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RESUMO

Escoamentos geof́ısicos são aqueles escoamentos que são afetados pela

rotação da Terra. Simulações computacionais envolvendo este tipo de escoamento

tem diversas aplicações como, por exemplo, em estudos sobre mudanças climáticas

e em previsões de tempo e do escoamento oceânico, imprescind́ıveis para o bem-

estar da sociedade moderna. Em especial no caso do Brasil, a importância destas

simulações é ainda maior devido à sua ampla aplicação na indústria do petróleo.

Porém, devido ao imenso número de Reynolds conferido à estes es-

coamentos, os recursos computacionais dispońıveis atualmente (e decerto no futuro

próximo) não são suficientes para simulá-los integralmente. Modelos regularizados

são modelos simplificados concebidos para lidar com este problema, pois permitem

a redução dos graus de liberdade em virtude de alterações nas equações originais

que encurtam a cascata de energia e propiciam o uso de malhas menos refinadas.

Nesta tese, foram estudados dois modelos com extenso uso em escoa-

mentos geof́ısicos: o Modelo da Vorticidade Barotrópica (modelo BV) e o Modelo de

Boussinesq. Para o modelo BV três tipos de regularizações foram consideradas: a

regularização alfa com deconvolução modificada de Tikhonov-Lavrentiev, a regular-

ização Bardina e a regularização alfa com deconvolução aproximada de van Cittert.

Algoritmos com discretização temporal de Crank-Nicolson e espacial em elementos

finitos foram propostos para estas regularizações e demonstrados incondicionalmente

estáveis e otimamente convergentes. Também, simulações computacionais foram

feitas, tanto para validar a teoria desenvolvida, como para avaliar o desempenho

destes modelos em malhas com pouco refinamento, em situações mais próximas

àquelas que ocorrem em aplicações reais.

No caso do modelo de Boussinesq foram estudadas quatro tipo de

regularizações: alfa, omega, Leray e Leray modificada, todas com deconvolução
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aproximada de van Cittert. Para estas regularizações, algoritmos do tipo Crank-

Nicolson/elementos finitos, junto com algumas técnicas bem sucedidas quando apli-

cadas às equações de Navier-Stokes, foram propostos e analisados numericamente.

É mostrado que os algoritmos conservam energia e são incondicionalmente estáveis

e otimamente convergentes. Em complemento, simulações computacionais são apre-

sentadas, tanto para validar a teoria de convergência, como também para avaliar o

desempenho de cada regularização em situações mais realistas. Nestas simulações,

é mostrado que a regularização de Leray, além de ter grandes vantagens do ponto

de vista computacional, pois permite controlar a ordem do erro de consistência do

modelo sem alterar significativamente o tempo computacional, produziu, em malhas

com pouco refinamento, as melhores soluções em comparação às soluções esperadas

para os experimentos.
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ABSTRACT

Geophysical flows are the flows influenced by the Earth’s rotation.

Computational simulations involving this kind of flow have several applications,

such as climate changes studies and weather and ocean forecasts which are essen-

tial for the welfare in modern society. In particular for Brazil, the importance of

geophysical simulations is even greater due to applications in the oil industry.

However, due to the extremely large Reynolds numbers associated with

geophysical flows, the current available computational resources (and certainly in the

near future) are not enough to simulate it entirely. Regularized models are simplified

models designed to deal with this kind of problem, because they reduce the degrees

of freedom in simulations by virtue of small changing the original equations, which

shorten the energy cascade and enable to the the use of less refined meshes.

In this work, two models with extensive application in geophysical flow

are studied: the Barotropic Vorticity model (BV model) and the Boussinesq model.

First, in the case of the BV model, three different regularization techniques are

studied, namely, the alpha regularization with modified Tikhonov-Lavrentiev decon-

volution, the Bardina regularization and the alpha regularization with van Cittert

approximate deconvolution. Crank-Nicolson in time, finite element in space algo-

rithms for these models are proposed and rigorously proven to be unconditionally

stable and optimally convergent. Also, computational simulations are performed

that validate the developed theory for the proposed regularized models, and shows

their effectiveness on coarse meshes in situations similar to real applications.

In the Boussinesq model case, four regularizations are studied, namely,

alpha, omega, Leray and modified Leray, all of them with van Cittert approximate

deconvolution and some techniques which have enjoyed success when applied to the

Navier-Stokes equations. Crank-Nicolson/finite element algorithms, are developed

xix



and numerically analysed. They are proven to be unconditionally stable and opti-

mally convergent. Moreover, computational simulations are performed to validate

the convergence theory and to evaluate the performance of each regularization in

more realistic situations. In these simulations, the Leray regularization, in addition

of presenting substantial computational advantages because it enables controlling

the model consistency error order with no significant increase in computations, pro-

duced the best solutions in coarse meshes when compared to the expected solutions.
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1 INTRODUCTION

1.1 Problem statement

Geophysical fluid dynamics (GFD) is the study of flows influenced by

Earth’s rotation. It is the foundation for understanding atmospheric and oceanic

flows. Its difference from traditional engineering flows is due to the presence of ficti-

tious forces caused by the description of the flow in a non-inertial rotating reference

system: the Earth’s surface.

Presently, GFD is related to at least two important scientific subjects:

weather forecasting and climate modeling. It is also important to other scientific

fields such as meso and large scale studies in oceanography and meteorology, plank-

tonic migration in marine biology, waves, tides and sedimentology studies and pol-

lutant dispersion in atmosphere and ocean. Moreover, it has important commercial

and social applications such as navigation, agriculture, coastal engineering, natural

disasters prediction and mitigation and, especially in the Brazil case, oil exploration.

As in engineering flows, modeling geophysical flows is a challenging task,

the reason being that geophysical flows are described by the Navier-Stokes equations

(NSE). NSE are well known by mathematicians because of their complexity. Even

after centuries of effort, fundamental theoretical aspects such as existence of strong

solutions in the three-dimensional case remains unsolved. In the year 2000, the

Clay Mathematics Institute offered a one million dollar prize to anyone who makes

substantial progress presenting a proof or a counterexample. To the best of our

knowledge, until this moment the problem remains unsolved!

As in other fields of fluid dynamics, analytical solutions for geophysical

flows may be achieved only in a very limited number of cases, so instead one needs to

employ advanced numerical methods and computational simulations. Geophysical
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flows simulations was one of the first applications of general-purposes computers

to numerical simulations. In 1950, Jule Charney, Ragnar Fjörtoft and John von

Neumann in their seminal work entitled “Numerical integration of the barotropic

vorticity equation” [17] accomplished the first computational weather forecast using

the legendary ENIAC world’s first computer (see [72, 71] and references therein for

a historical survey). Since that time, several mathematical models and numerical

methods have been devised in order to, along with the computer advances, simulate

oceans and atmosphere. Among the available methods, the Finite Element Method

(FEM) is one of the most powerful method ever conceived in order to approximate

solutions of boundary-value problems, such as NSE. It has gained importance due

to its relative ease to deal with non-structured meshes and arbitrary geometries, as

those often necessary in geophysical applications.

Associated with the difficulty of solving NSE it is the phenomenon of

turbulence. In particular, the correct representation of geophysical flows, due to

high Reynolds number, depends on the development of advanced techniques to deal

with turbulence. High Reynolds number flows have a wideband spectrum. A simple

estimation based on the Kolmogorov theory [92] shows that a typical geophysical

flow with horizontal length scale of 100 km and a Reynolds number of 1010 will

dissipate energy in a length scale of centimeters. Therefore, simulations resolving

all the necessary scales involved in geophysical flows (Direct Numerical Simulation

- DNS) are far beyond the reach of current computers.

Among the different techniques to deal with this problem, Large Eddy

Simulation (LES) and Regularization Models are two of the most promising meth-

ods. LES consists of calculating the large structures of a flow by modeling the

effect of small scale structures on the large structures. This is accomplished by

filtering the Navier-Stokes equations and resolving the filtered equations, whereas

the resulting subfilter stress, which represents the interaction between the resolved

and unresolved scales, is modeled. This approach is valid because, according to the
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Kolmogorov theory, the large structures, which are related with external forces and

boundary conditions, are specific for each flow, whereas the small structures have a

universal behavior [92, 5]. On the other hand, regularization models were initially

created for theoretical purposes. For example, the Leray-α model is a well-posed

earlier regularization proposed by Jean Leray in 1934 in order to analyse the Navier-

Stokes equations [64]. A common feature for regularization models is that they are

well-posed and regular from the mathematical point of view. The regularization

meaning the disappearance of supposed existing singularities in the original Navier-

Stokes equations [97]. Recently, a considerable interest has arisen for regularization

models as simpler models to deal with turbulence in numerical simulations. In this

approach, the regularization model is obtained from the direct regularization of the

convective flux [34]. Thus, the computed solution is a regularized approximation of

the NSE solution, rather than a local, spacial average of the fluid velocity (as in LES

models [66]). However, some studies have shown that regularization models can be

interpreted as LES models using the so-called regularization principle [32, 33, 34].

The main advantage of these approaches in relation to DNS modeling is that the

number of degrees of freedom in numerical simulations are significant fewer in LES

and regularization models. More recently, some LES models such as the Approxi-

mate Deconvolution Models [100] and regularization models such as alpha models

started to be tested in the geophysical framework [47, 112, 22, 41, 42].

Despite computational simulations being widely applied in geophysi-

cal flows, studies involving new numerical schemes and their mathematical analysis

are uncommon, possibly due to the wide range of numerical schemes available and

the difficulty to perform a mathematical analysis in realistic conditions. Neverthe-

less, this kind of study, even in non-realistic situations, are useful to produce more

accurate results with less computational cost.

In light of the above, this thesis focuses on application and mathemat-

ical analysis of regularization modeling techniques to geophysical flows. Thus, new
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algorithms using FEM discretizations were developed, analysed, and computational

tests were performed in a geophysical context in order to understand and evaluate

their performance in simulations.

1.2 Relevance

The subject of this thesis is closely related with some current issues,

such as oil exploration in the pre-salt layer, climate change, and weather and ocean

forecasting. Apart from being motivated by interesting fluid dynamics and numer-

ical analysis open problems like those described in the previous section, it is also

encouraged by its substantial applications of social interest.

From the point of view of fluid dynamics and numerical analysis, this

thesis deals with subjects such as the development of stable and robust algorithms in

order to apply regularization models in geophysical fluid dynamics. There is strong

evidence, such as that presented in the next section, to believe it would be fruitful

in this application, and provide more accurate results with less computational cost.

On the other hand, from the point of view of applications, the following

three issues guided the development of this thesis:

1. Brazil has become an important oil producer. With the recent discovery of the

vast oil reserve in the pre-salt layer, Brazil can become one of the largest oil

producers in the world. However, oil exploration in the pre-salt layer is very

challenging. An important tool to assist oil exploration in the sea is the use of

reliable ocean models. They are necessary both for logistics in oil exploration and

to mitigate the environmental impact caused by oil spills. Moreover, ocean and

atmosphere forecasting also helps in navigation. For logistics, ocean simulations

can supply the velocity field, which is essential to design oil platforms. From

the environmental point of view, ocean forecasting is very helpful in cases of oil
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spills because it provides information about the fate of the oil slick. It is very

important, especially in the case of Brazil, where there exists natural sanctuaries

such as the Abrolhos bank, for instance.

2. Climate modeling allows a better understanting in man’s role in climate change.

With a huge heat capacity, oceans are particularly important because they absorb

and store heat, damping temperature fluctuations. However, oceanic simulations

can only be performed on coarse meshes in order to be computationally viable.

Moreover, most of them employ URANS (unsteady Reynolds averaged Navier-

Stokes) and the eddy viscosity hypothesis. Thus, they are likely to provided

limited results, affecting large scale features [41, 54]. Therefore, it is necessary

to develop more appropriate techniques to deal with subgrid scale motion.

3. In addition, regularization models can have a positive impact on atmospheric

and oceanic forecasts. Geophysical flow forecasts depend heavily on the initial

conditions, resulting in a very small prediction time [57]. Thus, Control Theory

has to be applied to guarantee accurate predictions. Most of these techniques

assumes a perfect model, that is, a model without bias whose only source of error

is the uncertainty in initial conditions. Therefore, the more accurate the model

is, the more suitable the Control Theory will be for this kind of problem.

Computational fluid dynamics has also been used increasingly in envi-

ronmental applications and social welfare. At present, in order to build new indus-

tries, harbours and oil platforms, governments, in several contries including Brazil

require environmental impact studies involving ocean and/or atmospheric model-

ing. In addition, computational simulations are extensively used to help assess and

control damage in environmental accidents, such as the 2010 British Petroleum oil

spill in the Gulf of Mexico, the 2011 Puyehue volcano plume in Chile and the 2011

tsunami in Japan. All these applications may be immensely benefit by more accurate

techniques to simulate the ocean and atmosphere.
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1.3 Theoretical background and objectives

Geophysical flows present some differences compared to traditional en-

gineering flows. The main differences are: the motion is thin (small aspect ratio)

and is influenced by Earth’s rotation.

The small aspect ratio results from the problem asymmetry due to dif-

ferences between vertical and horizontal scales in the Earth’s surface. Large scale

geophysical flows have an aspect ratio similar to a sheet of paper. Typical hori-

zontal scale is 106 meters and depth scale is 103 meters. As a result, the vertical

velocity component is much smaller than horizontal velocity. Thus, some approxi-

mations following from the small aspect ratio are often assumed in order to derive

mathematical models for geophysical flows.

In addition, Newton’s second law is formulated for inertial frames. How-

ever, Earth’s surface is not an inertial frame because of Earth’s rotation. Thus

apparent forces must be considered in order to mathematically represent the flow

in coordinate systems in the Earth’s surface: the Coriolis and centrifugal forces. A

scale analysis shows that the centrifugal force and vertical component of Coriolis

force are negligible in comparison to other terms, but the horizontal component of

the Coriolis force can be comparable to the other terms in the horizontal momentum

equations depending on the length scale of the flow [91]. The relative importance

of Earth’s rotation effect is estimated by the nondimensional Rossby number (Ro)

defined as:

Ro =
U

2ΩE sin(φ)L

where U and L are respectively characteristic horizontal velocity and length scales,

ΩE is the planetary angular velocity and φ is the latitude of the flow.

The Rossby number describes the ratio of inertial and Coriolis acceler-

ations. When Ro << 1 the flow is said to be geophysical.

6



Geophysical flows can be studied by mathematical models resulting

from different levels of aproximations, which, despite their simplifications, can still

represent several important physical phenomena. The main geophysical models are:

� Primitive Equations

� Boussinesq

� Shallow Water

� Quasi-geostrophic

The most complete mathematical model used to simulate geophysical

flows is the Primitive Equations Model, which describes flows with small aspect

ratio subject to the Coriolis, gravitational and external forces and with pressure

field determined by density and free surface fields. It is often used in atmospheric

and oceanic forecast systems, and in climate modeling. The system of equations:

∂uH
∂t

+ uH · ∇HuH + w
∂uH
∂z

+ 2ΩE × uH +
1

ρ0
∇Hp− νH∆HuH − νV

∂2uH
∂z2

= f ,

∂p

∂z
+ ρg = 0,

∇H · uH +
∂w

∂z
= 0,

ρ = F (p, φi),

∂φi
∂t

+ uH · ∇Hφi + w
∂φi
∂z

+ νH,φi∆Hφi + νV,φi
∂

∂z
φi = 0,

describes the primitive equations model [41, 14], where uH is the horizontal velocity

vector (u, v), w is the vertical velocity component, ∇H = ( ∂
∂x
, ∂
∂y

) is the horizontal

gradient operator, ΩE is the angular planetary velocity, ρ0 is the fluid reference

density (constant), ρ is the density, p is the pressure, νH is the horizontal kinematic

viscosity, νV is the vertical kinematic viscosity, f is the resultant external force, F is

a functional for the thermodynamic state equation, φi are the thermodynamic state

scalars (temperature, humidity or salinity), νH,φi is the horizontal diffusivity of the

scalar φi and νV,φi is the vertical diffusivity of the scalar φi.
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Another important model is the Boussinesq Model. The Boussinesq

Model allows us to represent flows in the presence of density stratification in which

the Buoyancy force is important. The Boussinesq model is given by

∂u

∂t
+ u · ∇u + 2Ω× u +

1

ρ0

∇p− ν∆u + ρ′gk = f ,

∇ · u = 0,

∂ρ′

∂t
+ u · ∇ρ′ − νρ′∆ρ′ = 0,

where u is the velocity vector, p is the pressure, ρ0 is the reference density (constant),

ρ′ is an active tracer (temperature or salinity, for example), g is the gravitational

acceleration, ν is the kinematic viscosity, f is the external force and νρ′ is the ρ′

diffusivity. Note that momentum and tracer equations are constrained by the buoy-

ancy term in the Boussinesq Model, therefore flow is forced by spatial differences in

the density field.

In addition to Primitive equations and Boussinesq Model, the two-

dimensional Shallow Water Model describes a flow with a small aspect ratio

and under the action of pressure gradients caused by gradients in the fluid free

surface field. In the geophysical case this kind of flow is described by [91]:

∂uH
∂t

+ uH · ∇uH − fk× uH − ν∆uH + g∇h = f ,

∂h

∂t
+∇ · (huH) = 0,

where f = 2Ω sin(φ) is the Coriolis parameter and h is the water depth.

Finally, one of the simplest models is the Quasi-geostrophic Model.

The geostrophic equilibrium is the fundamental state (or mean state) of a geophysical

flow, in which the pressure gradients and Coriolis force are in balance, i.e.,

fk× uh = −1

ρ
∇p.
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The Quasi-geostrophic model results from an assymptotic expansion of

the velocity field in the Rossby number Ro, that is,

u (x, y, t, Ro) = u0 (x, y, t) + u1 (x, y, t)Ro+ u2 (x, y, t)Ro2 + ....

Using this expansion, a closed set of equations is obtained from the

shallow water model representing the balance of the first order terms around the

zeroth order geostrophic balance (mean state). The balance of the first order terms

is the quasi-geostropic model [91, 47, 100], also known as Barotropic Vorticity model,

given by

Ro
∂ω

∂t
+RoJ(ψ, ω)− ∂ψ

∂x
−
(
δM
L

)3
∆ω = F ,

∆ψ =− ω.

which ω is the vorticity, ψ is the streamfunction, J(·, ·) is the Jacobian, Ro is the

Rossby number, δM is the Munk scale, L is the length scale and F is the forcing.

The four models above mentioned can describe a vast variety of geo-

physical phenomena such as the general ocean and atmosphere circulation, meso-

scale processes (vortices and cyclones) and also planetary (Rossby), plane, Kelvin

and Poincaré waves [91].

Due to the high Reynolds number associated with geophysical flows

direct numerical simulations (DNS) are unfeasible. Therefore, computational simu-

lations are carried out in meshes which cannot resolve all necessary scales anticipated

by the Kolmogorov Theory of energy cascade, and some methods are necessary to

deal with the small scales which are not resolvable. Traditionally, small scale mod-

eling in geophysical flow simulations is made using the Reynolds Stress tensor and

the Boussinesq eddy viscosity hypothesis, which is a fundamentally dissipative tech-

nique [47, 100]. This approach has been used because it provides the correct rate of

energy dissipation [100] and improves numerical stability [47, 54]. However, accord-

ing to [47], increased values of viscosity reduce the flow variability in large scales
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causing meaningful differences between coarse resolution meshes and DNS. The ef-

fects of high eddy viscosity values on climate simulations are studied in [54], and

they observed several places in the ocean where computed solutions were severely

affected by this problem. They also noted that reducing eddy viscosity leads to a

generally improved ocean circulation at the expense of increased numerical noise.

Thus, decreasing eddy viscosity values is not enough to solve this problem, and the

solution is probably related to a better representation of small scale flow.

Besides, the small aspect ratio in geophysical flows results in a quasi-

two-dimensional flow and, hence, a possible coexistence between the enstrophy cas-

cade and the inverse energy cascade [103, 102, 28]. Thus, an approach consistent

with phenomenology is imperative.

LES and regularization models are projected to deal with this kind of

problem. Geophysical flows inspired the first LES model through the seminal work of

Joseph Smagorinsky [104], but the subsequent development has been made based on

engineering applications [100, 28]. Recently, a new interest in LES and regularization

models has emerged for geophysical applications with alpha [47, 112, 41, 42] and

ADM [6, 100] models.

The Navier-Stokes-α (NS-α) model has received much attention due

to its attractive physical and mathematical properties. For example, NS-α admits

regular unique solutions [24, 77], is frame invariant [38], conserves energy, helicity

and 2D enstrophy [25, 93] and cascades energy at the same rate as Navier-Stokes

equations in wavelengths up to α, after which it accelerates energy dissipation [25].

Furthermore, it allows a significant reduction of degrees of freedom in computer

simulations. Despite of being presented as a regularization model, NS-α can also be

interpreted as a kind of LES model [20, 31, 38].

Based on NS-α model, alpha models has been developed for geophysical

flows; for example, the Quasi-geostrophic-α model [47, 100], the shallow water-α
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model [112], the Boussinesq-α [22] and the Primitive equations-α model [41, 42].

They also present computer simulations which are promising.

In addition to the NS-α model, other alpha-type models has been re-

cently developed for NS equations, such as the NS-ω [61, 65], Leray-α [32, 33],

Modified Leray-α [51], Bardina [3, 15] and NS-Voigt [15, 56, 68] models and their

deconvolution generalizations [93, 64, 76, 75, 9] which improves accuracy and com-

putational cost. Some of these can also be interpreted as a kind of LES model

[32, 33, 34].

In light of the above, there is significant evidence to believe that reg-

ularization models can perform better than traditional eddy viscosity models in

geophysical flow simulations with a viable computational cost. In the case of engi-

neering flows, FEM algorithms were proposed and analysed to alpha [65, 76], omega

[65, 75], Leray-α [64, 9] and zeroth order ADM [74]. Traditionally, algorithms are

proposed and analysed for stability, which is related, in the appropriate norm, to the

physical intuiton of energy conservation. It is also common to include error anal-

ysis showing convergence in appropriate norms. Then, computational simulations

are made to determine whether the model can reproduce a known pattern observed

in some benchmark test. However, algorithms, mathematical analysis and compu-

tational tests are still necessary for geophysical analogues of these regularization

models.

In GFD, flows are routinely studied separately as barotropic and baro-

clinic flows1 (see, e.g. [91]), the reason being the difference in terms of temporal

and spatial scales between these two kind of flows. In this thesis we addressed GFD

considering these two points of view:

1. Can state-of-art regularization models improve coarse mesh large-scale geophys-

ical barotropic simulations? The first part of the thesis investigates this ques-

tion, performing a numerical analysis of the Quasi-Geostrophic model for three
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different regularization techniques, namely, alpha with Tikhonov approximate

deconvolution, Bardina and alpha with Van Cittert approximated deconvolution.

2. How can state-of-art regularization models affect numerical solutions obtained

in the case of computational expensive baroclinic density current simulations?

This question is addressed in the last chapter, in which we studied the Boussi-

nesq model through four generalized deconvolved regularizations, namely, alpha,

Leray-α, omega and Modified-Leray-α.

Thus, the main objective of this thesis is to propose robust algorithms

to apply regularization models in geophysical flows. In addition, we intend to attain

the following specific goals:

1. Provide algorithms through FEM discretizations to apply regularization

techniques in models used in geophysical fluid dynamics.

2. Study these algorithms from the point of view of numerical analysis.

3. Implement them and carry out simulations in order to evaluate their

performance.

All these aspects, with mathematical and scientific motivations, are the object of

careful analysis and understanding in this thesis.

In Chapter 2 we study a Crank-Nicolson Finite Element scheme to

an alpha regularization with deconvolution of the Barotropic Vorticity (BV) model

of geophysical flows, called the BV-Tikhonov model. The BV-Tikhonov model is

a deconvolved version of the BV-α model where the Tikhonov regularization is

modified to give an approximate deconvolution of the Helmholtz filter. We prove

the scheme is unconditionally stable and second order accurate. We also test the

1Barotropic flows are those which the density is only a function of pressure. Otherwise, the
flow is called baroclinic [110].
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BV-Tikhonov model in the traditional double-gyre wind forcing benchmark. We

show, when the coarse mesh BV model solution degenerates, the BV-α model can

retrieve the high resolution pattern, but solutions are dramatically improved by

the choice of the deconvolution parameter in the BV-Tikhonov model. We believe

this behaviour is related to the second order consistency error term shown in the

convergence analysis, which could affect the model solution in coarse meshes, but

could be handled by a careful choice of the deconvolution parameter.

In Chapter 32 we study a Crank-Nicolson in time and Finite Element

in space numerical scheme for a Bardina regularization of the barotropic vortic-

ity model. We derive the regularized model from the simplified Bardina model in

primitive variables, present a numerical algorithm for it, and prove the algorithm

is unconditionally stable with respect to the timestep size, and optimally conver-

gent in both space and time. Numerical experiments are provided that verify the

theoretical convergence rates, and also that test the model/scheme on a benchmark

double-gyre wind forcing experiment. For the latter test, we find the proposed

model/scheme gives a good coarse mesh approximation to the highly resolved direct

numerical simulation of the barotropic vorticity model, and compares favorably to

related regularization model results.

In Chapter 43 we study the BV-α-Deconvolution model. It is a fam-

ily of regularizations of the Barotropic Vorticity model that generalizes the BV-α

model and improves its accuracy. An unconditionally stable and optimally con-

vergent scheme for the BV-α-Deconvolution model is proposed and we show that

it is O(α2N+2), where N is the deconvolution order, whereas the BV-α model is

at most second order accurate. We perform numerical simulations to confirm the

predicted convergence rates and test the model in the traditional double gyre wind

experiment. For the latter test, we show that the BV-α-Deconvolution model can

retrieve the expected high resolution pattern, being more accurate for larger values

of deconvolution order.

13



In Chapter 5 we study numerically four regularization models with de-

convolution for density currents, namely, Boussinesq-α, Boussinesq-ω, Boussinesq-

Leray and Modified-Boussinesq-Leray. A Crank-Nicolson in time and Finite Ele-

ment in space algorithm is proposed and proved to be unconditionally stable and

optimally convergent, which is verified through convergence rates in computational

simulations. Finally, the regularization models are compared through the Marsigli’s

flow benchmark for Re = 2000 and Re = 5000. We found that Boussinesq-α and

Boussinesq-Leray models produced the most accurate solutions for low Reynolds

number. Moreover, as expected, all regularized models had their solutions improved

when deconvolution order was increased. On the other hand, the Boussinesq-Leray

provided the best solution for high Reynolds number. Besides, from the computa-

tional point of view the Boussinesq-Leray model presents great advantages due to

its decoupling between momentum and filter equations which permits to increase

the deconvolution order with no significant increase in the computational cost.

Finally, in Chapter 6 we present the main conclusions and suggestions

for future works.

2The content of this chapter is coauthored by Professor Carolina C. Manica and Professor Leo G.
Rebholz, being accepted in 1 December, 2014, for publication in the journal Numerical Methods for
Partial Differential Equations with the title Numerical study of a Regularized Barotropic Vorticity
Model of Geophysical Flow.

3The content of this chapter is coauthored by Professor Carolina C. Manica and was published
in Volume 5, Number 4, Pages 317-338 (2014) of the International Journal of Numerical Analysis
and Modelling, Series B, with the title Improving numerical accuracy in a regularized Barotropic
Vorticity model of geophysical flow.
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2 BAROTROPIC VORTICITY MODEL

WITH TIKHONOV-LAVRENTIEV

DECONVOLUTION

2.1 Introduction

Nowadays, numerical simulations of geophysical flows have several ap-

plications, such as climate change studies, weather and oceanic forecast, biological

transport in the ocean, pollutants dispersion and oil exploration. The Barotropic

Vorticity Model (BV model) is one of the simplest models used to represent geo-

physical flows. It is defined in dimensionless form by [47, 100]

Ro∂ω
∂t

+RoJ(ψ, ω)− ∂ψ
∂x
−
(
δM
L

)3
∆ω =F ,

∆ψ =− ω,

where ω is the vorticity, ψ is the streamfunction, J(ψ, ω) = ∂ψ
∂x

∂ω
∂y
− ∂ψ

∂y
∂ω
∂x

is the

Jacobian, Ro is the Rossby number, δM is the Munk scale, L is the length scale and

F is the forcing term. The BV model can be used to represent the meso and large

scale flow in the atmosphere and oceans. It is commonly used in oceanography to

study the midlatitude oceanic circulation. Furthermore, it can also be extended to

multilayer to describe the vertical motions in the ocean [78, 99]. Presently, it has

been used in studies involving data assimilation [113, 21], climate [95, 73, 36] and

oceanic processes [12, 108].

Despite the fact that the BV model is a simplified model in comparison

with the full primitive equations of geophysical flows, solving it numerically is still

challenging when long-time integration is necessary, as in climate modeling [100].

Traditionally, essentially dissipative methods such as eddy viscosity parametrization

have been used to represent the under-resolved part of the flow. However, accord-

ing to [47] artificial viscosity tends to reduce variability and nonlinear structures
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are often destroyed by excessive dissipation [37, 47]. Thus some methods such as

Approximate Deconvolution Models [100, 99], BV-α [82, 81, 47] and BV-Bardina

[59] have been developed with success to improve accuracy and reduce the degrees

of freedom in computational simulations.

The BV-α model [47] is a regularization of the BV model in which the

alpha terms modify the fluid nonlinearity without introducing additional dissipative

terms or increasing the viscosity coefficient in the BV equations. In the BV-α model

the nonlinearity is altered so that the flow at length scales that are smaller than

the alpha length scale are nonlinearly removed by motions at the larger scales. The

Barotropic Vorticity-α model (BV-α) is given by

Ro∂ω
∂t

+RoJ(ψ, ω)− ∂ψ
∂x
−
(
δM
L

)3
∆ω =F , (2.2a)

∆ψ =− ω, (2.2b)

−α2∆ω + ω =ω, (2.2c)

where ω is the filtered vorticity and α is the filter length scale. A more complete

description of BV-α is presented in [47].

However, from the equation (2.2c) we can see that the BV-α, as well as

its analogue counterpart for the Navier-Stokes equations, has an O(α2) consistency

error. Experiments have shown in the Navier-Stokes equations case (see [105] and

references therein) that alpha models can have large error growth and that this error

growth can be attenuated when accuracy is increased by replacing the filtered field

by some higher order aproximation of the original field. Deconvolution regulariza-

tion is a kind of regularization in which the filtered velocity u (or vorticity in the

BV model case) is substituted in the regularized model by Du where D is a proper

deconvolution operator. The Tikhonov-Lavrentiev regularization is a general ap-

proach to deal with ill-posed problems which allows to select desirable solutions in

the least square method. It can also be employed to produce a suitable approximate

solution to the deconvolution problem. In [105] the filtered velocity u is replaced
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by Dµu where the deconvolution operator Dµ = [F + µ(I − F )]−1 is the modified

Tikhonov-Lavrentiev regularization of the formal filter inverse F−1 and 0 < µ ≤ 1

is a regularization parameter. Following the study presented in [105] on the appli-

cation of the Tikhonov-Lavrentiev deconvolution in the Navier-Stokes context, in

this chapter we study a family of Tikhonov-Lavrentiev regularizations of the BV

model, hereafter called BV-Tikhonov model, that results by replacing ω by Dµω in

(2.2b). We note that in this framework the original BV-α model results from the

BV-Tikhonov family in the case in which µ = 1.

In order to apply the Tikhonov-Lavrentiev deconvolution in the BV-

α model, we propose and study a Crank-Nicolson in time, finite element (FE) in

space algorithm to approximate solution for the BV-Tikhonov model. We believe

the advantage of BV-Tikhonov model over other techniques to deal with turbu-

lence is in its simplicity, as there is only one filtering procedure that needs to be

performed and in its direct control over the regularization intensity through the µ

parameter. Moreover, although a significant amount of work has been done on the

related vorticity-streamfunction formulation of the Navier-Stokes equations (see [4]

and references therein) and for steady state analysis of numerical schemes for BV

model [26, 27], a numerical analysis for the BV-α model has not been performed.

Thus, the main objective of this chapter is to provide a FE algorithm for the BV-

Tikhonov model and study it from the numerical analysis point of the view. To the

best of our knowledge, this is the first time that the FE method is applied to obtain

approximated solutions for the BV-Tikhonov model.

The chapter is organized as follows: Section 2 introduces some notation

and mathematical prelimimaries. The BV-Tikhonov algorithm and its stability are

presented in Section 3. Convergence analysis is presented in Section 4. In Section 5

simulations are performed in order to estimate model convergence rates and to test

the BV-Tikhonov model in the more realistic double gyre wind forcing experiment.

Finally, the main conclusions and final remarks are summarized in Section 6.
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2.2 Preliminaries

Let Ω ⊂ R2 be a polygonal domain and τh be a regular discretization

of Ω. Let H1 be the Sobolev space W 1
2 (Ω) and H1

0 its subspace with zero boundary

condition. Let Yh be the continuous finite element (FE) with kth degree polynomial

on each element of the triangulation τh [18] and Xh be the subspace of Yh with zero

boundary values. Denote by 〈·, ·〉 and ‖ · ‖ the inner product and norm in L2(Ω)

and ‖ · ‖k for the norm in the space Hk.

For continuous in time functions we denote for 1 ≤ m <∞

‖f‖∞,k := ess sup
t∈(0,T )

‖f(t, ·)‖k and ‖f‖m,k :=
{∫ T

0
‖f(t, ·)‖mk dt

} 1
m
.

For the discrete case we denote

‖|f |‖∞,k := ess sup
0≤n≤M

‖fn‖k, ‖|f
1/2|‖m,k :=

{ M∑
n=0

‖fn+ 1
2 ‖mk dt

} 1
m
.

As in [100], we consider slip boundary conditions for the velocity which

translate into homogeneous Dirichlet condition ω|∂Ω = 0 and the impermeability

condition ψ|∂Ω = 0. Multiplying (2.1) by appropriate test functions and integrating

by parts, the BV model reads in its variational formulation: find (ω, ψ) ∈ H1
0 ×H1

0

such that〈
∂ω
∂t
, λ
〉

+ b
(
ψ, ω, λ

〉
−
〈
∂ψ
∂x
, λ
〉

+
(
δM
L

)3〈∇ω,∇λ〉 =
〈
F, λ

〉
∀λ ∈ H1

0 , (2.3a)〈
∇ψ,∇χ

〉
=
〈
ω, χ

〉
∀χ ∈ H1

0 . (2.3b)

where b
(
·, ·, ·

)
:=
〈
J
(
·, ·
)
, ·
〉

represents the trilinear form.

Now we present some definitions and lemmas which are helpful in the

subsequent analysis.

Lemma 2.1 (Skew-symmetry of the trilinear form). For ψ, ξ ∈ Xh and χ ∈ Yh,

b
(
ψ, χ, ξ

)
= −b

(
ψ, ξ, χ

)
.
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Proof. We start from the vector identity[(
∇ψ × k

)
· ∇χ

]
ξ =

[
∇ ·
(
∇ψ × k

)]
χξ −

[(
∇ψ × k

)
· ∇ξ

]
χ−∇ ·

[(
∇ψ × k

)
χξ
]
.

Integrating and using the divergence theorem, the result follows because of the cyclic

continuity inside elements and since ξ ∈ Xh.

We also make use of the following estimate for the non-linear term

Lemma 2.2. Let ζ, φ ∈ H1
0 and ξ ∈ H2 ∩H1

0 we have

|b
(
ξ, φ, ζ

)
| ≤ C(Ω)‖∇ξ‖1‖∇φ‖‖ζ‖1.

Proof. The result follows using Holder’s inequality with p, q = 4 and r = 2 and the

embedding H1 ↪→ L4.

Given ξ ∈ H1
0 , let Pξ ∈ Xh be the standard L2 projection of ξ onto Xh

such that 〈
ξ − Pξ, φ

〉
= 0 ∀φ ∈ Xh,

and Πξ ∈ Xh be the Elliptic projection of ξ onto Xh such that〈
∇(ξ − Πξ),∇φ

〉
= 0 ∀φ ∈ Xh.

Lemma 2.3. Given ξ ∈ Hk we have the following estimates [109]

i) ‖ξ − Pξ‖ ≤ Chk+1‖ξ‖k+1,

ii) ‖∇(ξ − Pξ)‖ ≤ Chk‖ξ‖k+1,

iii) ‖∇(ξ − Πξ)‖ ≤ Chk‖ξ‖k+1.

Taylor expansion with integral remainder [60] gives

Lemma 2.4. Assume f ∈ C0(tn, tn+1;L2(Ω)). If f is twice differentiable in time

and ftt ∈ L2((tn, tn+1)× Ω) then

∥∥fn+ 1
2 − f(tn+ 1

2 )
∥∥2 ≤ ∆t3

48

∫ tn+1

tn

∥∥ftt∥∥2
dt.
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If ft ∈ C0(tn, tn+1;L2(Ω)) and fttt ∈ L2((tn, tn+1)× Ω) then∥∥∥fn+1−fn
∆t

− ft(tn+ 1
2 )
∥∥∥2

≤ ∆t3

1280

∫ tn+1

tn
‖fttt‖2dt.

If ∇f ∈ C0(tn, tn+1;L2(Ω)) and ∇ftt ∈ L2((tn, tn+1)× Ω) then∥∥∇(fn+ 1
2 − f(tn+ 1

2 )
)∥∥2 ≤ ∆t3

48

∫ tn+1

tn
‖∇ftt‖2dt.

The convergence analysis relies in the following discrete Gronwall in-

equality [45]:

Lemma 2.5. Let ∆t ∈ R>0 and H, an, bn, cn, dn ∈ R≥0 (n ∈ Z≥0) such that

al + ∆t
l∑

n=0

bn ≤ ∆t
l∑

n=0

dnan + ∆t
l∑

n=0

cn +H for l ≥ 0.

Suppose that dn∆t ≤ 1 ∀n. Then,

al + ∆t
l∑

n=0

bn ≤ exp
(

∆t
l∑

n=0

dn
1−∆tdn

)(
∆t

l∑
n=0

cn +H
)

for l ≥ 0.

We also make use of the Young inequality given by

Lemma 2.6.

ab ≤ ε
2
a2 + 1

2ε
b2 for ε > 0.

2.2.1 Discrete filtering and the modified Tikhonov deconvolution

The discrete Laplacian operator ∆h : H1
0 → Xh is defined in the usual

way by 〈
∆hψ, χ

〉
= −

〈
∇ψ,∇χ

〉
, ∀χ ∈ Xh.

As [66], given φ ∈ L2, the continuous and discrete filters are defined

respectively as the unique solution φ = Fφ in X and φ
h

= Fhφ in Xh of

α2
〈
∇φ,∇ξ

〉
+
〈
φ, ξ
〉

=
〈
φ, ξ
〉
∀ξ ∈ X,

α2
〈
∇φh,∇ξ

〉
+
〈
φ
h
, ξ
〉

=
〈
φ, ξ
〉
∀ξ ∈ Xh.
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We also define the continuous and the discrete modified Tikhonov De-

convolution operator by: given the filter radius α > 0 and 0 < µ ≤ 1, the continuous

Dµ and its discrete counterpart, denoted by Dh
µ, are defined to be

Dµ =
[
(1− µ)F + µI

]−1
=
[
F + µ(I − F )

]−1
,

Dh
µ =

[
(1− µ)Fh + µI

]−1
=
[
Fh + µ(I − Fh)

]−1
.

From the Dµ and Dh
µ definitions, we can see that the modified Tikhonov-Lavrentiev

deconvolution can be interpreted as a Tikhonov-Lavrentiev deconvolution with the

“Tikhonov matrix” being the high pass filters I − F and I − Fh. Clearly from the

Dh
µ definition, Dh

µFhφ can be determined by

µα2
〈
∇Dh

µFhφ,∇ξ
〉

+
〈
Dh
µFhφ, ξ

〉
=
〈
φ, ξ
〉
∀ξ ∈ Xh.

The following lemma regarding Dh
µ is presented in [105]

Lemma 2.7. The operator Dh
µ is bounded, self-adjoint and positive definite on Xh.

For φ ∈ X, the following bounds holds

‖Dh
µφ

h‖ ≤ ‖φ‖.

‖∇Dh
µφ

h‖ ≤ sC(Ω)‖∇φ‖.

The following estimate for φ−Dh
µφ

h
is also presented in [105]

Lemma 2.8. For all φ ∈ X with ∆φ ∈ L2(Ω), we have

‖φ−Dh
µφ

h‖ ≤ µα2‖φ‖2 +
(
αhk + hk+1

)
‖φ‖k+1 +

(
µ

1/2αhk + hk+1
)
‖Dµφ‖k+1.

2.3 The Finite Element algorithm and its stability

Our motivation for studying the BV-Tikhonov model is the search for

efficient, unconditionally stable and accurate methods in order to simulate geophys-

ical flows. We propose now a finite element discretization in space, together with
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a Crank-Nicolson in time discretization. As is common in such discretizations, we

denote the half timestep by vn+ 1
2 := vn+vn+1

2
and tn+ 1

2 := tn+tn+1

2
.

Algorithm 2.1 (Crank-Nicolson - BV-Tikhonov model). Let ω0
h and ψ0

h be the

L2(Ω) projections into Xh of ω0 ∈ X and ψ0 ∈ X, endtime T , F ∈ L∞(0, T ;L2(Ω)),

and timestep ∆t > 0. Set M = T
∆t

and for n=0,...,M-1, find (ωn, ψn, Dh
µω

nh) ∈

Xh ×Xh ×Xh satisfying:

Ro
〈ωn+1

h −ωnh
∆t

, λ
〉

+Ro b
(
ψ
n+ 1

2
h , ω

n+ 1
2

h , λ
)
−
〈∂ψn+1

2
h

∂x
, λ
〉

+
(
δM
L

)3〈∇ωn+ 1
2

h ,∇λ
〉

=
〈
Fn+ 1

2 , λ
〉
∀λ ∈ Xh, (2.5a)〈

∇ψn+1
h ,∇χ

〉
=
〈
Dh
µω

n+1
h

h
, χ
〉
∀χ ∈ Xh, (2.5b)

µα2
〈
∇Dh

µω
n+1
h

h
,∇ξ

〉
+
〈
Dh
µω

n+1
h

h
, ξ
〉

=
〈
ωn+1
h , ξ

〉
∀ξ ∈ Xh. (2.5c)

We are going to show that Algorithm 2.1 is unconditionally stable.

The first step is to demonstrate that Algorithm 2.1 conserves enstrophy and kinetic

energy. We start defining the Modified Kinetic Energy, the Modified Dissipation

and the Enstrophy in the BV-Tikhonov model respectively by

Eµ
α(ψ, ω) := 1

2
‖∇ψ‖2 + 1

2
µα2‖Dh

µω
h‖2,

εµα(ψ, ω) :=
(
δM
L

)3
µα2‖∇Dh

µω
h‖2 +

(
δM
L

)3‖Dh
µω

h‖2,

E(ω) := 1
2
‖ω‖2.

We obtain the following lemma:

Lemma 2.9 (Conservation of kinetic energy). The solution of (2.5a) satisfies

Eµ
α(ψMh , ω

M
h ) + ∆t

Ro

M−1∑
n=0

εµα
(
ψ
n+ 1

2
h , ω

n+ 1
2

h

)
= Eµ

α(ψ0
h, ω

0
h) + ∆t

Ro

M−1∑
n=0

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
.

In particular, if δM = 0 and F = 0 we have Eµ
α(ψMh , ω

M
h ) = Eµ

α(ψ0
h, ω

0
h).

Proof. Rewriting the non-linear term in (2.5a) as b(ψ
n+ 1

2
h , Roω

n+ 1
2

h + y, λ), choosing

λ = ψ
n+ 1

2
h and using Lemma 2.1, we obtain after we multiply by ∆t

Ro〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
+ ∆t

Ro

(
δM
L

)3〈∇ωn+ 1
2

h ,∇ψn+ 1
2

h

〉
= ∆t

Ro

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
. (2.6)
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Now, we analyze the two terms on the LHS. For the first, subtracting

(2.5b) in time step n from (2.5b) in time step n+ 1 and choosing χ = ψ
n+ 1

2
h gives〈

Dh
µ

(
ωn+1
h

h
− ωnh

h)
, ψ

n+ 1
2

h

〉
=
〈
∇ψn+1

h −∇ψnh ,∇ψ
n+ 1

2
h

〉
=
‖∇ψn+1

h ‖2−‖∇ψnh‖
2

2
. (2.7)

Averaging in (2.5b) and choosing χ = Dh
µ

(
ωn+1
h − ωnh

)
, we obtain

〈
∇ψn+ 1

2
h ,∇Dh

µ

(
ωn+1
h

h
− ωnh

h)〉
=
〈
Dh
µω

n+ 1
2

h

h

, Dh
µ

(
ωn+1
h

h
− ωnh

h)〉
=
‖Dhµω

n+1
h

h
‖2−‖Dhµωnh

h‖2
2 .(2.8)

Subtracting (2.5c) in time step n from (2.5c) in time step n + 1 and

choosing ξ = ψ
n+ 1

2
h , we have

µα2
〈
∇Dh

µ

(
ωn+1
h

h
− ωnh

h)
,∇ψn+ 1

2
h

〉
+
〈
Dh
µ

(
ωn+1
h

h
− ωnh

h)
, ψ

n+ 1
2

h

〉
=
〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
.(2.9)

Combining (2.7) and (2.8) in (2.9) we obtain, after we use the definition

of Eµ
α(ψ, ω),

Eµ
α(ψn+1

h , ωn+1)− Eµ
α(ψnh , ω

n) =
〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
. (2.10)

For the second term in (2.6), averaging in (2.5b) and (2.5c) and choosing

respectively χ = ω
n+ 1

2
h and ξ = Dh

µω
n+ 1

2
h ,〈

∇ψn+ 1
2

h ,∇ωn+ 1
2

h

〉
=
〈
Dh
µω

n+ 1
2

h

h

, ω
n+ 1

2
h

〉
, (2.11)

µα2‖∇Dh
µω

n+ 1
2

h

h

‖2 + ‖Dh
µω

n+ 1
2

h

h

‖2 =
〈
ω
n+ 1

2
h , Dh

µω
n+ 1

2
h

h〉
. (2.12)

Combining (2.11) and (2.12) we have

µα2‖∇Dh
µω

n+ 1
2

h

h

‖2 + ‖Dh
µω

n+ 1
2

h

h

‖2 =
〈
∇ψn+ 1

2
h ,∇ωn+ 1

2
h

〉
. (2.13)

Using (2.10) and (2.13) in (2.6)

Eµ
α(ψn+1

h , ωn+1)− Eµ
α(ψnh , ω

n)

+ ∆t
Ro

(
δM
L

)3(
µα2‖∇Dh

µω
n+ 1

2
h

h

‖2 + ‖Dh
µω

n+ 1
2

h

h

‖2
)

= ∆t
Ro

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
.

(2.14)

The result follows summing from n = 0, 1, ...,M − 1.
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We also have

Lemma 2.10 (Conservation of enstrophy).

E(ωMh ) + ∆t
Ro

(
δM
L

)3
M∑
n=0

‖∇ωn+ 1
2

h ‖2 =

E(ω0
h) + ∆t

Ro

M∑
n=0

〈∂ψn+1
2

h

∂x
, ω

n+ 1
2

h

〉
+ ∆t

Ro

M∑
n=0

〈
Fn+ 1

2 , ω
n+ 1

2
h

〉
. (2.15)

In particular, if δM = F = 0 and Ro is sufficiently large E(ωMh ) = E(ω0
h).

Proof. Choosing λ = ω
n+ 1

2
h in (2.5a), using Lemma 2.1, multiplying by ∆t

Ro
we obtain

‖ωn+1
h ‖2 + ∆t

Ro

(
δM
L

)3‖∇ωn+ 1
2

h ‖2 = ‖ωnh‖2 + ∆t
Ro

〈∂ψn+1
2

h

∂x
, ω

n+ 1
2

h

〉
+ ∆t

Ro

〈
Fn+ 1

2 , ω
n+ 1

2
h

〉
.

(2.16)

Summing from n = 0, 1, ...,M−1, the result follows, after we use the E(ω) definition.

Lemma 2.11 (Stability). Algorithm 2.1 is unconditionally stable. Its solutions

satisfy

µα2‖Dh
µω

M
h

h
‖2 + ‖∇ψMh ‖2 + ∆t

Ro

(
δM
L

)3 M∑
n=0

(
µα2‖∇Dh

µω
n+ 1

2
h

h

‖2 + 1
2‖∆hψ

n+ 1
2

h ‖2
)
≤ C(data)

‖ωMh ‖2+ ∆t
Ro

(
δM
L

)3 M∑
n=0

‖∇ωn+ 1
2

h ‖2 ≤ C(data)

Remark 2.1. The bounds in Lemma 2.11 are sufficient for the Leray-Schauder fixed

point theorem to be applied, in order to prove existence of a solution at each timestep

(as in [60]). Uniqueness can be proven in the standard way, and will hold provided

a timestep restriction.

Proof. First we bound the streamfunction in the first inequality in the lemma above.

Using (2.14) and the Cauchy-Schwarz inequality we have

Eµ
α(ψn+1

h , ωn+1
h )− Eµ

α(ψnh , ω
n
h)

+ ∆t
Ro

(
δM
L

)3(
µα2‖∇Dh

µω
n+ 1

2
h

h

‖2 + ‖Dh
µω

n+ 1
2

h

h

‖2
)
≤ ∆t

Ro
‖Fn+ 1

2‖−1‖∇ψ
n+ 1

2
h ‖.
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Averaging in (2.5b), choosing χ = ψ
n+ 1

2
h and using Cauchy-Schwarz and

Poincaré inequalities we have ‖∇ψn+ 1
2

h ‖ ≤ CPF‖Dh
µω

n+ 1
2

h

h

‖. Thus, using Young’s

inequality with ε =
(
δM
L

)3

Eµ
α(ψn+1

h , ωn+1)− Eµ
α(ψnh , ω

n)+∆t
Ro

(
δM
L

)3(
µα2‖∇Dh

µω
n+ 1

2
h

h

‖2 + 1
2
‖Dh

µω
n+ 1

2
h

h

‖2
)

≤
(
L
δM

)3C2
PF

Ro
∆t‖Fn+ 1

2‖2
−1.

from which the result follows summing from n = 0, 1, ...,M − 1 and using the

Eα(ψ, ω) definition.

Now we bound the vorticity ω. Using (2.16) and Cauchy-Schwarz and

Poincaré inequalities

E(ωn+1
h )− E(ωnh) + ∆t

Ro

(
δM
L

)3‖∇ωn+ 1
2

h ‖2

≤ ∆t
Ro
‖F (tn+ 1

2 )‖−1‖∇ω
n+ 1

2
h ‖+ ∆t

Ro
CPF

∥∥∇ψn+ 1
2

h

∥∥∥∥∇ωn+ 1
2

h

∥∥.
The result follows using Young’s inequality with ε = 1

2

(
δM
L

)3
, the E(ω) definition

and summing from n = 0, 1, ...,M − 1 .

2.4 Convergence analysis

Now we present our main convergence result for the discrete BV-Tikhonov

model

Theorem 2.1 (Convergence). Consider the discrete BV-Tikhonov model. Let (ω(t), ψ(t))

be a smooth strong solution of the BV model satisfying free slip boundary conditions

such that the norms of (ω(t), ψ(t)) on the right hand side of (2.17) and (2.18) are

finite. Suppose ωh, ψh ∈ Xh ×Xh solves the Crank-Nicolson approximation (2.5a)-

(2.5c) of the BV-Tikhonov model with Xh = (Pk)
2 ∩X. Then for ∆t small enough
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(in order to apply the discrete Gronwall inequality), we have

∥∥|ω − ωh|∥∥∞,0 ≤ F
(
∆t, h, µ, α

)
+ Chk+1

∥∥|ω|∥∥∞,k+1
,

(2.17)((
δM
L

)3
M−1∑
n=0

∆t
Ro

∥∥∇(ω(tn+ 1
2 )− ωn+ 1

2
h

)∥∥2)1/2 ≤ F
(
∆t, h, µ, α

)
+ C∆t2

(
δM
L

)3/2∥∥ωtt∥∥2,0

+ C
(
δM
L

)3/2
hk
∥∥|ω∣∣‖2,k+1 (2.18)

where

F
(
∆t, h, α

)
:= C∗

{
hk
(
L
δM

)3/2[
C
(
δM
L

)3‖|ω1/2|‖2,k+1 + C‖|ψ1/2|‖2,k+1 + hC‖|ω1/2|‖2,k+1

+
(
α+ h

)
C‖|ω1/2|‖2,k+1 +

(
µ

1/2α+ h
)
C‖|Dµω

1/2|‖2,k+1 + hCRo‖|ω1/2|‖24,k+1 + CRo‖|∇ω1/2|‖24,1

+ CRo‖|ψ1/2|‖24,k+1 +
(
α+ h

)
CRo‖|ω1/2‖24,k+1 +

(
µ

1/2α+ h
)
CRo‖|Dµω

1/2|‖24,k+1

+
(
α+ 2h+ µ

1/2α
)
CRo‖|∇ω1/2|‖24,1 + hCRo‖|ψ1/2|‖24,k+1 + hCRo‖|ω1/2|‖24,k+1 + CRo‖|ω1/2|‖24,1

+
(
α+ h

)
CRo‖ω1/2‖24,k+1 +

(
α+ h+ µ

1/2α
)
CRo‖|ω1/2|‖24,k+1 +

(
µ

1/2α+ h
)
CRo‖|Dµω

1/2|‖24,k+1

]
+ µα2

(
L
δM

)3/2
C
[
‖|ω1/2|‖2,2 + CRo‖|ω1/2|‖24,2 +Ro‖|∇ω1/2|‖24,1 +Ro‖|ω1/2|‖24,k+1 +Ro‖|ω1/2|‖24,2

]
+ ∆t2

(
L
δM

)3/2
CRo

[
‖ωttt‖2,0 + C‖∇ωtt‖2,0 + C‖ψtt‖2,0 + C

∥∥∣∣∇ψ1/2
∣∣∥∥2

4,1
+ C‖ωtt‖24,1

+ C
∥∥∣∣∇ω1/2

∣∣∥∥2

4,1
+ C‖ψtt‖24,1

]}
.

k is the polynomial degree in the vorticity and streamfunction finite element space.

Remark 2.2. The smallness assumption on the time step ∆t above mentioned is

given by ∆t <
(
δM/L

)3(
C+CRo2‖∇ωn+ 1

2‖2
1 +CRo2‖ωn+ 1

2‖2
k+1

)−1
. The constant C∗

depends on
(
δM/L

)3
like exp

((
δM/L

)−3
T
)
.

Corollary 2.1. Suppose that the indicated norms on the right hand side of (2.17)-

(2.18) are finite. Then the error in the Crank-Nicolson finite element scheme for

the BV-Tikhonov is of the order

∥∥|ω − ωh|∥∥∞,0 +
((

δM
L

)3
M−1∑
n=0

∆t
∥∥∇(ω(tn+ 1

2 )− ωn+ 1
2

h

)∥∥2
)1/2

= O
(
hk + ∆t2 + µα2

)
.
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Moreover,

‖|ψ − ψh|‖2,1 ≤ O
(
hk + ∆t2 + µα2

)
.

Proof of Theorem 2.1. The solution ω of the BV model (2.3a) satisfies

Ro
〈
ωn+1−ωn

∆t
, vh

〉
+Ro b

(
ψn+ 1

2 , ωn+ 1
2 , vh

)
−
〈
∂ψn+

1
2

∂x
, vh
〉

+
(
δM
L

)3〈∇ωn+ 1
2 ,∇vh

〉
=
〈
Fn+ 1

2 , vh
〉

+ Intp(ωn, ψn; vh) ∀vh ∈ Xh (2.19)

where

Intp(ωn, ψn; vh) := Ro
〈
ωn+1−ωn

∆t
− ωt(tn+ 1

2 ), vh
〉

+
(
δM
L

)3〈∇ωn+ 1
2 −∇ω(tn+ 1

2 ),∇vh
〉

(2.20)

−
〈
∂ψn+

1
2

∂x
− ∂ψ(tn+

1
2 )

∂x
, vh
〉

+Ro
[
b
(
ψn+ 1

2 , ωn+ 1
2 , vh

)
− b
(
ψ(tn+ 1

2 ), ω(tn+ 1
2 ), vh

)]
.

(2.21)

Now we define

e := ω − ωh =
(
ω − Pω

)
−
(
ωh − Pω

)
= e⊥ − eh,

E := ψ − ψh =
(
ψ − Πψ

)
−
(
ψh − Πψ

)
= E⊥ − Eh.

Subtracting (2.5a) from (2.19), adding and subtracting b
(
ψ
n+ 1

2
h , ωn+ 1

2 , vh
)

and choos-

ing vh = e
n+ 1

2
h we obtain

Ro(‖en+1
h ‖2 − ‖enh‖2) + 2∆t

(
δM
L

)3‖∇en+ 1
2

h ‖2 = 2∆t
(
δM
L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

〉
−2∆t

〈
∂En+

1
2

∂x
, e
n+ 1

2
h

〉
+ 2Ro∆t

[
b
(
ψ
n+ 1

2
h , e

n+ 1
2

⊥ , e
n+ 1

2
h

)
+ b
(
En+ 1

2 , ωn+ 1
2 , e

n+ 1
2

h

)]
− 2∆tIntp(ωn, ψn; e

n+ 1
2

h ). (2.23)

because
〈
en+1
⊥ − en⊥, e

n+ 1
2

h

〉
= 0 and b

(
ψ
n+ 1

2
h , e

n+ 1
2

h , e
n+ 1

2
h

)
= 0.

Now, we bound the terms on the RHS of (2.23). Using Cauchy-Schwarz

and Young inequalities with ε = 1
8

and Lemma 2.3 we obtain∣∣( δM
L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + h2kC
(
δM
L

)3‖ωn+ 1
2‖2

k+1. (2.24)
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Integrating by parts, using Cauchy-Schwarz, Poincaré and Young inequalities with

ε = 1
8

(
δM
L

)3
and

∥∥∂en+1
2

h

∂x

∥∥ ≤ ∥∥∇en+ 1
2

h

∥∥, we obtain

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3‖∇En+ 1
2‖2. (2.25)

We have to estimate ‖∇En+ 1
2‖. Averaging and subtracting (2.3b) from (2.5b),

choosing vh = E
n+ 1

2
h and using Cauchy-Schwarz and Poincaré inequalities, we obtain

∥∥∇En+ 1
2

h

∥∥2 ≤ C
∥∥Dh

µ

(
ω
n+ 1

2
h − ωn+ 1

2

h)∥∥∥∥∇En+ 1
2

h

∥∥+ C
∥∥Dh

µω
n+ 1

2

h

− ωn+ 1
2

∥∥∥∥∇En+ 1
2

h

∥∥.
(2.26)

Using (2.26) and Lemma 2.7 we obtain

‖∇En+ 1
2‖2 ≤ ‖∇En+ 1

2
⊥ ‖2 + C

∥∥en+ 1
2

h

∥∥2
+ C

∥∥en+ 1
2

⊥
∥∥2

+ C
∥∥Dh

µω
n+ 1

2

h

− ωn+ 1
2

∥∥2
.

(2.27)

Using (2.27), Lemma 2.8 and Lemma 2.3 in (2.25) we obtain

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2

+ C
(
L
δM

)3(
C‖∇En+ 1

2
⊥ ‖2 + C‖en+ 1

2
⊥ ‖2 + C‖en+ 1

2
h ‖2 + C

∥∥Dh
µω

n+ 1
2

h

− ωn+ 1
2

∥∥2)
≤ 1

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3‖en+ 1
2

h ‖2 +
(
L
δM

)3[
h2kC‖ψn+ 1

2‖2
k+1 + h2k+2C‖ωn+ 1

2‖2
k+1

+ µ2α4‖ωn+ 1
2‖2

2 +
(
α2h2k + h2k+2

)
‖ωn+ 1

2‖2
k+1 +

(
µα2h2k + h2k+2

)
‖Dµω

n+ 1
2‖2

k+1

]
.

(2.28)
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Using Lemma 2.2, Young inequality with ε = 1
8Ro

(
δM
L

)3
, Poincaré inequality, (2.27)

and Lemma 2.8 and for k ≥ 1 we have

∣∣Ro b(En+ 1
2 , ωn+ 1

2 , e
n+ 1

2
h

)∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖∇ωn+ 1
2‖2

1‖∇En+ 1
2‖2

≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖∇ωn+ 1
2‖2

1‖e
n+ 1

2
h ‖2

+Ro2
(
L
δM

)3‖∇ωn+ 1
2‖2

1

(
h2kC‖ψn+ 1

2‖2
k+1 + h2k+2C‖ωn+ 1

2‖2
k+1 + C

∥∥Dh
µω

n+ 1
2

h

− ωn+ 1
2

∥∥2)
≤ 1

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖∇ωn+ 1
2‖2

1‖e
n+ 1

2
h ‖2 + CRo2

(
L
δM

)3
[
h2k+2‖ωn+ 1

2‖4
k+1

+ h2k‖∇ωn+ 1
2‖4

1 + h2k‖ψn+ 1
2‖4

k+1 + µ2α4‖ωn+ 1
2‖4

2 +
(
α2h2k + h2k+2

)
‖ωn+ 1

2‖4
k+1

+
(
µα2h2k + h2k+2

)
‖Dµω

n+ 1
2‖k+1 +

(
µ2α4 + α2h2k + 2h2k+2 + µα2h2k

)
‖∇ωn+ 1

2‖4
1

]
.

(2.29)

Using Holder’s inequality with p =∞ and q = r = 2,

∣∣b(ψn+ 1
2

h , e
n+ 1

2
⊥ , e

n+ 1
2

h

)∣∣ ≤ ‖∇ψn+ 1
2

h ‖∞‖e
n+ 1

2
⊥ ‖2‖∇en+ 1

2
h ‖2.

From ‖∇ψn+ 1
2

h − ∇ψn+ 1
2‖∞ = ‖∇En+ 1

2‖∞ and using Agmon’s inequality and the

regularity estimate ‖ψ‖m+2 ≤ C‖ω‖m for ψ satisfying (2.5b)

‖∇ψn+ 1
2

h ‖∞ ≤ ‖∇En+ 1
2‖∞ + ‖∇ψn+ 1

2‖∞ ≤ ‖∇En+ 1
2‖∞ + C‖ψn+ 1

2‖3

≤ ‖∇En+ 1
2‖∞ + C‖ωn+ 1

2‖1 (2.30)

We have to estimate the term ‖∇En+ 1
2‖∞. Let Ih be a global Langrangian inter-

polator, we have ‖∇En+ 1
2‖∞ ≤ ‖∇(Ihψn+ 1

2 − ψn+ 1
2

h )‖∞ + ‖∇(ψn+ 1
2 − Ihψn+ 1

2 )‖∞.

Using an inverse inequality for ‖∇(Ihψn+ 1
2 −ψn+ 1

2
h )‖∞ (Theorem 4.5.11 in [11]) and

a standard estimate for ‖∇(ψn+ 1
2 − Ihψn+ 1

2 )‖∞ (Theorem 4.4.20 in [11]) we have

‖∇En+ 1
2‖∞ ≤ Ch−1‖∇(Ihψn+ 1

2 − ψn+ 1
2

h )‖+ Chk−1‖ψn+ 1
2‖k+1

≤ Ch−1‖∇(Ihψn+ 1
2 − ψn+ 1

2 − En+ 1
2 )‖+ Chk−1‖ψn+ 1

2‖k+1

≤ Ch−1‖∇En+ 1
2

h ‖+ Chk−1‖ψn+ 1
2‖k+1 (2.31)

29



Thus, for 0 < h ≤ 1 and for k ≥ 1 we have

‖∇ψn+ 1
2

h ‖∞ ≤ Ch−1‖∇En+ 1
2

h ‖+ C‖ωn+ 1
2‖1 + C‖ψn+ 1

2‖k+1

Therefore, for h ≤ 1 and k ≥ 1 and using Lemma 2.3

∣∣b(ψn+ 1
2

h , e
n+ 1

2
⊥ , e

n+ 1
2

h

)∣∣ ≤ (Ch−1‖∇En+ 1
2

h ‖+ ‖ωn+ 1
2‖1 + ‖ψn+ 1

2‖k+1

)
‖en+ 1

2
⊥ ‖‖∇en+ 1

2
h ‖

≤ C‖ωn+ 1
2‖k+1‖∇E

n+ 1
2

h ‖‖∇en+ 1
2

h ‖+ C
(
‖ωn+ 1

2‖1 + ‖ψn+ 1
2‖k+1

)
‖en+ 1

2
⊥ ‖‖∇en+ 1

2
h ‖.

Using Young inequality in both terms with ε = 1
16CRo

(
δM
L

)3
, (2.26), Lemma 2.3 and

for k ≥ 1

∣∣Ro b(ψn+ 1
2

h , e
n+ 1

2
⊥ , e

n+ 1
2

h

)∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + 8Ro2
(
L
δM

)3‖ψn+ 1
2‖2

k+1‖e
n+ 1

2
⊥ ‖2

+ 8Ro2
(
L
δM

)3‖ωn+ 1
2‖2

k+1

(
‖en+ 1

2
h ‖2 + ‖en+ 1

2
⊥ ‖2 +

∥∥Dh
µω

n+ 1
2

h

− ωn+ 1
2

∥∥2
+ h2kC‖ωn+ 1

2‖2
1

)
≤ 1

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖ωn+ 1
2‖2

k+1‖e
n+ 1

2
h ‖2 + CRo2

(
L
δM

)3
[
h2k+2‖ψn+ 1

2‖4
k+1

+ h2k+2‖ωn+ 1
2‖4

k+1 + h2k‖ωn+ 1
2‖4

1 +
(
µ2α4 + αh2k + h2k+2 + µα2h2k

)
‖ωn+ 1

2‖4
k+1

+ µ2α4‖ωn+ 1
2‖4

2 +
(
α2h2k + h2k+2

)
‖ωn+ 1

2‖4
k+1 +

(
µα2h2k + h2k+2

)
‖Dµω

n+ 1
2‖4

k+1

]
(2.32)

It remains to bound Intp(ωn, ψn; e
n+ 1

2
h ). Using Cauchy-Schwarz, Poincaré

and Young inequalities with ε = 1
8

(
δM
L

)3
and Lemma 2.4 in (2.20), we obtain

Ro
∣∣〈ωn+1−ωn

∆t
− ωt(tn+ 1

2 ), e
n+ 1

2
h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + ∆t3CRo2
(
L
δM

)3
∫ tn+1

tn
‖ωttt‖2dt.

(2.33)

Using Cauchy-Schwarz and Young inequalities (ε = 1
8
) and Lemma 2.4

∣∣( δM
L

)3〈∇ωn+ 1
2 −∇ω(tn+ 1

2 ),∇en+ 1
2

h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + ∆t3C
(
δM
L

)3
∫ tn+1

tn
‖∇ωtt‖2dt.

(2.34)
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Integrating by parts, using Cauchy-Schwarz and Young inequalities with ε = 1
8

(
δM
L

)3

we obtain, after we use Lemma 2.4,

∣∣〈∂(ψn+1
2−ψ(tn+

1
2 )
)

∂x
, e
n+ 1

2
h

〉∣∣ =
∣∣− ∫

Ω

(
ψn+ 1

2 − ψ(tn+ 1
2 )
)∂en+1

2
h

∂x

∣∣
≤ 1

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + ∆t3C
(
L
δM

)3
∫ tn+1

tn
‖ψtt‖2dt. (2.35)

Adding and subtracting b
(
ψ(tn+ 1

2 ), ωn+ 1
2 , e

n+ 1
2

h

)
in the nonlinear term and using

Lemma 2.2, Young inequality with ε = 1
16

(
δM
L

)3
and Lemma 2.4 we obtain

∣∣b(ψn+ 1
2 , ωn+ 1

2 , e
n+ 1

2
h

)
− b
(
ψ(tn+ 1

2 ), ω(tn+ 1
2 ), e

n+ 1
2

h

)∣∣ =

≤ C
∥∥ψn+ 1

2 − ψ(tn+ 1
2 )
∥∥

1

∥∥∇en+ 1
2

h

∥∥∥∥∇ωn+ 1
2

∥∥
1

+ C
∥∥∇ψ(tn+ 1

2 )
∥∥

1

∥∥∇en+ 1
2

h

∥∥∥∥ωn+ 1
2 − ω(tn+ 1

2 )
∥∥

1

≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C∆t3
(
δM
L

)3∥∥∇ωn+ 1
2

∥∥2

1

∫ tn+1

tn
‖ψtt‖2

1dt

+ C∆t3
(
L
δM

)3∥∥∇ψ(tn+ 1
2 )
∥∥2

1

∫ tn+1

tn
‖ωtt‖2

1dt

≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + ∆t4C
(
L
δM

)3∥∥∇ωn+ 1
2

∥∥4

1
+ ∆t3C

(
L
δM

)3
∫ tn+1

tn
‖ψtt‖4

1dt

+ ∆t4C
(
L
δM

)3∥∥∇ψ(tn+ 1
2 )
∥∥4

1
+ ∆t3C

(
L
δM

)3
∫ tn+1

tn
‖ωtt‖4

1dt. (2.36)

Summing in (3.35) from n = 0 to n = M − 1 and using (2.33), (2.34), (2.35) and

(2.36) we obtain

M−1∑
n=0

∆t
∣∣Intp(ωn, ψnh; en+ 1

2
h )

∣∣ ≤ M−1∑
n=0

∆t
4

(
δM
L

)3∥∥∇en+ 1
2

h

∥∥2
+ ∆t4CRo2

(
L
δM

)3‖ωttt‖2
2,0

+ ∆t4C
(
δM
L

)3‖∇ωtt‖2
2,0 + ∆t4C

(
L
δM

)3‖ψtt‖2
2,0 + ∆t4C

(
L
δM

)3∥∥∣∣∇ψ1/2
∣∣∥∥4

4,1

+ ∆t4C
(
L
δM

)3‖ωtt‖4
4,1 + ∆t4C

(
L
δM

)3∥∥∣∣∇ω1/2
∣∣∥∥4

4,1
+ ∆t4C

(
L
δM

)3‖ψtt‖4
4,1. (2.37)
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Now, using (2.24), (2.28), (2.29), (2.32) and (2.37) in (2.23) and summing from

n = 0 to n = M − 1 we obtain

Ro(‖eMh ‖2 − ‖e0
h‖2) + ∆t

(
δM
L

)3 M−1∑
n=0

‖∇en+ 1
2

h ‖2 ≤ h2kC
(
δM
L

)3‖|ω1/2|‖22,k+1

+ h2kC
(
L
δM

)3‖|ψ1/2|‖22,k+1 + h2k+2C
(
L
δM

)3‖|ω1/2|‖22,k+1 + C
(
L
δM

)3[
µ2α4‖|ω1/2|‖22,2

+
(
α2h2k + h2k+2

)
‖|ω1/2|‖22,k+1 +

(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖22,k+1

]
+ CRo2

(
L
δM

)3[
h2k+2‖|ω1/2|‖44,k+1 + h2k‖|∇ω1/2|‖44,1 + h2k‖|ψ1/2|‖44,k+1 + µ2α4‖|ω1/2|‖44,2

+
(
α2h2k + h2k+2

)
‖|ω1/2‖44,k+1 +

(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖44,k+1

]
+
(
µ2α4 + α2h2k + 2h2k+2 + µα2h2k

)
‖|∇ω1/2|‖44,1 + CRo2

(
L
δM

)3[
h2k+2‖|ψ1/2|‖44,k+1

+ h2k+2‖|ω1/2|‖44,k+1 + h2k‖|ω1/2|‖44,1 + µ2α4‖|ω1/2|‖44,2 +
(
αh2k + h2k+2

)
‖ω1/2‖44,k+1

+
(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖44,k+1 +
(
µ2α4 + α2h2k + h2k+2 + µα2h2k

)
‖|ω1/2|‖44,k+1

]
+ ∆t4CRo2

(
L
δM

)3‖ωttt‖22,0 + ∆t4C
(
δM
L

)3‖∇ωtt‖22,0 + ∆t4C
(
L
δM

)3‖ψtt‖22,0
+ ∆t4C

(
L
δM

)3∥∥∣∣∇ψ1/2
∣∣∥∥4

4,1
+ ∆t4C

(
L
δM

)3‖ωtt‖44,1 + ∆t4C
(
L
δM

)3∥∥∣∣∇ω1/2
∣∣∥∥4

4,1

+ ∆t4C
(
L
δM

)3‖ψtt‖44,1 +

M−1∑
n=0

∆t
(
L
δM

)3(
C + CRo2‖∇ωn+ 1

2 ‖21 + CRo2‖ωn+ 1
2 ‖2k+1

)
‖en+ 1

2
h ‖2.

If ∆t <

(
δM/L
)3

C+CRo2‖∇ωn+
1
2 ‖21+CRo2‖ωn+

1
2 ‖2k+1

using Gronwall Lemma, we have

Ro(‖eMh ‖2 − ‖e0
h‖2) + ∆t

(
δM
L

)3 M−1∑
n=0

‖∇en+ 1
2

h ‖2 ≤ C∗
{
h2kC

(
δM
L

)3‖|ω1/2|‖22,k+1

+ h2kC
(
L
δM

)3‖|ψ1/2|‖22,k+1 + h2k+2C
(
L
δM

)3‖|ω1/2|‖22,k+1 + C
(
L
δM

)3[
µ2α4‖|ω1/2|‖22,2

+
(
α2h2k + h2k+2

)
‖|ω1/2|‖22,k+1 +

(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖22,k+1

]
+ CRo2

(
L
δM

)3[
h2k+2‖|ω1/2|‖44,k+1 + h2k‖|∇ω1/2|‖44,1 + h2k‖|ψ1/2|‖44,k+1 + µ2α4‖|ω1/2|‖44,2

+
(
α2h2k + h2k+2

)
‖|ω1/2‖44,k+1 +

(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖44,k+1

]
+
(
µ2α4 + α2h2k + 2h2k+2 + µα2h2k

)
‖|∇ω1/2|‖44,1 + CRo2

(
L
δM

)3[
h2k+2‖|ψ1/2|‖44,k+1

+ h2k+2‖|ω1/2|‖44,k+1 + h2k‖|ω1/2|‖44,1 + µ2α4‖|ω1/2|‖44,2 +
(
αh2k + h2k+2

)
‖ω1/2‖44,k+1

+
(
µα2h2k + h2k+2

)
‖|Dµω

1/2|‖44,k+1 +
(
µ2α4 + α2h2k + h2k+2 + µα2h2k

)
‖|ω1/2|‖44,k+1

]
+ ∆t4CRo2

(
L
δM

)3‖ωttt‖22,0 + ∆t4C
(
δM
L

)3‖∇ωtt‖22,0 + ∆t4C
(
L
δM

)3‖ψtt‖22,0 + ∆t4C
(
L
δM

)3‖ωtt‖44,1
+ ∆t4C

(
L
δM

)3∥∥∣∣∇ψ1/2
∣∣∥∥4

4,1
+ ∆t4C

(
L
δM

)3∥∥∣∣∇ω1/2
∣∣∥∥4

4,1
+ ∆t4C

(
L
δM

)3‖ψtt‖44,1}. (2.38)
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where

C∗ := exp
{

∆t
M−1∑
n=0

(
L
δM

)3(
C+CRo2‖∇ωn+

1
2 ‖21+CRo2‖ωn+

1
2 ‖2k+1

)
1−∆t

(
L
δM

)3(
C+CRo2‖∇ωn+

1
2 ‖21+CRo2‖ωn+

1
2 ‖2k+1

)}. (2.39)

Estimate (2.17) then follows from the triangle inequality and (2.38).

For estimate (2.18), we use (2.38) and

∥∥∇(ω(tn+ 1
2

)
− ωn+ 1

2
h

)∥∥2 ≤
∥∥∇(ω(tn+ 1

2

)
− ωn+ 1

2

)∥∥2
+
∥∥∇en+ 1

2
⊥
∥∥2

+
∥∥∇en+ 1

2
h

∥∥2

≤ ∆t3
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∫ tn+1

tn
‖ωtt‖2dt+ Ch2k

∥∥ωn+ 1
2

∥∥2

k+1
+ ‖∇en+ 1

2
h ‖2.

Proof of Corollary 2.1. The result follows directly from

‖∇(ψ(tn+ 1
2 )− ψn+ 1

2
h )‖2 ≤ ‖∇

(
ψ(tn+ 1

2 )− ψn+ 1
2

)
‖2 + ‖∇En+ 1

2‖2 (2.40)

after we apply inequality (2.27), Lemma 2.8, Lemma 2.3, sum from n = 0, ...,M − 1

and Theorem 2.1.

2.5 Numerical experiments

In this section we provide results obtained with the proposed scheme.

We start by validating our computational implementation and estimating conver-

gence rates using an analytical solution. Then, we perform simulations of the tradi-

tional double-gyre wind forcing experiment. The computational tests were made us-

ing the software FreeFem++[40]. The resulting nonlinear system was solved through

a newtonian iteration. Moreover, a multi-frontal Gauss LU factorization imple-

mented in the package UMFPACK (provided with FreeFem++ software) was used

as our linear solver.
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2.5.1 Convergence rates

First, we estimate convergence rates for the BV-Tikhonov model using

an analytical solution and results produced in meshes with different spatial resolu-

tion. We calculate convergence rates using the error at two successive values of h by

postulating that e(h) = Chβ and solving for β with β = ln(e(h1)/e(h2))/ ln(h1/h2).

Setting F = −π exp[−2π2

Ro

(
δM
L

)3
t] cosπx sin πy and adopting Ω = [0, 1]×

[−1, 1], the following time dependent solution for BV (with homogeneous Dirichlet

boundary conditions) is obtained

ψ = exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy,

ω = 2π2 exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy

which we use to estimate convergence rates for BV-Tikhonov model.

We use results obtained in regular rectangular meshes with h equal to

1/4, 1/8, 1/16, 1/32, 1/64 and 1/128 to calculate the convergence rates for δM/L = 0.02

and Ro = 1.0. In all cases we chose α = h and µ = 1, and the timestep was

chosen in terms of h in order to balance the errors sources from the convergence

theorem. That is, for P1 elements and α = h, the L2(0, T ;H1(Ω)) vorticity error

and L∞(0, T ;H1(Ω)) streamfunction error from the theorem is O(∆t2 +h), and thus

we chose ∆t =
√
h (but slightly rounded so that ∆t evenly divided T ), and thus here

we expect first order convergence in these norms as ∆t, h → 0. For P2 elements,

we chose ∆t = h, and expect second order convergence of these norms.

Convergence rates for BV-Tikhonov model are presented in Table 2.1.

From the table, we observe that convergence rates approach the expected estimates

for the given norms in the convergence theorem both for P1 and P2 elements.
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Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖2,1 Rate
P1 4 24.189 1.9868 2.1732

(∆t =
√
h) 8 12.376 0.97 0.61369 1.69 1.0117 1.10

16 6.1545 1.01 0.16167 1.92 0.39299 1.36
32 3.0614 1.01 0.041218 1.97 0.16706 1.23
64 1.5259 1.00 0.010349 1.99 0.078803 1.08
128 0.76181 1.00 0.002606 1.99 0.038768 1.02

P2 4 6.3875 0.79216 1.7969
(∆t = h) 8 2.7885 1.20 0.28037 1.50 0.74236 1.23

16 1.0076 1.47 0.078785 1.83 0.22489 1.72
32 0.33616 1.58 0.020767 1.92 0.059414 1.92
64 0.10476 1.68 0.0052803 1.98 0.059414 1.98
128 0.02967 1.82 0.0013261 1.99 0.015067 1.99

Table 2.1: Convergence rates for BV-Tikhonov model with δM
L

= 0.02 and Ro = 1.0.

2.5.2 Double gyre wind forcing experiment

According to [37, 47], when BV equations are forced by a double gyre wind

forcing in a rectangular basin and dissipation is weak, the instantaneous vorticity and

streamfunction fields are highly variable but their mean fields present a well defined four

gyre pattern in which the two central gyres are driven by the wind and the northern and

southern ends of the basin are driven by the eddy flux of potential vorticity. Moreover, the

outer gyres are not a linear effect, instead it results from a mean balance between eddy

flux of potential vorticity and wind forcing which is susceptible to destruction by excessive

dissipation [47].

The double gyre wind forcing experiment has been used in several studies

as a model of more realistic ocean dynamics. Besides, it has been used as an interesting

benchmark test in order to analyze new techniques to deal with turbulence in geophysical

flows, e.g. [81, 47, 100]. In order to accomplish the double gyre wind forcing experiment,

F is set to F0 sin(πy) where F0 = 1.

Here we follow [100] and adopt the standard LES methodology: first we run

the double gyre wind forcing experiment in a high resolution simulation with BV model
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(no treatment of turbulence). After we run several experiments in a coarse resolution mesh

with BV model and BV-Tikhonov model and compare them with the high resolution BV

model solution as reference.

Following [37, 81, 47, 100], we run simulations in different regular triangular

meshes in the dimensionless rectangular domain [0, 1]× [−1, 1] considering h = 1/4 (which

corresponds to a grid with 4 × 8 squares), 1/8 (8 × 16), 1/16 (16 × 32), 1/32 (32 × 64) and

1/64 (64× 128) where h is the mesh-width. Figure 2.1 presents the coarsest mesh used in

experiments.

Figure 2.1: Mesh with h = 1/4 which corresponds to a grid with 4× 8 squares.

Experiments were made starting from t = 0 up until t = 100 (corresponding

to 56.6 years in dimensional units) as in [100]. In this and in the next section we present

figures of the average fields of streamfunction (ψ) and potential vorticity (given by q =

Roω+y) calculated using results from t = 20 until 100 as in [100]. Moreover, we considered

two interesting cases: i) δM/L = 0.02 and Ro = 0.0016 (which is presented in [100]) and ii)

δM/L = 0.01 and Ro = 0.0002.

Firstly, we present the results obtained in the experiment using δM/L = 0.02

and Ro = 0.0016. In this case, the high spatial resolution experiment with the BV model

was made in a regular rectangular mesh with 16,384 triangular elements (33,153 degrees

of freedom) corresponding to a grid with spatial resolution of 64 × 128 squares. Thus,

the mean length of the triangle edge is about 0.015 which permits to resolve the Munk

scale (δM ). Solutions for the high resolution experiment using ∆t = 0.001 are presented in
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Figures 2.2(a) and 2.3(a). We observe that the high resolution solution produced by our

FE scheme can reproduce the four gyre pattern found by [100] in their DNS experiment.

Now, we evaluate the results produced with BV model in the coarse 4 × 8

mesh using the timestep ∆t = 0.001. In Figures 2.2(b) and 2.3(b) we can see, when mesh

resolution is reduced (h is increased), the BV model streamfunction solution become more

diffusive causing the degeneration of the four gyres pattern in two gyres, as is also observed

in [81, 47, 100]. According to [47], in this case the grid resolution is too coarse to resolve

the viscous boundary layer (Munk scale of 0.02).

Next, we present the solutions obtained with the BV-Tikhonov model (∆t =

0.001). Figures 2.2(c), 2.2(d), 2.2(e) and 2.2(f) present the streamfunction field and Fig-

ures 2.3(c), 2.3(d), 2.3(e) and 2.3(f) the vorticity field produced with the BV-Tikhonov

model for α = h and µ equal to 1, 1
4 , 1

16 and 1
64 , respectively. We can see that the BV-

Tikhonov model can recover the four gyre pattern in this experiment for all tested values

of the µ parameter. However, the BV-Tikhonov solution can be dramatically different

depending on the value of the µ parameter. For example, the BV-Tikhonov provides an

accurate solution in the coarse mesh when µ = 1
16 and µ = 1

64 , but for µ = 1 and µ = 1
4

some discrepancies are observed in the vorticity field.

Computational times for the BV model in the fine and coarse mesh and for

the BV-Tikhonov model in the coarse mesh are presented in Table 2.2. We see that the

BV-Tikhonov algorithm is able to recover the four gyre pattern in the coase mesh and it

is significant faster than solving the BV model in the fine mesh.

Fine Coarse alpha µ = 1/4 µ = 1/16 µ = 1/64

9.82e5 2.05e3 4.5e3 4.2e3 4.5e3 4.5e3

Table 2.2: Computational time (in seconds) obtained for Ro = 0.0016 in the fine (64×128)

and coarse (4 × 8) mesh with the BV model and in the coarse mesh (4 × 8)

with BV-Tikhonov model.

Next, we investigated the effect of different choices of the µ parameter on

the solution of the BV-Tikhonov model. Figure 2.4(a) presents the time evolution of the

cumulative moving average kinect energy for different values of the µ parameter in the
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above mentioned experiment. We found for all values of µ parameter, solutions have more

energy than the high spatial resolution solution (with BV model). Moreover, in Figure

2.2 we saw that increasing µ produces an intensification of the four gyre pattern. Thus

solution can be very sensitive to the value of µ parameter tending to be more energetic

when µ is larger. The intensification of the four gyre pattern in the BV-α model was

also observed in [47] and according to [82] is attributed to the enhancement of the inverse

energy cascade in the model.

We also tested the BV and BV-Tikhonov model in a 16 × 32 mesh using

∆t = 0.001. Results obtained with the coarse BV model are presented in Figures 2.5(b)

and 2.6(b). In this case the BV model solution does not degenerates in two gyres, but

instead the gyres are intensified in comparison with the reference solution. In Figures

2.5(c), 2.5(d), 2.5(e) and 2.5(f) we present the streamfunction fields and in Figures 2.6(c),

2.6(d), 2.6(e) and 2.6(f) the vorticity fields obtained with the BV-Tikhonov model for

α = h and µ equal to 1, 1
4 , 1

16 and 1
32 , respectively. In this case, we also observed that

the BV-Tikhonov solution can be very sensitive to different values of the µ parameter.

For example, when µ = 1 or µ = 1
4 the gyres in the BV-Tikhonov solution are intensified

in comparison with the high resolution and coarse BV solutions. However, for µ = 1
16

and µ = 1
64 the BV-Tikhonov model solutions are more similar with the high resolution

solution than the coarse BV model solution. Run times for the BV model in the fine and

coarse mesh (16 × 32) and for the BV-Tikhonov model in the coarse mesh (16 × 32) are

presented in Table 2.3. In this experiment we see again that the BV-Tikhonov solution,

as well as recovering the expected four gyre pattern, it is significant faster than solving

the BV model in the fine mesh.

Fine Coarse alpha µ = 1/4 µ = 1/16 µ = 1/64

9.82e5 3.69e4 9.19e4 9.00e4 8.73e4 8.99e4

Table 2.3: Computational time (in seconds) obtained for Ro = 0.0016 in the fine (64×128)

and coarse (16×32) mesh with the BV model and in the coarse mesh (16×32)

with BV-Tikhonov model. The experiments were made in a Intel® CoreTM i7

3.70 GHz.

38



Finally, we present the results obtained in a experiment using δM/L = 0.01

and Ro = 0.0002. In this test, the high resolution solution is simulated in a 50 × 100

mesh (8,385 degrees of freedom and 4,096 triangles) using ∆t = 0.001. Figures 2.7(a) and

2.8(a) present the reference solution. Here the streamfunction solution presents a distinct

six gyre pattern. This pattern is also very sensitive to the mesh resolution, as we can

see in Figures 2.7(b) and 2.8(b) in which the coarse (8 × 16) BV model solution using

the same ∆t is presented. That is, in this case the BV model streamfunction solution

degenerates in two gyres and the vorticity field becomes very noisy. On the other hand,

the coarse mesh BV-Tikhonov streamfunction solutions (also for ∆t = 0.001) for µ equal

to 1, 1
4 , 1

16 and 1
64 are presented in Figures 2.7(c), 2.7(d), 2.7(e) and 2.7(f), respectively,

and their respective vorticity fields in Figures 2.8(c), 2.8(d), 2.8(e) and 2.8(f). We can

see that the BV-Tikhonov solution can recover the external gyres for all tested values of

the µ parameter. However, like in the previous experiments, the BV-Tikhonov solution is

also dramatically dependent on the choice of µ value. For example, when µ = 1 (BV-α

model) the gyres are slighly intensified and displaced in relation to the high resolution

solution. Nevertheless, when µ = 1
16 and µ = 1

64 they are in the right place with the

correct magnitude. Moreover, the vorticity field is somewhat less noisy than the coarse

BV model solution.

To sum up, in this experiment we observed that the BV-Tikhonov model

can retrieve the four gyre pattern in all tested cases, but solutions can be dramatically

improved by the choice of the µ parameter. We showed that the BV-α model (µ = 1)

provides solutions with more kinetic energy in comparison with the reference solution.

Consequently, its solutions presents an intensified four gyre pattern. However, this problem

can be fixed by choosing µ < 1 in the BV-Tikhonov model. It is in agreement with the

convergence analysis presented above, wherein it was shown that the BV-Tikhonov model

has a second order consistency error which also depends on µ (see Corollary 2.1). We

believe when µ = 1 and the mesh is coarse (the meshwidth h is large and, consequently,

the α parameter), the consistency error can affect the BV-Tikhonov solution, probably

through the filter effect on the large to moderate scales (the resolved scales), but when

µ < 1 this kind of error is partially controlled enabling the model to produce solutions
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more similar with the reference solution. It is also insightful to analyze the DµF operator

in the wave number space given by D̂µF = (1 + µk2)−1 where k is the wave number. In

Figure 2.4(b) we present the transfer function of DµF operator for α = 1 and µ equal to

1, 1
4 , 1

16 and 1
64 . In this figure we see that the resolved scale is less affected by the DµF

operator when µ is decreased, at the expense of less regularization. We do not investigate

an optimal value for the µ parameter, but we observed that values between µ = 1
16 and

µ = 1
64 produce the best results and when µ is smaller than 1

64 the BV-Tikhonov solution

tends to the coarse BV solution. Thus, the BV-α model can retrieve the four gyre pattern

in coarse meshes in which the BV model solution degenerates. However, the BV-Tikhonov

model improves the BV-α in the sense that more accurate solutions can only be obtained

when µ < 1, at the expense of less reguralization, which is related to the consistency error

in the regularized model and the undesirable filter effect on the large to moderate scales.

2.6 Conclusions

Geophysical flow simulations, due to their high Reynolds number, are presently

unfeasible with the available computational resources. Regularized models are simplified

models designed to reduce the degrees of freedom in simulations by virtue of small changes

in the original equations, which shorten the energy cascade enabling the use of less refined

meshes. In this article we studied the Tikhonov-Lavrentiev regularization applied to the

BV model of geophysical flows. Firstly, we proposed a Crank-Nicolson/FEM algorithm for

the BV-Tikhonov model and proved it is unconditionally stable and optimally convergent.

Then, theoretical convergence rates were confirmed through numerical simulations using

an analytical solution. Also, we tested the BV-Tikhonov algorithm in the more realistic

double gyre wind forcing experiment. We showed it recovers the expected pattern in the

case in which the coarse mesh BV model solution degenerates. Moreover, we showed that

a dramatic improve over the BV-α model (µ = 1) can be obtained by a carefull choice

of the µ parameter in the BV-Tikhonov model. We believe it is due to the consistency

error caused by alpha terms which, despite being second order according to the presented
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convergence analysis, can be controlled decreasing the µ parameter in the BV-Tikhonov

model, at the expense of less regularization.

A natural next step is to investigate the Van Cittert approximate deconvo-

lution technique applied to the BV-α model, which permits to control the order of the

consistency error in the regularization model. This technique has been developed and used

with success in the case of Navier-Stokes-α model [76, 94]. Application of the Van Cittern

approximate deconvolution in the BV-α model is studied in Chapter 4.
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Figure 2.2: Streamfunction fields in the experiment with δM/L = 0.02 and Ro =
0.0016 for (a) the high resolution BV model solution, (b) coarse (4× 8)
BV model solution and coarse (4 × 8) BV-Tikhonov solution for (c)
µ = 1, (d) µ = 1

4
, (e) µ = 1

16
and (f) µ = 1

64
.
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Figure 2.3: Vorticity fields in the experiment with δM/L = 0.02 and Ro = 0.0016 for
(a) the high resolution BV model solution, (b) coarse (4× 8) BV model
solution and coarse (4 × 8) BV-Tikhonov solution for (c) µ = 1, (d)
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Figure 2.4: (a) Effect of different values for α on the evolution of kinetic energy in
the BV-Tikhonov model. (b) Transfer function of DµF operator.
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Figure 2.5: Streamfunction fields in the experiment with δM/L = 0.02 and Ro =
0.0016 for (a) the high resolution BV model solution, (b) coarse (16×32)
BV model solution and coarse (16 × 32) BV-Tikhonov solution for (c)
µ = 1, (d) µ = 1
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Figure 2.7: Streamfunction fields in the experiment with δM/L = 0.01 and Ro =
0.0002 for (a) the high resolution BV model solution, (b) coarse (8×16)
BV model solution and coarse (8 × 16) BV-Tikhonov solution for (c)
µ = 1, (d) µ = 1
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Figure 2.8: Vorticity fields in the experiment with δM/L = 0.01 and Ro = 0.0002 for
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3 BAROTROPIC VORTICITY-BARDINA

MODEL1

3.1 Introduction

Geophysical flow simulations can assist in the study of climate change, weather

and ocean forecasting, biological and pollutant transport in the ocean, oil exploration, and

many other applications. One of the simplest models which can be used to represent these

meso and large scale flows is the barotropic vorticity (BV) model of geophysical flows,

which is given in dimensionless form by [47, 100]

Ro ∂ω∂t +RoJ(ψ, ω)− ∂ψ
∂x −

(
δM
L

)3
∆ω = F, (3.1a)

∆ψ = −ω, (3.1b)

where ω is the vorticity, ψ is the streamfunction, J(ψ, ω) = ∂ψ
∂x

∂ω
∂y −

∂ψ
∂y

∂ω
∂x is the Jacobian,

Ro is the Rossby number, δM is the Munk scale, L is the length scale and F is the forcing

term. The BV model is commonly used in oceanography to study midlatitude ocean

circulation, and it can also be extended to multilayer in order to describe the vertical

motions in the ocean [78]. It has recently been used in studies involving data assimilation

[113, 21], climate [95, 73, 36] and oceanic processes [12, 108].

Despite its simplified form (compared to, e.g., the primitive equations), the

BV system still contains a very large range of active scales, and it is not computationally

feasible to perform simulations that resolve them all, particularly when long time inte-

gration is necessary (e.g. climate modeling [78]). Traditionally, simulations are done on

coarse meshes and essentially dissipative techniques such as eddy viscosity parametriza-

tions have been used to model the under-resolved scales of the flow. However, according

to [47], increasing artificial viscosity tends to reduce variability, and nonlinear structures

1The content of this chapter is coauthored by Professor Carolina C. Manica and Professor Leo
G. Rebholz and was accepted in 1 December, 2014, for publication in the journal Numerical Meth-
ods for Partial Differential Equations with the title Numerical study of a Regularized Barotropic
Vorticity Model of Geophysical Flow.
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can be destroyed by excess dissipation [37, 47]. We study a regularization / large eddy

simulation (LES) approach to this problem, which is to try instead to resolve only the

large scales of the flow, and to model the effect of the small scales on the large scales.

Even though this is a two dimensional model, it is based on the vorticity equation, which

is known to have a forward enstrophy cascade, and thus this approach is valid in this

context.

The model we study herein was first proposed by Khouider and Titi in [59],

and is a reduction of the well-known (simplified) Bardina model to two dimensions with

the beta-plane approximation. We refer to it as BV-Bardina, and it can be written as

Ro
∂ω

∂t
+RoJ

(
ψ, ω

)
− ∂ψ

∂x
−
(δM
L

)3
∆ω = F, (3.2)

∆ψ = −ω, (3.3)

−α2∆ω + ω = ω. (3.4)

We will show in section 3.1.1 the derivation of the system (3.2)-(3.4) from the (simplified)

Bardina model in velocity-pressure variables.

The main objective of this chapter is to study a Crank-Nicolson-in-time,

finite element (FE) in space algorithm for approximating solutions to the BV-Bardina

model. After proposing the scheme, we analyze its stability and convergence, and prove it

is unconditionally stable with respect to the timestep size, and that it converges optimally

in space and time. Moreover, we estimate convergence rates using numerical simulations

and perform the benchmark double-gyre wind forcing experiment to evaluate the perfor-

mance of BV-Bardina on meshes with coarse spatial resolution. To our knowledge, this is

the first numerical analysis of a numerical scheme for a regularized/LES BV-type model, al-

though a significant amount of work has been done on the related vorticity-streamfunction

formulation of the Navier-Stokes equations (see [4] and references therein). Steady state

analysis of numerical schemes for BV and related models has been performed in [26, 27],

but of course analysis of the time dependent schemes has more (and somewhat different)

complexities. Related models have been studied from a computational point of view using

approximate deconvolution modeling [100, 99], and with the NS-α-derived model called

BV-α [47], and have enjoyed some computational success. We believe the advantage of
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BV-Bardina over approximate deconvolution modeling is in its simplicity, as there is only

one filtering procedure that needs performed. BV-α is similar in form to BV-Bardina,

and we note that the only difference is in BV-α the Jacobian term has the form J
(
ψ, ω

)
.

Hence BV-Bardina can be considered as having more regularization than BV-α. Due

to their similarity, we compare solutions produced by the two models in our numerical

experiments section, and find that BV-Bardina gives better coarse mesh results on the

double-gyre wind forcing benchmark test. Moreover, similar numerical analysis to that

performed herein can be extended to BV-α schemes, which to our knowledge has not been

studied.

The chapter is organized as follows: Section 3.1.1 presents the BV-Bardina

model derivation, and Section 3.2 introduces some mathematical preliminaries. Section

3.3 presents the numerical scheme and its stability analysis. Section 3.4 presents the

convergence analysis. Numerical convergence rates tests and the double gyre wind forcing

experiment results are given in Section 3.5. Finally, some conclusions and remarks are

summarized in Section 3.6.

3.1.1 Barotropic Vorticity-Bardina model

We show here how the BV-Bardina model is obtained from the simplified

Bardina model. The Bardina model emerged in 1980 as a particular closure model to ap-

proximate the Reynolds stress tensor introduced by Bardina et al. [3]. It was later studied

analytically in a simplified form by Layton and Lewandowski [62], and Cao, Lunasin and

Titi [15]. Following [15], the simplified Bardina model can be written as

∂u

∂t
+ u · ∇u− ν∆u = −∇p,

∇ · u = ∇ · u = 0,

−α2∆u + u = u,

where α > 0 is the filtering radius. Using the identity u · ∇u = ∇ |u|
2

2 − u × ∇ × u, we

have that

∂u

∂t
− u×∇× u− ν∆u = −∇

(
p+
|u|2

2

)
. (3.5)
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Restricting now to two dimensions (0 in the z direction), we note that by a vector identity,

since u is divergence free, we have that ∇×
[
u×

(
∇×u

)]
= −u · ∇

(
∇×u

)
. Now taking

curl of equation (3.5) and the filter equation provides

∂(∇× u)

∂t
− u · ∇(∇× u)− ν∆(∇× u) = 0. (3.6)

Letting ω =
(
∇ × u

)
· k̂, and ψ be the streamfunction associated with u, we have the

system (after applying curl on the filter equation),

∂ω

∂t
+ J

(
ψ, ω

)
− ν∆ω = 0

∆ψ = −ω

−α2∆ω + ω = ω,

where ω is the filtered vorticity. Now using the beta plane approximation for the Coriolis

term and simplifying, we arrive at the BV-Bardina model

Ro
∂ω

∂t
+RoJ

(
ψ, ω

)
− ∂ψ

∂x
−
(δM
L

)3
∆ω = F,

∆ψ = −ω,

−α2∆ω + ω = ω.

3.2 Notation and preliminaries

Let Ω ⊂ R2 be a polygonal domain, and τh a regular, conforming triangula-

tion of Ω. Define X = H1
0 (Ω) to be the subspace of H1(Ω) with zero boundary condition.

Let Yh be the continuous finite element space with kth degree polynomials on each element

of the triangulation τh and Xh be the subspace of Yh with zero boundary values. Denote

by 〈·, ·〉 and ‖ · ‖ the L2(Ω) inner product and norm, and ‖ · ‖k the Hk(Ω) norm.

For continuous in time functions, we denote for 1 ≤ m <∞,

‖f‖∞,k := ess sup
t∈(0,T )

‖f(t, ·)‖k and ‖f‖m,k :=
{∫ T

0
‖f(t, ·)‖mk dt

} 1
m .

For discrete in time functions, we use the notation

‖|f |‖∞,k := ess sup
0≤n≤M

‖fn‖k, ‖|f
1/2|‖∞,k := ess sup

0≤n≤M
‖fn+ 1

2 ‖k,
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‖|f |‖m,k :=
{ M∑
n=0

‖fn‖mk dt
} 1
m , ‖|f 1/2|‖m,k :=

{ M∑
n=0

‖fn+ 1
2 ‖mk dt

} 1
m .

Define the trilinear operator b : X ×X ×X → R by

b(u, v, w) = 〈J(u, v), w〉.

This trilinear operator has skew-symmetric properties, which seems to be first dis-

covered by Fix in [23]. We state these properties here, and note that the proofs

follow by integration by parts, and the divergence theorem.

Lemma 3.1. For ψ, ξ ∈ Xh and χ ∈ Y h,

i) b
(
ψ, ξ, ξ

)
= 0; ii) b

(
ψ, χ, ψ

)
= 0

Proof. See [23].

We have the following estimate for the trilinear term.

Lemma 3.2. Let ζ, φ ∈ X and ξ ∈ H2 ∩X we have

|b
(
ξ, φ, ζ

)
| ≤ C(Ω)‖∇ξ‖1‖∇φ‖‖∇ζ‖.

Proof. Using Holder’s inequality with p, q = 4 and r = 2, the result follows from

H1 ↪→ L4 and Poincaré’s inequality.

Given ξ ∈ X, let Pξ ∈ Xh be the standard L2 projection of ξ onto Xh

such that 〈
ξ − Pξ, φ

〉
= 0, ∀φ ∈ Xh, (3.7)

and let Πξ ∈ Xh be the Elliptic projection of ξ onto Xh such that〈
∇(ξ − Πξ),∇φ

〉
= 0, ∀φ ∈ Xh. (3.8)

Lemma 3.3. Given ξ ∈ Hk we have the following estimates [11]

i) ‖ξ − Pξ‖ ≤ Chk+1‖ξ‖k+1, (3.9a)

ii) ‖∇(ξ − Pξ)‖ ≤ Chk‖ξ‖k+1, (3.9b)

iii) ‖∇(ξ − Πξ)‖ ≤ Chk‖ξ‖k+1. (3.9c)
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3.2.1 Discrete filtering

We define the discrete Laplacian operator ∆h : X → Xh in the usual

way by 〈
∆hψ, χ

〉
= −

〈
∇ψ,∇χ

〉
, ∀χ ∈ Xh. (3.10)

Discrete filtering is defined, for φ ∈ L2(Ω), by

α2〈∇φh,∇vh)〉+ 〈φh, vh〉 = 〈φ, vh〉, ∀vh ∈ Xh.

The following bounds are known to hold for filtered quantities (see [79]): For φ ∈ X

we have the following upper bounds:

‖φh‖ ≤ ‖φ‖, (3.11)

‖∇φh‖ ≤ C(Ω)‖∇φ‖, (3.12)

‖∇φh‖ ≤ ‖∇φ‖ for φ ∈ Xh. (3.13)

Lemma 3.4. For φ ∈ L2(Ω), the discrete filtering operation satisfies

‖φ− φh‖2 ≤ Cα4‖∆φ‖2 + C
(
αhk + hk+1

)2|φ|2k+1, (3.14)

and thus for k ≥ 1,

‖φ− φh‖2 ≤
(
Cα4 + Cα2h2k + h2k+2

)∥∥φ∥∥2

k+1
. (3.15)

Proof. See [66].

Define the energy norm ‖ · ‖E and the energy dissipation norm ‖ · ‖ε by

‖φ‖E :=
〈
φ, φ

h〉1/2
=
(
‖φh‖2 + α2‖∇φh‖2

)1/2
,

‖φ‖ε :=
〈
∇φ,∇φh

〉1/2
=
(
‖∇φh‖2 + α2‖∆hφ

h‖2
)1/2

.

These norms are natural for the BV-Bardina model we study herein, and it is proven

in [79] that this energy norm is equivalent to the L2(Ω) norm, and this energy

dissipation norm is equivalent to the H1(Ω) norm:
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Lemma 3.5. If the filtering radius α is chosen so that α ≤ O
(
h
)
, the natural energy

norm of BV-Bardina, ‖ · ‖E is equivalent to the usual L2 norm in Xh: for φ ∈ Xh,

there exists CE independent of h, φ satisfying

‖φ‖E ≤ ‖φ‖ ≤ CE‖φ‖E. (3.16)

Additionally, the natural energy dissipation norm of BV-Bardina, ‖·‖ε, is equivalent

to the H1 norm in Xh: there exists Cε independent of h,φ satisfying

‖φ‖ε ≤ ‖∇φ‖ ≤ Cε‖φ‖ε. (3.17)

3.3 Numerical Scheme for BV-Bardina

Following [100, 47] we consider the model with slip boundary conditions

for velocity, which translates into the homogeneous Dirichlet condition ω|∂Ω = 0, and

the impermeability condition ψ|∂Ω = 0. As in [47], we consider the additional homo-

geneous Dirichlet condition ω|∂Ω = 0 in the filter equation, which allows inversion

to be performed uniquely.

Our motivation for studying the BV and BV-Bardina models is the

search for efficient, unconditionally stable and accurate methods for the simulation

of geophysical flows. We present now a finite element discretization in space, together

with Crank-Nicolson time discretization. As it is common in such discretizations,

we denote the half timesteps by vn+ 1
2 := vn+vn+1

2
and tn+ 1

2 := tn+tn+1

2
.

Algorithm 3.1 (Crank-Nicolson BV-Bardina model). Given ω0
h and ψ0

h as the

L2(Ω) projections into Xh of ω0 ∈ X and ψ0 ∈ X, endtime T , F ∈ L∞(0, T ;L2(Ω)),

and timestep ∆t > 0, set M = T
∆t

and for n=0,...,M-1, find (ωn+1
h , ψn+1

h , ωn+1
h

h
) ∈
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Xh ×Xh ×Xh satisfying

Ro
〈ωn+1

h −ωnh
∆t

, vh
〉

+Ro b
(
ψ
n+ 1

2
h , ω

n+ 1
2

h

h

, vh
)
−
〈∂ψn+1

2
h

∂x
, vh
〉

+
(
δM
L

)3〈∇ωn+ 1
2

h ,∇vh
〉

=
〈
F n+ 1

2 , vh
〉
∀vh ∈ Xh, (3.18)〈

∇ψn+1
h ,∇χ

〉
−
〈
ωn+1
h

h
, χ
〉

= 0 ∀χ ∈ Xh, (3.19)

α2
〈
∇ωn+1

h

h
,∇ξ

〉
+
〈
ωn+1
h

h
, ξ
〉
−
〈
ωn+1
h , ξ

〉
= 0 ∀ξ ∈ Xh. (3.20)

We prove next that Algorithm 3.1 is unconditionally stable with respect

to the timestep size.

Lemma 3.6. Consider Algorithm 3.1. ωh and ψh satisfy the following bounds,

Ro‖∇ψMh ‖2 + ∆t
(
δM
L

)3
M−1∑
n=0

‖∆hψ
n+ 1

2
h ‖2 ≤ C(data). (3.21)

and

C−1
E Ro‖ωMh ‖2 + ∆t

(
δM
L

)3
M−1∑
n=0

C−1
ε

2
‖∇ωn+ 1

2
h ‖2 ≤ C(data). (3.22)

Remark 3.1. The bounds (3.21)-(3.22) are sufficient for the Leray-Schauder fixed

point theorem to be applied, in order to prove existence of a solution at each timestep

(as in [60]). Uniqueness can be proven in the standard way, and will hold provided

a timestep restriction.

Proof. We start proving estimate (3.21). Choosing vh = ψ
n+ 1

2
h , using skew-symmetric

properties of b, and that
〈∂ψn+1

2
h

∂x
, ψ

n+ 1
2

h

〉
= 0 since ψ

n+1/2
h ∈ Xh, we get that

Ro
〈ωn+1

h − ωnh
∆t

, ψ
n+ 1

2
h

〉
+
(
δM
L

)3〈∇ωn+ 1
2

h ,∇ψn+ 1
2

h

〉
=
〈
F n+ 1

2 , ψ
n+ 1

2
h

〉
. (3.23)

Rewrite the two terms in the LHS in (3.23). For the first, we average (3.19) at the

n and n+ 1 time levels, then choose χ = ωn+1
h

h
− ωnh

h
to obtain

〈
∇ψn+ 1

2
h ,∇

(
ωn+1
h

h
− ωnh

h)〉
=
〈
ω
n+ 1

2
h

h

, ωn+1
h

h
− ωnh

h〉
=
‖ωn+1
h

h
‖2−‖ωnh

h‖2
2

. (3.24)
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Next, subtracting (3.19) in n from (3.19) in n+ 1 and choosing χ = ψ
n+ 1

2
h∥∥∇ψn+1

h

∥∥2

−
∥∥∇ψnh∥∥2

2
=
〈
∇
(
ψn+1
h − ψnh

)
,∇ψn+ 1

2
h

〉
=
〈
ωn+1
h

h
− ωnh

h
, ψ

n+ 1
2

h

〉
. (3.25)

Subtracting (3.20) in the time step n from (3.20) in the time step n + 1, choosing

ξ = ψ
n+ 1

2
h and using (3.24) and (3.25) we get

α2
(‖ωn+1

h

h
‖2−‖ωnh

h‖2
2

)
+

∥∥∇ψn+1
h

∥∥2

−
∥∥∇ψnh∥∥2

2
=
〈
ωn+1
h − ωnh , ψ

n+ 1
2

h

〉
. (3.26)

For the second term in (3.23), we average (3.19) and (3.20), choose

χ = ω
n+ 1

2
h and ξ = ω

n+ 1
2

h

h

, respectively, and combine the results to obtain〈
∇ψn+ 1

2
h ,∇ωn+ 1

2
h

〉
= α2‖∇ωn+ 1

2
h

h

‖2 + ‖ωn+ 1
2

h

h

‖2. (3.27)

Then averaging (3.10), choosing χ = ψ
n+ 1

2
h and using Poincaré inequality we have∥∥∇ψn+ 1

2
h

∥∥ ≤ CPF
∥∥∆hψ

n+ 1
2

h

∥∥. (3.28)

Averaging (3.19), combining with (3.10), using Cauchy-Schwarz inequality and choos-

ing χ = ∆hψ
n+ 1

2
h we obtain

‖∆hψ
n+ 1

2
h ‖ ≤ ‖ωn+ 1

2
h

h

‖. (3.29)

Using (3.26), (3.27), (3.28), (3.29) and Cauchy-Schwarz in (3.23)

Ro
2∆t

(∥∥∇ψn+1
h

∥∥2
+ α2‖ωn+1

h

h
‖2 −

∥∥∇ψnh∥∥2 − α2‖ωnh
h‖2
)

+
(
δM
L

)3(
α2‖∇ωn+ 1

2
h

h

‖2 + ‖∆hψ
n+ 1

2
h ‖2

)
≤ ‖F n+ 1

2‖−1‖∆hψ
n+ 1

2
h ‖. (3.30)

The bound (3.21) follows after we use Young’s inequality with ε =
(
δM
L

)3
and sum

from n = 1 to n = M − 1.

It remains to show estimate (3.22). Choosing vh = ω
n+ 1

2
h

h

in (3.18),

using that
〈
ωn+1
h , ωnh

h〉
=
〈
ωn+1
h

h
, ωnh
〉
, skew-symmetric properties of b, inequality

(3.13) and Cauchy-Schwarz inequality we have

Ro
∆t

〈
ωn+1
h , ωn+1

h

h〉
− Ro

∆t

〈
ωnh , ω

n
h

h〉
+
(
δM
L

)3〈∇ωn+ 1
2

h ,∇ωn+ 1
2

h

h〉
=
〈
F n+ 1

2 , ω
n+ 1

2
h

h〉
+
〈∂ψn+1

2
h

∂x
, ω

n+ 1
2

h

h〉
≤ ‖F n+ 1

2‖−1‖∇ω
n+ 1

2
h ‖+ CPF‖∇ψ

n+ 1
2

h ‖‖∇ωn+ 1
2

h ‖.
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Using the norm equivalence in Lemma 3.5 and Young’s inequality with

ε = Cε
(
L
δM

)3
, estimate (3.22) follows after we sum from n = 0 to n = M − 1 and use

estimate (3.21).

3.4 Convergence

This section rigorously proves a convergence estimate in space and time

for the BV-Bardina algorithm.

Theorem 3.1 (Convergence). Let (ω(t), ψ(t)) be a smooth strong solution of the BV

model such that the norms of (ω(t), ψ(t)) on the right hand side of (3.31) and (3.32)

are finite. Suppose (ωh, ψh) ∈ Xh × Xh solves the Crank-Nicolson approximation

(3.18)-(3.20) of the BV-Bardina model . Then for ∆t small enough (in order to use

the discrete Gronwall inequality), we have

Ro
∥∥|ω − ωh|∥∥∞,0 ≤ f(∆t, h, α)+ Chk+1

∥∥|ω|∥∥∞,k+1
, (3.31)

(
C−1
ε

(
δM
L

)3 M−1∑
n=0

∆t
∥∥∇(ω(tn+ 1

2 )− ωn+ 1
2

h

)∥∥2)1/2 ≤ f(∆t, h, α)+ C∆t2
(
δM
L

)3/2∥∥ωtt∥∥2,0

+ C
(
δM
L

)3/2
hk
∥∥|ω∣∣‖2,k+1, (3.32)

where

f
(
∆t, h, α

)
:= C∗

{
hk
(
L
δM

)3/2[
C‖|ψ1/2|‖2,k+1 + Ch‖|ω1/2|‖2,k+1 + C

(
δM
L

)3‖|ω1/2|‖2,k+1

+ CRoh
(
‖|ω1/2|‖24,k+1 + ‖|ω1/2|‖24,k+1

)
+ CRo

(
‖|∇ω1/2|‖24,1 + ‖|ψ1/2|‖24,k+1

)
+ CRoh‖|ω1/2|‖24,k+1

+ CRoh
(
‖|ω1/2|‖24,1 + ‖|ψ1/2|‖24,k+1

)
+Ro

(
Ch+ Chk

)
‖|ω1/2|‖24,k+1

]
+
(
α2 + α2hk + hk+1

)(
L
δM

)3/2[
C‖|ω1/2|‖2,k+1 +Ro

(
‖|∇ω1/2|‖24,1 + ‖|ω1/2|‖24,k+1

)
+Ro

(
C‖|ω1/2|‖24,k+1 + C‖|ω1/2|‖24,1 + C‖|ψ1/2|‖24,k+1

)]
+Ro

(
L
δM

)3/2(
Chkα2 + Cα2hk+1 + Chk+2

)
‖|ω1/2|‖24,k+1 + ∆t2

(
L
δM

)3/2[
C
(
δM
L

)3∥∥|∇ωtt|∥∥2,0

+ C
∥∥|ψtt|∥∥2,0

+ C‖|∇ψ1/2|‖24,1 + C‖|ωtt|‖24,0 + C‖|∇ω(t
1/2)|‖24,1 + C‖|ψtt|‖24,0

}
. (3.33)

Remark 3.2. Suppose that the indicated norms on the right hand side of (3.31)-

(3.33) are finite. Then the error in the Crank-Nicolson finite element scheme for
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the BV-Bardina model is of the order

Ro
∥∥|ω − ωh|∥∥∞,0 + C−1

ε

((
δM
L

)3 M−1∑
n=0

∆t‖∇
(
ω(tn+ 1

2 )− ωn+ 1
2

h

)
‖2
)1/2

≤ O
(
hk + ∆t2 + α2‖|ω1/2|‖22,k+1

)
.

Moreover, using the result above, it is straightforward to show also that∥∥|ψ − ψh|∥∥∞,1 ≤ O(hk + ∆t2 + α2‖|ω1/2|‖22,k+1

)
.

As discussed in [66], the term ‖|ω1/2|‖2,k+1 can depend inversely on α

if k ≥ 2 and if no assumptions are made either about ω being periodic or having

normal derivatives vanish at the boundary. Hence for the choice of linear elements

(k = 1) with α ≤ O(h), optimal spatial convergence can be expected, but not neces-

sarily for k = 2. However, our numerical experiments with k = 2 do show optimal

convergence.

Proof. The solution ω of the BV model satisfies

Ro
〈
ωn+1−ωn

∆t
, vh
〉

+Rob
(
ψn+ 1

2 , ωn+ 1
2 , vh

)
−
〈
∂ψn+

1
2

∂x
, vh
〉

+
(
δM
L

)3〈∇ωn+ 1
2 ,∇vh

〉
=
〈
F n+ 1

2 , vh
〉

+ Intp(ωn, ψn; vh) ∀vh ∈ Xh (3.34)

where

Intp(ωn, ψn; vh) := Ro
〈
ωn+1−ωn

∆t
− ωt(tn+ 1

2 ), vh
〉

+
(
δM
L

)3〈∇ωn+ 1
2 −∇ω(tn+ 1

2 ),∇vh
〉

−
〈
∂ψn+

1
2

∂x
− ∂ψ(tn+

1
2 )

∂x
, vh
〉

+Ro
[
b
(
ψn+ 1

2 , ωn+ 1
2 , vh

)
− b
(
ψ(tn+ 1

2 ), ω(tn+ 1
2 ), vh

)]
.

(3.35)

Define

e := ω − ωh =
(
ω − Pω

)
−
(
ωh − Pω

)
= e⊥ − eh, (3.36a)

E := ψ − ψh =
(
ψ − Πψ

)
−
(
ψh − Πψ

)
= E⊥ − Eh. (3.36b)

Subtracting (3.18) from (3.34), choosing vh = e
n+ 1

2
h

h

, using
〈
en+1
h , enh

h〉
=
〈
en+1
h

h
, enh
〉

and adding and subtracting b
(
ψ
n+ 1

2
h , ωn+ 1

2

h

, e
n+ 1

2
h

h)
and b

(
ψ
n+ 1

2
h , ωn+ 1

2 , e
n+ 1

2
h

h)
, we
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obtain

Ro
(〈
en+1
h , en+1

h

h〉
−
〈
enh, e

n
h
h〉)

+ 2∆t
(
δM
L

)3〈∇en+ 1
2

h ,∇en+ 1
2

h

h〉
= −2∆t

〈
∂En+

1
2

∂x , e
n+ 1

2
h

h〉
−2∆tRo

[
b
(
ψ
n+ 1

2
h , e

n+ 1
2

⊥

h

, e
n+ 1

2
h

h)
+ b
(
ψ
n+ 1

2
h , ωn+ 1

2

h

− ωn+ 1
2 , e

n+ 1
2

h

h)
+ b
(
En+ 1

2 , ωn+ 1
2 , e

n+ 1
2

h

h)]
+2∆t

(
δM
L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

h〉
+ 2∆tIntp(ωn, ψn; e

n+ 1
2

h

h

), (3.37)

since
〈
en+1
⊥ −en⊥, e

n+ 1
2

h

h〉
= 0. We next estimate the terms in the RHS. Using Cauchy-

Schwarz and Young inequalities

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

h〉∣∣ ≤ C−1
ε

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3‖∇En+ 1
2‖2 (3.38)

We estimate ‖∇En+ 1
2‖ by averaging (3.19) and subtracting ψn+ 1

2 satisfying the BV

model, choosing vh = E
n+ 1

2
h and using Cauchy-Schwarz and Poincaré inequalities to

get

‖∇En+ 1
2

h ‖2 ≤ C‖ωn+ 1
2

h − ωn+ 1
2

h

‖‖∇En+ 1
2

h ‖+ C‖ωn+ 1
2

h

− ωn+ 1
2‖‖∇En+ 1

2
h ‖. (3.39)

Now, use (3.39) and (3.11) to obtain

‖∇En+ 1
2‖2 ≤ ‖∇En+ 1

2
⊥ ‖2 + C‖en+ 1

2
h ‖2 + C‖en+ 1

2
⊥ ‖2 + C‖ωn+ 1

2

h

− ωn+ 1
2‖2. (3.40)

Using (3.40), Lemma 3.4 and Lemma 3.3 in (3.38) we get

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

h〉∣∣ ≤ C−1
ε

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3‖en+ 1
2

h ‖2 +
(
L
δM

)3[
Ch2k‖ψn+ 1

2‖2
k+1

+ Ch2k+2‖ωn+ 1
2‖2

k+1 +
(
Cα4 + Cα2h2k + h2k+2

)
‖ωn+ 1

2‖2
k+1

]
. (3.41)

Cauchy-Schwarz and Young inequalities, inequality (3.13) and Lemma 3.3 provides

∣∣( δM
L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

h〉∣∣ ≤ C−1
ε

16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
δM
L

)3
h2k‖ωn+ 1

2‖2
k+1. (3.42)

For the third nonlinear term, we use Lemma 3.2, Young’s inequality

with ε = C−1
ε

10Ro

(
δM
L

)3
, inequality (3.40), Lemma 3.3, Lemma 3.4, Young’s Inequality
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with ε = 1 and for k ≥ 1, which yields

∣∣Rob(En+ 1
2 , ωn+ 1

2 , e
n+ 1

2
h

h)∣∣ ≤ C−1
ε

20

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖∇ωn+ 1
2‖2

1‖∇En+ 1
2‖2

≤ C−1
ε

20

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo2
(
L
δM

)3‖∇ωn+ 1
2‖2

1‖e
n+ 1

2
h ‖2

+ CRo2
(
L
δM

)3
h2k
(
‖∇ωn+ 1

2‖4
1 + ‖ψn+ 1

2‖4
k+1

)
+ CRo2

(
L
δM

)3
Ch2k+2‖ωn+ 1

2‖4
k+1

+ CRo2
(
L
δM

)3(
Cα4 + Cα2h2k + h2k+2

)(
‖∇ωn+ 1

2‖4
1 + ‖ωn+ 1

2‖4
k+1

)
. (3.43)

For the second nonlinear term, we use Holder’s inequality with p =∞ and q = r = 2,

and (3.13) to find that

∣∣b(ψn+ 1
2

h , ωn+ 1
2

h

− ωn+ 1
2 , e

n+ 1
2

h

h)∣∣ ≤ ‖∇ψn+ 1
2

h ‖∞‖ωn+ 1
2

h

− ωn+ 1
2 ‖‖∇en+ 1

2
h ‖. (3.44)

From
∥∥∇E∥∥∞ = ‖∇(ψ

n+ 1
2

h −ψn+ 1
2 )‖∞, Agmon’s inequality and the reg-

ularity estimate ‖ψ‖m+2 ≤ C‖ω‖m for ψ satisfying a Poisson equation with forcing

ω we have

‖∇ψn+ 1
2

h ‖∞ ≤ ‖∇En+ 1
2 ‖∞ + ‖∇ψn+ 1

2 ‖∞ ≤ ‖∇En+ 1
2 ‖∞ + C‖ψn+ 1

2 ‖3

≤ ‖∇En+ 1
2 ‖∞ + C‖ωn+ 1

2 ‖1.

We next have to estimate the term ‖∇En+ 1
2‖∞. Let Ih be a global Lagrangian

interpolator, we have ‖∇En+ 1
2‖∞ ≤ ‖∇(ψn+ 1

2−Ihψn+ 1
2 )‖∞+‖∇(Ihψn+ 1

2−ψn+ 1
2

h )‖∞.

Using an standard estimate for ‖∇(ψn+ 1
2 − Ihψn+ 1

2 )‖∞ (Theorem 4.4.20 in [11]) and

an inverse inequality for ‖∇(Ihψn+ 1
2−ψn+ 1

2
h )‖∞ (estimate (4.4.22) of Theorem 4.5.11

in [11] with p = 2, n = 2, s = 1 and m = k + 1) we get that

‖∇En+ 1
2 ‖∞ ≤ Ch−1‖∇(Ihψn+ 1

2 − ψn+ 1
2

h )‖+ Chk−1‖ψn+ 1
2 ‖k+1

≤ Ch−1‖∇
(
Ihψn+ 1

2 − ψn+ 1
2 − En+ 1

2
)
‖+ Chk−1‖ψn+ 1

2 ‖k+1

≤ Ch−1‖∇En+ 1
2

h ‖+ Chk−1‖ψn+ 1
2 ‖k+1.

Thus, for 0 < h ≤ 1 and for k ≥ 1 we have

‖∇ψn+ 1
2

h ‖∞ ≤ Ch−1‖∇En+ 1
2

h ‖+ C‖ωn+ 1
2‖1 + C‖ψn+ 1

2‖k+1. (3.45)
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Using (3.45) and Lemma 3.4 in (3.44) and for α = O(h), 0 < h ≤ 1 and k ≥ 1

∣∣b(ψn+ 1
2

h , ωn+ 1
2

h

− ωn+ 1
2 , e

n+ 1
2

h

h)∣∣ ≤(
Ch−1‖∇En+ 1

2

h ‖+ C‖ωn+ 1
2 ‖1 + C‖ψn+ 1

2 ‖k+1

)∥∥ωn+ 1
2

h

− ωn+ 1
2

∥∥∥∥∇en+ 1
2

h

∥∥
≤ C‖ωn+ 1

2 ‖k+1

∥∥∇En+ 1
2

h

∥∥∥∥∇en+ 1
2

h

∥∥+
(
C‖ωn+ 1

2 ‖1 + C‖ψn+ 1
2 ‖k+1

)∥∥ωn+ 1
2

h

− ωn+ 1
2

∥∥∥∥∇en+ 1
2

h

∥∥.
We continue bounding the second nonlinear term using Young inequality with ε =
C−1
ε

10Ro

(
δM
L

)3
, inequality (3.39) and Lemma 3.4 we have

∣∣Rob(ψn+ 1
2

h , ωn+ 1
2

h

− ωn+ 1
2 , e

n+ 1
2

h

h)∣∣
≤ Ro2

(
L
δM

)3(
C‖ωn+ 1

2 ‖2k+1‖e
n+ 1

2

h ‖2 + Ch2k+2‖ωn+ 1
2 ‖2k+1‖ωn+ 1

2 ‖2k+1 + C‖ωn+ 1
2 ‖2k+1‖ωn+ 1

2

h

− ωn+ 1
2 ‖2
)

+ CRo2
(
L
δM

)3(
C‖ωn+ 1

2 ‖1 + C‖ψn+ 1
2 ‖k+1

)2‖ωn+ 1
2

h

− ωn+ 1
2 ‖2 +

C−1
ε

20

(
δM
L

)3‖∇en+ 1
2

h ‖2

≤
(
L
δM

)3
Ro2

(
C‖ωn+ 1

2 ‖2k+1‖e
n+ 1

2

h ‖2 + Ch2k+2‖ωn+ 1
2 ‖2k+1‖ωn+ 1

2 ‖2k+1 + C
(
α4 + α2h2k + h2k+2

)
‖ωn+ 1

2 ‖4k+1

)
+ C

(
L
δM

)3
Ro2

(
α4 + α2h2k + h2k+2

)
‖ωn+ 1

2 ‖2k+1

(
C‖ωn+ 1

2 ‖21 + C‖ψn+ 1
2 ‖2k+1

)
+

C−1
ε

20

(
δM
L

)3‖∇en+ 1
2

h ‖2

≤ CRo2
(
L
δM

)3‖ωn+ 1
2 ‖2k+1‖e

n+ 1
2

h ‖2 +Ro2
(
L
δM

)3
Ch2k+2

(
‖ωn+ 1

2 ‖4k+1 + ‖ωn+ 1
2 ‖4k+1

)
+ C

(
L
δM

)3
Ro2

(
α4 + α2h2k + h2k+2

)(
‖ωn+ 1

2 ‖4k+1 + C‖ωn+ 1
2 ‖41 + C‖ψn+ 1

2 ‖4k+1

)
+

C−1
ε

20

(
δM
L

)3‖∇en+ 1
2

h ‖2.

(3.46)

Using Holder’s inequality with p = q = 2 and r =∞, (3.45), Lemma 3.4 and Young

inequality with ε = C−1
ε

10Ro

(
δM
L

)3
, we get for the first nonlinear term,

∣∣b(ψn+ 1
2

h , e
n+ 1

2
⊥

h

, e
n+ 1

2
h

h)∣∣
≤
(
Ch−1‖∇En+ 1

2
h ‖+ C‖ωn+ 1

2 ‖1 + C‖ψn+ 1
2 ‖k+1

)
hk+1‖ωn+ 1

2 ‖k+1‖∇e
n+ 1

2
h ‖

≤ C−1
ε

20Ro

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo
(
L
δM

)3
h2k+2

(
‖ωn+ 1

2 ‖4k+1 + ‖ωn+ 1
2 ‖41 + ‖ψn+ 1

2 ‖4k+1

)
+ CRo

(
L
δM

)3
h2k‖ωn+ 1

2 ‖2k+1‖∇E
n+ 1

2
h ‖2

≤ C−1
ε

20Ro

(
δM
L

)3‖∇en+ 1
2

h ‖2 + CRo
(
L
δM

)3
h2k+2

(
‖ωn+ 1

2 ‖41 + ‖ψn+ 1
2 ‖4k+1

)
+ CRo

(
L
δM

)3
h2k‖ωn+ 1

2 ‖2k+1‖e
n+ 1

2
h ‖2 +Ro

(
L
δM

)3(
Ch2k+2 + Ch4k

)
‖ωn+ 1

2 ‖4k+1

+Ro
(
L
δM

)3(
Ch2kα4 + Cα2h2k+2 + Ch2k+4

)2‖ωn+ 1
2 ‖4k+1. (3.47)
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It remains to bound the term Intp in (3.35). Standard analysis for the

interpolation error (see, e.g., [65] and [76]) provides the bounds

∆t

M−1∑
n=0

|Intp(ωn, ψn; e
n+ 1

2

h

h

)| ≤ CRo2
(
L
δM

)3
∆t4‖|ωttt|‖22,0 + C

(
δM
L

)3
∆t4‖|∇ωtt|‖22,0

+ C
(
L
δM

)3
∆t4‖|ψtt|‖22,0 + CRo2∆t4

(
L
δM

)3‖|∇ψ1/2|‖44,1 + CRo2
(
L
δM

)3
∆t4‖|ωtt|‖44,0

+ CRo2
(
L
δM

)3
∆t4‖|∇ω(t

1/2)|‖44,1 + CRo2
(
L
δM

)3
∆t4‖|ψtt|‖44,0 +

C−1
ε

4

(
δM
L

)3‖|∇en+ 1
2

h |‖2. (3.48)

Using norm equivalence, (3.41), (3.42), (3.43), (3.46), (3.47) and (3.48)

in (3.37) we obtain

C−1
E Ro‖eMh ‖2 + C−1

ε ∆t
(
δM
L

)3 M−1∑
n=0

‖∇en+ 1
2

h ‖2

≤ ∆t

M−1∑
n=0

(
L
δM

)3(
C + CRo2h2k‖|ωn+ 1

2 |‖2k+1 + CRo2‖|ωn+ 1
2 |‖2k+1 + CRo2‖|∇ωn+ 1

2 |‖21
)
‖|en+ 1

2

h |‖2

+
(
L
δM

)3[
Ch2k‖|ψ1/2|‖22,k+1 + Ch2k+2‖|ω1/2|‖22,k+1 +

(
Cα4 + Cα2h2k + Ch2k+2

)
‖|ω1/2|‖22,k+1

]
+ C

(
δM
L

)3
h2k‖|ω1/2|‖22,k+1 + CRo2

(
L
δM

)3
h2k
(
‖|∇ω1/2|‖44,1 + ‖|ψ1/2|‖4k+1

)
+ CRo2

(
L
δM

)3
Ch2k+2‖|ω1/2|‖44,k+1 +Ro2

(
L
δM

)3(
Cα4 + Cα2h2k + h2k+2

)(
‖|∇ω1/2|‖44,1 + ‖|ω1/2|‖44,k+1

)
+ CRo2

(
L
δM

)3
h2k+2‖|ω1/2|‖44,k+1 +Ro2

(
L
δM

)3
h2k+2‖|ω1/2|‖44,k+1

+ C
(
L
δM

)3
Ro2

(
α4 + α2h2k + h2k+2

)(
C‖|ω1/2|‖44,k+1 + C‖|ω1/2|‖44,1 + C‖|ψ1/2|‖44,k+1

)
+ CRo2

(
L
δM

)3
h2k+2

(
‖|ω1/2|‖44,1 + ‖|ψ1/2|‖44,k+1

)
+Ro2

(
L
δM

)3(
Ch2k+2 + Ch4k

)
‖|ω1/2|‖44,k+1

+Ro2
(
L
δM

)3(
Ch2kα4 + Cα2h2k+2 + Ch2k+4

)2‖|ω1/2|‖44,k+1 + CRo2
(
L
δM

)3
∆t4‖|ωttt|‖22,0

+ C
(
δM
L

)3
∆t4‖|∇ωtt|‖22,0 + CRo2∆t4

(
L
δM

)3‖|∇ψ1/2|‖44,1 + CRo2
(
L
δM

)3
∆t4‖|ωtt|‖44,0

+ C
(
L
δM

)3
∆t4‖|ψtt|‖22,0 + CRo2

(
L
δM

)3
∆t4‖|∇ω(t

1/2)|‖44,1 + CRo2
(
L
δM

)3
∆t4‖|ψtt|‖44,0.
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Next, assuming ∆t ≤
(
δM/L
)3

C+CRo2h2k‖ωn+
1
2 ‖2k+1+CRo2‖ωn+

1
2 ‖2k+1+CRo2‖∇ωn+

1
2 ‖21

, we can apply

the discrete Gronwall inequality from [44] to get

C−1
E Ro‖eMh ‖2 + C−1

ε ∆t
(δM
L

)3 M−1∑
n=0

‖∇en+ 1
2

h ‖2 ≤

C∗
{(

L
δM

)3[
Ch2k‖|ψ1/2|‖22,k+1 + Ch2k+2‖|ω1/2|‖22,k+1 +

(
Cα4 + Cα2h2k + Ch2k+2

)
‖|ω1/2|‖22,k+1

]
+ C

(
δM
L

)3
h2k‖|ω1/2|‖22,k+1 + CRo2

(
L
δM

)3
h2k
(
‖|∇ω1/2|‖44,1 + ‖|ψ1/2|‖4k+1

)
+ CRo2

(
L
δM

)3
Ch2k+2‖|ω1/2|‖44,k+1 +Ro2

(
L
δM

)3(
Cα4 + Cα2h2k + h2k+2

)(
‖|∇ω1/2|‖44,1 + ‖|ω1/2|‖44,k+1

)
+ CRo2

(
L
δM

)3
h2k+2‖|ω1/2|‖44,k+1 +Ro2

(
L
δM

)3
h2k+2‖|ω1/2|‖44,k+1

+ CRo2
(
L
δM

)3(
α4 + α2h2k + h2k+2

)(
C‖|ω1/2|‖44,k+1 + C‖|ω1/2|‖44,1 + C‖|ψ1/2|‖44,k+1

)
+ CRo2

(
L
δM

)3
h2k+2

(
‖|ω1/2|‖44,1 + ‖|ψ1/2|‖44,k+1

)
+Ro2

(
L
δM

)3(
Ch2k+2 + Ch4k

)
‖|ω1/2|‖44,k+1

+Ro2
(
L
δM

)3(
Ch2kα4 + Cα2h2k+2 + Ch2k+4

)2‖|ω1/2|‖44,k+1 + C
(δM
L

)3
∆t4‖|∇ωtt|‖22,0

+ C
(
L
δM

)3
∆t4‖|ψtt|‖22,0 + C∆t4

(
L
δM

)3‖|∇ψ1/2|‖44,1 + C
(
L
δM

)3
∆t4‖|ωtt|‖44,0

+ C
(
L
δM

)3
∆t4‖|∇ω(t

1/2)|‖44,1 + C
(
L
δM

)3
∆t4‖|ψtt|‖44,0

}
, (3.49)

where

C∗ = exp
(
∆t

M−1∑
n=0

(
L
δM

)3(
C+CRo2h2k‖ωn+

1
2 ‖2k+1+CRo2‖ωn+

1
2 ‖2k+1+CRo2‖∇ωn+

1
2 ‖21
)

1−∆t
(

L
δM

)3(
C+CRo2h2k‖ωn+

1
2 ‖2k+1+CRo2‖ωn+

1
2 ‖2k+1+CRo2‖∇ωn+

1
2 ‖21
)).
(3.50)

The estimate (3.31) now follows from the triangle inequality and (3.49). For estimate

(3.32), we use (3.49) and

‖∇
(
ω
(
tn+ 1

2

)
− ωn+ 1

2
h

)
‖2 ≤ ‖∇

(
ω
(
tn+ 1

2

)
− ωn+ 1

2

)
‖2 + ‖∇en+ 1

2
⊥ ‖2 + ‖∇en+ 1

2
h ‖2

≤ ∆t3
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∫ tn+1

tn
‖ωtt‖2dt+ Ch2k‖ωn+ 1

2‖2
k+1 + ‖∇en+ 1

2
h ‖2,

which completes the proof.

3.5 Numerical experiments

In this section, we provide two numerical examples to verify the the-

oretical results and show that good results can be obtained with the proposed
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model/scheme. The first numerical test is to confirm the predicted convergence

rates, and the second tests the model’s ability to find accurate coarse mesh solution

to a double gyre wind forcing benchmark test. We use the software FreeFem++[40]

to perform the computational tests; Newton’s method is used to resolve the nonlin-

ear problems at each timestep, and we use UMFPACK to solve the linear systems.

We note that we also tested linearized analogues of the proposed scheme, and found

overall worse results, particularly on the double gyre benchmark test.

3.5.1 Convergence rate confirmation

Now we estimate the convergence rates for the BV-Bardina scheme

using a known analytical solution. Using Ω = (0, 1) × (−1, 1), T = 1, and setting

F = −π exp
[
− 2π2

Ro

(
δM
L

)3
t
]

cosπx sin πy, we obtain the following time dependent

analytical solution for BV (with homogeneous Dirichlet boundary conditions):

ψ = exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy,

ω = 2π2 exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy.

To estimate convergence rates, we considered h = 1/4 (which corresponds to a grid

with 4 × 8 squares), 1/8 (8 × 16), 1/16 (16 × 32), 1/32 (32 × 64) and 1/64 (64 × 128)

where h is the mesh-width. Figure 3.1 presents the coarsest mesh used in this

experiment. In the remainder of the text we will refer to our meshes as n × 2n for

n = 4, 8, 16, 32, 64. In all cases we chose α = h, and the timestep was chosen in terms

of h in order to balance the errors sources from the convergence theorem. That is,

for P1 elements and α = h, the L2(0, T ;H1(Ω)) vorticity error and L∞(0, T ;H1(Ω))

streamfunction error from the theorem is O(∆t2 + h), and thus we chose ∆t =
√
h

(but slightly rounded so that ∆t evenly divided T ), and thus here we expect first

order convergence in these norms as ∆t, h→ 0. For P2 elements, we chose ∆t = h,

and expect second order convergence of these norms.
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Table 3.1 presents the errors and convergence rates obtained for de-

creasing h and ∆t, using δM
L

= 0.02 and Ro = 1.0. From the table we observe the

convergence of the numerical solution to the exact solution is optimal and agrees

with the convergence theory presented in this chapter, for both choices of elements.

Figure 3.1: Mesh with h = 1/4 which corresponds to a grid with 4x8 squares.

Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖∞,1 Rate
P1 4 186.05 14.604 2.876

(∆t =
√
h) 8 53.756 1.79 3.8843 1.91 1.388 1.05

16 18.219 1.56 0.9873 1.98 0.6898 1.01
32 7.592 1.26 0.2479 1.99 0.3447 1.00
64 3.528 1.11 0.06205 2.00 0.17235 1.00
128 1.717 1.04 0.01552 2.00 0.08617 1.00

P2 4 76.697 17.162 0.18342
(∆t = h) 8 19.176 2.00 4.3026 2.00 0.047225 1.96

16 4.8116 1.99 1.0761 2.00 0.011906 1.99
32 1.2159 1.98 0.26905 2.00 0.0029831 2.00
64 0.3067 1.99 0.067264 2.00 0.0007462 2.00

Table 3.1: Convergence rates for BV-Bardina model with δM
L

= 0.02 and Ro = 1.0.

3.5.2 Double gyre wind forcing experiment

We now test the model on the double gyre wind forcing benchmark test.

This problem has been used as a model of more realistic ocean dynamics in several

studies, and has also been used as a benchmark test to analyze new techniques to

deal with turbulence in geophysical flows [81, 47, 100]. When the BV equations
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are forced by a double gyre wind forcing in a rectangular basin and dissipation is

weak, the instantaneous field of vorticity and streamfunction are highly variable.

However, the mean fields show a well defined four gyre pattern in which the two

central gyres are driven by the wind with its same orientation, and the northern

and southern ends of the basin circulate in opposite direction, being driven by the

eddy flux of potential vorticity [37, 47]. The dominant balance is between the wind

forcing and the divergence of the eddy flux of potential vorticity with dissipation

playing only a minor role. The outer gyres are not a linear effect but, rather, are a

result of a mean balance between eddy flux of potential vorticity and wind forcing.

However this distinctive four gyre pattern is susceptible to destruction by excessive

dissipation [47].

The setup of this problem is as follows [100]. The domain is Ω =

(0, 1) × (−1, 1), the forcing is F = sin(πy), δM/L = 0.02 and Ro = 0.0016 (which

corresponds to Re = 200). The computations were run until T = 100, and time

averages were taken from T = 20 to T = 100. We follow [100] and adopt standard

LES methodology: first we run a high resolution simulation with the BV-model

(no treatment of turbulence), and then we run several experiments using coarse

resolution with the BV and BV-Bardina models and compare them with the high

resolution BV model solution as reference. For comparison, we will also run the

related BV-α model, and compute solutions to it using a scheme analogous to the

BV-Bardina scheme. All computations in this section use P2 elements.

The high spatial resolution computation with the BV-model was made

using a uniform triangular mesh with 16,384 triangles (33,153 degrees of freedom,

corresponding to a grid with 64 × 128 squares), and thus the mean length of a

triangle edge is about 0.015, which is smaller than the Munk scale (δM), and timestep

∆t = 0.001. Solutions for the high resolution experiment are presented respectively

in Figures 3.2(a) and 3.3(a), as time averaged streamfunction and potential vorticity,

respectively. We observe that the high resolution solution produced by our FE
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scheme matches that of [100] very well, and we note it does reproduce the four gyre

pattern observed by [100] in their DNS experiment.

We next ran the BV (no regularization) on a coarse analogous mesh

with 1,024 triangles and 2,145 degrees of freedom, corresponding to a grid with

16×32 squares (we use this same coarse mesh for all coarse mesh experiments), and

∆t = 0.001. In figures 3.2(b) and 3.3(b) we present respectively the streamfunction

and vorticity average solutions obtained in the coarse mesh. This figures clearly

show that solutions are negatively affected by decreasing the mesh resolution. More

specifically, in figure 3.2(b) the four gyre pattern is dramatically intensified when

compared with the high resolution solution, and in the vorticity field, figure 3.3(b),

we observe that solution has significant oscillations.

Next we present the results of running the BV model on the coarse

mesh using artificial viscosity, that is, we increase
(
δM
L

)3
from 0.02 to 0.04, still using

∆t = 0.001. Results are shown in figure 3.2(c) and 3.3(c), and it is clear that the

solution is dramatically different from the high resolution
(
δM
L

)3
=0.02 solution. This

is similar to what was reported in [37, 47], since the four gyre pattern (figure 3.2(c))

degenerates in two gyres due to the excess of dissipation. We also observe that the

vorticity field (figures 3.3(c)) also degenerates with respect to the high resolution

solution.

Finally, we present our coarse mesh results obtained with the BV-

Bardina model (α = 1
64

) in figures 3.2(d) and 3.3(d), and for BV-α in 3.2(e) and

3.3(e). Both of these models successfully predict the four-gyre pattern, however by

comparing the intensities of the streamfunction, we observe the BV-Bardina model

to be more accurate. The BV-Bardina and BV-α plots of filtered vorticity have

similar accuracy.

Run times for the BV model in the fine and coarse mesh (16× 32) and

for BV-α and BV-Bardina in the coarse mesh (16× 32) are presented in Table 3.2.
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In this experiment we see again that the BV-Tikhonov solution, as well as recovering

the expected four gyre pattern, it is significant faster than solving the BV model in

the fine mesh.

Fine Coarse Art. Visc. alpha Bardina

9.82e5 3.69e4 2.71e4 8.62e4 8.50e4

Table 3.2: Run times (in seconds) obtained for Ro = 0.0016 in the fine (64 × 128) and

coarse (16 × 32) mesh with the BV model and in the coarse mesh (16 × 32)

with BV-α and BV-Bardina models. The experiments were made in a Intel®

CoreTM i7 3.70 GHz.

Remark 3.3. We have also tested the leapfrog with the Robert/Asselin filter algo-

rithm which is commonly used in meteorological and oceanic models. The leapfrog-

RA scheme [111] is given by:

Algorithm 3.2 (Leapfrog-RA BV-Bardina). Given ω0
h and ψ0

h as the L2(Ω) projec-

tions into Xh of ω0 ∈ X and ψ0 ∈ X, endtime T , F ∈ L∞(0, T ;L2(Ω)), and timestep

∆t > 0, set M = T
∆t

and for n=0,...,M-1, find (ωn+1
h , ψn+1

h , ωn+1
h

h
) ∈ Xh ×Xh ×Xh

satisfying

Ro
〈ωn+1

h −FRAωn−1
h

2∆t
, vh
〉

+Ro b
(
ψnh , ω

n
h

h
, vh
)
−
〈∂ψnh
∂x
, vh
〉

+
(
δM
L

)3〈∇ωnh ,∇vh〉 =
〈
F n, vh

〉
∀vh ∈ Xh,〈

∇ψn+1
h ,∇χ

〉
−
〈
ωn+1
h

h
, χ
〉

= 0 ∀χ ∈ Xh,

α2
〈
∇ωn+1

h

h
,∇ξ

〉
+
〈
ωn+1
h

h
, ξ
〉
−
〈
ωn+1
h , ξ

〉
= 0 ∀ξ ∈ Xh.

where FRAω
n = ωn + ν

2

(
ωn−1 − 2ωn + ωn+1

)
is the Robert/Asselin filter and ν is a

dimensionless positive filter parameter. We have used ν = 0.1.

The leapfrog-RA scheme has the advantage of decouple the vorticity

equation from the streamfunction and filter equations, but on the other hand it has a

timestep restriction due to its conditionally stability. We tested the leapfrog-RA ver-

sion of the BV-Bardina model and it has only run without blow up for ∆t = 0.0001,
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which is 1/10 of the timestep used in the Crank-Nicolson version. However, both

schemes took the same computational time to attain similar solutions. Thus we

believe that Crank-Nicolson version of BV-Bardina can be more useful than the

leapfrog-RA version because it is unconditionally stable. In real geophysical appli-

cations, the use of unconditionally stable schemes can avoid the use of artificial

viscosity to stabilize the model which would reduce the convergence order of the nu-

merical scheme. This is specially recommended in the case of a non-dissipative

regularization, as the Bardina regularization.

Thus, for this experiment, we conclude that both BV-Bardina and BV-

α, correctly predict the four gyre pattern on the coarse mesh where BV is inaccurate,

with BV-Bardina being somewhat more accurate that BV-α. The artificial viscosity

model was unable to predict the four gyre pattern.

3.6 Conclusions

In this work we proposed a Crank-Nicolson/FEM discretization for a

Bardina regularization of the BV model for geophysical flows. We proved that the

scheme is unconditionally stable and optimally convergent. Numerical simulations

were provided that verified the predicted convergence rates, and showed the effec-

tiveness of the model/scheme at finding good coarse mesh solutions for the double

gyre wind forcing benchmark test. Moreover, on the double gyre test, results were

found to be better than the related BV-α model. In the same way as was made

for the approximate deconvolution-BV model ([100] and [99]), we intend in a future

work to extent the BV-Bardina model for two layers in order to consider the first

baroclinic mode, which will allow us to evaluate this regularization in a situation

more similar with the true threedimensional ocean dynamic.
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(a) BV (high res.), ψmin= -1.39, ψmax=1.39
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(b) BV (Coarse), ψmin=-2.281, ψmax=2.361
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(c) BV + Art. Visc. (Coarse), ψmin=-1.794,
ψmax=1.828
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(d) BV-Bardina (Coarse), ψmin=-1.616,
ψmax=1.670
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(e) BV-α (Coarse), ψmin=-1.829,
ψmax=1.745

Figure 3.2: Mean fields of streamfunction with Ro = 0.0016 for the high resolution
solution of the BV model (a), for the coarse (16x32) BV model solution
(b), for the coarse BV model + artificial viscosity (c), from the 8x16
BV-Bardina model (d) and BV-α model (e).
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(e) Vort. - BV-α mod. - Coarse

Figure 3.3: Mean fields of vorticity with Ro = 0.0016 for the high resolution BV
model, and coarse mesh solutions for BV model and various models.
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4 BAROTROPIC VORTICITY-α MODEL

WITH VAN CITTERT APPROXIMATE

DECONVOLUTION1

4.1 Introduction

Accurate simulations of geophysical flows are critically important in un-

derstanding climate change and ocean and weather forecast. Furthermore, they can

assist in prediction of biological and pollutant transport, oil exploration, and many

other applications. One of the simplest nonlinear models to simulate a geophysical

flow is the Barotropic Vorticity (BV) model, which, in dimensionless, form is given

by [47, 100]

Ro∂ω
∂t

+RoJ(ψ, ω)− ∂ψ
∂x
−
(
δM
L

)3
∆ω = F , (4.1a)

∆ψ = −ω, (4.1b)

where ω is the vorticity, ψ is the streamfunction, J(ψ, ω) = ∂ψ
∂x

∂ω
∂y
− ∂ψ

∂y
∂ω
∂x

is the

Jacobian, Ro is the Rossby number, δM is the Munk scale, L is the length scale and

F is the forcing term. The BV model is widely used to study the midlatitude, wind-

driven ocean circulation, and it recently has been used in studies involving data

assimilation [113, 21, 58], climate [95, 73, 36] and oceanic and atmosphere processes

[12, 108, 96].

Despite its simplicity, the BV model is very sensitive to the mesh res-

olution [37, 81, 47, 100], making full representation of the solution computationally

expensive. This becomes critical when long time integration is necessary, as in

climate modeling. Traditionally, simulations are done on coarse meshes and (essen-

1The content of this chapter is coauthored by Professor Carolina C. Manica and was published
in Volume 5, Number 4, Pages 317-338 (2014) of the International Journal of Numerical Analysis
and Modelling, Series B, with the title Improving numerical accuracy in a regularized Barotropic
Vorticity model of geophysical flow.
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tially) dissipative techniques such as eddy viscosity parametrizations have been used

to model the under-resolved scales of the flow. However, according to [47], increas-

ing artificial viscosity tends to reduce variability, and nonlinear structures can be

destroyed by excess of dissipation [37, 47]. Thus some methods such as Approximate

Deconvolution Modeling [100, 99], Barotropic Vorticity-α (BV-α) [82, 81, 47] and

Barotropic Vorticity-Bardina [59] have been developed with success to improve ac-

curacy and reduce the degrees of freedom in computational simulations. The BV-α

model is a regularization of the BV model proposed in [47] that allows a significant

reduction of degrees of freedom in simulations. In BV-α, the nonlinearity is altered

so that the flow at length scales that are smaller than the alpha length scale are

nonlinearly removed by motions at the larger scales. Thus there is seemingly no

need to introduce additional dissipative terms or increase the viscosity coefficient,

which is often done in the BV equations. The BV-α model is given by

Ro∂ω
∂t

+RoJ(ψ, ω)− ∂ψ
∂x
−
(
δM
L

)3
∆ω = F , (4.2a)

∆ψ = −ω, (4.2b)

−α2∆ω + ω = ω, (4.2c)

where ω is the filtered vorticity and α is the filter length scale. A more complete

description of BV-α is presented in [47].

Despite being physically accurate, the BV-α model naturally has a con-

sistency error from the BV model. It is clear from (4.2) that one cannot expect

accuracy better than O(α2). Since frequently α = O(h), the BV-α model is often

only second order accurate. Following [76], we attempt to fix the consistency error

in the BV-α model by increasing its accuracy through the van Cittert method of

approximate deconvolution [107, 1, 106]. The method constructs a family DN of

approximate inverses to the filter F as the truncation of the nonconvergent formal
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power series F−1 =
∞∑
n=0

(I − F )n:

DN =
N∑
n=0

(I − F )n.

In [93], it is shown how to apply the deconvolution operator in the

Navier-Stokes-α to achieve accuracy O(α2N+2), where N is the order of deconvolu-

tion. Thus we adopt the above mentioned approach and introduce the BV-α model

with deconvolution (BV-α-Deconvolution) by

Ro∂ω
∂t

+RoJ(ψ, ω)− ∂ψ
∂x
−
(
δM
L

)3
∆ω = F ,

∆ψ = −DNω,

−α2∆ω + ω = ω.

The BV-α-Deconvolution model, as we will show in the next sections,

will allow a reduction in the degrees of freedom in simulations but with a consistency

error O(α2N+2) when compared to the BV model.

The paper is organized as follows: Section 4.2 introduces a finite element

scheme for BV-α-Deconvolution and some necessary notation and mathematical

preliminaries. Section 4.3 presents the stability analysis of the proposed scheme.

Section 4.4 presents the convergence analysis. Convergence rates are estimated and

the double gyre experiment is performed in Section 4.5. Finally, some conclusions

and remarks are summarized in Section 4.6.

4.2 The finite element scheme and preliminaries

Let Ω ⊂ R2 be a polygonal domain and τh be a regular discretization

of Ω. Let H1 = H1(Ω) be the Sobolev space W 1
2 (Ω) and X := H1

0 (Ω) its subspace

with zero boundary condition. Let Yh be the continuous finite element (FE) space
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with kth degree polynomials on each element of the triangulation τh, and Xh be

the subspace of Yh with zero boundary values. Denote by 〈·, ·〉 and ‖ · ‖ the inner

product and norm in L2(Ω), and ‖ · ‖k the norm in the space Hk.

For continuous in time functions we denote for 1 ≤ m <∞,

‖f‖∞,k := ess sup
t∈(0,T )

‖f(t, ·)‖k and ‖f‖m,k :=
{∫ T

0
‖f(t, ·)‖mk dt

} 1
m .

For the discrete case we denote

‖|f |‖∞,k := ess sup
0≤n≤M

‖fn‖k, ‖|f
1/2|‖∞,k := ess sup

0≤n≤M
‖f(tn+ 1

2 )‖k,

‖|f |‖m,k :=
{ M∑
n=0

‖fn‖mk dt
} 1
m , ‖|f 1/2|‖m,k :=

{ M∑
n=0

‖f(tn+ 1
2 )‖mk dt

} 1
m .

As in [100], in this work we will consider slip boundary conditions for

the velocity, which translate into the homogeneous Dirichlet condition ω|∂Ω = 0 and

the impermeability condition ψ|∂Ω = 0. Multiplying (4.1) by test functions and

integrating by parts we have the following variational formulation to the BV model:

find (ω, ψ) ∈ X ×X such that〈
∂ω
∂t
, λ
〉

+ b
(
ψ, ω, λ

〉
−
〈
∂ψ
∂x
, λ
〉

+
(
δM
L

)3〈∇ω,∇λ〉 =
〈
F , λ

〉
∀λ ∈ H1

0 , (4.4a)〈
∇ψ,∇χ

〉
=
〈
ω, χ

〉
∀χ ∈ H1

0 , (4.4b)

where b
(
·, ·, ·

)
:=
〈
J
(
·, ·
)
, ·
〉

represents the trilinear form.

Analogously, the variational formulation for BV-α-Deconvolution is given

by: find (ω, ψ, ω) ∈ X ×X ×X such that〈
∂ω
∂t
, λ
〉

+ b
(
ψ, ω, λ

〉
−
〈
∂ψ
∂x
, λ
〉

+
(
δM
L

)3〈∇ω,∇λ〉 =
〈
F , λ

〉
∀λ ∈ H1

0〈
∇ψ,∇χ

〉
=
〈
DNω, χ

〉
∀χ ∈ H1

0

α2
〈
∇ω,∇ξ

〉
+
〈
ω, ξ
〉

=
〈
ω, ξ
〉
∀ξ ∈ H1

0

where, as in [47], we considered the additional homogeneous Dirichlet condition

ω|∂Ω = 0 in the filter equation.
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Now we define two projection operators which are useful in the subse-

quent analysis. Given ξ ∈ X, let Pξ ∈ Xh be the standard L2 orthogonal projection

of ξ onto Xh such that 〈
ξ − Pξ, φ

〉
= 0 ∀φ ∈ Xh,

and let Πξ ∈ Xh be the elliptic orthogonal projection of ξ onto Xh such that

〈
∇(ξ − Πξ),∇φ

〉
= 0 ∀φ ∈ Xh.

Lemma 4.1. Given ξ ∈ Hk we have the following estimates [109]

i) ‖ξ − Pξ‖ ≤ Chk+1‖ξ‖k+1,

ii) ‖∇(ξ − Pξ)‖ ≤ Chk‖ξ‖k+1,

iii) ‖∇(ξ − Πξ)‖ ≤ Chk‖ξ‖k+1.

Lemma 4.2 (Skew-symmetry of the trilinear form). For ψ, ξ ∈ Xh and χ ∈ Yh,

b
(
ψ, χ, ξ

)
= −b

(
ψ, ξ, χ

)
, ∀ξ ∈ Xh. (4.7)

Proof. We start from the vector identity

[(
∇ψ × k

)
· ∇χ

]
ξ = ∇ ·

(
∇ψ × k

)
χξ −

[(
∇ψ × k

)
· ∇ξ

]
χ−∇ ·

[(
∇ψ × k

)
χξ
]
.

Integrating and using the divergence theorem, the result follows because of the cyclic

continuity inside an element and since ξ ∈ Xh.

We have the following estimate for the nonlinear term.

Lemma 4.3. Let ζ, φ ∈ X and ξ ∈ H2 ∩X. Then

|b
(
ξ, φ, ζ

)
| ≤ C(Ω)‖∇ξ‖1‖∇φ‖‖ζ‖1.

Proof. We use Holder’s inequality with p, q = 4 and r = 2. The result follows from

the embedding H1 ↪→ L4.
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4.2.1 Discrete filtering

Definition 4.1. We define the discrete Laplacian operator ∆h : H1
0 → Xh in the

usual way by 〈
∆hψ, χ

〉
= −

〈
∇ψ,∇χ

〉
, ∀χ ∈ Xh.

Now we introduce the discrete filtering and the discrete deconvolution

operators.

Definition 4.2 (Discrete filtering operator). Given φ ∈ L2(Ω), and α > 0, the

filtered φ
h

=: Fhφ is the unique solution in Xh of

α2
〈
∇φh,∇ξ

〉
+
〈
φ
h
, ξ
〉

=
〈
φ, ξ
〉
∀ξ ∈ Xh.

Given φ ∈ L2(Ω), the discrete van Cittert deconvolution operator Dh
N

is defined by

Dh
Nφ =

N∑
i=0

(I − Fh)iφ.

Definition 4.3. As in [76], we define the energy norm for the BV-α-Deconvolution

model to be

‖φ‖2
E,N :=

〈
φ,Dh

Nφ
h〉
. (4.8)

With this definition we have the following equivalence between norms

(see [76]).

Lemma 4.4. For φ ∈ Xh and for each natural number N , the energy norm defined

by (4.8) is equivalent to the zeroth order energy norm also defined by (4.8). That is,

‖φ‖E,0 ≤ ‖φ‖E,N ≤
√
N‖φ‖E,0.

The following inequalities are useful in the subsequent analysis.
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Lemma 4.5. For φ ∈ Xh. We have the following inequalities

‖Dh
Nφ

h‖ ≤ N‖φ‖E,0,

‖I − Fh‖ ≤ 1,

‖Dh
Nφ‖ ≤ (N + 1)‖φ‖,

‖φh‖ ≤ ‖φ‖.

Proof. For first and second inequalities see [76]. For the third, we have

‖Dh
Nφ‖ ≤

N∑
n=0

‖I − Fh‖n‖φ‖ ≤ (N + 1)‖φ‖,

where we used the second inequality. For the last inequality, we choose the test

function equal to φ
h

in the filter equation to obtain

α2‖∇φh‖2 + ‖φh‖2 =
〈
φ, φ

h〉
.

The result follows after applying the Cauchy-Schwarz inequality.

Lemma 4.6. The operator Dh
N : Xh → Xh is a bounded, self-adjoint positive oper-

ator. For φ ∈ Xh,

φ = Dh
Nφ

h
+
(
− 1
)(N+1)

α2N+2∆N+1
h FN+1

h φ.

Proof. See [76].

4.3 Numerical scheme for BV-α-Deconvolution

Let φ(tn+ 1
2 ) = φ((tn+1 + tn)/2) for continuous variables and φn+ 1

2 = (φn+1 + φn)/2

for both the continuous and discrete variables. Based in the above variational for-

mulation for the BV model, we define the following Crank-Nicolson type algorithm

for BV-α-Deconvolution model.
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Algorithm 4.1 (Crank-Nicolson - BV-α-Deconvolution model). Set M = T
∆t

and

for n=0,...,M-1, find (ωn, ψn, ωn) ∈ Xh ×Xh ×Xh satisfying:

Ro
〈ωn+1

h −ωnh
∆t

, λ
〉

+Rob
(
ψ
n+ 1

2
h , ω

n+ 1
2

h , λ
)
−
〈∂ψn+1

2
h

∂x
, λ
〉

+
(
δM
L

)3〈∇ωn+ 1
2

h ,∇λ
〉

=
〈
Fn+ 1

2 , λ
〉
∀λ ∈ Xh, (4.9a)〈

∇ψn+1
h ,∇χ

〉
=
〈
Dh
Nω

n+1
h

h
, χ
〉
∀χ ∈ Xh, (4.9b)

α2
〈
∇Fhωn+1

h ,∇ξ
〉

+
〈
Fhω

n+1
h , ξ

〉
=
〈
ωn+1
h , ξ

〉
∀ξ ∈ Xh. (4.9c)

where we assume that timestep ∆t > 0, endtime T > ∆t, Rossby number Ro > 0,

Munk scale δM
L
> 0 and filter radius α > 0 are given.

Now we present a lemma that will be useful in the stability analysis:

Lemma 4.7. Let
(
ωh, ψh

)
∈ Xh×Xh be a solution of Algorithm 4.1. Then we have

〈
ωh, ψh

〉
= ‖∇ψh‖2 + α2

N∑
i=0

‖(I − Fh)
N+i
2 ωh‖2, (4.10)

〈
∇ωh,∇ψh

〉
=
〈
Dh
Nωh

h, ωh
〉

= ‖(Dh
NFh)

1
2ωh‖2, (4.11)

= ‖Dh
Nωh

h‖2 + α2

N∑
i=0

‖∇(I − Fh)
N+i
2 ωh

h‖2. (4.12)

Proof. Using Lemma 4.6 gives

〈
ωh, ψh

〉
=
〈
Dh
Nω

h
h, ψh

〉
+
(
− 1
)N+1

α2N+2
〈
∆N+1
h FN+1

h ωh, ψh
〉
. (4.13)

Now, evaluating the two terms in the RHS - for the first term, we choose χ = ψh in

(4.9b) to obtain

‖∇ψh‖2 =
〈
Dh
Nωh, ψh

〉
.

For the second term on the RHS of (4.13), we rewrite (4.9b) using the discrete

Laplacian and choose χ = ∆N
h F

N
h ω

h
h to obtain

−
〈
ψh,∆h∆

N
h F

N
h ω

h
h

〉
=
〈
Dh
Nω

h
h,∆

N
h F

N
h ω

h
h

〉
.
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Thus

−
〈
∆N+1
h FN+1

h ωh, ψh
〉

=
〈
Dh
Nω

h
h,∆

N
h F

N
h ω

h
h

〉
=

N∑
n=0

〈
(I − Fh)nωhh,∆N

h F
N
h ω

h
h

〉
,

(4.14)

and moreover, we have

∆hFh = −α2

−α2 ∆hFh = − 1
α2

[(
Fh − α2∆h

)
− Fh

]
= − 1

α2

[
I − Fh

]
,

which implies

∆N
h F

N
h =

(
− 1

α2

)N(
I − Fh

)N
. (4.15)

Multiplying (4.14) by
(
− 1
)N
α2N and applying (4.15) produces

(
− 1
)N+1

α2N
〈
∆N+1
h FN+1

h ωh, ψh
〉

=
N∑
i=0

〈
(I − Fh)iωhh, (I − Fh)Nωhh

〉
=

N∑
i=0

‖(I − Fh)
N+i
2 ωhh‖2.

(4.10) follows after we use the above equation multiplied by α2.

Now, we prove (4.11) and (4.12). (4.11) follows from (4.9b) with χ = ωh

because Fh and Dh
N are self-adjoint and positive [76]. For (4.12), we use (4.15) and

Lemma (4.6) to obtain

ωh = Dh
Nωh

h +
(
I − Fh

)N+1
ωh.

Thus, using (4.9b) with χ = ωh,the definition of Dh
N and as Fh is self-adjoint and

positive results

〈
∇ψh,∇ωh

〉
=
〈
Dh
Nωh

h, ωh
〉

=
〈
Dh
Nωh

h, Dh
Nωh

h
〉

+
〈
Dh
Nωh

h,
(
I − Fh

)N+1
ωh
〉

= ‖Dh
Nωh

h‖2 +
N∑
i=0

〈(
I − Fh

)i
ωh

h,
(
I − Fh

)N(
I − Fh

)
ωh
〉

= ‖Dh
Nωh

h‖2 +
N∑
i=0

〈(
I − Fh

)N+i
2 ωh

h,
(
I − Fh

)(
I − Fh

)N+i
2 ωh

〉
.
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Finally, applying the filter equation to (I−Fh)
N+i
2 ωh, choosing the test

function to be (I − Fh)
N+i
2 ωh

h, and using the fact that (I − Fh)
N+i
2 commutes with

Fh, we obtain

α2‖∇(I − Fh)
N+i
2 ωh

h‖ =
〈
(I − Fh)(I − Fh)

N+i
2 ωh, (I − Fh)

N+i
2 ωh

h
〉

from which we have

〈
∇ψh,∇ωh

〉
= ‖Dh

Nωh
h‖2 + α2

N∑
i=0

〈
∇
(
I − Fh

)N+i
2 ωh

h,∇Fh
(
I − Fh

)N+i
2 ωh

〉
= ‖Dh

Nωh
h‖2 + α2

N∑
i=0

‖∇(I − Fh)
N+i
2 ωh

h‖2.

Thus, we define the modified BV-α-Deconvolution kinetic energy, en-

ergy dissipation and enstrophy respectively as:

ENα (ψ, ω) := 1
2

〈
ψ, ω

〉
= 1

2‖∇ψ‖
2 + 1

2α
2
N∑
i=0

‖(I − Fh)
N+i
2 ωh‖2,

εNα (ω) :=
(
δM
L

)3〈∇ψ,∇ω〉 =
(
δM
L

)3‖Dh
Nω

h‖2 +
(
δM
L

)3
α2

N∑
i=0

‖∇(I − Fh)
N+i
2 ωh‖2,

E(ω) := 1
2‖ω‖

2.

Remark 4.1. Due to linearity of equation (4.9b), in both Fh and Dh
N we have

〈
ωn+1 − ωn, ψn+ 1

2

〉
= EN

α (ψn+1
h , ωn+1

h )− EN
α (ψnh , ω

n
h).

Lemma 4.8 (Conservation of Kinetic Energy). The BV-α-Deconvolution model so-

lution satisfies

EN
α (ψMh , ω

M
h ) + ∆t

Ro

M−1∑
n=0

εNα (ω
n+ 1

2
h ) = EN

α (ψ0
h, ω

0
h) + ∆t

Ro

M−1∑
n=0

〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
.

In particular, if δM = 0 and F = 0 we have EN
α (ψMh , ω

M
h ) = EN

α (ψ0
h, ω

0
h).
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Proof. We rewrite the nonlinear term in (4.9a) as b(ψ
n+ 1

2
h , Roω

n+ 1
2

h +y, λ) and choose

λ = ψ
n+ 1

2
h . We obtain, after we use the definition of modified energy and dissipation

and the skew-symmetry of the trilinear form,

EN
α (ψn+1

h , ωn+1
h )− EN

α (ψnh , ω
n
h) + ∆t

Ro
εαN(ω

n+ 1
2

h ) =
〈
Fn+ 1

2 , ψ
n+ 1

2
h

〉
. (4.16)

The result follows after we sum from n = 0, ...,M − 1.

Algorithm 4.1 also conserves enstrophy.

Lemma 4.9 (Conservation of enstrophy). The BV-α-Deconvolution model solution

satisfies

E(ωMh ) + ∆t
Ro

(
δM
L

)3
M∑
n=0

∥∥∇ωn+ 1
2

h

∥∥2
=

E(ω0
h) + ∆t

Ro

M∑
n=0

〈∂ψn+1
2

h

∂x
, ω

n+ 1
2

h

〉
+ ∆t

Ro

M∑
n=0

〈
Fn+ 1

2 , ω
n+ 1

2
h

〉
.

In particular, if δM = F = 0 and Ro→∞, E(ωMh ) = E(ω0
h).

Proof. Choosing λ = ω
n+ 1

2
h = 1

2
(ωn+1

h + ωnh) in (4.9a), using the skew-symmetry of

the trilinear term, the enstrophy definition, and multiplying by ∆t
Ro

gives

E(ωn+1
h ) + ∆t

Ro

(
δM
L

)3
‖∇ωn+ 1

2
h ‖2 = E(ωnh) + ∆t

Ro

〈∂ψn+1
2

h
∂x , ω

n+ 1
2

h

〉
+ ∆t

Ro

〈
Fn+ 1

2 , ω
n+ 1

2
h

〉
. (4.17)

The result now follows after we sum from n = 0, ...,M − 1.

Lemma 4.10 (Stability). Algorithm 4.1 is unconditionally stable. Its solutions

satisfy

Ro‖∇ψMh ‖2 +Roα
2

2

N∑
i=0

‖(I − Fh)
N+i
2 ωh

h‖2 + ∆t
2N

(
δM
L

)3
M∑
n=0

‖∆hψ
n+ 1

2
h ‖2 ≤ C(data),

(4.18)

‖ωMh ‖2+ ∆t
2Ro

(
δM
L

)3∑M
n=0

∥∥∇ωn+ 1
2

h

∥∥2 ≤ C(data).

(4.19)
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Remark 4.2. The bounds (4.18)-(4.19) are sufficient for the Leray-Schauder fixed

point theorem to be applied, in order to prove existence of a solution at each timestep

(as in [60]). Uniqueness can be proven in the standard way, and will hold provided

a timestep restriction.

Proof. For any ∆t > 0 we start with the estimate (4.18). First, note that using

the definition of the discrete Laplacian, equation (4.9b), choosing χ = ∆hψ
n+ 1

2
h and

using Cauchy-Schwarz yields:

‖∆hψ
n+ 1

2
h ‖ ≤ ‖Dh

Nω
n+ 1

2
h

h

‖.

Now using Lemma 4.5 and norm equivalence in Lemma 4.4

‖∆hψ
n+ 1

2
h ‖2 ≤ N‖ωn+ 1

2
h ‖E,N = N

〈
Dh
Nω

n+ 1
2

h

h

, ω
n+ 1

2
h

〉
= N

〈
∇ψn+ 1

2
h ,∇ωn+ 1

2
h

〉
. (4.20)

Using inequality (4.20), equation (4.16) and Cauchy-Schwarz inequality we obtain

ENα (ψn+1
h , ωn+1

h )− ENα (ψnh , ω
n
h) + ∆t

NRo

(
δM
L

)3‖∆hψ
n+ 1

2
h ‖2 ≤ ∆t

Ro‖F
n+ 1

2 ‖−1‖∇ψ
n+ 1

2
h ‖.

(4.21)

Averaging the definition of modified Laplacian and choosing χ = ψ
n+ 1

2
h we find

‖∇ψn+ 1
2

h ‖ ≤ CPF‖∆hψ
n+ 1

2
h ‖. (4.22)

Then we obtain estimate (4.18) using (4.22) in (4.21), Young’s inequal-

ity with ε =
(
L
δM

)3

and summing from n = 0, ...,M − 1.

For estimate (4.19), we use (4.17), Cauchy-Schwarz and Young’s in-

equalities and the definition of enstrophy. Summing from n = 0, ...,M − 1 finishes

the proof.

4.4 Convergence

The following lemma is the key to handling the consistency error in the

BV-α-Deconvolution model.
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Lemma 4.11. For smooth, periodic φ, or φ satisfying ∆jφ = 0 on ∂Ω for 0 ≤ j ≤
k+1

2
− 1, the discrete approximate deconvolution operator satisfies

‖φ−Dh
Nφ

h‖ ≤ Cα2N+2‖∆N+1FN+1φ‖+ C(αhk + hk+1)
( N∑
i=1

|F i+1φ|k+1

)
,

and thus for k ≥ 1 we have

‖φ−Dh
Nφ

h‖ ≤ C(α2N+2 + αhk + hk+1)
( N∑
i=1

|F i+1φ|k+1

)
.

Proof. See [64].

Theorem 4.1 (Convergence). Consider the discrete BV-α-Deconvolution model.

Let (ω(t), ψ(t)) ∈ X×X be a smooth strong solution of the BV model satisfying free

slip boundary conditions such that the norms of (ω(t), ψ(t)) on the right hand side of

(4.23) and (4.24) are finite. Suppose ωh, ψh solves the Crank-Nicolson approximation

(4.9a)-(4.9c) of the BV-α-Deconvolution model. Then for ∆t small enough (in order

to apply the discrete Gronwall inequality), we have

∥∥|ω − ωh|∥∥∞,0 ≤ f(∆t, h, α)+ Chk+1
∥∥|ω|∥∥∞,k+1

, (4.23)((
δM
L

)3 M−1∑
n=0

∆t
∥∥∇(ω(tn+ 1

2 )− ωn+ 1
2

h

)∥∥2
)1/2

≤ f
(
∆t, h, α

)
+ C∆t2

(
δM
L

)3/2∥∥ωtt∥∥2,0

+ C
(
δM
L

)3/2
hk
∥∥|ω∣∣‖2,k+1, (4.24)

where

f
(
∆t, h, α

)
:=

C∗
{
hk
[
C

Ro
1
2

(
δM
L

) 3
2 ‖|ω1/2|‖2,k+1 + C

Ro
1
2

(
L
δM

) 3
2 ‖|ψ1/2|‖2,k+1 + h C

Ro
1
2

(
L
δM

) 3
2 ‖|ω1/2|‖2,k+1

+ C
(
L
δM

) 3
2 ‖|∇ω1/2|‖24,1 + C

(
L
δM

) 3
2 ‖|ψ1/2|‖24,k+1 + hC

(
L
δM

) 3
2 ‖|ω1/2|‖24,k+1 + hC

(
L
δM

) 3
2 ‖|ψ1/2|‖24,k+1

]
+ (α2N+2 + αhk + hk+1)

[
C

N∑
i=1

‖|F i+1ω
1/2|‖2,k+1 + C

(
L
δM

) 3
2 ‖|∇ω1/2|‖24,1 + C

(
L
δM

) 3
2

N∑
i=1

‖|F i+1ω
1/2|‖24,k+1

+ C
(
L
δM

) 3
2 ‖|ω1/2|‖24,k+1

]
+ ∆t2

[(
L
δM

) 3
2C‖ωttt‖2,0 + C

(
δM
L

) 3
2 ‖∇ωtt‖2,0 + C

(
L
δM

) 3
2 ‖ψtt‖2,0

+ C
(
L
δM

) 3
2 ‖|∇ψ 1

2 |‖24,1 + C
(
L
δM

) 3
2 ‖ωtt‖24,1 + C

(
L
δM

) 3
2
∥∥∣∣∇ω1/2

∣∣∥∥2

4,1
+ C

(
L
δM

) 3
2 ‖ψtt‖24,1

]}
.

Corollary 4.1. Suppose that the indicated norms on the right hand side of (4.23)-

(4.24) are finite. Then the error in the Crank-Nicolson finite element scheme for

85



the BV-α-deconvolution is of the order

∥∥|ω − ωh|∥∥∞,0 +
((

δM
L

)3 M−1∑
n=0

∆t‖∇(ω(tn+ 1
2 )− ωn+ 1

2
h )‖2

)1/2
≤ O

(
hk + ∆t2 + α2N+2

N∑
i=1

‖|F i+1ω|‖2,k+1

)
.

Moreover,

‖|ψ − ψh|‖2,1 ≤ O
(
hk + ∆t2 + α2N+2

N∑
i=0

‖|F i+1ω|‖2,k+1

)
. (4.25)

Proof of Theorem 4.1. The BV model solution satisfies

Ro
〈
ωn+1−ωn

∆t , vh
〉

+Rob
(
ψn+ 1

2 , ωn+ 1
2 , vh

)
−
〈∂ψn+1

2

∂x , vh
〉

+
(
δM
L

)3〈
∇ωn+ 1

2 ,∇vh
〉

=
〈
Fn+ 1

2 , vh
〉

+ Intp(ωn, ψn; vh) ∀vh ∈ Xh, (4.26)

where

Intp(ωn, ψn; vh) := Ro
〈
ωn+1−ωn

∆t − ωt(tn+ 1
2 ), vh

〉
+
(
δM
L

)3〈
∇ωn+ 1

2 −∇ω(tn+ 1
2 ),∇vh

〉
−
〈∂ψn+1

2

∂x − ∂ψ(tn+
1
2 )

∂x , vh
〉

+Ro
[
b
(
ψn+ 1

2 , ωn+ 1
2 , vh

)
− b
(
ψ(tn+ 1

2 ), ω(tn+ 1
2 ), vh

)]
. (4.27)

We define the vorticity and streamfunction error as

e := ω − ωh =
(
ω − Pω

)
−
(
ωh − Pω

)
= e⊥ − eh,

E := ψ − ψh =
(
ψ − Πψ

)
−
(
ψh − Πψ

)
= E⊥ − Eh.

Now we subtract (4.9a) from (4.26), add ±b
(
ψ
n+ 1

2
h , ωn+ 1

2 , vh
)

and fix

vh = e
n+ 1

2
h

‖en+1
h ‖2 − ‖enh‖2 + 2∆t

Ro

(
δM
L

)3‖∇en+ 1
2

h ‖2 = 2∆t
Ro

(
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L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

〉
−2∆t

Ro

〈
∂En+

1
2

∂x
, e
n+ 1

2
h

〉
+ 2∆t

[
b
(
ψ
n+ 1

2
h , e

n+ 1
2

⊥ , e
n+ 1

2
h

)
+ b
(
En+ 1

2 , ωn+ 1
2 , e

n+ 1
2

h

)]
− 2∆t

Ro
Intp(ωn, ψn; e

n+ 1
2

h ), (4.29)

because
〈
en+1
⊥ − en⊥, e

n+ 1
2

h

〉
= 0 and b

(
ψ
n+ 1

2
h , e

n+ 1
2

h , e
n+ 1

2
h

)
= 0.
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The next step is to bound the RHS terms in (4.29). The term below

is bounded in a standard way using Cauchy-Schwarz and Young inequalities and

Lemma 4.1.

∣∣(δM
L

)3〈∇en+ 1
2

⊥ ,∇en+ 1
2

h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + Ch2k
(
δM
L

)3‖ωn+ 1
2‖2

k+1. (4.30)

Using Poincaré and Young inequalities with ε = 1
8

(
δM
L

)3
we obtain

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3

‖∇En+ 1
2‖2.

Now we have to estimate the term ‖∇En+ 1
2‖. Averaging and subtract-

ing (4.4b) from (4.9b), choosing vh = E
n+ 1

2
h and using Cauchy-Schwarz and Poincaré

inequalities, we obtain

‖∇En+ 1
2

h ‖2 ≤ C‖Dh
N (ω

n+ 1
2

h − ωn+ 1
2 )
h

‖‖∇En+ 1
2

h ‖+ C‖Dh
Nω

n+ 1
2

h

− ωn+ 1
2 ‖‖∇En+ 1

2
h ‖.

(4.31)

Using (4.31) and Lemma 4.5 we obtain

‖∇En+ 1
2 ‖2 ≤ ‖∇En+ 1

2
⊥ ‖2 + C‖en+ 1

2
h ‖2 + C‖en+ 1

2
⊥ ‖2 + C‖Dh

Nω
n+ 1

2

h

− ωn+ 1
2 ‖2. (4.32)

Using (4.32) and Lemmas 4.1 and 4.11

∣∣〈∂En+1
2

∂x
, e
n+ 1

2
h

〉∣∣ ≤ 1
16

(
δM
L

)3‖∇en+ 1
2
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+ C
(
L
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)3(
C‖∇En+ 1

2
⊥ ‖2 + C‖en+ 1

2
⊥ ‖2 + C‖en+ 1

2
h ‖2 + C‖Dh

Nω
n+ 1

2

h

− ωn+ 1
2‖2
)

≤ 1
16

(
δM
L

)3‖∇en+ 1
2

h ‖2 + C
(
L
δM

)3

‖en+ 1
2

h ‖2 +
(
L
δM

)3[
Ch2k‖ψn+ 1

2‖2
k+1

+ Ch2k+2‖ωn+ 1
2‖2

k+1 + C(α4N+4 + α2h2k + h2k+2)
( N∑
i=1

|F i+1ωn+ 1
2 |2k+1

)]
. (4.33)
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For the first trilinear term we use Lemma 4.3, Young inequality with ε = 1
8Ro

(
δM
L

)3
,

Poincaré inequality, (4.32), Lemmas 4.1 and 4.11 and as k ≥ 1 we have

∣∣b(En+ 1
2 , ωn+ 1

2 , e
n+ 1

2
h

)∣∣ ≤ 1
16

(
δM
L

)3
‖∇en+ 1

2
h ‖2 + C

(
L
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2 ‖21‖∇En+ 1
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16
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L
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2
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L
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)3
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2 ‖21‖e
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2
h ‖2

+
(
L
δM

)3
‖∇ωn+ 1

2 ‖21
(
Ch2k‖ψn+ 1

2 ‖2k+1 + Ch2k+2‖ωn+ 1
2 ‖2k+1 + C‖Dh

Nω
n+ 1

2

h

− ωn+ 1
2 ‖2
)

≤ 1
16

(
δM
L

)3
‖∇en+ 1

2
h ‖2 + C

(
L
δM

)3
‖∇ωn+ 1

2 ‖21‖e
n+ 1

2
h ‖2

+ C
(
L
δM

)3
h2k(‖∇ωn+ 1

2 ‖41 + ‖ψn+ 1
2 ‖4k+1) + C

(
L
δM

)3
Ch2k+2‖ωn+ 1

2 ‖4k+1

+ C
(
L
δM

)3
(α4N+4 + α2h2k + h2k+2)

(
‖∇ωn+ 1

2 ‖41 +
N∑
i=1

|F i+1ωn+ 1
2 |4k+1

)
. (4.34)

Using Holder’s inequality with p =∞ and q = r = 2,

∣∣b(ψn+ 1
2

h , e
n+ 1

2
⊥ , e

n+ 1
2

h

)∣∣ ≤ ‖∇ψn+ 1
2

h ‖∞‖e
n+ 1

2
⊥ ‖2‖∇en+ 1

2
h ‖2.

From ‖∇ψn+ 1
2

h −∇ψn+ 1
2‖∞ = ‖∇En+ 1

2‖∞ and using the embedding H2 ↪→ L∞ and

the regularity estimate for elliptic equations

‖∇ψn+ 1
2

h ‖∞ ≤ ‖∇En+ 1
2‖∞ + ‖∇ψn+ 1

2‖∞ ≤ ‖∇En+ 1
2‖∞ + C‖ψn+ 1

2‖3

≤ ‖∇En+ 1
2‖∞ + C‖ωn+ 1

2‖1.

Now we have to estimate the term ‖∇En+ 1
2‖∞ in the above inequality.

Let Ih be a global Lagrangian interpolator, we have ‖∇En+ 1
2‖∞ ≤ ‖∇(Ihψn+ 1

2 −

ψ
n+ 1

2
h )‖∞ + ‖∇(ψn+ 1

2 − Ihψn+ 1
2 )‖∞. Using an inverse inequality for ‖∇(Ihψn+ 1

2 −

ψ
n+ 1

2
h )‖∞ (Theorem 4.5.11 in [11]) and a standard estimate for ‖∇(ψn+ 1

2−Ihψn+ 1
2 )‖∞

(estimate (4.4.22) of Theorem 4.4.20 in [11] with p = 2, n = 2, s = 1 and m = k+1)

we have

‖∇En+ 1
2‖∞ ≤ Ch−1‖∇(Ihψn+ 1

2 − ψn+ 1
2

h )‖+ Chk−1‖ψn+ 1
2‖k+1

≤ Ch−1‖∇(Ihψn+ 1
2 − ψn+ 1

2 − En+ 1
2 )‖+ Chk−1‖ψn+ 1

2‖k+1

≤ Ch−1‖∇En+ 1
2

h ‖+ Chk−1‖ψn+ 1
2‖k+1.
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Thus, for 0 < h ≤ 1 and for k ≥ 1 we have

‖∇ψn+ 1
2

h ‖∞ ≤ Ch−1‖∇En+ 1
2

h ‖+ C‖ωn+ 1
2‖1 + C‖ψn+ 1

2‖k+1.

Therefore, for 0 < h ≤ 1 and k ≥ 1 and using Lemma 4.1
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From Young inequality (ε = 1
16CRo
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), (4.31), k ≥ 1 and Lemma 4.1
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It remains to bound the term Intp in (4.27). Standard analysis for the

interpolation error (see, e.g., [65] and [76]) gives
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Now, using (4.30), (4.33), (4.34), (4.35) in (4.29), summing from n = 0

to n = M − 1 and using (4.36) we obtain

‖eMh ‖2 − ‖e0
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where

C∗ := exp
{

∆t
M−1∑
n=0

(
L
δM

)3(
C + C‖∇ωn+ 1

2 ‖21 + C‖ωn+ 1
2 ‖2k+1

)
1−∆t

(
L
δM

)3(
C + C‖∇ωn+ 1

2 ‖21 + C‖ωn+ 1
2 ‖2k+1

)}.

Thus we obtain (4.23) from the triangle inequality and (4.37).

For estimate (4.24), we apply (4.37) in

∥∥∇(ω(tn+ 1
2
)
− ωn+ 1

2
h

)∥∥2 ≤
∥∥∇(ω(tn+ 1

2
)
− ωn+ 1

2
)∥∥2

+
∥∥∇en+ 1

2
⊥

∥∥2
+
∥∥∇en+ 1

2
h

∥∥2

≤ ∆t3

48

∫ tn+1

tn
‖ωtt‖2dt+ Ch2k

∥∥ωn+ 1
2

∥∥2

k+1
+ ‖∇en+ 1

2
h ‖2.

Proof of Corollary 4.1. This follows directly from

‖∇(ψ(tn+ 1
2 )− ψn+ 1

2
h )‖2 ≤ ‖∇

(
ψ(tn+ 1

2 )− ψn+ 1
2

)
‖2 + ‖∇En+ 1

2‖2, (4.38)

after we apply inequality (4.32), Lemma 4.11, Lemma 4.1, sum from n = 0, ...,M−1

and apply Theorem 4.1.

4.5 Numerical experiments

In this section, we provide two different experiments to present the

results obtained with the proposed scheme. In the first we validate our computa-

tional implementation and estimate convergence rates using an analytical solution.

In the second, we simulate the more realistic and traditional double-gyre wind forc-

ing benchmark. The software FreeFem++[40] was used to implement the proposed

scheme. To solve the resulting nonlinear system, we used a Newtonian iteration

at each timestep. In addition, a multi-frontal Gauss LU factorization implemented

in the package UMFPACK (provided with FreeFem++ software) was used as our

linear solver.
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4.5.1 Convergence rates verification

Now we validate our computational implementation and confirm the

convergence analysis presented above using a known analytical solution to estimate

convergence rates. Considering the domain Ω = (0, 1)× (−1, 1), t ∈ (0, 1], and for

F = −π exp
[
− 2π2

Ro

(
δM
L

)3
t
]

cosπx sin πy,

the BV model has the following time dependent analytical solution (with homoge-

neous Dirichlet boundary conditions):

ψ = exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy,

ω = 2π2 exp
[
− 2π2

Ro

(
δM
L

)3
t
]

sin πx sin πy.

Using this known solution, convergence rates were estimated through simulations

using regular triangular meshes with h = 1
4
, h = 1

8
, h = 1

16
, h = 1

32
, h = 1

64
and

h = 1
128

, where h is the mesh-width. Figure 4.1 presents the coarsest mesh used in

this experiment. In all cases we chose α = h, and the timestep was chosen in terms

of h in order to balance the error sources from the convergence theorem. That is,

for P1 elements and α = h, the L2(0, T ;H1(Ω)) vorticity error and L∞(0, T ;H1(Ω))

streamfunction error from the theorem are O(∆t2 +h), and thus we chose ∆t =
√
h

(but slightly rounded so that ∆t evenly divided T ), and thus here we expect first

order convergence in these norms as ∆t, h→ 0. For P2 and P3 elements, we chose

∆t = h and ∆t =
√
h3, and expect second and third order convergence in these

norms, respectively.

Tables 4.1, 4.2 and 4.3 present the errors and convergence rates obtained

for decreasing h and ∆t, using δM
L

= 0.02 andRo = 1.0. From these tables we observe

that the convergence of the numerical solution to the exact solution is optimal and

agrees with the convergence theory presented above, for any choices of elements. We

remind that, according to the convergence analysis presented in the latter section,

for N = 0, the L2(0, T ;H1(Ω)) error is O(hk + h2), for N = 1 the L2(0, T ;H1(Ω))
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Figure 4.1: Mesh with h = 1/4 which corresponds to a grid with 4x8 squares.

error is O(hk+h4) and for N = 2, the L2(0, T ;H1(Ω)) error is O(hk+h6), which are

confirmed by the convergence rates presented in the tables 4.1, 4.2 and 4.3. That is,

provided a smooth solution, BV-α-D1 and BV-α-D2 will converge faster than the

BV-α (D0).

Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖∞,1 Rate
P1 4 24.189 1.9868 2.1732

(∆t =
√
h) 8 12.376 0.97 0.61369 1.69 1.0117 1.10

16 6.1545 1.01 0.16167 1.92 0.39299 1.36
32 3.0614 1.01 0.041218 1.97 0.16706 1.23
64 1.5259 1.00 0.010349 1.99 0.078803 1.08
128 0.76181 1.00 0.002606 1.99 0.038768 1.02

P2 4 6.3875 0.79216 1.7469
(∆t = h) 8 2.7885 1.20 0.28037 1.50 0.74236 1.23

16 1.0076 1.47 0.078785 1.83 0.22523 1.72
32 0.33616 1.58 0.020767 1.92 0.05949 1.92
64 0.10476 1.68 0.0052803 1.98 0.015086 1.98
128 0.02967 1.82 0.0013261 1.99 0.003785 1.99

P3 4 7.5925 0.88577 1.7349

(∆t =
√
h3) 8 3.6645 1.05 0.28925 1.61 0.7405 1.23

16 1.1144 1.72 0.079633 1.86 0.22489 1.72
32 0.36152 1.62 0.020844 1.93 0.059414 1.92
64 0.10877 1.73 0.005286 1.98 0.015067 1.98

Table 4.1: Convergence rates for BV-α-D0 (N = 0) model with δM
L

= 0.02 and
Ro = 1.0.
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Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖∞,1 Rate
P1 4 23.976 1.9716 1.6753

(∆t =
√
h) 8 12.202 0.97 0.54573 1.85 0.66267 1.34

16 6.1025 1.00 0.14161 1.95 0.30999 1.10
32 3.049 1.00 0.036064 1.97 0.15426 1.01
64 1.5232 1.00 0.0090863 1.99 0.077105 1.00
128 0.76126 1.00 0.0022755 2.00 0.038553 1.00

P2 4 4.5291 0.36528 0.9807
(∆t = h) 8 1.1333 2.00 0.059717 2.61 0.18122 2.44

16 0.27668 2.03 0.0061093 3.29 0.020044 3.18
32 0.081142 1.77 0.00058915 3.37 0.0031885 2.65
64 0.025527 1.67 8.0004e-5 2.88 7.497e-4 2.09
128 0.0071309 1.84 9.5087e-6 3.07 1.8665e-4 2.01

P3 4 4.4873 0.38391 0.95793

(∆t =
√
h3) 8 0.86042 2.38 0.058728 2.71 0.17452 2.46

16 0.077881 3.47 0.0055599 3.40 0.016097 3.44
32 0.0068168 3.51 0.00039313 3.82 0.0011237 3.84
64 0.00052529 3.70 2.5343e-5 3.96 7.2312e-5 3.96

Table 4.2: Convergence rates for BV-α-D1 (N = 1) model with δM
L

= 0.02 and
Ro = 1.0.

4.5.2 Double gyre wind experiment

As presented in [37, 47], when the BV equations are forced in a rect-

angular basin by a double gyre wind forcing on the ocean surface and dissipation

is weak, despite the instantaneous streamfunction field being highly variable, time

averaged streamfunction field presents a well defined four gyre pattern. This pattern

is composed by two inner gyres, which are driven by the wind, and two extremal

gyres, at the northern and southern ends of the basin, which are driven by the eddy

flux of potential vorticity. Moreover, according to [47], the extremal gyres are not

a linear effect, but a result of a mean balance between the eddy flux of potential

vorticity and wind forcing being susceptible to destruction by excessive dissipation.

The double gyre forcing experiment has been used as a model of more

realistic ocean dynamics in several studies, and recently it has been used as a bench-
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Element h−1 ‖w − wh‖2,1 Rate ‖w − wh‖∞,0 Rate ‖ψ − ψh‖∞,1 Rate
P1 4 23.906 1.9666 1.4363

(∆t =
√
h) 8 12.184 0.97 0.5435 1.86 0.6239 1.20

16 6.1012 1.00 0.14125 1.94 0.3086 1.02
32 3.0489 1.00 0.03604 1.97 0.15422 1.00
64 1.5232 1.00 0.0090846 1.99 0.077104 1.00
128 0.76126 1.00 0.0022754 2.00 0.038553 1.00

P2 4 4.5291 0.36528 0.9807
(∆t = h) 8 1.1333 2.00 0.059717 2.61 0.18122 2.44

16 0.27668 2.03 0.0061093 3.29 0.020044 3.18
32 0.081142 1.77 0.00058915 3.37 0.0031885 2.65
64 0.025527 1.67 8.0004e-5 2.88 7.497e-4 2.09
128 0.0071309 1.84 9.5087e-6 3.07 1.8665e-4 2.01

P3 4 4.4873 0.38391 0.95793

(∆t =
√
h3) 8 0.86042 2.38 0.058728 2.71 0.17452 2.46

16 0.077881 3.47 0.0055599 3.40 0.016097 3.44
32 0.0068168 3.51 0.00039313 3.82 0.0011237 3.84
64 0.00052529 3.70 2.5343e-5 3.96 7.2312e-5 3.96

Table 4.3: Convergence rates for BV-α-D2 (N = 2) model with δM
L

= 0.02 and
Ro = 1.0.

mark test to analyze new techniques to deal with turbulence in geophysical flows

[81, 47, 100]. In the double gyre wind forcing experiment, the wind effect on the

ocean’s surface is prescribed setting F = F0 sin(πy) with F0 = 1.

In this section we follow [100] and adopt the standard LES method-

ology: first we run a high resolution simulation with BV-model (no treatment of

turbulence). Next, we run several experiments in a coarse resolution mesh with BV

model and BV-α-Deconvolution model and compare them with the high resolution

BV model solution as reference.

Following the experiments presented in [37, 81, 47, 100], we run simula-

tions in different regular triangular meshes in the dimensionless rectangular domain

(0, 1) × (−1, 1) using P2 finite elements and consider meshes with different resolu-

tions setting h = 1/4 (which corresponds to a grid with 4x8 squares), 1/8 (8x16), 1/16
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(16x32), 1/32 (32x64) and 1/64 (64x128) where h is the mesh-width. In the remainder

of this section we will refer to theses meshes as n× 2n for n = 4, 8, 16, 32, 64.

Experiments were made starting from t = 0 up until t = 100 as in [100]

and we adopt ∆t = 0.001 in all simulations. In this and in the next section we

present figures of the average fields of streamfunction (ψ) and potential vorticity

(given by q = Roω + y), calculated using results from t = 20 until 100 as in [100].

For the double gyre wind forcing experiment we considered two interesting cases: i)

δM/L = 0.02 and Ro = 0.0016 (which is presented in [100]) and ii) δM/L = 0.01 and

Ro = 0.0002.

4.5.2.1 Experiment for Ro = 0.0016

First, we present the results found for the double gyre experiment con-

sidering the same case as in [100], that is, Ro = 0.0016 and
(
δM
L

)3
= 0.02. In Figures

4.2(a) and 4.3(a) we present respectively the streamfunction and vorticity solutions

obtained in the high resolution (64 × 128 mesh) experiment using the BV model.

In these figures we can see that the streamfunction and vorticity solutions obtained

in this experiment are very similar with the results presented in [100] in their DNS

experiment.

As reported in [100, 47], decreasing the mesh resolution, the stream-

function solution obtained with the BV model degenerates in two gyres as it can be

seen in Figure 4.2(b). In this case, using the BV-α model (α = 1
12

) we can recover the

four gyre pattern (Figure 4.2(c)), but the streamfunction is intensified in comparison

with the streamfunction solution obtained in the high resolution experiment (Fig-

ure 4.2(a)) and the vorticity field is very noisy (Figure 4.3(c)). However, when we

increase the order in the deconvolution operator (Figures 4.2(d), 4.2(e) and 4.2(f)),

we can obtain more accurate solutions in comparison with the BV and BV-α model.

In this figures, clearly we can see that the larger is the deconvolution order, the
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more accurate is the BV-α-deconvolution solution. In the BV-α-deconvolution vor-

ticity solution we observe the same pattern (Figure 4.2(d), 4.2(e) and 4.2(f)). This

improvement is related to the consistency error present in the BV-α-deconvolution

model that, according to our convergence analysis, has order 2N+2, which for larger

values of N permits more accuracy in the solution.

In Table 4.4 we also present run times for the BV model in the fine

(64× 128) and coarse mesh (4× 8) and for BV-α-Deconvolution in the coarse mesh

(4× 8) are presented. We see that, although the computational time is increased by

increasing the deconvolution order in the BV-α-Deconvolution model, it is significant

faster than solving the BV model in the fine mesh.

Fine Coarse alpha (D0) BV-α-D1 BV-α-D2 BV-α-D3

9.82e5 2.50e3 4.5e3 9.4e3 1.73e4 2.98e4

Table 4.4: Run times (in seconds) obtained for Ro = 0.0016 in the fine (64 × 128) and

coarse (4 × 8) mesh with the BV model and in the coarse mesh (4 × 8) with

BV-α-Deconvolution model. The experiments were made in a Intel® CoreTM

i7 3.70 GHz.

4.5.2.2 Experiment for Ro = 0.0002

Now we present the results obtained for the double gyre experiment

considering Ro = 0.0002 and
(
δM
L

)3
= 0.01. Figures 4.4(a) and 4.5(a) present the

streamfunction and vorticity solutions obtained in the high resolution mesh (50×100

mesh). We observe that in this experiment, the solution presents a distinct six gyre

pattern. Futhermore, as we can see in Figure 4.4(b), this pattern is also susceptible

to the mesh resolution. That is, when we simulate this experiment using the BV

model in a coarse 8 × 16 mesh the six gyre pattern degenerates into two gyres.

Moreover, the vorticity field produced in the coarse mesh becomes noisy.

Using the BV-α (α = 1
8
) model we recover the four gyre pattern (Figure

4.4(c)), but not the six gyre pattern observed in the high resolution solution and, as
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for Ro = 0.0016, it is intensified compared to the high resolution solution. On the

other hand, the streamfunction solutions produced with the BV-α-Deconvolution

model for N ≥ 1 are less intensified (Figures 4.4(d), 4.4(e) and 4.4(f)). Moreover,

for N = 3 the BV-α-deconvolution model recovers the six gyre pattern (Figure

4.4(f)). In the vorticity field (Figures 4.5(d), 4.5(e) and 4.5(f)) we observe that,

increasing the deconvolution order, the solution becomes less noisy and more similar

to the high resolution solution. Computational times for the BV model in the fine

(50×100) and coarse mesh (8×16) and for BV-α-Deconvolution in the coarse mesh

(8×16) are presented in Table 4.5. We see that, although the computational time is

increased by increasing the deconvolution order in the BV-α-Deconvolution model,

it is significant faster than solving the BV model in the fine mesh.

Again, the results presented in this experiment corroborate the conver-

gence analysis presented herein: increasing the deconvolution order makes solutions

more accurate.

Fine Coarse alpha (D0) BV-α-D1 BV-α-D2 BV-α-D3

9.82e5 8.22e3 3.31e4 4.92e3 9.06e4 1.57e5

Table 4.5: Run times (in seconds) obtained for Ro = 0.0016 in the fine (50 × 100) and

coarse (4 × 8) mesh with the BV model and in the coarse mesh (4 × 8) with

BV-α-Deconvolution model. The experiments were made in a Intel® CoreTM

i7 3.70 GHz.

4.6 Conclusion and final remarks

We have proposed and analysed an FEM scheme for the BV-α-Deconvolution

model of geophysical flows that regularizes the flow and improves accuracy compared

to the BV-α model. We proved that the scheme is both unconditionally stable and

optimally convergent. Furthermore, we confirmed the predicted convergence rates

through numerical simulations. Finally, we tested the BV-α-Deconvolution model

in the traditional double gyre wind experiment, which is a more realistic model of
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the ocean dynamics, and found very good results. In this test we corroborate that

increasing the deconvolution order in the model produces a more accurate solution.

In the present article we tested the BV-α-Deconvolution in a situation

in which only the barotropic mode of ocean dynamics is present. As in [99], in

a future work we intend to extend the BV-α-Deconvolution model for two layers

in order apply this regularization to a more baroclinic situation. That will be an

important step in the direction of true ocean dynamics.
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(a) Str. func. - 64x128
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Figure 4.2: Streamfunction fields in the experiment with δM/L = 0.02 and Ro =
0.0016 for (a) the high resolution BV model solution, (b) coarse (4× 8)
BV model solution and coarse (4× 8) (c) BV-α, (d) BV-α-D1, (e) BV-
α-D2 and (f) BV-α-D3.
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Figure 4.3: Vorticity fields in the experiment with δM/L = 0.02 and Ro = 0.0016 for
(a) the high resolution BV model solution, (b) coarse (4× 8) BV model
solution and coarse (4 × 8) (c) BV-α, (d) BV-α-D1, (e) BV-α-D2 and
(f) BV-α-D3.
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Figure 4.4: Streamfunction fields in the experiment with δM/L = 0.01 and Ro =
0.0002 for (a) the high resolution BV model solution, (b) coarse (4× 8)
BV model solution and coarse (4× 8) (c) BV-α, (d) BV-α-D1, (e) BV-
α-D2 and (f) BV-α-D3.
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Figure 4.5: Vorticity fields in the experiment with δM/L = 0.01 and Ro = 0.0002 for
(a) the high resolution BV model solution, (b) coarse (8x16) BV model
solution and coarse (8x16) (c) BV-α, (d) BV-α-D1, (e) BV-α-D2 and (f)
BV-α-D3.
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5 REGULARIZED BOUSSINESQ MODEL1

5.1 Introduction

Density currents are one of the most important kind of geophysical flow.

They can be defined as flows forced by the buoyant force due to density gradients in

the fluid. In atmosphere, important examples are the large scale Hadley and Walker

cells in the general atmospheric circulation and the small scale thunderstorms and

seabreeze. In the ocean, examples are the large scale Global Conveyor Belt resulting

from the thermohaline circulation and the small/meso scale upwelling/downwelling

mechanism as well as seafloor turbidity currents. Moreover, density currents are

also quite important in engineering applications.

Despite of the relevance of density currents, they very often cannot be

fully represented in simulations because several geophysical models adopt the hy-

drostatic approximation. Only recently, studies using non-hydrostatic models have

been performed. In [84] a density current was simulated in a model in the vorticity-

streamfunction variables. In [90], results produced by a non-hydrostatic model were

compared with density current data from the Red Sea. Also, threedimensional

simulations were performed in [86]. More recently, other aspects involving density

current modeling has been investigated in non-hydrostatic models, e. g., the effect of

generalized coordinates [43], topography [85, 48], vertical mixing [16, 50], boundary

conditions [7] and domain geometry [13, 49].

1We are very grateful to Professor Leo G. Rebholz for his thoughts and advices on the results
presented in this chapter.
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One of the most commonly used models to represent density currents

is the Boussinesq model given by

∂u

∂t
− u×∇× u−Re−1∆u+∇p−RiT k̂ = f, (5.1a)

∇ · u = 0, (5.1b)

∂T

∂t
+ u · ∇T − (RePr)−1∆T = 0. (5.1c)

where u is velocity, p is pressure, T is temperature, f is a given force and Re, Ri

and Pr are the Reynolds, Richardson and Prantdl number, respectively.

Simulations using non-hydrostatic models, such as those for density cur-

rent, demand a large computational cost and are restrict only to modest complexity

flows, i.e., low Reynolds numbers. Thus, several studies have been done aimed

at providing methods in order to reduce the computational cost when simulating

this kind of flow. Some methods already studied were mixing parametrization [16],

large-eddy simulation (LES) [89, 87, 88, 49, 6], adaptive meshing [46] and Proper

Orthogonal Decomposition reduced order modeling [70, 98].

In this chapter, an alternative approach, called regularized modeling, is

studied aimed at reducing the computational cost in simulations with the Boussinesq

model. The Navier-Stokes-α (NS-α) model is an example of regularization model

which has interesting mathematical, physical and computational properties (see [76]

and references therein). The most important property of NS-α probably is that it

allows a significant reduction in the degrees of freedom in simulations. In the NS-α

model, the nonlinearity is altered so that the flow at length scales that are smaller

than the alpha length scale are nonlinearly removed by motions at the larger scales.

Thus, the flow can be computationally solved with a significant decrease in the model

degrees of freedom in comparison to the original NS equations, and there is no need

to introduce additional dissipative terms or increase the viscosity coefficient. The

NS-ω [65, 75], Leray-α [64, 9] and Modified-Leray-α [51] are also regularizations of

the Navier-Stokes equations which differ from the NS-α by a modification in the

nonlinearity. They have been recently tested and enjoyed success in simulations.
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NS-α, NS-ω, Leray-α and Modified-Leray-α are respectively defined to be

ut − u× (∇× u) +∇p− ν∆u = f,

ut − u× (∇× u) +∇p− ν∆u = f,

ut − u · ∇u+∇p− ν∆u = f,

ut − u · ∇u+∇p− ν∆u = f,

where ν is the viscosity, f is a forcing and u is the filtered velocity given by

u := Fu := (−α2∆ + I)−1u.

In light of the above, the objective of this chapter is to study regularized

versions of the Boussinesq model, namely, Boussinesq-α, Boussinesq-ω, Boussinesq-

Leray and Modified-Boussinesq-Leray, through numerical analysis and simulations.

We believe the advantage of regularization models over other approaches is because it

combine simpler implementation and smaller computational cost with sound math-

ematical and physical fundamentals.

In addition, we take the cumulative existing experience with α models

and use it in their Boussinesq variations. For instance, in wall bounded flows we

cannot guarantee a non-divergent filtered velocity, hence a natural technique is to

introduce a Langrange multiplier in the filter equation in order to allow the physically

important incompressibility contraint [76]. Moreover, in [63] it is shown that the

velocity error in the Navier-Stokes equations scales as velocity error ≈ Re×pressure

error and, if the mesh is not sufficiently fine, large pressure errors can produce large

velocity errors. This problem can be fixed using the modified grad-div stabilization

proposed in [76], which is a modification of the grad-div technique used in [19] for the

Navier-Stokes equations, but that avoids stability problems in regularized models.

Another important technique applied in alpha models to reduce computional cost is

the Baker extrapolation in the nonlinear term. This technique consists in linearly

or quadratically extrapolating one of the velocities in the nonlinear term in order to

linearize the equations, avoiding the fixed point iteration necessary when solving the
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nonlinear system. In a recent study, [52] shows that, with a small modification in the

Baker extrapolation, interesting advantages can be gained both from the analytical

and computational viewpoint. Lastly, from the filter equation it is clearly possible

to see that for any alpha model we cannot expect accuracy better than O(α2) from

the model itself, even before any computational error is introduced. In [93, 94]

a fix is proposed based in the van Cittert method of approximate deconvolution,

which increase the consistency error in the Navier-Stokes-α model from O(α2) to

O(α2N+2) where N is the order of deconvolution operator. Besides, in [63, 94, 76, 9]

it is shown that approximate deconvolution also improves solution even in situations

in which the model error is not dominated by the consistency error. In this chapter,

the regularized versions of the Boussinesq model, along with the above mentioned

techniques, are mathematically analysed and computationally tested with respect

to their ability to provide accurate solutions to density currents.

The chapter is outlined as follows: Section 5.2 presents notation and

some preliminary results. In Section 5.3 an algorithm for a general regularized

Boussinesq model is proposed and studied with respect to its stability and conver-

gence. Numerical experiments are presented in Section 5.4. Lastly, conclusions and

final remarks are summarized in Section 5.5.

5.2 The finite element scheme and preliminaries

Let Ω ⊂ Rd (d = 2 or 3) be a polyhedral domain and τh be a regular

discretization of Ω. Let H1 be the Sobolev space W 1
2 (Ω) and X = H1

0 its sub-

space with zero boundary condition. Let Yh be a continuous finite element (FE)

space with kth degree polynomials on each element of the triangulation τh, and

(Xh, Qh) ⊂ (H1
0 (Ω)d, L2

0(Ω)) be a velocity-pressure space given by Xh := {v ∈

C0 ∩ Pk(e)∀e ∈ τh} and Qh := {v ∈ C0 ∩ Pk−1(e)∀e ∈ τh} satisfying the dis-

crete inf-sup condition [39]. Denote by 〈·, ·〉 and ‖ · ‖ respectively the inner prod-
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uct and norm in L2(Ω), and ‖ · ‖k for the norm in the Hk space. The subspace

Vh = {vh ∈ Xh : 〈∇ · vh, qh〉 = 0 ∀qh ∈ Qh} of Xh will also be helpful in the subse-

quent analysis.

For continuous in time functions, we denote for 1 ≤ m <∞, ‖f‖m,k :={ ∫ T
0 ‖f(t, ·)‖mk dt

}1/m
and, for the discrete case, we denote‖|f |‖∞,k := ess sup0≤n≤M ‖fn‖k,,

‖f 1/2‖m,k :=
{∑M

n=0 ‖f(tn+ 1
2 )‖mk dt

}1/m
and ‖|f 1/2|‖m,k :=

{∑M
n=0 ‖f

n+ 1
2 ‖mk dt

}1/m
.

The following approximation estimates are also useful ([35, 11, 39])

inf
v∈Xh

‖u− v‖ ≤ Chk+1|u|k+1, u ∈ (Hk+1(Ω))d,

inf
v∈Xh

‖u− v‖1 ≤ Chk|u|k+1, u ∈ (Hk+1(Ω))d,

inf
r∈Qh

‖p− r‖ ≤ Chs+1|u|s+1, u ∈ (Hs+1(Ω))d.

We also make use of the four trilinear forms:

Definition 5.1. Let β ∈ [0, 1] and define a1, a
∗
1, a2, aβ : X ×X ×X −→ R, by

a1(u, v, w) := 〈u · ∇v, w〉 ,

a∗1(u, v, w) := 1
2 [a1(u, v, w)− a1(u,w, v)] ,

a2(u, v, w) := 〈(∇× u)× v, w〉 ,

aβ(u, v, w) := βa2(u, v, w) + (1− β)a∗1(u, v, w).

The following estimates hold for the above trilinear forms:

Lemma 5.1. Let u, v, w ∈ H1 and β ∈ [0, 1]. Then

|a∗1 (u, v, w) | ≤ A1(Ω)‖∇u‖‖∇v‖‖∇w‖,

|a∗1 (u, v, w) | ≤ A2(Ω)‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖,

|a2 (u, v, w) | ≤ B1(Ω)‖∇u‖‖∇v‖‖∇w‖,

|a2 (u, v, w) | ≤ B2(Ω)‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖,

|aβ (u, v, w) | ≤ σ1(Ω)‖∇u‖‖∇v‖‖∇w‖,

|aβ (u, v, w) | ≤ σ2(Ω)‖u‖1/2‖∇u‖1/2‖∇v‖‖∇w‖.

108



Proof. The first and second estimates are well-known and follow from Hölder and

Ladyzhenskaya inequalities (see [60]). The third also follows from Hölder and La-

dyzhenskaya inequality and the Sobolev embedding Theorem, where we also made

use of ‖∇ × u‖ ≤ ‖∇u‖ for u ∈ H1
0 . The fourth follows from Hölder with p = 2,

q = 3 and r = 6, interpolation inequality for Lp spaces and Ladyzhenkaya inequality.

For the fifth, we made use of [a× b] · c = [c× b] · a and that the curl is self-adjoint

in X, i.e,

|〈(∇× u)× v, w〉| = |〈w × v,∇× u〉| = |〈∇ × (w × v), u〉|

≤ |〈v · ∇w, u〉|+ |〈w · ∇v, u〉|+ |〈(∇ · v)w, u〉|+ |〈(∇ · w)v, u〉|

where we used the identity ∇×(a×b) = a ·∇b−b ·∇a+(∇·a)b+(∇·b)a. The result

follows after applying Hölder with p = 2, q = 3 and r = 6, interpolation inequality

for Lp spaces and Ladyzhenkaya inequality. The last two identities follow from the

previous, defining σ1(Ω) := max{B1(Ω), A1(Ω)} and σ2(Ω) := max{B2(Ω), A3(Ω)}.

Also, Taylor expansion with integral remainder gives [60]:

Lemma 5.2. Let u ∈ C0(tn, tn+1;L2(Ω)) and twice differentiable in time with utt ∈
L2((tn, tn+1)× Ω). Then

‖un+ 1
2 − u(tn+ 1

2 )‖2 ≤ 1
48(∆t)3

∫ tn+1

tn
‖utt‖2dt,

‖un+ 1
2 − (2un−

1
2 − un−

3
2 )‖2 ≤ (∆t)3

∫ tn+1

tn−1

‖utt‖2dt.

If uttt ∈ L2((tn, tn+1)× Ω) then

∥∥un+1−un
∆t − ut(tn+ 1

2 )
∥∥2 ≤ 1

1280(∆t)3

∫ tn+1

tn
‖uttt‖2dt.

If ∇u ∈ C0(tn, tn+1;L2(Ω)) and ∇utt ∈ L2((tn, tn+1)× Ω) then

‖∇un+ 1
2 −∇u(tn+ 1

2 )‖2 ≤ 1
48(∆t)3

∫ tn+1

tn
‖∇utt‖2dt.

where un+ 1
2 = un+1+un

2
and u(tn+ 1

2 ) = u((tn+1 + tn)/2).
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5.2.1 Discrete filtering

Following [76], given w ∈ L2(Ω) and parameters α, κ,Re > 0, discrete

filtering Fh : L2(Ω) → Xh is defined as the unique solution Fhw = wh ∈ Xh and

λh ∈ Qh, such that ∀ {vh, qh} ∈ Xh ×Qh,

α2
(
〈∇wh,∇vh〉+ κRe〈∇ · wh,∇ · vh〉

)
− 〈λh,∇ · vh〉+ 〈qh,∇ · wh〉+ 〈wh, vh〉 = 〈w, vh〉.

Given w ∈ X and parameters κ,Re > 0, the modified discrete Laplacian

operator ∆̃h : X → Vh (see [76]) is the unique solution ∆̃hw such that:

〈∆̃hw, vh〉 = −〈∇w,∇vh〉 − κRe〈∇ · w,∇ · vh〉, ∀vh ∈ Vh.

Thus, Fh : L2(Ω) → Vh can be defined equivalently as wh ∈ Vh such

that

−α2〈∆̃hw
h, vh〉+ 〈wh, vh〉 = 〈w, vh〉 ∀vh ∈ Vh. (5.3)

The following equalities involving Fh and ∆̃h hold:

Lemma 5.3.

〈∆̃huh, vh〉 = 〈uh, ∆̃hvh〉 ∀uh, vh ∈ Xh,

〈Fhu, v〉 = 〈u, Fhv〉 ∀u, v ∈ X,

∆̃hFhuh = Fh∆̃huh ∀uh ∈ Vh,

FhPhu = Fhu ∀u ∈ X.

That is, ∆̃h is self-adjoint and commutes with Fh in Xh and Fh is self-adjoint in X.

Proof. For the first, given uh, vh ∈ Xh and using the definition of ∆̃h we have

〈∆̃huh, vh〉 = −〈∇uh,∇vh〉 − κRe〈∇ · uh,∇ · vh〉 = 〈uh, ∆̃hvh〉.
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For the second, given u, v ∈ X, using the filter equation, Fhu ∈ Vh satisfies

α2〈∇Fhu,∇Fhv〉+ α2κRe〈∇ · Fhu,∇ · Fhv〉+ 〈Fhu, Fhv〉 = 〈u, Fhv〉, (5.4)

where we chose vh = Fhv ∈ Vh.

On the other hand, using again the filter equation, Fhv ∈ Vh satisfies

α2〈∇Fhv,∇Fhu〉+ α2κRe〈∇ · Fhv,∇ · Fhu〉+ 〈Fhv, Fhu〉 = 〈v, Fhu〉, (5.5)

where, in the above equation, we chose vh = Fhu ∈ Vh. Now, subtracting (5.4) from

(5.5) gives the result.

For the third, the filter equation gives

−α2〈∆̃hFhuh, vh〉+ 〈Fhuh, vh〉 = 〈uh, vh〉 ∀uh, vh ∈ Vh.

Because Fh and ∆̃h are self-adjoint in Vh, the filter equation gives

−α2〈Fh∆̃huh, vh〉+ 〈Fhuh, vh〉 = 〈uh, vh〉 uh, vh ∈ Vh.

where we also use that uh, vh ∈ Vh are arbitrary. Subtracting both equations gives

−α2〈(∆̃hFh − Fh∆̃h)uh, vh〉 = 0,

which gives the result, after we choose vh = (∆̃hFh − Fh∆̃h)uh.

Finally, for the last one, given u ∈ X, we consider respectively filtering

u and Phu, ∀vh ∈ Vh,

α2 (〈∇Fhu,∇vh〉+ κRe〈∇ · Fhu,∇ · vh〉) + 〈Fhu, vh〉 = 〈u, vh〉,

α2 (〈∇FhPhu,∇vh〉+ κRe〈∇ · FhPhu,∇ · vh〉) + 〈FhPhu, vh〉 = 〈Phu, vh〉 = 〈u, vh〉.

which gives the result, after we subtract them and choose vh = (FhPh − Fh)u.

In addition, the following bounds hold for filtered quantities:
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Lemma 5.4. For u ∈ X, the following inequalities hold:

‖uh‖ ≤ ‖u‖, (5.6a)

‖∇uh‖ ≤ c(Ω)‖∇u‖, (5.6b)

‖(I − Fh)u‖ ≤ ‖u‖, (5.6c)

〈Fhu, u〉 ≥ 0, (5.6d)

〈(I − Fh)u, u〉 ≥ 0. (5.6e)

In particular, for u ∈ Xh,

〈−∆hu, u〉 ≥ 0. (5.6f)

Proof. The first follows choosing vh = uh in (5.3) and using Cauchy-Schwarz in-

equality. For the second, we choose vh = ∆hu
h in (5.3) to obtain

α2‖∆̃hu
h‖2 + ‖∇uh‖2 + κRe‖∇ · uh‖2 = −〈u,∆hu

h〉 = −〈Phu,∆hu
h〉

= 〈∇Phu,∇uh〉+ κRe〈∇ · Phu,∇ · uh〉.

The result follows using Cauchy-Schwarz inequality. For the third inequality, using

‖(I − Fh)u‖2 = 〈(I − Fh)u, (I − Fh)u〉 = ‖u‖2 − 2〈u, uh〉+ ‖uh‖2.

Now, choosing vh = uh in (5.3) and substituting in the above formula, we have

‖(I − Fh)u‖2 = ‖u‖2 − ‖uh‖2 − 2α2‖∇uh‖2 − 2α2κRe‖∇ · uh‖2,

from which the result follows. For the fourth inequality, we have only to choose

vh = Fhu in the filter equation (5.3). For the fifth, first note that using Cauchy-

Schwarz inequality and the first inequality we have −〈Fhu, u〉 ≥ −‖u‖2. Then,

〈(I − Fh)u, u〉 = ‖u‖2 − 〈Fhu, u〉,

gives the result. The sixth inequality follows directly from the ∆̃h definition.

Given u ∈ X, the van Cittert deconvolution operator Dh
N is defined by

Dh
Nu =

N∑
i=0

(I − Fh)i u (5.7)
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Lemma 5.5. The operator Dh
N is continuous and the following formulae hold

N∑
i=0

(I − Fh)i Fh = I − (I − Fh)N+1 ,

(I − Fh)i = (−1)iα2i(∆̃hFh)
i,

Dh
NFh = I − (I − Fh)N+1,

Dh
NFh = I − (−1)N+1α2N+2(∆̃hFh)

N+1.

Proof. That operator Dh
N is continuous follows from the continuity of Fh. For the

first formula we use the algebraic identity BN+1− I = (B− I)(BN +BN−1 + ...+ I)

with B = I−Fh. For the second, using the filter equation (5.3), −α2∆̃hFh = I−Fh
gives the result. Finally, for the third, we use the definition of Dh

N and the first

formula. For the last one, we combine the second and third formulae.

Lemma 5.6. Given u ∈ X, we have the following formulae

〈Phu,Dh
Nuh〉 = ‖Dh

Nu
h‖2 + α2‖∇(I − Fh)

N+n
2 uh‖2 + α2κRe‖∇ · (I − Fh)

N+n
2 uh‖2,

−〈∆̃hPhu,D
h
Nu

h〉 = ‖∇Dh
Nu

h‖2 + α2κRe‖∇ ·Dh
Nu

h‖2 + α2‖∆̃h(I − Fh)
N+n

2 uh‖2.

Proof. Using the third formula in Lemma 5.5, u = Dh
Nu

h + (I − Fh)N+1u. Then

〈Phu,Dh
Nu

h〉 = 〈u,Dh
Nu

h〉 = ‖Dh
Nu

h‖2 + 〈(I − Fh)N+1u,Dh
Nu

h〉

= ‖Dh
Nu

h‖2 +
N∑
i=0

〈(I − Fh)N+1u, (I − Fh)iuh〉

= ‖Dh
Nu

h‖2 +
N∑
i=0

〈(I − Fh)(I − Fh)
N+i

2 u, (I − Fh)
N+i

2 uh〉

where we have used that Fh and (I − Fh) are positive (Lemmas 5.3 and 5.4).

Now rewriting filter equation as α2〈∇Fhw,∇vh〉+ α2κRe〈∇ · Fhw,∇ ·
vh〉 = 〈w − Fhw, vh〉 ∀vh ∈ Vh and using w = (I − Fh)

N+i
2 u and vh = (I − Fh)

N+i
2 uh

α2‖∇(I − Fh)
N+i
2 uh‖2 + α2κRe‖∇ · (I − Fh)

N+i
2 uh‖2 = 〈(I − Fh)(I − Fh)

N+i
2 u, (I − Fh)

N+i
2 uh〉

which gives the first formula.
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For the second, we use again u = Dh
Nu

h + (I − Fh)N+1u to obtain

−〈∆̃hPhu,D
h
Nu

h〉 = ‖∇Dh
Nu

h‖2 + κRe‖∇ ·Dh
Nu

h‖2 − 〈∆̃hPh(I − Fh)N+1u,Dh
Nu

h〉

Now, using the filter equation −α2〈∆̃hFhw, vh〉 = 〈w − Fhw, vh〉 ∀vh ∈

Vh with w = (I − Fh)Nu and vh = ∆̃hD
h
Nu

h

−〈∆̃hPhu,D
h
Nu

h〉 = ‖∇Dh
Nu

h‖2 + κRe‖∇ ·Dh
Nu

h‖2 + α2〈∆̃h(I − Fh)Nuh, ∆̃hD
h
Nu

h〉

= ‖∇Dh
Nu

h‖2 + κRe‖∇ ·Dh
Nu

h‖2 + α2

N∑
i=0

〈(I − Fh)N∆̃hu
h, (I − Fh)i∆̃hu

h〉

which gives the result.

Now, following [79, 76] and using Lemma 5.6, we define the energy

‖ · ‖E,N and the energy dissipation ‖ · ‖ε,N norms as

‖u‖E,N := 〈Phu,Dh
Nu

h〉1/2 (5.8)

‖u‖ε,N := −〈∆̃hPhu,D
h
Nu

h〉1/2 (5.9)

The following equivalence norm Lemmas which are presented in [79]

and [76] are very helpful in the subsequent analysis.

Lemma 5.7. For u ∈ Vh and for each natural number N , the energy norm defined

by (5.8) is equivalent to the zeroth energy norm also defined by (5.8). That is

‖u‖E,0 ≤ ‖u‖E,N ≤ D1‖u‖E,0

Additionally, for u ∈ Vh and for each natural number N , the energy dissipation norm

defined by (5.9) is equivalent to the zeroth energy dissipation norm also defined by

(5.9). That is

‖u‖ε,0 ≤ ‖u‖ε,N ≤ D1‖u‖ε,0

where D1 :=
√
N + 1.
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Lemma 5.8. If the filtering radius α is chosen so that α ≤ O(h) then the zeroth

energy norm ‖ · ‖E,0 is equivalent to the usual L2 norm in Vh: for u ∈ Vh, there

exists CE independent of h, u satisfying

‖u‖E,0 ≤ ‖u‖ ≤ CE‖u‖E,0

Additionally, the zeroth energy dissipation norm ‖ · ‖ε,0, is equivalent to

the H1 norm in Vh: there exists Cε independent of h, u satisfying

‖u‖ε,0 ≤ ‖∇u‖ ≤ Cε‖u‖ε,0

Remark 5.1. Combining the estimates presented in Lemmas 5.7 and 5.8, we have

the following norm equivalence result: for every u ∈ Vh

D−1
1 ‖u‖E,N ≤ ‖u‖ ≤ CE‖u‖E,N ,

D−1
1 ‖u‖ε,N ≤ ‖∇u‖ ≤ Cε‖u‖ε,N .

The following estimates are useful in the convergence analysis

Lemma 5.9. Given u ∈ V , the inequalities hold

‖u‖E,N ≤ D1‖u‖

‖u‖ε,N ≤ D2‖∇u‖

where D2 := c
√
N + 1

√
1 + κRe.

Proof. Applying the filter equation (5.3) for Dh
Nu and choosing vh = Phu

−α2〈∆̃hFhD
h
Nu, Phu〉+ 〈FhDh

Nu, Phu〉 = 〈Dh
Nu, Phu〉

Now using Lemmas 5.3 and 5.4 we have

−α2〈Dh
NFhu, ∆̃hPhu〉+ 〈FhDh

Nu, Phu〉 =
N∑
i=0

〈(I − Fh)iu, Phu〉 ≤
N∑
i=0

‖Phu‖‖u‖

from which the result follows.
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For the second, applying the filter equation forDh
NPhu, choosing vh = ∆̃hPhu

and using the modified discrete Laplacian definition, we obtain

−α2
N∑
i=0

〈(I − Fh)iFh∆̃hPhu, ∆̃hPhu〉+ 〈Dh
NFhPhu, ∆̃hPhu〉 = −〈Dh

NPhu,−∆̃hPhu〉.

Now, using that Fh, I − Fh and −∆̃h are positive operators (Lemmas 5.3

and 5.4) and Fh and ∆̃h commutates we have

α2
N∑
i=0

‖(I − Fh)
i/2F

1/2
h ∆̃hPhu‖2 + ‖u‖2ε,N = −

N∑
i=0

〈(I − Fh)i(−∆̃h)
1/2Phu, (−∆̃h)

1/2Phu〉

≤ (N + 1)〈Phu,−∆̃hPhu〉

≤ (N + 1)(1 + κRe)‖∇Phu‖2

from which the result follows.

Lemma 5.6, norm equivalence and Lemma 5.9 gives

Corollary 5.1. Let u ∈ V . Then the following inequalities hold:

‖Dh
Nu

h‖ ≤ ‖u‖E,N ,

‖∇Dh
Nu

h‖ ≤ ‖u‖ε,N ,

‖∇Dh
Nu

h‖ ≤ D2‖∇u‖.

Now, given u ∈ V and γ ∈ [0, 1], we define the HN
γ operator by

HN
γ u = [(1− γ)I + γDh

NFh]u (5.10)

which is useful in order to define the general regularized Boussinesq model.

We also define the modified energy and modified dissipation norms by

‖u‖Eγ ,N :=
〈
Phu,H

N
γ u
〉1/2

= [(1− γ)‖u‖2 + γ‖u‖2E,N ]
1/2, (5.11)

‖u‖εγ ,N := [−
〈

∆̃hPhu,Hγu
〉

]
1/2

= [(1− γ)‖∇Phu‖2 + (1− γ)κRe‖∇ · Phu‖2 + γ‖u‖2ε,N ]
1/2. (5.12)

from which the following two lemmas are straightforward from the previous lemmas:
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Lemma 5.10. For u ∈ Vh, γ ∈ [0, 1] and for each natural number N , the energy

norm defined by (5.11) is equivalent to the L2 norm in Vh. That is

cEγ ,N‖u‖Eγ ,N ≤ ‖u‖ ≤ CEγ ,N‖u‖Eγ ,N .

Additionally, for u ∈ Vh, γ ∈ [0, 1] and for each natural number N , the energy

dissipation norm defined by (5.12) is equivalent to the H1 norm in Vh. That is

cεγ ,N‖u‖εγ ,N ≤ ‖∇u‖ ≤ Cεγ ,N‖u‖εγ ,N .

Lemma 5.11. Let u ∈ V and w ∈ Vh. Then the following inequalities hold:

‖HN
γ w‖ ≤ D

γ
E‖w‖Eγ ,N ,

‖∇HN
γ w‖ ≤ Dγ

ε ‖w‖εγ ,N ,

‖∇HN
γ u‖ ≤ D

γ
2‖∇u‖.

The following lemma is the key to handling the consistency error in the

regularized Boussinesq model (See [76]).

Lemma 5.12. For smooth, periodic u, or u satisfying ∆ju = 0 on ∂Ω for 0 ≤ j ≤
k+1

2
− 1, the discrete approximate deconvolution operator satisfies

‖u−Dh
Nu

h‖ ≤ Cα2N+2‖∆N+1FN+1u‖+ C(αhk + hk+1)
( N∑
i=1

|F i+1u|k+1

)
,

and thus for k ≥ 1 we have

‖u−Dh
Nu

h‖ ≤ C(α2N+2 + αhk + hk+1)
( N∑
i=1

‖F i+1u‖k+1

)
.

Remark 5.2. Clearly from (5.10), we have u−HN
γ u = γ

(
u−Dh

Nu
h
)
.

5.3 Algorithm for the general regularized Boussinesq

model and its analysis

Now we propose a Crank-Nicolson linearly extrapolated (CNLE) finite

element algorithm for a general regularized Boussinesq model. Assume that initial
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temperature T 0
h and velocity u0

h, forcing term f , timestep ∆t > 0 and endtime T > 0

are given. Let v(tn+ 1
2 ) = v((tn+1 + tn)/2) and vn+ 1

2 = (vn+1 + vn)/2, then:

Algorithm 5.1. Choose β, λ, γ ∈ [0, 1] and set M = T
∆t , u

−2
h := u0

h, u−1
h := u0

h and for

n = 1, ...,M − 1, find un+1
h ∈ Vh and Tn+1

h ∈ Yh satisfying ∀vh, rh ∈ Vh and ∀sh ∈ Yh,〈
un+1
h −unh

∆t , vh

〉
+ aβ

(
HN
λ ξ(u

n+ 1
2

h ), HN
γ u

n+ 1
2

h , vh
)
−Re−1

〈
∆̃hu

n+ 1
2

h , vh
〉

−Ri
〈
T
n+ 1

2
h k̂, vh

〉
=
〈
fn+ 1

2 , vh
〉

(5.13a)〈
Tn+1
h −Tnh

∆t , sh

〉
+ a∗

(
ξ(u

n+ 1
2

h ), T
n+ 1

2
h , sh

)
+ (RePr)−1

〈
∇Tn+ 1

2
h ,∇sh

〉
= 0, (5.13b)

−α2
〈
∆̃hF

(i)
h un+1

h , rh
〉

+
〈
F

(i)
h un+1

h , rh
〉

=
〈
F

(i−1)
h un+1

h , rh
〉

for i = 1, .., N. (5.13c)

where ξ is the extrapolation operator defined by ξ(u
n+ 1

2
h ) = 2u

n− 1
2

h − un−
3
2

h .

Remark 5.3. We also tested an algorithm similar to Algorithm 5.1, but using a decon-

volved velocity in the temperature equation. However, solutions obtained with this modifi-

cation did not show significant differences from solutions obtained with Algorithm 5.1.

Table 5.3 presents some traditional alpha models arising from Algorithm 5.1.

Table 5.1: Regularization models resulting for particular choices of the β, γ and λ.

Model β λ γ
alpha 1 0 1
omega 1 1 0
Leray 0 0 1

Modified-Leray 0 1 0
Bardina 0 1 1

Remark 5.4. It is worth mentioning that choosing fractional values of β, γ and λ gives

hybrid regularization models between the above mentioned regularization models.

Lemma 5.13. Algorithm 5.1 is well-posed.

Proof. Restricting to any particular time level n, it is clear that (5.13c) is well-posed.

Moreover, equations (5.13a) and (5.13b) are linear and Xh, Yh are finite dimensional, then
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uniqueness and existence are equivalent. Given ξ(u
n+ 1

2
h ) ∈ Xh, Tn ∈ Yh and supposing

Tn+1
1 , Tn+1

2 ∈ Yh satisfies (5.13b), then, subtracting,〈
Tn+1
2 −Tn+1

1
∆t , sh

〉
+ a∗

(
ξ(u

n+ 1
2

h ), T
n+ 1

2
2 − Tn+ 1

2
1 , sh

)
+ (RePr)−1

〈
∇(T

n+ 1
2

2 − Tn+ 1
2

1 ),∇sh
〉

= 0.

Choosing sh = T
n+ 1

2
2 − Tn+ 1

2
1 ∈ Yh, gives Tn+1

2 = Tn+1
1 .

Now, given ξ(u
n+

1
2

h ), unh ∈ Xh and Tn+ 1
2 ∈ Yh if un+1

1 , un+1
2 ∈ Xh satisfies

(5.13a), then, subtracting,〈
un+1
2 −un1

∆t , vh

〉
+ bβ

(
ξ(HN

λ u
n+ 1

2
h ), HN

γ (u
n+ 1

2
2 − un+ 1

2
1 ), vh

)
−Re−1

〈
∆̃h(u

n+ 1
2

2 − un+ 1
2

1 ), vh

〉
= 0

Choosing vh = HN
γ (u

n+ 1
2

2 − un+ 1
2

1 ) ∈ Xh, gives un+1
2 = un+1

1 .

Lemma 5.14 (Energy conservation). The approximation given by Algorithm 5.1 satisfies

‖uMh ‖2Eγ ,N +Re−1∆t

M−1∑
n=0

‖un+ 1
2

h ‖2εγ ,N = ‖u0
h‖2Eγ ,N +Ri

M−1∑
n=0

〈Tn+ 1
2 k̂, HN

γ u
n+ 1

2

h 〉+

M−1∑
n=0

〈fn+ 1
2 , HN

γ u
n+ 1

2

h 〉,

‖TMh ‖2 + 2(RePr)−1∆t

M−1∑
n=0

‖∇Tn+ 1
2

h ‖2 = ‖T 0
h‖2.

In particular, if f = Ri = Re−1 = Pr−1 = 0 then ‖uMh ‖2
Eγ ,N = ‖u0

h‖2
Eγ ,N

and ‖TMh ‖2 = ‖T 0
h‖2.

Proof. Choosing sh = T
n+ 1

2
h in (5.13b) and vh = HN

γ u
n+ 1

2
h in (5.13a) gives

‖Tn+1
h ‖2 − ‖Tnh ‖2 + 2∆t(RePr)−1‖∇Tn+ 1

2
h ‖2 = 0 (5.14)

‖un+1
h ‖2Eγ ,N − ‖unh‖2Eγ ,N + 2Re−1∆t‖un+ 1

2
h ‖2εγ ,N = Ri〈Tn+ 1

2
h , HN

γ u
n+ 1

2
h 〉+ 〈fn+ 1

2 , HN
γ u

n+ 1
2

h 〉.

(5.15)

in which case the result follows, summing from n = 0, ...,M − 1.

Lemma 5.15 (Stability). Algorithm 5.1 is unconditionally stable. (uMh , T
M
h ) satisfy

C−1
Eγ ,N‖u

M
h ‖2 + (Cεγ ,NRe)

−1∆t
M−1∑
n=0

‖∇un+ 1
2

h ‖2 ≤ C(data),

‖TMh ‖2 + 2(RePr)−1∆t
M−1∑
n=0

‖∇Tn+ 1
2

h ‖2 ≤ C(data).
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Proof. The second estimate follows directly from (5.14). For the first, we apply

Cauchy-Schwarz and Poincaré inequalities and Lemma 5.11 in (5.15) to obtain

‖un+1
h ‖2Eγ ,N − ‖unh‖2Eγ ,N + 2Re−1∆t‖un+ 1

2
h ‖2εγ ,N = RiCPF∆t(‖Tn+ 1

2
h ‖+ ‖fn+ 1

2 ‖−1)‖un+ 1
2

h ‖εγ ,N .

The result follows from Young’s inequality, Lemma 5.10 and summing from n =

0, ...,M − 1.

5.3.1 Convergence

Theorem 5.1. Let (u(t), p(t), T (t)) be a sufficiently smooth, strong solution of the

Boussinesq model (5.1) such that the norms of (u(t), p(t), T (t)) on the right hand

side of (5.16) - (5.19) are finite. Suppose that (uh0 , p
h
0 , T

h
0 ) are approximations of

(u(0), p(0), T (0)) to whithin the accuracy of the interpolant and that (uh, ph, Th) ∈
Xh × Qh × Yh is the CNLE-FE approximation to the Boussinesq model given by

Algorithm 5.1. Then, for ∆t small enough (in order to apply the discrete Gronwall

inequality), we have

C−1
Eγ ,N
‖|u− uh|‖∞,0 ≤ G (∆t, h, α) + Chk+1‖|u|‖∞,k+1 and (5.16){

C−1
εγ ,N

Re−1∆t
M−1∑
n=0

∥∥∇(u(tn+ 1
2 )− un+ 1

2
h

)∥∥2
} 1

2 ≤ G(∆t, h, α) + CRe−
1
2 ∆t2‖∇utt‖2,0

+ CRe−
1
2hk‖|u|‖2,k+1,

(5.17)

and

‖|T − T h|‖∞,0 ≤ G (∆t, h, α) + Chk+1‖|T |‖∞,k+1 and (5.18){
Re−1∆t

M−1∑
n=0

∥∥∇(T (tn+ 1
2 )− Tn+ 1

2
h

)∥∥2
} 1

2 ≤ G(∆t, h, α) + CRe−
1
2 ∆t2‖∇Ttt‖2,0

+CRe−
1
2hk‖|T |‖2,k+1, (5.19)
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where

G(∆t, h, α) := C∗
{
hk
[
4(RePr)−

1/2C‖|T 1/2|‖2,k+1 +
√

8A1(RePr)
1/2C‖|ξ(u1/2)|‖24,k+1

+
√

8A1(RePr)
1/2C‖|∇T 1/2|‖24,0 +

√
8A2(RePr)

1/2C‖|∇ξ(u1/2
h )|‖2,0 +

√
8A2(RePr)

1/2C‖|T 1/2|‖24,k+1

+ 2
11/2
√

3A2
2Re

3/2PrCEγ ,NCεγ ,NCc
−1
Eγ ,N (

√
2‖∇T 1

2 ‖2 + ‖∇T 3
2 ‖2)‖u(0)‖k+1

]
+ ∆t2

[
(RePr)1/2CPF√

80
‖Tttt‖2,0 + (RePr)−1/2

3 ‖∇Ttt‖2,0 + A1(RePr)1/2√
6

‖|∇ξ(u1/2)|‖24,0 + A1(RePr)1/2√
6

‖∇Ttt‖24,0

+ 7A1(RePr)1/2√
3

‖∇T 1/2‖24,0 + 7A1(RePr)1/2√
3

‖∇utt‖24,0 +
√

5
12Re

1/2Dγ
ε ‖ptt‖2,0

]
+ hs+1

√
20Re

1/2CDγ
ε ‖p

1/2‖2,s+1

+ hk
[√

20Re−
1/2(1 + κRe)CDγ

ε ‖|u|‖2,k+1 +
√

10Re
1/2σ1D

λ
2D

γ
εD

γ
2C‖|u

− 1/2|‖24,k+1

+
√

10Re
1/2σ1D

λ
2D

γ
εD

γ
2C‖|u

− 3/2|‖24,k+1 +
√

10Re
1/2σ1D

λ
2D

γ
2D

γ
εC‖|∇u|‖24,0

+
√

10σ2Re
1/2D

λ1/2
E Dλ1/2

ε Dγ
2D

γ
εC‖∇ξ(uh)‖2,0 +

√
10Re

1/2σ2D
λ1/2
E Dλ1/2

ε Dγ
2D

γ
εC‖|u|‖24,k+1

+ 20
√

6Re
3/2σ2

2D
λ
ED

λ
εD

γ2
ε D

γ2
2 Cc−1

Eγ ,N (
√

2‖∇u 1
2 ‖2 + ‖∇u 3

2 ‖2)‖u(0)‖k+1 + 1√
3
c−1
εγ ,NRe

−1/2‖u(0)‖k+1

]
+ ∆t2

[
1√

1280
Dγ
E‖uttt‖2,0 + 1√

3
Dγ
εCPF ‖ptt‖2,0 + Re−1/2

√
3
Dγ
ε ‖∇utt‖2,0 + 1√

48
Dγ
E‖Ttt‖2,0

+ 1√
6
σ1Re

1/2Dγ
ε ‖∇utt‖24,0 + 2σ1Re

1/2Dγ
ε ‖∇ξ(u

1/2)‖24,0 + 2σ1Re
1/2Dγ

ε ‖∇u‖24,0

+ 7√
3
σ1Re

1/2Dγ
ε ‖∇utt‖24,0

]
+ γ(α2N+2 + αhk + hk+1)

√
8Re

1/2CDγ
ε

N∑
i=1

‖|F i+1u
1/2|‖2,k+1

+ λ(α2N+2 + αhk + hk+1)
√

8Re
1/2CDλ

ε

N∑
i=1

(
‖|F i+1u

− 1/2|‖2,k+1 + ‖|F i+1u
− 3/2|‖2,k+1

)}
.

Remark 5.5. Supposing that the indicated norms on the right hand side of (5.16) -

(5.19) are finite, then the error in the CNLE-FE scheme for the general regularized

Boussinesq model is of the order

C−1
Eγ ,N
‖|u− uh|‖∞,0 + C−1

εγ ,N
Re−1∆t

M−1∑
n=0

∥∥∇(u(tn+ 1
2 )− un+ 1

2
h

)∥∥2
= O(hk + ∆t2 + α2N+2)

‖|T − T h|‖∞,0 + (RePr)−1∆t
M−1∑
n=0

∥∥∇(T (tn+ 1
2 )− Tn+ 1

2
h

)∥∥2
= O(hk + ∆t2 + α2N+2)

Proof. In tn+ 1
2 , the temperature solution satisfies〈

Tn+1−Tn
∆t

, sh

〉
+ (RePr)−1

〈
∇T n+ 1

2 ,∇sh
〉

+ a∗1
(
ξ(un+ 1

2 ), T n+ 1
2 , sh

)
= Intp1 (5.20)

where

Intp1 :=
〈
Tn+1−Tn

∆t
− Tt(tn+ 1

2 ), sh

〉
+ (RePr)−1

〈
∇T n+ 1

2 −∇T (tn+ 1
2 ),∇sh

〉
+
[
a∗1(ξ(un+ 1

2 ), T n+ 1
2 , sh)− a∗1(u(tn+ 1

2 ), T (tn+ 1
2 ), sh)

]
(5.21)
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Let E := T − Th, T be the L2 projection of T in Xh and defining

E⊥ := T − T and Eh := Th − T , we have

E = E⊥ − Eh

Also, let e := u − uh, U be the L2 projection of u in V h and defining

e⊥ := u− U and eh := uh − U , we have

e = e⊥ − eh

Now, subtracting (5.13b) from (5.20), adding ±a∗1
(
ξ(u

n+ 1
2

h ), T n+ 1
2 , sh

)
.

choosing sh = E
n+ 1

2
h and using that a∗1

(
ξ(u

n+ 1
2

h ), E
n+ 1

2
h , E

n+ 1
2

h

)
= 0

‖En+1
h ‖2−‖Enh‖

2

2∆t
+ (RePr)−1‖∇En+ 1

2
h ‖2 = (RePr)−1

〈
∇En+ 1

2
⊥ ,∇En+ 1

2
h

〉
+
[
a∗1
(
ξ(en+ 1

2 ), T n+ 1
2 , E

n+ 1
2

h

)
− a∗1

(
ξ(u

n+ 1
2

h ), E
n+ 1

2
⊥ , E

n+ 1
2

h

)]
+ Intp1 (5.22)

Now we bound the terms on the RHS of (5.22) individually.

First, using the Cauchy-Schwarz and Young’s inequalities

〈
∇En+ 1

2
⊥ ,∇En+ 1

2
h

〉
≤ h2k8C‖Tn+ 1

2 ‖2k+1 + 1
32‖∇E

n+ 1
2

h ‖2. (5.23)

Using Lemma 5.1 and Young’s inequality

a∗1
(
ξ(e

n+ 1
2

⊥ ), Tn+ 1
2 , E

n+ 1
2

h

)
≤ A1‖∇ξ(e

n+ 1
2

⊥ )‖‖∇Tn+ 1
2 ‖‖∇En+ 1

2
h ‖

≤ h2k4A2
1RePrC(‖ξ(un+ 1

2 )‖4k+1 + ‖∇Tn+ 1
2 ‖4) + (RePr)−1

32 ‖∇En+ 1
2

h ‖2. (5.24)

Using Lemmas 5.1 and 5.10 and Young’s inequality

a∗1
(
ξ(e

n+ 1
2

h ), Tn+ 1
2 , E

n+ 1
2

h

)
≤ A2‖ξ(e

n+ 1
2

h )‖
1
2 ‖∇ξ(en+ 1

2
h )‖

1
2 ‖∇Tn+ 1

2 ‖‖∇En+ 1
2

h ‖

≤ 283A4
2Re

3Pr2C2
Eγ ,NC

2
εγ ,N‖∇Tn+ 1

2 ‖4‖ξ(en+ 1
2

h )‖2Eγ ,N + Re−1

48 ‖ξ(e
n+ 1

2
h )‖2εγ ,N + (RePr)−1

32 ‖∇En+ 1
2

h ‖2.

(5.25)
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Using Lemma 5.1 and Young’s inequality

a∗1
(
ξ(u

n+ 1
2

h ), E
n+ 1

2
⊥ , E

n+ 1
2

h

)
≤ A2‖ξ(u

n+ 1
2

h )‖
1
2 ‖∇ξ(un+ 1

2
h )‖

1
2 ‖∇En+ 1

2
⊥ ‖‖∇En+ 1

2
h ‖

≤ h2k4A2
2RePrC(‖∇ξ(un+ 1

2
h )‖2 + ‖Tn+ 1

2 ‖4k+1) + (RePr)−1

32 ‖∇En+ 1
2

h ‖2, (5.26)

where we also used the stability bound for u
n+ 1

2
h in the above inequality.

Now we bound the interpolation error terms on the RHS of (5.21).

Using Cauchy-Schwarz and Young’s inequalities and Lemma 5.2〈
Tn+1−Tn

∆t − Tt(tn+ 1
2 ), E

n+ 1
2

h

〉
≤ ∆t3

RePrC2
PF

160

∫ tn+1

tn
‖Tttt‖2dt+ (RePr)−1

32 ‖∇En+ 1
2

h ‖2,

(5.27)

〈
∇Tn+ 1

2 −∇T (tn+ 1
2 ),∇En+ 1

2
h

〉
≤ ∆t3 1

6

∫ tn+1

tn
‖∇Ttt‖2dt+ 1

32‖∇E
n+ 1

2
h ‖2. (5.28)

Adding and subtracting a∗(ξ(un+ 1
2 ), T (tn+ 1

2 ), E
n+ 1

2
h ), we have

a∗1(ξ(un+ 1
2 ), Tn+ 1

2 , E
n+ 1

2
h )− a∗1(u(tn+ 1

2 ), T (tn+ 1
2 ), E

n+ 1
2

h ) = a∗1(ξ(un+ 1
2 ), Tn+ 1

2 − T (tn+ 1
2 ), E

n+ 1
2

h )

+ a∗1(ξ(un+ 1
2 )− un+ 1

2 , T (tn+ 1
2 ), E

n+ 1
2

h ) + a∗1(un+ 1
2 − u(tn+ 1

2 ), T (tn+ 1
2 ), E

n+ 1
2

h ).

Using Lemmas 5.1 and 5.2 and Young’s inequality

a∗1(ξ(un+ 1
2 ), [Tn+ 1

2 − T (tn+ 1
2 )], E

n+ 1
2

h ) ≤ A1‖∇ξ(un+ 1
2 )‖‖∇[Tn+ 1

2 − T (tn+ 1
2 )]‖‖∇En+ 1

2
h ‖

≤ ∆t3
A2

1RePr
12 ‖∇ξ(un+ 1

2 )‖4 + ∆t3
A2

1RePr
12

∫ tn+1

tn
‖∇Ttt‖4dt+ (RePr)−1

32 ‖∇En+ 1
2

h ‖2. (5.29)

a∗1(ξ(un+ 1
2 )− un+ 1

2 , T (tn+ 1
2 ), E

n+ 1
2

h ) ≤ A1‖∇[ξ(un+ 1
2 )− un+ 1

2 ]‖‖∇T (tn+ 1
2 )‖‖∇En+ 1

2
h ‖

≤ ∆t38A2
1RePr(‖∇T (tn+ 1

2 )‖4 +

∫ tn+1

tn−1

‖∇utt‖4dt) + (RePr)−1

64 ‖∇En+ 1
2

h ‖2. (5.30)

a∗1([un+ 1
2 − u(tn+ 1

2 )], T (tn+ 1
2 ), E

n+ 1
2

h ) ≤ A1‖∇[un+ 1
2 − u(tn+ 1

2 )]‖‖∇T (tn+ 1
2 )‖‖∇En+ 1

2
h ‖

≤ ∆t3
A2

1RePr
6 ‖∇T (tn+ 1

2 )‖4 + ∆t3
A2

1RePr
6

∫ tn+1

tn
‖∇utt‖4dt+ (RePr)−1

64 ‖∇En+ 1
2

h ‖2. (5.31)
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Using (5.27), (5.28), (5.29), (5.30), (5.31) in (5.21) we have

∆t
M−1∑
n=0

|Intp1| ≤ ∆t (RePr)−1

8

M−1∑
n=0

‖∇En+ 1
2

h ‖2 + ∆t4
RePrC2

PF
160 ‖Tttt‖22,0 + ∆t4 (RePr)−1

6 ‖∇Ttt‖22,0

+∆t4
A2

1RePr
12 (‖|∇ξ(u1/2)|‖44,0 + ‖∇Ttt‖44,0) + ∆t4

49A2
1RePr
6 (‖∇T 1/2‖44,0 + ‖∇utt‖44,0).

(5.32)

Using (5.23), (5.24), (5.25), (5.26) and (5.32) in (5.22) and summing

from n = 0 to n = M − 1 gives

‖EMh ‖2 − ‖E0
h‖2 + 3

2∆t(RePr)−1
M−1∑
n=0

‖∇En+ 1
2

h ‖2 ≤ h2k16(RePr)−1C‖|T 1/2|‖22,k+1

+ h2k8A2
1RePrC‖|ξ(u

1/2)|‖44,k+1 + h2k8A2
1RePrC‖|∇T

1/2|‖44,0 + Re−1

24

M−1∑
n=0

∆t‖ξ(en+ 1
2

h )‖2εγ ,N

+ h2k8A2
2RePrC‖|∇ξ(u

1/2
h )|‖22,0 + h2k8A2

2RePrC‖|T
1/2|‖44,k+1 + ∆t4

RePrC2
PF

80 ‖Tttt‖22,0

+ ∆t4 (RePr)−1

3 ‖∇Ttt‖22,0 + ∆t4
A2

1RePr
6 ‖∇ξ(u1/2)‖44,0 + ∆t4

A2
1RePr

6 ‖∇Ttt‖44,0 + ∆t4
49A2

1RePr
3 ‖∇T‖44,0

+ ∆t4
49A2

1RePr
3 ‖∇utt‖44,0 + 293A4

2Re
3Pr2C2

Eγ ,NC
2
εγ ,N∆t

M−1∑
n=0

(2‖∇Tn+ 1
2 ‖4 + ‖∇Tn+ 3

2 ‖4)‖en+ 1
2

h ‖2Eγ ,N

+ h2k+22113A4
2Re

3Pr2C2
Eγ ,NC

2
εγ ,NCc

−2
Eγ (2‖∇T

1
2 ‖4 + ‖∇T

3
2 ‖4)‖u(0)‖2k+1, (5.33)

where we have used that

M−1∑
n=0

‖∇Tn+ 1
2 ‖4‖ξ(en+ 1

2
h )‖2Eγ ,N ≤

M−1∑
n=0

(2‖∇Tn+ 1
2 ‖4 + ‖∇Tn+ 3

2 ‖4)‖en+ 1
2

h ‖2Eγ ,N

+ h2k+24Cc−2
Eγ (2‖∇T

1
2 ‖4 + ‖∇T

3
2 ‖4)‖u(0)‖2k+1.

On the other hand, at tn+ 1
2 the velocity solution satisfies〈

un+1−un
∆t , vh

〉
+ aβ(HN

λ ξ(u
n+ 1

2 ), HN
γ u

n+ 1
2 , vh)−Re−1

〈
∆̃hu

n+ 1
2 , vh

〉
−
〈
pn+ 1

2 ,∇ · vh
〉
−Ri

〈
Tn+ 1

2 k̂, vh
〉

=
〈
fn+ 1

2 , vh
〉

+ Intp2 ∀vh ∈ V h, (5.34)

Intp2 :=
〈
un+1−un

∆t − ut(tn+ 1
2 ), vh

〉
+
[
aβ(HN

λ ξ(u
n+ 1

2 ), HN
γ u

n+ 1
2 , vh)− aβ(u(tn+ 1

2 ), u(tn+ 1
2 ), vh)

]
−
〈
pn+ 1

2 − p(tn+ 1
2 ),∇ · vh

〉
−Ri

〈(
Tn+ 1

2 − T (tn+ 1
2 )
)
k̂, vh

〉
−Re−1

〈
∆̃h[un+ 1

2 − u(tn+ 1
2 )], vh

〉
.

(5.35)
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Subtracting (5.13a) from (5.34), adding±aβ(HN
λ ξ(u

n+ 1
2

h ), HN
γ u

n+ 1
2 , HN

γ e
n+ 1

2
h )

and choosing vh = HN
γ e

n+ 1
2

h , we obtain

‖en+1
h ‖2

Eγ,N
−‖enh‖

2
Eγ,N

2∆t +Re−1‖en+ 1
2

h ‖2εγ ,N = −
〈
pn+ 1

2 ,∇ ·HN
γ e

n+ 1
2

h

〉
−Re−1

〈
∆he

n+ 1
2

⊥ , HN
γ e

n+ 1
2

h

〉
−Ri

〈
E
n+ 1

2
h k̂, HN

γ e
n+ 1

2
h

〉
+
[
aβ(HN

λ ξ(e
n+ 1

2 ), HN
γ u

n+ 1
2 , HN

γ e
n+ 1

2
h )

+ aβ(HN
λ ξ(u

n+ 1
2

h ), HN
γ e

n+ 1
2

⊥ , HN
γ e

n+ 1
2

h )
]

+ Intp2, (5.36)

because 〈en+1
⊥ − en⊥, HN

γ e
n+ 1

2
h 〉 = 0, 〈En+ 1

2
⊥ , HN

γ e
n+ 1

2
h 〉 = 0, 〈qh,∇ ·HN

γ e
n+ 1

2
h 〉 = 0 and

aβ(HN
λ ξ(u

n+ 1
2

h ), HN
γ e

n+ 1
2

h , HN
γ e

n+ 1
2

h ) = 0.

Now we have to evaluate the terms on RHS of (5.36). Using Cauchy-

Schwarz and Young’s inequalities and Lemma 5.11 we obtain

〈
qh − pn+ 1

2 ,∇ ·HN
γ e

n+ 1
2

h

〉
≤ 10ReDγ2

ε ‖qh − pn+ 1
2 ‖2 + Re−1

40 ‖e
n+ 1

2
h ‖2εγ ,N . (5.37)

Using Cauchy-Schwarz and Poincaré inequalities, Lemma 5.11 and Young’s

inequality

Ri
〈
E
n+ 1

2
h k̂, HN

γ e
n+ 1

2
h

〉
≤ (RePr)−1

4
‖∇En+ 1

2
h ‖2 + C2

PFRi
2RePrDγ2

E ‖e
n+ 1

2
h ‖2

Eγ ,N . (5.38)

Using Cauchy-Schwarz inequality, Lemma 5.11 and Young’s inequality

Re−1
〈
∆he

n+ 1
2

⊥ , HN
γ e

n+ 1
2

h

〉
≤ Re−1(1 + κRe)Dγ

ε ‖∇e
n+ 1

2
⊥ ‖‖en+ 1

2
h ‖εγ ,N

≤ h2k10Re−1(1 + κRe)2Dγ2
ε C‖un+ 1

2‖2
k+1 + Re−1

40
‖en+ 1

2
h ‖2

εγ ,N . (5.39)

Using Lemma 5.1, Lemma 5.11 and Young’s inequality

aβ(HN
λ ξ(e

n+ 1
2

⊥ ), HN
γ u

n+ 1
2 , HN

γ e
n+ 1

2
h ) ≤ σ1D

λ
2D

γ
2D

γ
ε ‖∇ξ(e

n+ 1
2

⊥ )‖‖∇un+ 1
2 ‖‖en+ 1

2
h ‖εγ ,N ,

≤ Re−1

40 ‖e
n+ 1

2
h ‖2εγ ,N + h2k5Reσ2

1D
λ2
2 Dγ2

2 Dγ2
ε C(‖un−

1
2 ‖4k+1 + ‖un−

3
2 ‖4k+1 + ‖∇un+ 1

2 ‖4),

(5.40)

where we have used ‖∇ξ(en+ 1
2

⊥ )‖ ≤ 2h2kC(‖un− 1
2‖2

k+1 + ‖un− 3
2‖2

k+1).
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Using Lemma 5.1, Lemma 5.11 and Young’s inequality
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(5.41)

Using Lemma 5.1, Lemma 5.11, stability of uh and Young’s inequality
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Now, using (5.37)-(5.40) in (5.36) we obtain and summing from n =

0, ...,M − 1, we have
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where we have used that
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Also
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Finally, we have to evaluate the Intp term in (5.35). Here we perform

the standard analysis (see e. g. [76]) with only a small modification to consider the

temperature term which gives
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Now, using (5.44) and (5.45) in (5.43) and adding (5.33)
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and considering ∆t < W−1 (in order to apply the Gronwall’s inequality) we have
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where

C∗ := exp
{

∆t

M−1∑
n=0

W
1−∆tW

}
.

Estimates (5.16) - (5.19) follow from (5.47) and the triangle inequality.

5.4 Numerical experiments

In this section we provide two examples to confirm the convergence

theory and compare the solutions obtained with the diferent regularized Boussinesq

model. In the first we estimate convergence rates using an analytical solution based

on the Taylor-Green solution for Navier-Stokes equations. In the second, the reg-
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ularized models were evaluated in traditional the Marsigli’s flow benchmark. Both

experiments were made with the FreeFem++ software [40] using a multi-frontal

Gauss LU factorization implemented in the package UMFPACK (provided with

FreeFem++ software).

5.4.1 Convergence rates

In order to evaluate the computational implementation of the above

mentioned algorithm and validate its convergence theory, in this section we estimate

convergence rates for four regularized versions of the Boussinesq model. To perform

this analysis, we adapt the traditional Taylor-Green solution used for Navier-Stokes

equations as a means to construct a solution of the Boussinesq model. Considering

the forcing f =
(

0,−Ri exp
[
− 2m2π2t

Re

]
cos(Nπx) cos(mπy)

)
and the square domain

[0, 1]× [0, 1] we obtain the following solution of Boussinesq model:

p = −1
4 exp

[
−2m2π2t

Re

]
[cos(2mπx) + cos(2mπy)]

u1 = − exp
[
−2m2π2t

Re

]
cos(mπx) sin(mπy)

u2 = exp
[
−2m2π2t

Re

]
sin(mπx) cos(mπy)

T = exp
[
−2m2π2t

Re

]
cos(mπx) cos(mπy).

In this experiment we considered the temporal interval [0, 2], Taylor-

Hood and P2/P3/P3 elements and m = 1. We also considered regular meshes for

h = 1
8
, h = 1

16
, h = 1

32
and h = 1

64
and α = h. Then we carefully chose the

timestep ∆t in order to balance error sources from the convergence theorem. In

Tables 5.2 - 5.9 we present convergence rates estimated for several regularized

Boussinesq model (Boussinesq-α, Boussinesq-Leray, Boussinesq-ω and Modified-

Boussinesq-Leray Models).

Examining the above mentioned tables, we observe that estimated con-

vergence rates agree well with the convergence theory presented in the previous

section. That is, the proposed algorithms are second order accurate when zeroth
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Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 8.2406E-03 5.4350E-01 2.4673E-02 5.8004E-04

∆t = h 16 1.6296E-03 2.34 1.4125E-01 1.94 6.2468E-03 1.98 7.1054E-05 3.03
32 2.9362E-04 2.47 3.6040E-02 1.97 1.5694E-03 1.99 8.9673E-06 2.99
64 5.8693E-05 2.32 9.0846E-03 1.99 3.9314E-04 2.00 1.2103E-06 2.89

P2/P3/P3 8 1.0791E-03 2.3390E-05 8.6364E-04 4.1567E-05
∆t = h 16 1.7465E-04 2.63 5.2190E-06 2.16 1.1353E-04 2.93 7.7097E-06 2.43

32 2.6206E-05 2.74 1.3616E-06 1.94 1.7428E-05 2.70 2.0195E-06 1.93
64 3.9838E-06 2.72 3.5066E-07 1.96 3.3903E-06 2.36 5.2456E-07 1.94

Table 5.2: Convergence rates for Boussinesq-α-D0 for Re = 10, Ri = 1 and Pr = 10.

Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 8.4932E-03 2.5673E-04 2.4674E-02 5.8172E-04

∆t = h 16 1.7018E-03 2.32 2.4209E-05 3.41 6.2468E-03 1.98 7.1158E-05 3.03
32 3.0447E-04 2.48 2.4857E-06 3.28 1.5694E-03 1.99 8.9607E-06 2.99
64 5.9807E-05 2.35 4.0743E-07 2.61 3.9314E-04 2.00 1.2071E-06 2.89

P2/P3/P3 8 1.0250E-03 1.3447E-05 8.4919E-04 3.2884E-05

∆t = h3/2 16 1.1178E-04 3.20 9.1164E-07 3.88 1.0400E-04 3.03 2.0305E-06 4.02
32 6.9374E-06 4.01 4.8437E-08 4.23 1.2861E-05 3.02 1.3077E-07 3.96
64 4.8708E-07 3.83 5.7931E-09 3.06 1.5991E-06 3.01 1.0929E-08 3.58

Table 5.3: Convergence rates for Boussinesq-α-D1 for Re = 10, Ri = 1 and Pr = 10.

order deconvolution (N = 0) is chosen and third order for first order deconvolution

(N = 1). We do not test the second order deconvolution case because, even using

P2/P3/P3 elements, the algorithm would still be second order accurate and no dif-

ferences in terms of convergence rates are expected in this case in comparison to the

N = 1 case. However, as will be shown in the next section, despite having no dif-

ference in terms of accuracy, even for P1/P2/P2 elements, increasing deconvolution

order still improves significantly the obtained solutions.

5.4.2 Marsigli’s experiment with Re = 2000

In a first test we evaluate the performance of the four above mentioned

regularized versions of the Boussinesq model in the Marsigli flow experiment for

Re = 2000. In the case of the Boussinesq-α and Modified-Boussinesq-Leray models,

zeroth and first order deconvolution were tested and in the case of the Boussinesq-

Leray and Boussinesq-ω regularizations, due to the decoupling between momentum

and filter equations which reduces the computational cost, we also tested second
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Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 8.4502E-03 2.5556E-04 2.4673E-02 5.8055E-04

∆t = h 16 1.6485E-03 2.36 2.3927E-05 3.42 6.2467E-03 1.98 7.0929E-05 3.03
32 2.9442E-04 2.49 2.4705E-06 3.28 1.5694E-03 1.99 8.9674E-06 2.98
64 5.8688E-05 2.33 4.0781E-07 2.60 3.9314E-04 2.00 1.2109E-06 2.89

P2/P3/P3 8 1.1322E-03 2.4034E-05 8.6363E-04 4.1510E-05
∆t = h 16 1.8172E-04 2.64 5.2399E-06 2.20 1.1353E-04 2.93 7.7078E-06 2.43

32 2.6917E-05 2.76 1.3620E-06 1.94 1.7432E-05 2.70 2.0200E-06 1.93
64 4.0499E-06 2.73 3.5067E-07 1.96 3.3908E-06 2.36 5.2463E-07 1.94

Table 5.4: Convergence rates for Boussinesq-Leray-D0 for Re = 10, Ri = 1 and Pr = 10.

Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 9.4437E-03 2.6755E-04 2.4675E-02 5.8331E-04

∆t = h 16 1.8485E-03 2.35 2.5067E-05 3.42 6.2467E-03 1.98 7.0900E-05 3.04
32 3.2144E-04 2.52 2.5350E-06 3.31 1.5694E-03 1.99 8.9648E-06 2.98
64 6.1323E-05 2.39 4.0963E-07 2.63 3.9314E-04 2.00 1.2107E-06 2.89

P2/P3/P3 8 1.1394E-03 1.7152E-05 8.4920E-04 3.2887E-05

∆t = h3/2 16 1.1847E-04 3.27 1.0554E-06 4.02 1.0400E-04 3.03 2.0327E-06 4.02
32 6.9510E-06 4.09 4.8975E-08 4.43 1.2861E-05 3.02 1.3116E-07 3.95
64 4.8441E-07 3.84 5.8058E-09 3.08 1.5991E-06 3.01 1.1029E-08 3.57

Table 5.5: Convergence rates for Boussinesq-Leray-D1 for Re = 10, Ri = 1 and Pr = 10.

order deconvolution, in addition to zeroth and first order. Simulations were made

in the [0, 8] × [0, 1] rectangle and they last from t=0 until t=8 with a time step

of ∆t = 0.002. In addition, P2 elements for velocity and temperature and P1

elements for pressure were employed in these simulations. In order to evaluate the

regularized versions of the Boussinesq model, solutions obtained in a coarse mesh

with the regularized and the original Boussinesq model (with and without artificial

viscosity) are compared with a high resolution solution. The high resolution test was

made using regular triangular elements with mesh-width h = 0.01 which corresponds

to a grid of 800 × 100 squares. Solutions obtained for instants 2, 4, 6 and 8 with

the Boussinesq model without regularization in the high resolution mesh are shown

respectively in Figures 5.1(a), 5.2(a), 5.3(a) and 5.4(a). These figures show that

the Boussinesq model was able to reproduce the expected behavior in this kind of

flow, namely, the dense fluid moving in a lower current to the left and the light fluid

moving in a upper current to the right. Moreover, as expected, a vortex sheet in the

interface between the upper and lower part of fluid is formed due to the development

of Kelvin-Helmholtz instabilities.
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Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 9.0285E-03 2.6345E-04 2.4674E-02 5.7970E-04

∆t = h 16 1.8171E-03 2.31 2.5396E-05 3.37 6.2491E-03 1.98 7.7991E-05 2.89
32 3.2101E-04 2.50 2.8748E-06 3.14 1.5700E-03 1.99 1.2810E-05 2.61
64 6.1481E-05 2.38 4.6921E-07 2.62 3.9322E-04 2.00 2.0650E-06 2.63

P2/P3/P3 8 1.2850E-03 2.4843E-05 8.6559E-04 4.1838E-05
∆t = h 16 2.2380E-04 2.52 5.3228E-06 2.22 1.1369E-04 2.93 7.7635E-06 2.43

32 3.4019E-05 2.72 1.3653E-06 1.96 1.7456E-05 2.70 2.0267E-06 1.94
64 4.9874E-06 2.77 3.5080E-07 1.96 3.3931E-06 2.36 5.2523E-07 1.95

Table 5.6: Convergence rates for Boussinesq-ω-D0 for Re = 10, Ri = 1 and Pr = 10.

Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 1.1452E-02 2.9813E-04 2.4678E-02 5.8392E-04

∆t = h 16 2.4189E-03 2.24 2.9144E-05 3.35 6.2503E-03 1.98 8.1489E-05 2.84
32 4.1286E-04 2.55 2.9978E-06 3.28 1.5699E-03 1.99 1.1882E-05 2.78
64 7.1533E-05 2.53 4.4424E-07 2.75 3.9318E-04 2.00 1.6335E-06 2.86

P2/P3/P3 8 1.6575E-03 2.1259E-05 8.4985E-04 3.3620E-05

∆t = h3/2 16 1.6536E-04 3.33 1.4616E-06 3.86 1.0403E-04 3.03 2.0931E-06 4.01
32 8.5377E-06 4.28 5.3917E-08 4.76 1.2862E-05 3.02 1.3469E-07 3.96
64 5.4761E-07 3.96 5.8337E-09 3.21 1.5992E-06 3.01 1.1194E-08 3.59

Table 5.7: Convergence rates for Boussinesq-ω-D1 for Re = 10, Ri = 1 and Pr = 10.

Now, we present the results obtained in the coarse mesh with the

Boussinesq model without regularization. In this test we adopted regular trian-

gular elements with h = 0.034, which corresponds to a grid with 240 × 30 squares.

The obtained results are presented in Figures 5.1(b), 5.2(b), 5.3(b) and 5.4(b). We

see that at t = 2 solution is very noisy and in the subsequent instants it degenerates.

After that, we test the commonly used technique of artificial viscosity in

which the viscosity is artificially increased in order to stabilize the model. Solution

obtained for Re = 1000 is presented in Figures 5.1(c), 5.2(c) and 5.3(c) and 5.4(c)

and for Re = 1500 in Figures 5.1(d), 5.2(d), 5.3(d) and 5.4(d). For the case in which

Re = 1000 we observe that the consistency error is large causing the solution to be

smoother when compared to the fine solution. On the other hand, when Re = 1500

solution gradually becomes noisy and in the final instant t = 8 it degenerates.

Finally, we present the results obtained with regularized Boussinesq

models using α = h. Figures 5.1, 5.2, 5.3 and 5.4 (e) and (f) present the results

produced with Boussinesq-α (D0 and D1, respectively), (g), (h) and (m) the results
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Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 8.1597E-03 2.5235E-04 2.4674E-02 5.8082E-04

∆t = h 16 1.5943E-03 2.36 2.4448E-05 3.37 6.2493E-03 1.98 7.8429E-05 2.89
32 2.8740E-04 2.47 2.8313E-06 3.11 1.5700E-03 1.99 1.2814E-05 2.61
64 5.8033E-05 2.31 4.6741E-07 2.60 3.9322E-04 2.00 2.0547E-06 2.64

P2/P3/P3 8 1.0555E-03 2.3287E-05 8.6386E-04 4.1871E-05
∆t = h 16 1.6475E-04 2.68 5.2081E-06 2.16 1.1367E-04 2.93 7.7594E-06 2.43

32 2.4280E-05 2.76 1.3619E-06 1.94 1.7455E-05 2.70 2.0260E-06 1.94
64 3.7226E-06 2.71 3.5072E-07 1.96 3.3930E-06 2.36 5.2516E-07 1.95

Table 5.8: Convergence rates for Modified-Boussinesq-Leray-D0 for Re = 10, Ri = 1 and

Pr = 10.

Element h−1 ‖u− uh‖2,1 Rate ‖u− uh‖∞,0 Rate ‖T − Th‖2,1 Rate ‖T − Th‖∞,0 rate
P1/P2/P2 8 8.2715E-03 2.5470E-04 2.4679E-02 5.8579E-04

∆t = h 16 1.6244E-03 2.35 2.6019E-05 3.29 6.2530E-03 1.98 8.8815E-05 2.72
32 2.9208E-04 2.48 3.3004E-06 2.98 1.5709E-03 1.99 1.6509E-05 2.43
64 5.8521E-05 2.32 5.3450E-07 2.63 3.9332E-04 2.00 2.7328E-06 2.59

P2/P3/P3 8 9.1121E-04 1.2501E-05 8.5000E-04 3.3897E-05

∆t = h3/2 16 1.0280E-04 3.15 8.2361E-07 3.92 1.0404E-04 3.03 2.1274E-06 3.99
32 6.6840E-06 3.94 4.7824E-08 4.11 1.2863E-05 3.02 1.3720E-07 3.95
64 4.7804E-07 3.81 5.8014E-09 3.04 1.5992E-06 3.01 1.1257E-08 3.61

Table 5.9: Convergence rates for Modified-Boussinesq-Leray-D1 for Re = 10, Ri = 1 and

Pr = 10.

with Boussinesq-Leray (D0, D1 and D2, respectively), (i) and (j) the results with

Modified-Boussinesq-Leray (D0 and D1, respectively) and (k), (l) and (n) the results

with Boussinesq-ω (D0, D1 and D2, respectively). In these figures we can see that

Boussinesq-α and Boussinesq-Leray solutions are accurate and very similar to the

high resolution solution. On the other hand, Boussinesq-ω and Modified-Boussinesq-

Leray, despite being stable, produced very smoothed solutions in comparison with

the fine solution. Moreover, at t = 8 only small discrepancies between Boussinesq-

α-D1 and Boussinesq-Leray-D2 can be observed. The main difference is the central

vortice which is better represented in the Boussinesq-Leray-D2 solution. The L2

error estimated using the fine solution as reference is presented in Table 5.10. In

this table we also see that Boussinesq-Leray and Boussinesq-alpha produced the

best approximations.

In Table 5.11 we also present the computional time for each model in

this experiment. These simulations were made in a Intel® CoreTM i7 3.70 GHz. It
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shows that Leray and omega regularizations presented the smaller computational

due to the decoupling between the momentum and filter equations resulting from

the Baker extrapolation.
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Figure 5.1: Temperature field in the Marsigli’s experiment with Re = 2000 for t = 2.

5.4.3 Marsigli’s experiment with Re = 5000

In our last experiment, we evaluate solutions provided by the regu-

larized versions of the Boussinesq model in the more challenging case in which

Re = 5000. The reference high resolution solution for this experiment was obtained

using a 800× 100 regular triangular element mesh and a third order backward dif-
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Figure 5.2: Temperature field in the Marsigli’s experiment with Re = 2000 for t = 4.

ference formulae (BDF3) time discretization scheme using ∆t = 0.001. The BDF3

scheme used in the high resolution mesh was

Algorithm 5.2. Given u0
h, u1

h and u2
h and T 0

h , T 1
h and T 2

h , set M = T
∆t

and for

n = 2, ...,M − 1, find un+1
h ∈ Vh and T n+1

h ∈ Yh satisfying ∀vh ∈ Vh and ∀sh ∈ Yh,〈
un+1
h −18

11u
n
h+

9
11u

n−1
h − 2

11u
n−2
h

∆t , vh

〉
+ 6

11a2

(
ξ(un+1

h ), un+1
h , vh

)
− 6

11Re
−1
〈
∆̃hu

n+ 1
2

h , vh
〉

− 6
11Ri

〈
Tn+1
h k̂, vh

〉
= 6

11

〈
fn+1, vh

〉〈
Tn+1
h −18

11T
n
h +

9
11T

n−1
h − 2

11T
n−2
h

∆t , sh

〉
+ 6

11a
∗(ξ(un+1

h ), Tn+1
h , sh

)
+ 6

11(RePr)−1
〈
∇Tn+1

h ,∇sh
〉

= 0,

where ξ is the extrapolation operator defined by ξ(un+1
h ) = 3unh − 3un−1

h + un−2
h .
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Figure 5.3: Temperature field in the Marsigli’s experiment with Re = 2000 for t = 6.

Remark 5.6. We have used the BDF3 scheme because it is third order accurate

which allowed more accuracy with less computational effort. However, it has the

disadvantage of being conditionally stable.

Remark 5.7. The three initial condition u0
h, u1

h and u2
h and T 0

h , T 1
h and T 2

h necessary

for three step backward differentiation method should be provided by a single-step

method as proposed in [2]. In our experiment the Crank-Nicolson single step method

was used to provide u0
h, u1

h and u2
h and T 0

h , T 1
h and T 2

h .
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Figure 5.4: Temperature field in the Marsigli’s experiment with Re = 2000 for t = 8.

Results obtained in the high resolution mesh are presented in Figures

5.5(a), 5.6(a), 5.7(a) and 5.8(a). In these figures we can observe that the high reso-

lution solution completely agree with the results presented in [69], where the same

experiment was performed but with different spatial and temporal discretization

techniques.

In order to evaluate the solutions obtained with regularized Boussinesq

models for Re = 5000 when the mesh is coarse, we accomplished an experiment in

a coarse mesh using regular triangular elements with h = 0.02, which corresponds

to a grid with 400 × 50 squares. Solution produced with the Boussinesq model
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‖T coarseh − T fineh ‖22,0
Boussinesq 2.5974

Boussinesq+Art. Visc. 1000 0.21506
Boussinesq+Art. Visc. 1500 0.2377

Boussinesq-alpha 0.2218
Boussinesq-alpha-D1 0.145034

Boussinesq-Modified-Leray 0.42708
Boussinesq-Modified-Leray-D1 0.24884

Boussinesq-Leray 0.142466
Boussinesq-Leray-D1 0.057094
Boussinesq-Leray-D2 0.044276

Boussinesq-omega 0.4889
Boussinesq-omega-D1 0.27158
Boussinesq-omega-D2 0.2071

Table 5.10: L2(0, 8; Ω) error estimates in the coarse mesh temperature aproximations for

Re = 2000.

Fine Coarse alpha Leray Leray-Mod omega
D0 D1 D0 D1 D2 D0 D1 D0 D1 D2

2.65e6 1.08e5 1.09e5 1.09e5 3.6e4 4.8e4 6.2e4 8.8e4 2.8e5 3.2e4 4.52e4 6.0e4

Table 5.11: Computational time in seconds obtained in simulations with Boussinesq

model and its regularizations for Re = 2000.

(without regularization) in the coarse mesh is presented in Figures 5.5(b), 5.6(b),

5.7(b) and 5.8(b). In these figures we can see that solution quickly degenerates using

the Boussinesq model without regularization.

Also, we evaluate the Boussinesq model solution obtained in the coarse

mesh when viscosity is increased in order to stabilize the model (artificial viscosity

technique). In Figures 5.5(c), 5.6(c), 5.7(c) and 5.8(c) we present solutions produced

using Re = 1000 and in Figures 5.5(d), 5.6(d), 5.7(d) and 5.8(d) using Re = 1500.

In these figures we see that the solution becomes quite smoothed in both Re = 1000

and Re = 1500 cases due to the consistency error caused by increasing the viscosity

coefficient.

Finally, we present the solutions obtained in the coarse mesh with regu-

larized versions of the Boussinesq model. In this experiment we also adopted α = h.

Results for t = 2 are presented in Figure 5.5. In this instant we observe that

solutions are generally good, except in the case of the Boussinesq-ω and Modified-
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Boussinesq-Leray without deconvolution. However, solutions produced by the de-

convolved versions of these models are also accurate at t = 2. At t = 4 (Figure 5.6)

solutions provided by the regularized versions of Boussinesq model start to present

significant differences between them. Although all deconvolved solutions are stable,

we observe that the Boussinesq-α-D1 and Boussinesq-Leray-D2 were more similar

to the high resolution solution at t = 4s. Moreover, we observe that in general

all regularized models are improved when the deconvolution order is increased. A

similar pattern is still observed in t = 6 (Figure 5.7). Nevertheless, the Boussinesq-

α-D1 solution lost its symmetry. Lastly, for t = 8 we observe that all deconvolved

regularizations presented some degree of accuracy when compared to the high reso-

lution solution. But, Boussinesq-Leray-D2 clearly provides the best solution among

the regularized models. The L2 error estimated using the fine solution as refer-

ence for this experiment is presented in Table 5.12. In this table we see again that

the Boussinesq-Leray produced the best approximations. It is important to remark

that, clearly from Algorithm 5.1, the Boussinesq-Leray (as well as the Boussinesq-

ω) also has strong computational advantages when compared to Boussinesq-α and

Modified-Boussinesq-Leray models, due to the decoupling between the momentum

and the filter equation, which reduces the computational cost and enables it to work

with any deconvolution order without a significant increase in computational time.

‖T coarseh − T fineh ‖22,0
Boussinesq 8.3356

Boussinesq+Art. Visc. 1000 0.5686
Boussinesq+Art. Visc. 1500 0.4523

Boussinesq-alpha 0.3333
Boussinesq-alpha-D1 0.3103

Boussinesq-Modified-Leray 0.53634
Boussinesq-Modified-Leray-D1 0.46846

Boussinesq-Leray 0.30634
Boussinesq-Leray-D1 0.23848
Boussinesq-Leray-D2 0.21676

Boussinesq-omega 0.57784
Boussinesq-omega-D1 0.47344
Boussinesq-omega-D2 0.36828

Table 5.12: L2(0, 8; Ω) error estimates in the coarse mesh temperature aproximations for

Re = 5000.
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Figure 5.5: Temperature field in the Marsigli’s experiment with Re = 5000 for t = 2.

5.5 Concluding remarks

In this chapter, we have studied four regularized versions of the Boussi-

nesq model for density currents, namely, Boussinesq-α, Boussinesq-Leray, Boussinesq-

ω and Modified-Boussinesq-Leray. We have proved stability and optimal conver-

gence in which case we have shown that increasing deconvolution order increases

the consistency error order of the regularized model. Then, we tested the proposed

algorithm in computational simulations. Firstly, convergence rates were estimated

in simulations and agreed well with the theoretical ones. Afterward, the regularized
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Figure 5.6: Temperature field in the Marsigli’s experiment with Re = 5000 for t = 4.

models were compared in the Marsigli’s density flow experiment. In this experiment,

we observed that for low Reynolds numbers, all tested regularized models provided

accurate solutions, being more accurate for larger deconvolution order. However,

the best solutions were obtained with the Boussinesq-α-D1 and Boussinesq-Leray-

D2 models. On the other hand, in the case of high Reynolds number we found that,

despite of all first order deconvolved models being better than the non-regularized

Boussinesq model with and without artificial viscosity, Boussinesq-Leray with sec-

ond order deconvolution provided the best solution. In addition to having performed

better in these tests, Boussinesq-Leray also has large advantages from the compu-
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Figure 5.7: Temperature field in the Marsigli’s experiment with Re = 5000 for t = 6.

tational viewpoint because its decoupling between momentum and filter equation

reducing the model degrees of freedom and enabling it to work with any deconvolu-

tion order without a significant increase in computational time.

As for LES (see [87, 88, 49, 6], for instance), we believe the next step

in a future work is to apply the regularized models in threedimensional simulations.

In this kind of flow, other aspects resulting from the vortex stretching mechanism

will emerge and could reveal other differences between the regularized Boussinesq

models.
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Figure 5.8: Temperature field in the Marsigli’s experiment with Re = 5000 for t = 8.
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6 CONCLUSIONS

In the present Thesis, we have studied regularization techniques for

geophysical models. As discussed in Chapter 1, geophysical flows are immensely

important because of their plethora of applications in the atmospheric and oceanic

sciences. Despite being one of the first applications of scientific computation and the

great development of the computer power, realistic geophysical flow simulations are

far from being fully resolved, largely due to the huge computational cost that would

be necessary to reproduce all the necessary scales, but also because turbulence in this

kind of flow is not totally understood. Thus, meteorologists and oceanographers very

often have to resort to additional techniques in order to overcome these problems.

Interestingly, despite the great importance of techniques to deal with turbulence

in geophysical flows simulations, they are mainly projected and analysed in the

engineering applications context. The main objective of this thesis is to apply and

analyse these techniques, particularly the regularization models, in the geophysical

framework. Our interest in regularization models is due to its sound mathematical

and physical foundations and its ease to implement and low computational cost.

Moreover, we are also motivated by some recent studies involving the application of

alpha regularizations in the geophysical context which demonstrated some success

in this kind of application.

Following the classical division adopted in Geophysical Fluid Dynamics

in terms of barotropic and baroclinic flows, this thesis was divided into two parts

in which regularizations technique was applied in the Barotropic Vorticity model in

the first part and in the Boussinesq model for density currents in the second one.

In the first part, we started in Chapter 2 with the BV-Tikhonov model,

which is a regularization of the Barotropic Vorticity model based on the Navier-

Stokes-α model with the modified Tikhonov-Lavrentiev deconvolution. Then, we

proposed a Crank-Nicolson algorithm for BV-Tikhonov model and showed it is stable
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and optimally convergent. Afterward, the BV-Tikhonov model was tested in the the

traditional double gyre wind forcing benchmark in which it could recover the high

resolution pattern when computing on a coarse mesh. However, these experiments

also showed that the BV-Tikhonov solution can dramatically improve over the BV-α

solution (obtained when µ = 1 in the BV-Tikhonov model) by a careful choice of the

µ parameter. That is, µ < 1 has to be chosen in order to improve the solution by

controlling the model consistency error and avoiding filtering in the resolved scales,

but on the other hand it weakens the regularization.

Two natural improvements in the BV-Tikhonov model were 1) look for

a less sensible regularization to this kind of problem and 2) apply the van Cittert

approximate deconvolution method in the BV model, which, in the case of Navier-

Stokes equations, is known to increase the model consistency error order. The former

improve was studied in Chapter 3 and the latter in Chapter 4.

In Chapter 3, we tested, to the best of our knowledge for the first time,

the Bardina regularization of the Barotropic Vorticity model, which was called BV-

Bardina model. The BV-Bardina model is a regularization of the BV model which

differs from the BV-α by the presence of a filtered vorticity in the nonlinear term

having, consequently, more regularization. We proposed a Crank-Nicolson finite

element scheme for BV-Bardina model and showed it is unconditionally stable and

optimally convergent, which was also corroborated in numerical simulations. Finally,

we evaluated the BV-Bardina solution in the double wind forcing benchmark against

the artificial vorticity technique and the BV-α model, in which we show that the

BV-Bardina model compares favourably to both.

In Chapter 4, we proposed and studied the BV-α-Deconvolution model.

The BV-α-Deconvolution model was inspired in the Navier-Stokes-α-Deconvolution

model in which, through the approximate deconvolution technique, increase arbitrar-

ily the consistency error order in the model. Actually, the BV-α-Deconvolution is a

family of models which generalizes the BV-α and improves accuracy. We studied a
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Crank-Nicolson finite element scheme for BV-α-Deconvolution and prove its stability

and optimal convergence. In particular, we showed that the BV-α-Deconvolution

has an O(α2N+2) consistency error, where N is the deconvolution order, whereas

BV-α is only O(α2) accurate. In addition, we confirmed the convergence theory

by estimating convergence rates through computational simulations. Finally, we

demonstrated that the BV-α-Deconvolution model can accurately retrieve the high

resolution solution without weakening the filtering, as in the BV-Tikhonov model.

Instead, dramatic improvement is obtained only increasing the deconvolution order.

Moreover, we showed both that i) even when the convergence error is dominated by

the spatial error term, increasing deconvolution order still improve the model solu-

tion and ii) higher-order BV-α-Deconvolution model can retrieve very challenging

solution structures which cannot be retrieved by decreasing the µ parameter in the

BV-Tikhonov model.

The second part of this thesis was devoted to the baroclinic flows

through the Boussinesq model. Then, based in the regularization theory for Navier-

Stokes equations, in Chapter 5 we proposed a family of regularizations for the Boussi-

nesq model, namely Boussinesq-α, Boussinesq-ω, Boussinesq-Leray and Modified-

Boussinesq-Leray models, all of them using the approximate deconvolution tech-

nique. Initially, we propose and analyse a Crank-Nicolson finite element scheme for

a general regularized Boussinesq model which conserves energy and is uncondition-

ally stable and optimally convergent. Then, we showed through simulations that i)

the convergence theory is supported by all of them, ii) they all perform well in the

Marsigli flow’s experiment and iii) increasing the deconvolution order improves the

solution. However, in the more challenging situation in which the Reynolds num-

ber is large, we showed that the Boussinesq-Leray model was significantly better

than the other regularized models. Moreover, the Boussinesq-Leray, because of its

mathematical structure, allows the decoupling between the filter equation and the

momentum equation enabling a much smaller computational cost regardless of the

deconvolution order.
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There are several directions in which this thesis can be extended, giving

rise to future research. Firstly, in the case of BV model, there are some regular-

izations that need to be tested such as Voigt [55, 56, 68] and omega [65], and

their respective approximate deconvolved versions (Van Cittert [75] and Tikhonov-

Lavrentiev [105]). Another interesting recent approach is the iterated modified

Tikhonov-Lavrentiev approximate deconvolution [53], which allows control of the

convergence order and, in principle, can be applied in any regularization model.

Moreover, another direction in which the studies with BV model can be extended is

to consider the BV model for two layers. Recently, a LES version of the BV model

based on the Approximate Deconvolution Model (ADM), was studied considering

two layers [99], after being studied for one layer [100]. Thus, the first baroclinic mode

can be considered in the model which would permit to evaluate the regularizations

in a situation more similar with the true threedimensional ocean dynamic.

On the other hand, a natural next step for the study of density currents

using the Boussinesq model is to extend the experiments for threedimensional situa-

tions. An interesting benchmark test is the 3D lock-exchange problem [87] in which

some LES and parametrization models were recently tested [87, 88, 6, 16]. Also,

even for 2D simulations, it would be very interesting to study Voigt and modified

Tikhonov-Lavrentiev regularizations for the Boussinesq model. In our experiments

with the Boussinesq model, we observed that small changes in the alpha param-

eter can significantly improve the solution, which is probably related to a better

adjustment of the filter transfer function. The modified Tikhonok-Lavrentiev de-

convolution [105] permits control of the regularization transfer function, what would

allow a better tuning of the regularized model, or even better with higher order con-

sistency error such as in [53].

An interesting open problem regarding regularization models is related

to the kind of filter used. The Helmholtz filter used in regularization models is a kind

of differential filter introduced by Germano [30, 29], which has several advantages
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from the implementation point of view. However, this filter has some drawbacks,

e.g., 1) its transfer function never goes zero, what means that it does not completely

remove the energy in subgrid wavenumbers; 2) it is too dissipative in the region close

to grid cut-off wavenumber, meaning that it significantly affects the resolved scales.

Thus, meaningful improvement in solutions provided by regularization models can

be achieved by fixing this problem. An interesting approach is the nonlinear filtering

[67, 8] which permits to filter locally the flow based in a given indicator function

avoiding regions where the flow is resolvable. In addition to the physical based

indicator functions [67, 8], recently a mathematical based indicator function given by∥∥uh−Dh
Nuh

∥∥ [10] permits, as well to select filtered regions, to increase the consistency

error in the regularization model. Another interesting approach is to investigate

and apply other filters with a sharper transfer function decay which save the low to

moderate scales and completely remove the subgrid scales (see [101, 83, 80]).
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