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In this work we present a simple model for the kinetics of agglomeration and aggregation 
of colloidal particles. We consider that particles agglomerate rapidly and endothermically 
forming oligomers. These oligomers can, in turn, aggregate irreversibly, in a process that leads 
to the destabilization of the colloidal system. As these two processes have very different relative 
energy activations, they occur in different time-scales: the first step is faster and reaches a state 
of quasi‑equilibrium. Because of this, the enthalpy change during the agglomeration can be 
experimentally determined through the variable temperature multiple light scattering (VTMLS) 
method. Interestingly, this value is related to the relative kinetic stability of the system and can be 
used to evaluate the stability of new colloidal compositions. Our results are in qualitative agreement 
with experimental data of low concentration colloidal dispersions consisted of polymer particles 
and/or surfactant-coated particles.
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Introduction

Colloidal dispersions are composed of microscopic 
solids suspended in a fluid. These systems occur naturally 
in many situations in biological processes and have an 
ever growing importance in many realms of technology 
and science, be it as drug carriers, paints and inks, self-
assembling structures, or model systems for the study of 
collective behavior of crystal, glasses and gels.1-5

Colloidal systems are, however, inherently thermo
dynamically unstable due to surface effects, as a single 
solid phase would have lower energy. Yet it is possible for 
these systems to be kinetically stable, depending on its 
lifetime. The control of such stability is of great importance 
in the development of colloidal dispersions for therapeutic 
uses.6-13 A better understanding of the kinetics involved in 
the mechanisms of instability has been the aim of several 
studies since the early works from Smoluchowski14 up to 
more recent and thorough approaches, which consider the 
influence of the secondary interaction energy minimum15,16 
a key feature for self-assembling systems.

As the analysis of colloids kinetics is a vast and complex 
subject, the many numerical, theoretical and computational 
studies of colloids kinetics found in the literature give 
valuable insight on the process and precise results, but 
are unfortunately not readily suitable for the prediction of 
colloidal stability, a necessary endeavour.

Though nanotechnology has been used as a strategy to 
control size distribution of colloidal dispersions granting 
them increased physical stability, the development of 
methods for rapid and non-destructive evaluation of 
this stability remains a challenge for applied material 
sciences. In this context, variable temperature multiple light 
scattering (VTMLS) has been recently proposed as a novel 
method for the rapid determination of the relative stability 
of colloidal dispersions. Experimentally, the VTMLS 
approaches subject dispersions of polymer particles and/or 
surfactant-coated particles of low concentration to thermal 
stress and measure the intensity of backscattered radiation.1

Considering some assumptions about the kinetics of 
the destabilization process, the VTMLS analysis makes 
use of classical thermodynamics to study a system far from 
equilibrium. Formally, such treatment is inadequate, yet 
stability predicted in this manner has excellent agreement 
with experimental data.1,17 In this work we assess the 
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validity of the assumptions made in the VTMLS analysis 
by modelling the kinetics of the phenomena and solving 
numerically the kinetics equations thus obtained.

The remaining of this paper is structured as follows: 
in the Methodology section, the theoretical bases for the 
VTMLS are briefly exposed and the kinetic model defined; 
in Results and Discussions, we present the simulation 
results and relate them to the experimental results; and in 
Conclusions we summarise our findings.

Methodology

Theoretical thermodynamical basis and VTMLS analysis

In the VTMLS analysis it is assumed that the 
destabilization of a colloidal dispersion occurs via a two-
step mechanism, illustrated in Figure 1. First the dispersed 
particles can agglomerate endothermically and reversibly 
by desorption of some surfactant micelles, forming larger 
agglomerates. The second and final step is the irreversible 
aggregation of the particles leading to coalescence of the 
larger agglomerates, destroying the colloidal dispersion. 
We emphasise that, according to the International Union of 
Pure and Applied Chemistry (IUPAC), the agglomeration 
process is a reversible process in which the particles 
assemble through weak interactions rather than remaining 
isolated, whereas aggregation is the irreversible process 
that leads to phase separation.18

The main idea in the process is that, as two moieties 
come upon contact, energy is absorbed at the first step, 
breaking the weak forces between the surfactant micelles 
and the particles, leading to an intermediate state (oligomer) 
of higher energy. Part of the energy absorbed is then used 
to overcome the activation energy of the second step. Thus, 
systems with higher values of enthalpy change (ΔH) during 
agglomeration can aggregate faster (due to a lower energy 

barrier), i.e., have lower kinetic stability. Therefore the 
enthalpic gain in the first step can be used as an indicative 
of stability for colloidal dispersions. Figure 2 shows an 
enthalpy diagram for the process.

A secondary interaction minimum, as depicted in 
Figure 2, is an extremely important characteristic in colloidal 
systems, both for thermodynamic properties in self-assembly 
systems (such as gel-forming colloids) and for the kinetics 
involved.2-5,19 The role of this secondary minimum is also 
more important for interacting particles of greater size.15

The method postulates that the activation energy 
in the second step is much higher than in the first step. 
Therefore, the first step is orders of magnitude faster than 
the second step and, consequently, it can be assumed that a 
state of thermodynamic quasi-equilibrium can be reached, 
justifying an analysis through classical thermodynamics.

The classical model of indefinite self-association20 
can be used to elucidate the thermodynamics of this 
equilibrium, as explained below. In this approach, a 
dispersed particle, i.e., a monomer (A1) can agglomerate 
with another monomer forming a dimer (A2), which can 
in its turn agglomerate with another monomer, and so on, 
forming oligomers. This can be represented by Scheme 1:

If the energy change in each of these equilibriums is 
of similar value, it is reasonable to assume the equilibrium 

Figure 1. Illustrative model of the process in aqueous solution. First are 
depicted the nanosphere monomers (in grey) coated with surfactant. After 
the first-step agglomeration process oligomers are formed (shown by the 
dashed line) and some of the surfactant is released. After the second-step 
aggregation process the oligomers are more closely (and irreversibly) 
bound and have an even smaller surfactant shell. After this point, the 
aggregates can flocculate or sedimentate, depending on the density of the 
solid and fluid phase difference (adapted from reference 1).

Figure 2. Diagram of the enthalpy as a function of the reaction coordinate 
of the process. EAD is the activation energy for the agglomeration process 
in the first step; EAI is the activation energy for the inverse reaction; EAC 
is the activation energy for the irreversible aggregation (coalescence) and 
ΔH is the enthalpy change in the first step.

Scheme 1.
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constant has the same value for all of them (EK model). The 
concentration of each oligomer ([Ai]) is then related to the 
equilibrium constant (K) by equation 1. As the temperature 
influences the value of the equilibrium constant, it will 
consequently change the concentration profile of oligomers.
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We now define two quantities. The first one is the 
total concentration of primary particles (CT) which takes 
into account all primary particles, whether agglomerated 
or not (equation 2) and the numerical concentration 
(CN) which is the total concentration of agglomerates  
(equation 3).
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The ratio of CN and CT gives us the osmotic coefficient 
(ϕ’).20 If K[A1] < 1, it is possible to express ϕ’ as equation 4.
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An increase in temperature leads to an increase in the 
value of K, which in turn causes a decrease of ϕ’. For small 
changes of CN there is an approximately linear relation 
between ln CN and ln K:

ln ln
N

K C∝− 	 (5)

The well-known van’t Hoff equation (equation 6) shows 
the relation of the equilibrium thermodynamic constant 
with temperature (T):
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where R is the perfect gas constant. By definite integration 
between two temperatures, T1 and T2, equation 6 yields 
equation 7:
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Combining equation 5 and 7 we may write equation 8:
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where A is a positive proportionality constant.
In a multiple light scattering analysis the backscattering 

signal (BS) is related to the differences in the refractive 
indices and to the photon transport length in the medium (l*), 
which is dependent on the particle volume fraction (ϕ) and 
the particle size of the dispersed phase (d):20,21
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where Qs is the scattering efficiency factor and g is the 
asymmetry factor. Considering that l* ~ CN

-1/3, and therefore 
BS ~ CN

1/6, it is then possible to combine equations 4, 8 and 
9 to relate the backscattering signal to enthalpy changes in 
the agglomeration, as shown in equation 10:
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Experimentally, the VTMLS analysis evaluates the 
relative stability of colloidal dispersions by measuring the 
BS of samples subjected to a constant thermal gradient: 
the samples are heated from 296 to 323 K in 1 h. Even 
though it is not possible to determine the exact value of 
ΔH, it is possible to determine the value of A’ΔH and to 
compare its value for several formulations. It was found, 
as confirmed by the ageing test, that formulations where 
these values are higher are the less stable, as shown in 
Figure 3.

Figure 3. Nanocapsule dispersions after 150 days of storage and A’ΔH 
values obtained by VTMLS analysis. As can be seen, more stable 
dispersions have lower values of A’ΔH (adapted from reference 1).
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It is important to remark that this approach is 
only possible by assuming that the agglomeration is 
sufficiently faster than the aggregation, achieving a state 
of quasi‑equilibrium. To evaluate the validity of the 
assumptions presented we have studied numerically the 
kinetics of the process.

Kinetic modeling

For the thermodynamic approach it is immaterial the 
exact process that leads to the formation of the oligomers 
(Scheme 1), but to study the kinetics of the process it is 
necessary. Our approach makes no distinction between the 
processes that lead to the formation of oligomers, in this 
sense it is more general than the indefinite aggregation model 
discussed above, but does not lead to analytical expressions 
for CN, CT, and ϕ’. In order to study the kinetics of the system 
it is necessary to evaluate the time evolution of the oligomer 
concentration and to consider the mechanism of oligomer 
formation. This can be represented by Scheme 2:

where kα
(i,j) represents the kinetic constant for the direct 

(α = D) and inverse (α = I) reactions of i-mers and j-mers 
forming (i + j)-mers.

Using Newton’s notation for time derivatives and the 
Kronecker delta (δij), the kinetic equations to describe 
these processes involving monomers and dimers are the 
following:
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and successively for higher order oligomers.
Such equations cannot be solved analytically and 

must be solved numerically. Due to the complexity of 
such equations some approximations must be made. 
First of all, numerical methods require a finite number 
of equations and parameters. Therefore, we arbitrarily 
truncate the system: the highest order oligomer that can be 
formed is the octamer; the binary collision of two entities 
(oligomers and/or monomers) may lead to the formation 
of a higher order oligomer; as this process is reversible, 
all oligomers may be broken, leading to the formation of 
two smaller entities; the direct kinetic constant (kD) has the 

same value for every direct reaction and likewise for the 
inverse reactions (kI); the thermodynamic constant of the 
agglomeration equilibria is calculated by the ration of the 
kinetic constants, i.e., K = kD / kI.

In order to fully represent the real system, the 
irreversible coalescence must be taken into account. Thus, 
every oligomer can coalesce irreversibly. As is observed 
experimentally, once formed, aggregates either coalesce 
or flocculate, depending on their density, leading to 
phase separation. Because of this we can expect that the 
aggregates will not be appreciably available to interact 
with agglomerates acting as a new “aggregation site”. 
Therefore, we choose not to consider reactions of the type 
Ai + A0  A0. With these considerations the process can be 
summarised by Scheme 3 rather than Scheme 2:

where A0 denotes the oligomers that have aggregated 
irreversibly, making no distinction of which oligomers 
coalesced. As larger oligomers are more likely to aggregate 
irreversibly, kC should, strictly speaking, take this into 
account. As we limit our systems to the formation of 
oligomers, we simplify this situation and consider that 
the kinetic constant for this process is the same for every 
oligomer.

We remark that as aggregation takes place, the number 
of species that may undergo the reversible agglomeration 
diminishes and CT is not constant. Because of this, we do 
not limit our model to the early stage approximation.15

Equation 11 becomes:
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The temperature-dependence of the system is accounted 
for in the calculation of the kinetic constants. An effective 
kinetic constant takes into account both the dynamics of 
particle diffusion and chemical kinetics.2,3 We consider 
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that for systems such as the ones studied through the 
VTMLS analysis1 the diffusion rate is not dominant and 
that agglomeration rate is determined essentially by the 
surfactant rearrangement, in agreement with the experimental 
observation that agglomeration is an endothermic process.1

We can also argue that the diffusion contribution to 
kinetics takes a similar exponential form. As shown by 
Behrens and Borkovec,15 the rate of particles interacting 
through a particle pair potential u(r) leads to a Fuchs 
integral expression:
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where rS is the position of the secondary minimum and D(r) 
is the relative pair diffusion coefficient. If we consider that 
for our systems the secondary minimum is very narrow, 
we can treat it as a negative delta-function at r = rS. This 
ultimately leads to
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Under these considerations, the effective kinetics 
constants are determined by an Arrhenius-like equation 
(equation 15).
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where A is the Arrhenius pre-exponential factor and EAi is 
the activation energy for the direct agglomeration (i = D), 
inverse agglomeration (i = I) and coalescence (i = C).

Since it is not the aim of this work to reproduce the 
VTMLS experimental results quantitatively and given 
the high number of variables involved, we make use of 
reduced units: we consider the perfect gas constant and 
the Arrhenius pre-exponential factors to be equal to unity.

The relative activation energies for the process are 
defined as follows: EAD = 1 + ΔH; EAI = 1 and EAC = 12 − ΔH, 
as can be qualitatively seen in Figure 2. Preliminary analysis 
with different values for these parameters yielded the same 
trend of results (not shown).

The activation energies are dependent on the 
enthalpy change occurring in the agglomeration process. 
Experimentally, this quantity assumes different values, 
according with the dispersion of the colloidal dispersion. 
To study systems with different stabilities we performed 
calculations using five different values of ΔH: 0.4, 0.6, 0.8, 
1.0 and 1.2 (in reduced units).

The kinetic equations were solved numerically using 
the fourth-order Runge-Kutta method, using a time step of 
1.5 × 10-4 time units, according to the following procedure: 
initially the system is composed only of monomers 
([A1] = 0.75 a.u.) and is kept at unit temperature (T = 1) for 
30 time units. The system is then heated 0.05 a.u. and kept 
in this temperature for 15 time units. This is done until the 
temperature reaches the value of 1.20 a.u. (T = 1.20). At 
this point, the system is cooled to its starting temperature, 
the temperature being reduced in 0.05 a.u. every 15 time 
units. This is done twice in order to investigate hysteresis. 
The system is heated to 120% of its starting temperature 
(and not 110%, as is done experimentally1) to evaluate 
the effect of thermal stress. The time evolution of the 
concentration of each oligomer, monomer and coalesced 
material is recorded for analysis.

Analysis is performed with the concentration profile of 
oligomers as a function of time for systems with different 
values of ΔH and with the numerical concentration of 
oligomers as a function of inverse temperature (analogously 
to the experimental VTMLS analysis). 

Results and Discussion

We present here the numerical calculation results. To 
better show the influence of the ΔH parameter, the profile 
of the concentration of oligomers vs. time for two systems 
(ΔH = 0.4 and 1.2) is presented in Figure 4. 

It can be seen in Figure 4 that the systems are initially 
composed only of monomers. This is not an equilibrium 
state as indicated by the very negative value of [A1] slope. 
Agglomeration happens and the concentration profile 
changes quickly, with the consumption of monomers and 
formation of oligomers. In very short times a stationary 
state is reached, characterised by [

•
Ai] ≅ 0, for 1 ≤ i ≤ 8. 

Systems with intermediate values of ΔH showed analogous 
results, with increasing ΔH value leading to an increase in 
the amount of coalesced material (not shown).

When the system is disturbed by changes in temperature 
it responds, changing the profile of the concentration of 
oligomers in solution. However, it can be seen that this 
happens very quickly and a new stationary state is obtained. 
The systems are majorly composed of monomers at every 
temperature, but as agglomeration is an endothermic 
process, the monomer concentration decreases with the 
increase of temperature. The effect is that CN follows the 
same trend as [A1], since this is the species present in 
greatest concentration.

The rate of coalescence can be measured by the 
first time-derivative of A0, from Figure 4. It can be seen 
from Figure 4c and d, coalescence rates vary greatly: in 
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low temperatures the coalescence stops almost entirely, 
accelerating with increasing temperature.

Comparing the systems with different enthalpy change 
values, we note that the system with lower ΔH is less 
affected by temperature and higher order oligomers are 
present in smaller concentrations. Consequently, it results 
in a slower coalescence due to two factors: first, there 
is a small concentration of oligomers that can undergo 
irreversible aggregation. And secondly, it is less likely 
that these oligomers will aggregate because the system 
with lower ΔH has a higher EAC. Therefore formulations 
with smaller enthalpy changes are indeed expected to have 
greater kinetic stability.

To make a qualitative comparison of these results 
with the ones obtained experimentally, we plot ln CN as 
a function of inverse temperature, shown in Figure 5, to 
determine the value of A’ΔH (see equation 8, which is 
analogous to equation 10), used in the VTMLS analysis.

Systems with higher values of enthalpy changes present 
higher hysteresis heating/cooling cycles. Thus, these 
systems have lower kinetic stability, because the observed 
hysteresis is caused by the irreversible aggregation. A 
linear regression is made from data consisting of the first 
heating of the system up to 110% of its initial temperature, 
which is the numerical equivalent of what is performed 
experimentally in the VTMLS analysis using backscatter 
intensity. The slope obtained by this linear regression is 
numerically equal to A’ΔH, which is the parameter used 

to compare relative stabilities experimentally. These results 
are shown in Table 1.

Figure 4. Time evolution of monomer and oligomer concentration and of coalesced matter. (a) System with ΔH = 0.4 and (b) system with ΔH = 1.2. In 
(c) and (d) the respective regions of low-concentration are shown for better visualization.
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0.6 and 0.4. Each point denotes the numerical result and the dotted lines 
are guides to show hysteresis. These data are analogous to the VTMLS 
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Table 1. A’ΔH values for the different systems simulated

ΔH A’ΔH

0.4 0.08773

0.6 0.11978

0.8 0.14465

1.0 0.16268

1.2 0.17438
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From the data in Table 1 we can see that the least stable 
systems are indeed the ones with higher values of A’ΔH. 
It can also be seen that A’ is not constant among different 
systems. In our numerical simulations this is explained 
by the simplification that there is an approximately linear 
relation between ln CN and ln K (see equation 5). These 
quantities were calculated through equation 4 for the 
simulated systems and the results are presented in Figure 6. 
From Figure 6 it is straightforward to conclude that this 
approximation is valid for our systems, but indeed the value 
of the proportionality constant employed (A’) is expected to 
vary. Nevertheless, a monotonic relation between ΔH and 
A’ΔH (and between ln CN and ln K) is always maintained, 
therefore justifying the use of VTMLS method as predictive 
of the stability ranking.

Lastly, we must consider that in these numerical 
simulations we truncated the formation of a higher 
order oligomer, the octamer, while in the indefinite self-
association model employed to explain the thermodynamics 
of agglomeration can continue indefinitely. It is possible 
to evaluate the relative error associated with this because 
there is an analytical expression for CN value expected for 

the indefinite agglomeration, which is given by 
2
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x
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where x = K[A1]. 

It is found that for every system under consideration 
Erel  < 0.025%. This indicates that there is no need to 
consider the formation of higher order agglomerates. 

Conclusions

In order to investigate the validity of the thermodynamic 
analysis on which the VTMLS, a novel technique that 
allows rapid and non-destructive evaluation of the relative 
stability of colloidal dispersions, is based, we have 
modeled the kinetics involved. We have developed a simple 
model for kinetic reversible agglomeration followed by 
irreversible aggregation of colloidal particles, particularly 
for polymer particles and/or surfactant-coated particles at 
low concentrations. Given the qualitative agreement of our 
calculations with data obtained experimentally, our model 
suggests that the mechanism through which colloidal 
particles become unstable occurs in two steps. In the first 
step, particles agglomerate rapidly and endothermically (a 
reversible step), forming oligomers. In a second step the 
particles aggregate irreversibly, in a much slower process. 
Because these processes occur in different time scales, it is 
possible for the system to reach a quasi-equilibrium state 
with respect to the first process and therefore study the 
oligomer distribution through a classical thermodynamic 
approach. We have also shown that the value of enthalpy 
change during the agglomeration is related to the kinetic 
stability of the system and though it is not possible to 
determine the actual value of this parameter it is possible 
to determine a relative stability for different systems.
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Figure 6. Calculated values for ln CN as a function of ln K, for the systems 
under study and the respective linear regression. These calculations were 
carried out through equation 4 with CT = 0.75 and 0.2 ≤ K ≤ 0.8.
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