iterations over workers.

It started as a source-to-source (Cilk to C/C++) compiler. The generated program has

added a runtime module (including a scheduler) that manages user-level threads on the

39

top of OS level threads on shared memory machines. The keywords, if removed, leave

valid sequential code, being also an elision framework.

The name “Cilk” alone refers to versions one to five, all hosted within the Massachusetts

Institute of Technology (MIT) by Charles Leiserson’s team. In 2008, MIT’s Cilk was

stalled in favor of a new version called “Cilk++”, maintained by Leiserson’s new com-

pany Cilk Arts and introducing features as automatic parallel loops and the notion of

hyper-objects. Finally, in 2009 Cilk Arts was acquired by Intel and a new version, “Cilk

Plus” was made available, both in closed and open source forms. While MIT’s and Cilk

Art’s versions where source to source compilers, Cilk Plus is an extension built-in in Intel’s

Compiler and is available as a branch of GNU’s compiler, working in a more close fashion

to OpenMP.

Cilk was born as a proof of concept for ABP work-stealing. Thus, it is common to

mix details of its implementation with the scheduling algorithms requisites.

Cilk is built around the work-first principle as discussed earlier in this chapter. The

premise remains: most of work is sequential work, there are few steals if the work is large

enough. Consequences also hold; runtime overhead are moved to steals, what occurs in

O(PD) (ARORA; BLUMOFE; PLAXTON, 1998). We highlight two strategies of Cilk to

conform to the work-first principle:

Non-blocking steals. It is achieved through a simplified version of Dijkstra’s THE mul-

tiprogramming system protocol for synchronization (DIJKSTRA, 1965). The deque

has three pointers, T (current), H (front) and E (back). Concurrent thieves dispute

E using try-lock. Only when E = H no thief can steal because it remains only one

element. Besides, during a pop-front operation, where T ← H, it is guaranteed that

if H 6= E then the pop will never fail.

Fast/slow clone. A spawned function executes a “fast” (no synchronizations, no copy-

ing, no context-saving nor jumping) when executed by the same worker that spawned

it. Otherwise, execute a “slow” version that is meant to be performed remotely, with

all due overhead. No dynamic creation is needed in both cases since both versions

are created at compile time, and the framework just handle the pointers.

We show an example of the calculus of the n-th Fibonacci term on Figure 2.5 (cf.

the Fibonacci example in Subsection 1.4.2). This code is written in Cilk Plus, what we

already stated to be a small extension of C/C++. In this listing,

1. On line 1 we have the function signature. It receives and returns a C integer.

40

1 int fib (int n)
2 {
3 int a, b ;
4 if (n < 2) return n ;
5 a = cilk_spawn fib (n - 1) ;
6 b = cilk_spawn fib (n - 2) ;
7 cilk_sync ;
8 return a + b ;
9 }

10

Figure 2.5: Fibonacci in Cilk Plus.

2. On line 3 we declare the variables that will serve as the output of the recursive call,

a and b.

3. On line 4 we test the recursion limit and return the parameter if nothing has to be

done.

4. On lines 5 and 6 we spawn child user-level threads (tasks) through the cilk_spawn

keyword as recursive invocations of fib.

5. On line 7 we perform a join through a cilk_sync keyword, where a given user-level

thread waits for the completion of all spawned threads on the current scope.

6. On line 8 we sum the outputs of the recursive calls and return it.

If the cilk_spawn and cilk_sync keywords are removed from Figure 2.5 (on lines 5,

6, and 7) the resulting code is a valid sequential code.

We highlight that code on Figure 2.5 has no control of granularity and is implemented

naïvely, performing too many redundant calculations, and spawning one OS thread per

recursive call. It is just for syntax demonstration, not meant for performance.

2.4 Closing Remarks

All the content in this chapter is explained in details in the textbook by Joseph Jaja,

“An Introduction to Parallel Algorithms” (JAJA, 1992). It is a repository for the parallel

programmer even today. In the same sense, “The Art of Multiprocessors Programming”

by Herlihy and Shavit (HERLIHY; SHAVIT, 2008) is a more modern book with diverse

content about parallel programming but focused on the multicore paradigm.

As nearly all books on parallel machines, we use Michael Flynn’s classical taxonomy

from 1972, which he introduced in his paper “Some Computer Organizations and Their

Effectiveness” (FLYNN, 1972). The taxonomy itself appears briefly only on the second

41

section and only to situate the reader in respect to its streams and other jargon. In fact,

surprisingly for a hardware-based work, the whitepaper has a strong abstract mathemati-

cal setting where it relies upon. For instance, still in the second section we find an accurate

modelling of the producer-consumer problem adapted to its multi-stream approach. It

models requests as a pair of functions, the requester and server and differentiates the

hardware and logical processing and give an order relation on it.

Also, many other classifications in Computer Science take inspiration on this combi-

natorial arrangement of two factors like Flynn’s. In PRAM, for instance, there are also

four strategies based on read and write combinations, and the third is also empty, like

MISD machines! Patterson and Hanessy (PATTERSON; HENNESSY, 2008), p. 197, and

its appendixes not only mention Flynn but also enumerate a careful list of examples in

each category. Even if not specialists in parallel hardware, this book is a good reference,

since it does not dissociate those advances from other optimizations on processors. They

also state that there is no MISD machine. This is also the case of Peter Pacheco’s text-

book “An Introduction to Parallel Programming” (PACHECO, 2011), which even asks

the reader about it in its Exercise 2.9 (p. 78).

In the case of distributed memory MIMDs, we briefly differentiated Clusters and Grids.

Now we expand on their historic definitions.

The history of term “Cluster” is approached in details in a 1998 book by Gregory

Pfister, then an IBM engineer, called “In Search of Clusters” (PFISTER, 1998). Pfister

claims that despite DEC and IBM claims throughout the years to have invented the

term and concept, neither were true. Customers, Pfister says, invented clusters, in order

to gain in processing power and/or memory space, as needed at the time. The first

Clusters in this spirit begun to appear by the 60’s, in different places and contexts. Yet,

the engineering of cluster computing as a parallel machine was probably introduced by

Gene Amdahl of IBM, who in 1967 published his paper on parallel processing, Amdahl’s

Law, in his paper “Validity of the Single Processor Approach to Achieving Large Scale

Computing Capabilities” (AMDAHL, 1967). This article defined the engineering basis for

both multiprocessor computing and cluster computing.

Grids, in their turn, were first defined by Ian Foster and Carl Kesselamn in their 1999’s

work “The Grid: Blueprint for a new computing infrastructure” (FOSTER; KESSEL-

MAN, 1999). It is a hole book covering all aspects of Grid implementations, hardware

and software-wise. It is also, however, a too abstract and comprehensive definition. While

it would, arguably, be an entity where computers come and go to provide processing power

42

world-wide, in practice implementations diverted from this concept. While there are ex-

amples of attempts at implementing the complete blueprint we only have partial models

operating. Perhaps the most popular current variation is a cluster-of-clusters, where one

can allocate a sharing on a cluster of machines that may enter or leave the Grid, al-

though sparingly. Such is the case of the European Grid 5,000 project, described in a

2005 paper (CAPPELLO et al., 2005).

The fact we used the same underlying hardware model as the logical machine model

(both shared memory MIMDs) may mislead the reader about the lack of differentiation

at this level. This, however, is not true. Consider, for instance, the abstract C language

machine model as presented in a textbook by Kernighan and Ritchie (KERNIGHAN,

1988). Even if C is considered middle level, its abstract machine is perhaps the greatest

responsible for its success, since it abstracts complex hardware structures and software

constructs as arrays of bytes. It also provides guarantees over this logical model, such as a

valid past last position to describes its arrays (modelling a semi-open interval) in a fashion

advocated by Dijkstra’s work, like his book “A Discipline of Programming” (DIJKSTRA,

1997).

A standard reference for formal computation models like PRAM and models of com-

plexity is Kruskal et al.’s 1990 paper (KRUSKAL; RUDOLPH; SNIR, 1990). (This

Kruskal shall not be confused with Joseph Kruskal, responsible for the namesake algo-

rithm.) On its p. 96, it elaborates what would be six classes of parallel algorithms in re-

spect to its speedup and efficiency. Although those classes have never gained mainstream,

they are the conducting wire that holds together the overall paper. LogP, published in

1993, is newer than Kruskal’s book. For a complete reference on it, we recommend the

original paper, by Culler et al. (CULLER et al., 1993).

The notion of explicit task parallelism is not new, although its crescent gain in pop-

ularity. We trace back to the work by C. A. R. Hoare, Concurrent Sequential Pro-

cessess (CSP) (HOARE, 1978) a formal language for describing patterns of interaction

in concurrent systems. (Hoare is also famous for inventing the “burning a candle from

both sides” Quicksort algorithm.) It is a process algebra — although the original paper

presented a parallel programming language rather than an algebra —, based on message

passing via channels. These channels, known as Hoare’s Channels, are the basis of mul-

tithreaded communication of the Go, Occam, and several other programming languages.

(We highlight the difference between Hoare’s approach and what we described as the pre-

liminary draft of this thesis when discussing the relevant publications on the beginning of

43

Section 1.4. There we discussed an algebra where the operands were containers of tasks.

Hoare’s approach, on the other hand, treats messages between workers as the operands.)

When we presented the concept of speedup in Subsection 2.2.1, we differentiate the use

of Tseq and T1 on the formula. The first one is used for a demonstration of the quality of

the parallelization, the former on how well an algorithm scales. Although this is a known

fact, there are few books that acknowledge the differentiation. One of these few examples

is the book by Casanova et al. (CASANOVA; LEGRAND; ROBERT, 2008, p. 10).

On Subsection 2.2.2 we show briefly a famous theorem by R. L. Graham and Richard Brent

that states the upper-bound of T1/P + D to greedy schedulers. Although named after

both researchers, the results were obtained independently, in distinct works. Graham

first published his result in 1969 on a paper entitled “Bounds on multiprocessing timing

anomalies” (GRAHAM, 1969). Later Brent showed the same bounds in a 1974 paper enti-

tled “The Parallel Evaluation of General Arithmetic Expressions” (BRENT, 1974). Both

papers do not have the same subject or goals, yet they achieve an important common

bound.

Still treating of greedy schedulers, the term “busy leaves” was used in a seminal paper

by Arora et al. (ARORA; BLUMOFE; PLAXTON, 1998), which introduced the ABP

work-stealing algorithm. The same paper brings proofs about the asymptotic limits on

the particular implementation of work-stealing, overall an illustrative proof on the ex-

pected number of synchronizations O(PD) using the probability of a given critical steal

happening in a burst of attempts. This paper was later republished with a different,

simpler proof for the same result that employs a potential function in order to deliver an

amortized value. The paper, proofs, and derivations are analyzed in the next chapter. In

it, we will also discuss the paper on how to implement ABP work-stealing efficiently (BLU-

MOFE; LEISERSON, 1999). For instance, being implemented non-blocking guarantees

the progress of computation. (For a taxonomy of wait-free, lock-free, and starvation-free

algorithms, we recommend Herlihy and Shavit (HERLIHY; SHAVIT, 2008).) Finally,

Berenbrink et al. (BERENBRINK; FRIEDETZKY; GOLDBERG, 2003) shows that any

generalized version of work-stealing (including, thus, ABP) is stable, i.e., it does not

degenerate over long periods of time.

There are several resources on parallelization techniques. On this chapter, we delivered

a brief survey and adapted it to our context. Three books we already cited contain a de-

tailed explanation of these techniques, Casanova et al.’s, Jaja’s, and Herlihy and Shavit’s.

The three examples we showed were adapted from Kumar (KUMAR, 2002) in its section

44

3.2, “Decomposition Techniques”. Another source of detailed examples on the subject

is Pacheco (PACHECO, 2011), although he divides, still in the first chapter, parallelism

types in task-based and data-based, which to us are not dichotomic.

45

3 STATE OF THE ART

This chapter lists and discusses related works both in the analysis of parallel algorithms

(Section 3.1) — theme of Part I — and advances on pseudorandom number generators

(Section 3.2) — as seen on Part II. We establish comparison criteria among our methods

and up-to-date literature. Implementation factors are discussed whenever possible.

On the analysis of parallel algorithms, we approach an early analysis of work-stealing

schedulers (Subsection 3.1.1) and current analysis by potential functions (Subsection 3.1.2).

We also enumerate papers about the implementation of work-stealing schedulers (Subsec-

tion 3.1.3) because these implementations hold important principles for designing algo-

rithms within. Since SIPS has some inspiration on logical clocks we also discuss Lamport’s

Clocks (Subsection 3.1.4). Finally, we review some current trends on the topics of analysis

(Subsection 3.1.5).

On the topic of parallel generation of pseudorandom numbers we overview works

on classical state-based generators (Subsection 3.2.1), current state-of-the-art counter-

based generators (Subsection 3.2.2), and generation tied to the parallel runtime, which

we compare with our results (Subsection 3.2.3). We also review current trends on the

subject (Subsection 3.2.4).

The chapter ends with (brief) closing remarks on the abstractness of common parts of

the presented works (Section 3.3).

3.1 Analysis of Parallel Algorithms

3.1.1 The Analysis of Work-Stealing Schedulers

Until a seminal paper by Blumofe and Leiserson (BLUMOFE, 1994), work-stealing was

established to be more efficient than its converse, work pushing, only in folk wisdom. It

was this paper that delivered the first optimal asymptotic bounds that would be optimized

to become the ones we have today — both in time and space. In it, the authors analyze

the scheduling of fine-grained tasks expressed as threads in multithreaded environments.

They made the critical observation — and based their analysis on it — that work-stealing

should be more efficient than work pushing schedulers because the schedule operations

are performed by idle workers, i.e., no active worker stops useful work to schedule tasks.

This leads to less parallelism overhead because thing only run in parallel in there is room

for it. (This paper was first published at the FOCS conference in 1994. It was reviewed

46

and re-published later in the Journal of ACM (BLUMOFE; LEISERSON, 1999).)

The analysis focus on fully-strict parallel computations, where all child workers (the

spawned) complete before their parent (the spawnie). It is a constraint on the concept

of strict parallel computations, where all children synchronize only with their parents.

Although work-stealing does not require these models, they express well recursive paral-

lelism, which simplified code writing with no lesser expression power. The proofs on the

paper, however, rely on fully-strict computations.

The first important result it provides is the space complexity of an algorithm sched-

uled by work-stealing. For any multithreaded computation with stack depth S1, any

P -processor execution by work-stealing uses space S bounded by S < P · S1. When

sketching the proof, the important factor is that going down on the function call chain,

only the leaves are active. Since the number of leaves is equal to the number of proces-

sors, and each leaf occupies at most the space required by sequential execution with one

processor, the bound is obtained.

The most interesting result on the paper, however, is the time bound. Consider

the execution of any fully strict multithreaded computation with work W and depth

D scheduled by work-stealing on a P -processor execution. The expected running time,

including scheduling, is, then,
W

P
+ O(D)

Moreover, for any ǫ > 0, with probability at least 1−ǫ, the execution time on P processors

is
W

P
+ O

(

D + log2P + log2

(1
ǫ

))

This time and variance is a provably upper bound that hides a multiplicative constant

within the Big-O notation on the critical path term. Empirically, however, since there are

few steals, the performance is close to W/P + D.

As a pseudo-proof, consider that each worker is either working or stealing. The total

time all workers spend working is W. Each steal has a 1/P chance of reducing the critical

path length in the DAG by 1. Thus, the expected number of steal attempts is O(PD).

Since there are P workers, the expected time is

W + O(PD)
P

=
W

P
+ O(D)

The most important piece of the proof is the argument that each successful steal has

47

a chance of 1/P of decreasing the critical path length by 1.

The idea is that if we partition the execution in rounds, each round composed of

successive steal attempts, and if the number and size of rounds is large enough then with

high probability one “critical task” will be stolen. A critical task is a task that once

stolen and executed will result in a DAG with a strict smaller critical path. Since the

critical path can decrease at most D times, and a sufficient large number of attempts will

decrease D, it is an upper bound to the number of steal attempts.

The bounds we present to the number of synchronizations with SIPS have the same

spirit as this delay sequence technique. As shown in Chapter 4, our main proof is based

on the fact that if a sufficient every worker synchronizes at least once, then the clock

with the minimum value at that top must have been increased. Nevertheless, our SIPS

analysis improves these earlier results em several ways. First, we do not depend on a fixed

critical-path length D. This means that our DAG does not need to be fixed for a given

input, nor does our proofs rely on a fixed graph. Being able to handle no-fixed DAGs

allows the algorithms to change their behavior throughout the computation, adapting to

execution constraints. Also, our analysis models effectively successful steals, not steal

attempts, allowing one to estimate bounds on overheads that only happen when a steal is

performed (examples will be given in the chapters ahead). Not only that, but we are also

able to bound subsets of the total number of synchronizations, allowing, among other

things, to deliver a more tight bound when the overhead depends on the “size” of the

steal. Finally, we neither need a fixed number of workers P , nor are we tied to fully-strict

computations. It may vary during the execution, admitting workers that come and go

dynamically.

These results are old right now, and several improvements were made throughout

the years. For instance, there is a paper by Bender and Rabin (BENDER; RABIN,

2000) where the results are generalized to processors with different speeds and preempting

features. Nowadays, the limits are tighter. We compare ourselves to these more modern

works. The tightest bounds one have as of today — as far as we know — come from a

proof technique based on potential functions. We discuss the advent of these proofs next.

On the next section, we present the modern approaches and compare ourselves to them.

Handling a variable number of processors, however, is not a feature we claim exclu-

sivity. One paper by Arora et al. (ARORA; BLUMOFE; PLAXTON, 1998) proposes an

extension to the work-stealing scenario, sketching a user-level thread scheduler suitable to

multiprogramming. The authors model multiprogramming with two scheduling levels: a

48

user-level work-stealing scheduler, that maps threads onto a fixed set of processes, and the

kernel scheduler, that maps the processes to processors or cores. In it they consider the

kernel to be an adversary and aim to efficient execution whatever the resources provided

by the kernel. The kernel scheduling gives the variability of workers. The paper shows

that in this scenario the work-stealing scheduler executes the computation in expected

time

O
(

W

PA

+
DP

PA

)

,

where PA is the average number of processors allocated to the computation by the kernel.

There is in it a proof that the primitive “yield”, common to most kernels, is a powerful

primitive to scheduling systems, being the tool that constraints the adversary kernel and

guarantees the asymptotic bound.

This paper improves the previous results in two ways: first, arbitrary multithreaded

computations are considered, not only fully-strict, like ourselves. Second, the environ-

ment is shared with other programs and is not necessarily dedicated — also like SIPS.

Its findings are implemented on the top of a library named Hood (BLUMOFE; PA-

PADOPOULOS, 1998), which we discuss later still in this chapter.

One interesting advancement the paper by Arora et al. brings along is a different

proof for the earlier work-stealing bounds. It uses an amortization argument based on a

potential function that decreases as the algorithm progresses. (The interested reader in

the potential method may consult the textbook by Cormen et al. (CORMEN et al., 2009,

p 459).)

Let each node u on the DAG, i.e., a task, to have an associated weight w(u) = D−d(u)

where d(u) is the depth of node u in the enabling tree. Also, let Rs denote the set of

ready nodes at top s. A task is either assigned to a worker or in the deque of some worker.

Thus, for each ready node u in Rs, the potential function is defined as:

φs(u) =











32w(u)−1 if u is assigned

32w(u) otherwise

then, the potential at top s is

Φ =
∑

u∈Rs

φs(u).

Two actions change the potential. The first one is the steal of a task u from the back

of a given worker’s deque (inside the nano-loop). In this case, the potential decreases by

φs(u)−φs+(u) = 32w(u)− 32w(u)−1 = (2/3)φs(u), which is positive. The second case where

49

the potential changes is when the worker executes the task at its deque’s front (outside

the nano-loop). There, if the execution enables two children, then the spawner, labelled

x, is placed on the deque and the spawned, labelled y, is executed. Thus, the potential

decreases by

φs(u)− φs+(x) + φs+(y)

= 32w(u)−1 − 32w(x) − 32w(y)−1

= 32w(u)−1 − 32(w(u)−1) − 32(w(u)−1)−1

= 32w(u)−1
(

1− 1
3
− 1

9

)

=
5
9

φs(u),

which is positive. If the execution of u enables fewer than two children, the potential

decreases even more. (The spawn/sync semantics we described earlier in Chapter 2 in

fact enables 0, 1, or 2 children only at a time. Further enabling is inside the children,

even if the programmer writes a succession of spawns.)

The analysis proceeds by partitioning the potential into two parts, As, the set of

workers whose deque is empty in top s, and Ds, the set of all other workers. Thus, the

potential is written

Φs = Φs(As) + Φs(Ds),

where

Φs(As) =
∑

q∈As

φs(q) and Φs(Ds) =
∑

q∈Ds

φs(q),

and the analysis follow separated. The authors proceed to show that whenever P or more

steal attempts take place over a sequence of rounds, the potential decreases by a constant

fraction with constant probability. First, it is demonstrated that 3/4 of the potential

Φs(Ds) is sitting “exposed” at the back of deques where it is accessible to steal attempts.

Second, they use a “balls and weighted bins” argument to show that 1/2 of this exposed

potential is stolen with 1/4 probability. By dividing the execution in Θ(P) phases and

letting s be the beginning of the current phase and s′ be the start of the next phase,

they proceed to show that summing each worker in As delivers Φs − Φs′ ≥ (5/9)Φs(As).

Thus, no matter how Φs is partitioned between Φs(As) and Φs(Ds), the probability of

decreasing is still larger than 1/4.

With this high probability of largely decreasing the potential, the authors arrive again

50

at the O(PD) expected upper bound on the number of steal attempts.

As with the previous “delay sequence” analysis, the potential method also relies on

the top-most task on each deque being stolen. SIPS does not require so. In fact we shall

see how different workload partition at steals is handled seamlessly by SIPS theorems by

only change the value of one parameter.

Although not the focus of their published work, the proof through potential functions is

the basis for modern bounds on dynamic scheduling. More flexible scenarios are abridged

by the same family of proofs by selecting suitable functions. In next section, we discuss

two recent papers that use it to model distributed list scheduling algorithms in general,

including work-stealing. They also do not rely on top-most steal and model a myriad of

distributed list scheduling algorithms.

Before moving forward, we highlight that the work-stealing algorithm as described

in Subsection 2.2.2 and its variations are stable, despite its random nature. A system

is said to be unstable if the system load (the sum of the load of all workers) grows

unboundedly with time. A system is stable otherwise. A 2003 paper by Berebrink et

al. (BERENBRINK; FRIEDETZKY; GOLDBERG, 2003) proves the assertion. They

consider a fixed, but arbitrary, distribution G over generator-allocation functions that

map producer workers to consumer workers. During each top, a generator-allocation

function h is chosen from G, and the generators are allocated to the processors according

to h. Each generator may then generate a unit-time task that inserts it into the deque of

its host processor. It produces such a task independently with probability λ. After the

new tasks are created, each processor removes one task from its deque and services it.

For many choices of G, the work-generation model allows the load to become arbitrarily

imbalanced, even when λ < 1. The authors consider the work-stealing algorithm as we

presented on Subsection 2.2.2. Any non-empty worker having received at least one steal

attempt in turn decides (again randomly) in favour of one of the requests. The number of

tasks that are transferred from the non-empty processor to the empty one is determined

by the so-called work stealing function f . In particular, if a processor that accepts a

request has l tasks stored in its queue, then f(l) tasks are transferred to the currently

empty one. The authors analyse the long-term behaviour of the system as a function of

λ and f and show that the system is stable for any constant generation rate λ < 1 and a

broad class of functions f .

In the same sense as Berebrink et al., SIPS also model the work-stealing execution as

a composition of functions to generalize the algorithm and its analysis. Like them, we

51

establish a general, fixed model and manipulate its variables according to the behavior

of its functor components. In their case, they play between the balance of function h,

the victim selection strategy, and f , the workload partition strategy at each steal. In our

case, we model execution through clock functions private to each worker, both schemes

being indirectly handled; the victim selection strategy impacts on the increase rate of a

global clock — a function composed by all worker-private clocks — while the workload

partition strategy changes the upper-bound for any local clock M .

3.1.2 Potential Function Analysis

There are two papers by Tchiboukdjian et al. that employ a variation of the poten-

tial method we described earlier to achieve tighter and more flexible bounds. The first

one, from 2010, is named A Tighter Analysis of Work-Stealing (TCHIBOUKDJIAN et

al., 2010) and displays usage of this new potential method for the scheduling of unit in-

dependent tasks and the ABP work-stealing algorithm. The second one, from 2013, is

named Decentralized List Scheduling (TCHIBOUKDJIAN; GAST; TRYSTRAM, 2013)

and expands the methods found in the previous paper to weighted independent tasks,

tasks with precedence constraints, and cooperative stealing.

Like ours, the methods displayed on those papers improve previous analysis by mod-

elling DAGs whose nodes’ out-degree may be larger than two and algorithms whose work-

load partition strategy may differ from the top-most strategy employed by ABP. The

authors also provide tighter limits on the makespan Cmax of computations. While ABP

delivered big constant factors

E[Cmax] ≤ W

P
+ 32 ·D and P

{

Cmax ≥
W

P
+ 64 ·D + 16 · log2

1
ǫ

}

≤ ǫ,

the analysis found on the paper delivers

E[Cmax] ≤ W

P
+5.5·D+1 and P







Cmax ≥
W

P
+

3

1− log2

(

1 + 1
e

) ·
(

D + log2

1
ǫ

)







≤ ǫ.

The number of steal requests provided by the authors compares to our SIPS based

analysis. Before discussing the subject, we present a sketch of the proof method used in

both papers.

First, as motivation, let us look to Figure 3.1, from the Distributed List Scheduling

paper. It was obtained from a discrete step simulator and reveals acknowledgeable in-

52

Figure 3.1: Gantt chart for work-stealing (TCHIBOUKDJIAN; GAST; TRYSTRAM,
2013). There are 25 workers and 2,000 unit time tasks. Each column is a top. White
squares represent the execution of a unit time task. Grey squares represent steals.

formation. First, the two main steal phases are at the beginning and the end of the

computation. At the start, only one processor has a task. Thus, the others will enter into

a try-and-retry of steals inside the nano-loop (see Subsection 2.2.2). (Both our analysis

and the potential method predict a time proportional to log2n in expectation before all

workers are not idle.) In the end, few processors have few tasks; the retrying sequence oc-

curs once again. Throughout the computation few steal occurs, because when all workers

are active, and one of them becomes idle it will steal a task on the first try — or at least

within few tries. (Indeed our strategy of moving overhead to steal operations presented

on part II takes advantage of this fact.) Seeing the steals as a potential that decays during

computation is the key insight of the potential model employment.

A potential function φ : N→ N represents how well the load is balanced between the

deques

φ(s) =
∑

1≤i≤P

(

wi(s)− w(s)
P

)

,

where s is the current top, wi : N → N is a function that receives a top s and returns

the total amount of work at worker i on top s, and w : N → N is a function given a top

returns the sum of wi(s) for each worker 1 ≤ i ≤ P .

The potential function decreases at each steal. One can, thus, bound the number of

steals a to bound Cmax: P · Cmax = W + a. After a steal operation from worker i to

worker j, some work is transferred from i to j. The quantity of work is determined by the

53

workload partition strategy — e.g. half of tasks, top-most task. (Let us assume, without

loss of generality, the strategy to be steal half of tasks in a list and that if several thieves

try to steal the same active victim only one gets a share of its workload; which one is

chosen randomly.) Thus, the larger potential decreases strictly:

max(wj(s+), wi(s+)) ≤ ρ · wi(s),

where ρ < 1 is the decay factor. This implies the following properties:

1. If φ = 0 then there are no more steals and all lists are either empty or with one

task.

2. For all workers i,

wi → wi −O(1)⇒ ∆φ = 0,

i.e., if all workers descrease their lists by the same constant, then the potential

function variation is zero.

3. If idle worker i steals half of the work of active worker j, then

∆φ =
w2

j

2
,

The proof methodology is then

1. Compute the expected decrease of the potential in one step when αs workers are

active, and P − αs are stealing:

E[φ(s)− φ(s+) | φ(s)] ≥ h(α(s)) · φ(s),

where h : {0, . . . , P} → [0, 1] is the ratio function modelling the decrease of the

potential function and assumed to exist.

2. Solve the equation to bound the number of steal attempts a:

E[a] ≤ λ · P · log2φ(0)

P

{

a ≥ λ · P ·
(

log2φ(0) + log2
1
ǫ

)}

≤ ǫ.

where

λ = max
1≤α≤P

(

P − α

−P log2 (1− h(α))

)

54

3. Deduce a bound on the execution time:

E[Cmax] ≤ W

P
+ λ · log2φ(0).

The details of each step and the extension to other scenarios escapes the scope of this

thesis.

Our work improves the results found by the potential method by addressing a wider

scenario. The potential function method is effective in providing sharp bounds to classical

distributed analysis, but, unlike us, is constrained to fixed DAGs. Like more classical

works, they rely on work and depth of parallel algorithms, which may change on varying

the DAG. Besides, their bounds differ semantically from ours. We deliver an expectation

to the worst-case number of effective synchronizations (e.g., successful steals) u over an

input size n and P workers. For top-most steals with random victim choice this number

of successful steals is: E[u] = O(P log2P)M , where M is an upper-bound on the number

of successive synchronization one active processor may engage in before becoming idle.

For the steal-half strategy the bound becomes

E[u] = O(P log2P)log2n

Tchiboukdjian et al. work delivers the expected total number of steal attempts a over an

input size n, P workers, and assuming unit-time steal operations. Again, for top-most

steals with random victim choice, this number is

E[a] ≤ 5.5PD + P − 1

This improves the constant factors in Blumofe et al.’s work, but assuming that steals are

performed in time O(1) instead of 1 delivers E[a] ≤ 5.5 ·O(PD) + P − 1, what converges

asymptotically to Blumofe et al.’s bound of O(PD).

3.1.3 Implementation of Work-Stealing Schedulers

The group of Charles Leiserson on the MIT and its collaborators are the leading

references on the implementation of work-stealing schedulers for shared memory machines.

Now we examine some of their work and discuss the techniques bound to it, relating it to

some design decisions of our work.

55

Implementations of schedulers play a significant role in real-world performance. It

brings along several heuristical optimizations that are important in practice, like non-

blocking steal protocols, the work-first principle, and elision code, etc. Although imple-

mentation optimizations usually do not impact the asymptotic complexity, it is essential

to mitigate the constant factors associated. This is what makes the difference in everyday

use and should not be neglected.

We begin by discussing Hood (BLUMOFE; PAPADOPOULOS, 1998). Older than

Cilk-5, Hood was a user-level threads library, whose primary concern was to provide an

efficient performance under multiprogramming without the need for support in the OS

kernel. It already used a non-blocking implementation of the ABP work-stealing, what

would later be the basis of Cilk-5. Contrary to it, however, and like other previous ver-

sions of Cilk, it was a library, requiring a fine-grained control by the programmer, without

any support from the compiler. The main advent was the idea that the execution time

of a program running with arbitrarily many processes on arbitrarily many processors is

a function of sequential work and depth. Even in an early stage, the companion analysis

of Hood considered the hypothetic scenario where the set of workers grows and shrinks

over time, this time the kernel being the entity that allocates or deallocates the physical

processors to the runtime. The paper showed that Hood applications behave well and

achieve linear speedup regardless of the behavior of the kernel scheduler. The proof sup-

poses an adversary kernel and considers the bounds of Arora et al. (ARORA; BLUMOFE;

PLAXTON, 1998).

Contemporary to Hood, we overview the Cilk implementation paper from 1998 by

Frigo, Leiserson, and Randall (FRIGO; LEISERSON; RANDALL, 1998), “The imple-

mentation of the Cilk-5 multithreaded language”. There the authors present the imple-

mentation decisions behind the fifth version of the original Cilk programming language

(an extension to C). Cilk uses the provably good ABP work-stealing algorithm to manage

user-level threads on the top of OS processes. The fifth version of Cilk was re-designed

to move all the scheduling logic to the compiler, relieving the programmer from handling

its data structures. It was this paper that brought along the work-first principle, i.e.,

based on the analysis of ABP the authors argument that minimizing the overheads that

contribute to work, even on the expense of overheads that contribute to the critical path,

results in performance gain. Although counter-intuitive, this approach leads to a portable

version of Cilk where the typical cost of spawning a task is only between 2 and 6 times

the cost of a C function call on the machines of that time. Also, it only occurs at calls

56

that will run in parallel; thanks to a “two clones” compilation strategy most of the calls

are standard C function calls. The use of a Dijkstra-like mutual exclusion protocol to

implement the deques ensures non-blocking steals, allowing the computation to progress

without locks and starving.

The compiler employs the two clone strategy on behalf of the programmer. Cilk com-

piler, a type-checking, source-to-source translator, transforms a Cilk source code into C

post source and run on GCC. To every Cilk procedure (a standard C function declaration

preceded, at the time, by keyword cilk), the compiler produces two corresponding C

functions, a “slow” and a “fast” one. The fast clone is almost identical to the elision ver-

sion (without keywords spawn and sync) and executes when sequential semantics suffices

(when there is no steal). The slow clone is executed in the infrequent case when paral-

lel semantics is necessary, upon a successful steal. All communication generated by the

scheduler occurs in the slow clone and contributes to the critical-path overhead, following

the work-first principle.

To minimize waiting times in order to avoid starvation and slow progression, the

paper presents an implementation of a shared-memory, mutual exclusion protocol on the

deques. This protocol, named THE, is inspired by Dijkstra’s mutual exclusion protocol

(DIJKSTRA, 1965). Using THE protocol the scheduler guarantees that steal overheads

contribute only to the critical path overhead, respecting the work-first principle. THE

also allows an exception to be signaled to the working processor with no additional work

overhead, a feature used on Cilk’s abort mechanism.

The next version of Cilk is reviewed in a brief paper also by Leiserson et al. (LEIS-

ERSON, 2009) entitled “The Cilk++ Concurrency Platform.” (As a “bonus”, the paper

also brings a short, yet instructive review of the previous works on p 6 and p 7.) In

addition to what was implemented earlier, it introduced a race condition detection tool.

Since backwards compatibility was critical, the paper introduced the concept of “hyper

object”, which is examined in details on a separate paper, “Reducers and Other Cilk++

Hyperobjects” (FRIGO et al., 2009). These hyper-objects are a mechanism tied to the

Cilk language that allow different workers to maintain coordinated local views of non-local

variables. The authors identify three “useful” kinds of hyper-objects, reducers, holders,

and splitters. Reducers are described prominently, and the scheduler supports a random-

ized locking methodology for them without significant overhead. Each strand (a branch of

the execution tree) has a view of the hyper object, powered by the runtime system. This

view is a stateful object with a memory address. The strand accesses its view’s state inde-

57

pendently, with no need for synchronization, being private and isolated of other strands.

When two or more strands join, the views are combined by a function specified either by

the programmer or by the runtime system — the views can be destroyed or carried on

the resulting strand. Reducers hyper-objects, for instance, rely on algebraic structures

called monoids, which are a set with an associative operation and identity element. The

presented theorem and lemmas suppose reduce operations have time Θ(1) and Lemma 1

has the proof on probabilistic locking. (On Chapter 9, we list as future work exploiting

the use of less general structures than monoids we discovered while on the making of this

thesis.) The underlying multithreaded framework handles the view. The goal of a hyper

object is to facilitate the parallelization of programs using non-local variables without

much effort of the programmer.

Earlier versions of multithreaded schedulers, like the ones in Cilk, used a “cactus”

activation stack to process function calls. A cactus stack is a stack with a common bottom

but multiple ends that depart of the original structure through a branch. Figure 3.2

illustrates the difference between a traditional linear stack (Figure 3.2b) and a cactus stack

(Figure 3.2a). On a cactus stack, each worker “owns” an end. Through it, the parallel

function access to stack variables properly respects the function’s calling ancestry, even

when many of the function operate in parallel. Nevertheless, many of those frameworks

fail to respect one of the following criteria:

1. complete interoperability with third-party serial binaries compiled to use an ordinary

linear stack;

2. bounded, efficient use of memory for the cactus stack.

For this reason, earlier Cilk-5 forbade parallel function to call sequential functions within.

Even Cilk on its most recent incarnation, Cilk Plus, chose to change its model back again

to a linear stack, even in exchange for performance. In order to solve this de facto di-

chotomy, Lee et al. (LEE et al., 2010) proposes a modification to the Linux kernel to

provide support for Thread-Local Memory Mapping (TLMM). Since the latest Cilk uses

a linear stack, the authors have chosen to modify Cilk-5’s cactus stack to be implemented

in terms TLMM. With that they produced Cilk-M, a version of Cilk, eliminates the par-

allel/sequential call constraint from Cilk-5 while providing full compatibility with legacy

binaries. Cilk-M is comparable to Cilk-5 in terms of performance and occupies small stack

space.

58

P2 P3

P1

(a) Cactus stack.

P3P1 P2

(b) Linear stack.

Figure 3.2: Linear and cactus stacks. The rectangles represent memory locations, specifi-
cally the function call stack. The arrows represent links between memory locations in the
form of pointers (deferenceable addresses).

3.1.4 Lamport’s Logical Clocks

One inspiration for SIPS is the classical paper by Lamport (LAMPORT, 1978). We,

however, apply it in an unusual way: the analysis of overheads in parallel computations.

Knuth’s definition of time is counting of specific operations (KNUTH, 1997a); comparison

and swapping for sorting, sums and multiplications for polynomial evaluation, etc. Our

idea is to use logical clocks to count synchronizations.

Lamport examines the concept of the “happened before” relation on a distributed

system and how it defines a partial order of events. Then, he proposes a distributed

algorithm for synchronizing a system of logical clocks that can be used to totally order

the events. At the end of the paper, the algorithm is generalized to physical clocks,

but this variation is of no interest to our analysis — the user’s perception of real versus

logical clocks is of no importance to this thesis. The most significant presented idea, for

our purposes, is the bound it derives on how far out of synchrony the clocks can become.

Consider three events a, b, and c. The “happened before” relation, denoted “→” (its

negation is noted “6→”), on the set of events on a system, is the smallest relation satisfying

the following conditions:

59

1. If a and b are events on the same process and a comes before b, then a→ b.

2. If a is the event of sending of a message to another process and b is the event of

receiving such message, then a→ b.

3. If a→ b and b→ c, then a→ c.

Two distinct events a and b are concurrent if, and only if, a 6→ b and b 6→ a. It is assumed

that, for any event a, a 6→ a, since an event happening before itself is neither feasible nor

seems useful. Thus, → is an irreflexive partial ordering on the set of all events on the

system.

A clock is defined as a function C over some event a, such that C(a) corresponds to

its time stamp. The clock condition is

if a→ b, then C(a) < C(b).

Each process P running on the distributed system has its own private C. The clock

condition is satisfied if the following conditions hold:

1. If a and b are events in process Pi and a→ b, then Ci(a) < Ci(b).

2. If a is the event of sending an message by process Pi and b is the receipt of that

message by process Pj, then Ci(a) < Cj(b).

A system of clocks that satisfies the clock condition places a total ordering on the set

of all system events. The events are ordered by the timestamps on which they occur. To

break “ties”, an arbitrary total order “≺” is used (for instance, the id of the process).

And, thus, one can define a relation “⇒” as follows: if a is an event in process Pi and b

is an event in process Pj, then a⇒ b if and only if either

Ci(a) < Cj(b) or Ci(a) = Cj(b) and Pi ≺ Pj.

The clock condition implies that if a → b then a ⇒ b. In other words, relation ⇒
complements and transforms relation → from a partial order in a total order.

The clock definition has the same structure of our Definition 2, on Chapter 4. Since

we do not exchange messages, condition (2.) applies to synchronization between workers.

The set of system events is all task creations and synchronization or a subset of interest

from it. Lamport’s processes correspond to our definition for workers. By analyzing the

impact of the scheduler’s victim selection strategy on clock progression and obtaining

60

bounds on the local clocks from the program’s work partition strategy, we extend logical

clocks to serve as worst-case parameter of the computation’s evolution.

3.1.5 Current Trends on Analysis

A MIT master’s thesis from July 2014, written by Warut Suksompong and directed

by Charles Leiserson (SUKSOMPONG, 2014), approaches one of our central issues: how

to estimate the number of successful steals on multithreaded computations scheduled by

work-stealing. Suksompong’s analysis works under the argument that an upper-bound

on the total number of steal attempts is not relevant for the worst-case scenario, a claim

we share. The authors consider a tree-shaped DAG. If the computation starts with a

complete k-ary tree of height h, the maximum number of successful steals is
∑n

i=1(k −
1)i
(

h

i

)

. Also, the thesis proposes a work-stealing algorithm called “localized work stealing”.

The intuition behind it is that because of locality workers benefit from working on its own

work. So, when a worker is free, it makes a “steal-back” operation, a particular type of

steal that tries to retrieve some of its own work. Assuming an “even distribution of free

agents”, the expected running time of the algorithm is W/P + O(D log2 P).

The proof on successful steals is based on a recurrence of a potential function (which

is slightly different from the potential method described on Subsection 3.1.2). Let n ≥ 0

be an integer and T a binary tree. The nth potential of T, noted by Φ(T, n), is defined

as the maximum number of steals that can be obtained from a configuration of n + 1

workers, one of which has the tree T and the remaining n, which have empty trees. With

only one processor one cannot perform any steal, hence Φ(T, 0) = 0. For a binary tree

with right subtree Tr and left subtree Tl, the paper shows that the following recurrence

holds:

Φ(T, n) = 1 + max (Φ(Tl, n− 1) + Φ(Tr, n), Φ(Tr, n− 1) + Φ(Tl, n)) .

By using Pascal’s identity this recurrence is generalized to k-ary trees that achieve the

bound of
∑n

i=1(k − 1)i
(

h

i

)

.

We improve this result. First, we make no assumption about the shape of a given

DAG. Second, since D is an upper bound on the tree height h, this bound is dependent

on the critical path and, since the number of leaves is precisely W , this bound is also

dependent on the work. We explicitly deliver a bound that does not use those parameters

to support randomized algorithms. Also, our worst-case bound is sharper for trees with

61

large arity and overall size.

Another analysis trends are early considerations about the advent of “space-bounded

schedulers”. Since a large amount of the performance depends on how well the programs

are scheduled regarding processors and cache hierarchy. Space-bounded schedulers, thus,

schedule parallel programs on the multi-level cache hierarchies of current machines. Its

primary benefit would be, allegedly, the preservation of locality at every level in the

hierarchy, resulting in fewer cache-misses and better use of bandwidth that the work-

stealing schedulers of nowadays.

In the ACM Symposium on Parallelism in Algorithms and Architectures (SPAA) 2014

conference, Simhadri et al. (SIMHADRI et al., 2014) proposed the first analysis on

the difference of such schedulers. The authors built an experimental framework for the

analysis of separate interfaces for the programs and schedulers to allow comparison in

terms of cache-misses and performance across a set of different benchmarks. The variants

compared are the Cilk Plus work-stealing scheduler, an hierarchy-minded work-stealing

algorithm, and two variants of space-bounded schedulers. The benchmarks vary from

divide-and-conquer micro-benchmarks (alike the benchmarks we used in this thesis) and

traditional algorithmic kernels. Results indicate that space-bounded schedulers reduce

the number of L3 cache-misses compared to work-stealing by 25-65% for most of the

benchmarks but incur up to 7% additional scheduler and load imbalance overhead. Only

for benchmarks intensive in memory can the reduction in cache-misses overcome the added

overhead, resulting in 25% improvement in running time for synthetic benchmarks and

about 20% for algorithmic kernels.

Our SIPS analysis is entirely compatible with the analysis of space-bounded schedulers.

To add the analysis of cache-misses, tied to certain operations, is a future branch to be

explored in our work. The same holds for the mentioned hierarchy-minded work-stealing

algorithms.

As will be shown in Chapter 4, Section 4.2 and Section 4.3, the advantage of random

strategy over minimum clock strategy is the lack of contention in the first. We highlight

some contours over it on Chapter 9, including mixed strategies. It is crucial for a strategy

requiring the fast selection of a minimum value to be able to rely on heap-based primitives.

We, however, have not found suitable hardware instructions that allowed us to accelerate

the insert and extract operations significantly. This is also one of the points of a 2013

paper entitled “Reducing Contention Through Priority Updates” by Shun et al. (SHUN

et al., 2013). They study the “priority update” operation as a primitive for limiting write

62

contention in parallel programs. This primitive takes as argument a memory location, a

new value, and a comparison function >P that enforces partial order over values. The

operation atomically compares the new value with the current value in the memory lo-

cation, and writes the new value only if it has higher priority according to >P . This

is an extension of wide-spread atomic primitives like compare-and-swap and test-and-set

— priority updates are described, in fact, in terms of it. The authors proceed to show

several algorithms and data structures that benefit from it. The experimental results

demonstrate this approach excels on high-sharing algorithms like “remove duplicates”.

The above paper proposes, among the algorithms, a union-find data structure that

could be useful to the mixed strategies we propose more ahead.

3.2 Parallel Pseudorandom Number Generation

3.2.1 State-based PRNGs

State-base PRNGs are inherently sequential. A successive application of a transfor-

mation function f : U → U (U is a state space) over current state to obtain the next

element:

un+1 = f(un).

Thus, size of U is the period of the generator. This application is fundamentally serial since

each value depends on the previous one. A paper by Paul Coddington (CODDINGTON,

1997) enumerates the two main approaches to parallelize a PRNG:

Multistream. The PRNG algorithm is instantiated in parallel with different parameters

so that each instance produces a distinct stream of numbers.

Substream. A single logical sequence of random numbers is subdivided into disjoint

substreams that can be accessed in parallel.

The paper also enumerates a useful array of techniques to parallelize PRNGs, like “leapfrog”

(cyclic partition among processors) and “sequence splitting” (block partition among pro-

cessors) but these are not processor-oblivious. In a perspective, our technique can be

applied to both variants, since the decision between the substream or the multistream

approach is performed at each steal. We presented a version based on jump operations,

which generates the substreams, but we could have used a reseed operation in its place.

Haramoto et al. (HARAMOTO; MATSUMOTO; L’ECUYER, 2008) also argued in

63

favor of parallel programs to build a fast jump-ahead algorithm over their PRNG Mersenne

Twister, resulting in the implementation of SIMD-oriented Fast Mersenne Twister (SFMT).

This is also the case of L’Ecuyer’s RNGStreams library (build on the top of its MRG32k3a

generator (FISCHER et al., 1999)). These optimizations are applied in the literature due

to the programmer knowing the number of workers previously to partition the generate

space per resource. (Not possible for Par-R, since it is processor-oblivious, as discussed

in Chapter 7.) Both approaches deliver a jump with high constant cost, compensated

by the large range skipped — which, contrary to Par-R, is defined at compile time. In

the same sense, there is the popular pthread implementation of SPRNG by Mascagni

and Srinivasan (MASCAGNI; SRINIVASAN, 2000) that creates several PRNG streams

through parametrization. In general, this type of domain partitioning requires a maxi-

mum subspace interval in function of the number of workers, which is analogous to Par-R

overestimation.

3.2.2 Counter-based PRNGs

Counter-based PRNGs are a novel approach to the traditional state-based one of ear-

lier. They were first discussed in the 2011 paper “Parallel random numbers: as easy as 1,

2, 3” by Salmon et al. (SALMON et al., 2011). The authors argue that the state-based

approach scales poorly on parallel high-performance architectures, which we corroborate.

The proposal is to use independent, keyed transformations of counters to produce a class

of PRNGs with practical statistical properties (long period, no discernable structure or

correlation). Besides proposing the paradigm, the paper introduces proof-of-concept im-

plementations over cryptographic standards (named ARS and Threefish) and based on

new paradigms (named Philox). These PRNGs pass statistical tests (including the well-

regarded TestU01 (L’ECUYER; SIMARD, 2007)) and produce at least 264 unique parallel

streams, each with a period of 2128 or more.

Counter-based PRNGs are suited to parallel computation because they break the

sequential dependence among output values.

Contrary to the state-based case, here each number in the sequence is obtained by a

function b, where the n-th random number xn is obtained by applying b to n:

xn = b(n).

In the simplest case, n is a p-bit integer counter, deriving the name “counter-based”. Each

64

computation takes the same constant-time, independently of the value of n. Furthermore,

if b is a bijection on the set of p-bit integer onto itself, then the period of the generator is

2p.

The authors use as the primary source of functions that satisfy the requisites of b

cryptographic block cyphers, on the form

xn = bk(n),

where bk is a keyed bijection, where k is a cryptographic key. A counter-based PRNG

constructed from a keyed bijection can be easily parallelized using either the multistream

approach over the key space or the substream approach over the counter space. Ap-

plications can choose to derive k and n on the fly from either machine parameters or

application variables. Generating random numbers from state associated with applica-

tion variables allows for machine-independent streams of random numbers. This approach

permits deterministic results across different computing platforms.

The author introduced three families of bijections with periods of at least 2.128 and

parametrized by a key that allows at least 264 or more parallel streams. The first family

are bona fide cryptographic block ciphers, derived from AES since there are now spe-

cialized AES instructions on commodity x86 processors. The second family is based on

simplified cryptographic cyphers, being the fastest implementation on all three families

in CPUs. Finally, the third family consists of non-cryptographic bijections. The authors

introduce Philox, a counter-based PRNG that uses multiplication instructions that com-

pute the high and low halves of the product of word-sized operands. It is the fastest

implementation on all three families in GPUs.

Salmon et al. (SALMON et al., 2011) argues that the use of a technique like Par-R,

with conventional PRNGs is impractical due to the requirement of maintaining billions

of PRNGs in memory. Our work partially refutes this, since once our conditions are

met, one does not need more than one PRNG per thread per recursive call (roughly) to

provide deterministic random number generation, for both fast and crypto-secure gen-

erators. Counter-based PRNGs have excellent statistical properties and can be used in

deterministic parallel executions by either sub-stream or multi-stream approaches. How-

ever, considering performance, each random generation from the clock requires an op-

eration equivalent to re-seeding, and thus a linear overhead. The polylog overhead of

Par-R compares favourably to this overhead. Moreover, R can itself use counter-based

65

generators.

3.2.3 Deterministic Parallel Runtime

A 2012 paper by Leiserson et al. (LEISERSON; SCHARDL; SUKHA, 2012) entitled

“Deterministic parallel random number generation for dynamic-multithreading platforms”

proposes a third way to approach the multistream/substream duality. It offers a mech-

anism called pedigrees, built into the runtime system, to enable efficient deterministic

parallel random number generation. The responsibility of generating and seeding the

copies on the multistream approach is passed on to the underlying runtime. Experiments

with the open-source MIT Cilk runtime system show that the overhead of maintaining

pedigrees on a suite of 10 benchmarks, the relative overhead of Cilk with pedigrees to

the original Cilk has a geometric mean of less than 1%. The authors persuaded Intel to

modify its commercial C/C++ compiler, which provides the Cilk Plus concurrency plat-

form, to include pedigrees, and built a library implementation of a deterministic parallel

random number generator called DotMix that compresses the pedigree and then hashes

the result.

The paper reports that the statistical quality of DotMix is comparable to that of the

famous Mersenne Twister (MATSUMOTO; NISHIMURA, 1998) but somewhat slower

than a nondeterministic parallel version of the later.

The cost of calling DotMix depends on the depth D of the invocation. For a naïve

Fibonacci calculation with n = 40 that calls DotMix in every node of the computation,

the overhead is about a factor of 2.3 in running time over the nondeterministic Mersenne

Twister. For other applications that use random numbers — such as a Maximal Indepen-

dent Set algorithm, a practical Sample Sort program, and a Monte Carlo discrete-hedging

application from QuantLib — the observed overhead was at most 21%.

Their research provides fast parallel PRNGs through a jump-ahead function, much

like our work does. The main difference is the usage of this mechanism; while we use

jump to compensate parallel non-determinism in the usage of sequential PRNGs.

This thesis references DotMix several times, since it is the base of comparison of the

benchmarks on Chapter 8.

66

3.2.4 Current Trends

A 2014 paper by the well-known PRNG specialist Pierre L’Ecuyer and others examine

the requirements of random number generators for current parallel machines, emphasizing

the advent of GPUs. This paper, entitled “Random Numbers for Parallel Computers:

Requirements and Methods With Emphasis on GPUs”, is currently on submitted status

to the Mathematics and Computers in Simulation journal and can be found on the authors’

website <http://www.iro.umontreal.ca/~lecuyer/myftp/papers/parallel-rng-imacs.pdf>.

In it, there is an examination of the requirements and the available methods and software

to provide (or imitate) uniform random numbers in parallel computing environments.

The authors state that for the vast majority of applications, independent streams of

random numbers are required, each being computed on a single processing element at a

time. They aim to explain how they can be produced and managed and devote particular

attention to multiple streams for GPU devices. The observations contained in this paper

matches our own in many aspects. The premise is that in highly-parallel systems, one

may need thousands or even millions of virtual PRNGs (this corroborates the paper by

Salmon et al. (SALMON et al., 2011)). They can be either different PRNGs or copies of

the same PRNGs starting from different states that run in parallel without exchanging

data between one another, and behave from the user’s viewpoint just like independent

PRNGs. In our work, however, we need only one active PRNG per worker at each time.

As in this thesis, the use of deterministic PRNGs in the process of debugging parallel

software is emphasized. It is often required that simulations must be exactly replicable

and produce exactly the same results on different computers and architectures, either

parallel or purely sequential, and when running the program again on the same machine.

The latter is necessary for debugging and in the situation where one wants to simulate a

complex system with slightly different configurations or decision-making rules. This is to

make sure that exactly the same random numbers are used at exactly the same places in

all configurations of the system and repeat this n times independently.

In single monitor tools, all the new streams are created and managed by a central

monitor. The streams are defined so they are all distinct, long enough to make sure they

cannot overlap, and they behave as statistically independent. For reproducibility, the user

must make sure that they are created in the same order and used for the same purpose in

different configurations. This single-monitor design means that all streams must be passed

or copied from the single location where they are created to all other places where they

http://www.iro.umontreal.ca/~lecuyer/myftp/papers/parallel-rng-imacs.pdf

67

are to be used. For most parallel applications, this is acceptable and sufficient. In multi-

monitors environments, each creator will create exactly the same sequence of streams in

exactly the same order, provided that the creators are created themselves in the same

order. Once created, the creators no longer have to interact with each other and can be

distributed in loosely connected groups of nodes. This is the case of the counter-based

generators described earlier.

Functional programming languages like Haskell follow the multistream approach as

Par-R, offering their own splittable generators to the programmer and a corresponding

split function. In addition to the traditional operation of state-based generators next —

that generates a new number and updates the state and is detailed in Chapter 6 — it

also offers an operation named split, which replaces the original PRNG object with two

(seemingly) independent PRNG objects, by creating and returning a new such object and

updating the state of the original object. Splittable PRNG objects make it easy to organize

the use of pseudorandom numbers in multithreaded programs structured using recursive

parallelism. However, these implementations are bounded to a R provided by the runtime,

unlike the generic model of Par-R, which accepts any generator with a given interface.

This idea of splittable generators is taken in depth in a 2014 paper by Guy Steel, Doug

Lea, and Christine Flood named “Fast Splittable Pseudorandom Number Generators”.

The paper was published in both a conference (STEELE JR.; LEA; FLOOD, 2014a) and,

later, in a journal (STEELE JR.; LEA; FLOOD, 2014b). In that, the authors describe a

new algorithm, SPLITMIX, for an object-oriented and splittable pseudorandom number

generator.

SPLITMIX uses 9 64-bit arithmetic/logical operations per 64 bits generated and has a

Single Instruction Multiple Data (SIMD) and GPU implementation. The authors derive

SPLITMIX from the DotMix algorithm of Leiserson et al. (LEISERSON; SCHARDL;

SUKHA, 2012). SPLITMIX is faster and produces pseudorandom sequences of higher

quality than Haskell’s or Java 8’s. The generated sequences produced by SPLITMIX

were tested using two standard statistical test suites (DieHarder and TestU01) and its

results are inferior to serial generator Mersenne Twister, although the performance may

compensate for it.

Since Par-R may use Mersenne Twister — and others — underneath, the quality of

our method may be as good as any sequential generator used as a reference. Comparisons

in performance are enlisted for future work.

68

3.3 Closing Remarks

In this chapter, we overviewed the state-of-the-art on analysis of synchronizations in

parallel programs scheduled by a distributed algorithm and generation of pseudorandom

numbers in parallel.

By analyzing works in a deep, structured way, we hope the reader sees more clearly

why we chose the notation and definitions the thesis uses. Much like finding axioms

through proofs of related theorems, a common underlying working set of definitions arises

from related or derived works. The result is not intended to produce a “fit it all perfectly”

relation with the enlisted works. Rather, we aim at a “fits most of it well” relation that

applies itself between the studied works and this thesis.

69

Part I

The Tools of Analysis:

Synchronizations in Greedy

Scheduled and Work-Stealing

Scheduled Parallel Algorithms

71

4 SIPS: A TECHNIQUE TO ANALYZE SYNCHRONIZATIONS IN GREEDY

SCHEDULED ALGORITHMS

We present SIPS, an analysis framework that allows us to estimate the parallel over-

head introduced by synchronizations. This is the central chapter of the thesis.

Upon definition of local and global clocks and the relevant functions over them (Sec-

tion 4.1), we build the rationale by providing a method to estimate the number of suc-

cessful steals in a computation scheduled by work-stealing (Chapter 2). We are able to

deliver bounds on the number of synchronizations on such computations for a variety of

victim selection strategies, exemplifying with the choice by minimum clock (Section 4.2)

and the random selection (Section 4.3). Then we show that this limit is flexible by chang-

ing parameters on the execution, such as the workload partition strategy (Section 4.4),

which allows us to model general synchronizations.

Through SIPS clocks, we are able to introduce the notion of asymmetrical parallelism

(Section 4.5) and show how classical analysis based on work and depth does not encompass

this scenario. We later use the presented concepts as the basis to define work-efficient

and work-optimal algorithms (Section 4.6).

The chapter ends with closing remarks (Section 4.7), abridging this more abstract

content to the next chapter, which is more practical.

4.1 Definitions

Parallel executions are examined through the model of task-based computations as

established on Subsection 2.2.1 and Subsection 2.2.2.

As demonstrated by Blumofe et al. (BLUMOFE; LEISERSON, 1999), the expected

number of total steal attempts for a parallel execution over P workers with depth D

and scheduled by randomized work-stealing is O(PD). Nevertheless, the performance of

our method is bounded by the number of successful steals, i.e., the steal attempts over

non-empty deques. Next we employ a counting technique that estimates the size of a

particular subset of the performed steal attempts (e.g., successful ones) and does not

depend on execution’s depth. This generalizes the bound to a non-deterministic DAG.

First, let each worker 1 ≤ i ≤ P to have associated a local clock φi, and a set of local

clocks to be the global clock (or just “SIPS clock”):

Definition 2 Let S be the poset of all events during a parallel execution (identified by

72

the respective tops). A local clock is any function φi : S → N where:

1. If i becomes inactive at s ∈ S , then φi(s+) = 0.

2. If i is inactive at s ∈ S , then φi(s) = 0.

3. If i becomes active at s ∈ S , then φi(s+) > 0.

4. If i is active at s ∈ S , then φi(s) ≥ φi(s−). ✷

Definition 3 Let Σ be a (possibly non-maximal) subset of S containing only synchro-

nization operations. A global clock is any function φ : S → N
P with s 7→ (φ1(s), . . . , φP (s))

where:

1. Function φi is a local clock for worker i.

2. If s(i, j) ∈ Σ, then max(φi(s−), φj(s−)) < min(φi(s+), φj(s+)) ✷

Henceforward all successful steals are considered to be the “interesting” synchroniza-

tions, i.e., the ones in Σ. The local clock φi(s) is the number of times a worker had tasks

stolen from its deque! (deque!) since it is active until it becomes idle. The global clock

is the total number of successful steals. The local clocks’ upper bound M is defined as

the maximum size of any deque during computation.

To develop our theorems we also need the notion of the minimum clock. It serves as

the “weakest node” in the chain of synchronizations.

Definition 4 Let Σ be a (possibly non maximal) subset of S containing only synchro-

nization operations. Also, let min+ : NP → N
+ be a function that returns the smallest

natural greater than zero from a set of P naturals. Also, let Φ be the set of all possible

global clocks. The minimum clock is a function

φmin : Φ× Σ→ N with (φ, s) 7→ min+ (φ1(s), . . . , φP (s)) ,

i.e., that returns the value of the minimum non-zero local SIPS clock at s. We denote it

interchangeably in the following way:

φmin(s) = min+ (φ(s)) = min+ (φ1(s), . . . , φP (s)) . ✷

Figure 4.1 shows a snapshot at top s of a global clock from Definition 3 (bounded by

M) and function φmin.

73

0

M

id
le

id
le

id
le

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

φ3(s)

φ4(s)

φ5(s)

φ6(s)

φ7(s)

φ8(s)

φ9(s)

φ10(s)

φ12(s) φ13(s)

φ15(s)
φmin(φ, s)

φ1(s)

Figure 4.1: Example of a global clock at top s. Here, P = 15 and each active worker i
has an value φi(s). In this example, φmin(φ, s) = φ3(s) = φ15(s). Workers 2, 11, and 14
are inactive (idle). They are not accounted in the calculus of φmin(s), and have φ(s) = 0.

By analyzing the different values φmin may assume, we bound the worst-case compu-

tation since it is the value of the “most delayed” clock. The following lemmas apply. The

first one shows that φmin is an increasing function:

Lemma 1 For all s ∈ Σ, φmin(s−) ≤ φmin(s+).

Proof We show that at any given top it is impossible for the minimum clock to decrease,

since all actions the runtime can undertake increase or keep its value. Suppose, without

loss of generality, that worker i has the minimum clock, i.e., φmin(s−) = φi(s−). By

Definition 2, on top s it can either become idle — items (1.) and (2.) —, increase, or

keep — items (3.) and (4.) — its clock value. Also, by Definition 3 it can participate in

a synchronization and increase — item (2.) — its clock value. If it keeps its clock value,

it remains the minimum clock, which remains the same. If it increases its clock value

but is still lesser than the others, it remains the minimum clock, which increases. If it

increases its clock value and it is larger than some other non-idle worker j or it is zeroed,

than another worker j has now the minimum clock value at s. But, since by Definition 4

i has the minimum clock, we have φi(s−) ≤ φj(s−) and j has also increased or kept its

clock value, than the minimum clock value has also remained the same or increased. In

all cases, the value of the minimum clock never decreases. �

74

We can also state that if all workers synchronized within a range of tops, then the

minimum clock is strictly incremented after the last top on the range:

Lemma 2 Let s0, s′ ∈ Σ such that s0 ≤ s′ and the computation has not ended between s0

and s′ — i.e., there was at least once clock value greater than zero. If ∀i∃j ∈ [1, P] such

that s(i, j) ∈ [s0, s′] or s(j, i) ∈ [s0, s′], then φmin(s0) < φmin(s′).

Proof Suppose an adversary works to not increase the minimum clock value by choosing

a new worker once the current owner of the minimum clock value has increased. Thus,

at each time the current minimum clock value increases or is zeroed, the adversary has

to select another worker with a clock value equal to the previous worker’s clock value

by Lemma 1. By Definition 3, any worker that synchronizes strictly increases its clock

value and since we assumed all workers synchronized, after s′ there is no worker whose

clock value has not increased or is zeroed. In both cases, the adversary cannot choose any

remaining worker of equal value and thus the minimum clock has increased. �

A common upper-bound for all local clocks also bounds the global clock according to

the synchronization strategy, i.e., the function used by the thief — an idle worker — to

choose its victim — an active worker. These are discussed next. We begin by proving the

optimality of a simple scheduler where the thief always selects the victim with minimum

clock value. Then, we prove the asymptotic optimality of a scheduler with random victim

selection.

4.2 The Minimum Clock Strategy

An idle worker selects the active worker with the minimum clock. If more than one

worker met this condition, then the victim is chosen randomly. If the selected worker is

also idle or is being stolen by a third worker, then the thief picks the second minimum

clock, and so on (in the case that there is no available worker to be stolen, it steals from

the first one that becomes available and has the minimum clock).

Let us now see a tight upper bound on the number of steals in this case:

Theorem 2 During a randomized work-stealing execution over P workers, let Σ be the

subset of steal operations and φ be a local clock over Σ. Also let u be a random variable

whose value is the number of occurrences of the steals in Σ and E[u] be its expected value.

If there is a constant M such that φi(s) ≤M for all 1 ≤ i ≤ P active at s and all thieves

75

follow the minimum clock strategy for victim selection, then

E[u] = M · (P − 1).

Proof Since the local clocks are assumed to be upper-bounded by M , in the worst case

φmin goes from 1 to M before the computation ends according to Lemma 1. On this

strategy, we select the worker with the minimum clock value to be synchronized at each

time, and thus every worker has synchronized once after exactly P −1 tops. By Lemma 2,

after every worker synchronizes at least once, φmin necessarily increases. Thus, to each

unit we increase φmin from 1 to M we perform at most P −1 synchronizations. Therefore,

the worst case number of synchronizations is M(P − 1). �

This simple scheduler based on the SIPS clock value has a small overhead since the

number of steals is strictly lesser than the number of workers. However, it suffers from

contention, being on the family of work-pushing scheduling algorithm. Next, we use SIPS

clocks to analyze the randomized victim selection case (as in ABP work stealing) in order

to mitigate this contention.

4.3 The Random Selection Strategy

An idle worker selects an active worker randomly. If the selected worker is also idle or

is being stolen by a third worker, then the framework retries, as discussed in Chapter 2,

Figure 2.4.

Before proving the bound, we present the Coupon Collector’s Problem and its solution,

which is used as a component of the proof of the random case. We use it later to show, in

expectation, how many steal attempts occur before every worker participates in at least

one synchronization as a victim or thief.

Suppose that there is an urn, from which n different coupons are being collected,

equally likely, with replacement. In probability theory, the coupon collector’s problem asks

the following question: How many coupons we expect one needs to draw with replacement

before drawing each distinct coupon at least once? The answer is the following Lemma:

Lemma 3 (Coupon Collector’s Problem) Let T be the number of draws to collect all

n distinct coupons at least once. Also, let Ti be the number of draws to collect the i-th

76

different coupon after i− 1 distinct coupons are already collected at least once. Thus, the

expected total number of draws is

E[T] = n
n
∑

i=1

1/i = nHn (4.1)

where Hn =
∑n

i=1 1/i is the harmonic number. Moreover, the variance is Var[T] < π2

6
n2.

Proof Consider T and each Ti as random variables. The probability Pi of drawing

the i-th distinct coupon after i − 1 distinct coupons were already collected is trivially

(n− (i− 1))/n. Therefore, Ti has geometric distribution with expectation 1/Pi. Thus, as

by linearity of expectation:

E[T] = E[T1] + E[T2] + · · ·+ E[Tn]

=
1
P1

+
1
P2

+ · · ·+ 1
Pn

=
n

n
+

n

n− 1
+ · · ·+ n

1

= n ·
(1

1
+

1
2

+ · · ·+ 1
n

)

= n ·
n
∑

i=1

1
i

= n ·Hn

Its variance is calculated also by linearity:

Var[T] = Var[T1] + Var[T2] + · · ·+ Var[Tn]

=
1− P1

P 2
1

+
1− P2

P 2
2

+ · · ·+ 1− Pn

P 2
n

<
n2

n2
+

n2

(n− 1)2
+ · · ·+ n2

12

< n2 ·
(1

12
+

1
22

+ · · ·+ 1
n2

)

< n2 ·
(

π2

6
− 1

n
+

1
2n2

)

<
π2

6
n2

�

By mapping a steal attempt onto a coupon draw, we find how many steal attempts

are required in expectation by one worker to query all other workers. Assuming that each

77

global clock is upper-bounded by M synchronizations, we deliver a general worst-case

expected upper-bound:

Theorem 3 During a randomized work-stealing execution over P workers, let Σ be a

subset of steal operations and φ be a local clock over Σ. Also let u be a random variable

whose value is the number of occurrences of the steals in Σ and E[u] its expected value. If

there is a constant M such that φi(s) ≤M for all 1 ≤ i ≤ P active at s, then

E[u] ≤M(P − 1)HP

Moreover, π2(P − 1)2/6 is the expected variance.

Proof Since the local clocks are assumed to be upper-bounded by M , in the worst case

φmin goes from 1 to M before the computation ends according to Lemma 1. On this

strategy, we select the worker randomly. By Lemma 3, in expectation we need (P −1)HP

synchronizations before all workers synchronize at least once. By Lemma 2, after every

worker synchronizes at least once, φmin necessarily increases. Thus, to each unit we

increase φmin from 1 to M we have performed at most (P − 1)HP synchronizations in

expectation. Therefore, the worst case number of synchronizations is M(P − 1)HP . �

Remark 1 The proof considers a loose bound of one idle worker per top motivated

by worst-case analysis. Nevertheless, the local steps are usually performed in parallel,

mitigating the P − 1 factor. ✷

As a short example of SIPS analysis, consider a recursive computation of the n-th

term on Fibonacci’s series in parallel:

1 concepts <Integer N>
2 fib (N n) -> N
3 // precondition : n >= N (0)
4 {
5 if (n < N (2)) return n ;
6 N x = spawn fib (n - N (1)) ;
7 N y = spawn fib (n - N (2)) ;
8 sync ;
9 return x + y ;

10 }
11

This code is exactly like on Subsection 1.4.2, but with keywords spawn and sync to unfold

parallelism in a style close to Cilk, as displayed in Chapter 2. In it, maximum deque size

M = n−1 is given by execution tree and Theorem 3 upper-bounds total number of steals

78

to be HP −1(n− 1). We, however, are not only interested in a bound for the total number

of steals, but in bounds for some “kinds” of steals. How do we calculate, for instance,

how many times a recursive call whose n is multiple of 3 is stolen? Theorem 3 allows us

to define Σ to be all steals in the form fib(3k) for any natural k. Thus, M is reduced to

⌊(n− 1)/3⌋ and Theorem 3 delivers bound (P − 1)HP −1(n− 1)/3.

4.4 Workload Partition Schemes

Since we elected, in Section 4.1, the steals to be the interesting synchronizations, let

us consider a scenario where the clock increases only upon a successful steal, i.e., only by

the means of Definition 3 (2.). This implies that while a worker is active its clock will

increase only when the worker is a victim of a successful steal. The maximum number of

successful steals any computation can achieve has a loose upper-bound on the number of

tasks. However, not all tasks may be subject to stealing, only the ones the algorithm puts

on the deque. (This algorithmic decision is approached in details in the next section.)

On the worst case, this is equal to the maximum possible size of a deque during the

execution. Besides, the maximum number of steals a worker can suffer is also a function

of how many tasks are taken at each steal. The later is what we refer to as the workload

partition scheme. In this section, we discuss the impact of defining a workload partition

scheme on M . (Here, workload means “tasks on the deque”, while partition means “how

many tasks leave and how many tasks stay on the deque”.)

The workload partition scheme performed by the scheduler specifies which fraction

of the deque will be taken by the thief from the victim on a successful synchronization.

Since SIPS bounds orbit around M , this impacts on the global clock bounds calculated

using SIPS.

From now on let us consider the maximum length of any deque as n.

The first scheme we examine is “back-most task” partition. Since we take sequentially,

from back to the front, one task, we have M = n. This is the default policy on ABP

work-stealing. With minimum clock victim selection strategy we expect at most (P −1)n

successful steals (Theorem 2). With the randomized victim selection strategy, we expect

at most (P − 1)nHP successful steals (Theorem 3).

The second scheme we examine is “half of tasks” partition. If the maximum size of

the deque is n tasks, and we can only take half of the tasks each has at a given time —

rounded-up — a worker can at most suffer log2 n steals. This is usually used on adaptive

79

algorithms, as exemplified on Chapter 5. With minimum clock victim selection strategy we

expect at most (P − 1) log2 n successful steals (Theorem 2). With the randomized victim

selection strategy we expect at most (P − 1) log2(n)HP successful steals (Theorem 3).

The two schemes above are the most popular on runtimes scheduled by work-stealing.

The first one, “back-most task” is used on the runtime of various implementations of Intel’s

Cilk (where it is referred as “top-most task”). The second one, “half of tasks” is the default

policy on the Kaapi framework, which also supports adaptive parallel algorithms in an

“out-of-the-box” fashion.

An hybrid strategy is also considered, where a thief steals “some k tasks” from the

deque (where “some” may mean “smaller”, “any”, etc.). In this case, the maximum

number of successive steals a worker may suffer is n/k. With minimum clock victim

selection strategy we expect at most (P − 1) log2 n successful steals (Theorem 2). With

the randomized victim selection strategy we expect at most (P − 1) log2(n)HP successful

steals (Theorem 3).

Several works (e.g., (MICHAEL; VECHEV; SARASWAT, 2009; LIMA et al., 2013))

change the workload partition policy to favor some criteria. For instance, one might

choose to steal the task with more affinity or closer (in terms of the locality) to the thief.

With a given selection criteria, our work supports the analysis of those cases.

We highlight that, since one task may spawn a variable number of other tasks, stealing

a task is not the same as stealing one n-th of the work W . Let us take as example Cilk’s

scheduler, which implements ABP work-stealing. Cilk’s DAG is necessarily a fully-strict

complete tree where each parent node has σ more work than its children, where σ is the

degree of the tree. Thus, one does not steal an equal share of the workload by stealing

top-most, but a major part of the work. If one spawns two tasks per node, for instance

(say, the naïve Fibonacci example of earlier), each steal will take half of the work, despite

stealing one n-th of the tasks. Therefore, our analysis is not directly dependent on W .

At first sight one may argue that the “largest possible size of any deque” is tied to the

work W , since a loose bound to it is the total number of tasks, which is W by definition.

Thus, our claim does not take W into account would be false. However, as we stated, W

would be a loose bound, since the algorithm may not place all tasks on its deque — in

fact, it frequently does not. This placement, affected by the order on which the tasks are

spawned, are the subject of discussion in the next section. We also show that our analysis

is not also directly dependent on D.

80

4.5 Asymmetrical Parallelism

As we indicated at the beginning of the previous section, the workload partition scheme

is not the only factor contributing to the bound of the local clocks, since the way algo-

rithms allocate tasks on the deque is a factor of equal importance. Now we proceed to

show an example of a hidden constraint on parallel programs that classical analysis is

unable to find but is directly approached by SIPS. We call it “asymmetrical parallelism”.

The work-stealing scheduling mechanism is clearly meant to be symmetric, i.e., the order

of parallel calls should not impact on the algorithm, since they will be executed potentially

in parallel. However, although oblivious to the programmer, the work-stealing policy im-

pacts, and largely, on the worst case number of synchronizations, as SIPS analysis shows

below. Work-stealing schedulers have to choose which task will progress on sequential ex-

ecution and which one goes to the local repository. We discussed this briefly on Chapter 2

when debating fork/join vs. spawn/sync.

Consider four generalized versions of the fib algorithm in Figure 4.2 named fa, fb,

fc, and fd, all displayed on Figure 4.2. They all implement a variation of an algorithm

that we name fk. Each one calculates fk(n) = fk(n−1)+fk(n−k) with fk(0) = fk(1) = 1.

For k = 2, fk describes the Fibonacci’s series. Each version varies on the order of the

spawns and the use of the keyword spawn on the second recursive call.

For each one of the four variations on Figure 4.2, the work W and D verify the following

equations for n ≥ k:

W (n) = W (n−1)+W (n−k)+Θ(1) and D(n) = max (W (n− 1), D(n− k))+Θ(1)

where D(n) = Θ(n). Therefore, the work and depth do not allow one to distinguish

the four variants in terms of performance. For instance, the limits found in the paper

by Arora et al. (ARORA; BLUMOFE; PLAXTON, 1998) for ABP deliver an expected

number of steal requests bounded by O(PD) = O(n) for the four variants.

Let us now analyze the four variants using SIPS clocks on the randomized victim

selection strategy following ABP work-stealing.

In fact, the four programs do not create the same tasks and do not have the same

critical path length in terms of the number of stolen tasks. Since we are on the spawn/sync

model, at each spawn, the worker starts the execution of the newly created task and

enqueues the remaining of the spawner task on its local deque. It is this task that can be

81

1 concepts <Integer N>
2 fa (N n, N k) -> N
3 // precondition : n >= N (0)
4 // precondition : k > n
5 {
6 if (n < k) return n ;
7 N x = spawn fa (n - N (1)) ;
8 N y = spawn fa (n - k) ;
9 sync ;

10 return x + y ;
11 }
12

1 concepts <Integer N>
2 fb (N n, N k) -> N
3 // precondition : n >= N (0)
4 // precondition : k > n
5 {
6 if (n < k) return n ;
7 N y = spawn fb (n - k) ;
8 N x = spawn fb (n - N (1)) ;
9 sync ;

10 return x + y ;
11 }
12

1 concepts <Integer N>
2 fc (N n, N k) -> N
3 // precondition : n >= N (0)
4 // precondition : k > n
5 {
6 if (n < k) return n ;
7 N x = spawn fc (n - N (1)) ;
8 N y = fc (n - k) ;
9 sync ;

10 return x + y ;
11 }
12

1 concepts <Integer N>
2 fd (N n, N k) -> N
3 // precondition : n >= N (0)
4 // precondition : k > n
5 {
6 if (n < k) return n ;
7 N y = spawn fd (n - k) ;
8 N x = fd (n - N (1)) ;
9 sync ;

10 return x + y ;
11 }
12

Figure 4.2: Four parallel programs, fa, fb, fc, and fd.

eventually stolen by a thief. Contrary to intuition, thus, the programs fa and fc (resp.

fb and fd) are almost equivalents. The only difference is that fa (resp. fb) generate on

the task path one extra task in addition to the tasks generated by fc (resp. fd). This

extra task is the continuation of the second spawn and does not contribute to the work

of the parallel program.

Let Ma (resp. Mb, Mc, Md) the worst case maximum number of successively stolen tasks

on the worker that calculates fa (n) (resp. fb (n), fc (n), and fd (n)) — and, thus,

the maximum value their SIPS clock can achieve on top-most task workload partition

strategy. This way, as illustrated by Figure 4.3, the size of the deque of ready tasks

contains at most n − 2k tasks for fc and fa and n/k tasks for fb and fd. For all under

threshold values of n named as n′, such that n′ < k we have Ma = Mb = Mc = Md = 0

and, for n′ ≥ k,

• Mc(n) = max (Mc(n− 1), 1 + Mc(n− k)) =
⌊

n
k

⌋

,

• Md(n) = max (Md(n− k), 1 + Md(n− 1)) = n− k + 1,

• Ma(n) = Mc(n) + 1 =
⌊

n
k

+ 1
⌋

,

• Mb(n) = Md(n) + 1 = n− k + 2.

82

fk(n− 1) fk(n− k)

fk(n− 2) fk(n− k − 1)

fk(n− 3) fk(n− k − 2)

...

fk(n)

Local Execution
Stack of

...

Local Deque

(a) Case fa and fc.

fk(n− k) fk(n− 1)

fk(n− 2k) fk(n− k − 1)

fk(n− 3k) fk(n− 2k − 1)

...

fk(n)

Local Execution
Stack of

...

Local Deque

(b) Case fb and fd.

Figure 4.3: Execution stack and deque for fk variations.

As shown, each one of the four variations has a different upper-bound for their local

clocks and, therefore, their worst-case number of steals will be significantly different when

we apply this bound to Theorems 2 and 3. If each steal introduces parallel overhead —

such as the algorithms we discuss ahead — their work would be different as well. Classical

analysis that consider the spawning of tasks to be symmetrical are unable to catch these

differences. Also, if the spawns are not always performed in some quantity and/or order

(like on randomized algorithms), the classical analysis is unable to deliver reliable bounds.

4.6 Work-Efficiency and Work-Optimality

As recurrent notation, a parallel algorithm operates over P workers and input size n

and has work

W (n) = Wseq(n) + V (n),

where Wseq(n) is the sequential work and V (n) is the parallelism overhead due to syn-

chronizations.

Now, provided with a framework to estimate tight bounds on synchronizations in

parallel computations, we may classify algorithms coherently with respect to overhead

introduced by synchronizations performed by the scheduler.

A parallel algorithm is now defined to be work-efficient iff its synchronization overhead

83

is not asymptotically larger than the work parallelized, i.e.,

W (n) = Wseq(n) + V (n) = O(Wseq(n)) (4.2)

A parallel algorithm is hereby defined to be work-optimal iff its synchronization over-

head is polylogarithmic, i.e.,

V (n) = O(log2
O(1)n) (4.3)

This definition implies that the synchronization overhead cannot be asymptotically miti-

gated by parallelism any further. It belongs to the same category of parallel binary search

and exponentiation; these problems have polylog time complexity even for P = 1.

4.7 Closing Remarks

This chapter introduced SIPS clocks, theoretical devices that allow one to analyze the

number of synchronizations on concurrent algorithms. SIPS does not rely directly neither

at work nor depth of a parallel computation and thus is more flexible than classical

analysis. Some of its concepts are drawn from Lamport’s logical clocks (LAMPORT,

1978).

Bounding the number of synchronizations on a given computation also allows us to

bound the overhead introduced by communication on the parallelization of algorithms.

In order to provide a taxonomy and parameter of efficiency we define parallel algorithms

to be work-efficient when the parallel overhead is not asymptotically greater than the

sequential work, and work-optimal algorithms, where the parallel overhead is asymptoti-

cally polylogarithmic. Applications of these concepts of efficiency and optimality will be

shown in the next chapter and mainly on the analysis performed on the second part of

this thesis.

On the next chapter, we examine adaptive parallel algorithms, whose primary trait

is to adapt to the runtime without being parametrized. The degree of guaranteed trans-

parent efficiency is essential to the construction of the generic algorithms we present on

Part II. However, since the number and the relative order of synchronizations on adaptive

algorithms may change accordingly to the runtime. Classical analysis is unable to handle

this category of programs, since it accounts only for Work and Depth. In that, SIPS

comes at hand, providing a very fit analysis framework to this kind of algorithms.

84

85

5 CASE STUDY: ADAPTIVE ALGORITHMS

AND POLYNOMIAL EVALUATION SCHEMES

In this chapter we overview the concept of adaptive algorithms (Section 5.1) and

their components (Section 5.2), showing how SIPS is useful to analyze their behavior

over a simplified model more likely to be implemented by a wider range of middlewares

(Section 5.3).

As a case study, we design and analyze an adaptive algorithm for polynomial evaluation

(Section 5.4). We discuss two schemes within it: Horner’s Method, the best solution

possible (in number of additions and multiplications), programmed in sequential, and the

state of the art parallel solution, Estrin’s Method, which introduces parallel overhead

in the form of extra multiplications. Finally we propose an adaptive implementation

for Horner’s Method in parallel, moving extra multiplications to successful steals and

eliminating them when the program is run in sequential. We show our implementation to

be more efficient than Estrin’s Method in expectation through SIPS analysis and measure

the execution round by round using a discrete event simulator (Section 5.5).

Adaptive algorithms are the primary tool we use to implement efficient algorithms in

the chapters to come. By using this kind of algorithm we are able to write code that

adapts to the heterogeneous parallel execution environments without being parametrized

(e.g., not using a threshold value guessed to amortize the parallel/sequential ratio on a

given machine).

The chapter ends with closing remarks on the family of works that introduced the

notion of adaptive algorithms and related content (Section 5.6).

5.1 Definition of Adaptive Algorithms

We start the discussion by defining adaptive algorithms. The base is the taxonomy

for parallel algorithms stated by Cung et al. (CUNG et al., 2006). Foremost, Hybrid

algorithms are informally defined:

“An algorithm is hybrid when there is a choice at a high level between

at least two distinct algorithms, each of which could solve the same

problem.”

Hence, Adaptive algorithms are informally defined in terms of hybrid algorithms:

“A hybrid algorithm is adaptive if it avoids any machine or memory-

86

specific parameterization. Strategic decisions are made based on re-

source availability or input data properties, both discovered at runtime

(such as idle processors).”

An adaptive algorithm, thus, is any computational procedure capable of changing its

behavior automatically according of its execution context — manipulated data, runtime

configuration parameters, the load of resources — to reach optimal performance. The

type of decision it makes induce classes:

Resource-Aware. An adaptive algorithm whose decision strategy is based on the con-

figuration of its execution environment — e.g. number of workers, the size of caches,

bandwidth, etc.

Resource-Oblivious. An adaptive algorithm whose decision strategy does not depend

on any execution parameter, but only on actions taken by the runtime — e.g. data

moving, scheduling of tasks.

An example of resource-aware algorithms is cache-oblivious (FRIGO et al., 2009).

It explores the memory hierarchy efficiently without information about its structure or

size. There are algorithms in this category that are asymptotically optimal, like Fast

Fourier Transform and Matrix Multiplication, etc. These are frequently based on divide

and conquer techniques and require some re-writing of the previous code. The division

strategy considers the memory hierarchy.

A processor-oblivious algorithm (BERNARD; ROCH; TRAORÉ, 2008) is a parallel

algorithm that does not know neither the number of workers participating in the com-

putation nor their speed. This is valid for any instant during execution. It also holds

if the number of workers is fixed or changes dynamically. Ideally, no information about

the workers is needed, although implementation constraints may require some underly-

ing data. In Chapter 7 we use the information about a worker’s unique identification to

execute a callback procedure when a steal occurs; if the framework implemented steal

callbacks, it would not be necessary.

Using processor-oblivious algorithms does not only provide more power in form of

abstraction but also enables programming resources such as:

Parallel overhead management. The parallel overhead is “paid” only when parts of

the algorithm run in parallel. In other words, even if P workers are available during

execution the overhead is only paid at each time a parallel task is scheduled to one

of those in P . Ergo, if the parallel algorithm runs over only one worker, then no

87

parallel overhead is “paid”.

Automatic granularity control. The control between sequential and parallel varia-

tions of the algorithms is moved from the program’s logic to the scheduler’s. Be-

sides, the threshold definition is placed inside a re-usable data structure rather than

on algorithm code, allowing one to vary it for a family of algorithms orthogonally.

5.2 Components and Organization of Adaptive Algorithms

Let us now examine parallel list-processing algorithms implemented in a processor-

oblivious fashion (TRAORÉ, 2008). We then generalize it to the artifacts the scheduler

shall provide to ensure proper execution of adaptive algorithms.

List-processing is a higher-order algorithm that will receive a function to be applied

to each element of a list. Non-exhaustive examples are:

Reduce. Uses the list elements as operands in an associative binary operation given as

parameter.

Prefix. As reduce, but returns another list, containing the sub-results of applying the

associative binary operation “left-to-right”.

Map/Transform. Outputs another list where each element is the result of applying an

unary function passed as a parameter to the respective (position-wise) element on

the input list.

Filter/Selective Copy. Copies all elements satisfying an unary predicate function passed

as a parameter to another list.

Linear Search. Finds any occurrence of a given element and returns its position on the

list if any.

As demonstrated by Traore et al. (TRAORÉ et al., 2008), an adaptive version of

list processing family of algorithms may be implemented by modifying the ABP work-

stealing algorithm into a deque-free work-stealing scheduling. The deque-free algorithm

replaces the deque on each worker by a range on the input double-linked list. This

range is defined as a pair of indexes (the first element and one past the last element)

that describes a task. The input list is shared among all workers and each worker is

responsible for processing part of it and combining it with other sub-results as needed.

Splitting and merging the list among workers is a constant-time operation that only

returns the respective resulting ranges. Since a task is a range described as a pair of

88

indexes representing an half-open interval, task stealing performed by the scheduler is

also performed in constant time — there is no data copying. In fact, this implementation

model enables theoretical bounds that supposes constant-time on steal operations, like

the ones discussed in Subsection 3.1.2.

The algorithm requires the data structure describing the different ranges to have at

least two splitting methods. Here, we consider an initial range [f0, l0) of size m and each

worker at a given top may own a subrange [f, l), being active, or is trying to steal from

other workers, being idle. (The same considerations about the atomicity of pop-front and

pop-back from Chapter 2 hold.) The splitting procedures are:

Extract Seq. Atomically split elements from the range’s front. It is the equivalent of

a “pop-front” in the deque. Function extract_seq consists in extracting a range

of elements of size α log2 m. It is used by the worker to extract sequential work

from the range it owns to execute locally. The constant α, whose default value is 1,

is used to fine-tune the algorithm in taking smaller or larger fractions, multiple of

log2 m The fraction is logarithmic in order to allow a frequent and fast use of the

operation when compared to the parallel extraction we detail next.

Extract Par. Atomically split elements from the range’s back. It is the equivalent of a

“pop-back” in the deque. Considering that m′ elements were already sequentially

processed, function extract_seq consists in extracting a range of elements [f ′, l′)

of size ⌊m−m′/2⌋ (half of what remains). Idle workers perform it over active ones

within steal operations. The minimum size we allow the algorithm to steal is
√

m

since the increasing of m will increase at the same time the size of the grain and

number of grains. It is used by a thief to steal parallel work from a victim in the

form of a sub-range.

Figure 5.1 shows, top-down,

1. An initial state after k− 1 operations extract_seq were performed, whose covered

range is marked in black.

2. The performing of an extract_seq operation taking a subrange of size α log2 m,

marked in gray, and advancing f accordingly.

3. The performing of an extract_par operation taking a subrange [f ′, l′) of size

max (⌊(m−m′)/2⌋,√m), marked in gray, and regress l accordingly. Here, m′ =

kα log2 m, since until that moment we suppose k operations extract_seq were per-

formed.

89

m

f0f0f0 ff0 l | l0

f0f0f0f0

f0f0f0f0 l′ | l0

l | l0

Initial State

Extract Seq.

Extract Par.

f

f

kα log2 m

α log2 m

l | f ′

max (⌊(m− kα log2 m) /2⌋ ,
√

m)

Figure 5.1: Procedures extract_seq and extract_par. The whole block is the processed
range, with the relevant intervals [f0, l0), [f, l), and [f ′, l′) indicated on the ticks below.
Black intervals represent already processed elements. Gray intervals show elements en-
compassed at the current or previous steps by one of the primitives, Extract Seq. or
Extract Par. The doubly pointed arrows indicate an interval’s size.

The number of times operation extract_par is executed determines the parallel over-

head the algorithm will introduce. The analysis of the number of times a given synchro-

nization operation occurs is precisely the situation SIPS is designed to handle. We show,

as an example of application, the analysis of a processor-oblivious polynomial evaluation

algorithm on Section 5.4 over a simplified adaptive algorithm implementation described

in next section.

Besides Extract Seq. and Extract Par. there are other procedures employed by the

scheduler in the execution of adaptive algorithms. They are:

Local Run. Executes the best sequential algorithm over the range extracted by extract_seq

without any synchronization or arithmetic overhead. A non-idle worker executes it

through primitive local_run.

Merge. It merges the results from both the work performed locally, and the work per-

formed remotely upon an extraction, combining the partial calculations performed

in parallel. The victim performs a merge through an operation called join while

the thief uses its counterpart called finalize.

Jump. It allows a worker to skip the work extracted by an eventual thief and proceed to

process the remaining work and execute it sequentially. The respective primitive is

90

jump.

The programmer/middleware is in charge of defining data structures supporting these

operations. Composed types such as Work, WorkAdapt, JumpWork, and FinalizeWork

have to offer both synchronization and performance guarantees as the ones described by

the list processing methods we discussed, mainly extract_seq and extract_par. These

user-defined data structures are the straightforward way to generalize the considerations

we traced for list processing algorithms into an encapsulated work data type. Changing

the list-based approach where elements are the processed entities to other linear data

structures (sets, hashes, vectors, etc) with pointers/iterators to tasks is a common trait

on the implementation of adaptive algorithms.

The scheduling algorithm work as the work-stealing algorithm from Chapter 2, with

few modifications, mainly on the non-blocking synchronizations. The synchronization

protocol between concurrent thieves and remote ranges is more complex than ABP’s.

The later uses a simplified version of THE protocol by Dijkstra, to use a lock only on

an improbable/infrequent last-element competition between local worker and thief. In

deque-free, however, the steal is not atomic, and the protocol has to manage the situation

where extract_seq and extract_par try to get overlapping data. Kaapi, for instance,

implements a protocol where the range is first copied (through its indexes, in constant

time) and only then overlap is tested. If there is no overlap the copied range is “cut-out”

from the original range; otherwise there is a retry.

The complete protocol for the equivalent of micro and nano-loops are described thor-

oughly in works by Daoda Traoré (TRAORÉ et al., 2008) (TRAORÉ, 2008). However,

since only Kaapi has full built-in support for it, we will introduce a simplified version of

this algorithm that fits better the limitations of other multithreaded middlewares.

5.3 A Simplified Approach

We focus on and introduce a simplified version of the adaptive algorithm scheduling

designed to work along with Cilk Plus, our middleware of choice (see Chapter 2), which

does not support the required primitives directly in its spawn/sync scenario. Other mid-

dlewares, however, offer distinct degrees of support. Our version, based on nested parallel

recursive calls, allows one to implement a semantically equivalent algorithm with same

asymptotics over any middleware supporting fork/join or spawn/sync styles. We derive it

from the Cilk Plus version, explained after brief considerations over the Kaapi and TBB

91

versions.

Kaapi offers to the programmer a partitionable list of work to be used as its local

deque within the runtime. This allows one to use deque-free work-stealing on its top. The

work list is implemented as a double linked list and implements a fast synchronization

protocol between thieves and the local worker. Moreover, thanks to its cooperative mode,

concurrent thieves may all acquire some portion of the work-list, speeding up synchro-

nizations.

In TBB, adaptive algorithms are supported through structures called auto partitioners.

It is a mechanism that chooses granularity dynamically in function of worker’s activity. As

a side effect, it limits the number of steals of the scheduling algorithm. Auto partitioners

work along data range structures. They are responsible for dividing data ranges in block

obeying a threshold proportional to the number of workers. When a steal occurs, divide a

block in two and give half away to the stealer. The source code is written closer to what

is proposed as the processor-oblivious algorithm, but this “half” of the block is static, as

in Cilk Plus.

In Cilk Plus, a reminiscence of processor-adaptive algorithms is implemented through a

combination of the primitive cilk_for and hyper-objects, detailed below. The cilk_for

uses internally the spawn-sync schema, by dividing the range in two recursively as tasks

on the deque. The compiler translates a structure in the form

cilk_for (N low = 0 ; low < high ; ++ low) { body (low, high, data) ; }

to the listing

1 concepts<Integer N, Function F, Type T>
2 cilk_for (N low, N high, F body, T data, int grain) -> void

3 // invariant : low >= N (0)
4 // invariant : high >= N (0)
5 // invariant : high - low >= N (2)
6 // invariant : grain >= int (1)
7 {
8 tail :
9 N count = high - low ;

10 if (count > grain) {
11 N mid = low + count / 2 ;
12 spawn cilk_for (low, mid, body, data, grain) ;
13 low = mid ;
14 goto tail ;
15 }
16 body (low, high, data) ;
17 }
18

In this listing:

1. On line 1 the concepts Integer, Function and Type are declared. Integer concept

is already discussed on Chapter 1. The concept Function designates a callable

92

type, i.e., a type whose instances have defined the operator () with any arity. The

concept Type designates any type of the variables containing the data of the loop

body.

2. On lines 3 to 5 we show the invariants: N holds values greater than zero, the range’s

length shall be greater than two, and the grain should be larger than one.

3. On line 7 the beginning is marked with the label tail because tail recursion opti-

mization is employed to cut the rather expensive recursive calls by half.

4. On lines 9 to 13 the calculus is performed; if the range is larger than the grain size

it calls the function recursively in parallel — using spawn — for the first half of the

range and update low to simulate the recursion on the next loop.

5. On line 15 the under threshold sequential call, without overhead, is called.

In fact, function body and structure data usually do not exist in the code; the compiler

synthesizes it from the loop’s body and variables used within it and rewrites the code

in terms of an anonymous function and shared data structure. The grain size is also

determined by the middleware translation upon analysis of the hardware.

A cilk_for loop is usually used along with a Cilk hyper object. Introduced in a 2009

paper (FRIGO et al., 2009), hyper-objects are data structures that represent “mergeable”

objects. These data structures, implemented through a pre-defined interface, are handled

my the Cilk Plus framework, allowing the programmer to use them inside a parallel

loop without worrying about concurrent accesses. The framework builds copies of the

object seamlessly and merges then through an operation defined by the user on the hyper

object implementation. Critical sections and concurrent write accesses are decided by

underlying synchronization protocols and the paper show to be highly improbable to

occur any waiting.

Remains the question: is this approach capable of emulating the adaptive behavior?

The answer is yes, although not perfectly. In this case, the deque will hold the correspon-

dent range indexes. Each task, in its turn, will be half of the currently available range,

the other being processed recursively. Thus, top-most task holds 1/2 of the elements,

second top-most, 1/4, third top-most, 1/8 and so on, until the threshold of a virtual

extract_seq is reached. The emulation is not perfect because this method has a fixed

partition for any steal, instead of a dynamic one. Nonetheless, this is sufficient for the

needs of our algorithms. And, as a bonus side-effect, there is a smaller overhead than on

systems like Kaapi that use copy-guessing mechanism for synchronizations. Figure 5.2

93

shows a modified version of Figure 5.1, marking where the fixed partitions will occur at a

first moment, keeping in mind that each sub-interval will call the process itself recursively;

the equivalent of extract_seq will always take a sub-interval on the size of the grain.

l | l0

· · · ⌊m/23⌋ ⌊m/22⌋ ⌊m/21⌋

f0 f

l | l0

· · · ⌊m/23⌋ ⌊m/22⌋ ⌊m/21⌋

f0 l | l0f

· · · ⌊m/23⌋ ⌊m/22⌋ ⌊m/21⌋

Extract Par.

Initial State

Extract Seq.

f0 f

Figure 5.2: Procedures extract_seq and extract_par, Cilk Plus version. Elements are
like on Figure 5.1. Dashed lines are marks for half, one-quarter, one-eight, etc from
current data block.

Our approach is an optimization of the Cilk Plus translated code. We generalize the

translation performed by the Cilk compiler in a more efficient approach to each algorithm

on the top of any spawn-sync scheduler. Before attempting to write it, we describe the list

representation based on concepts called iterators. Iterators are an abstract generalization

of pointers, the address of a variable in memory. Although arrays and vectors usually

instantiate iterators as pointers — because, since there is a direct mapping to modern

architectures, it is fast —, some other sequential access data structures may use non-

linear underlying organization. For instance, C++’s sets are implemented with red-black

trees (PLAUGER et al., 2000). Iterators, provided by the container, work as a contract

between the container implementer and the algorithm, where linear access interface is

provided, and underlying work is embedded.

Although we refer to iterators throughout the thesis we frequently use forward iter-

ators, a subset of the concept, delivering types where at least deference and increment

operations are available. For a variable i of regular type I over the forward iterator

94

concept, the operation is defined by:

*i Returns the contents of variable pointed by i.

++ i Increments i, pointing to position i + 1 in the sequence.

(Since all forward iterators are iterators, we refer to the whole class as iterators from now

on.)

Our approach uses a type function to express the distance between iterators. Type

functions are functions that receive a type and return a type as well. Its calculus is

performed in compile-time. To differentiate a type function from a standard function, we

enclose its arguments with “<” and “>” instead of “(” and “)”. We use it here to extract

auxiliary types that will enable us to write generic code fitting an abstract structure.

For instance, as an auxiliary type-function we use Dist<I>, which returns an integer

type able to address the number of elements on the range. In the absence of an explicit

implementation, Dist<I> returns type size_t a macro to a type capable of representing

directly the largest positive integer on the machine. Finally, one important type function

over iterators is Val<I>, which returns the type of the variable pointed by i.

Some iterator types offer random access operations in constant time. These are called

indexed iterators, meaning that for one iterator i one can access its n-th successor with

three equivalent operations,

*successor (i, n), *(i + n), and i[n]

in the same constant time as *i. Function successor returns an iterator whose content

is the n-th element after i. To calculate the number of elements between first and last

iterators make available the primitive distance (first, last). While forward iterators

implement it through a loop on operator ++ in linear time, indexed iterators perform it

in constant time.

With what we have now at hand one may write a myriad of algorithms, like, for

instance, linear search:

1 concepts <Iterator I>
2 find (I first, I last, Val<I> value) -> I
3 // precondition : distance (first, last) >= Dist<I> (0)
4 {
5 while (first != last && *first != value) ++ first ;
6 return first ;
7 }
8

This code iterates over a semi-open range [first, last), where last points to the past-

end position of the vector. (For an insightful discussion on semi-open intervals to describe

95

lists, see the seminal book by Dijkstra (DIJKSTRA, 1997)). One clear benefit of using

a semi-open interval is that when first == last an empty list is described. We use

iterators extensively in the next section and the second part of this thesis.

We are now apt to write the tail recursive code of cilk_for in a more generic and

efficient way. We replace cilk_for for parallel_list, an generic scheme to process

algorithms represented as lists:

1 concepts <Iterator I, Function F>
2 parallel_list (I first, I last, Dist<I> grain, F local_run) -> void

3 {
4 Dist<I> count = distance (first, last) ;
5 while (! (count < grain)) {
6 halve (count) ;
7 I mid = successor (first, count) ;
8 spawn parallel_list (first, mid, body, data, grain) ;
9 first = mid ;

10 }
11 local_run (first, last, data) ;
12 }
13

This listing:

1. On line 2, the indexes are replaced by the iterators and body function is replaced by

the local_run function described before. We also omit data because it is contained

within the iterators through operator *.

2. On line 4 replaces the subtraction of indexes by a call to distance. This enables

the code to act on indexed iterators within constant time but also supports non-

constant time iterators. While the subtraction on the Cilk version takes constant

time, it is inside the loop, thus being executed in linear time. Anyhow the function

call was moved to outside the main loop; even when using forward iterators, the

constant time would be required just once.

3. On line 6 and 7 we replace the previous sum and division by two by an action named

halve and a call to the successor. We do it first because halve is able to perform

a faster split in half than dividing by two, since division is an expensive constant

time operation and halve can take profit from a binary integer representation and

perform a constant time bitwise operation, e.g., shift-right. (Compilers may replace

the “/2” by a shift-right nowadays, but there are no guarantees.) We rely on smart

inlining optimization from the compiler to eliminate the function call or implement

halve as a macro.

We also eliminated the goto-based loop in exchange for a while constructor in order to

enable the processor and compiler to use branch prediction more efficiently.

96

The generic scheme presented above is used as a model to alike algorithms rather than

a component. It allows us to dismiss the need for hyper-objects and apply it on the top

of any spawn/sync based parallel middleware. In the next section, we show an adaptive

version of polynomial evaluation using this approach. We analyze it with SIPS, then.

5.4 An Adaptive Polynomial Evaluation Scheme and Its Analysis

We present now algorithms to evaluate a polynomial in parallel. Three implemen-

tations are inspected: a naïve, the summation; Horner’s Scheme (KNUTH, 1997b), the

optimal sequential version; and Estrin’s Scheme (ESTRIN, 1960), the state-of-the-art par-

allel version. The algorithms are refined until obtaining a work-optimal adaptive version

that combines the best of all worlds.

First, a naïve algorithm for polynomial evaluation, i.e., the result of p(x) =
∑n

i=0 aix
i.

The polynomial is a list described by an iterator range. The evaluation is performed “left

to right” with ascending degrees:

1 concepts <Iterator I, Semiring T>
2 polyeval (I first, I last, T x) -> T
3 // precondition : distance (first, last) > Dist<I> (0)
4 {
5 T z = T *(first ++) ;
6 T i = x ;
7 while (first != last) {
8 z += T (*first) * i ;
9 i *= x ;

10 ++ first ;
11 }
12 return z ;
13 }
14

We only multiply each element by x to the power corresponding to the position of the

element, keeping the result to not perform redundant multiplications. Concept Semiring

represents an algebraic structure with two binary operations defined, each one a monoid.

It is employed to designate any type with addition and multiplication, with its proper

identity elements, zero and one (or analogous). For a polynomial of size/degree n, this

code performs 2n− 1 multiplications and n− 1 additions:

W (n) = 3n− 2.

Horner’s Scheme is the algorithm that performs the smallest (optimal) number of

arithmetic operations to evaluate a polynomial, as reviewed by Knuth (KNUTH, 1997b,

97

p. 486–488). Looking at the polynomial in its unfolded form

p(x) = ((· · · ((an)x + an−1)x + · · ·+ a2)x + a1)x + a0

makes the problem straightforward solvable by setting an initial value v = an and re-

peating the procedure v ← vx + ai for i from n − 1 to 0. Noticing that it evaluates the

polynomial “from right to left”, we write

1 concepts <Iterator I, Semiring T>
2 horner (I first, I last, T x) -> T
3 // precondition : distance (first, last) > Dist<I> (0)
4 {
5 T z = T *(first ++) ;
6 while (first != last) {
7 z = z * x + T (*first) ;
8 ++ first ;
9 }

10 return z ;
11 }
12

For a polynomial of size/degree n, this code performs n − 1 multiplications and n − 1

additions:

W (n) = 2n− 2.

In current hardware it may be implemented even more efficiently, since a multiplication

followed by an addition – the right side on line 7’s assignment – is frequently replaced

by compilers for a primitive that corresponds to a single processor instruction, usually

labelled fma (fused multiply-add).

Since each iteration is dependent from the previous one, we cannot just divide the

range and compute both halves in parallel. (Addition and multiplication are associative,

but fma is not.) To profit from parallelism, another evaluation scheme is usually used,

Estrin’s (ESTRIN, 1960). It uses the fact that we can write

p(x) = (a0 + a1x) + (a2 + a3x)x2 + ((a4 + a5x) + (a6 + a7x)x2))x4 + · · · ,

breaking the dependency between the two halves of a polynomial recursively.

A possible parallel implementation of Estrin’s Scheme follows. We highlight that the

powers of x are always powers of two. (One possible contour is to fill the polynomial with

zeroed coefficients until it reaches the next power of two.)

98

1 concepts <Iterator I, Semiring T>
2 estrin (I first, I last, T x) -> T
3 {
4 Dist<I> n = distance (first, last) ;
5 if (n == Dist<I> (1)) return T (*first) ;
6 halve (n) ;
7 I middle = successor (first, n) ;
8 T a = spawn estrin (first , middle, x) ;
9 T b = spawn estrin (middle, last , x) ;

10 raise (x, n) ;
11 sync ;
12 return a * x + b ;
13 }
14

We highlight that, as in Horner’s, the multiply-add instruction on line 11 can also be

replaced by a fma call.

Function raise multiplies the base to a given exponent using the Russian Peasant

Algorithm in logarithmic time — since we always raise to a power of two it is used

as efficiently as possible. This algorithm performs n − 1 additions. The number of

multiplications is taken summing the multiplications performed recursively on lines 8 and

9 plus log2n/2 (since n is halved on line 6), given by logarithmic raise on line 10, plus

one multiplication from line 11. The result is the following recurrence equation, where

R(n) is the number of multiplications over an input size n:

R(n) =















0 if n = 1

2R(n
2
) + log2(

n
2
) + 1 if n > 1

= 2n− log2n− 2.

and thus, summing the multiplications and additions we would have

W (n) = 2n− log2(n)− 2 + n− 1

= 3n− log2(n)− 3

One possible optimization is to implement a memoized version of raise that caches the

powers it has already calculated for a given base. We introduce type MemoizedFunction

that is compatible with concept Function and the procedure

concepts <Function F> memoize (F f) -> MemoizedFunction

that given a function f returns another function f ′ with same inputs and return value of

f but that returns values it already calculated in constant time. Now, we can re-write the

code to call a memoized version of raise before the recursive calls, recording all needed

powers for a particular base, eliminating the logarithmic cost:

99

1 concepts <Iterator I, Semiring T>
2 estrin (I first, I last, T x) -> T
3 {
4 Dist<I> n = distance (first, last) ;
5 MemoizedFunction memraise = memoize (raise) ;
6 halve (n) ;
7 memraise (x, n) ;
8 return estrin (first, last, x, memraise) ;
9 }

10

11 concepts <Iterator I, Semiring T, Function F>
12 estrin (I first, I last, T x, F raise) -> T
13 {
14 Dist<I> n = distance (first, last) ;
15 if (n == Dist<I> (1)) return T (*first) ;
16 halve (n) ;
17 I middle = successor (first, n) ;
18 T a = spawn estrin (first , middle, x) ;
19 T b = spawn estrin (middle, last , x) ;
20 raise (x, n) ;
21 sync ;
22 return a * x + b ;
23 }
24

Although the number of additions remains the same, we take out the log term:

R(n) =















0 if n = 1

2R(n
2
) + 1 if n > 1

= n− 1.

and we sum the log2(n/2) from the pre-computation of raise, what delivers

log2(n/2) + n− 1 = n + log2n− 1 multiplications.

Summing the n− 1 additions we have work

W (n) = n + log2n− 1 + n− 1

= 2n + log2n− 3,

close to Horner.

While this solution is work-optimal since the introduced overhead is V (n) = log2n, it

only works correctly while the number of terms is a power of two. The pre-computation

will calculate all powers of two indexes of base x, but for a polynomial of size, say, 28, it

will have to calculate the remaining powers from 8 to 14, the closest power of two. For a

generic implementation we need to diminish the number of times raise, both because of

these differences (that have linear cost) and because the pre-computation of powers may

be not viable because of memory/cache issues for large polynomials or when the elements

are “infinite” precision numbers (remember, our concept for x is a Semiring).

100

We circumvent the absence of function calls triggered by steals by asserting the id of

the worker that called the function in the first place against the id of the worker currently

running it. The algorithm stores the current worker’s id and then test to verify if the

worker is the same.

This overhead could be eliminated by enabling user callbacks at each steal, a feature

we argue would be useful. In fact, not only Cilk — that we use on our benchmarks —,

but also major parallel runtime systems such as OpenMP and TBB do not offer this kind

of resource. The closest match is the reducers on TBB and hyper-reducers in Cilk Plus,

which provide callbacks upon successful spawn (TBB) and sync (TBB and Cilk Plus)

operations. This implementation works for a set of algorithms, but it is not as general as

the steal callback. (Computations may lack sync, for instance.) Our method, however,

has the advantage of relying on one thing common to major parallel middlewares, the

capacity a worker has to discover its own id. An adaptive implementation is:

1 concepts <Iterator I, Semiring T, Function F>
2 poladapt (I first, I last, T x, F raise) -> T
3 {
4 T a = T (0) ;
5 T b = T (0) ;
6 Auto me = id () ;
7 Dist<I> n = distance (first, last) ;
8 while (! (n < grain)) {
9 halve (n) ;

10 I mid = successor (first, n) ;
11 a += spawn poladapt (first, mid, x) ;
12 if (me != id ()) { // stolen ?
13 b += spawn poladapt (mid, last, x) ;
14 raise (x, distance (start, mid)) ;
15 sync ;
16 return x * b + a ;
17 }
18 first = mid ;
19 }
20 return horner (first, last, x) ;
21 }
22

We have a new artifact and technique on this code. On line 6 we use a type named Auto.

This is a unique construct that will declare any initialized variable with the same type

resulting from the evaluation of the right side of an assignment. Since each middleware

may implement the notion of worker id differently, we use Auto to declare a variable

of whatever type the runtime elects to represent the id. Our only requirement is that a

worker id type is comparable for equality. Here, we used Auto to deduce the return type of

adaptor function id, which returns the current worker’s id. We compare the values of me

and id on line 12, after the parallel recursive call, in order to discover if the continuation is

being executed locally by the spawner worker or remotely by some thief (i.e., a successful

steal happened). The programmer has to, thus, write an inlined version of id that returns

101

a call to the proper function on the middleware (e.g., __cilkrts_get_worker_id in Cilk).

On line 14 we call raise from an iterator unseen until now, start. It is a constant

copy of initial position pointed by first on the first call to the function. It is read-only

and visible to all scopes by all workers but only in the context of this algorithm — i.e., it

is not a global variable. Iterator start is used to determine the exponent used in raise,

since we have to compensate for partition.

We highlight that the main expression on line 16 is still in the fma format, being

susceptible to the optimizations discussed before.

Function raise can now pre-compute the powers or calculate them on the fly. Since

we are using the simplified model, it is optimal when using a polynomial whose size is

a power of two, since we use the Russian Peasant Algorithm. We next proceed to show

that we expect to call raise few times even in the worst case.

At any time, an active processor holds in its local deque an array of some polynomial

coefficients [ak+d, . . . , ak], sorted from highest to lowest degree. Whenever a steal occurs,

the deque is split by half, the thief stealing the coefficients of lowest degree — the smallest

part if k + d is odd. Locally, an active processor continually subtracts a fixed-size chunk

of elements from the array and performs sequential Horner over it, accumulating the

result to serve as the initial value of the next iteration. When a processor empties its

deque, it enables the local result to be the subject of a joining operation with the partial

computations calculated by that successfully stolen the local deque if any. This algorithm

is hybrid (both sequential and parallel versions may run over the same input) and adaptive

(the decision is performed by the scheduler, independently from underlying hardware – at

least in a direct fashion). Joining is performed over two chunks left = [ai+d, . . . , ai] and

right = [ai−1, . . . , ai−m] that have been already processed and had generated sub results

Rleft and Rright . It is a simple attribution R ← Rleft · xm + Rright . This multiplication

by xm on join operations (that may be implemented in time log2 m) is interpreted as

the overhead — additional arithmetical instructions — added by breaking the “previous

iteration dependency” from sequential Horner. An adaptive implementation only pays

join costs if a steal operation occurs, implying that the overhead is mitigated online. The

overhead is directly proportional to the number of successful steals, which we estimate

through SIPS.

The number of additions remains the same: n−1. Now let us determine the number of

multiplications accounting for raise considering a work-stealing scheduler whose victim

selection is random. (The easier case of minimal clock victim selection is discussed more

102

ahead.) The first step in SIPS is to determine this to determine the value of M . Since

we are using the simplified model of Section 5.3, taking at most half of the deque at each

steal, we have M = log2n. Let us consider the following approximation to the Harmonic

number

Hn ≈ logen +
π

2e
+

1
2n
− 1

12n2
.

Applying Theorem 3 directly gives us

E[calls to raise] < M · (P − 1) · HP −1

< log2n · (P − 1) ·
(

loge(P − 1) + π
2e

+ 1
2(P −1)

− 1
12(P −1)2

)

< log2n · (P − 1) ·
(

log2P −1
log2e

+ 6πP 2+6eP −e
12e(P −1)2

)

< log2n · (P − 1) ·
(

log2P −1
log2e

+ 6P −7
12(P −1)2 + π

2e

)

.

However, the number of calls to raise does not deliver the total number of multipli-

cations, since each call makes a number of multiplications corresponding to the skipped

range. Thus, we have to account for the number of calls to raise (x, m) for each possible

value of m, what we will refer as the “size” of a successful steal. We employ a corollary

from Theorem 3 to bound the overhead introduced by each successful steal of a given

range size:

Corollary 1 Let um be a random variable whose value is the number of occurrences of the

steals of size m in Σ on a work-stealing scheduler with a random selection of the victim.

Then, E[um] ≤ (P − 1)HP .

Proof Once a worker is a victim of a steal of size m, it cannot be the victim on a steal

of the same size again until processor becomes idle (size is strictly decreasing). Thus, for

any size m, the maximum M is 1. The remaining follows directly from Theorem 3. �

Remark 2 The obtained limit can be tightened to E[um] ≤ min((P − 1) ·H(P −1), n/m).

The n/m min term is introduced to upper-bound large values of m. Large values of m are

bounded because there are fewer than P chunks of this size. This is not strictly necessary

but increases the tightness of the limit. ✷

By our simplified model for adaptive algorithms, the range can be only partitioned at

its fixed half. Thus, the expected worst-case number of multiplications is the sum of all

successful steals of all sizes, each steal “costing” log2 multiplications that raise performs

103

for a successful steal of size 2i (considering powers of two only for simplicity):

log2 n−1
∑

i=0

log2(2
i) = log2

n

2
· log2

√
n

and, thus, we denote the total number of multiplications performed by raise as r:

E[r] < log2

n

2
· log2

√
n · (P − 1) ·

(

log2P

log2e
+

6P − 7
12(P − 1)2

+
π

2e

)

. (5.1)

This algorithm is work-efficient and work-optimal even when memoization is not available

— since, for a constant P , Equation 5.1 is dominated by the log2n/2 term and the

sequential work is O(n).

For the case when the work-stealing scheduler uses the minimum clock strategy for

minimum selection, whose evaluation is simpler. We just ignore the HP −1 term, since

the multiplier is 1, because the minimum clock increases at each steal, as discussed on

Chapter4:

Corollary 2 Let um be a random variable whose value is the number of occurrences of

the steals of size m in Σ on a work-stealing scheduler with minimum clock selection of the

victim. Then, E[um] ≤ (P − 1).

Proof Once a steal of size m is suffered, it cannot be suffered again until processor

becomes idle (size is strictly decreasing). Thus, for any size m, the maximum M is 1.

The remaining follows directly from Theorem 2. �

5.5 Simulations

To assert the limits we obtained, a discrete event simulator was written in the Ruby

programming language. The simulator is sequential and simulates a P workers machine.

The programmer writes its program in terms of a task data structure and the system

runs the initial task and performs the work-stealing scheduling with the desired victim

selection strategy, specified in the call to the simulator (currently, it supports random and

minimal clock selection). It divides the execution in “rounds”. At each round, all tasks are

executed, in random order. After all executions, the idle workers perform the nano-loop

in the work-stealing algorithm also in random order. (If the strategy is minimum clock,

and two workers have the same clock value, them one of them is chosen randomly to be

executed.)

104

We run an instance of the poladapt algorithm over 32 workers and an input of size/de-

gree of 5.000 elements. The simulator re-runs the simulation 50 times or until the standard

deviation is lesser or equal to 0.25 steals. In our experiments, the ranged from 0.01 with

2 workers and 0.25 with 19 workers.

Let us evaluate the tightness of our limits derived from Corollary 1. Recall, for a ran-

domized work-stealing scheduler, that each successful steal of size m obeys, by Remark 2:

E[um] < min

(

(P − 1) ·
(

log2P

log2e
+

6P − 7
12(P − 1)2

+
π

2e

)

,
n

m

)

. (5.2)

thus, since the first term is the dominant on the above equation, we have

E[um] = O(P logeP).

We plotted each steal size as a separate entity. No matter the value of m, Equation 5.2

shall upper-bound the quantity of successful steals of size m in expectation. Figure 5.3

shows the result. Our limits are tight up until 8 workers and remain close until 32 workers

— what is the expected behavior for a worst-case expectation. Moreover, we are within a

constant value of 1.2 within the asymptotic bound of P logeP , which does not bound the

computation until around 8 workers but is even sharper than the exact predicted value

above that. For some size values (m > 78) the number of steals “saturates” and flattens

in the graph. This is predicted in Remark 2 and notated in Inequation 5.2 through the

use of minimum. For steals of larger size, fewer tasks are produced, due to its tree-shaped

unfolding.

Finally, for the minimal clock policy the result is no different and is displayed in

Figure 5.4. There, the bound is precise and much fewer steals occur since all steals are

successful from beginning to end. The execution is deterministic, mutatis mutandis, since

the random choice of workers with the same clock changes from execution to execution

only namely, not in shape.

Adaptive algorithms and SIPS results in mutual benefits especially in the processor-

oblivious case, adaptive algorithms are efficient and, at the same time, sufficiently ab-

stract. As this chapter illustrates, the parallel overhead is usually introduced when a

successful steal takes place in work-stealing schedulers. This is the direct example where

SIPS advances the state of the art.

105

2
4

8

16

32

64

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

N
u
m

b
e
r

o
f

S
u
c
c
e
s
s
fu

l
S

te
a
ls

Size

1

2

3

5

10

20

39

40

78

79

156

157

313

625

1250

2500

P log P

(P − 1) ·
(

log2 P
log2 e + 6P−7

12(P−1)2 + π
2e

)

Figure 5.3: Number of successful steals of all sizes for the randomized work-stealing
scheduler. The x axis lists the number of workers while the y axis shows the number of
steals, each colored line being a different value of m, the size of the steal. The dashed
line is the exact bound previously calculated while the dotted line is it in the asymptotic
form without the multiplying constant.

106

2

4

8

16

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

N
u
m

b
e
r

o
f

S
u
c
c
e
s
s
fu

l
S

te
a
ls

Size

1

2

3

5

10

20

39

40

78

79

156

157

313

625

1250

2500

P − 1

Figure 5.4: Number of successful steals of all sizes for minimum clock work-stealing sched-
uler. The x axis lists the number of workers while the y axis shows the number of steals,
each colored line being a different value of m, the size of the steal. The dashed line is the
exact bound previously calculated.

107

5.6 Closing Remarks

This chapter opens with a definition for adaptive algorithms. The main paper is the

one referenced at the beginning by Cung et al. (CUNG et al., 2006). It is a paper about

the taxonomy of algorithms, but it brings a set of examples — mainly combinatorial

optimization and a triangular system solving of linear algebra. The generic scheme it

displays is helpful to understand the concepts in a language-independent fashion. We

opted, however, to take the inverse path and show it in our quasi-C++ code, more aligned

with the proposal of this thesis. Throughout the thesis, we center ourselves in processor-

oblivious algorithms and this chapter brings the underlying steps we reproduce in further

chapters to build efficient algorithms.

Processor-oblivious algorithms are, in the end, a generalization of the idea of cache-

oblivious algorithms by Matteo Frigo et al.(FRIGO et al., 1999). Like the considerations

we traced at the end of the chapter about the asymptotic limits of pladapt and with

highlights on the second part of the thesis, the authors consider the asymptotic behavior

the algorithms in place of the total number of operations. It centers itself around matrix

multiplication and sorting algorithms, providing bounds for cache-misses, showing that

even if the algorithms do not have prior knowledge of the cache size, it reaches sub-linear

cache-misses (logarithmic in some cases). The processor-oblivious case is addressed by a

paper by Bernard, Roch, and Traoré (BERNARD; ROCH; TRAORÉ, 2008), for parallel

streams.

In this chapter, we approached the basics of adaptive algorithms, but only briefly.

There are theoretical limits, synchronization strategies and other artifacts that are out-

side the scope of this thesis, but that surpass the discussion about extract_seq and

extract_par. A family of works by Traoré et al. discusses these in depth. We highlight

its PhD thesis (TRAORÉ, 2008) and the paper about adaptive C++’s Standard Template

Library (STL) algorithms (TRAORÉ et al., 2008).

The techniques we have seen here are fundamental to the second part of this thesis,

which follows. Together with the SIPS analysis it is used to advance the state of the art

of parallel random number generators.

108

109

Part II

The Product of Practice:

Applications to Parallel

Pseudorandom Number Generation

111

6 A PARALLEL API FOR

SEQUENTIAL PSEUDORANDOM NUMBER GENERATORS – PAR-R

In this chapter we define a sequential API for pseudorandom number generators

(PRNGs) in order to cope with the algorithms we describe at the next chapters. We

model the sequential PRNG concept as a regular type R and the API that follows, over

which the parallel algorithm runs, Par-R.

A generic interface for PRNGs is therefore defined to set a common notation and

complexity requirements for our parallel algorithms. It is designed with state-of-the-art

generators in mind, in order to provide inexpensive (performance-wise) programming in-

terfaces to usual and standard primitives of current libraries for pseudorandom number

generation. Any generator conforming to this API profits from the parallelization tech-

niques we design and analyse later. Par-R was designed to make it easy — many times

trivial — to adapt a given generator’s interface to this minimal set of standard operations

it has to support. In what follows, we provide both theoretical complexity requirements on

the primitives and implementation constraints that must be followed when implementing

it.

We begin by examining preliminary definitions of PRNGs implemented as regular data

structures that behave as autonomous objects in memory and the additional concepts they

require to function this way (Section 6.1). Next, a mandatory set of primary — i.e., ex-

plicit — operations are described: generating the next number on the sequence (“next”);

generating n numbers successively (“generate”); and generating directly the i + n-th

number on the sequence starting at i (“jump”) (Section 6.1). We proceed to discuss a

mandatory set of secondary operations that are implicit in programming, but that must

also obey the constraints Par-R imposes: construction/seeding/reseeding and copy/as-

signment (Section 6.3). The closing remarks in the chapter consider further requirements

that are more abstract yet useful to an actual implementation of Par-R (Section 6.4).

6.1 Preliminary Definitions

A PRNG acts as a deterministic stream that provides new random numbers based

on its current state. A seed value gives the initial state. Random streams have a finite

orbit (STEPANOV; MCJONES, 2009, p. 15), called its period, what corresponds to a

sequence of numbers that will eventually be repeated over successive generations. It is

112

also assumed that the PRNGs produce generic unsigned integers, for compatibility. There

are libraries centered around [0, 1) floating-point types, usually referred to as “Random

Bit Generators”, a synonym of PRNGs (BARKER; KELSEY, 2012, p. 17). The two

approaches can be converted interchangeably.

Two PRNG classes are distinguished to generate the stream 〈rn〉 from a function r with

finite output set and good statistical properties,(SALMON et al., 2011). Conventional

PRNGs iterate rn = r(rn−1) (e.g., Mersenne Twister (MATSUMOTO; NISHIMURA,

1998), Linear Congruential (KNUTH, 1997b), Tausworth (L’ECUYER, 1996), BBS (BLUM;

BLUM; SHUB, 1986)); while counter-based PRNGs independently compute rn = r(n)

(e.g., Philox,(SALMON et al., 2011), DotMix). Thus, counter-based are parallel, but

conventional PRNGs appear serial: implementations benefit from the previous value rn−1

to generate efficiently rn with less overhead than counter-based ones. Besides, some con-

ventional PRNGs provide efficient jump-ahead over multiple output values in less time

than it takes to invoke repeatedly r.

Seeing PRNGs instances as objects provides control to concurrent accesses and freedom

to make it visible only to the pertinent parts of our programs. A generic type based

interface for PRNGs is defined to set a common notation and complexity requirements

for parallel algorithms. Throughout the remain of this thesis we assume that PRNGs are

modelled as regular types, as defined by Stepanov and McJones (STEPANOV; MCJONES,

2009, p. 6-8). A regular type is any type whose basis includes default construction (even

if the result is a partially constructed object), copy construction, assignment in terms of

copy construction, and equality comparison. Regularity provides uniformity of behavior

and interoperability.

Before proceeding, we discuss the referential type function:

Ref<T> Returns a reference type for any type T.

What Ref allows us to do is to overcome the pass-by-value semantics of our dialect,

passing the data by reference and assuring ourselves that any parameter of type Ref<T>

that is modified inside a given function behaves exactly as a variable of type T, but

all modifications are reflected outside the function’s scope. Through Ref we can write

an increment action that is non-functional: inc (Ref<int> x) -> void { ++ x ; }.

By using this approach, we introduce collateral effects, of course, but, under control.

Collateral effects are a valuable asset in the writing of parallel algorithms that we will

approach in the next chapters.

113

Aside from general use, type functions may also be specific to a given concept. For a

given type R that models the concept of PRNG we define:

Val<R> Returns the type of the value generated by R.

In C++’s Boost library, for instance, Val<R> returns long long int for their implemen-

tation of the Mersenne Twister generator.

6.2 Primary Operations

6.2.1 Next

concepts <PseudoRandomNumberGenerator R>

next (Ref<R> gen) -> Val<R>

Input: A reference to a PRNG named gen.

Return: The next random natural number of type Val<R> produced by gen.

Side-Effect: Sets gen’s internal state.

Time: Θ(1)
The parameter is passed as a reference to type R, what inhibits pass-by-value semantics

and thus turn any linear-time cost implied by parameter copying into a constant-time cost.

This is an example of an adaptor procedure, which only maps the call to next to

the analogous call of type R. Ideally, this function should be compiled inline, telling the

compiler to use directly the call to the native generate method defined for R, sparing the

function call overhead. The compiler’s ability to inline a given procedure is a primary

trait explored several times henceforward.

This function is referred in NIST’s recommendations for Random Bit Generators (BARKER;

KELSEY, 2012) as “Generate_function”. For non-cryptographic generators, its constant

time is usually small. For instance, Lagged Fibonacci generators (KNUTH, 1985, p. 26),

just perform a sum and a modulus operation. The Xorshift algorithm by George Marsaglia (MARSAG

2003) can perform less than fifteen bitwise operations. There are algorithms whose cost

is a little higher, like Mersenne Twister, which is linear on the number of bits.

6.2.2 Generate

The idea to be discussed in the next chapters is to combine the functions in the

sequential API to generate random numbers in parallel. Filling a range with random

114

numbers is the building block of several randomized algorithms. We state this problem

explicitly to bring along its requirements:

Input. A reference to a PRNG of type R and non-negative memory range of size n.

Output. A filled range of n random numbers generated sequentially by R.

The reference should be updated by any parallel algorithm as by sequential generation

to provide consistency. The same is valid for the generated sequence. Unfortunately,

as examined in the next chapter (Remark 3), there is a handful of parallel PRNGs not

meeting this requirement.

Now we can write our reference sequential implementation of generate:

1 concepts <Iterator I, PseudoRandomNumberGenerator R>
2 generate (I first, I last, Ref<R> gen) -> void

3 {
4 while (first != last) {
5 *first = Val<I> (next (gen)) ;
6 ++ first ;
7 }
8 }
9

This function has the same signature and behavior as the Standard C++ Library function

generate, the only difference being the use of next in place of gen(). As in the C++

implementation, we always assume valid ranges, i.e., the interval is always properly defined

by [first, last). On line 5 we make an explicit cast to type Val<I>. If it is the same

type — or byte-compatible —, the compiler is able to eliminate the conversion. If type R

provides direct generation through operator() — e.g., the PRNGs in Boost Library —

then one could use generate interchangeably with this implementation.

The design takes inspiration from works like Austern et al. (AUSTERN; TOWLE;

STEPANOV, 1996), where algorithms are orthogonal concepts to data structures.

Parallel implementations of generate are proposed in the next chapters. They do not

require thread-safeness for the functions provided by R.

6.2.3 Jump

Input: A reference to a PRNG and a natural number n.

Return: —

Side-Effect: Performs a jump-ahead operation, advancing the generator’s state

as if next was called n times.

Time: O(n), O(log2n), or O(1) — see below.

115

concepts <PseudoRandomNumberGenerator R>

jump (Ref<R> gen, Dist<R> n) -> Ref<R>

We introduce a new type function over PRNG R named Dist<R>, which returns a type

whose representation may hold the size of any finite distance between two elements in its

period. It is an integer type, and its value is always positive. If no distance is directly

associated to R, then the type function returns the largest integer type on the machine

(in C++ there is the size_t macro that represents this type).

Different constraints on the PRNGs usually allow faster jump-ahead implementations.

Thus, the cost of jump is modelled as three variations of a function δ : N→ N.

Linear δ(n) = O(n). Direct implementation. It requires no extra memory to operate,

what may be prohibitive for other versions. Trade-offs between memory and space

are considered by Haramoto et al. (HARAMOTO; MATSUMOTO; L’ECUYER,

2008).

Log δ(n) = O(log2(n)). Could be implemented, e.g., by exponentiation over current

state, like the BBS generator (BLUM; BLUM; SHUB, 1986).

Const δ(n) = O(1). Could be implemented, e.g., by extending the Log version through

pre-computation of the required powers in its finite period. The finitude of period

implies that the necessary precomputed powers are also finite. However, this could

lead to large memory consumption for longer periods.

Efficient jump (Log and Const) is frequently not present in random number gener-

ation libraries. The downside is that the correspondent binary operation is sometimes

expensive. For Const version, there are techniques that mitigate the memory usage,

like the ones presented by Haramoto (HARAMOTO; MATSUMOTO; L’ECUYER, 2008;

HARAMOTO et al., 2008). It pre-computes only key factors to allow a jump by fast

polynomial multiplication within the constant cost of O(klog3 2), where k is the size in bits

of the space occupied.

6.3 Secondary Operations

These operations do not appear explicitly on the algorithms that we discuss next.

However, their detailing is necessary for the analysis of algorithms and considerations

over their determinism.

116

6.3.1 Constructor/Seed/Reseed

As already discussed, the initial state of a PRNG is determined in function of a seed

value.

Par-R requires at least two types of constructors, the seed constructor, and the default

constructor. The seed constructor receives as a parameter only the seed, sets it and

assembles the initial state. To simplify things, the type of the seed is admitted to be the

same type of the generated value for a generic generator R, expressed by type function

Val<R>. The default constructor, called without arguments, is just a wrapper for the

seed constructor being invoked with a default seed. This behavior is coherent with major

PRNG implementations. Thus,

concepts <PseudoRandomNumberGenerator R>

// seed constructor

R (Val<R> seed)

concepts <PseudoRandomNumberGenerator R>

// default constructor

R () { this->R (default_seed) ; }

The generator can be re-seeded as well. The algorithms we present do not use stan-

dalone re-seeding (i.e., outside constructors), but we introduce the procedure for sym-

metrical completeness with classic PRNGs:

Input: A reference to a PRNG and optionally an unsigned integer serving

as the seed for the generator.

Return: Generator’s seed after the call.

Side-Effect: Re-sets the generator to the first state with the new seed.

Time: Θ(1).

concepts <PseudoRandomNumberGenerator R>

reseed (Ref<R> gen, Val<R> seed)

Whenever the second parameter, seed, is omitted the generator is reseeded to its

default seed.

Reseed is referred by NIST (BARKER; KELSEY, 2012, p. 18) as “Instantiate_function”

when called in constructor form and “Reesed_function” when used as stand-alone.

Reseeding a generator after its initialization has unpredictable behavior in practice.

After modifying the seed, two behaviors are admitted:

117

1. It re-starts the state as if the generator is just created.

2. It positions the current state at the same distance it was from the original seed to

the new seed. It depends on the existence of a counter, internal or provided by the

programmer.

In practice, few implementations of PRNGs offer dynamic re-seeding, and — mostly for

performance — it behaves as in (1).

6.3.2 Copy/Assignment

Admitting R to be a regular type, Par-R also requires a copy constructor and an

assignment operator (operator=) to be defined in terms of it. For any two PRNGs x

and y of type R, invoking the copy constructor of as in { R y (x) ; } must be equiv-

alent to default construct y and then assign x to it as in { R y ; y = x ; }. Setting

copy construction and assignment as an adaptor method allows one to work with im-

plementations that do not implement straightforward copy from operator=, such as C

implementations. This is the case, e.g., of SIMD-oriented Fast Mersenne Twister (SFMT)

implementation (HARAMOTO; MATSUMOTO; L’ECUYER, 2008).

To copy a generator is to copy individually each of its parts, individually and recur-

sively. After the copy, both objects will generate the same sequence of numbers. Equality

comparison (operator==), for consistency, is also defined in terms of equality of parts.

Although not stated until now, we implicitly assumed that each generator object

occupies constant memory space during its life cycle, independently from its period. This

allows us to consider the copy time to be Θ(1). When copying a generator we expect a

constant time, but linear to the size of the generator in memory. For instance, there are

linear congruential generators occupying roughly two integers and matrix-based generators

whose state is determined by a set of matrices.

Each component of the generator is exclusively “owned” by it, i.e., there are no shared

memory among multiple instances of a generator. Optimization techniques to speed up

copies like copy-on-write or shared read-only parts are allowed, but they must neither

provoke a bottleneck on parallel access nor make explicit its shared components to the

programmer.

118

6.4 Closing Ramarks

In this chapter, we proposed and detailed a parallel API for sequential generators

called Par-R. In retrospective, it models a state-based pseudorandom number generator,

although the complexity requirements on its operands make it easy to use other types of

generators — e.g., counter-based — underneath without impacting performance. They

allow the programmer to follow either the substream — mainly through jump-ahead

operation — or the multistream — primarily through copy and reseeding operations —

according to the algorithm at hand. Par-R aims, in the end, to increase flexibility without

performance penalties.

Other than the explicit references passed as parameters, no side-effect primitives are

employed by the presented algorithms. Generators with side-effects — such as the state-

based kind — are difficult to parallelize, although common. Moreover, even if generic

implementations allow side-effects, this may inhibit the use of such algorithms as a “black-

box” software component. An example of a generator with side-effect is DotMix, which

requires consistent use of initializations — through reseeding based on scope bounding in

order to be consistent.

Mutual exclusion on each function’s inputs might be necessary to ensure consistency in

a variety of uses of the interface, although our algorithms do not require it. In Chapter 7,

parallel implementations of generate are detailed that do not presuppose thread-safeness

for the functions provided by R. Indeed, to benefit from the determinism and efficiency of

the next operation of R the parallel overhead is moved at steal operations, as detailed on

the next section.

Adaptor procedures are extensively used not only to conciliate different interfaces

but also to adapt to different type requirements for a given program. All the primitives

presented in this section are provided as adaptor methods in the C++ implementation

to Boost Library and DotMix, assuring regular behavior even in the absence of regu-

lar data types. This implementation is based on the template specialization feature of

C++ (STROUSTRUP, 2000).

119

7 DESIGN AND ANALYSIS OF

AN ADAPTIVE GENERATION ALGORITHM

In this chapter we discuss an adaptive parallelization of the generate algorithm dis-

cussed on Chapter 6. The algorithm relies on Par-R to use any sequential PRNG imple-

menting R as the underlying generator.

First, we examine a naïve version of parallel generate and point its weak points

(Section 7.1). Next we present the primary trait on the second part of the thesis: to

explore R’s the ability to jump ahead on a generated stream of random numbers at least as

fast as a sequential generation. Whenever the adaptive algorithm changes from sequential

to parallel implementation, which occurs on successful steals performed by the scheduler,

a jump is performed for pairing the disjoint sequences between workers. Thanks to bounds

provided by SIPS we are able to build two fast algorithms: one work-efficient (Section 7.2)

when the provided jump complexity is at least linear and one work-optimal (Section 7.3),

when the jump complexity is at least logarithmic. Also through SIPS we discuss these

concepts still in the design phase.

We close the chapter with final remarks about the applicability of the algorithm we

study and a parallel implementation of it to an even more general algorithm named iota

that is more flexible and will be explored in future works (Section 7.4).

Our considerations apply to a general family of generators, not only PRNGs. A

generator is any functor (function object) respecting Par-R, the API defined in Chapter 6.

If it provides pseudorandom numbers, a mathematical progression, or a fixed constant is

not relevant to the algorithm. Thus, we use for R the concept Generator instead of

PseudorandomNumberGenerator.

7.1 The Naïve Version

To start, consider a naïve implementation of parallel generate on Figure 7.1.

This code is very alike the generate one we used in the previous chapter, but here we

divide the interval in two and do the generation recursively until a threshold is reached.

On line 4 we compute the size of the range using function length, which receives the

interval delimiters as parameters. The type of the returned integer is the return of type

function Dist<I>, which returns an integer type able to represent the number of elements

in exactly the same fashion we used Dist<R> to determine the jump distance for PRNG.

120

1 concepts <Iterator I, Generator R>
2 generate_par_naive (I first, I last, R gen) -> void

3 {
4 Dist<I> n = length (first, last) ;
5 if (! (n > threshold)) {
6 generate (first, last, gen) ;
7 return ;
8 }
9 halve (n) ;

10 I middle = successor (first, n) ;
11 R g = gen ;
12 jump (g, n) ;
13 spawn generate_par_naive (first, middle, gen) ;
14 spawn generate_par_naive (middle, last, g) ;
15 }
16

Figure 7.1: Parallel generate algorithm: naïve version.

From line 5 to 8 we test for the threshold. In fact, read-only variable threshold is

accessible anytime in our implementations, but may change from algorithm to algorithm.

If under the threshold, we call the already discussed (inlined) generate on line 6 and

return. On lines 10 and 11 we obtain an iterator that divides the semi-open interval in

half by first halving n and then obtaining the n-th successor of iterator first (i.e., the

result of applying operator++ n times). Finally, from line 11 until the end, we copy and

jump the generator to compensate for what will be generated in parallel in another thread

and perform the recursive call; half of the interval will be filled by the original generator

and the other half by the copy, already advanced.

We now proceed to the analysis of this solution. Let n′ be the parallel threshold —

the minimal grain size for parallel processing. Also, let α = Θ(1) be the work performed

by next and β = Θ(1) be the same for the assignment of generators. Thus, regarding

generator operations, naïve parallel generate has total work W (n) = αn′ when n < n′.

Otherwise,

W (n) = β + δ(⌊n/2⌋) + W (⌈n/2⌉) + W (⌊n/2⌋) (7.1)

In closed form (only for powers of two, which maintain asymptotic behavior by the Akra-

Bazzi Method (AKRA; BAZZI, 1998)):

W (n) = αn + β(n− 1) +
log2(n)−n′−1

∑

i=0

2iδ
(

n/2i+1
)

(7.2)

121

Subtracting from both sides Wseq(n) = αn + β, delivers the overhead,

V (n) = β(n− 2) +
log2(n)−n′−1

∑

i=0

2iδ
(

n/2i+1
)

(7.3)

determined by δ and its asymptotic behavior:

δ(n) Equation 7.3 Work-Efficient? Work-Optimal?

O(n) O(nlog2n) No No

O(log2n) O(n) Yes No

O(1) O(n) Yes No

Both Const and Log versions of δ are work-efficient because of their overhead O(n)

when applied in Equation 7.3, while Linear version has overhead O(nlog2n), not being

work-efficient.

It is possible to reduce the number of jump-ahead operations when the spawned rou-

tines run sequentially. Jumps are only performed to guarantee that determinism is pre-

served when the recursive calls operate in parallel. Since parallelism only unfolds in the

presence of steals, execution can jump exclusively when a continuation is stolen; other-

wise the original PRNG is used. This tactic effectively moves the determinism overhead

to the computation’s depth, in a fashion inspired by the work-first principle of Cilk’s

scheduler (FRIGO; LEISERSON; RANDALL, 1998).

The jumps will only occur in successful steals and will introduce overhead only then.

Also, the DAG will probably change at each execution since the associated tasks will

appear and disappear accordingly to the random behavior of the scheduler. The analysis

of this situation is straightforward by employing SIPS, as we verify next.

7.2 The Work-Efficient Version

We now aim to display a work-efficient version of generate. The code is written using

tail recursion optimization, replacing the final recursive call by a loop to spare us from

extra recursive calls and the overhead associated. Also, to use the same generator in the

absence of steals, the generators are passed by reference and copied only when needed.

This implies an occasional cancelation of the tail recursion optimization, but only when

a successful steal takes place, as shown on Figure 7.2.

122

1 concepts <Iterator I, Generator R>
2 generate_weff (I first, I last, Ref<R> gen) -> R
3 {
4 Dist<I> n = length (first, last) ;
5 while (n > threshold) {
6 halve (n) ;
7 I middle = successor (first, n) ;
8 R g = gen ;
9 Auto me = id () ;

10 spawn generate_weff (first, middle, gen) ;
11 if (me != id ()) { // successful steal
12 jump (g, n) ;
13 return generate_weff (middle, last, g) ;
14 }
15 first = middle ;
16 }
17 generate (first, last, gen) ;
18 return gen ;
19 }
20

Figure 7.2: Parallel generate algorithm: work-efficient version.

Remark 3 Contrary to previous parallel versions, generate_weff on Figure 7.2 does

return something, a generator. This is done to ensure determinism. Since we cannot

guarantee that the original generator will be updated in favor of one of its copies, the

referenced generator may not reflect the generated values. For instance, consider two

ranges, [f1, l1) and [f2, l2). Also, consider two iterators m1 anywhere within [f1, l1) and

m2 anywhere within [f2, l2). In this case, the following assertion would fail:

1 R g1, g2 ;
2 generate (f1, m1, g1) ;
3 generate (m1, l1, g1) ;
4 generate_weff (f2, m2, g2) ;
5 generate_weff (m2, l2, g2) ;
6 assert (g1 == g2) ;
7

Also, the contents of ranges [f1, l1) and [f2, l2) would differ for any choice of m1 and m2.

Moreover, { generate_weff (f2, l2, g2) ; } would produce a different stream from

{ generate_weff (f2, m2, g2) ; generate_weff (m2, l2, g2) ;}. ✷

To assure determinism we write an upper-level generate function:

1 concepts <Iterator I, Generator R>
2 generate_par (I first, I last, Ref<R> gen) -> void

3 {
4 gen = generate_weff (first, last, gen) ;
5 }
6

123

By always returning a copy of the generator more ahead on its period we ensure that

the final version will be deterministic at the cost of at most (for certain compilers) one

extra copy. Since the destiny of the other returns on the recursive call tree is nowhere,

the compiler will eliminate the unnecessary copies, remaining the upper-level assignment.

Besides, since we return the same variable at line 18 or a function call at line 13, the

compiler is allowed to use return value optimization and eliminate the one extra copy,

operating directly in the reference. Finally, to ensure performance and eliminate this

additional copy the programmer may use directly generate_weff on Figure 7.2 if deter-

minism among successive calls is not a concern — we find no examples of “consecutive

deterministic” generators on the literature. This is how we compare our solution to the

solutions on Chapter 8.

We now proceed to the analysis, using the limits found on Corollary 1 (Chapter 5).

Jump work δ’s overhead is bounded by summing the costs of different um. Since half of

the range is put at deque’s front at each spawn, there are log2n different steal sizes to

appear, minus size n. Therefore, the expected overhead by Corollary 1 is:

V (n) = (n− 1)β + HP (P − 1)
log2(n)−1
∑

i=0

δ(2i). (7.4)

what results in

δ(n) Equation 7.4 Work-Efficient? Work-Optimal?

O(n) O(n) Yes No

O(log2n) O(n) Yes No

O(1) O(n) Yes No

For a fixed P the expected overhead is O(n) when using the Linear version of δ. Thus,

in expectation, work-efficiency is always assured.

Remark 4 Counter-intuitively, linear version is work-efficient. Each node has to compute

sequentially the part that will be calculated recursively, in parallel. Nevertheless, we

expect some gain for a reasonable number of workers. Looking to Equation 7.3, we

calculate redundant sequential work to be
∑log2n

i=1 2i−1n/2i = n log4 n. However, parallelism

mitigates this cost. As the number of workers grows, the extra-cost becomes closer to O(n)

for two reasons (recall that the overhead is introduced at successful steals). First, if the

number of steals is low, the high denominator terms vanish; the result tends to n/2.

124

Second, if the number of steals increases, the number of terms with same denominator

executed in parallel tends to increase as well, eliminating the multiplier; the results tends

to
∑log2n

i=1 n/2i = n− 1. In all cases, expected overhead is O(n). ✷

7.3 The Work-Optimal Version

Our technique can be refined to obtain work-optimal parallel generation. The problem

is to eliminate the fixed overhead introduced by the multiple assignments. We do it by

creating a new generator only when a successful steal takes place. The correct placement

of the newly created generator is obtained by the use of two extra variables:

R base A constant copy of the generator in its initial state.

I start A constant copy of inital position pointed by first.

Both variables are read-only and visible to all scopes by all workers but only on the scope

of this algorithm — i.e., they are not global variables. Whenever a successful steal occurs,

we copy base and jump all the way the length from start to the current partition point

middle. This eliminates unnecessary generator copies, in exchange for paying the price

of longer jumps. Nevertheless, the jumps are mitigated by parallelism and “cheap” when

the generator provides at most polylog time jump-ahead.

We employ the same return value optimization technique to ensure determinism as

with the work-efficient version — returning a generator instead of nothing. The upper-

level function would then be:

1 concepts <Iterator I, Generator R>
2 generate_par (I first, I last, Ref<R> gen) -> void

3 {
4 start = first ;
5 basis = gen ;
6 gen = generate_wopt (first, last, gen) ;
7 }
8

And the work-optimal algorithm is then shown on Figure 7.3.

Now we can cut off the β(n− 2) term from the asymptotic overhead. Even the more

expensive jump calls are yet upper-bounded by the most expensive possible jump:

HP (P − 1)
log2(n)−1
∑

i=0

δ(n− n/2i+1) (7.5)

The cost of a call to copy constructor per successful steal is added, but it is constant.

Now work-optimality for Const and Log versions can be guaranteed:

125

1 concepts <Iterator I, Generator R>
2 generate_wopt (I first, I last, Ref<R> gen) -> R
3 {
4 Dist<I> n = length (first, last) ;
5 while (n > threshold) {
6 halve (n) ;
7 I middle = successor (first, n) ;
8 Auto me = id () ;
9 spawn generate_wopt (first, middle, gen) ;

10 if (me != id ()) { // successful steal
11 R g (basis) ;
12 jump (g, length (start, middle)) ;
13 return generate_wopt (middle, last, g) ;
14 }
15 first = middle ;
16 }
17 generate (first, last, gen) ;
18 return gen ;
19 }
20

Figure 7.3: Parallel generate algorithm: work-optimal version.

δ(n) Equation 7.5 Work-Efficient? Work-Optimal?

O(n) O(nlog2n) No No

O(log2n) O(log2
2n) Yes Yes

O(1) O(log2n) Yes Yes

The overhead results in O(log2
O(1)n), although work-efficiency for Linear version is lost,

since it results in an overhead of O(nlog2n).

7.4 Closing Remarks

On this chapter, we have discussed the design and analysis of a parallel adaptive gen-

erate algorithm. This algorithm is also generic since it works with iterators and concepts.

Sequential incarnations of this type of list-based algorithm is approached in depth in

the works of Alexander Stepanov — designer of C++’s STL —, specially on his books

Elements of Programming (STEPANOV; MCJONES, 2009) and From Mathematics to

Generic Programming (STEPANOV; ROSE, 2014). These books apply the deductive

Euclidean approach to programming in order to allow the writing of the most generic

algorithms possible.

The sequential generate hold resemblance to a classical algorithm named iota that fills

a range [f, l) with consecutive values obtained from an initial value (concept “Incrementable”

126

meaning “has operator ++ defined over”):

1 concepts <Iterator I, Incrementable T>
2 iota (I f, I l, T value) -> T
3 {
4 while (f != l) {
5 *f = value ;
6 ++ value ;
7 ++ f ;
8 }
9 return value ;

10 }
11

Although not straightforward, if value is a PRNG where the ++ operator is mapped to

next and the = operator is mapped to copying of the produced value, then what we have

is the generate from Chapter 6.

The mapping above may seem only a curiosity, but it allows us to define a more general

interface than Par-R through the use of a new construct called virtual iterators, which

enable us to model T precisely and produce a single version of the algorithm that is work-

efficient or work-optimal only by changing the underlying generator, without modifying

the algorithm. This is more thoroughly detailed on Chapter 9, on Section 9.3, about

future works. There are already implementations of it from the authors that will be

published soon.

In the next chapter, we study benchmarks employing the techniques we have seen in

this chapter to verify whether these asymptotic limits are valid for processing inputs of

reasonable size.

127

8 ALGORITHMS & BENCHMARKS

This chapter provides experimental evidence that the asymptotic limits shown pre-

viously do not excessively penalize the execution with its hidden constants and if they

are competitive against Cilk Plus’ parallel PRNG, DotMix (LEISERSON; SCHARDL;

SUKHA, 2012). DotMix relies on pedigrees, thread-unique numerical labels, a feature its

authors persuaded Intel to include in its Cilk Plus implementation. This provides us an

excellent opportunity to compare our generic solution with a tailored design and reason

about the abstraction penalty of using generic PRNGs.

In DotMix, a given reference to a global generator compresses the pedigree and then

hashes the result with a low collision probability. To maintain pedigrees on the runtime

overcharges it with less than 1% overhead. DotMix shows statistical quality rivaling (with

high variance) the one of Mersenne Twister upon the Dieharder random number test suite,

although no results are given for other well-recognized tests such as TestU01 (L’ECUYER;

SIMARD, 2007). The overheads introduced by DotMix are within a factor of two for

adverse cases and are lesser than 20% of the non-deterministic version in suitable cases.

Default values were used for DotMix, whose version is the one that comes along with

CilkPub — community’s Cilk Plus implementations maintained by Intel — contributed

code.

We begin presenting environment, runtime (Section 8.1), and evaluation methodology

(Section 8.2). Then we approach four benchmark algorithms: Generate (Section 8.3),

Introsort (Section 8.4), Maximal Independent Set — by Luby’s Method (Section 8.5),

and Fibonacci (Section 8.6), designed to evaluate performance in an increasing level of

adversity against our methods. Each one approaches one aspect we want to evaluate:

Generate. The basic building block of our algorithms, as discussed in Chapter 7. Ex-

periments show that even so, our performance rivals DotMix for work-efficient al-

gorithms and surpasses it for work-optimal ones.

Introsort. A mix of Quicksort and Heapsort. It requires that we overestimate the gen-

eration of random numbers, generating more than what will be effectively needed.

Experiments show that even so, our performance rivals DotMix for work-efficient

algorithms and surpasses it for work-optimal ones.

Maximal Independent Set. Calculates the maximal independent set of vertices in a

graph. We use it to illustrate the first adverse situation, an excessive overestimated

algorithm. (It is artificially programmed this way, our methods do not require this

128

level of overestimation.) Experiments show that our technique and DotMix suffer

equally from degeneration in performance.

Fibonacci. Calculus of the n-th term on a multiplicative version of Fibonacci’s series.

We use it to illustrate the second adverse situation, a parallel algorithm with large

parallel depth. Experiments show that our technique and DotMix suffer equally

from degeneration in performance.

We close the chapter with brief considerations on the size and complexity of the enlisted

benchmarks (Section 8.7).

8.1 Environment and Runtime

The discussion is contextualized over Cilk Plus’ dynamic multithreading platform (In-

tel Corporation, 2013), the most recent incarnation of Cilk (FRIGO; LEISERSON; RAN-

DALL, 1998). It provides a spawn-sync abstraction where user threads are spawned

as parallel procedures (keyword cilk_spawn) and joined in a blocking way (keyword

cilk_sync). This implies a processor-oblivious model of computation.

Cilk Plus assigns continuations (ready tasks) to workers through a randomized work-

stealing scheduler (FRIGO; LEISERSON; RANDALL, 1998). It is implemented as a

collection of worker threads with a deque with two extremes, a front, and back. Parallel

continuations produced by the worker are placed in its deque’s front. Idle workers with

an empty deque keep randomly selecting victim workers until choosing one with a non-

empty deque. In this case, it steals the continuation at the deque’s back. Idle workers

with a non-empty deque remove and execute continuations from its deque’s front. The

runtime stops when all workers are idle. The principal invariants are the fact that a stolen

task is executed without entering the deque (prevents deadlocks) and the spawned task is

immediately executed, while the spawner goes to the deque’s front (depth-first execution).

This model is considered in the implementations that follow.

Three sequential PRNGs from Boost C++ serve as the underlying engine of the

generic scheme: Mersenne Twister 19937 (MT19937) (MATSUMOTO; NISHIMURA,

1998), Linear Congruential (Rand48), both over 64-bit integers, and Tausworth Gen-

erator (Taus88) (L’ECUYER, 1996), over 32-bit integers. The only Boost generator that

implements a jump operation in log time is Rand48, the others executing in linear time.

See Table 8.1. We also implemented a Blum Blum Shub (BBS) (BLUM; BLUM; SHUB,

1986) crypto-secure generator over 512-bit integers with a logarithmic time jump. In

129

all tests, work-optimal algorithms are used with Rand48 and BBS and the work-efficient

versions with the others.

Name Description Period Speed

mt19937_64 Mersenne Twister 219937 − 1 38%
rand48 Like Linux’s lrand48 248 − 1 64%
taus88 Tausworth Generator 288 100%

Table 8.1: Boost PRNGs. Data was collected from Boost 1.55’s documentation. Column
Speed gives the relative speed when compared with the fastest ones, whose value is 100%.

8.2 Evaluation

The benchmark algorithms run for a number of workers 1≤P≤32 as well as a se-

quential version. To provide statistical confidence, the pointed plots are the means of 50

executions for each P and sequential version, lying within a 95.45% confidence interval.

The standard deviation is, at the worst case, under 8% of the mean, a reasonable range

for randomized algorithms. Tseq (resp. TP) denotes the sequential time (resp. parallel time

on P processors) with PRNG R (resp. Par-R). Yet T1 is the time of Par-R scheduled on

one processor.

The comparison criterion is total execution time. Since the algorithms do not have a

standard sequential implementation (because of different implementations of the generator

components), speedup and efficiency measurements are not meaningful when compared

against each other, since a slow sequential implementation may wrongly boost the results.

This way, we take out the unfairness of comparing relative speedups, but use it to show

anomalies in sequential executions.

In fact, some DotMix benchmarks running in sequential showed unusual measurements

for Tseq and T1 but are as expected for T2 and above. Thus, for clearness of comparison,

these execution times are displayed separately; measurements on Tseq, T1, and T2 are in

Table 8.2 and measurements for TP with P > 2, are in Figures 8.1, 8.2, 8.3, and 8.4. The

unusual behavior of DotMix is contextualized within each benchmark. Highlights on the

implementations and reviews over the results follow.

8.3 Generate

Generates 108 64-bit random numbers in parallel.

130

PRNG Generate Introsort MIS Fibonacci

Tseq T1 T2 Tseq T1 T2 Tseq T1 T2 Tseq T1 T2

Rand48 559 529 268 5649 5730 2994 39 67 43 17 194 97
Taus88 703 660 1033 6132 6412 3661 38 67 45 30 193 146
MT19937 877 901 611 6451 6577 3680 38 66 43 30 327 199
DotMix 4201 1713 863 6227 9798 5217 51 67 42 129 389 195
BBS 25954 25602 13006 6316 6424 3503 149 182 102 701 910 455

Table 8.2: Average time (in milliseconds, rounded up) of parallel algorithms’ execu-
tion.Shown sequential time Tseq and parallel times T1 and T2.

8.3.1 Implementation

We follow the implementation of generate as discussed in Chapter 7. The sequential

version for all PRNGs is a for loop calling method next. The parallel version of DotMix

is a call to its own fill_buffer function, implemented with the same tail-recursion

optimization of our codes, with parallel a threshold of 2,048 elements — the same as

DotMix. Target implementation has the same grain size for comparison fairness.

8.3.2 Theoretical Analysis

The theoretical analysis of the work-efficient and work-optimal versions is already

exposed in details at Chapter 7.

8.3.3 Experimental Results

Performance is shown in Figure 8.1.

Boost generators and BBS have a minor difference between Tseq and T1, with BBS

being much slower because of its extensive use of integer modulus. DotMixhas a T1 that

is 2.45× faster than its Tseq. Since DotMix is projected with a parallel-first principle,

fill_buffer is optimized regarding pedigree initialization (scope bounding), what is

mandatory in order to generate deterministic results, introducing significant sequential

overhead, what does not affect Par-R. A speedup comparison between T1 and T2 shows

Rand48 (work-optimal), BBS, and DotMix with ≈ 1.97 of speedup while work-efficient

MT19937 has ≈ 1.47 of speedup. Taus88, work-efficient and 32 bits, has speed-down of

≈ 0.63. DotMix scales until P = 11 processors, being better than MT19937 for P > 4

processors (it scales up to 6 processors). DotMix is never better than Rand48. Taus88

does not profit at all from Par-R, due to 32 to 64-bit casting. Even BBS is faster for 26 or

131

●

●

●

●

●

●

●

●
●

●
●

●
● ●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0e+00

5e+09

1e+10

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

T
im

e
 (

n
s
)

● Generate/Bbs−Opt

Generate/Boost−mt19937_64−Eff

Generate/Boost−rand48_64−Opt

Generate/Boost−taus88_32−Eff

Generate/DotMix_64−Det

Figure 8.1: Absolute time execution for Generate: P vs. Time (ns) for MT19937 (N),
BBS (•), Rand48 (�), Taus88 (+), and DotMix (⊠). The respective colored areas around
the points are the confidence interval of 95.45%.

132

more processors. Overall we are competitive with DotMix for fast underlying generators.

8.4 Introspective Sort

David Musser’s Introspective Sort (Introsort) (MUSSER, 1997). It is the algorithm

used to code generic sorting in several implementations of C++’s Standard Template

Library (like GNU’s or SGI’s). Introsort is basically a quicksort algorithm that is switched

to heapsort whenever its tree depth goes beyond a certain limit. The relevant piece of

parallel code to this analysis is the quicksort part, with the random selection of the pivot.

We sort 108 integers. The pivots are generated in an “online” fashion, as they are

needed — in opposition to producing all at once, prior to the main computation. We use

a modified partition procedure always to divide the interval by half, independent of the

random pivot, and a sequential threshold of 2,048 elements to provide comparison fairness

between PRNGs.

8.4.1 Implementation

The Quicksort part of the algorithm is implemented using the two-way variation, where

we divide the range in two based on the pivot value. The Heapsort part of the algorithm

is performed on the sequential version that we also call whenever it is under the threshold.

The deterministic version of the algorithm, to be used with DotMix is:

1 concepts <Iterator I, BinaryPredicate P, PseudoRandomNumberGenerator R>
2 introsort_det (I first, I last, P cmp, Dist<I> height, Ref<R> gen) -> void

3 // precondition: height >= Dist<I> (0)
4 {
5 while ((height --) && (length (first, last) > threshold)) {
6 Val<I> pivot = *random_pivot (first, last, gen) ;
7 I p1 = partition (first, last, bind_2nd (cmp, pivot)) ;
8 I p2 = p1 ;
9 ++ p2 ;

10 Dist<I> left = length (first, p1) ;
11 Dist<I> right = length (p2, last) ;
12 if (left < right) {
13 introsort_det (first, p1, cmp, height, gen) ;
14 first = p2 ;
15 } else {
16 introsort_det (p2, last, cmp, height, gen) ;
17 last = p1 ;
18 }
19 }
20 introsort (first, last, cmp) ;
21 }
22

We introduce a new concept, BinaryPredicate, that models a binary function returning

a boolean. It is used to define the type of the comparison function the user shall provide to

133

the algorithm. If the user does not provide any, we assume it to be function less (x, y)

that returns true whenever x < y, and false otherwise.

On line 6 we use function random_pivot, which returns an iterator to the position

where the selected pivot lies. Its implementation is:

1 concepts <Iterator I, PseudoRandomNumberGenerator R, BinaryPredicate P>
2 random_pivot (I first, I last, Ref<R> gen) -> I
3 {
4 Dist<I> n = length (first, last) ;
5 Dist<I> r = Dist<I> (next (gen)) ;
6 return successor (first, r % n) ;
7 }
8

On line 7 we use two new functions, partition, which re-arranges the elements in

range to position all elements satisfying the predicate before all elements not satisfying

it — the key function on Quicksort —, and bind_2nd. The later receives as a parameter

a binary predicate and a value whose type is the same as the second parameter of this

function. It returns an unary predicate that behaves exactly as if the previous function was

used, but only the first parameter varies. (Receiving a function and returning the same

function with fixed parameters is known as currying, in tribute to mathematician Haskell

Curry, which developed the technique.) We use it remarkably to give the comparison

function and the selected pivot and obtain an unary function capable of comparing the

elements in the range directly with the pivot. Since currying is performed in compile-time,

this does not imply in performance overhead.

The instruction at line 9 takes out the pivot from the execution because it is already

in the right place.

The recursion is implemented again with an unrolled tail recursion optimization, like

with generate. However, the choice of the pivot is unpredictable, and we want to decrease

the number of recursive calls performance-wise. Thus, from line 12 to 19 we measure each

sub-chunks size and recurse over the lesser one, producing fewer recursions.

We now can write the work-efficient version of the algorithm:

134

1 concepts <Iterator I, BinaryPredicate P, PseudoRandomNumberGenerator R>
2 introsort_weff (I first, I last, P cmp, Dist<I> height, Ref<R> gen) -> R
3 // precondition: height >= Dist<I> (0)
4 {
5 while ((height --) && (length (first, last) > threshold)) {
6 Val<I> pivot = *random_pivot (first, last, gen) ;
7 I p1 = partition (first, last, bind_2nd (cmp, pivot)) ;
8 I p2 = p1 ;
9 ++ p2 ;

10 Dist<I> left = length (first, p1) ;
11 Dist<I> right = length (p2, last) ;
12 Auto me = id () ;
13 R g (gen) ;
14 // recurse over smaller side
15 if (left < right) {
16 spawn introsort_weff (first, p1, cmp, height, gen) ;
17 if (me != id ()) { // successful steal
18 jump (g, left) ;
19 return introsort_weff (p2, last, cmp, height, g) ;
20 }
21 first = p2 ;
22 } else {
23 spawn introsort_weff (p2, last, cmp, height, gen) ;
24 if (me != id ()) { // successful steal
25 jump (g, right) ;
26 return introsort_weff (first, p1, cmp, height, g) ;
27 }
28 last = p1 ;
29 }
30 }
31 introsort (first, last, cmp) ;
32 jump (gen, length (first, last)) ;
33 return gen ;
34 }

Here we follow the logic of recursing over the smaller part by spawning only the recursion.

A thief, thus, is only able to steal the larger part. With few steals, that represent overhead,

the more tasks it takes, the better, so we are settled.

We now explain the extra jump on line 34. This version of the code is parallel deter-

ministic in the sense that the parallel version always choose the same pivots, regardless

of the number of workers. Nonetheless, the parallel version — even the one with just one

worker — do not chooses the same pivots as the deterministic version. This is so because

we use overestimation to ensure determinism. For a given sub-chunk of size n we assume

the recursive call will choose exactly n pivots. This, however, may not be true depending

on how the partition is performed; the threshold may be hit sooner or later on the recur-

sion. Since the problem of knowing the Quicksort tree shape is undecidable, we choose

to carry out the jumps following the non-strict upper bound worst case of generating all

pivots. This, as we shall see, does not have a large impact on the performance, especially

with logarithmic jump generators.

With generate, we always recursed on the left sub-chunk, thus giving us implicitly

the information of how many numbers were generated. In the work-optimal version,

displayed below, we are obliged to abandon the idea of holding the initial value of first

in static variable start, because the point we are on the recursion does not give us precise

135

information about how many numbers were generated by that moment. Since here we

choose dynamically to what side recurse, we maintain a counter n of how many pivot

choices we made until that moment and pass it forward on the recursion, in order to be

a private number to each worker.

1 concepts <Iterator I, BinaryPredicate P, PseudoRandomNumberGenerator R>
2 introsort_wopt (I first, I last, P cmp, Dist<I> height, Dist<R> n, Ref<R> gen) -> R
3 // precondition: height >= Dist<I> (0)
4 {
5 while ((height --) && (length (first, last) > threshold)) {
6 Val<I> pivot = *random_pivot (first, last, gen) ;
7 I p1 = partition (first, last, bind_2nd (cmp, pivot)) ;
8 I p2 = p1 ;
9 ++ p2 ;

10 Dist<I> left = length (first, p1) ;
11 Dist<I> right = length (p2, last) ;
12 Auto me = id () ;
13 if (left < right) {
14 spawn introsort_wopt (first, p1, cmp, height, n, gen) ;
15 n += left ;
16 if (me != id ()) {
17 R g (basis) ;
18 jump (g, n) ;
19 return introsort_wopt (p2, last, cmp, height, n, g) ;
20 }
21 first = p2 ;
22 } else {
23 spawn introsort_wopt (p2, last, cmp, height, n, gen) ;
24 n += right ;
25 if (me != id ()) {
26 R g (basis) ;
27 jump (g, n) ;
28 return introsort_wopt (first, p1, cmp, height, n, g) ;
29 }
30 last = p1 ;
31 }
32 }
33 introsort (first, last, cmp) ;
34 jump (gen, length (first, last)) ;
35 return gen ;
36 }
37

So again we use overestimation and count on jumps having logarithmic complexity to

mitigate this cost. Details are given next.

8.4.2 Theoretical Analysis

To determine how many terms are to be jumped, it is supposed that each recursive

call will advance the generator as much as the size of the subsequence it takes as input.

The analysis of the online algorithm adds some complexity to the analysis of the straight-

forward parallel generation. While in that case the partitioning was fixed by half of the

elements (and thus the number of ranges subject to steal was log2n), pivot segmentation

may result in degeneration at some points of the execution tree. However, even if we

suppose worst-case cost for steals of δ(n) — regardless of its size — we are able to still as-

sert work-efficiency through the tree’s maximum depth, passed as parameter to Introsort.

136

Instead of applying Corollary 1, Theorem 3 is used directly. In this case, M = 2log2n,

bounded by Introsort’s maximal depth before changing to Heapsort. Introsort runs in

time O(nlog2n). The pessimistic approach allows us to implement a work-optimal ver-

sion and just omit the assignment cost because the different costs of jumps over different

chunks are supposed to be the whole distance. This results in an overhead of:

E[V (n)] < HP −1(P − 1) · 2log2(n) · δ(n) (8.1)

For an work-optimal version, the pessimistic cost for δ is maintained while cutting off the

cost for the clone method. For the implementations of δ:

δ(n) Equation 8.1 Work-Efficient? Work-Optimal?

O(n) O(nlog2n) Yes No

O(log2n) O(log2
2n) Yes Yes

O(1) O(log2n) Yes Yes

8.4.3 Experiments

Performance is shown in Figure 8.2.

We use a modified partition procedure always to divide the interval by half for compar-

ison fairness between PRNGs. DotMix, because of its use of pedigrees, is not implemented

with this overhead. All generators have Tseq ≈ T1, except DotMix, which has large over-

head T1 ≈ 1.58Tseq without optimized fill_buffer. Indeed, until P = 13 DotMix has

the worst performance, even when comparing to BBS, whose slow performance seems to

be mitigated by the work-optimal implementation, placing it at the same level and some-

times better than its work-efficient rivals. For P > 13 DotMix is at most statistically

equal to the work-efficient implementations. Rand48, being fast and work-optimal, is the

incontestable winner. Taus88 has a significant gain since no type casting is necessary.

8.5 Maximal Independent Set: Luby’s Method

Implementation of Luby’s method to calculate the Maximum Independene Set (MIS)

of an acyclic graph. It is divided into three steps, repeated until the input is marked as

empty:

1. Select nodes with probability 1/2i, where i is the node’s degree;

137

●

●

●

●

●

●
●

● ●

1e+09

2e+09

3e+09

4e+09

5e+09

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

T
im

e
 (

n
s
)

● IntroSort/Bbs−Opt

IntroSort/Boost−mt19937_64−Eff

IntroSort/Boost−rand48_64−Opt

IntroSort/Boost−taus88_32−Eff

IntroSort/DotMix_64−Det

Figure 8.2: Absolute time execution for Introsort: P vs. Time (ns) for MT19937 (N),
BBS (•), Rand48 (�), Taus88 (+), and DotMix (⊠). The respective colored areas around
the points are the confidence interval of 95.45%.

138

2. Deselect lowest degree node of two neighbor selected nodes;

3. Move the remaining selected nodes to the MIS and removes its neighbors from the

input.

Steps (1) and (2) are performed in parallel for each node, but the step (2) only executes

after (1). We use random numbers for the probabilistic selection in step (1), but the

parallel generate function is initialized by a step (0) to generate random numbers in an

“off-line” fashion at each round — to the highest level of over-estimation. Luby’s method

assumes that the PRNG’s period is as large as needed to not generate any loops. Robust

generators, like Mersenne Twister, provide a period sufficient for most cases. Generators

with a small period, however, may result in non-termination.

We intend this algorithm to be adverse to our methods by overestimation, performance-

wise. To achieve it, we generate one random number per input vertex even when the

number of vertices decreases throughout the algorithm. We show, then, that our methods

are equally degraded by this behavior as DotMix.

The input is a grid graph with 106 nodes.

8.5.1 Implementation

We use Problem-Based Benchmark Suite (PBBS)’s implementation of a graph data

structure (SHUN et al., 2012). In that, vertices are stored in a vector, and we use their

positional index as a label. With it we can describe a graph through a pair of indexed

iterators (first and last).

Two useful functions for us are defined by each node:

concepts <Vertex V, Integer N>

degree (V x) -> N

Returns the degree (number of connect-

ing edges) of the node as an integer type.

concepts <Vertex V>

neighbors (V x) -> Vector<V>

Returns another vector of nodes contain-

ing the neighbors of the parameter ver-

tex.

Here we introduce type function Vector, which returns a vector type data structure

whose elements are of the type passed as a parameter. Vector has an optional constructor

that receives as parameter the initial size of the vector. Thus, Vector<T> v (10) ;

declares a vector of elements of type T named v whose initial size is 10 elements. A vector

139

provides two functions that return iterators to its elements. For the vector Vector<T> v

(for any element type T) we may invoke:

begin (v) Returns an iterator to the initial element in the sequence (first).

end (v) Returns an iterator to one past the final element in the sequence (last).

The MIS is a vector whose values are integers, manipulated through the following

enumerated type

enum Choice {selected, deselected, removed} ;

and thus declared as Vector<Choice> and manipulated through its iterators. This is done

for performance; throughout the algorithm vertices may be selected and often deselected,

only at the end of a step they are allowed to be effectively removed. Thus, in order to

avoid the cost of physical removal and at the same time maintain consistency with the

relation between a vertex’s tag and its position in a vector, we logically mark it as removed

once it is not needed anymore.

We can now provide the parallel code, following Figure 1 from Ferreira and Schaban-

nel (FERREIRA; SCHABANEL, 1999):

1 concepts <Iterator II, Iterator IO, PseudoRandomNumberGenerator R>
2 mis_par (II first, II last, IO mis, Ref<R> gen) -> void

3 {
4 Vector<Val<R>> random (length (first, last)) ;
5 while (true) {
6 generate_par (begin (random), end (random), gen) ;
7 // (I) probabilistic selection
8 if (! select_par (first, last, mis, begin (random))) break ;
9 // (II) if two selected are neighbors, deselect the one with lowest degree

10 deselect_neighbors_par (first, last, mis) ;
11 // (III) remove the neighbors of selected vertexes
12 remove_neighbors_par (first, last, mis) ;
13 }
14 return ;
15 }
16

The basic mainstream on the algorithm is the manipulation of iterators to make every

operation in-place and thus improve performance. As with an implicit notation until know

all methods ending in the suffix par are parallel implementations.

Instead of constructing the random generation built-in — as we have done with In-

trosort — we generate the parallel numbers we are going to need at each round at once,

using generate_par (detailed in Chapter 7) as a building block. On each step of the

algorithm exactly n random numbers are generated, where n is the initial number of ver-

tices. This occurs even if fewer numbers are needed because we want to stress our method

against an algorithm whose speedup is adverse for a larger number of processors.

140

Since our analysis covers the overhead introduced by parallel generation of random

numbers, we detail function select_par, which uses the random numbers generated pre-

viously:

1 concepts <Iterator II, Iterator IO, Iterator IR>
2 select_par (II first, II last, IO mis, IR rand) -> Dist<IO>
3 {
4 Dist<IO> in = 0 ;
5 Dist<IO> out = 0 ;
6 Dist<IO> n = length (first, last) ;
7 parallel_for (Dist<IO> i = Dist<IO> (0) ; i < n ; ++ i, ++ rand) {
8 if (mis[i] == deselected) {
9 ++ out ;

10 if (choose_with_probability
11 (Dist<IO> (1)
12 , Dist<IO> (pow2 (degree (*first)))
13 , Dist<IO> (*rand)))
14 {
15 mis[i] = selected ;
16 ++ in ;
17 }
18 }
19 }
20 if (out == Dist<IO> (0)) return Dist<IO> (0) ;
21 return out - in + Dist<IO> (1) ;
22 }
23

All this function parameters model the iterator concept, but do not need to be equal types.

The iterator type defining the input list is II, the iterator type defining the output MIS

is IO, and the iterator type to the list of random numbers is IR. Some may be pointers,

some maybe streams, it does not matter once they implement the basic operations we

defined earlier for iterators.

On line 7 we use a parallel_for construct to selected the nodes in parallel. It splits

iterations over active workers and manages the control variables in its header — in this

case, i and rand — by incrementing it accordingly to the current worker. (This is the

reason we require indexed iterators.) Since there is no dependency between iterations, the

algorithm works fine by choosing probabilistically all nodes that are currently deselected.

Throughout the algorithm — on lines 9 and 16 — we count the number of deselected

nodes before and selected nodes after its execution. What remains are removed vertices.

In the end, on line 20 and 21, we return 0 if all nodes are already removed — this signals

make_mis_par to stop — or the number of vertices that remain deselected plus one.

As seen, this implementation of select_par may lead active workers to receive non-

useful work to perform, splitting the useful work to an increasingly smaller number work-

ers. With this, we enforce a steep ascending curve to the speedup after a certain limit.

Since a number need to be select with probability 1/2σ, a specialization of a more

general selection is used. To choose an element of probability x/y, one chooses a random

number between 1 and y and verifies if it is lesser than x:

141

1 concepts <Integer N>
2 choose_with_probability (N a, N b, N n) -> bool

3 // precondition : a >= N (0)
4 // precondition : b >= N (0)
5 {
6 return (n % b) + N (1) <= a ;
7 }
8

8.5.2 Theoretical Analysis

The analysis of the degenerated algorithm is simple. Since we use parallel generate_par

as a building block, we may consider k calls to it, where k is determined by the selected

numbers at each round. Because this is a degenerated version, we always generate as

many random numbers as there are vertices. Standard Luby’s Method runs in expected

time O(log2 n) (since the expected number of vertices to be selected in step I is 1/2 of the

previous iteration (LUBY, 1986)), our degenerated version runs in time O(n), because of

step I. Therefore, the same considerations about work-optimality and work-efficiency of

generate traced on Chapter 7 hold.

8.5.3 Experiments

Performance is shown in Figure 8.3.

To provide comparison fairness, the same numbers are selected despite a given gener-

ators output. The implementation was written to have irregular scalability: at each step

a worker may have assigned a node already marked as deselected, performing no useful

work. For small P this behavior eliminates node removal operations, but the parallel

performance degrades fast for larger values. For the fixed values we generate and for the

selected input graph, performance loss begins between 6 and 8 workers. When considering

both this irregular scalability and the maximum level of over-estimation the non-secure

PRNGs have the same statistical performance — with larger confidence interval due to

the other non-PRNG operations the algorithm performs — while BBS penalizes execution

because of its integer modulus operations not being mitigated by online generation.

8.6 Randomized Fibonacci

A randomized recursive calculus of 30th Fibonacci term that uses three random num-

bers (before, after and between the recursive calls), multiplies and adds them to the

142

●

●

●

●

●

●

●
● ● ● ● ● ● ● ●

● ●
● ●

● ●
● ● ●

● ●
●

● ●
●

●

3.0e+07

5.0e+07

7.0e+07

9.0e+07

1.1e+08

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

T
im

e
 (

n
s
)

● MaxIndSet/Bbs−Opt

MaxIndSet/Boost−mt19937_64−Eff

MaxIndSet/Boost−rand48_64−Opt

MaxIndSet/Boost−taus88_32−Eff

MaxIndSet/DotMix_64−Det

Figure 8.3: Absolute time execution for Maximal Independent Set: P vs. Time (ns)
for MT19937 (N), BBS (•), Rand48 (�), Taus88 (+), and DotMix (⊠). The respective
colored areas around the points are the confidence interval of 95.45%.

143

recursive sum. We choose this synthetic benchmark because it is also the algorithm of

choice of DotMix in Leiserson et al.’s paper (LEISERSON; SCHARDL; SUKHA, 2012)

to show a weak point of it, namely when the recursion is too deep. It ends being an weak

point for us as well, since the distance of jump is not calculated in constant time, because

although we can calculate how much previous calls will advance the main generator, this

calculus involves computing how many nodes the tree will spawn. This is as much com-

putational work compared to the computation being performed. We use the fast doubling

Fibonacci algorithm to mitigate this cost. This decrease of arithmetical work prevents

the randomized algorithm to be work-optimal.

Fibonacci is almost immune to cache issues due to its almost negligent memory con-

sumption. As in Introsort, the random numbers are also generated “online”, as needed.

8.6.1 Implementation

We first present a sequential implementation of it:

1 concepts <Integer N, PseudoRandomNumberGenerator R>
2 fib_muladd (N n, Ref<R> gen) -> N
3 {
4 if (n < N (2)) return n ;
5 N p = N (next (gen)) * n ;
6 N a = fib_muladd (n - N (1), gen) ;
7 N q = N (next (gen)) * n ;
8 N b = fib_muladd (n - N (2), gen) ;
9 return a + b + p + q ;

10 }
11

This is straightforward from the various instances of Fibonacci codes we presented in the

thesis until this point. The new multiplicative steps are added on lines 5 and 7.

We now try to implement the work-efficient version:

144

1 concepts <Integer N, PseudoRandomNumberGenerator R>
2 fib_muladd_weff (N n, Ref<R> gen) -> N
3 // precondition: n >= N (0)
4 {
5 if (n < N (2)) return n ;
6 N x, y, sum ;
7 sum = N (next (gen)) * n ;
8 R g (gen) ;
9 Auto me = id () ;

10 x = spawn fib_muladd_weff (n - N (1), gen) ;
11 if (me != id ()) {
12 // each non-leaf node spawned generates two random numbers
13 jump (g, twice (nonleaf (n - N (1)))) ;
14 sum = N (next (g)) * n ;
15 y = spawn fib_muladd_weff (n - N (2), g) ;
16 sync ;
17 gen = g ;
18 } else {
19 sum = N (next (gen)) * n ;
20 y = spawn fib_muladd_weff (n - N (2), gen) ;
21 sync ;
22 }
23 return x + y + sum ;
24 }
25

Here, on line 13 we introduce two new functions, twice and nonleaf. Twice just multiplies

an integer by two using fast hardware operations — “shift left”. It requires a binary

integer representation of its abstracted type. On the other hand, nonleaf is an important

function. It calculates the jump distance to update a PRNG according to a sub-branch.

This is done by computing the number of non-leaf nodes that this recursive computation

will spawn. This is as much computational work compared to the computation being

performed.

Function nonleaf is short:

1 concepts <Integer N>
2 nonleaf (N n) -> N
3 { return fibonacci_fast (n + N (1)) - N (1) ; }
4

The problem is fibonacci_fast is the calculus of Fibonacci series all over again. We try

to fake an improvement somehow on our naïve algorithm by using the doubling Fibonacci

algorithm, which we show next. (In what follows, Pair<T, U> is a data structure con-

taining two variables of type T and U respectively; function first (resp. second) returns

the first (resp. second) element of the pair, took as parameter.)

145

1 concepts <Integer N>
2 fibonacci_fast (N n) -> N
3 {
4 if (n < N (2)) return n ;
5 return first (fibonacci_pair (n - N (1))) ;
6 }
7

8 concepts <Integer N>
9 fibonacci_pair (N n) -> Pair<N, N>

10 {
11 if (n == 0) return Pair<N, N> (N (0), N (1)) ;
12 Pair<N, N> ab = fibonacci_pair (half (n)) ;
13 N a = first (ab) ;
14 N b = second (ab) ;
15 N c = a * (2 * b - a) ;
16 N d = (a * a) + (b * b) ;
17 if (even (n)) return Pair<N, N> (c, d) ;
18 return Pair<N, N> (d, c + d) ;
19 }
20

On line 12, function half obtains the integer half of a binary integer using fast “shift

right” operations on the hardware. Still, on line 17, function even tests if a given number

is even through fast bitwise operations rather than the expensive modulus operator.

Let us try to write a work-optimal version of the algorithm:

1 concepts <Integer N, Integer M, PseudoRandomNumberGenerator R>
2 fib_muladd_wopt (N n, Ref<R> gen, M m) -> N
3 // precondition: n >= N (0)
4 // precondition: m >= N (0)
5 {
6 if (n < N (2)) return n ;
7 N x, y, sum ;
8 sum = N (next (gen)) * n ;
9 ++ m ;

10 Auto me = id () ;
11 x = spawn fib_muladd_wopt (n - N (1), gen, m) ;
12 // each non-leaf node spawned generates two random numbers
13 m += twice (nonleaf (n - N (1))) ;
14 if (me != id ()) {
15 R g (basis) ;
16 jump (g, m) ;
17 sum = N (next (g)) * n ;
18 ++ m ;
19 y = spawn fib_muladd_wopt (n - N (2), g, m) ;
20 } else {
21 sum = N (next (gen)) * n ;
22 ++ m ;
23 y = spawn fib_muladd_wopt (n - N (2), gen, m) ;
24 }
25 sync ;
26 return x + y + sum ;
27 }
28

Here we use the same counter technique we used in introsort in order to keep record

of the random numbers already generated, because they are not sequentially generated.

The counter is the variable named m.

This version, as we will argue next, is unable to achieve work-optimality though.

146

8.6.2 Theoretical Analysis

The sequential work it performs is given by the recurrence equation

R(n) =















0 if n = 0

R(n) = R(n− 1) + R(n− 2) + O(1) if n > 0
= O(2n),

Comparing with what is on Section 4.5, we see that this version is equivalent with ver-

sion fa of f2, and, thus, its local clock upper-bound is M = ⌊n/2 + 1⌋. The fast Fi-

bonacci variation we used has complexity O(log2 n). Thus, each successful steal, on the

fib_muladd_weff version, has a cost upper-bounded by

log2 n + δ(log2 n).

Applying Theorem 3 and the approximation Hn ≈ logen + π
2e

+ 1
2n

the total number of

successful steals is

E[V (n)] <
(

logen +
π

2e
+

1
2n

)

· (P − 1) ·
⌊

n

2
+ 1

⌋

· (log2 n + δ(log2 n))

that, for any three variants of δ (linear, logarithmic, and constant), is O(n log2 n). The

overhead in fib_muladd_weff will be then dominated by the clones, one per non-leaf node,

which will follow the sequential work we showed to be O(2n). Therefore, fib_muladd_weff

is work-efficient and, as expected, is not work-optimal because of the number of copies it

performs.

We now analyse fib_muladd_wopt. Each call to nonleaf costs log2 n. However, we

have to call nonleaf regardless if a steal occurred or not. Thus, we call it O(2n) times,

and thus its cost is O(2n log2 n). It is neither work-efficient nor work-optimal, even if the

number of successful steals and jump costs is polylogarithmic. Therefore, we are unable

to turn it into a work-optimal version.

8.6.3 Experiments

Performance is shown in Figure 8.4.

For this algorithm, DotMix is statistically paired with the work-efficient implementa-

tions, although slightly faster for P > 5. Taus88 is nearly always better than MT19937,

147

●

●

●

●

●

●

●

●
●

●
●

● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●

0e+00

1e+08

2e+08

3e+08

4e+08

5e+08

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

P

T
im

e
 (

n
s
)

● Fib/Bbs−Opt

Fib/Boost−mt19937_64−Eff

Fib/Boost−rand48_64−Opt

Fib/Boost−taus88_32−Eff

Fib/DotMix_64−Det

Figure 8.4: Absolute time execution for Fibonacci: P vs. Time (ns) for MT19937 (N),
BBS (•), Rand48 (�), Taus88 (+), and DotMix (⊠). The respective colored areas around
the points are the confidence interval of 95.45%.

148

what reinforces its previous improvements for online algorithms. Rand48 is the best until

P = 25, when it becomes statistically equal to DotMix. For the same range, BBS is the

worst, being statistically equal to MT19937 afterwards.

8.7 Closing Remarks

In this chapter, we analysed how our methods behave as underlying blocks to algo-

rithms. We have analysed it in terms of performance (execution time), complexity and

implementation. It was shown that our techniques were competitive with state-of-the-art

generator DotMix in terms of performance while adding more flexibility to the program-

mer’s options when generating pseudorandom numbers. While we believe to have sound

theoretical foundations, the practice shall be confronted in order to measure real gains.

The algorithms we selected are not front-end applications but instead are mostly found

in programming libraries. We have chosen to build it this way for two reasons: (1) to

follow the state-of-the-art works that evaluate PRNGs, like Leiserson et al. (LEISERSON;

SCHARDL; SUKHA, 2012), and (2) to show that the footprint of our methods is small

enough to fit into tiny primitives, what is somewhat more complex (in performance gain)

than to build it into larger applications. The performance of the Par-R algorithms was

satisfactory in this setting.

149

9 CONCLUSIONS

Overall we comment over what was presented and summarize it, highlighting its main

contributions. We also show the limitations of our work and the frontier on where we

expect it to apply. In both cases, we separate the conclusions on each part and trace

it separately, since we contemplate both contributions as interlinked, but independent.

After, we outline the expected derived contributions to be researched and expanded in

future works. Finally, we trace the concluding remarks of the work.

9.1 Summary, Considerations, and Advancements

We restate that both contributions are derived, but they constitute distinct advances.

Overall, the Par-R scheme is an advance on its own. It uses SIPS underneath, but the

techniques applied are a result of advancement in the field of parallel algorithms. We see

it not as a mere application of SIPS, but an advance whose one of the main components

is the SIPS-based design. There are others, though; e.g., the definition of a standard

sequential API that is generic, the construction as regular objects, etc.

We highlight that despite the fact that we rely on Cilk Plus to implement our designs,

our scheme is not dependent on it. Its coding is simple to be written in another dynamic

multithreaded environment, and the theoretical analysis does not rely on a fixed execu-

tion’s depth. This implies correctness even in the presence of a non-deterministic DAG,

such as those on adaptive algorithms. The programming language does not constrain us.

Although our dialect is based on C++, it uses standard constructions of modern pro-

gramming languages. In Chapter 5, for instance, we construct the polynomial evaluation

algorithm using the Ruby programming language.

9.1.1 Part I, SIPS

We presented a new technique to analyze the number of synchronizations (in terms of

communications) performed during a greedy-scheduled and work-stealing-scheduled par-

allel computation, SIPS. Using it we obtain an expectation on the worst-case bound of

the analyzed algorithms. The classical work on logical clocks by Lamport is the inspir-

ing mechanism for SIPS clocks, whose minimum value ever increases during computation.

With SIPS not only the analysis but also the design of parallel algorithms is improved. Us-

ing the concepts of work-efficient and work-optimal algorithms, one can reason accurately

150

about the overhead the parallelization introduces and how it affects the performance.

SIPS improves the state of the art by making available an analysis of parallel execu-

tions without any reference to the computation’s depth. It allows, thus, the analysis of

computations with a non-deterministic DAG, what was previously performed in an ad

hoc fashion at most. Also, SIPS allows an ever-changing number of workers to partici-

pate in the computation and is capable of bonding communication on both distributed

and shared memory machines. The analysis framework is able to analyze state-of-the-art

work-stealing schedulers with a myriad of strategies for victim selection and workload par-

titioning. On the thesis, we showed detailed analysis for the random choice strategy and

minimum clock strategy. We also showed the correspondent bounding values when the

workload is partitioned one task at a time and when half of the tasks are taken. Through

SIPS, we can reason about the difference in performance from the order of spawning tasks

in the source code, what is usually not addressed in the literature.

Our technique pairs well with adaptive algorithms, especially with processor-oblivious

ones. It can be used straightforward to obtain a bound on the number of times the

primitive extract_par is invoked, and, thus, the actual unfolding of parallelism during the

computation. In combination with work-efficient and work-optimal concepts, it delivers

bounds for the parallel overhead introduced.

9.1.2 Part II, Par-R

We presented a structural design, Par-R, that allows us to write generic PRNGs that

are still efficient in parallel. Par-R has significant performance gains as described in

Chapter7 and measured in Chapter 8. We are competitive against DotMix for off-line

generation algorithms and usually faster with online generation and fast underlying gen-

erators. With our generic scheme, we are able to choose the desired point between quality

and speed of several PRNG. Besides, it is possible to be more efficient than DotMix or

other parallel PRNGs with fixed implementations by selecting underlying PRNGs whose

generated sequence is especially useful for a particular application.

Efficient jump-ahead operations for random number generators are well-known, but

implementations of it are still rare. Mascagni et al. (MASCAGNI, 1997) presented a

review in implementing it with matrix and polynomial methods in 1997, and yet to-

day this fast procedures are missing from most PRNGs we have examined. We already

stated that matrix method has substantial associated constant for Mersenne Twister,

151

yet an efficient implementation based on polynomials (HARAMOTO; MATSUMOTO;

L’ECUYER, 2008) came only recently. If broadly implemented, this would imply in fast

and deterministic random number generators through our methods. The conditions for

efficient jump-ahead operations are not impossible to met in most cases. Several linear

PRNGs offer a regular structure suitable to it, such as Lagged Fibonacci, MRG32k3a, and

Mersenne Twister, although, as mentioned beforehand, large associated constants can pro-

vide efficiency just within largely generated ranges. Other types of generators, however,

are not suited to this, such as Inversive Congruential generators (EICHENAUER; LEHN,

1986).

One primary family of algorithms that benefit from our techniques are graph algo-

rithms, especially graph generation algorithms. The Stanford’s GraphBase (KNUTH,

1993) is full of examples of useful algorithms suitable to Par-R — especially random

graph generators.

9.2 Limitations

In this section, we discuss the frontiers of the work developed in this thesis. There are,

indeed, several open problems and questions. Here, we enlist the limitations. Possible

contours are discussed in next section about future work and research.

9.2.1 Part I, SIPS

SIPS provides a tight expectation on the worst-case number of synchronizations. Al-

though this is useful in the analysis and design, it does not model a typical execution.

Throughout the work, we used SIPS to validate designs mainly in terms of work-efficiency

and optimality. These two definitions are more prone to be used because they are applied

over asymptotics, which is derived from the upper-bound. As seen on Section 5.5, the

precise number of operations approximates well the asymptotics without being too loose.

Our upper-bound is somewhat conservative, as briefly stated on Remark 1 because

we suppose on an idle worker at a time. As enlisted on Subsection 3.1.2, there are more

refined methods of handling it to be less pessimistic. We have a few ideas to approach

it that are described in next section. This impacts directly on the selected benchmarks

designed to show applicability. The use or not of adversaries in the proofs to come to

become closer to the upper bounds is still a subject of discussion and evaluation.

152

Logical clocks are much more general than the focus on work-stealing that the thesis

took. Future work already in progress will feature an important generalization to any par-

allel computation, including shared memory computation, which is usually not addressed

by this kind of techniques and to which SIPS is applicable.

Our meta-programming solution to act on steals is not free of issues when used outside

the generate algorithm. For instance, code grows large when multiple random number

generations are performed within the same recursion node. Also, this could introduce

constant residual overhead from all the required testing. This is problematic — although

not severe —, since it is the standard way to use our techniques upon systems without

support for callback invocation on synchronizations. The mere adoption of current parallel

middleware of this event-based approach would handle it. In this context, we reinforce

that dynamic multithreading environments like Cilk Plus might benefit from the inclusion

of steal callbacks, especially within constructs that profit from the lack of sequential

overhead. We reinforce that Cilk Plus might benefit from the inclusion of steal callbacks,

especially within constructs that profit from the lack of sequential overhead, such as

cilk_for with reducers.

9.2.2 Part II, Par-R

A hybrid solution of Par-R and DotMix is compelling. However, because DotMix

does not have an equivalent to the jump-ahead operation, the linear version becomes

mandatory. In our tests, this approach was more than 10× slower than SFMT, a 128bit

generator. DotMix has internal functions that optimize it further than what is possible

with its public interface. However, maybe there is some optimization inside DotMix to

allow it. We plan to verify it as future work.

Our approach is generic in the sense that a variety of PRNGs may be used, although it

is not suitable for all problems. In Par-R, the number of required random numbers must be

known a priori to the computation. This is a substantial limitation to our method. There

is, however, a range of algorithms that are suited to it besides direct parallel generation,

such as randomized sorts, randomized graph generation, randomized genetic algorithms

(crossing over), etc. Additionally, one may overcome this limitation by guessing large non-

overlapping ranges between the different workers, thus enabling algorithms to not know

exactly how many numbers they will need in runtime, given an upper-bound. Combining

over-estimation and polylog jumps mitigate the overheads largely. This is similar to what

153

is done, for instance, by SFMT (HARAMOTO; MATSUMOTO; L’ECUYER, 2008) and

RNGStreams (L’ECUYER et al., 2002).

Determinism is a primary concern when implementing parallel PRNGs, as we illus-

trated on Remark 3. All the algorithms that use Par-R-based generators are guaranteed

to be deterministic, but only between the parallel versions. The sequential version may

generate a different result. This happens because of the over-estimation we use. It does

not insert considerable overhead — as discussed in Section 8.4 — but it will probably pro-

duce different results from no-over-estimated versions. Other parallel PRNGs (SFMT) do

not even offer this kind of guarantee. DotMix only offer a full-deterministic guarantee (se-

quential and parallel) upon a call to a particular procedure that does insert non-negligent

overhead. Moreover, it fails to the generate asserting proposed at Remark 3, since its fast

internal algorithm does not preserve the state after invocation.

9.3 Future Works and Research

9.3.1 Part I, SIPS

The subject is not exhausted. Ongoing works by the authors explore the distribution

of SIPS clocks. The generalization from different-sized to independent tasks: steals of

different sizes are always independent (may be executed concurrently). Fundamentally,

our upper bound relies on independence, which is stronger and more general than the

condition of having different sizes. It varies from algorithm to algorithm.

We have seen two main strategies of victim selection: minimum SIPS clock and ran-

domized. While the computation progresses faster with minimum clock, there is con-

tention. Future research will approach the mixing of these two strategies. Looking once

again to Figure 3.1, it is prominent that there are lots of unsuccessful steals in the begin-

ning and end of the computation. Once the workers are full, almost every steal attempt is

successful. This suggests that minimum clock is useful “in both ends” while randomized

strategy provides optimal performance “in the middle”.

About the worst case expectation being “loose”, as pointed before, we work on alter-

native ways to be sharper. Currently, we evaluate an alternative based on the isomor-

phism of worker configuration along the rounds and a Markov chain evaluated through

computer-aided simulation to deliver a tighter bound. Yet, adversary-based proofs are

being examined, such as the “Tetris adversary”, which tries to maximize the SIPS in all

154

workers, as the classical game.

Derivate designs we currently evaluate include the notion of partially associative op-

erations. During the thesis, we discovered that the monoid structure generally taken as

pre-requisite to build parallel reduce algorithms can be replaced by a possibly new alge-

braic structure we currently develop. A “partially associative” structure is in sight. There

two right-associative operations can be combined to produce a fully-associative (monoid-

based) computation. The algorithm would process the structure sequentially from left to

right using the first operation. Every time another worker steals a part ahead of it to

be executed in parallel (see adaptive algorithms on Chapter 5), the second operation is

invoked to perform the merge. This “restores the associativity”. The number of times

we call the second operation is a straightforward application of SIPS. This approach is

promising, especially when analyzing current parallel programming trends such as the

Map-Reduce paradigm.

9.3.2 Part II, Par-R

Also, we plan to extend the jump on steals technique to numerical algorithms, such as

transform, accumulate, prefix, and iota. This idea brought along the idea of changing the

paradigm from a reference to a generator to what we convened to call virtual iterators.

These iterators point to a virtual sequence, i.e., to a sequence that is not in memory but

will be generated at each dereference performed. This gives us several possibilities:

1. It allows us to abstract a larger class of generators, such as counter-based, in addition

to the state-based we approached; we see the generator as a virtual infinite sequence

of random numbers that are only addressed.

2. To unify work-efficient and work-optimal algorithms under a single interface, using

a primitive “detach state” to copy the whole generating mechanism or a reference

to it.

3. To apply to different domains, such as numerical algorithms, without modifications

to the interface.

4. Allows “to go back” in the sequence, re-generating the numbers of the position

or caching it, following the complexity of the sequential underlying generator it

generalizes.

5. It allows the programmer to use several libraries of algorithms over iterators that are

already implemented and twist it to a new purpose. For instance, one can use the

155

algorithm accumulate from STL to solve random polynomials if the virtual iterators

are used over a random sequence of numbers.

There are already implementations of some algorithms discussed in this thesis in this

fashion. These implementations are preliminary, but work as expected and maintain

efficiency.

While reviewing counter-based generators, we noticed the use of Feistel networks

within to produce a constant-time generation of random numbers in an arbitrary position

on the random stream. While it has the same constant cost for all implementations, Feis-

tel networks allow faster constant-time generation of the “next” element in the stream,

what was not approached on the original works on the subject. This, combined with the

iterator approach above and adaptive algorithms has a vast potential of spawning a new

family of algorithms, efficient and scalable.

One variation of our technique would be to maintain a constant number of PRNGs per

thread and reuse it (through seed method) at each steal. In our tests this approach resulted

in slightly lesser performance gain (probably due to compiler optimizations on read/write

variables since it might already reuse the PRNG without reading access concurrency),

but it may be useful to transpose the pedigree-hashing approach from DotMix.

9.4 Final Remarks

The overall work is not a front-end, but it is rather a structured deductive approach

to be used in underlying components of applications and their analysis. It does not apply

directly to applications, being useful in the analysis and design of algorithms and as

reusable code in source code libraries.

This thesis also represents a joint effort of a long-lasting partnership between research

groups MOAIS, in France, and GPPD, in Brazil, through the international laboratory

LICIA. The cooperation was fundamental to the development of the work and to surpass

its difficulties. We hope this work will make stronger, long-lasting bonds to reinforce this

relation.

Finally, once this work advances further, we will be able to review and analyze the

algebra of tasks concept once again, as described in Chapter 1.

156

157

Appendices

159

AppendixA EXPANDED BACKGROUND

This appendix expands Chapter 2. The informed reader may skip its parts in confor-

mance to his previous knowledge on the topic. Its contents are aimed at the reader not

familiarized with multithreaded parallel programming and scheduling theory.

A.1 Parallel Machine Architectures

We operate over MIMDs, which is a category in Flynn’s taxonomy. Classical taxonomy

by Michael Flynn (FLYNN, 1972) divides general computer architectures in terms of

their parallel operations in affinity with the Von Neumann model. This may be the very

reason its model became a widespread taxonomy, even for nowadays. Flynn’s classification

consists in four classes:

SISD. It means Single Instruction, Single Data. This is the uniprocessor machine. Ob-

viously, it is not parallel. These are, roughly, the implementations of the Von

Neumann machine.

SIMD. It means Single Instruction, Multiple Data. Synchronized processors apply the

same instructions to different memory addresses. SIMD computers exploit data-

level parallelism. Vector architectures are the largest class of SIMD architectures.

SIMD approaches emerged with a new importance for graphics performance, in the

implementation of General-Pourpose Graphichs Processing Units (GPGPUs). Its

parallel instructions are executed synchronously. The earliest parallel computers,

such as the Illiac IV, MPP, and MasPar MP-1 belonged to this class of machines.

Variants of this concept are used in co-processing units such as the Intel’s MMX

and SSE provides this kind of instruction.

MISD. It means Multiple Instruction, Single Data. Originally, this category is empty.

Currently, there is no commercial processor architecture that follows this model.

MIMD. It means Multiple Instruction, Multiple Data. Autonomous processors, each

with its instruction flows and data scope. Unlike SIMD systems, MIMD systems

are usually asynchronous. The processors can operate at their own pace; there is

no global clock, and there may be no relation between the system times on two

different processors. Unless the programmer imposes some synchronization, even if

the processors are executing exactly the same sequence of instructions, at any given

instant they may be executing different statements.

160

A.2 Parallel Machine Models

We adopted in thesis a general shared-memory model of abstract parallel machine.

However, there are more accurate and widespread models. We discuss two of such models

here: PRAM and LogP.

PRAM is a shared-memory virtual machine where processors work at a fixed pace,

strictly synchronized by a global clock. All processors execute one operation per time

unit — at the same time — and memory access time is equal to zero. The programmer

has available a set of processors as large as needed. This set is not infinite, the processors

cannot be created at runtime. The number must be defined prior to the execution and is

fixed, although it may change between executions with different inputs and be calculated

in function of it.

In PRAM any memory location is accessible to any processor at a given time. Thanks

to it, inconsistencies may arise from simultaneous access in memory. There are no built-in

synchronization primitives and algorithms must enforce correctness in those cases. One

usual way to enforce correctness on memory accesses is to constrain the model regarding

read and write operations to the same memory location:

EREW. Exclusive Read, Exclusive Write. Every memory cell can be read or written to

by only one processor at a time.

CREW. Concurrent Read, Exclusive Write. Multiple processors can read a memory cell,

but only one can write at a time.

ERCW. Exclusive Read, Concurrent Write. Never considered, makes little sense, be-

cause reads are usually innocuous to consistency.

CRCW. Concurrent Read, Concurrent Write. Multiple processors can read and write.

Whenever a conflict violates one constraint a default criterion is applied (e.g., the proces-

sor with the lowest rank performs the operation and the other ones produce a no-operation

instruction.)

PRAM is famous for complexity analysis. In the same way that a theoretical random-

access machine is used by sequential algorithm designers to model algorithmic perfor-

mance, the PRAM is used by parallel-algorithm designers to model parallel algorithmic

performance. Similar to the way in which the sequential model neglects practical issues,

such as access time to cache memory, the PRAM model ignores issues as synchronization

and communication. It is useful to provide proofs of correctness or lower bounds (in time

161

or processors × time).

The LogP machine consists of arbitrarily many processing units with distributed mem-

ory. While PRAM is usually a constrained version of the shared memory model, LogP fits

well with the distributed memory model. The processing units are connected through an

abstract communication medium that allows point-to-point communication. This model

is pair-wise synchronous and overall asynchronous.

The name LogP is not related to the mathematical logarithmic function. Instead, the

virtual machine is described by four parameters:

L = The latency of the communication medium.

o = The overhead of sending and receiving a message.

g = The gap required between two send/receive operations.

P = The number of processing units.

Each local operation on each machine takes the same time — a processor cycle. The

units of the parameters L, o, and g are measured in multiples of processor cycles.

A.3 Parallelization

On Chapter 2 we explained in details the task-based parallelization scheme applied to

the recursive model.

Sequential programs may be divided and re-written into parallel tasks by distinct

(sometimes concurrent) approaches. We cite as non-exhaustive examples (KUMAR,

2002):

Subtask partition. The input is split, each sub-computation is defined as a parallel

task, and their outputs are merged. Both split and merge are separate algorithms

that may or not also spawn their parallel tasks. The partition is usually defined

by the program’s coding logic rather than some distribution property on the in-

put. Parallelization of recursive functions falls into this category. Example: sorting

algorithms.

Linear decomposition. Data is linearly divided, its segments being a basis plus an off-

set. Each segment is a parallel task. Parallelization of loops falls into this category.

Example: brute-force cryptanalysis.

Domain decomposition. The structural shape of data defines the partition scheme. A

parallel task is a coordinate regarding the input data. Parallelization of grid-like

162

data structures falls into this category. Example: mesh refinement algorithms, used

largely for weather forecast and dynamic molecular applications in Physics.

Now we detail two other strategies to parallelization besides recursion: bag-of-tasks

and communicating.

The bag-of-tasks approach decomposes the problem into independent parts, i.e., par-

allel tasks with no sequential dependency. There are several possible entry points: non-

nested function calls; loop with independent iterations; delimited code sections; input

partitions; etc. Bag-of-tasks adds few (if any) constraints to programming. Nonetheless,

it is usually applied to solve simple problems. Some examples are brute-force cryptanal-

ysis, map/reduce algorithms, linear search returning any occurrence.

The communicating approach is similar to bag-of-tasks, except that partial results

must be communicated during the computation. This requires synchronization operations

that, in their turn, insert sequential dependencies. There are various patterns, such as:

Reduction. Tasks compute in parallel operands, and a final n-ary operation combines

them into a single result. Since truly n-ary operations are not implemented in most

processors, a binary associative operation is usually used.

Gather. Tasks compute a partition of the final result.

Two parallel algorithms that profit from this approach are Prefix-Sum (JAJA, 1992)

(calculates all partial sums of an array) and Odd-Even Mergesort (KNUTH, 1998) (par-

allelization of Mergesort where different operations occur in alternate turns according to

the worker’s id being odd or even).

A.4 Middlewares: Libraries and Runtimes

We now survey some modern combined runtime/libraries for high-performance par-

allelism other than the Cilk family we employed in our examples and benchmarks. The

emphasis is on mechanisms to support explicit task parallelism. All are exemplified with

implementations to find the n-th Fibonacci term. The discussed middlewares are standard

implementations in different levels of the “parallel stack” in Figure 2.1.

163

A.4.1 PThreads

“POSIX Threads” (MUELLER, 1993), belonging to the POSIX standard, used to refer

to systems that implement the UNIX OS interface with an arbitrary degree of fidelity. It

is designed for creating and management of OS level threads in the C language. Threads

are usually a “lightweight process” encompassing private register content, machine flags,

a program counter and a stack pointer, among others. The program code, the heap, and

the stack are usually shared between the threads belonging to the same process. One OS

process may have several threads affiliated. Implementing workers as threads allows a

much faster context change than with processes. The implementation is fast, at the cost

of little abstraction that demands management of details. The runtime only translates

lower level primitives in C to the OS’s thread Application Binary Interface (ABI).

PThreads offers three synchronization primitives: barriers (join), mutexes and semaphores.

The scheduling itself is performed by the OS.

We show an example of the calculus of the n-th Fibonacci term on Figure A.1 (cf. the

Fibonacci example in Subsection 1.4.2). This code is written in C. In this listing,

1. On line 1 we have the function signature. PThreads demands that a new thread is

spawned with a running procedure associated. This procedure, however, is required

to receive just one parameter and return one single value of the same type, void*

(“void pointer”). In C, a pointer is a memory address that holds a variable with type

associated and a void pointer is a special type of pointer that points to a variable of

any type. Since C does not have facilities for higher-order functions, when passing

a procedure as parameter this style of raw pointer manipulation is necessary. The

return type must be properly cast by the programmer after the execution. The same

is valid for the manipulation of the arguments inside the function. If more than one

parameter is needed, the argument reference should point to an array of arguments

and the proper cast be made.

2. On line 3, we declare two thread identifiers, t1 and t2. When spawning a new

thread, we have to bind it to an identifier that may be employed to make further

reference to the spawnies of the parent thread.

3. On line 4 we declare the variables that will serve as input and output on the recursive

call.

4. On line 5, since our Fibonacci implementation is over type int, we create an int*

164

named i and assign the address of n to it, telling the compiler that the address of n

shall be interpreted as an int pointer when using i. This is done by type casting the

value of n before the assignment, (int*) n. From now on we access the parameter

and output by verifying the contents of pointer i, through operation *i.

5. On line 6 we test the recursion limit and return the parameter if nothing has to be

done.

6. On lines 7 and 8 we set the parameters to perform the recursive call later.

7. On lines 9 and 10 we spawn child threads as a recursive invocation of fib. This

is done through the primitive pthread_create. We use operator & to extract the

address (as a pointer type) of a variable. It receives as parameter the address of the

thread identifier to be bound (&t1 and &t2), the OS attributes of the thread (we use

default ones by passing a NULL pointer), a pointer to the spawned function (fib)

and a pointer to its arguments (&a and &b). Function pthread_create returns an

int. If this value is different than zero, then an error occurred, and we return a NULL

pointer.

8. On lines 11 and 12 we perform a join, where a given thread waits for the completion

of another one through primitive pthread_join. The first parameter we pass is the

identifier of the thread we want to wait (t1 and t2). The second parameter is the

address to receive the termination value of the thread, which we are not interested

and thus give a NULL value to it. Function pthread_join returns an int. If this

value is different than zero, then an error occurred, and we return a NULL pointer.

9. On line 13 we sum the outputs of the recursive calls on the position pointed by i.

10. On line 14 we return the input void pointer that now has the final value of the

procedure.

The procedure on Figure A.1 shows various implementation details that are better

to be hidden from the programmer. Since we are using a low-level middleware, this

type of thing is usual. We usually use such structures to implement an underlying layer

to higher level libraries or to improve performance. However, we highlight that this

code has no control of granularity and is implemented naïvely, performing too many

redundant calculations, and spawning one OS thread per recursive call. It is just for

syntax demonstration, not meant for performance.

165

1 void* fib (void* n)
2 {
3 pthread_t t1, t2 ;
4 int a, b ;
5 int* i = (int*) n ;
6 if (*i < 2) return n ;
7 a = *i - 1 ;
8 b = *i - 2 ;
9 if (pthread_create (&t1, NULL, fib, &a)) return NULL ;

10 if (pthread_create (&t2, NULL, fib, &b)) return NULL ;
11 if (pthread_join (t1, NULL)) return NULL ;
12 if (pthread_join (t2, NULL)) return NULL ;
13 *i = a + b ;
14 return n ;
15 }
16

Figure A.1: Fibonacci in PThreads (C).

A.4.2 OpenMP

OpenMP (DAGUM; MENON, 1998) is a standard for a collection of higher-level con-

structions for multithreaded programming in C, C++, and Fortran. It is a higher level

abstraction of concepts the uses PThreads underneath. Its workers are mapped to OS

level POSIX threads. Its tasks and constructs are user-level threads scheduled on the top

of its workers.

Its primary approach is to “parallelize” sequential code by informing the compiler what

parts it can parallelize automatically. There is an extensive use of pragma compiler direc-

tives, which are ignored if the compiler does not implement the standard, thus implying

the execution of an elision code. It allows, among others, to partition the code in parallel,

sequential, and critical sections; fork/join style function calls (respectively named task

and taskwait); parallel loop directives, telling the compiler to run each iteration — or set

of repetitions — in parallel (named parallel_for); resources for higher-level functions,

like reduce, implemented on the top of its parallel loops.

OpenMP also provides a library of runtime-querying functions enabling, for instance,

get or set the number of participating workers; and get current worker’s id. Much of the

interaction between the program and the runtime is done through system variables — e.g.,

OMP_NUM_PROCS sets the default number of workers to be used. These values are taken by

default by parallel programs running on a given machine and may be overwritten by the

function mentioned above.

We show an example of the calculus of the n-th Fibonacci term on Figure A.2 (cf. the

Fibonacci example in Subsection 1.4.2). This code is written in C. In this listing,

166

1 int fib (int n)
2 {
3 int a, b ;
4 if (n < 2) return n ;
5 #pragma omp task shared (a)
6 a = fib (n - 1) ;
7 #pragma omp task shared (b)
8 b = fib (n - 2) ;
9 #pragma omp taskswait

10 return a + b ;
11 }
12

Figure A.2: Fibonacci in OpenMP (C).

1. On line 1 we have the function signature. It receives and returns a C integer.

2. On line 3 we declare the variables that will serve as the output of the recursive call,

a and b.

3. On line 4 we test the recursion limit and return the parameter if nothing has to be

done.

4. On lines 5 and 7 we tell the compiler, through a pragma omp directive, that the

next function call shall be treated as a parallel task. It implies that its execution

may be done in another thread, if the scheduler decides for it. The shared(a) (line

5) and shared(b) (line 7) tells the runtime that the variables a and b are shared

between the threads. In here no mutual exclusion mechanism is necessary to keep

consistency since writings on it are only performed by the parent caller.

5. On lines 6 and 8 we spawn child user-level threads as a recursive invocation of fib.

6. On line 9 we perform a join through a taskwait directive, where a given user-level

thread waits for the completion of all spawned threads on the current scope.

7. On line 10 we sum the outputs of the recursive calls and return it.

If the pragma omp clauses/lines are removed from Figure A.2 (on lines 5, 7, and 9)

the resulting code is valid sequential code. This is a useful guarantee since compilers just

ignore unknown pragma clauses.

The scheduling of the user threads/workers on the top of PThreads is left to each

implementation.

We highlight that code on Figure A.2 has no control of granularity and is implemented

naïvely, performing too many redundant calculations, and spawning one OS thread per

recursive call. It is just for syntax demonstration, not meant for performance.

167

A.4.3 Threading Building Blocks

TBB (REINDERS, 2007) is a C++ generic library from Intel that offers data struc-

tures and algorithms (“building blocks”) whose mechanics use multicore parallelism. For

instance, there are constructs for explicit task parallelism, parallel loops, reducer algo-

rithms, thread-safe containers, etc. Beware, though, that the “generic” part of its defi-

nition fails to accomplish full generic programming definition (STEPANOV; MCJONES,

2009). It does type instantiation, as other generic constructs, but lacks, e.g.,

• orthogonality between algorithms and data structures — consider that its parallel

algorithms rely on a range type to work along;

• regularity (assignment, copy construction, and comparison for equivalence) for its

manipulated objects — consider its container implementations.

TBB offers tools for the programmer to manipulate parallel tasks explicitly. Paral-

lelism is not unfolded by keywords, but rather by data structures and algorithms used by

the programmer. A task data structure is provided as a way to encapsulate procedure

calls. These tasks can be manipulated as plain C++ objects within the code. They are

scheduled by ABP work-stealing.

Since it is a pure library, some mechanics that are hidden from the programmer in

Cilk and OpenMP have to be handled directly. For instance, the process of joining two

parallel tasks must be written as a different type of task, called continuation, in order

to inform the runtime that that particular task can be placed outside the local deques,

waiting for their input data to be produced. In Cilk, this process is implicit — it is the

code between the last cilk_spawn and the cilk_sync — and the compiler generates the

correspondent code.

We show an example of the calculus of the n-th Fibonacci term on Figure A.3 (cf. the

Fibonacci example in Subsection 1.4.2). This code is written in C++. In this listing,

1. On line 1 we have the function signature. It receives and returns a C++ integer.

2. On line 3 we declare the variables that will serve as the output of the recursive call,

a and b.

3. On line 4 we test the recursion limit and return the parameter if nothing has to be

done.

4. On line 5 we declare a TBB task_group (that belongs to a named scope called tbb),

which will manage the parallel execution and its interaction with the runtime.

168

1 int fib (int n)
2 {
3 int a, b ;
4 if (n < 2) return n ;
5 tbb::task_group g ;
6 g.run ([&] { a = fib (n - 1) ; }) ;
7 g.run ([&] { b = fib (n - 2) ; }) ;
8 g.wait () ;
9 return a + b ;

10 }
11

Figure A.3: Fibonacci in TBB (C++).

5. On lines 5 and 7 we spawn child user-level threads (tasks). Method run of task

group g expects a functor as the argument, to be run according to the scheduling

policy. This is done through C++11 lambdas, which encapsulate runnable code in

a block delimited by {}, which we use to encapsulate the fib recursive call. Artifact

[&] is a scope delimiter and serves to specify that inside our lambda function if we

refer to any outside variable this will be done by reference. This is used to write to

variables a and b on the current scope from another — potentially remote — scope.

6. On line 8 we perform a join through method wait of task group g, where a given

user-level thread waits for the completion of all spawned threads on the current

scope.

7. On line 9 we sum the outputs of the recursive calls and return it.

Due to its intrusive nature, TBB does not provide elision semantics if its parallel

support is removed. Also, some overheads that could be eliminated in compile-time (like

type deduction and task dependency analysis) are present in runtime.

We highlight that code on Figure A.3 has no control of granularity and is implemented

naïvely, performing too many redundant calculations, and spawning one OS thread per

recursive call. It is just for syntax demonstration, not meant for performance.

A.4.4 Kaapi

Kaapi (GAUTIER; BESSERON; PIGEON, 2007) is a C/C++ framework that allows

one to execute fine/medium grain multithreaded computation with dynamic data flow

synchronizations. It also supports compiler directives in a fashion similar to OpenMP.

Its scheduler also implements a work-stealing algorithm in a help-first fashion (cf. Cilk and

TBB). This scheduler is also implemented in a non-blocking fashion. Kaapi’s scheduler

169

can also run in “cooperative” mode, where concurrent thieves may be able to share its

load.

A Kaapi task is “annotated” with read/write modifiers. Through this explicit way of

indicating dependencies, the runtime calculates the dependency graph as the computation

moves forward. This allows general dependencies to be established, departing from and

generalizing the strict model of Cilk. Whenever the computation follows a strict schema,

the same formal guarantees are provided by the Kaapi runtime.

In Kaapi, a task is completely asynchronous regarding its parent. All reads of shared

data follow the last write over it. Ergo, a task is not ready until all writes over its data

are finished. The parent task has no direct access to its child’s data. Another task must

be the “continuation” that will examine if the dependencies are satisfied. (Thus, like in

TBB, continuations are explicit constructs and must be handled by the programmer.)

The task parallelism in Kaapi relies on two main constructs:

Shared. A generic construct to declare variables and inform the Kaapi runtime its access

patterns (Shared_r for read, Shared_w for write).

Fork. A generic construct that receives a procedure and its parameters and forks it in

the Kaapi runtime.

We show an example of the calculus of the n-th Fibonacci term on Figure A.4 (cf. the

Fibonacci example in Subsection 1.4.2). This code is written in C++. In this listing,

1. From lines 1 to 10 there is the declaration of the main task, fib. Like in TBB no

compiler support is given, and we are unable to use lambdas as well; the code thus

is more verbose. Task fib is declared as a C++ struct, which is equivalent to a

class where all members are defaulted to public access.

2. On line 2, we overload operator parenthesis (operator()) to enable our task to

be run by the framework. This is the standard C++ way (prior to C++11) to

produce functor objects, whose instance may be used to pass method invocation as

parameters. Thanks to it code blocks like { fib f ; f() ; } are valid. The return

value and parameters, however, should be passed by special references provided by

the Kaapi runtime. In this case, while the first parameter int n is regular C++,

the second parameter, Shared_w<int> result (scoped on the ka namespace) is a

special type that gives write access to other tasks and whose basic type is an int,

specified through C++ template mechanism.

3. On line 4, we declare two other write-access, int-based variables to serve as the

170

results of the subtasks.

4. On line 5, we test for recursive termination and write the value to the output variable

result if it is the case. We have to use member method write provided by the

Shared_w interface.

5. On lines 6 and 7 we use a particular functor from the ka scope named Fork, whose

basis type must be a runnable task. Since we are declaring functor fib, we use

itself as the basis type to emulate a recursive call on the framework. The empty

parenthesis that follows declare the fork variables without binding it to a variable

name (anonymous instance) and calling its default constructor. On the same line,

we invoke overloaded operator() with the parameters of the recursive parallel call.

This corresponds to the second pair of parenthesis on the same line.

6. On line 8 we fork another task, sum to serve as a continuation, being executed only

when the precedent tasks on the same function scope finish. Although sum does not

specify whose tasks it shall wait, we will see that it expects read shared variables

and that we passed write shared variables. Kaapi’s runtime is smart enough to

guarantee that all write operations will be performed on the variables before the

moment they would be read on a sequential execution.

7. From lines 12 to 20 we implement the continuation task sum in the same fashion

we implemented fib. The differences is that sum expects its input arguments on

overloaded operator() as a Shared_r (readable shared type) instead of output

Shared_w we used for the result.

8. On line 18 we write to the results the sum of what we read on the parameters

through methods read and write of the Shared interface.

The code on Figure A.4 was the way to pass elements around prior to C++11, with-

out lambdas and generic facilities. While TBB embraced lambdas and higher level struc-

tures like task_group to eliminate boilerplate code and simplify implementation, Kaapi

followed the OpenMP strategy and adopted pragma-based compiler directives. In Fig-

ure A.5 we show the same fib algorithm, but on the top of a compiler supporting Kaapi

pragmas (cf. Figure A.2). This code is written in C. In this listing,

1. On line 1 we have the function signature. It receives both the input, n, and an

output pointer to an integer, result. We return nothing since Kaapi works over

shared pointers on its scheduling.

2. On line 3 we declare the variables that will serve as the output of the recursive call,

171

1 struct fib {
2 void operator() (int n, ka::Shared_w<int> result)
3 {
4 ka::Shared_w<int> a, b ;
5 if (n < 2) result.write (n) ;
6 ka::Fork<fib> () (n - 1, a) ;
7 ka::Fork<fib> () (n - 2, b) ;
8 ka::Fork<sum> () (result, a, b) ;
9 }

10 } ;
11

12 struct sum {
13 void operator()
14 (ka::Shared_w<int> result
15 , ka::Shared_r<int> a
16 , ka::Shared_r<int> b)
17 {
18 result.write (a.read () + b.read ()) ;
19 }
20 } ;
21

Figure A.4: Fibonacci in Kaapi, structured version (C++).

a and b.

3. On line 4 we test the recursion limit and return the parameter if nothing has to be

done.

4. On lines 5 and 7 we tell the compiler, through a pragma kaapi directive, that the

next function call shall be treated as a parallel task. We specify with the write on

the pragma that the variable between parenthesis has the write access in sharing to

maintain the semantics of sequential execution. In this case, since a and b are input

and output parameters, we specify its address &a and &b to be shared, effectively

passing it by reference.

5. On lines 6 and 8 we spawn child user-level threads as a recursive invocation of fib.

6. On line 9 we perform a join through a sync directive, where a given user-level thread

waits for the completion of all spawned threads on the current scope.

7. On line 10 we sum the outputs of the recursive calls and return it.

As with the previous Fibonacci examples, we highlight that this naïve recursive form

is inefficient.

On its most recent incarnation, XKAAPI, the runtime was embedded with support

for accelerators, like Intel Xeon Phi and GPGPU. Formal guarantees and scheduling of

hybrid CPU/accelerator tasks is still a trend in its development.

172

1 void fib (int n, int* result)
2 {
3 int a, b ;
4 if (n < 2) *result = n ;
5 #pragma kaapi task write(&a)
6 fib (n - 1, &a) ;
7 #pragma kaapi task write(&b)
8 fib (n - 2, &b) ;
9 #pragma kaapi sync

10 *result = a + b ;
11 }
12

Figure A.5: Fibonacci in Kaapi, pragma-annotated version (C).

A.4.5 Message-Passing Interface

MPI (FORUM, 2012) is a standard for message-passing communication on distributed

memory systems using C or Fortran. Given the profusion and depth of its usage, it

is considered a de facto standard. Contrary to previous examples, the parallelism does

not come from a structured way of programming, but rather from concurrent processes

exchanging messages. The programmer builds scheduling and distribution of data in its

program. The worker is a MPI process that, although usually corresponding to an OS

process, may differ between implementations. The scheduling policy of the MPI process,

thus, is also a factor, but usually beyond the control of the programmer.

MPI’s runtime is usually a coarse-grained process manager. Among its functions, it

handles routing messages and allocates MPI processes in physical processes/machines. It

must be properly configured to have both permissions to access machines remotely and

to access network interface locally.

Groups of processes can be interlinked in a “communicator”. A process can query

its communicator for the total number of workers and its (guaranteed to be unique) id

within it. All processes belong to the COMM_WORLD communicator, having a unique integer

id. Communicators can be created by the user and may possess non-integer ids — e.g.,

cartesian coordinates.

The message-passing communication in MPI was initially performed over a LAN, in

the top of POSIX sockets, point-to-point or collectively. The six main primitives are (C

version):

1. Initialize,

MPI_Init (int* argc, char** argv[]).

173

Open a channel to the manager and initialize the data structures going to be used

by the MPI program. Its parameters are references/pointers to the number of

arguments passed by the user and an array of strings containing the arguments

themselves respectively.

2. Finalize,

MPI_Finalize ().

Closes all open channels between executables and managers, de-allocating resources

and freeing the memory.

3. Obtain ID.

MPI_Comm_rank (MPI_Comm comm, int *rank)

Variable rank will contain the unique identifier of the invoking process on the context

of communicator comm.

4. Obtain number of workers.

MPI_Comm_size (MPI_Comm comm, int *size)

Variable size will contain the number of workers in communicator comm.

5. Send.

MPI_Send (void* buf, int count, MPI_Datatype T,

int dest, int tag, MPI_Comm comm).

Sends count values of type T inside buffer buf to the process that is identified by

rank dest at communicator comm, waiting a message tagged with label tag. This

operation is blocking until the middleware copies the buffer’s content. In practice, it

is non-blocking in the vast majority of cases. Since C does not allow us to pass a type

as a parameter we have a special type variable whose type itself is a MPI_Datatype

struct with the size of the corresponding type in that compiler within. The tag is

used to differentiate messages with same content between workers. We highlight that

the rank of a process has only meaning inside a communicator, possibly changing

between different communicators.

6. Receive.

MPI_Recv (void* buf, int count, MPI_Datatype T,

int source, int tag, MPI_Comm comm, MPI_Status status).

Receives up to count values of type T inside buffer buf from the process that is iden-

174

tified by rank source at communicator comm tagged with label tag. This operation

is by default blocking until the message arrives. All equally named attributes have

the same meaning and constraints as in MPI_Send. In order to be more flexible, the

programmer may specify MPI_ANY_SOURCE as source and/or MPI_ANY_TAG as a tag,

to receive messages in a first-in, first-served fashion. An extra parameter, status

of type MPI_Status is added in order to allow the receiver to know some meta-data

on the receive operation. It is especially useful to discover the source and tag when

accepting any message.

Anytime a match between sender and receiver parameters occurs a message is effectively

delivered. Beware, however, that not all parameters must match; only source/destiny,

communicator, and tag suffice. If the other arguments are not matched, then data will

be re-interpreted by the programming language, without any extra guarantees.

With this six primitives, one can model any message-passing parallel program to be

written in MPI. However, there are dozens of others, aiming at programmer’s convenience,

like collective communication (broadcast, gather, etc) and non-blocking communication

(blocking receive, buffered send, etc), primitives for standard parallel operations (reduc-

tion, diffusion, etc), and fine-tuning of the runtime (type support, buffer management,

etc).

On its first incarnation, MPI-1, all MPI processes were created before execution by the

runtime. If there are more processes than machines, then they were distributed through

round-robin. It follows the Single Program, Multiple Data (SPMD) model where an iden-

tical copy of the executable runs on each worker. Disjoint execution control is handled

through testing of the worker’s unique id — named rank. There is no threading support

specified in MPI-1 whatsoever. On its second version, MPI-2, the standard was made

more flexible, adding, among others, support for remote memory operations; support for

parallel Input/Output (IO); support for shared memory systems (e.g., multithreaded pro-

cessors) — workers may be threads, located on the local machine or in others; compliance

levels for multithreaded implementations employing other multithreaded runtimes (e.g.

OpenMP) at the same time (different levels are required because of performance issues).

The main new feature, however, is that MPI-2 supports the dynamic creation of workers

during execution. The programmer may spawn an external MPI binary inside a particu-

lar type of communicator called an “intercommunicator”, used to conciliate dynamically

and statically created workers. The operation is slower than static creation but helps to

organize execution in heterogeneous processing. Also, because any valid binary can be

175

spawned, the paradigm is no longer within the SPMD class.

176

177

REFERENCES

AKRA, M.; BAZZI, L. On the solution of linear recurrence equations. Comput. Optim.
Appl., Kluwer Academic Publishers, Norwell, MA, USA, v. 10, n. 2, p. 195–210, may
1998. ISSN 0926-6003.

AMDAHL, G. M. Validity of the single processor approach to achieving large scale
computing capabilities. In: Proceedings of the April 18-20, 1967, Spring Joint Computer
Conference. New York, NY, USA: ACM, 1967. (AFIPS ’67 (Spring)), p. 483–485.
Available from Internet: <http://doi.acm.org/10.1145/1465482.1465560>.

ARORA, N. S.; BLUMOFE, R. D.; PLAXTON, C. G. Thread scheduling for
multiprogrammed multiprocessors. In: Proc. of SPAA’98. New York, NY, USA: ACM,
1998. p. 119–129. ISBN 0-89791-989-0.

ASANOVIC, K.; BODIK, R.; DEMMEL, J.; KEAVENY, T.; KEUTZER, K.;
KUBIATOWICZ, J.; MORGAN, N.; PATTERSON, D.; SEN, K.; WAWRZYNEK, J.;
WESSEL, D.; YELICK, K. A view of the parallel computing landscape. Commun. ACM,
ACM, New York, NY, USA, v. 52, n. 10, p. 56–67, oct. 2009. ISSN 0001-0782. Available
from Internet: <http://doi.acm.org/10.1145/1562764.1562783>.

AUSTERN, M. H.; TOWLE, R. A.; STEPANOV, A. A. Range partition adaptors: a
mechanism for parallelizing stl. SIGAPP Appl. Comput. Rev., ACM, New York, NY,
USA, v. 4, n. 1, p. 5–6, abr. 1996. ISSN 1559-6915.

BARKER, E.; KELSEY, J. Recommendation for Random Number Generation Using
Deterministic Random Bit Generators. [S.l.], 2012.

BENDER, M. A.; RABIN, M. O. Scheduling cilk multithreaded parallel programs
on processors of different speeds. In: Proceedings of the Twelfth Annual ACM
Symposium on Parallel Algorithms and Architectures. New York, NY, USA:
ACM, 2000. (SPAA ’00), p. 13–21. ISBN 1-58113-185-2. Available from Internet:
<http://doi.acm.org/10.1145/341800.341803>.

BERENBRINK, P.; FRIEDETZKY, T.; GOLDBERG, L. A. The natural work-stealing
algorithm is stable. SIAM J. Comput., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 32, n. 5, p. 1260–1279, may 2003. ISSN 0097-5397. Available
from Internet: <http://dx.doi.org/10.1137/S0097539701399551>.

BERNARD, J.; ROCH, J.-L.; TRAORÉ, D. Processor-oblivious parallel stream
computations. In: PDP’08, 16th Euromicro Int. Conf. on Parallel, Distributed and
Network-Based Processing. Toulouse, France: IEEE Computer Society Press, 2008. p.
72–76.

BLUM, L.; BLUM, M.; SHUB, M. A simple unpredictable pseudo random number
generator. SIAM J. Comput., Society for Industrial and Applied Mathematics,
Philadelphia, PA, USA, v. 15, n. 2, p. 364–383, may 1986. ISSN 0097-5397.

BLUMOFE, R. D. Scheduling multithreaded computations by work stealing. In: 35th
Annual Symposium on Foundations of Computer Science, Santa Fe, New Mexico, USA,
20-22 November 1994. [S.l.: s.n.], 1994. p. 356–368.

http://doi.acm.org/10.1145/1465482.1465560
http://doi.acm.org/10.1145/1562764.1562783
http://doi.acm.org/10.1145/341800.341803
http://dx.doi.org/10.1137/S0097539701399551

178

BLUMOFE, R. D.; LEISERSON, C. E. Scheduling multithreaded computations by work
stealing. J. ACM, v. 46, n. 5, p. 720–748, 1999.

BLUMOFE, R. D.; PAPADOPOULOS, D. Hood: A User-Level Threads Library for
Multiprogrammed Multiprocessors. [S.l.], 1998.

BRENT, R. P. The parallel evaluation of general arithmetic expressions. J. ACM, ACM,
New York, NY, USA, v. 21, n. 2, p. 201–206, abr. 1974. ISSN 0004-5411. Available from
Internet: <http://doi.acm.org/10.1145/321812.321815>.

CAPPELLO, F.; CARON, E.; DAYDE, M.; DESPREZ, F.; JEGOU, Y.; PRIMET,
P.; JEANNOT, E.; LANTERI, S.; LEDUC, J.; MELAB, N.; MORNET, G.;
NAMYST, R.; QUETIER, B.; RICHARD, O. Grid’5000: A large scale and highly
reconfigurable grid experimental testbed. In: Proceedings of the 6th IEEE/ACM
International Workshop on Grid Computing. Washington, DC, USA: IEEE Computer
Society, 2005. (GRID ’05), p. 99–106. ISBN 0-7803-9492-5. Available from Internet:
<http://dx.doi.org/10.1109/GRID.2005.1542730>.

CASANOVA, H.; LEGRAND, A.; ROBERT, Y. Parallel Algorithms. 1st. ed. [S.l.]:
Chapman & Hall/CRC, 2008. ISBN 9781584889458.

CHATTERJEE, S.; GROSSMAN, M.; SBîRLEA, A.; SARKAR, V. Dynamic task
parallelism with a gpu work-stealing runtime system. In: RAJOPADHYE, S.; STROUT,
M. M. (Ed.). Languages and Compilers for Parallel Computing. Springer Berlin
Heidelberg, 2013, (Lecture Notes in Computer Science, v. 7146). p. 203–217. ISBN 978-
3-642-36035-0. Available from Internet: <http://dx.doi.org/10.1007/978-3-642-36036-7_
14>.

CODDINGTON, P. Random number generators for parallel computers. The NHSE
Review, v. 2, 1997.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Introduction to
Algorithms, Third Edition. 3rd. ed. [S.l.]: The MIT Press, 2009. ISBN 0262033844,
9780262033848.

CULLER, D.; KARP, R.; PATTERSON, D.; SAHAY, A.; SCHAUSER, K. E.; SANTOS,
E.; SUBRAMONIAN, R.; EICKEN, T. von. Logp: Towards a realistic model of parallel
computation. SIGPLAN Not., ACM, New York, NY, USA, v. 28, n. 7, p. 1–12, jul. 1993.
ISSN 0362-1340. Available from Internet: <http://doi.acm.org/10.1145/173284.155333>.

CUNG, V. D. C.; DANJEAN, V.; DUMAS, J.-G.; GAUTIER, T.; HUARD, G.;
RAFFIN, B.; RAPINE, C.; ROCH, J.-L.; TRYSTRAM, D. Adaptive and hybrid
algorithms: classification and illustration on triangular system solving. In: DUMAS,
J. (Ed.). Transgressive Computing TC’2006. Granada, Spain: [s.n.], 2006. p. 131–148.
ISBN 84-689-8381-0.

DAGUM, L.; MENON, R. Openmp: An industry-standard api for shared-memory
programming. IEEE Comput. Sci. Eng., IEEE Computer Society Press, Los Alamitos,
CA, USA, v. 5, n. 1, p. 46–55, jan. 1998. ISSN 1070-9924. Available from Internet:
<http://dx.doi.org/10.1109/99.660313>.

http://doi.acm.org/10.1145/321812.321815
http://dx.doi.org/10.1109/GRID.2005.1542730
http://dx.doi.org/10.1007/978-3-642-36036-7_14
http://dx.doi.org/10.1007/978-3-642-36036-7_14
http://doi.acm.org/10.1145/173284.155333
http://dx.doi.org/10.1109/99.660313

179

DIJKSTRA, E. W. Solution of a problem in concurrent programming control. Commun.
ACM, ACM, New York, NY, USA, v. 8, n. 9, p. 569–, sep. 1965. ISSN 0001-0782.
Available from Internet: <http://doi.acm.org/10.1145/365559.365617>.

DIJKSTRA, E. W. A Discipline of Programming. 1st. ed. Upper Saddle River, NJ, USA:
Prentice Hall PTR, 1997. ISBN 013215871X.

EICHENAUER, J.; LEHN, J. A non-linear congruential pseudo random number
generator. Statistische Hefte, Springer-Verlag, Berlin, v. 27, p. 315–326, 1986. ISSN
0932-5026.

ESTRIN, G. Organization of computer systems: The fixed plus variable structure
computer. In: Papers Presented at the May 3-5, 1960, Western Joint IRE-AIEE-ACM
Computer Conference. New York, NY, USA: ACM, 1960. (IRE-AIEE-ACM ’60
(Western)), p. 33–40.

FERREIRA, A.; SCHABANEL, N. A randomized BSP/CGM algorithm for the maximal
independent set problem. Parallel Processing Letters, v. 9, n. 3, p. 411–422, 1999.
Available from Internet: <http://dx.doi.org/10.1142/S0129626499000384>.

FISCHER, G. W.; CARMON, Z.; ARIELY, D.; ZAUBERMAN, G.; L’ECUYER,
P. Good parameters and implementations for combined multiple recursive random
number generators. Oper. Res., INFORMS, Institute for Operations Research and the
Management Sciences (INFORMS), Linthicum, Maryland, USA, v. 47, n. 1, p. 159–164,
jan. 1999. ISSN 0030-364X.

FLYNN, M. J. Some computer organizations and their effectiveness. IEEE Trans.
Comput., IEEE Computer Society, Washington, DC, USA, v. 21, n. 9, p. 948–960, sep.
1972. ISSN 0018-9340. Available from Internet: <http://dx.doi.org/10.1109/TC.1972.
5009071>.

FORUM, M. P. I. MPI: A Message-Passing Interface Standard Version 3.0. 2012.

FOSTER, I.; KESSELMAN, C. The Grid: Blueprint for a New Computing Infrastructure.
[S.l.]: Morgan Kaufmann, 1999.

FRIGO, M.; HALPERN, P.; LEISERSON, C. E.; LEWIN-BERLIN, S. Reducers and
other cilk++ hyperobjects. In: Proc. of SPAA’09. New York, NY, USA: ACM, 2009. p.
79–90. ISBN 978-1-60558-606-9.

FRIGO, M.; LEISERSON, C. E.; PROKOP, H.; RAMACHANDRAN, S. Cache-
oblivious algorithms. In: Proceedings of the 40th Annual Symposium on Foundations
of Computer Science. Washington, DC, USA: IEEE Computer Society, 1999.
(FOCS ’99), p. 285–. ISBN 0-7695-0409-4. Available from Internet: <http:
//dl.acm.org/citation.cfm?id=795665.796479>.

FRIGO, M.; LEISERSON, C. E.; RANDALL, K. H. The implementation of the cilk-5
multithreaded language. In: Proc. of PLDI’98. New York, NY, USA: ACM, 1998. p.
212–223. ISBN 0-89791-987-4.

GAUTIER, T.; BESSERON, X.; PIGEON, L. Kaapi: A thread scheduling runtime
system for data flow computations on cluster of multi-processors. In: Proceedings of the

http://doi.acm.org/10.1145/365559.365617
http://dx.doi.org/10.1142/S0129626499000384
http://dx.doi.org/10.1109/TC.1972.5009071
http://dx.doi.org/10.1109/TC.1972.5009071
http://dl.acm.org/citation.cfm?id=795665.796479
http://dl.acm.org/citation.cfm?id=795665.796479

180

2007 International Workshop on Parallel Symbolic Computation. New York, NY, USA:
ACM, 2007. (PASCO ’07), p. 15–23. ISBN 978-1-59593-741-4. Available from Internet:
<http://doi.acm.org/10.1145/1278177.1278182>.

GRAHAM, R. L. Bounds on multiprocessing timing anomalies. SIAM JOURNAL ON
APPLIED MATHEMATICS, v. 17, n. 2, p. 416–429, 1969.

GUO, Y.; BARIK, R.; RAMAN, R.; SARKAR, V. Work-first and help-first scheduling
policies for async-finish task parallelism. In: Proceedings of the 2009 IEEE International
Symposium on Parallel&Distributed Processing. Washington, DC, USA: IEEE Computer
Society, 2009. (IPDPS ’09), p. 1–12. ISBN 978-1-4244-3751-1. Available from Internet:
<http://dx.doi.org/10.1109/IPDPS.2009.5161079>.

HARAMOTO, H.; MATSUMOTO, M.; L’ECUYER, P. A fast jump ahead algorithm
for linear recurrences in a polynomial space. In: Proc. of SETA’08. Berlin, Heidelberg:
Springer-Verlag, 2008. p. 290–298. ISBN 978-3-540-85911-6.

HARAMOTO, H.; MATSUMOTO, M.; NISHIMURA, T.; PANNETON, F.; L’ECUYER,
P. Efficient jump ahead for f2-linear random number generators. INFORMS J. on
Computing, INFORMS, Institute for Operations Research and the Management Sciences
(INFORMS), Linthicum, Maryland, USA, v. 20, n. 3, p. 385–390, jul. 2008. ISSN
1526-5528.

HERLIHY, M.; SHAVIT, N. The Art of Multiprocessor Programming. San Francisco,
CA, USA: Morgan Kaufmann Publishers Inc., 2008. ISBN 0123705916, 9780123705914.

HOARE, C. A. R. Communicating sequential processes. Commun. ACM, ACM, New
York, NY, USA, v. 21, n. 8, p. 666–677, aug. 1978. ISSN 0001-0782. Available from
Internet: <http://doi.acm.org/10.1145/359576.359585>.

Intel Corporation. Intel Cilk Plus Language Specification. 2013.

JAJA, J. An Introduction to Parallel Algorithms. Redwood City, CA, USA: Addison
Wesley Longman Publishing Co., Inc., 1992. ISBN 0-201-54856-9.

KERNIGHAN, B. W. The C Programming Language. 2nd. ed. [S.l.]: Prentice Hall
Professional Technical Reference, 1988. ISBN 0131103709.

KNUTH, D. E. The art of computer programming, volume 2 (2nd ed.): seminumerical
algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1985.
ISBN 0-201-89684-2.

KNUTH, D. E. The Stanford GraphBase: A Platform for Combinatorial Computing.
New York, NY, USA: ACM, 1993. ISBN 0-201-54275-7.

KNUTH, D. E. The Art of Computer Programming, Volume 1 (3rd Ed.): Fundamental
Algorithms. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
1997. ISBN 0-201-89683-4.

KNUTH, D. E. The art of computer programming, volume 2 (3rd ed.): seminumerical
algorithms. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 1997. ISBN
0201896842. Available from Internet: <http://portal.acm.org/citation.cfm?id=270146>.

http://doi.acm.org/10.1145/1278177.1278182
http://dx.doi.org/10.1109/IPDPS.2009.5161079
http://doi.acm.org/10.1145/359576.359585
http://portal.acm.org/citation.cfm?id=270146

181

KNUTH, D. E. The Art of Computer Programming, Volume 3: (2Nd Ed.) Sorting and
Searching. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.,
1998. ISBN 0-201-89685-0.

KRUSKAL, C. P.; RUDOLPH, L.; SNIR, M. A complexity theory of efficient
parallel algorithms. Theor. Comput. Sci., Elsevier Science Publishers Ltd., Essex,
UK, v. 71, n. 1, p. 95–132, mar. 1990. ISSN 0304-3975. Available from Internet:
<http://dx.doi.org/10.1016/0304-3975(90)90192-K>.

KUMAR, V. Introduction to Parallel Computing. 2nd. ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2002. ISBN 0201648652.

LAMPORT, L. Time, clocks, and the ordering of events in a distributed system.
Commun. ACM, ACM, New York, NY, USA, v. 21, n. 7, p. 558–565, jul. 1978. ISSN
0001-0782. Available from Internet: <http://doi.acm.org/10.1145/359545.359563>.

L’ECUYER, P. Maximally equidistributed combined tausworthe generators. Mathematics
of Computation, v. 65, n. 213, p. 203–213, 1996.

L’ECUYER, P.; SIMARD, R. Testu01: A c library for empirical testing of
random number generators. ACM Trans. Math. Softw., ACM, New York, NY,
USA, v. 33, n. 4, aug. 2007. ISSN 0098-3500. Available from Internet: <http:
//doi.acm.org/10.1145/1268776.1268777>.

L’ECUYER, P.; SIMARD, R. J.; CHEN, E. J.; KELTON, W. D. An object-oriented
random-number package with many long streams and substreams. Operations Research,
v. 50, n. 6, p. 1073–1075, 2002.

LEE, I.-T. A.; BOYD-WICKIZER, S.; HUANG, Z.; LEISERSON, C. E. Using memory
mapping to support cactus stacks in work-stealing runtime systems. In: Proceedings of
the 19th International Conference on Parallel Architectures and Compilation Techniques.
New York, NY, USA: ACM, 2010. (PACT ’10), p. 411–420. ISBN 978-1-4503-0178-7.
Available from Internet: <http://doi.acm.org/10.1145/1854273.1854324>.

LEISERSON, C. E. The cilk++ concurrency platform. In: Proc. of DAC’09. New York,
NY, USA: ACM, 2009. p. 522–527. ISBN 978-1-60558-497-3.

LEISERSON, C. E.; SCHARDL, T. B.; SUKHA, J. Deterministic parallel random-
number generation for dynamic-multithreading platforms. In: Proc. of PPoPP’12. New
York, NY, USA: ACM, 2012. p. 193–204. ISBN 978-1-4503-1160-1.

LIMA, J. V. F.; GAUTIER, T.; MAILLARD, N.; RAFFIN, B. Xkaapi: A
runtime system for data-flow task programming on heterogeneous architectures.
In: Proceedings of the 2013 IEEE 27th International Symposium on Parallel and
Distributed Processing. Washington, DC, USA: IEEE Computer Society, 2013.
(IPDPS ’13), p. 1299–1308. ISBN 978-0-7695-4971-2. Available from Internet:
<http://dx.doi.org/10.1109/IPDPS.2013.66>.

LUBY, M. A simple parallel algorithm for the maximal independent set problem.
SIAM J. Comput., Society for Industrial and Applied Mathematics, Philadelphia, PA,
USA, v. 15, n. 4, p. 1036–1055, nov. 1986. ISSN 0097-5397. Available from Internet:
<http://dx.doi.org/10.1137/0215074>.

http://dx.doi.org/10.1016/0304-3975(90)90192-K
http://doi.acm.org/10.1145/359545.359563
http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1268776.1268777
http://doi.acm.org/10.1145/1854273.1854324
http://dx.doi.org/10.1109/IPDPS.2013.66
http://dx.doi.org/10.1137/0215074

182

MARSAGLIA, G. Xorshift rngs. Journal of Statistical Software, v. 8, n. 14, p. 1–6, 7
2003. ISSN 1548-7660.

MASCAGNI, M. Polynomial Versus Matrix Methods for Leap-ahead in Shift-register
Type Pseudorandom Number Generators. [S.l.]: Institute for Mathematics and its
Applications, University of Minnesota, 1997.

MASCAGNI, M.; SRINIVASAN, A. Algorithm 806: Sprng: a scalable library for
pseudorandom number generation. ACM Trans. Math. Softw., ACM, New York, NY,
USA, v. 26, n. 3, p. 436–461, sep. 2000. ISSN 0098-3500.

MATSUMOTO, M.; NISHIMURA, T. Mersenne twister: a 623-dimensionally
equidistributed uniform pseudo-random number generator. ACM Trans. Model. Comput.
Simul., ACM, New York, NY, USA, v. 8, n. 1, p. 3–30, jan. 1998. ISSN 1049-3301.

MICHAEL, M. M.; VECHEV, M. T.; SARASWAT, V. A. Idempotent work stealing. In:
Proceedings of the 14th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming. New York, NY, USA: ACM, 2009. (PPoPP ’09), p. 45–54. ISBN 978-1-
60558-397-6. Available from Internet: <http://doi.acm.org/10.1145/1504176.1504186>.

MOR, S.; MAILLARD, N. Dynamic workload balancing deques for branch and
bound algorithms in the message passing interface. International Journal on High
Performance Systems Architecture, Inderscience Publishers, Inderscience Publishers,
Geneva, SWITZERLAND, v. 3, n. 2/3, p. 77–86, may 2011. ISSN 1751-6528. Available
from Internet: <http://dx.doi.org/10.1504/IJHPSA.2011.040461>.

MOR, S.; ROCH, J.; MAILLARD, N. Generic deterministic random number
generation in dynamic-multithreaded platforms. In: Euro-Par 2014 Parallel
Processing - 20th International Conference, Porto, Portugal, August 25-29,
2014. Proceedings. [s.n.], 2014. p. 427–438. Available from Internet: <http:
//dx.doi.org/10.1007/978-3-319-09873-9_36>.

MUELLER, F. A library implementation of posix threads under unix. In: In Proceedings
of the USENIX Conference. [S.l.: s.n.], 1993. p. 29–41.

MUSSER, D. R. Introspective sorting and selection algorithms. Softw. Pract. Exper.,
John Wiley & Sons, Inc., New York, NY, USA, v. 27, n. 8, p. 983–993, aug. 1997. ISSN
0038-0644.

PACHECO, P. An Introduction to Parallel Programming. 1st. ed. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2011. ISBN 9780123742605.

PACHECO, P. S. Parallel Programming with MPI. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 1996. ISBN 1-55860-339-5.

PATTERSON, D. A.; HENNESSY, J. L. Computer Organization and Design, Fourth
Edition, Fourth Edition: The Hardware/Software Interface (The Morgan Kaufmann
Series in Computer Architecture and Design). 4th. ed. San Francisco, CA, USA: Morgan
Kaufmann Publishers Inc., 2008. ISBN 0123744938, 9780123744937.

PFISTER, G. F. In Search of Clusters (2Nd Ed.). Upper Saddle River, NJ, USA:
Prentice-Hall, Inc., 1998. ISBN 0-13-899709-8.

http://doi.acm.org/10.1145/1504176.1504186
http://dx.doi.org/10.1504/IJHPSA.2011.040461
http://dx.doi.org/10.1007/978-3-319-09873-9_36
http://dx.doi.org/10.1007/978-3-319-09873-9_36

183

PLAUGER, P.; LEE, M.; MUSSER, D.; STEPANOV, A. A. C++ Standard Template
Library. 1st. ed. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000. ISBN
0134376331.

REINDERS, J. Intel threading building blocks - outfitting C++ for multi-core processor
parallelism. First. Sebastopol, CA, USA: O’Reilly, 2007. I-XXV, 1-303 p. ISBN
978-0-596-51480-8.

ROCH, J.-L. Work complexity analysis of parallel algorithm in a concurrent system using
clocks. 2012. Presentation - Seminar ID. Personal Communication.

SALMON, J. K.; MORAES, M. A.; DROR, R. O.; SHAW, D. E. Parallel random
numbers: as easy as 1, 2, 3. In: Proc. of SC’11. New York, NY, USA: ACM, 2011. p.
16:1–16:12. ISBN 978-1-4503-0771-0.

SCHALLER, R. R. Moore’s law: Past, present, and future. IEEE Spectr., IEEE Press,
Piscataway, NJ, USA, v. 34, n. 6, p. 52–59, jun. 1997. ISSN 0018-9235. Available from
Internet: <http://dx.doi.org/10.1109/6.591665>.

SHUN, J.; BLELLOCH, G. E.; FINEMAN, J. T.; GIBBONS, P. B.; KYROLA, A.;
SIMHADRI, H. V.; TANGWONGSAN, K. Brief announcement: The problem based
benchmark suite. In: Proceedings of the Twenty-fourth Annual ACM Symposium
on Parallelism in Algorithms and Architectures. New York, NY, USA: ACM,
2012. (SPAA ’12), p. 68–70. ISBN 978-1-4503-1213-4. Available from Internet:
<http://doi.acm.org/10.1145/2312005.2312018>.

SHUN, J.; BLELLOCH, G. E.; FINEMAN, J. T.; GIBBONS, P. B. Reducing
contention through priority updates. In: Proceedings of the Twenty-fifth Annual ACM
Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA:
ACM, 2013. (SPAA ’13), p. 152–163. ISBN 978-1-4503-1572-2. Available from Internet:
<http://doi.acm.org/10.1145/2486159.2486189>.

SIMHADRI, H. V.; BLELLOCH, G. E.; FINEMAN, J. T.; GIBBONS, P. B.; KYROLA,
A. Experimental analysis of space-bounded schedulers. In: Proceedings of the 26th
ACM Symposium on Parallelism in Algorithms and Architectures. New York, NY, USA:
ACM, 2014. (SPAA ’14), p. 30–41. ISBN 978-1-4503-2821-0. Available from Internet:
<http://doi.acm.org/10.1145/2612669.2612678>.

STEELE JR., G. L.; LEA, D.; FLOOD, C. H. Fast splittable pseudorandom number
generators. In: Proceedings of the 2014 ACM International Conference on Object
Oriented Programming Systems Languages & Applications. New York, NY, USA:
ACM, 2014. (OOPSLA ’14), p. 453–472. ISBN 978-1-4503-2585-1. Available from
Internet: <http://doi.acm.org/10.1145/2660193.2660195>.

STEELE JR., G. L.; LEA, D.; FLOOD, C. H. Fast splittable pseudorandom number
generators. SIGPLAN Not., ACM, New York, NY, USA, v. 49, n. 10, p. 453–472, oct.
2014. ISSN 0362-1340. Available from Internet: <http://doi.acm.org/10.1145/2714064.
2660195>.

STEPANOV, A.; MCJONES, P. Elements of Programming. 1st. ed. [S.l.]: Addison-Wesley
Professional, 2009. ISBN 032163537X, 9780321635372.

http://dx.doi.org/10.1109/6.591665
http://doi.acm.org/10.1145/2312005.2312018
http://doi.acm.org/10.1145/2486159.2486189
http://doi.acm.org/10.1145/2612669.2612678
http://doi.acm.org/10.1145/2660193.2660195
http://doi.acm.org/10.1145/2714064.2660195
http://doi.acm.org/10.1145/2714064.2660195

184

STEPANOV, A. A.; ROSE, D. E. From Mathematics to Generic Programming. 1st. ed.
[S.l.]: Addison-Wesley Professional, 2014. ISBN 0321942043, 9780321942043.

STROUSTRUP, B. The C++ Programming Language. 3rd. ed. Boston, MA, USA:
Addison-Wesley Longman Publishing Co., Inc., 2000. ISBN 0201700735.

SUKSOMPONG, W. Bounds on Multithreaded Computations by Work Stealing.
Dissertation (Master) — Massachusetts Institute of Technology Department of Electrical
Engineering and Computer Science, Cambridge, Massachusetts, jun. 2014.

TCHIBOUKDJIAN, M.; GAST, N.; TRYSTRAM, D. Decentralized list scheduling.
Annals OR, v. 207, n. 1, p. 237–259, 2013. Available from Internet: <http:
//dx.doi.org/10.1007/s10479-012-1149-7>.

TCHIBOUKDJIAN, M.; GAST, N.; TRYSTRAM, D.; ROCH, J.-L.; BERNARD, J. A
tighter analysis of work stealing. In: CHEONG, O.; CHWA, K.-Y.; PARK, K. (Ed.).
ISAAC (2). [S.l.]: Springer, 2010. (Lecture Notes in Computer Science, v. 6507), p.
291–302. ISBN 978-3-642-17513-8.

TRAORÉ, D. Self-adaptive parallel algorithms and applications. Thesis (Theses) —
Institut National Polytechnique de Grenoble - INPG, dec. 2008. Available from Internet:
<https://tel.archives-ouvertes.fr/tel-00353274>.

TRAORÉ, D.; ROCH, J.-L.; MAILLARD, N.; GAUTIER, T.; BERNARD, J. Deque-free
work-optimal parallel stl algorithms. In: Proc. of Euro-Par’08. Berlin, Heidelberg:
Springer-Verlag, 2008. p. 887–897. ISBN 978-3-540-85450-0. Available from Internet:
<http://dx.doi.org/10.1007/978-3-540-85451-7_95>.

http://dx.doi.org/10.1007/s10479-012-1149-7
http://dx.doi.org/10.1007/s10479-012-1149-7
https://tel.archives-ouvertes.fr/tel-00353274
http://dx.doi.org/10.1007/978-3-540-85451-7_95

	Contents
	List of Figures
	Abstract
	1 Introduction
	1.1 A Brief Survey on Parallel Programming Trends
	1.2 Part I - The Tools of Analysis: Synchronizations in Greedy Scheduled and Work-Stealing Scheduled Parallel Algorithms
	1.2.1 Motivation
	1.2.2 Contributions

	1.3 Part II - The Product of Practice: Applications to Parallel Pseudorandom Number Generation
	1.3.1 Motivation
	1.3.2 Contributions

	1.4 Outline, Conventions, and Principles
	1.4.1 Outline
	1.4.2 Conventions
	1.4.3 Principles

	1.5 Institutional
	1.6 Closing Remarks

	2 Background
	2.1 Underlying Machines
	2.1.1 Parallel Machine Architectures
	2.1.2 Parallel Machine Models

	2.2 Foundations of Parallel Programming
	2.2.1 Parallel Execution Model
	2.2.2 Scheduling

	2.3 The Art of Writing Parallel Programs
	2.3.1 Parallelization
	2.3.2 Middlewares: Libraries and Runtimes

	2.4 Closing Remarks

	3 State Of The Art
	3.1 Analysis of Parallel Algorithms
	3.1.1 The Analysis of Work-Stealing Schedulers
	3.1.2 Potential Function Analysis
	3.1.3 Implementation of Work-Stealing Schedulers
	3.1.4 Lamport's Logical Clocks
	3.1.5 Current Trends on Analysis

	3.2 Parallel Pseudorandom Number Generation
	3.2.1 State-based PRNGs
	3.2.2 Counter-based PRNGs
	3.2.3 Deterministic Parallel Runtime
	3.2.4 Current Trends

	3.3 Closing Remarks

	I The Tools of Analysis: Synchronizations in Greedy Scheduled and Work-Stealing Scheduled Parallel Algorithms
	4 SIPS
	4.1 Definitions
	4.2 The Minimum Clock Strategy
	4.3 The Random Selection Strategy
	4.4 Workload Partition Schemes
	4.5 Asymmetrical Parallelism
	4.6 Work-Efficiency and Work-Optimality
	4.7 Closing Remarks

	5 Case Study: Adaptive Algorithms and Polynomial Evaluation Schemes
	5.1 Definition of Adaptive Algorithms
	5.2 Components and Organization of Adaptive Algorithms
	5.3 A Simplified Approach
	5.4 An Adaptive Polynomial Evaluation Scheme and Its Analysis
	5.5 Simulations
	5.6 Closing Remarks

	II The Product of Practice: Applications to Parallel Pseudorandom Number Generation
	6 A Parallel API for Sequential Pseudorandom Number Generators – Par-R
	6.1 Preliminary Definitions
	6.2 Primary Operations
	6.2.1 Next
	6.2.2 Generate
	6.2.3 Jump

	6.3 Secondary Operations
	6.3.1 Constructor/Seed/Reseed
	6.3.2 Copy/Assignment

	6.4 Closing Ramarks

	7 Design and Analysis Of An Adaptive Generation Algorithm
	7.1 The Naïve Version
	7.2 The Work-Efficient Version
	7.3 The Work-Optimal Version
	7.4 Closing Remarks

	8 Algorithms & Benchmarks
	8.1 Environment and Runtime
	8.2 Evaluation
	8.3 Generate
	8.3.1 Implementation
	8.3.2 Theoretical Analysis
	8.3.3 Experimental Results

	8.4 Introspective Sort
	8.4.1 Implementation
	8.4.2 Theoretical Analysis
	8.4.3 Experiments

	8.5 Maximal Independent Set: Luby's Method
	8.5.1 Implementation
	8.5.2 Theoretical Analysis
	8.5.3 Experiments

	8.6 Randomized Fibonacci
	8.6.1 Implementation
	8.6.2 Theoretical Analysis
	8.6.3 Experiments

	8.7 Closing Remarks

	9 Conclusions
	9.1 Summary, Considerations, and Advancements
	9.1.1 Part I, SIPS
	9.1.2 Part II, Par-R

	9.2 Limitations
	9.2.1 Part I, SIPS
	9.2.2 Part II, Par-R

	9.3 Future Works and Research
	9.3.1 Part I, SIPS
	9.3.2 Part II, Par-R

	9.4 Final Remarks

	Appendices
	AppendixA Expanded Background
	A.1 Parallel Machine Architectures
	A.2 Parallel Machine Models
	A.3 Parallelization
	A.4 Middlewares: Libraries and Runtimes
	A.4.1 PThreads
	A.4.2 OpenMP
	A.4.3 Threading Building Blocks
	A.4.4 Kaapi
	A.4.5 Message-Passing Interface

	References

