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“The truth may be puzzling. It may take some work to grapple with.
It may be counterintuitive. It may contradict deeply held prejudices.
It may not be consonant with what we desperately want to be true.

But our preferences do not determine what’s true.”
— Carl Sagan
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ABSTRACT

This thesis presents a new method for video view interpolation using multiview linear
camera arrays based on 2D domain triangulation. The domain of the reference image
is initially partitioned into triangular regions using edge and scale information, aiming
to place vertices along image edges and to increase the number of triangles in textured
regions. A region-based matching algorithm is then used to find an initial disparity for
each triangle, and a refinement stage is applied to change the disparity at the vertices
of the triangles, generating a piecewise linear disparity map. A simple post-processing
procedure is applied to connect the triangles with similar disparities, generating a full
3D mesh related to each camera (view), which are used to generate the new synthesized
views along the cameras baseline.
In order to generate views with less temporal flickering artifacts, we propose a scheme to
update the initial 3D mesh dynamically, by moving, deleting and inserting vertices at each
frame based on optical flow. This approach allows to relate triangles of the mesh across
time, and a combination of Hidden Markov Models (HMMs), applied to time-persistent
triangles, with the Kalman Filter, applied to vertices, so that temporal consistency can
also be obtained. With the proposed framework, view interpolation reduces to the trivial
task of rendering polygonal meshes, which can be done very fast, particularly when GPUs
are employed. Furthermore, the generated views are hole-free, unlike most point-based
view interpolation schemes that require some kind of post-processing procedures to fill
holes.
Experimental results indicate that our approach was able to generate visually coherent
in-between interpolated views for challenging, real-world videos with natural lighting and
camera movement. Also, quantitative evaluations using objective video quality metrics
show that our interpolated video sequences are better than competitive approaches.

Keywords: View interpolation. stereo. disparity estimation. temporal coherence.



Interpolação de Vistas em Video Utilizando Malhas 3D Adaptativas

RESUMO

Esta tese apresenta um novo método para interpolação de vistas em vídeos usando câme-
ras ao longo de um baseline baseado em uma triangulação 2D. A imagem de referência é
primeiramente particionada em regiões triangulares usando informação de bordas e escala,
visando colocar vértices ao longo das bordas da imagem e aumentar o número de triân-
gulos em regiões texturadas. Um algoritmo de casamento de regiões é então usado para
encontrar a disparidade inicial de cada triângulo, e uma etapa de refinamento é aplicada
para mudar a disparidade nos vértices dos triângulos, gerando um mapa de disparidade
linear em trechos. Uma simples etapa de pós-processamento é aplicada para conectar os
triângulos com disparidade semelhante, gerando uma malha 3D relacionada a cada câ-
mera, que são usadas para gerar novas vistas sintéticas ao longo do mesmo baseline das
câmeras.
Para gerar vistas com menos artefatos temporais (flickering), foi proposta uma abordagem
para atualizar a malha 3D inicial dinamicamente, movendo, removendo e inserindo vérti-
ces a cada quadro baseado no fluxo óptico. Esta abordagem permite relacionar triângulos
da malha ao longo do tempo, e uma combinação de Modelo Oculto de Markov, aplicado
nos triângulos que persistem ao longo do tempo, com Filtro de Kalman, aplicado nos
vértices, permite a geração de uma mapa de disparidade com coerência temporal. Com
a abordagem proposta, o processo de gerar vistas interpoladas se reduz à trivial tarefa
de renderizar uma malha poligonal, algo que pode ser feito muito rapidamente, principal-
mente quando placas gráficas são utilizadas. Além disso, as vistas geradas não possuem
buracos, diferente de muitas técnicas de interpolação de vistas baseadas em pixels que
requerem procedimentos de pós-processamento para preencher buracos.
Os resultados experimentais indicam que a abordagem proposta foi capaz de gerar vistas
interpoladas visualmente coerentes em vídeos desafiadores, com luz natural e movimento
de câmera. Além disso, uma avaliação quantitativa usando métricas de qualidade de
vídeos mostrou que as sequências de video interpoladas são melhores que abordagens
competitivas.

Palavras-chave: Interpolação de vistas, stereo, estimação de disparidade, coerência tem-
poral.
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1 INTRODUCTION

Computer vision consists in mimicking the abilities of human vision by electroni-
cally perceiving and understanding images and videos. However, this is a hard and open
problem within the literature. But why? In part, it is because vision is an inverse prob-
lem, in which we seek to recover some unknowns given insufficient information to fully
specify the solution (SZELISKI, 2010).

Along the years, however, significant advances have been achieved in this area,
allowing an efficient use of computers in several real-world applications, such as:

• Surveillance: monitoring and analyzing car traffic;

• Machine inspection: parts inspection for quality assurance;

• Automotive safety: detecting unexpected obstacles on the street such as peoples
and animals;

• Optical character recognition (OCR): reading handwritten postal codes, au-
tomatic number plate recognition.

• Film Colorization: coloring a monochrome video by annotating some frame with
a few color scribbles, and the indicated colors are automatically propagated in both
space and time to produce a fully colorized image or sequence.

To fully emulate the human vision system, however, it is necessary the use of two
(stereo) cameras. In the traditional stereo system, two cameras are displaced horizontally
from one another, and are used to obtain two different views of the scene(JARVIS, 1983).
By analyzing the two available images, the depth information relative to the cameras
can be obtained, therefore allowing the extraction of 3D information of the scene. This
information can be used in a variety of applications(SCHARSTEIN; SZELISKI, 2002),
such as Free-Viewpoint Television (FTV), which allows the user to interactively control
the viewpoint and generate new views of a the scene from any position (MORI et al.,
2009).

The general approach to generate synthetic interpolated views in-between two real
cameras is a simpler task if compared with FTV approaches. It consists in using depth
information, usually provided by the disparity map, and distorting one or both images
according to the scene geometry and the synthetic view position. The disparity map
is based on the correspondence of points from one reference image to another, which
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in the stereo setting are the left and right cameras. Hence, one key aspect to view
synthesis/interpolation is to find a good quality disparity map, since any noise in the
disparities reflects as an erroneous representation of the structure of the scene.

Additionally, if rectified cameras are used, the point correspondence problem re-
duces to finding the disparity of each pixel/region along horizontal scan lines of the images.
When dealing with stereo correspondence, most algorithms make the assumption that the
pair of cameras are rectified since it diminishes both the complexity of the solution and
the computational burden. (SCHARSTEIN; SZELISKI, 2002).

The quality of the estimated disparities is even more important when dealing with
video view interpolation, since the presence of small artifacts that would not be very no-
ticeable in a single image may become very salient in a video sequence, possibly causing
flickering artifacts that can annoy the viewer. Those temporal artifacts greatly impact
the quality of the interpolated video, and to avoid them it is necessary to use a temporally
coherent disparity estimation technique. Those techniques incorporate temporal informa-
tion within its computation, enforcing a smooth disparity variation along the time while
allowing abrupt disparity changes in occlusion/disocclusion cases.

1.1 Problem Description

In this thesis we tackle the problem of generating temporally coherent (synthetic)
interpolated views within the baseline of a linear array of rectified cameras. The usual
approach is to obtain an estimation of the 3D scene, represented by the disparity map of
the available cameras. Afterwards, the process of view interpolation warps one or several
camera images to the synthetic view position using their respective disparity maps, and
finally a post processing procedure is applied to fill the remaining holes. The traditional
pipeline for view synthesis, as well as common problems that arise in real scenarios, are
briefly described next.

1.1.1 3D Information From Stereo Cameras

Using two rectified cameras, the disparity d consists in the horizontal position shift
for corresponding points between the images, assuming a pinhole camera model. The
disparity computation is important since it is possible to estimate the depth z for a given
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point P in the world by analyzing the disparity between its projections x1 and x2, the
focal length f and the baseline b. As we can see in Figure 1.1, from similar triangles the
depth z can be found with the following equation:

d

b
= f

z
, (1.1)

z = fb

d
, (1.2)

with z measured in world coordinates system, f in pixels, b in world coordinates and d in
pixels.

Figure 1.1 – Relationship between the baseline b, disparity d, focal length f and depth z.

Pf

z

b

x1

x2

d=x1-x2

However, finding the correspondence pair x1 and x2 is a difficult task. Even though
we are dealing with rectified images and therefore the search range for x2 is limited within a
horizontal line (as it can be seen in Figure 1.2), there are several problems in the matching
process such as

• Occlusion: one of the projections from the world point P is occluded by another
object in the scene.

• Matching ambiguity: when there are several possible candidates for the projec-
tion x2 in the second camera. Usually occurs in large textureless regions.

• Sensor noise: image noise that may prevent to find exactly the projection x2.

• Bad rectification: the epipolar lines may not be horizontal, so the search line
would not contain exactly the second projection of P .
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Figure 1.2 – Example of rectified stereo images. Lines represent the possible search range of
the marked points in black. Source: (MIDDLEBURY, 2012).

1.1.2 Basic View Interpolation Pipeline

After the disparity maps have been computed from the available cameras, the view
interpolation process can perform a forward warping or backward warping of the camera
images to the synthetic view position (MORI et al., 2009). The forward warping consists
in using the disparity map of a given camera and warping its image to the synthetic view
position. This usually generates some holes in the interpolated view that must be filled
using some post-processing scheme. The backward warping estimates the disparity map
in the virtual view position, i.e. it warps the disparity of the cameras to the required
position. This warped disparity usually contains holes, however they are easier to fill
than an image, with the usual approach being to propagate the lower disparity around
the hole boundary to the hole itself.

The estimated disparity map is used to warp pixel values from the avaliable cameras
to the synthetic location. To remove those holes, a variety of inpainting techniques can
be used, impacting the final result (SOLH; ALREGIB, 2012; OLIVEIRA et al., 2015).

1.2 Motivation for This Work

In the typical pipeline for view synthesis, the module for estimating the disparity
map is done independently from the view interpolation itself. However, the “quality” of
the disparity maps clearly impacts the final view synthesis.

When computing the disparity map (without having the problem of view synthesis
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in mind), the Middlebury benchmark (MIDDLEBURY, 2012) is the most commonly used
metric to rank and objectively compare different methods. However, as shown in (FUHR
et al., 2013), such quality metric for disparity estimation presents low correlation with
objective metrics used to evaluate view synthesis algorithms, such as SSIM and PSNR
(Structured Similarity and Peak Signal-to-Noise Ratio, respectively). The best view in-
terpolation results were achieved with smoother disparity maps, even though they were
not well ranked in Middlebury’s website. The Middlebury metric does not measure any
kind of smoothness in the disparity map since it is modeled as a pixel-based boolean
classification system, whose final result is a percentage of bad pixels. Even though we
can have a really bad pixel and an almost correct one, they are just classified as good or
bad, providing exactly the same weight in the final metric. There is also no indication of
where the bad pixels are, since pixels with small disparity errors in low texture regions
produce less (or none) visible artifacts in the view interpolation.

The main motivation of this thesis is to develop a solution that that tackles both
disparity estimation and view synthesis as two connected problems. By using a triangular
domain decomposition, a textured 3D mesh of the scene can be obtained, so that the
generation of synthetic views are obtained by simply rendering the textured meshes using
the GPU (through the use of OpenGL, for instance). To impose a temporally coherent
disparity map we propose to adapt the initial mesh according to the scene changes, instead
of generating a new one for each frame. This will allow us to enforce a smooth disparity
variation on temporally persistent (triangular) regions, which generates a better quality
video view interpolation.

1.3 Goals

1.3.1 Main Goals

We aim to propose a technique that tackles both the generation of a coherent video
view interpolation and the estimation of disparity maps as two connected problems. Even
though we do not aim to produce the best disparity map according to the widely used
Middlebury’s ranking, the goal is to obtain disparity maps that are better suited for the
problem of view interpolation based on a linear array of two or more rectified cameras.

It is also desirable to use a representation of the scene that makes the generation
of novel interpolated views easier, by avoiding common problems such as hole filling and
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high execution time. And since we are dealing with a linear array of multiple (2 or more)
cameras, we aim to use the redundant information available by all the cameras in order
to enhance the quality of both the disparity map and the interpolated views.

Finally we want to extend the technique to also generate video view interpolation.
Since the use of frame-by-frame view interpolation methods usually introduce temporal
artifacts due to the disparity incoherencies across consecutive frames, we will update the
initial mesh along the video and enforce a temporal coherence on the disparity generation.
This should produce disparity maps with a greater quality and without abrupt changes,
while correctly adapting to the changes on the scene such as occlusions and disocclusions
of objects.

1.3.2 Specific Goals

• to propose a representation of the scene that connects the disparity estimation with
the view interpolation problems;

• to generate a smooth disparity map in homogeneous regions of the image, but al-
lowing discontinuities between edges;

• to use the information of all the available cameras to obtain the disparity informa-
tion;

• to propose a view interpolation process that uses the information of all the available
cameras;

• to propose a temporal mesh update scheme that coherently adapts to the scene
changes;

• to explore the temporally coherent mesh to generate video view interpolation with
less flickering.

1.4 Thesis Contributions

In this thesis we propose a novel video view interpolation based on a temporally
adaptive 3D mesh. The most important contributions of this work are:
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• a view interpolation solution that is directly related with the disparity map estima-
tion;

• a slow (offline) pre-processing step, which consists on the generation of textured 3D
meshes, with a fast (real-time) view interpolation process;

• a temporally evolving 2D domain triangulation for video sequences that adapts to
image content based on optical flow and disparity information;

• a temporally coherent disparity estimation technique based on the adaptive mesh.

1.5 Chapter Conclusions

This chapter introduced the problem that this thesis is tackling, which consists
in the generation of temporally coherent view interpolation using a linear camera array.
The view interpolation process is usually tackled as two different problems: i) generation
of disparity map and ii) warping of the real views, with post-processing steps to remove
remaining holes and artifacts.

In this thesis we propose to use an image domain triangulation to segment the
image, which is the foundation of the final textured triangular mesh. This textured mesh
can be easily used to generate interpolated views in real time and without holes. And
finally, we present an extension for multiview sequences that adapts the 3D mesh in time
based on video content, aiming to reduce the creation of temporal artifacts.
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2 RELATED WORK

The main problem tackled in this thesis is the generation of temporal cohesive
interpolated views based on a linear array of at least two rectified cameras. Typically, the
generation of view interpolation can be split into two tasks: i) obtaining a dense disparity
map, related to the 3D geometry of the scene; and ii) using rendering techniques to com-
bine color/texture information with the disparity maps to generate the synthetic views. In
this chapter, we will cover some algorithms for estimating the disparity map, both with
and without temporal coherence, as well as techniques for generating the interpolated
views based on multiview images and disparity maps.

2.1 Disparity Estimation

The problem of dense stereo/multiview matching has been tackled by several re-
search groups in past years. The main goal is to increase accuracy (some widely used
metrics for quantifying the quality of stereo matching algorithms are provided in the
Middlebury stereo dataset Middlebury (2012), as well as a ranking of several methods)
and reduce execution time, which are conflicting issues most of the time.

In order to solve this problem there are several solutions, each one with a different
characteristic such as smoother disparity maps, faster computational time, etc. However
they usually have the following structure (SCHARSTEIN; SZELISKI, 2002):

• Stereo matching in this step the algorithm, for every pixel within the reference
image, computes a matching score for every pixel in the second image (either left
or right) within the same horizontal line. For a 2D image this generates a 3D cost
cube, spanning in the dimensions X, Y and the range of possible disparities.

• Aggregation to get a smoother disparity map it is common to filter the cost cube so
that noisy pixels could be corrected by the information of the neighbors. This step
is also important to correctly estimate the disparity within low textured regions.

• Find the best disparity for every pixel choose the disparity with the highest
matching score.

Depending on the disparity estimation technique some of these steps may not be
used, or even others may be present. For example, in local algorithms the disparity
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computation of a given pixel depends only on the color values within a finite window,
and it is made a smoothness constraint by aggregating over a support set of surrounding
pixels. They usually depend more on the aggregation step to generate a good disparity
map, and also may employ a final post-processing step that seeks to enhance the final
disparity quality.

Global algorithms, on the other hand, make explicit smoothness assumptions and
then solve an optimization problem, therefore there is no need for the aggregation step.
Those techniques usually present very good results and a smoother disparity map, espe-
cially in large homogeneous areas, however the computational burden is higher. In the
work of Scharstein and Szeliski (2002) it can be seen a good classification and taxonomy
of disparity estimation techniques.

There are several different ways to approach the problem of stereo/multiview
matching. For instance, the approach presented in Zitnick et al. (2004) computes the
disparity map from a set of rectified images in two stages. The first stage consists on an
over-segmentation procedure of the reference image with a region growing technique, and
computes the disparity for each region. In this step it is important to generate regions
that do not cross disparity discontinuities. The second stage consists of an iterative re-
finement based on the coherence of adjacent regions, which is able to both correct most
of the disparity errors of the initial estimation and generate a smooth disparity map. The
work presented in Taguchi, Wilburn and Zitnick (2008) is similar to Zitnick et al. (2004),
but it innovates by using a segmentation algorithm based on a fixed grid that is itera-
tively updated based on the feedback from the depth map, as it can be seen in Figure 2.1.
This provides a depth map with well-preserved discontinuities in exchange to the more
computational expansive iterative process. In fact, both approaches present good results,
but are very time consuming. Their results also greatly depend on the quality of the
segmentation process, which itself is a slow process especially in Taguchi’s work.

In a different global minimization approach, Bleyer et al. (2011) proposed a joint
technique for both the disparity computation and object segmentation. The 3D scene is
represented as a collection of coherent objects, characterized by a color model, a 3D plane
that approximates the object’s disparity and a 3D connectivity propriety. By assuming
that 1) each object is compact in 3D, 2) every object is connected and 3) all visible parts of
an object have a similar appearance, they modeled this problem as an energy minimization
problem solved using a fusion move algorithm (LEMPITSKY; ROTHER; BLAKE, 2007).
As we can see in Figure 2.2, the results are very good, both in the disparity computation as
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Figure 2.1 – Segmentation and disparity estimation from the work of Taguchi and collabo-
rators Taguchi, Wilburn and Zitnick (2008). (a) initial step, (b) after 2 iterations, (c) after
10 iterations. It can be seen that the segmentation was able to better represent the objects
boundaries, even though some small regions present wrong disparities.

in the object segmentation. However, this approach is computationally expensive, taking
over 20 minutes to compute for a standard Middlebury dataset of 375×450 pixels.

Figure 2.2 – Joint segmentation and disparity estimation results from Bleyer et al. (2011). On
top row we can see the stereo images, in the middle row the obtained object segmentation and
in the last row their respective disparity maps.

Some authors try to move the computational burden from the matching itself to
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the aggregation step. Zhang, Lu and Lafruit (2009) propose to use a simple matching
technique with an adaptive support region with a cross-like shape used for both the
matching and the aggregation. This structure allows a very fast GPU implementation
using integral images and produces good results, but may face problems when highly
textured regions are present (since the aggregation window may be small).

Seeking to surpass the limitations of a local aggregation window, Yang (2015) uses
a tree structure derived from the stereo image pair to aggregate the costs. The nodes of
this tree are all the image pixels, and the edges of the graph (tree) are the image edges
between the nearest neighboring pixels. With this structure, the similarity between any
two pixels can be expressed as their shortest distance on the tree. Hence, the proposed
method is non-local as every node receives support from all other nodes of the tree. As
expected, this non-local aggregation provides very good results with a running speed of
0.8s for a 450×375 image using a C++ implementation (provided by the authors).

A novel approach was proposed by Mozerov and Weijer (2015), in which the author
combines an energy minimization method with a cost filtering approach. First, a fully
connected MRF (Markov Random Field) defined on the full set of pixels is solved, and
the marginal function of the solution is used as the unary potential in a locally connected
MRF, which is shown to be related to a cost filtering process. Ideally, the first step
should generate better results on non-occluded areas whereas the second step improves
the results on occluded regions. This solution achieved good results, and is the second
top-ranked stereo matching algorithm according to the Middlebury default standards as
of July 2015.

Min, Lu and Do (2013) propose to speed up the disparity computation time using
two approaches: 1) reduce the number of used pixels inside a given window by a given
fraction and 2) reduce the number of aggregated costs by choosing only a subset of possible
disparity candidates. To reduce the number of pixels in the matching process, the authors
propose to use only pixels whose coordinates are multiples of a given value S; therefore
the number of used pixels decreases as S increases. And to find a subset of candidate
disparities to do the interpolation, it is chosen the best Dc disparities that are the local
maxima, as we can see in Figure 2.3.

As expected, as S gets bigger than one, the quality of the results starts to slowly
decay while the computation time is greatly reduced. However, the parameter Dc had a
different impact on the results, since in several experiments the best results were achieved
with low values for Dc. So it is clear that unnecessary candidates with low confidence
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may contaminate the aggregation process.

Figure 2.3 – Disparity candidate selection from Min, Lu and Do (2013) with Dc = 10, i.e. 10
candidates.

In recent years, several stereo matching methods are using the GPGPU technology
to achieve real-time speeds. However, due to the limitations of the GPU hardware and
software architecture, most methods usually are pixel-based, with fixed support matching
window and with a robust, easily parallelizable matching and aggregation steps. Those
approaches are the most common since the GPU performance is directly related to the
degree of parallelism of the algorithm. Usually solutions that are fast in GPU are very slow
on CPU, and the contrary may also be true. For instance, the approach of Richardt et al.
(2010) consists of a GPU implementation of a simple matching technique and a modified
aggregation step from Yoon and Kweon (2006). By combining both the luminance and
hue information from HSV color space with a very fast implementation of the bilateral
filter used in the aggregation step, this solution was able to generate very good results with
real time speeds (approximately 14 fps for the Cones dataset (MIDDLEBURY, 2012)).
Similarly, Yang (2013) proposes a hardware-efficient bilateral filtering for the aggregation
step of stereo matching. Even though bilateral filtering has been proved to be effective,
the execution time tends to be high even with the current GPU implementations. With
the proposed hardware-efficient bilateral filtering, they were able to achieve good results
within the Middlebury ranking system, while achieving a speed of 67 frames per second.

Zhao and Taubin (2011) proposed a GPU approach based on a progressive multi-
resolution pipeline which includes background modeling and dense matching with adaptive
windows, as it can be seen in Figure 2.4. For applications in which only moving objects
are of interest, their approach effectively reduces the overall computation cost quite sig-
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nificantly, and preserves the high definition details. The work of Rhemann et al. (2011)
also is centered in a cost-filtering framework, which can also be used in the aggregation
step in the stereo correspondence problem. It is shown that, even with a simple matching
technique, good results can be achieved with real time speeds (23 fps in average for the
Middlebury dataset). In Mei et al. (2011), the authors extend the idea of the cross-shaped
windows presented in Zhang, Lu and Lafruit (2009), by including a texture metric and
a GPU implementation. As of july 2015, this is the sixth top-ranked stereo matching
algorithm according to the Middlebury default standards.

Figure 2.4 – Coarse to fine matching from the work of Zhao and Taubin (2011).

A different approach was proposed by Sun et al. (2014). Instead of focusing on the
aggregation step, they find a sparse set of matching points within the stereo images and
build a sparse cost cube. The disparities are then propagated in this cost cube according
to an edge-aware filtering. They proposed an O(1) geodesic filter, which is shown to be
both fast on a GPU implementation (9ms for a standard Middlebury test) and achieved
good results for the edge-aware disparity propagation.

2.2 Temporal Cohesive Disparity Estimation

A natural approach to generate temporally cohesive disparity estimation is simply
to filter the cost space (the aggregation step, according to the well-known taxonomy
proposed by Scharstein and Szeliski (2002)) along time. This was the main idea of Hosni
et al. (2012), whose aim was to update a previous work (RHEMANN et al., 2011) to
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propose a new cost-filtering framework along time. Their idea is based on the assumption
that the disparity of a given pixel should be constant along a small space and time window,
as it can be seen in Figure 2.5

Figure 2.5 – Spatio-temporal stereo matching from Hosni et al. (2012). For a sequence of
frames(a) the cost volume is smoothed using a 3D box filter illustrated in red. The resulting
disparity map in (d) does not preserve disparity discontinuities. The proposed approach weights
the pixels inside the 3D box filter (e) to achieve a result (f) that is aligned with the space-time
object boundaries.

To calculate the aggregation weights of the pixel near (spatially and temporally)
the reference pixel, a guided filter that uses both the spatial and temporal proximity to
the reference pixel as well the color similarity is used. This approach allows an efficient
GPU implementation, achieving good results with a real-time execution time.

Bleyer and Gelautz (2009) propose to generate a temporally smooth disparity map
by filtering a set of disparities within a given time window. A disparity dp,t of pixel p in
the frame t is temporally smoothed by computing the median of the following array of
disparities D:

D = {dp,i|t− σ ≤ i ≤ t+ σ}, (2.1)

where σ is a parameter that defines the smoothing strength, i.e. the temporal window
size.

However this simple approach fails when there is movement in the scene along time,
caused either by moving objects or camera. To tackle this problem the authors compute
the optical flow using a fast implementation of Horn and Schunck (1981) algorithm. With
this information, the array of disparities D (from Equation 2.1) are computed tracing
the pixel p along the time using the optical flow vectors. The obtained results are good,
but clearly it highly depends on the quality of the optical flow. Also, the results within
the borders of the objects are not consistent due to the limitations of the optical flow in
tracking those pixels.
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A different cost calculation is proposed by Sizintsev and Wildes (2009). It con-
ceptualizes the stereo correspondence in terms of image spacetime, which encompasses
both spatial and temporal characteristics of local pattern structure. The local orientation
captures the spatial pattern of observed surfaces, whereas orientations that extend into
the temporal dimension capture dynamic aspects, such as motion.

To generate a representation of orientation time, the images are filtered with a
series of oriented filters, and the individual energy measures are recast in terms of the
proposed spatiotemporal quadric (called stequel

¯
), which captures local orientation as well

the variance of spacetime about orientation. By the use of the proposed stereo matching
using the stequel representation, the authors were able to achieve good results even in
challenging video sequences.

Aiming to improve on the stequel representation, Sizintsev and Wildes (2014) pro-
posed a slightly different approach. The representation in terms of the stequel limits
the ability to characterize the presence of multiple orientations at a single point since
they are all are collapsed to a single quadric. This may hinder the disparity estima-
tion, especially in near surface discontinuities. In contrast, their approach doesn’t need
to construct an intermediate stequel representation and provides a more direct disparity
estimation approach. The results were somewhat better than the previous approach, how-
ever they also included the possibility of estimating multilayer disparities in the presence
of (semi)transparent and specularly reflecting surfaces.

In order to avoid the problems of local minima and unstable results of disparity
estimated along time, Min et al. (2010) impose temporal coherence by limiting the range
of possible disparities for each pixel. Based on a disparity histogram that is generated
with the sparse feature matching algorithm SURF, temporal consistency is then enforced
by calculating a weighted sum of temporally-neighboring histograms, where the weights
are determined by the similarity of depth distribution among frames. As we can see
in Figure 2.6, the algorithm was able to restrict the disparity search range around a
confidence region, avoiding large disparities changes between consecutive frames.

In Lang et al. (2012) the authors proposed a generic framework to impose tem-
poral coherence to a large class of problems, such as optical flow, colorization, scribble
propagation, and disparity estimation. They propose to separate the data term from the
regularization term and solve them in series. By creating a sparse set of solutions that
minimizes the data term locally, they use an edge-aware filtering to create a dense first
estimative of the answer. For disparity esstimation based on a pair of stereo images, they
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Figure 2.6 – Disparity range search example from the approach of Min et al. (2010). (a) Search
range without temporal coherence. (b) Search range with temporal coherence.

first calculate the disparity of a small subset of pixels using SIFT, and afterwards they
use an edge-aware filter to create a dense estimative. To estimate the final result the al-
gorithm performs a series of N 1D filterings, alternating between horizontal and vertical
orientations until convergence.

When stereo video sequences are used, the alternate 1D filtering scheme is also
applied along time. For that purpose, the algorithm estimates the paths for each pixel,
which are computed by following the optical flow vectors at each frame. By having also
the paths for each pixel, the iterative filtering occurs both in horizontal, vertical and
temporal dimensions. The results for the disparity estimation were very good, especially
within the disparity discontinuities.

Another technique that uses optical flow to impose temporal coherence in the
disparity estimation is proposed by Hung, Xu and Jia (2013). They first compute a first
estimative for the disparity and optical flow for a given number of frames, and afterwards
they create a motion trajectory for each pixel. This approach is more robust then the
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paths used in Lang et al. (2012) since they use sub-pixel accuracy, and it is able to
correctly track points within disparity discontinuities by using information about image
edges. Finally, depth and scene flow are refined based on global temporal constraints.
One drawback of this technique is the heavy computational burden, requiring 1 minute
to generate the depth and optical flow for a 640×480 image using a 24 cores CPU.

2.3 View Interpolation

The view interpolation problem can be tackled in several different ways. In Levoy
and Hanrahan (1996) an efficient way to represent the light field called light slab was
proposed. Using this representation, the interpolated view can be generated by just
sampling the images of the given light field. This technique is quite fast and and simple
to implement, however the quality of their results depends directly on the density of the
light field used.

An interesting approach using view morphing was proposed by Seitz and Dyer
(1996). Firstly, the two images are rectified in order to avoid distortions in the morphing
stage, and then a dense point matching within both images is computed. The view
morphing is then generated according to the projection matrix of the virtual view, which
is calculated as a translation between the projection matrix of both real cameras. The
authors also propose a more generic morphing that can be used to interpolate within
images of different 3D projective transformations of the same object, however it requires
some user interaction. Their technique presents similar limitations of common techniques
for view interpolation, however. The interpolated view is obtained by projecting the input
images, the projections of two points within the same pixel is resolved using the disparity
which need to be computed, and it is also necessary to fill the remaining holes.

Other approaches directly use the 3D scene information, such as depth maps.
The ones that combine this information with the real views to generate synthetic views
are called depth image-based rendering (DIBR) techniques, and face several challenges.
The direct warping of pixels to the desired synthetic viewpoint may generate gaps or
conflicting information from different images. In particular, occlusions are a common
source of problems, since they tend to corrupt the estimate of the disparity maps and
also leave gaps in the interpolated views. But even though the disparity estimation is an
important step for view interpolation, they are usually tackled as two disjoint problems.
The view interpolation step consists in combining the images from the actual cameras
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with the obtained disparity map(s) to generate a new realistic view of the scene.
Mori et al. (2009) proposed a view synthesis approach based on depth warping.

In their approach, the depth values from different real views are warped to the virtual
viewpoint, holes are filled with median filters, and smoothing is performed with a bilateral
filter. The results of the projected disparity maps without any post processing to remove
the holes can be seen in Figure 2.7. These two depth maps are projected to each real
camera, and the virtual view is rendered by blending the two neighboring images (alpha
blending is used at most pixels, but either the right or left images may be used alone
at occlusion pixels). Their results have good visual quality, and the implementation of
their approach is used as the reference software for MPEG standardization experiments
for Free-viewpoint TV (MPEGFTV). However, the disambiguation when two 3D points
project to the same pixel is based on the closest distance, so that a wrong disparity
estimation leading to a small depth may corrupt the warping process.

Figure 2.7 – Projected disparity maps from the left and right cameras from the algorithm of
Mori et al. (2009). (a) Projection from the left side and (b) projection from the right side.

Ndjiki-Nya et al. (2010) focus on the problem of filling gaps with visually coherent
texture. In their approach, the authors initially find the depth map incoherencies, and
assume that they belong to the background. Then, the Laplace equation is used for an
initial estimate of the pixel values on uncovered regions, and patch based texture synthesis
is used to complete the process. Despite the good results shown by the authors, wrong
depth estimates may lead to significant degradation of the rendering results. Müller et al.
(2009) proposed a scheme to deal with inconsistencies of the disparity map in different
views, known to produce visual artifacts. In their approach, reliable areas are projected
first, and unreliable areas (detected along depth discontinuities) are split into foreground
and background data. Foreground areas are projected first and merged with the reliable
data, and then background data is projected. Clearly, a key issue in Müller et al. (2009) is
the reliability in which foreground and background are discriminated. In Tian, Vetro and
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Brand (2011), a trellis based view synthesis framework is proposed to deal with the view
synthesis problem. In their approach, the depth of each pixel is chosen from a candidate
list, aiming to maximize the estimate of the synthesis quality. The results presented
in Tian, Vetro and Brand (2011) indeed showed reduction of image artifacts, but the
problem of filling holes independently for each generated view remains.

The number of gaps in the interpolated views can be reduced or eliminated if 3D
meshes are used. For instance, Zitnick et al. (2004) built a 3D mesh from the obtained
disparity map, and rendering is implemented on a GPU. Although the results look good,
the method is complex and requires a considerable amount of pre- and post-processing
operations.

Pujades and Devernay (2014) compares direct (such as DIBR techniques) and
energy-based methods for the interpolation process. The results showed that this varia-
tional approach presented little to none improvement over standard techniques on lamber-
tian scenes, despite being more computationally expensive. However, for non-lambertian
scenes the improvement was noticeable, especially in rendering the structure of the image.

There are also some approaches for obtaining interpolating meshes directly from
oriented point clouds (BERNARDINI et al., 1999), but they are sensitive to noise. An-
other family of algorithms for 3D reconstruction based on point clouds explore implicit
function fitting (KAZHDAN; BOLITHO; HOPPE, 2006; CALAKLI; TAUBIN, 2011),
which are more resilient to noise, but with considerable computational complexity.

2.4 Chapter Conclusions

This chapter presented a revision of existing techniques related to the main focus
of this thesis. For the disparity estimation problem there are basically two different
approaches: global optimization solutions, such as Yang (2012), Bleyer et al. (2011), Chen
et al. (2013) and local algorithms, such as Min, Lu and Do (2013), Taguchi, Wilburn
and Zitnick (2008), Zhang, Lu and Lafruit (2009). In particular, some of them allow
highly parallel formulations suited for GPGPU implementation (RICHARDT et al., 2010;
YANG, 2013). Even though global optimization algorithms usually presented the best
results (in terms of the quantitative metrics for the Middlebury benchmark), recent local
minimization algorithms have achieved similar results, and usually with a lower execution
time (SUN et al., 2014).

To create temporally coherent disparity maps, one approach is to also calculate the
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optical flow and refine one with the information from the other. This can be done with
a computationally costly minimization of both (disparity and optical flow) at the same
time (HUGUET; DEVERNAY, 2007), or by minimizing them separately (HUNG; XU;
JIA, 2013; LANG et al., 2012). A simpler possibility is to either modify the matching
cost to include temporal information instead of only doing it in a frame-by-frame man-
ner (SIZINTSEV; WILDES, 2009), or even to filter the matching costs along both space
(X and Y orientations) and time (HOSNI et al., 2012; BLEYER; GELAUTZ, 2009). Al-
though those solutions are typically faster and simpler, the use of optical flow allows more
accurate tracking of pixels in time, providing a much more robust and direct method to
impose temporal cohesion.

For the view interpolation problem, it could be observed that even though the
disparity estimation is of great importance in the generation of a good quality synthetic
view, stereo matching and view interpolation are usually treated as two disjoint problems.
The most common approach is to simply warp the available images guided by the disparity
maps and afterwards fill the remaining holes (MORI et al., 2009; NDJIKI-NYA et al.,
2010; MüLLER et al., 2009). It is also possible to use a triangular mesh to represent the
scene, and the generation of the interpolated view becomes a trivial renderization of the
mesh (ZITNICK et al., 2004). However, to directly obtain an interpolated mesh from the
point cloud is a hard task (KAZHDAN; BOLITHO; HOPPE, 2006; CALAKLI; TAUBIN,
2011).

Next, we present our approaches for disparity estimation and view interpolation
suited for linear camera arrays.
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3 GENERATION OF THE 3D MODEL

Let us consider a linear array of NC cameras C1,...,CNC with the same intrinsic
parameters and same camera rotation parameters, and translated along the axis of the
array (so that all captured images should be rectified). Also, let bi denote the baseline of
camera i with respect to the first camera C1, for i = 2, ..., NC. Note that if NC = 2, the
problem is reduced to the classical stereo matching problem of rectified images.

Our approach consists of initially generating a 3D model of the scene using as
reference each of the NC cameras, and then synthesizing new views using a virtual camera
at any position along the array. To obtain a 3D model using a given camera, we first
generate a 2D triangular tessellation of the reference image, and then employ a region-
based approach to compute the matching cost at each possible disparity for each triangular
region. A non-local aggregation step that uses the information of all the triangles is used,
generating a piecewise constant disparity map. Then, a refinement procedure is applied
to smooth the disparity map, generating a piecewise linear depth map. Finally, a full
3D triangular mesh is generated by connecting vertices with similar disparity values, and
the texture of occluded triangles are retrieved from neighboring cameras. These steps are
described next.

3.1 Triangular Tessellation

The triangular tessellation step aims to partition the reference image into several
triangular regions, so that each region should represent a small portion of a single object
in the scene that is likely to have a uniform disparity. Those triangles should be larger
in homogeneous areas to avoid ambiguities in the disparity estimation process, while
preserving the disparity discontinuities and correctly representing finer details.

The first step is to find an adequate set of vertices for the triangular tessellation. In
areas where depth is homogeneous, the density of points should be small, whereas close
to depth discontinuities the number of vertices should be higher to correctly represent
the objects boundaries. Since the depth discontinuities are usually associated with image
edges, it is desirable to prioritize the placement of vertices along image edges.

To initialize the vertices, we compute an edge map of the reference image, and
vertices are uniformly spread along the edges, with a minimum distance of Pmin.According
to our experimental results, we found that Pmin = 9 generated vertices sufficiently close
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to represent smaller details of the scene while avoiding small triangles, which tends to
present higher ambiguities in the matching process. There are several existing methods
for detecting edges in monochromatic or color images, which would impact the placement
of the initial vertices. Although any edge detector could be used in this step, we chose
the Canny operator (CANNY, 1986), which is a classical edge detector based on oriented
gradients and non-maxima suppression. For the sake of comparison, we also used a more
recent approach (DOLLÁR; ZITNICK, 2013) and the final results were similar. Hence,
due to the higher run time of Dollár and Zitnick (2013) with only marginal improvement
on the interpolated view, we choose to use the Canny detector. Further comparisons can
be seen on Section 3.6.

To populate the remaining of the image with vertices, we use a technique similar
to the particle generation procedure proposed in Sand and Teller (2008). This is accom-
plished by calculating a scale map of the image that provides, for any given pixel, the
local image complexity. With this information, the goal is to distribute the remaining ver-
tices according to the local homogeneity of the image, increasing the density in complex
(textured) regions.

The scale map is calculated by filtering the image with Gaussian kernels, which
scales are given by σ(j) = 1.9j for 0 ≤ j ≤ 5. Then, for each pixel, we find the range
of scales in which a pixel value does not change substantially. If the pixel color remains
similar across several scales, it represents a pixel with a low visual complexity around it.
For a given pixel (x, y), we compute

k(x, y) = argmax
j
{j| ‖Il(x, y)− I1(x, y)‖2 < δs,∀l = 1, ..., j} , (3.1)

where δs is a threshold (we used δs = 10, as in Sand and Teller (2008)), ‖ · ‖2 denotes the
L2 vector norm, and Il(x, y) is a 3D vector with the RGB values at scale l. In other words,
k(x, y) is the largest scale for which the color of pixel (x, y) remains roughly constant after
successive smoothing with Gaussian kernels.

Finally, k(x, y) is smoothed with another Gaussian kernel with standard deviation
σs = 2, producing a final blurred scale index map k̂(x, y) that is used as a minimum
distance threshold. More precisely, we perform a raster scan in the image, and add
another vertex at a given position (x, y) if its distance to the closest existing vertex is
greater than 1.5k̂(x,y)+g, with g = 6 controlling the density of vertices. To ensure that
the final triangulation will encompass all the image, vertices within a distance Pmin are
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spread along the boundaries of the reference image. With this set of vertices, the final
triangulation is obtained by the Delaunay triangulation.

An illustration of the tessellation step is presented in Figure 3.1. The reference
image is shown in Figure 3.1(a), and the scale map with superimposed edges is shown
in Figure 3.1(b). The final tessellation is shown in Figure 3.1(c), and it can be observed
that regions with higher textural information present more and smaller triangles (e.g. the
periodic table).

Figure 3.1 – Triangulation steps. a) reference image (Teddy from Middlebury dataset) b) scale
map (grayscale) superposed with the edges map (red) c) final triangulation in red d) initial
disparity estimation.

(a) (b)

(c) (d)
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3.2 Initial Disparity Estimation

After the image tessellation step, each triangular region is expected to present a
roughly uniform disparity value. The initial disparity estimation consists of assigning a
single disparity value to each triangular region, using an approach similar to Zitnick et
al. (2004), Fickel et al. (2012). Since we are dealing with a set of rectified cameras along
the same baseline, the matching process reduces to finding the maximum of a similarity
matching function computed for a range of possible disparity values along a horizontal
scan line.

In this work, we used the matching function proposed in Zitnick et al. (2004). It
is based on the histogram of pixel gains, and chosen due to its ability in dealing with
illumination variations across cameras. Let us consider a triangle rj in the reference
image I. For each color channel c ∈ {R,G,B} and for each pixel x in rj, we compute
the ratios ratiocd(x) = Ic(x)/I ′c(x + d), where I ′ is the other image in the stereo pair,
and d is the disparity value. An ideal match at the correct disparity value should lead to
similar ratios at all pixels and color channels, so that a sharp peak at the histogram of
ratiocd(x) is expected. Following the idea presented in Zitnick et al. (2004), we compute
such histogram for each color channel using 20 bins βcl (d), ranging from 0.8 to 1.2, and
ignoring the values outside this interval. Then, the matching function for mj at disparity
d is given by

mj(d) = 1
3Aj

max
l

 ∑
c∈{R,G,B}

βcl−1(d) + βcl (d) + βcl+1(d)

 , (3.2)

where Aj is the area of triangle rj and l is the bin index. It is important to note that
0 ≤ mj(d) ≤ 1 for any disparity d, and good matches should lead to mj(d) ≈ 1, since the
maximum sum of three adjacent bins should be close to the total number of pixels (i.e.
the area of the triangle).

When more than two cameras are available, the joint information of the additional
cameras may potentially improve the estimated disparity map. Without loss of generality,
let us assume that the first camera C1 is the reference camera. If the disparity of a triangle
t with respect to the adjacent camera (C2) is d, then its disparity with respect to any
other camera Cl is given by d + bl−b2

b2
d, which reduces to (l − 1)d if all the cameras are

equally spaced. Figure 3.2 illustrates the relation between the disparity of 3 equally spaced
cameras.
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For a given disparity range D, we want to find the disparity dj ∈ D that maximizes
a multiview matching function

m′j(d) = 1
NC

∑
l∈C

ml
j

(
d+ bl − b2

b2
d

)
, (3.3)

where C is the set of cameras used for matching, NC is the number of cameras, and ml
j(d)

is the matching function for triangle tj at disparity d with respect to camera l. As in
Equation (3.2), the matching values m′j(d) are also restricted to the interval [0, 1].

Figure 3.2 – Disparity estimation using multiple cameras equally spaced. Between any two
neighbor cameras, the disparity is d.

C1 C2 C3

d d d d d d

P

3.3 Aggregation

Aggregation is widely used in the traditional stereo matching pipeline, and it con-
sists mainly of filtering the matching function in a spatial neighborhood at each disparity
before finding the best match. Its main goal is to provide smoother disparity map, and
at the same time avoid blurring the disparity discontinuities. To accomplish this task,
there are several possibilities, such as bilateral filtering (RICHARDT et al., 2010) or using
an adaptive mask that combines only the costs of pixels with similar colors (MEI et al.,
2011), among others. In Fickel et al. (2012), the matching function was aggregated using
the information of all triangles that share vertices. However, the corresponding spatial
neighborhood used in the aggregation step is highly related to the triangle sizes: for small
triangles (detailed portions of the image), the neighborhood ends up being small, whereas
for large triangles (less details) the neighborhood is very large.

In Fickel et al. (2013) the aggregation window was a circular region with fixed
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radius (we set the default value of 24 pixels for this radius based on experiments, since
this is directly linked to the average size of the triangles, which is independent from
the size of the images). This approach is also a local method that only evaluates the
neighboring regions, so that large homogeneous regions (for which the initial disparity
estimate tends to be not reliable) can not benefit fully from the aggregation step. On the
other hand, global methods tend to present better results, but at the cost of increased
computational cost. However, Yang (2015) presented a non-local aggregation step for
pixel-based methods that is fast and runs in linear time. In this work, we adapt the
approach of Yang (2015) for our triangular domain, as described next.

The non-local aggregation filter matching costs are based on region similarity, using
a graph structure that is obtained from our image triangulation. The nodes in the graph
are the triangular regions, and triangles that share an edge in the mesh are connected by
an edge in the graph, i.e. each region has exactly three neighbors. The weight of the edge
connecting triangles r and s is given by

W (r, s) = δrsγrs, (3.4)

where δrs and γrs are the color and spatial distances between r and s. More precisely,
δrs is given by the RGB distance between the mean colors of the regions, and γrs is the
Euclidean distance between the centroids of r and s. In Yang’s original work, the cost
involved only color distances, and it was applied to every pixel in the image using the 8
neighboring pixels. Hence, the proposed extended cost given by Equation (3.4) coincides
with the original solution in Yang (2015), and allows to compute the cost of non-adjacent
regions taking into account their spatial distance.

The next step consists in generating a Minimum Spanning Tree (MST) in which
the cost filtering will be computed. The similarity between any pair of regions is computed
as the sum of weights of the minimal cost path between them. With D(r, s) = D(s, r)
being the distance between r and s along the MST, the aggregated costs can be computed
using the MST structure:

m′′r(d) =
∑
s

exp
(
−D(r, s)

σa

)
m′s(d), (3.5)

where m′r(d) and m′′r(d) are the original and aggregated matching costs for region r and
disparity d, respectively, σa = 0.2×width controls the decay of the costs within the MST,
with width being the width of the input image sequence.
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Figure 3.3 – Disparity maps estimated with different aggregation techniques. a) Reference image
b) Bilateral filtering aggregation (from Fickel et al. (2013)) c) Proposed non-local aggregation.

(a) (b) (c)

An interesting property of this non-local aggregation is that all connected triangu-
lar regions with similar colors (i.e. a painted wall) may be used in the aggregation stage,
regardless of their distances, which avoids the problem of a limited search range in local
techniques. Also, the cost function given by Equation (3.4) generates a final distance
in the MST that is more similar to geodesic than Euclidean, so that two regions with a
similar color will have a small aggregation weight if there is another region with different
color between them in the path, despite their spatial distance. This property avoids the
agggregation of regions that have similar color but belongs to different objects, which is a
problem for local methods with large search ranges (including the bilateral filter). Finally,
using the linear time algorithm from Yang (2015), this non-local cost filtering technique is
faster than the original bilateral filter of Fickel et al. (2013) and typically presents better
results for real world videos, as illustrated in Figure 3.3.

Finally, the aggregated disparity value for each triangle rj is given by Dj =
argmax{m′′j (d)}, i.e. it is the one that maximizes the value of the aggregated match-
ing function, as in traditional winner-takes-all strategies.

3.4 Refinement

At the end of the aggregation procedure, a piece-wise constant disparity map is
obtained, so that all three corners1 of a given triangle present the exact same disparity
(depth). In the refinement step, the disparity of each corner is changed based on the
similarity of the triangles that share the same vertex, so that corners related to similar
triangles have their disparity values moved closer to each other. Since all three corners
of each triangle are potentially changed, the final result is a piece-wise linear (planar)

1In computational geometry, corner is an abstract association of a triangle with a vertex. In our
triangular 2D mesh, each corner encodes a disparity value.
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representation of the disparity map.
Let us consider a vertex v that is shared by Nv triangles, and let Dj (j = 1, ..., Nv)

be the disparity of the corner related to each of the Nv triangles at that vertex. Our goal
is to find refined disparity values dj for each corner such that the disparity difference is
reduced when the color of triangles are similar (to smooth the disparity map), and kept
mostly unchanged when the triangles are not similar (to preserve disparity discontinuities
along the boundaries of the objects). The refinement step is formulated as an optimization
problem, and the goal is to minimize the following objective function E is given by

E(d1, ..., dNv) = 2
Nv(Nv + 1)

Nv∑
i=1

Nv∑
j=i+1

ωij (di − dj)2 + 1
Nv

Nv∑
j=1

λj (dj −Dj)2 , (3.6)

which is a quadratic function. And since E is an concave upward function, it has only one
global minima which can be easily found by solving an Nv × Nv linear system Ad = D

for each vertex V , where

A = [aij] with aij =

 λi +
2
∑
k 6=i

ωik

Nv+1 , if i = j

−ωij, if i 6= j

,

d =
[
d1 d2 · · · dNv ,

]T
(3.7)

D =
[
λ1D1 λ2D2 · · · λNvDNv

]T
.

Since each vertex is related to an average of 6 corners in a triangular mesh, the
refinement step consists of solving an average of #V 6× 6 linear equations, where #V is
the number of vertices in the mesh.

In Equation (3.6), the first term is a weighted average of the squared disparity dif-
ferences of the corners. It may be interpreted as a regularization term, and it is minimized
when all disparity values dj are the same. In particular, the similarity term ωij should
be large when triangles ri and rj are similar, to enforce coherence of the corresponding
corners. On the other hand, ωij should be small when ri and rj are not similar, to allow
disparity discontinuities between different objects. The second term in Equation (3.6)
is a weighted average of the squared disparity differences between the initial disparity
estimates and the refined disparities. It accounts for data fidelity, and it is minimized
when dj = Dj, i.e., when the refined disparity values are exactly the same as the initial
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disparity estimates. In particular, data fidelity should be enforced for a given corner if
the initial disparity value D was already a good estimate, and relaxed when such estimate
is bad. Hence, λj should be large when the initial disparity of triangle tj was estimated
with good confidence, and smaller otherwise.

Based on these comments, we define λj = m′′j (Dj), recalling thatm′′j is the matching
function for rj at disparity Dj according to Equation (3.5). Also, we define ωij = e−δij/γc ,
where δij is the similarity distance, defined as the Euclidean distance between the mean
RGB values of ri and rj, andγc is a threshold that control the decay of the color distance.
According to experimental results, we have selected γc = 10.

Figure 3.4 illustrates the refinement process. Notice that each triangle has its own
set of 3 corners, with the z coordinate being represented by the disparity value. After
the refinement, the corners of each triangle are changed according to their matching costs
and color similarity of the neighboring triangles.

Figure 3.4 – Vertices and corners examples. a) Triangles viewed in xy plane, with corners in
red. b) Triangles viewed in a perspective angle, with corners in green. c) Corners after the
refinement step.
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3.5 Generation of the 3D Mesh with Texture

After the refinement step, the three corners of each 2D triangle in the mesh encode a
disparity value, leading to a piece-wise linear disparity map. The next step of the proposed
approach is to build a full 3D triangular mesh and assign textures to the triangles, so that
view synthesis/interpolation reduces to a simple rendering problem (probably running on
a GPU).

We assume that each vertex in the mesh is either related to a single object, pre-
senting a continuous variation of disparity, or is located at the boundary between two
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objects, where discontinuities are allowed2. More precisely, let us consider the set of cor-
ners values C(v) = {d1, d2, ..., dNc} related to a given vertex v. If a v is located at a
disparity discontinuity, some of the triangles that share v will belong to the foreground
(larger disparity) and others to the background (lower disparity), so that the difference
between the maximum and minimum disparity values tends to be large. On the other
hand, continuous regions tend to present low discrepancies in the disparity values (ide-
ally they should be the same, but errors in the stereo matching process introduce noise).
Based on these observations, a binary function o(v) that identifies if v is classified as being
in discontinuous disparity region is defined as

o(v) =

 0, if max{C(v)} −min{C(v)} < Td
1, otherwise

, (3.8)

where Td is a disparity threshold. If o(v) = 0, all the corner values are set to the mean
disparity value. Otherwise, they are clustered into two disparity values based on Otsu’s
adaptive threshold (OTSU, 1979), and the disparities of the corners at v are set to either
one of the two cluster centers based on a nearest neighbor approach.

At the end of this process, all the corners at the same vertex either present the same
disparity (we call it vertex type 1), or are clustered in exactly two disparity values (vertex
type 2). We perform an exhaustive scan of all the edges of the triangular tessellation,
and check the status at their vertices. If both of them are type 1, nothing is done, since
the mesh is already continuous at both extremities. If one of the vertices is type 1 and
the other type 2, we simply create another triangle (orthogonal to the image plane) by
splitting vertex type 2 into two other vertices (such that the corners at each new vertex
present the same disparity), and create a new edge between them. If both vertices are
type 2, we split each of them into two new vertices (similarly to the previous case), and
connect them with three new edges (generating two new triangles, both orthogonal to
the image plane. Figs. 3.5(a)-(c) illustrate these three possibilities, respectively. In these
figures, the thick blue edge is under consideration, a red dot indicates a type 1 vertex,
and a green square a type 2 vertex. The dashed lines indicate the new inserted edges, so
that new triangles are created.

The final step consists in assigning a texture for each triangle. For the regular
triangles related to the initial 2D tessellation of the image domain, their texture can be

2Although we acknowledge that a vertex may be at the junction of three more objects as well, we do
not deal with those situations
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directly obtained from its projection onto the reference image. However, this process
does not work for the orthogonal triangles that were created to complete the mesh, since
they are not visible in the reference image. Fortunately, they are usually visible from the
adjacent cameras, from where their texture can be retrieved. More precisely, we project
these triangles to the closest cameras at the right and left of the reference camera, and
extract the texture from the camera where the triangle is visible (it is visible only at the
right or only at the left camera).

Figure 3.5 – Completion of the 3D mesh. The thick blue edge is under consideration, red dots
indicate type 1 vertices, and green squares type 2 vertices. The dashed lines indicate the new
inserted edges. (a) Type 1 - type 1 vertices (no triangle created); (b) Type 1 - type 2 vertices
(one triangle created); (c) Type 2 - type 2 vertices (two triangles created).

(a) (b) (c)

3.6 Experimental Results

Table 3.1 – List of parameters. They were fixed for all the tests on this thesis, except for NC

which depends on the test.

Parameter Value Description
NC – Number of cameras. When not explicitly indicated on the test, it is used 5 cameras.
Pmin 9 Points density on the image edges
g 6 Points density in borderless regions
γc 10 Decay of the color distance
Td 1.5 Disparity threshold to merge corners

This section will present the experimental results regarding the 3D mesh genera-
tion, which includes the segmentation of the image into triangular regions, the disparity
map estimation and generation of the final textured mesh. The results regarding the use
of this approach for view interpolation will be shown in Chapter 5. All the experiments
were run using the parameters as in Table 3.1.
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The first experiment is related to the edge detection algorithm used in our trian-
gular domain segmentation. In Figure 3.6 we can see a comparison between the resulting
edge maps from (CANNY, 1986) and (DOLLÁR; ZITNICK, 2013) for two different im-
ages. The Canny edge detector was able to retrieve some edges on the objects boundaries.
However, the Dollár and Zitnick (2013) solution was able to distinguish better the textured
areas from the objects boundaries.

The resulting meshes using both techniques can be seen in Figure 3.7. As a result of
having less detected edges from Dollár and Zitnick (2013), the respective mesh presented
a small number of triangles, which is good for alleviating matching ambiguities, but was
not able to correctly model some objects boundaries. The resulting disparity map and
view interpolation using both techniques were similar, so, for the sake of simplicity and
runtime, we choose to use the Canny detector.

Figure 3.6 – Edge detector comparison, with the original images on the left, the edges computed
using (DOLLÁR; ZITNICK, 2013) on the center, and on the right are the edges computed using
the Canny operator.

For the single frame disparity map evaluation, we use the standard and well known
Middlebury database (MIDDLEBURY, 2012), which can be seen on Figure 3.8. It contains
sets of accurately rectified images taken with the same camera moving along a fixed
baseline (i.e. exactly the same intrinsic camera parameters), with uniform illumination.
Also, they provide the ground truth data for some of the views, allowing a quantitative
evaluation of the estimated disparity maps.

Despite being very useful for quantitative evaluations and benchmarks, the Mid-
dlebury datasets are obtained with controlled and ideal conditions that are very hard to
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Figure 3.7 – Mesh comparison using different edge detectors. On the top left and top right are
the meshes computed using the edge detectors from (DOLLÁR; ZITNICK, 2013) and (CANNY,
1986), respectively. For better visualization, on the bottom of each top image it is a croped and
zoom portion of them.

Figure 3.8 – Middlebury dataset.

reproduce in real applications. In most stereo/multiview capture systems, each image is
acquired by a different camera, which may present slightly different intrinsic parameters.
Also, the camera array may not be perfectly aligned, so that the corresponding images
should be rectified before performing the matching procedure. In this work, we have also
used a linear array of 20 cameras (called Herodion array3), and show that the proposed
method performs well even in non-ideal conditions.

In the next experiment, we evaluate the effect of increasing the number of cam-
3The Herodion array generates a video stream from 22 synchronized uncompressed images operating

at 30 Hz on a single PC (BAKER; TANGUAY, 2006). The intrinsic and extrinsic parameters of all
cameras were obtained using the Caltech Camera Calibration Toolbox (<http://www.vision.caltech.edu/
bouguetj/calib_doc/>), and images were rectified via software at the end.

http://www.vision.caltech.edu/bouguetj/calib_doc/
http://www.vision.caltech.edu/bouguetj/calib_doc/
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eras on the quality of the disparity map. Figure 3.9 shows the disparity maps obtained
for the Teddy dataset (Middlebury) using a varying number of cameras, along with the
MSE (Mean Squared Error) values. As it can be observed, the disparity map with 5
cameras presents a smooth disparity variation within the same object while maintaining
the boundaries between objects clear, and also presenting progressively a smaller MSE
value as the number of views increase.

A similar tendency can be noticed for the Herodion array, as illustrated in Fig-
ure 3.10. In this example, we used 3, 5, 9, 13 and 17 cameras to produce the disparity
map. With only three cameras, the areas with a periodic pattern, such as the checker-
board pattern on the tennis racket and along the curtains, are very difficult to correctly
estimate the disparity since they produce several local maximum values at different dis-
parity values. However, as we add more cameras, we get more redundant information
and the quality in the disparity map improves dramatically in those problematic areas.
Unfortunately ground truth is not available for the Herodion dataset, so that the MSE
can not be computed.

Figure 3.9 – Disparity maps and MSE errors for the Teddy sequence (MIDDLEBURY, 2012)
using different number of cameras (NC) with resolution 450×375.

ground truth 50.29, NC = 3

41.61, NC = 4 39.09, NC = 5
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Figure 3.10 – Examples of disparity maps for the Herodion dataset. (a) Reference image
(752×480 pixels) (b)-(e) Disparity maps using 3, 5, 9, 13 and 17 cameras, respectively.

(a) (b) (c)

(d) (e) (f)

Although the main goal of this thesis is the generation disparity maps that are
suitable for view interpolation, we show in Figure 3.11 a qualitative (visual) and quan-
titative (MSE) comparison of our results with competitive approaches for some of the
multiview sequences in the Middlebury database. We show a similar comparison for
another multiview dataset acquired with the Herodion array, illustrated in Figure 3.12.
Software implementations of (YANG, 2015)4, (RHEMANN et al., 2011)5, and (MOZE-
ROV; WEIJER, 2015)6 were provided by the authors, and the tests were performed using
the default parameters as in their respective papers. Results from (ZITNICK et al., 2004)
were retrieved from the Middlebury site.

We can observe in Figure 3.11 that the proposed approach does not outperforms
its competitors quantitatively in the Middlebury datasets. Indeed, pixel-wise approaches
have a better capability of preserving thin and curved objects than the proposed approach,
since the triangulation procedure may not be accurate enough in such regions. It is
important to note that our disparity maps could also be post-processed to achieve better
results (in terms of MSE). For the sake of illustration, we filtered our disparity maps using
a weighted median filter (ZHANG; XU; JIA, 2014), and Figure 3.13 shows that this simple
approach can greatly improve the results (particularly in the defintion of the contours and
small structures). However, this post-processing stage is applied in a pixel-wise manner,

4<http://www.cs.cityu.edu.hk/~qiyang/publications/cvpr-12/code/>
5<http://www.ims.tuwien.ac.at/research/costFilter/filterCode.zip>
6<http://www.cvc.uab.es/~mozerov/Stereo/>

http://www.cs.cityu.edu.hk/~qiyang/publications/cvpr-12/code/
http://www.ims.tuwien.ac.at/research/costFilter/filterCode.zip
http://www.cvc.uab.es/~mozerov/Stereo/


47

destroying the domain triangulation. For that reason, we do not use any image-based
post-processing in the remainder of this thesis.

However, it presents a more coherent result for the Herodion dataset: the results
of both (YANG, 2015) and (RHEMANN et al., 2011) present discontinuities in the racket
region and very bad disparity estimates at the bottom-left portion of the image. We
believe that the quality degradation of the disparity maps produced by (YANG, 2015;
RHEMANN et al., 2011) for poorly rectified images is due to the pixel-wise disparity
computation, while the proposed approach is based on regions. And the disparity map
from (MOZEROV; WEIJER, 2015) managed to present better results due to their energy
minimization approach. Furthermore, it is important to emphasize that our main goal is
view interpolation, and the generation of the disparity map is just an intermediate step.
In Section 5.3.1 we show experimental results of view interpolation, and show that even
though we do not produce the best disparity maps (in terms of MSE), our synthesized
views present higher PSNR values than competitive approaches.

In Figure 3.14 we can see the impact of the resolution of the input images on the
quality of the disparity map. As expected, by using images with higher resolution the 3D
mesh is able to better represent the finer objects of the scene, which generates a better
quality disparity map.

Finally, an illustration of the textured 3D mesh for the Cones dataset can be seen
in Figure 3.15. More precisely, this figure was generated by simply rendering the 3D mesh
with a synthetic camera at two different locations (and not aligned with the baseline of
the cameras) from the original view. As expected, a novel view at any desired position
can be achieved by simply using the textured 3D mesh of a single view. It can be observed
that the use of orthogonal triangles to fill the mesh (images on the right) indeed generate
views without holes, despite the creation of some artifacts (due to the fact that depth
discontinuities are filled by "flat" regions). More examples of 3D meshes for the Teddy

and Baby1 datasets can be seen in Figures 3.16 and 3.17. The combined use textured
3D meshes relatives to different reference cameras to produce interpolated views will be
tackled in Chapter 5.

The proposed approach was implemented in C++, and code was not optimized.
All the tests were run on a Core i5 2.2GHz processor (notebook version), 3GB RAM and
Windows 7 operating system. The triangular tessellation takes about 0.1s for a typical
450 × 375 image (Middlebury). The stereo matching with refinement takes 0.5s using 3
cameras (reference + left + right) and 0.95s using 9 cameras in our C++ code, so that
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adding more cameras has little impact on execution time. Using 3 cameras and the same
disparity range (30 pixels) for 752×480 images, the processing time linearly increases to
1.35s (2.29× slower using 2.14× more pixels) with a small memory increase, since most of
the memory is allocated to the matching costs. The 3D mesh generation step takes 0.1s.

Using the code provided by the authors, the average execution time of (YANG,
2015) for a 450 × 375 image was about 0.8s. Using our own partial implementation
of (ZITNICK et al., 2004), the run time for the initial disparity map and refinement
process is approximately 40s. The runtime of the C++ implementation of (MOZEROV;
WEIJER, 2015) provided by the authors is approximately 90s for the Middlebury dataset.
The MATLAB implementation of (RHEMANN et al., 2011) provided by the authors has
a running time of approximately 500s, but they mention an execution time of 0.065s using
their CUDA implementation on a high end GPU.

3.7 Chapter Conclusions

This chapter presented all the steps needed to generate a textured 3D mesh for
every rectified view (camera) along a linear array. The first step consists in segmenting the
reference image into triangular regions by densely populating vertices along the images
edges, since the objects boundaries are usually related to the image edges. The remaining
vertices are distributed within the image according to the Scale Map, which measures the
local image complexity. With those vertices, a Delaunay triangulation is performed, and
the triangular regions are found.

Afterwards, a disparity value is associated to each triangle is obtained by using a
region matching technique. This piece-wise disparity is then refined to achieve sub-pixel
accuracy and generate a smoother disparity map, by analyzing the color similarity of
adjacent triangles. Finally, the mesh is closed by considering the disparity differences at
the vertices, and texture is assigned based on the content of the reference region and its
neighboring views.
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Figure 3.11 – Top row: ground truth. Other rows: disparity maps with corresponding MSE
using (YANG, 2015), (RHEMANN et al., 2011), (ZITNICK et al., 2004), (MOZEROV;WEIJER,
2015) and the proposed approach, respectively. We used 9 cameras (camera 0 through 8) for
the Cones (450×375 pixels), Venus (434×383 pixels) and Teddy (450×375 pixels) datasets and
all 5 cameras for the Tsukuba (384×288 pixels)) dataset.

28.11 58.80 10.59 133.03

23.20 45.96 9.49 133.22

132.22 142.91 9.49 16.82

23.42 22.23 8.34 98.77

80.01 38.59 18.72 279.73



50

Figure 3.12 – (a) Reference image. (b)-(e) Estimated disparity maps using Yang’s, Rhemman’s,
Mozerov’s and the proposed approaches using 17 cameras, respectively.

(a) (b)

(c) (d) (e)

Figure 3.13 – Comparison between disparity maps with and without post-processing. On top
row are the disparity map without post processing, and the bottom using the weighted median
filter post processing.

80.01 38.59 18.72 279.73

47.42 31.71 14.06 215.45
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Figure 3.14 – (a) Reference image. (b) Disparity ground truth. (c) Estimated disparity for the
450×350 pixels dataset. (d) Estimated disparity for the 1800×1500 pixels dataset.

(a) (b) (c) (d)

Figure 3.15 – 3D textured mesh for the Cones dataset rendered using two different viewpoints
for the synthetic camera (top and bottom). On the left column are the mesh rendered without
orthogonal triangle, and on the right column are the meshes rendered with the orthogonal
triangles.
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Figure 3.16 – 3D textured mesh for the Teddy dataset rendered using two different viewpoints
for the synthetic camera (top and bottom). On the left column are the mesh rendered without
orthogonal triangle, and on the right column are the meshes rendered with the orthogonal
triangles.
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Figure 3.17 – 3D textured mesh for the Baby1 dataset (from Middlebury) rendered using two
different viewpoints for the synthetic camera (top and bottom). On the left column are the
mesh rendered without orthogonal triangle, and on the right column are the meshes rendered
with the orthogonal triangles.
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4 TEMPORAL UPDATE OF THE 3D MESH

In the last chapter, a technique to generate a textured 3D mesh that models the
scene that can be use for view interpolation process was proposed. However, this approach
is not suitable for videos, since a new 3D mesh must be created for each new frame, which
tends to present flickering in the interpolated video (as in most frame-by-frame methods).
In fact, imposing temporal coherence to methods based on a domain triangulation is not
trivial, since the mesh should be updated in time, including the addition and removal of
triangles.

One key aspect in imposing temporal coherence is to identify which pixels/regions
are “related” at different frames. In this work, the correspondence of triangular regions
along time is achieved by dynamically adapting the 3D mesh, instead of generating a
new one for each frame. This ensures that the shape of the objects will be coherent, also
allowing the computation of a temporally coherent disparity map, which will generate an
interpolated view with fewer temporal artifacts.

An overview of the complete pipeline of the proposed approach is presented in
Algorithm 1, with each step indicated with their respective sections. The first step consists
in deforming the mesh from the previous frame by first moving, and then removing and
adding vertices. The removal and adition processes aim to model the occlusion and
disocclusion that occurs on the scene. With the mesh updated, the disparity is calculated
exactly as in the previous chapter, by region matching and then aggregating the costs.
On the current step we have a piece-wise disparity, since the disparity refinement process
is not yet done. The disparity of each time-persistent triangle is then calculated using
an HMM-like procedure that uses the past disparity information. A propagation scheme
(Disparity Filtering) is used to improve the initial estimative of new or recent triangles,
and the refinement process is done. And finally a subpixel filtering process based on the
Kalman Filter is used to generate the disparity map.

4.1 Triangular Mesh Deformation

The proposed approach consists in first updating the 2D domain triangulation
using only three vertex-based operations: translation, deletion and addition. Moving
vertices relates to objects that are either moving or deforming; deletion removes vertices
in areas that are being occluded; and adding vertices is related to disocclusions. Those
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for every new frame f do
Deform previous mesh (Sections 4.1.1 and 4.1.2);
Add vertices (Section 4.1.3);
Region Matching (Section 3.2);
Cost Aggregation (Section 3.3);
HMM Disparity (Section 4.2.1);
Disparity Filtering (Section 4.2.2);
Disparity Refinement (Section 3.4);
Kalman Disparity (Section 4.2.3);
3D Mesh Creation (Section 3.5);

end
Algorithm 1: Pipeline of the proposed technique.

operations are performed according to Algorithm 1 and will be explained next.

4.1.1 Moving Vertices

Since our domain triangulation approach is guided by the vertices, motion/deformation
of triangles will be based on vertex displacements, which can be estimated using a particle
tracker. One particular characteristic of the adopted triangulation scheme is that some
(or several) edges are expected to lie along image edges. In those cases, neither color
nor gradient are constant along consecutive frames, which are characteristics that several
state of the art particle trackers (e.g. Sundaram, Brox and Keutzer (2010), Sand and
Teller (2008)) explore to identify “good” particles to track. In fact, such trackers tend to
discard particles along edges, since they are unreliable. In our application, however, it is
crucial to keep (and track) particles along image edges, since they may potentially relate
to disparity discontinuities, which should be detected and kept.

In this work, we used a modified version of the tracker from Sundaram, Brox and
Keutzer (2010). Such tracker is simple to compute but produces good results in practical
video sequences when the optical flow is accurate, and our modification adds disparity
information to guide the tracking process. The first step consists in computing the optical
flow using Brox et al. (2004), which is fast and accurate. Then, a binary mask Mt(p) that
indicates if pixel p presents a “reliable” optical flow value is computed by cross-checking
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the direct and reverse flows as well as color similarity:

Mt(p) =


1, if

∥∥∥ut
t−1(p) + ut−1

t

(
p + ut

t−1(p)
)∥∥∥ > To

1, if
∥∥∥It−1(p)− It

(
p + ut

t−1(p)
)∥∥∥ > Tc

0, otherwise

(4.1)

where p is the location of pixel p. Here, ut
t−1(p) is the (direct) optical flow from frame

t − 1 to t at location p, ut−1
t (p) is the (reverse) optical flow from frame t to t − 1, and

To is a distance threshold experimentally set to 0.25. Also, It(p) is the RGB color vector
of p at frame t, and Tc = 20 is a color threshold, defined experimentally. To account for
uncertainties in the cross-checking process, a morphological dilation operator with is a
circular structural element (radius experimentally set to 3) is applied to Mt(p), obtaining
an over estimation of the optical flow errors. Since it is better to classify a good vertice as
bad than the opposite, this dilation operation produces and over-estimation of bad pixels,
which reduces the risk of propagating a bad vertex that would generate a bad quality
mesh.

Besides the optical flow, the binary function o(v) defined in Equation (3.8) indicates
if each vertex of the 3D mesh lies on a disparity discontinuity or in a smooth region. This
information is important, since objects that share a boundary (i.e. lie in a discontinuity)
may have distinct motion patterns, which intrinsically affects the optical flow. The final
step consists in simply updating the position of each vertex v from frame t− 1 to frame t
based on the optical flow and the “reliability” of each tracked vertex. More precisely, the
update is given by

vt = vt−1 + ut
t−1(v̂t−1), (4.2)

where vt is location of vertex v at frame t. The value of v̂t−1 depends on the tracking
status of v at frame t− 1: if it was considered as reliably tracked, then v̂t−1 = vt−1, i.e.,
the location of v at frame t − 1; otherwise, the location of a neighboring vertex in the
mesh that was reliably tracked and presents the closest disparity is used. More precisely,
v̂t−1 is the location of a vertex w at frame t− 1 given by

w =


v, if ot−1(v) = 0 ∧Mt(vi) = 0
argmin
s∈V (v)

{|dt−1(s)− dt−1(v)|}, otherwise , (4.3)

where dt−1(s) denotes the foreground disparity of vertex s at frame t− 1. Recall that at
disparity discontinuities (o(s) = 1), there are two disparity values associated with the 2D
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vertex s: in this case, the foreground disparity used in Equation (4.3) is the largest value.
Also, the set V (v) is defined as

V (v) = {w ∈ Vt−1(v) |Mt(w) = 0 ∧ ot−1(w) = 0}, (4.4)

with Vt−1(v) being the set of all vertices that share an edge with v at frame t − 1. It is
important to note that typical particle trackers (e.g. Sundaram, Brox and Keutzer (2010))
tend to remove/ignore particles along image edges, since neither color nor gradient tend
to remain stable in time along the boundaries of moving object. With our modification,
however, vertices lying along disparity discontinuities are still tracked, inheriting the mo-
tion from reliably tracked neighbors. To avoid drifting of such vertices along time (since
their actual motion is typically not the same as the neighbors), an additional refinement
step is applied at vertices v for which ot−1(v) = 1: the Canny edge map is computed for
frame t, and these vertices are attached to the closest image edge within a circular region
with radius Te (set to 8 pixels based on experiments), since disparity discontinuities tend
to arise at image edges.

The motion of all vertex locations from frame t − 1 to t intrinsically leads to
an updated mesh, considering the same edges in the triangulation. Moving vertices (and
triangles) can correctly maintain the triangulation of a static background as well of moving
or deforming objects. However, problems may appear in occlusions/disocclusions, since
some vertices need to be deleted or created, as explained next.

4.1.2 Deleting Vertices

Occlusions are common in video sequences, and they are caused either by the
movement of objects or the camera (or both). Since occluded regions are no longer visible
by the camera, the corresponding vertices/triangles should be deleted/updated. This
deletion process begins by firstly identifying the vertices (particles) that are likely to be
within an occluded region, and then removing them along with their connected edges in
the mesh.

Typically, an occluded particle can be identified by significant color variation in
time, or inconsistent optical flow cross-check, which could be detected by Equation (4.1).
However, vertices along image edges, which are important for the 3D mesh, also tend
to be detected as occluded using Equation (4.1). On the other hand, the vertex update
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strategy summarized by Equations (4.2) and (4.3) works well for tracking particles along
image edges, but may also propagate an occluded vertex, since it might be guided by a
neighboring non-occluded vertex. The proposed method for identifying occluded vertices
considers jointly the results of Equations (4.1), (4.2) and (4.3). More precisely, the set Ot

of occluded vertices from frames t− 1 to t is given by

Ot = {v|o(v) = 0 ∧ (Mt(v) = 1 ∨ ‖It(vt)− It−1(vt−1)‖ > Tc)}, (4.5)

where It−1(vt−1) and It(vt) are the RGB color values of vertex v at frames t − 1 and t,
respectively, Tc is the same color threshold used in Equation (4.1). In other words, vertices
that are not located at a disparity discontinuity and either change their color above a given
threshold or have an inconsistent optical flow cross-check value are detected as occluded,
and they are deleted from the mesh (as well as all the triangles that are connected to it).

Another criterion for deleting vertices is based on vertex distances: due to temporal
motion, two (or three) neighboring vertices of the same triangle may get too close. In
these cases, the corresponding triangles tend to be very small (in area) or highly deformed,
which is not adequate for the region-based stereo matching process. To cope with this
situation, for every pair of vertices that are close enough given a threshold (experimentally
set to 0.6Pmin pixels), we remove the one that does not lie at a disparity discontinuity. In
case neither of them lies at a disparity discontinuity, the one with the smaller disparity is
removed, aiming to maintain the shape of foreground objects.

4.1.3 Adding Vertices and Retriangulating the Mesh

After translating and removing vertices, some regions may contain a low density
of vertices (mostly due to disocclusions). To cope with this issue, the set of vertices that
remained from the previous frame are kept, and the scale map (used for obtaining the
vertices in the first frame, as explained in Section 3.1) is explored to add vertices based
on the local image complexity.

Since the main goal of temporal coherence is to keep track of triangles in time,
the new triangulation should try to keep the triangles in the previous frame for which
all three vertices remained in the current frame. However, some triangles may become
very thin (elongated) due to the motion of vertices. To avoid these irregular triangles,
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the well-known compactness measure (BOGAERT et al., 2000)

C(r) = perimeter2(r)
area(r) (4.6)

is computed for each triangle r with three correctly tracked vertices. This value is min-
imal for an equilateral (ideal) triangle, so that triangles for which C(r) is above a given
threshold (set to 2 in this work) are considered irregular, and the corresponding edges are
removed from the triangulation. Finally, a constrained Dalaunay triangulation (CHEW,
1987) with the current vertices and remaining edges is applied, leading to the final 2D
domain triangulation in the current frame.

An example of the mesh deformation scheme for a synthetic video sequence is
shown in Figure 4.1. Figure 4.2(a) shows the 2D mesh at frame t− 1, highlighting some
vertices (in black) that are occluded at frame t. Figure 4.2(a) shows some added vertices
(blue) at frame t, as well as some thin elongated triangles due to vertex motion. The final
2D mesh is shown in Figure 4.2(c). In this example it can be seen the importance of the
use of Equation 4.6 in order to avoid a triangulation with very deformed triangles.

Figure 4.2 illustrates an example comparing the meshes in two consecutive frames
using the single-frame approach from Chapter 3 and the proposed 3D mesh temporal
update scheme for a real, multiview sequence (Hall2 dataset). Even for two consecutive
frames with little change on the scene, the triangulation from the single-frame approach
present considerable changes on the triangulation. However, the proposed approach was
able to maintain most of the previous triangles, even along the object boundaries where
the optical flow tends to fail. More results (including videos) of the temporal evolution of
meshes can be seen on the authors webpage at <http://inf.ufrgs.br/~gpfickel/phdthesis>.

4.2 Temporal Coherence of the Disparity Maps

In order to enforce a smooth variation of the disparity value of a given triangle
tracked in time, we propose the following procedure: i) first to use a Hidden Markov
Model (HMM)-like approach to enforce the disparity coherence on the initial disparity
estimation of each triangle; ii) then, apply a spatial filter within the disparity values to
propagate the temporal information of each triangle to their neighbors; and finally iii)
apply a Kalman filter on each vertex of every triangle to enforce spatio-temporal continuity
along the vertices of the 3D mesh.

http://inf.ufrgs.br/~gpfickel/phdthesis
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Figure 4.1 – Example of the mesh deformation. a) Mesh at frame t − 1, black dots indicate
vertices to be occluded in the next frame. b) Mesh at frame t based on vertex displacement,
removal and addition (blue dots). c) Final 2D mesh after removing thin triangles.

(a) (b) (c)

Figure 4.2 – Example of meshes within consecutive frames using the Hall2 dataset. The
left column shows the meshes using the single-frame approach from Chapter 3, and the right
illustrates the meshes using the proposed temporal updating 3D mesh. The meshes on top row
are generated from frame 15, and the bottom row using frame 16.

(a) (b)

(c) (d)
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4.2.1 HMM Disparity Estimation

In the (intermediate) piece-wise representation of the disparity map, each triangle
presents a constant (integer) disparity value based on the aggregated matching cost m′′d
provided by Equation (3.5). If a triangle r persists in time, such disparities can be
considered observations ot at frame t, and Bayesian filters can be used to infer the actual
disparities dt. Among the several possibilities, Hidden Markov Models (HMMs) seem
a good choice, since they can handle both adherence to observed values and temporal
continuity at the same time in a simple manner.

For a given triangular region r that exists for T frames, with a sequence of observed
values O = o1 o2 · · · oT , the goal is to find the sequence of estimated disparities (states)
D = d1 d2 · · · dT that maximize the posterior probability

P (D|O) = P (d1)P (o1|d1)
T∏
t=2

P (dt|dt−1)P (ot|dt), (4.7)

where dt ∈ {dmin, ..., dmax} is the state at frame t (dmin and dmax are the minimum and
maximum disparity values in the search range), P (dt|dt−1) are the transition probabilities
and P (ot|dt) is the observables distribution per state.

To enforce temporal coherence, the transition probabilities should penalize large
disparity changes in adjacent frames. A simple way to enforce this behavior is to choose
a discrete Gaussian probability

P (dt|dt−1) = 1
Z

exp
(
−(dt − dt−1)2

2σ2
d

)
, (4.8)

where Z is a normalization factor and σd controls how tight temporal consistency is. This
term is defined experimentally as σd = 0.05Ns, with Ns = dmax − dmin + 1 being the
disparity search range used in the matching process (which is equal to the number of
states).

The model should also allow larger disparity changes when there is fast variation
in the depth axis (e.g. an object getting closer to the camera). In the HMM framework,
that can be achieved by choosing an adequate observable probability model P (ot|dt). Note
that when the matching costs m′′(d) used to obtain the observables ot present a sharp
peak, it means that the observed value ot presents a better match than all other possible
disparities, resulting a reliable match (i.e., the actual disparity dt tends to be close to ot).
On the other hand, if m′′(d) is approximately flat, it means that all possible disparities
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present similar match values, and observed disparity ot is typically not reliable.
Also, the optimal state sequence D can be computed with O(TN2

s ) computations
using the Viterbi algorithm (RABINER, 1989). This algorithm, based on dynamic pro-
gramming, requires the knowledge of all state transition probabilities P (dt|dt−1), given by
Equation (4.8), and also the evaluation of P (ot|dt) for the observed values ot (t = 1, ..., T ).
Hence, in practice, the full observables distribution is not needed, and we propose to use
P (ot|dt) = f(dt) = m′′(dt), so that P (ot|dt) is large for dt = ot when ot is obtained with
high confidence (which allows fast state transitions) and lower otherwise.

4.2.2 Disparity Filtering

The proposed HMM-based approach indeed reduces temporal flickering in the
piece-wise disparity map for triangles that persist in time. However, the triangular mesh
deformation described in Section 4.1 also adds triangles, which have no temporal per-
sistence when they are created. Since it is a fair assumption that triangles that exist
along several frames present a more accurate disparity value due to the temporal cohe-
sion process, we propose to apply a spatial filtering within the regions to propagate the
temporal information to these recently created regions. The filtered disparity d′(r) of a
given triangle r is given by

d′(r) =
∑
s∈R(r) d(s)wb(r, s)∑

s∈Rwb(r, s)
, (4.9)

where R(r) = {s | γrs ≤ Ts} is a neighborhood of r based on a distance threshold Ts (set
experimentally to 128), d(s) is the unfiltered disparity of a region s ∈ R(r). The term
wb(r, s) is the filtering weight given by

wb(r, s) = exp
(
−δrs
σc
− γrs
σd
− σa
Nf (s)

)
, (4.10)

recalling that δrs and γrs are color and spatial distances, as used in Equation 3.4. Also,
Nf (s) is the age of s (number of frames where s existed), and σc, σd and σa controls the
decay of those terms (set experimentally to σc = 10, σd = 25, σa = 5). Although R(r)
could be based on the MST, as the aggregation step described in Section 3.3, we noticed
that smaller neighborhoods suffice for the filtering step. It is important to note that it is
easy to obtain R(r) based on the data structure that stores the mesh.
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By using this filtering process, we propagate the disparity information of time-
persisting triangles to newly created ones within their neighborhoods. This process en-
sures that even in highly dynamic scenes where several triangular regions are removed
and added, the temporal coherence procedure can improve the disparity estimation of all
the image, including recently created triangles.

4.2.3 Kalman Filter Disparity Estimation

As shown in Algorithm 1, a refinement process is applied after the Disparity Fil-
tering in order to achieve a smoother disparity map with sub-pixel representation. As
described in Section 3.4, such process adjusts the disparity values at the corners of the 2D
mesh so that similar adjacent triangles should have similar disparity values in the corners
of the connecting vertices, leading to a piece-wise linear representation of the disparity
map. However, the refinement process applied independently for each frame may not lead
to a temporally coherent disparity map, so we add another stage to enforce temporal
smoothness on the corners of each triangle.

Since the disparity values at the corners are real-valued, instead of using an HMM-
like procedure as in Section 4.2.1, we chose a Kalman Filter to smooth the observed corner
disparities zct (r), obtaining the estimated (final) disparities dct(r) for corner c of triangle r
at frame t. The essence of the Kalman filter is to assume that the true state (disparity)
at time t is evolved from the state at t− 1 according to

dct(r) = Ft(r)dct−1(r) + wt(r), (4.11)

where Ft is the proportionality constant in the linear state transition model and wt(r) ∼
N (0, Qt(r)) is the Gaussian process noise with variance Qt(r). In out context, Ft is
set to 1 to enforce temporal consistency. As for the variance of the Gaussian noise, if
Qt(r) is small, the state (disparity) tends to be kept constant, yielding more temporal
smoothness. On the other hand, larger values for Qt(r) allow wider state transitions,
which is good when there is motion in the depth axis, or during occlusions/disocclusions.
In such situations, the appearance of the corresponding triangles tends to change. Based
on these considerations, we set the variance Qt(r) as

Qt(r) = exp
(
− σQ
δ(rt, rt−1)

)
, (4.12)
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where δt,t−1 is the RGB distance between the mean colors of region r at frames t and t−1,
σQ controls the decay of this function, with value experimentally set to 100. Another
important part of the Kalman Filter is the relation between the observed variable zct (r)
to the estimated state dct(r), given by

zct (r) = Htd
c
t(r) + vt(r), (4.13)

where Ht(r) is the constant of the linear observation model, and vt ∼ N (0, Rt(r)) is the
Gaussian observation noise. In our problem, Ht(r) = 1 so that the state is expected to be
the same as the observation. The process noise wt(r) is associated with the confidence of
the observation: when Rt(r) is small, the state tends to be close the the observation, while
wider fluctuations may arise when Rt(r) is large. Similarly to the HMM-like modeling
shown in Section 4.2.1, a higher confidence is expected when the plot of the cost function
m′′r,t for the corresponding triangle r presents a sharper peak at the winning disparity.
Hence, the variance Rt(r) is defined as

Rt(r) = exp
(
−
m′′r,t
σR

)
NR, (4.14)

where σR controls the decay of this exponential. According to our experiments, we defined
σR = 0.01 and NR = 10.

The complete pipeline for imposing temporal coherence to the estimated disparity
maps is illustrated in Figure 4.3. As it can be observed, results get gradually better
from the initial disparity estimation at frame t (Figure 4.4(b)) to the final Kalman Filter
(Figure 4.4(f)). In fact, the improvement achieved by using the Kalman Filter is difficult
to notice based on a single frame, but it helps reducing temporal flickering and produces
better quality interpolated video sequences in all the datasets used. More results regarding
the view interpolation process can be seen in Section 5.3.2.

An example of disparity estimation in time with and without (i.e. using the frame-
wise approach described in Chapter 3) temporal coherence is illustrated in Figure 4.4.
More precisely, we chose a single background pixel (marked in blue) in the BookArrival
dataset, which gets occluded by a moving person who enters from the right, and then
disoccluded (as shown in the top row of Figure 4.4). The estimated disparities are shown
in the plot on the bottom. It is clear that the single-frame approach presents noisier
disparity estimation, while the use of the temporal information allowed to both generate
a smooth disparity within time while modelling abrupt disparity changes that occur due



65

Figure 4.3 – Temporal disparity estimation steps. (a) Final disparity map at frame t− 1. (b)
Initial disparity map at frame t. (c) Disparity map after the HMM-like coherence. (d) Spatial
disparity filtering. (e) Refined disparity. (f) Final disparity map in frame t, after Kalman
Filtering.

(a) (b) (c)

(d) (e) (f)

to occlusions/disocclusions. In particular, it can be noticed that the disparity of static
objects, such as the wall on which the point is placed, should be constant. From frame
40 and onwards, it is clear that the proposed technique for videos presents a more stable
disparity estimation.

4.3 Experimental Results

In order to evaluate the proposed temporal coherent disparity estimation (3DMesh-
T), we compared with the previous single-frame approach (3DMesh) and with the solution
from Richardt et al. (2010), which presents a single-frame approach and a temporal coher-
ent version, respectively called DCBG and DCBG-T. We also tested with the technique
from Mozerov and Weijer (2015), called TSGO, which is a recent technique that does not
have temporal coherence, but was included in this comparative study because it currently
is the second best ranked technique in the Middlebury setereo evaluation benchmark as
of june 2015.

The proposed techniques, 3DMesh and 3DMesh-T, were implemented in C++,
using the OpenCV (BRADSKI, 2000) and CGAL (FABRI; CACCIOLA; WEIN, 2014)
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Figure 4.4 – Disparity plot of a single pixel in time. (a) First frame of the video, with the
chosen pixel marked with a blue cross. (b) Frame 26. (c) Frame 52. (d) Plot of the disparities
using the single frame approach and with temporal coherence. The sudden change of disparity
corresponds to a person passing in front of the observed pixel.

(a) (b) (c)
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Table 4.1 – List of parameters, which were fixed for all the tests on this thesis.

Parameter Value Description
NC 5 Number of cameras
Pmin 9 Points density on the image edges
g 6 Points density in borderless regions
γc 10 Decay of the color distance
Td 1.5 Disparity threshold to merge corners
To 0.25 Optical flow error threshold for the optical flow cross checking
Tc 20 Color threshold for the optical flow cross checking
Te 8 Radius of a circular search region; the vertex will be attached tothe closest

pixel border inside this region
σd 0.05Ns Controls how tight the temporal consistance is for the HMM, with Ns being

the disparity search range
Ts 128 Window size for the Disparity Filtering
σc 10 Controls the decay of the color similarity for the Disparity Filtering
σd 25 Controls the decay of the spatial distance term for the Disparity Filtering
σa 5 Controls the decay of the age term for the Disparity Filtering
σQ 100 Controls the decay of the variance Qt(r) on the Kalman Filtering
σR 0.01 Controls the decay of the variance Rt(r) on the Kalman Filtering
NR 10 Controls the magnitude of the variance Rt(r) on the Kalman Filtering

libraries for image processing and computational geometry, respectively. All the tests
were run with the parameters described in Table 4.1.

The evaluation of disparity maps for videos is a hard task since we did not find
any dataset with disparity ground-truth values. However, a qualitative evaluation can
be made since incongruencies in the scene 3D structure are usually apparent to the
viewer. Figures 4.5 and 4.6 illustrate the estimated disparity maps at a given frame
for the BookArrival and Hall2 video sequences, respectively. For example, the dispar-
ity estimation on the wall of the BookArrival dataset is a challenge for all the tested
techniques due to the lack of texture, however the use of temporal information helped to
alleviate this ambiguity. The same is valid for the ground and walls in the Hall2 sequence.
The results from the DCBGrid-T were not that good, especially in the regions related
to moving objects. This shows the limitation of simply aggregating the cost function
using a fixed window within the time, since it presents problems when dealing with pixels
that abruptly change the disparity. On the other hand, the TSGO technique presented
very good results, even without using the temporal information. However, it still had
some problems on the white wall from the BookArrival dataset and presented a blurrier
disparity map on the Hall2 dataset.

Figure 4.7 presents the results for the CarPark dataset, and it can be observed
that the disparity maps of both 3DMesh and 3DMesh-T had problems on correctly seg-
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Figure 4.5 – Results of disparity maps with temporal coherence on BookArrival database. (a)
Ground truth. The following pictures are disparity maps generated using: (b) DCBG-T, (c)
TSGO, (d) 3DMesh, (e) 3DMesh-T.

(a)

(b) (c)

(d) (e)
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Figure 4.6 – Results of disparity maps with temporal coherence on Hall2 database. (a) Ground
truth. The following pictures are disparity maps generated using: (b) DCBG-T, (c) TSGO, (d)
3DMesh, (e) 3DMesh-T.

(a)

(b) (c)

(d) (e)
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menting the persons. This problem occurs due to the highly textured area within their
silhouette, which makes the vertices distribution a difficult task. Since those vertices were
not correctly distributed along the boundaries of the persons, the resulting triangles and
disparities were compromised. This affected the temporal coherence process since the
propagation of vertices generated a more distorted mesh.

The evaluation of the temporal smoothness of the proposed approach and competi-
tive techniques is illustrated in Figures 4.8, 4.9, and 4.10. The results of 3DMesh-T proved
to be better than 3DMesh most of the tests, and comparable to competitive approaches.
In fact, for the Hall dataset shown in Figure 4.8, the proposed approach presented a
much more stable disparity on the low-textured walls. Figure 4.10 also illustrates that
our technique present a more stable disparity estimation, however it presents some oscila-
tion around the frames 100-150. On those frames there is a person passing, and as it can
be seen in Figure 4.7, there are some disparity problems around the persons.

For a video comparison between those disparity estimation techniques the reader
can access the authors webpage: <http://inf.ufrgs.br/~gpfickel/phdthesis/> .

4.4 Chapter Conclusions

This chapter presented a temporal update scheme for the initial 3D mesh of the
scene, which aims to impose temporal coherence to the estimated disparity map. This
process is done by applying the following operations: i) moving vertices ii) deleting vertices
and iii) adding vertices. With those three simple operations, it was possible to model
movement, occlusions and disocclusions, respectively. However, to track points within
the objects boundaries is a challenging task, which several particle trackers do not tackle.
It was then proposed to enhance the particle tracker from Sundaram, Brox and Keutzer
(2010) by adding the disparity information, which made possible to deal with those hard
to track particles that would be discarded otherwise.

Finally, temporal consistency was imposed to the adaptative mesh. Such coherence
starts with using and HMM-like filtering process for each triangle that persists in time. A
propagation scheme is used to improve the initial estimative of new (or recent triangles),
and a subpixel filtering process based on the Kalman Filter is used to generate the final
result.

http://inf.ufrgs.br/~gpfickel/phdthesis/
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Figure 4.7 – Results of disparity maps with temporal coherence on CarPark database. (a)
Ground truth. The following pictures are disparity maps generated using: (b) DCBG-T, (c)
TSGO, (d) 3DMesh, (e) 3DMesh-T.

(a)

(b) (c)

(d) (e)
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Figure 4.8 – Disparity plot of a single pixel in time. (a) First frame of the video, with the
chosen pixel marked with a blue cross. (b) Frame 65. (c) Frame 130. (d) Plot of the disparities
using 3DMesh, 3DMesh-T, DCBG-T and TSGO.
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Figure 4.9 – Disparity plot of a single pixel in time. (a) First frame of the video, with the
chosen pixel marked with a blue cross. (b) Frame 180. (c) Frame 380. (d) Plot of the disparities
using 3DMesh, 3DMesh-T, DCBG-T and TSGO.
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Figure 4.10 – Disparity plot of a single pixel in time. (a) Frame 100, with the chosen pixel
marked with a blue cross. (b) Frame 250. (c) Frame 350. (d) Plot of the disparities using
3DMesh, 3DMesh-T, DCBG-T and TSGO.
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5 VIEW INTERPOLATION

In a linear array with NC cameras, we apply the procedure described so far using
each of the cameras as the reference image, so that NC 3D triangular meshes of the same
scene are obtained. In theory, these models should be coherent, such that the projection
of any 3D model at the position of the actual cameras should yield exactly the image
produced by that camera. However, since we have to deal with several problems such as
noisy disparity estimates and limited view of the scene, it is very difficult to have a fully
coherent set of 3D models.

Since the problem of generating a single coherent 3D mesh from all the NC repre-
sentations is very difficult, we believe that combining the projections of the 3D models
directly in the image domain is much simpler and produces good visual results when com-
pared to other DIBR methods. In the following sections we present two different view
interpolation approaches depending on the number of cameras available, i.e. 2 cameras
or more.

5.1 View Interpolation Using Two Cameras

When using a linear array of cameras, the usual view interpolation process consists
in warping the views from the closest cameras to the synthetic view position. These images
are combined by weighing both images based on the distance of the synthetic view to the
neighboring cameras. More precisely, let 0 ≤ α ≤ 1 denote a normalized distance between
two adjacent cameras, such that α = 0 corresponds to the left view and α = 1 to the
right view. The interpolated view Is can be written as

Is(x, y) = (1− α′(x, y))IαL(x, y) + α′(x, y)IαR(x, y), (5.1)

where IαL and IαR are the warped versions of the left and right images to the desired
viewpoint. They are obtained by projecting each pixel (x, y) from the reference image
to the desired position by displacing them according to the estimated disparity maps
DL(x, y) and DR(x, y), and weighted by α and 1 − α, respectively. Also, α′(x, y) is the
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blending value for each pixel, given by

α′(x, y) =


α, if IαL(x, y) and IαR(x, y) are valid
1, if only IαR(x, y) is valid
0, if only IαL(x, y) is valid

, (5.2)

where a pixel (x, y) is considered valid from a given projection Iα (left or right) if it has
any information projected. Figure 5.1 illustrates an example of view interpolation, with
the projections from the left and right views combined into the final synthetic view. It is
important to notice that the orthogonal triangles are not capable of removing the black
region around the image boundaries (left or right, depending on where the virtual view
is), since they do not have correpondence with the other views. For those regions, only
one of the projections contributes to the synthetic view.

The typical alpha blending approaches generate a view with possibly several holes
(i.e. pixels without any projection), depending on the quality of the disparity map. This
problem usually is tackled with a hole filling technique, which usually are computationally
expensive if there is need for a more complex texture synthesis procedure. However, the
3D meshes obtained with the proposed approach generate a warped view without any
holes due to the use of orthogonal triangles. As explained in Section 3.5, by using this
technique we were able to achieve high quality interpolated views while avoiding the
common and computationally costly hole filling process.

5.2 View Interpolation Using Multiple Cameras

The previous solution is conceptually very simple and fast, but visual artifacts are
still noticeable, particularly along the boundary of the objects. Unfortunately, due to
errors in the disparity map, the projections may present artifacts.. Those artifacts can be
subdivided in the following 2 categories, illustrated in Figure 5.2:

1. wrong projection: with this error we have a projection value for the pixel pi, but it
is the projection of a wrong value.

2. ghost effect: also a wrong projection error, but it occurs only near the disparity
discontinuities due to the limitations of the disparity map to correctly represent the
objects boundaries. This is especially difficult when the boundaries are blurred and
not well defined, usually related to elements out of focus.
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Figure 5.1 – View interpolation using two views.
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Figure 5.2 – Examples of projection errors, with a blue marker around the important regions.
(a) Example of error type 1. Notice the projections of the white wall when should be the the
person hair. (b) Example of error type 2. Notice the erroneous clearer pixels within the green
background.

(a) (b)

One possible way to generate a better interpolated view is to use the projections
from all available cameras, such as shown in Figure 5.3, since they provide more redundant
information about the scene. And by using more views it is possible to not use the
orthogonal triangles to render the meshes, and let that other projections fill those holes
with their information. However, to combine them in a coherent manner to generate the
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final synthesized view is not trivial. In an ideal scenario, all projections should be very
similar, and the simple mean value would provide a good estimate of the synthesized
view. However, outlier pixels tend to arise due to occlusions and inconsistencies in the
computation of the disparity map, and they can corrupt the quality of the synthesized
view.

Figure 5.3 – View interpolation using multiple cameras. Ci is the projection from a given
camera i.

+ 

In order to compute the average of coherently warped pixels we propose the use
of a Weighted Vector Median Filter (WVMF) (ASTOLA; HAAVISTO; NEUVOS, 1990).
The WVMF is a vector processing operator that present a robust data smoothing ability
while preserving sharp edges in the signal, so it is appropriate for our application.

A given pixel p in the synthesized image domain can be reached by the warping
of different reference images in the multiview configuration. Let pi denote the RGB color
value of each pixel that projects to p, for i = 1, ..., NC . In a WVMF, the first step is to
compute the distance di from each vector to all others:

di = d(pi) =
∑
j 6=i
‖pi − pj‖, (5.3)
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where ‖ · ‖ is a vector norm (we used the L2 norm in this work). The WVMF is then
given by

ps = 1
NC∑
i=1

Wi

NC∑
i=1

Wipi, (5.4)

where the weight Wi = f(di) is computed based on a monotonically decreasing function
f applied to the distance values di. For inliers, the values of di tend to be smaller, and
they carry more weight in the computation. On the other hand, outliers are far from the
other samples, thus presenting larger distances di and a smaller weight.

In the context of view interpolation, it is natural that the actual views closer to
the synthetic viewpoint should be more similar to the desired synthesized image. Hence,
instead of considering only the color distances of the RGB pixel values to compute the
WVMF, we also include the physical distances between the synthetic view and each
existing view. More precisely, the proposed weights Wi used in Equation (5.4) are given
by

Wi = f(di, xi) = exp
(
− d2

i

2σ2
1
− x2

i

2σ2
2

)
, (5.5)

with σ1 = 3 and σ2 = 3
P(p) that control the Gaussian decay of the color distance and the

physical distance, respectively, with P(p) being the number of valid projections in point
p. Their values were defined based on experimental analysis.

As the number of cameras in the multiview setup increase, the number of holes
in the synthesized image decrease significantly, since the occlusions generated by a given
pair of cameras can be compensated by others. So we choose to refrain from using the
orthogonal triangles (defined in Section 3.5), since the projections of the other cameras
usually leads to a better result. As we can see in Figure 5.4, after using 4 views there
are only a few and small remaining holes, which could be easily filled filled with simple
image-based methods, such as the median filter. But since we have an estimative for the
holes, given by the orthogonal triangles, we use them only to fill the remaining holes after
combining all the projections.

5.3 Experimental Results

In general, quantitative evaluations of the disparity map estimation are based on
the direct comparison of the obtained maps with ground truth data (MIDDLEBURY,
2012). For a quantitative comparison of the view interpolation results, we use a subset of
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Figure 5.4 – WVMF view interpolation example of the view 3 from Bowling2’s Middlebury
database, without using orthogonal triangles to complete the 3D mesh. The used views in the
interpolation process are indicated below each interpolated view.

2 2, 4

2, 4, 1 2, 4, 1, 5

the cameras to estimate the disparity maps, and put the virtual camera at the locations
of the actual cameras that were not used to obtain the disparity maps (such cameras are
used only for validation purposes).

In the following section we will present the view interpolation results using the
single-frame 3D mesh approach from Chapter 3. And afterwards we present our results
for video view interpolation using the 3D mesh with temporal update from Chapter 4.

5.3.1 Single-Frame View Interpolation

In order to evaluate the results of our approaches, we compared visually and quanti-
tatively (PSNR) with the synthetic views produced by the MPEG view synthesis reference
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software VSRS 3.5 (TANIMOTO; FUJII; SUZUKI, 2009), using the disparity maps es-
timated by Yang (2015), Rhemann et al. (2011), and Mozerov and Weijer (2015), called
VSRS-nonlocal, VSRS-volume and VSRS-TSGO, respectively. It is interesting to note
that the execution time of VSRS 3.5 (without considering the computation of the dispar-
ity maps) is around 1s for a typical 442× 370 Middlebury image (2006 dataset), whereas
our 2 view interpolation process (without the 3D model computation) is approximately
0.015s and the multiple view interpolation is 0.3s on a Core i5 2.2GHz processor (notebook
version), 3GB RAM.

Figure 5.5 shows the ground truth images and the interpolated views produced
by our approach using 2 views and multiple views using WVMF, VSRS-nonlocal, VSRS-
volume and VSRS-TSGO for Middlebury datasets Baby3 and Bowling2 (MIDDLEBURY,
2012; HIRSCHMULLER; SCHARSTEIN, 2007)1, as well as for the Herodion dataset.
Also, a quantitative comparison in terms of the PSNR of the synthesized views for other
Middlebury datasets is presented in Table 5.1. As it can be observed, all synthetic views
are mostly coherent with the actual views for the Middlebury datasets, but the proposed
approach appears to produce more realistic colors. And as expected, the redundant
information used in the WVMF-ours approach was able to outperform the 2view-ours
approach in almost all the tests. It is clear in the WVMF-ours results from the bowling
sequence that the extra information was able to greatly alleviate ghost artifacts around
the bowling pin. However, in the Flowerpots and Baby1 sequences there was some large
occluded regions for which our stereo matching algorithm failed, so the extra cameras
only contributed with wrong information in those areas.

As for the Herodion example, all synthetic views presented some distortion on
the checkerboard pattern behind the bike (bottom-right), and both VSRS-nonlocal and
VSRS-volume present ghosts around the tennis racket. In terms of PSNR, the proposed
approaches (both 2- and multiple- views) presented larger values consistently in all ex-
amples.

In another experiment, we have used a higher resolution dataset (the 1330× 1100
version of Bowling2) and moved the virtual camera continuously from the left camera
position (α = 0) to the right camera position (α = 1) using the 2 view interpolation.
The views generated by this approach using images 1 and 5 as left and right reference
images, with α ∈ {0.2, 0.4, 0.6, 0.8}, are shown in Figure 5.6. Despite the presence of

1For view interpolation we used 2006 datasets Baby3 and Bowling2 because they are provided with
camera parameters, unlike 2001 and 2003 sequences Teddy, Venus, Tsukuba and Cones, used only to
evaluate the disparity maps.
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Figure 5.5 – Ground truth images (first row) and interpolated views with the respective PSNR
values for VSRS-nonlocal (row 2), VSRS-volume (row 3), VSRS-TSGO (row 4), the proposed 2
view interpolation approach (row 5) and the WVMF approach (last row).

GT Baby3 (436×370) GT Bowling2
(442×370)

GT Herodion2
(442×370)

28.39 27.54 27.54

28.11 27.46 27.46

28.45 27.88 27.8

33.41 33.89 30.75

34.59 34.38 31.99
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Figure 5.6 – Interpolated views between cameras 1 and 5 of the Bowling2 dataset using our
approach.

α = 0.2 α = 0.4

α = 0.6 α = 0.8

some small artifacts, the generated views are visually coherent. A video sequence with
the synthetic views produced by a continuous camera movement is available at <http://
www.inf.ufrgs.br/~gpfickel/phdthesis/>, as well as video sequences obtained with VSRS-
nonlocal, VSRS-volume and VSRS-TSGO. It can be observed the 2 view interpolation
approach produces a smooth transition between the reference images, since the full 3D
meshes present no holes to be filled a posteriori. On the other hand, the interpolation
approach adopted in reference software VSRS 3.5 may need to fill gaps directly in the
image domain. Since this procedure is applied independently to each synthesized image,
spatial coherence between the views of two close virtual cameras is not guaranteed. In
fact, this behavior can be observed in sequence VSRS-nonlocal.avi, on the right of the
central bowling bowl. It should also be noted that these camera sweep views can be
obtained in real-time with our approach (unlike with VSRS 3.5), since the 3D model is
computed once and the interpolation itself is very simple.

http://www.inf.ufrgs.br/~gpfickel/phdthesis/
http://www.inf.ufrgs.br/~gpfickel/phdthesis/
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Table 5.1 – PSNR values of synthesized views using the following approaches for several
Middlebury datasets (best values in bold): VSRS-volume (RHEMANN et al., 2011), VSRS-
nonlocal (YANG, 2015), VSRS-TSGO (MOZEROV; WEIJER, 2015), our interpolation ap-
proach for 2 views (2views-ours) and for multiple views (WVMF-ours)

Method Dataset
Aloe Baby1 Cloth1 Cloth2 Cloth3 Flowerpots Rocks1 Woods1

VSRS-volume 24.96 25.99 27.03 24.66 25.69 27.16 28.20 27.40
VSRS-nonlocal 24.42 25.66 26.85 25.10 25.99 24.77 28.65 27.34
VSRS-TSGO 26.13 28.45 29.23 25.51 27.05 27.50 25.57 27.06
2views-ours 29.35 34.45 37.19 33.45 33.64 33.70 33.01 35.01
WVMF-ours 30.12 33.26 37.23 33.54 34.16 32.88 36.57 36.52

5.3.2 Video View Interpolation

Our results were evaluated qualitatively (visual inspection) and also quantitatively,
using an objective Quality Assessment (QA) metric suited for video sequences, namely the
STRRED (Spatio-Temporal Reduced Reference Entropical Difference) (SOUNDARARA-
JAN; BOVIK, 2013). Such metric is shown to correlate well with human judgments of
quality, and it encompasses both the visual errors within a given frame and the temporal
flickering that occur within consecutive frames.

For the sake of comparison, we have also produced synthetic views using the MPEG
view synthesis reference software VSRS 3.5 (TANIMOTO; FUJII; SUZUKI, 2009) in con-
junction with other disparity estimation algorithms: DCBG and DCBG-T for the regular
and temporal cohesion techniques (RICHARDT et al., 2010) (code available at <http://
www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/>), and also TSGO (MOZEROV;
WEIJER, 2015) (code available at <http://www.cvc.uab.es/~mozerov/Stereo/>), which
is based on global optimization technique. We tested our approach suited for videos that
was shown on Chapter 4 and the single frame approach from Chapter 3, respectively
referred as 3DMesh-T and 3DMesh.

Table 5.2 shows the quantitative STRRED results using the BookArrival, CarPark,
Hall2, and Street datasets (available at <http://sp.cs.tut.fi/mobile3dtv/stereo-video/
>). Despite the more complex view interpolation procedure employed by VSRS, with
several pre- and post-processing procedures of both the disparity map and the interpo-
lated view, the proposed approach presented the best results (smaller is better) in three
of the four sequences. The CarPark sequence presents several textured regions, so that
our domain triangulation scheme is not able to capture correctly the boundaries of the
objects. Nevertheless, our temporal consistency produced improved results over our sin-

http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/
http://www.cl.cam.ac.uk/research/rainbow/projects/dcbgrid/
http://www.cvc.uab.es/~mozerov/Stereo/
http://sp.cs.tut.fi/mobile3dtv/stereo-video/
http://sp.cs.tut.fi/mobile3dtv/stereo-video/
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Figure 5.7 – Example of view interpolation using the Street dataset, frame 68, camera 5,
generated using cameras 4 and 6. A blue arrow is indicating the most noticeable visual arti-
fact. From left to right: Ground truth, VSRS+DCBG, VSRS+DCBG-T, VSRS+(MOZEROV;
WEIJER, 2015), 3DMesh, 3DMesh-T

gle frame approach. It is also interesting to note that for the Book dataset, the temporal
consistent disparity map (DCBG-T) presented worse view interpolation results than its
frame-wise counterpart DCBG. This fact indicates that although temporal coherence is
in theory important for better view interpolation, it should also allow abrupt disparity
transitions in newly disoccluded regions, otherwise temporal consistency can degrade the
results.

Regarding the proposed approach for videos, in all tests there was an improvement
over the single-frame approach. Even for the dataset Hall2 that present camera movement,
the 3D mesh was able to track correctly the background while adapting the mesh to both
the occlusions and disocclusions. In the datasets Street and CarPark the interpolation
results were also good, even when using natural lighting and with objects/persons whose
distance to the camera changes. This indicates that our technique can both enforce a
smooth disparity variation on the background objects while allowing it to change gradually
for moving objects.

As for the visual inspection, the full interpolated video sequences are available on
the author personal webpage, where the temporal dimension can be better observed. For
the sake of illustration, Figure 5.7 shows the actual image (ground truth) for frame 275,
camera 5, of the Street, dataset, as well as the interpolated views with the methods shown
in Table 5.2. As it can be observed, VSRS+DCBG, VSRS+DCBG-T and VSRS+TSGO
present strong artifacts on the top of the right building, the single frame approach presents
a smaller artifact on the wall of the same building. Our approach, on the other hand,
presents an image that is very similar to the actual view.
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Table 5.2 – STRRED results of VSRS, the frame-by-frame proposed approach (3DMesh) and
the proposed approach for videos (3DMesh-T). The VSRS was tested using the disparity maps
estimated by Mozerov and Weijer (2015) and Richardt et al. (2010), with DCBG and DCBG-T
being the regular and temporal cohesion techniques, respectively. The best results are in bold.

Method BookArrival CarPark Hall2 Street
VSRS+DCBG 33.14 59.33 251.64 66.20
VSRS+DCBG-T 37.16 52.63 224.41 62.20
VSRS+TSGO 18.69 48.47 202.67 78.59
3DMesh 20.99 130.14 154.77 47.65
3DMesh-T 18.21 108.61 137.01 35.63

5.4 Chapter Conclusions

This chapter presented two different approaches for the interpolation process, which
starts by rendering the available 3D meshes on the novel view position. Ideally, all the
projections should be identical, but inconsistencies arise due to bad disparity estimation,
camera noise and limited view of the scene. To generate the interpolated view we then
propose to combine those projections directly in the image domain. This can be done
using only the 2 closest cameras or all of them (if more than two are available).

The 2-camera view interpolation procedure consists in alpha blending both projec-
tions, with the alpha being proportional to the distance of the synthetic view and the real
camera. This approach is simple, and it has the advantage that it has a spatial coherence
in all the views that are generated along the baseline. The second approach uses the
projections of all cameras, and combines them in a pixel-wise manner using the WVMF
(Weighted Vector Median Filter). We defined the WVMF weights according to both the
color similarity and the distance of the virtual view to the camera (the farthest they are,
the less confident is the contribution of this given 3D mesh). This approach was able to
reduce some artifacts, especially the ghost effect, without introducing noticeable blur on
the highly textured areas.
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6 CONCLUSIONS

In this thesis, we proposed a new scheme for stereo matching and view interpolation
based on triangular tessellations of the image domain. The first step of the proposed
approach is to detect edges and find local estimates of the image complexity so that the
vertices for a Delaunay triangulation are placed mostly along edges and highly textured
regions. A region-based approach is used to find an initial disparity for each triangle,
based on histograms of pixel ratios followed by a non-local aggregation step based on
Minimum Spanning Trees. Then, a refinement procedure is applied to smooth the initial
disparity map, generating a piece-wise linear representation of the disparity. A full 3D
mesh is created by connecting corners with sufficiently small disparity difference, and
inserting new orthogonal triangles along the disparity discontinuities. The textures of
visible triangles are retrieved from the reference image, whereas textures of orthogonal
triangles are obtained from the two closest neighboring cameras.

We also proposed a 3D mesh update scheme that dynamically deforms the trian-
gulation according to the changes on both the scene and camera when multiview video
sequences are used. In order to correctly track the particles (vertices) along the objects
boundaries, we extend the tracker from Sundaram, Brox and Keutzer (2010) to use the
disparity map. This information allowed us to identify the particles that do not have a
well-defined optical flow value (usually along image edges) and move them according to
well tracked neighbors. After deleting and inserting new partciles (due to mostly occlu-
sions and disocclusions, respectively), a constrained Delaunay triangulation is computed,
aiming to keep and track triangles for which the vertices persist. By using HMM and
Kalman Filter in the temporal persistent regions and a spatial Disparity Filtering pro-
cedure that propagates the temporal information to newly created triangles, we were
able to generate a disparity maps with higher quality and less temporal flickering than
competitive approaches.

It is important to point out that the main goal of the proposed stereo/multiview
matching approach is not to obtain a very accurate disparity map, but to provide an
easy way to generate full 3D meshes at each camera for view interpolation. However,
the proposed temporally coherent disparity estimation was able to achieve good results
for challenging videos. By using an adaptive region-based triangular segmentation and
subsequently applying a non-local aggregation, it was possible to estimate correctly the
disparity in large low-textured regions, even with the presence of camera noise. And by
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propagating this information in time (and subsequently in space), the final disparity map
was good, even when comparing to other competitive approaches such as Richardt et al.
(2010) and Mozerov and Weijer (2015).

With the obtained 3D meshes, it is possible to generate high quality interpolated
views with low execution time. To generate the interpolated views we proposed to combine
the individual projections of the 3D meshes directly in the image domain, using only the 2
closest cameras or all of them. The 2-cameras view interpolation performs alpha blending
using both projections, with the alpha value being proportional to the distance of the
synthetic view and the real camera. This approach is simple, and it has the advantage
that it has a spatial coherence. The multiple cameras view interpolation combines the
projections in a pixel-wise manner using the WVMF (Weighted Vector Median Filter).
With the WVMF weights being dependent on both the color similarity and the distance
of the virtual view to the camera, it was able to both reduce artifacts while keeping the
textured areas sharp. And since both methods used the textured orthogonal triangles,
there is no need for a hole filling procedure.

Regarding the quality of the interpolated views, our experimental results using
ground truth data indicate that the generated synthetic views match closely the actual
views. By comparing the proposed approach with the MPEG view synthesis reference
software, we tested our approach using both still-images and videos. We used the dis-
parity maps estimated by Yang (2015), Rhemann et al. (2011), and Mozerov and Weijer
(2015) for the still-images comparison, and both the 2-cameras and multiple cameras view
interpolation process presented superior using PSNR. And as expected, the results of the
multiple camera interpolation approach was able to reduce some artifacts, especially the
ghost effect, without introducing noticeable blur on the highly textured areas.

For the videos comparison we used VSRS with the disparity maps from Richardt
et al. (2010) and Mozerov and Weijer (2015), and it was clear that the proposed scheme
indeed produced interpolated views with higher visual quality according to the used
STRRED quality metric, which is shown to correlate well with human judgments of
quality. The technique was able to adapt well for the challenging datasets, with natu-
ral lighting, camera movement, and with objects and persons moving within the scene.
This indicates that our technique can both enforce a smooth disparity variation on the
background objects while allowing it to change gradually for moving objects.
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6.1 Future Work

As future work, we plan to improve the initial triangulation for better capturing
the boundaries of the objects. This is a difficult task since there is a trade-off between
having a finer granularity on the vertices distribution, necessary to model better the small
details of the scene, and generating larger triangles to reduce the matching ambiguities.
One possible solution is to use the disparity information of past frames to distinguish
highly textured areas, which have smooth disparity, from the objects boundaries that
occur on disparity discontinuities.

Since the quality of the triangulation will affect the disparity estimation process,
e.g. small triangles will have problems on the region matching process, we plan to evaluate
the correlation of the triangles quality with the correctness of the obtained disparity.
This information will be important to decide if some improvements can be made on the
triangulation step, and more importantly, where the problematic triangles occur.

Another improvement that can be made is to generate a single 3D mesh using
jointly all the cameras, instead of estimating one for each view. This can be done by
firstly creating the mesh of the central camera and then updating it according to the
neighboring cameras (spatial domain), similarly to the temporal domain adaptation pre-
sented in Chapter 4. By having a single 3D mesh that is computed from all the cameras,
the disparity estimation can be further improved by using the matching information of
all the views. Also in the temporal mesh update scheme, it could be possible to use the
optical flow from all the cameras, alleviating the problem of unreliable optical flow values
on occluded/disoccluded regions.

One extension of this work could be the codification of DIBR videos. In fact, image
domain triangulations have been used in the past for image compression (BOUGLEUX;
PEYRE; COHEN, 2009), and disparity information could be easily encoded in the context
of this thesis. The tradeoff between the quality of the disparity and the size of the encoded
disparity map can be controlled by the number of vertices, i.e. with a small number of
vertices the disparity will be a more rude representation of the scene, however it will
contain less information to encode.

Still regarding DIBR videos, this technique can be used for baseline-retargeting,
i.e. changing the baseline distance between the two cameras on a stereo video. There
is a relationship between the baseline of the camera acquisition system, the size of the
screen where the content will be displayed and the distance of the observer from the
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screen (RAYMOND; NIGEL., 1953; LAMBOOIJ; IJSSELSTEIJN; FORTUIN, 2009).
Hence, a 3D content designed for display on a 70 ft. movie screen may not be adequate
for a 46" television. Since the camera array used to acquire the images is usually fixed, i.e.
the position between the cameras does not change over time, synthetic views generated
with different baselines (distance between the cameras) can be used to adjust the content
to different displays.
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