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ABSTRACT

The usage of clusters and grids has benefited for years the High Performance
Computing (HPC) community. These kind of systems have allowed scientists to use
bigger datasets and to perform more intensive computations, helping them to achieve
results in less time but has also increased the upfront costs associated with this area of
science. As some e-Science projects are carried out also in highly distributed network
environments or using immense data sets that sometimes require grid computing, they
are good candidates for cloud computing initiatives. The Cloud Computing paradigm
has emerged as a practical solution to perform large-scale scientific computing. The
elasticity of the cloud and its pay-as-you-go model presents an attractive opportunity
for applications commonly executed in clusters or supercomputers. In this context,
the user does not need to buy infrastructure, the resources can be rented from a
provider and used for a period of time. This thesis presents the challenges and
solutions of migrating a numerical weather prediction (NWP) application to a cloud
computing infrastructure. We performed the migration of this HPC application and
evaluated its performance in a local cluster and the cloud using different instance
sizes. We analyzed the main characteristics of the application running in the cloud.
The experiments demonstrate that, although processing and networking create a
limiting factor, storing input and output datasets in the cloud presents an attractive
option to share results and ease the deployment of a test-bed for a weather research
platform. Results show that cloud infrastructure can be used as a viable HPC
alternative for numerical weather prediction software.

Keywords: Cloud Computing. High Performance Computing. e-Science. Numerical
Weather Prediction.





RESUMO

Migração e Avaliação de uma Aplicação de Previsão Numérica do
Tempo em uma Infrastructura de Computação em Nuvem

O uso de clusters e grids tem beneficiado durante anos a comunidade de compu-
tação de alto desempenho (HPC). O uso deste tipo de sistemas tem permitido aos
cientistas usar conjuntos de dados maiores para executar cálculos mais complexos.
A computação de alto desempenho tem ajudado para obter aqueles resultados em
menos tempo, mas aumentou o custo das despesas de capital nesta área da ciência.
Como alguns projetos de e-science são realizados também em ambientes de rede
altamente distribuídos, ou usando conjuntos de dados imensos que muitas vezes
requerem computação em grade, eles são muito bons candidatos para as iniciativas
de computação em nuvem. O paradigma Cloud Computing surgiu como uma solução
prática com foco comercial para realizar computação científica em larga escala. A
elasticidade da nuvem e o modelo pay-as-you-go apresenta uma oportunidade inte-
ressante para aplicações comumente executados em supercomputadores ou clusters.
Esta tese apresenta e avalia os desafios da migração e execução da previsão numérica
de tempo (NWP) numa infra-estrutura de computação em nuvem. Foi realizada a
migração desta aplicação HPC e foi avaliado o desempenho em um cluster local e na
nuvem utilizando diferentes tamanhos de instâncias virtuais. Analisamos as principais
características da aplicação executando na nuvem. As experiências demonstram que,
embora o processamento e a rede criam um fator limitante, o armazenamento dos
conjuntos de dados de entrada e saída na nuvem apresentam uma opção atraente
para compartilhar resultados e facilitar a implantação de um ambiente de ensaio
para investigação meteorológica. Os resultados mostram que a infraestrutura de
nuvem pode ser usada como uma alternativa viável de HPC para software de previsão
numérica do tempo.

Palavras-chave: Computação em Nuvem, Computação de Alto Desempenho, e-
Science, Previsão Numérica do Tempo.
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1 INTRODUCTION

Computer generated weather forecast is a continuous developing area that has
been executed mostly on grids or supercomputers. Applications in climate research
typically require huge amounts of data and computing power (SOUTO et al., 2007).
This large-scale scientific computing has been performed per years in costly machines
that are out of the possibilities of many research groups. High performance computing
(HPC) requires a large number of processors interconnected and large data storage.
With the developments in weather services, the demand for more accuracy and
time reduction for weather forecast becomes higher, which as a result brings on the
growth of computation complexity. Generally speaking, it is difficult to address such
problems even by adopting high performance servers (IOSUP et al., 2011).

A common computing infrastructure for HPC is the grid, but this infrastructure
is difficult to setup and maintain. For the execution of such applications in the
context of a grid computing platform, it is necessary not only to share powerful
computational resources, but also to have available an efficient mechanism to store
and transfer required files related to the climate data sets. However, most of the
time those systems are underutilized and produce a financial burden by upfront
costs and electricity. Asking for access to utilize those HPC machines requires
bureaucracy and reserving time slots that most of the time slow the pace of scientific
research (VECCHIOLA; PANDEY; BUYYA, 2009). This computing approach has
achieved much, but can also be a significant limitation to progress (EVANGELINOS;
HILL, 2008).

On the other hand, the cloud computing paradigm provides an alternative to
access large infrastructures and resources. In the cloud, the possibility of paying
only for the used amount of resources brings convenience for academia. The pay-as-
you-go concept could be transformed into a viable option for an institution lacking
computing resources.

On-demand cloud computing offers an attractive new dimension to HPC, in which
virtualized resources can be borrowed. These resources could be used in a customized
manner to target a particular scenario, at the time and in the form the user desires
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them. However, it is clear that one of the major concerns for the HPC community is
performance.

Some HPC initiatives have started utilizing Cloud Computing for researching.
Nevertheless, performance concerns of HPC applications in the Cloud are consider-
able (BENEDICT, 2013). For weather research, the need to reduce the waiting time
found in the batch jobs schedulers common in HPC infrastructure, the possibility of
quickly access and share the processed data, and the development of newer simula-
tions or ensemble forecasts has motivated them to use the Cloud. A trend already
started as the request for funding of cloud storage resources are becoming increas-
ingly common on grant proposals, rather than contributions to capital spending on
hardware (YANG et al., 2014).

1.1 Motivation

The economics related to hardware investment budgets and the need for energy
efficiency has motivated research in the usage of new technologies to optimize costs,
cloud computing is one of them. Cloud computing provides cost-effective, fast, and
a vast amount of virtualized resources for large-scale applications, it is used as
utility computing where computing, storage, and networking services are provided
on-demand.

Weather forecasting has been benefited by the computing area for years, the
usage of computers has allowed them to use more variables in their simulations and
more data sources to perform precise predictions. High performance computing had
help to get those result in less time but has increased the cost associated with this
area of science.

Previous work in the migration of HPC applications to the cloud looks at small
HPC benchmarks, which are simple to port or run in most cases. We look at a full
and complex HPC application, with difficult requirements as most of the software
used in HPC has been optimized to run on specific architectures and require a set
of conditions to run in a proper and efficient way. An ongoing problem with those
legacy applications is the need to port them to new infrastructures. The usage of
virtualization may solve some of the challenges. The migration of this scientific
application is a great opportunity for the development of an e-Science weather service
on a cloud platform, that could help weather research centers with their processing
needs.
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1.2 Objectives

The main purpose of this work is to migrate the Brazilian Regional Atmospheric
Modeling System (BRAMS) to a new platform that uses the advantages provided by
a cloud computing infrastructure and evaluate the challenges of this procedure. It is
important to evaluate if cloud computing could be used as an environment for this
scientific application. Also we developed a workflow to test the possibility of sharing
research results between various weather research centers. To produce a meaningful
result, we performed a series of experiments regarding processing and networking
performance and storage availability.

In order to achieve the proposed goal, the main steps to be performed are:

• Migrate BRAMS to Infrastructure as a Service (IaaS) cloud model
• Measure the performance of the migrated version
• Analyze the cost of execution to achieve useful results
• Study the viability of using BRAMS in the cloud simultaneously by more than

one deployment, sharing datasets between them

The main contributions of this thesis are, first, we share the experience obtained
in porting a legacy application to a cloud environment. Second, we create a workflow
explaining the modifications required to perform numerical weather simulations on
a cloud infrastructure using BRAMS, introducing a cloud lifecycle control. Third
we evaluate the performance of this ported application in the cloud by comparing it
to a cluster of local machines. Finally, we developed a test bed to perform weather
forecast using shared input datasets, evaluating the impact of this approach.

1.3 Text Organization

This document is organized as follows. The next Chapter presents a background
on the topics related to this thesis and discusses related work in high performance
using cloud computing. The scientific application migrated to the cloud is presented
in Chapter 3. Chapter 4 describes the migration procedure and highlights the
solutions proposed to achieve this objective. In Chapter 5, the proposed evaluation
methodology is presented. Chapter 6 discusses the experimental results obtained.
Finally, Chapter 7 presents the conclusion of this work and some insights on future
work.
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2 BACKGROUND

Some important concepts used in this thesis are explained in the following sections.
These concepts are related to the cloud computing paradigm, high performance
computing and related work about the approaches to executing HPC applications in
the cloud.

2.1 Cloud Computing

Cloud computing is a recent paradigm of computing. It was developed with the
combination and evolution of distributed computing and virtualization, with strong
contributions from grid and parallel computing. There were many efforts to provide
a definition of cloud computing, such as the work of Grid Computing and Distributed
Systems Laboratory (VECCHIOLA; PANDEY; BUYYA, 2009) and the initiative
from Berkeley University (FOX et al., 2009). In 2011, The National Institute of
Standards and Technology (NIST), an American Institute, published its definition
consolidating several studies (MELL; GRANCE, 2011) which was quickly adopted
by the community. However, it was only in 2014 that Cloud Computing was finally
accepted as an international standard and received a detailed and extended definition
by the ISO (ISO/IEC, 2014).

As defined by the ISO standard, cloud computing is a paradigm for enabling
network access to a scalable and elastic pool of shareable physical or virtual resources
with self-service provisioning and administration on-demand. The categories and
capabilities allow the selection of the subset of cloud services that could benefit the
user projects. Table 2.1 shows the multiple options regarding cloud services and
categories.

The cloud computing model seems the natural evolution for running scientific and
high performance applications (FOSTER et al., 2008). An important issue is that
because environments are virtualized, there is a performance loss problem due to
this technology (RAMAKRISHNAN et al., 2011; HUBER et al., 2011). Performance
degradation is more common in certain types of applications, such as applications



26

Table 2.1 – Cloud service categories and cloud capabilities types.

Cloud service categories Cloud capabilities types
Infrastructure Platform Application

Compute as a Service •
Communications as a Service • •
Data Storage as a Service • •
Infrastructure as a Service •
Network as a Service • • •
Platform as a Service •
Software as a Service •

with a large amount of communication between processes or threads. However, a new
approach to encapsulate applications is growing since the last year. The technology
is named virtualization containers. These containers share the physical resources in
a simplified way, each container including a complete operating system and only the
dependencies for the application. The container is a wrapper for the application, it
does not try to emulate an actual machine. In the containers, everything happens at
the application level, reducing the number of layers of complexity and with better
performance than machine-level virtualization. It is, therefore, an attractive option
for cloud deployments.

The economics related to hardware investment budgets and the need for energy
efficiency has motivated research in the usage of new technologies to optimize costs,
cloud computing is one of them. Another factor that must be considered is the
effort to migrate applications to the cloud because they are mostly large applications
with many lines of code and many specific settings and requirements (CARREÑO;
ROLOFF; NAVAUX, 2015). Therefore, migrating an application before conducting
a viability study of how it will behave in the new environment is not the best path
to proceed in most cases.

2.2 Microsoft Azure

Multiple Cloud providers exist such as Amazon, Rackspace, Microsoft Azure.
For this thesis, Microsoft Azure was chosen because previous work performed
by (ROLOFF et al., 2012a) showed that performance and cost efficiency for HPC
in Azure was better compared to Rackspace and Amazon. Microsoft started its
initiative in Cloud Computing with the release of Windows Azure at its annual
professional developer conference in 2008. The initial model was Platform as a
Service, allowing developing and running applications written in the programming
languages supported by the .NET framework. Nowadays, the Azure infrastructure



27

covers all types of service models and have gained a significant market share. The
number of datacenters is continuously growing as Microsoft has committed to the
cloud as a part of its business strategy. Investments in datacenters and services from
most of the cloud providers have create an intense competition for the cloud market,
lowering the Cloud service prices in the last years. The datacenters locations actually
in production and some planned for the next years are depicted in Figure 2.1. The
service prices vary from location to location, because of this factor, selecting the best
for each application could reduce or increase costs significantly.

WEST US
CALIFORNIA

SOUTH CENTRAL US
TEXAS

US GOV
IOWA

CENTRAL US
IOWA

ILLINOIS
NORTH CENTRAL US

NORTH EUROPE
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VIRGINIA

NEW SOUTH WALES
AUSTRALIA EAST

Figure 2.1 – Azure datacenter geographic locations. Some datacenters include more than
one logical location name on Azure infrastructure. India datacenters are at the design
stages. (Adapted from azure.com )

We are interested in IaaS model, one of the cloud service models provided to access
and manage Virtual Machines (VMs) running on Microsoft’s infrastructure. Azure
offers multiple options regarding IaaS 1. Each set of characteristics and configuration
of a VM is called instance size in Azure services. Table 2.2 shows the options
regarding the instance sizes. Some of the instances sizes are very interesting for HPC,
especially the ones with Infiniband. Unfortunately, Infiniband was available only to
Windows virtual machines using a proprietary MPI driver.

The user has a set of base images of Windows and Linux OS provided by Microsoft,
but other images can be created and uploaded to the service. The user can also
configure a virtual instance image directly into Azure and capture it to use locally
or to redeploy it. Users can customize the environment for their application by
installing specific software or by purchasing particular machine images. Developers

1http://msdn.microsoft.com/en-us/library/azure/dn197896.aspx

https://azure.microsoft.com/en-us/regions
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Table 2.2 – Instance sizes available on Microsoft Azure for IaaS. Some instances sizes
are not available initially in all datacenters. Instances marked with an asterisk were not
available when our experiments were performed.

Description Name CPU Cores Memory [GB] Disk Size [GB]

General purpose compute:
Basic tier

A0 1 0.75 20
A1 1 1.75 40
A2 2 3.5 60
A3 4 7 120
A4 8 14 240

General purpose compute:
Standard tier

A0 1 0.75 20
A1 1 1.75 70
A2 2 3.5 135
A3 4 7 285
A4 8 14 605
A5 2 14 135
A6 4 28 285
A7 8 56 605

Fast networking: 10Gigabit
+ Infiniband

A8 8 56 382
A9 16 112 382

Performance compute*:
Latest CPUs, more
memory, and local SSD

G1 2 28 412
G2 4 56 825
G3 8 112 1650
G4 16 224 3300
G5 32 448 6600

Compute and Memory:
60% faster CPUs, more
memory, and local SSD

D1 1 3.5 50
D2 2 7 100
D3 4 14 200
D4 8 28 400
D11 2 14 100
D12 4 28 200
D13 8 56 400
D14 16 112 800

can specify the number of VM instances at the deployment of their application or
can dynamically adjust the number of instances at runtime.

Regarding resource allocation in Azure infrastructure, the service is limited by a
subscription, defined by the paying capacity of the user. This subscription model
allows setting quotas on the number of CPU cores, storage accounts and cloud
services.The subscription also set some limitations on the parallel operations that
could be performed while deploying or managing the operations of the instances.

Using IaaS requires SSH to access the virtual machines deployed using a Linux
distribution. In that sense is not a big difference in usability as using a cluster or
grid for users with some experience. For that reason, this aspect of the porting,
usability would be almost the same for experienced BRAMS users.
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2.3 High Performance Computing

High Performance Computing (HPC) is the use of state-of-the-art computational
techniques to exploit the power of hardware to the limit of current processing capacity.
It plays a crucial role in supporting computational science, now established as the
“third pillar” of scientific inquiry alongside theory and experimentation (REED et
al., 2005). According to the International Data Corporation, HPC is closely linked
to scientific advances, industrial innovation, and economic competitiveness.

Simulation and modeling are routinely used to guide experiments and validate
the theories. Moreover, they can predict phenomena outside the scope of current
experimental methods and are in some cases a safer and cheaper alternative to
experimentation. Some fields now rely entirely on HPC to provide basic research
capability. The United States Government’s identified big data as one of the eight
great technologies that will further increase the need for HPC to perform large-scale
data analysis.

Nowadays HPC forms part of the fundamental research infrastructure that the
research committees, funding organizations, and potential staff and students expect
that universities provide. The computational HPC infrastructure consists of a
hierarchy of hardware resources where each level supports larger applications or more
advanced models than the one below. Institutional HPC services play a significant
role in bridging the gap between research group computing resources at the bottom
and national and international HPC facilities at the top.

Currently, the computer system with greater processing capacity is the Chinese
Tianhe-2, a machine that reaches 54 petaflops with its 3,120,000 cores and one
petabyte of memory (TOP500, 2014). But the demand for more performance
keeps growing (DONGARRA et al., 2011), and the HPC community expects to
reach exascale computing performance by the year 2018 (BROWN et al., 2010).
However, to achieve this level of performance, some significant challenges must be
overcome (SIMON, 2010). Those challenges are the acquisition cost and energy
requirements of such systems. The economics related to hardware investment budgets
and the need for energy efficiency has motivated research in the usage of new
technologies to optimize costs, cloud computing is one of them.

2.4 HPC Applications in the Cloud

Regarding the execution of HPC application using the cloud, (EVANGELINOS;
HILL, 2008) used Amazon Elastic Computing Cloud (EC2) to run an atmosphere-
ocean climate model in an on-demand cluster created for this task by them. They
found that the performance in the cloud was below the level of a supercomputer, but
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comparable to a low-cost cluster system. As their primary concern was related to
latency and bandwidth, they conclude that even if the results were encouraging, the
future usage of Myrinet or Infiniband for the interconnections could help reduce this
performance gap.

In another field, (LANGMEAD et al., 2009) executed a DNA sequencing algorithm
in Amazon EC2, their work focused on executing a Hadoop application analyzing the
costs and the scalability of the application. They concluded that by taking advantage
of cloud computing services, it was possible to condense thousand of computing
hours into a few hours without owning a cluster.

An evaluation of the performance of HPC applications on Microsoft Azure was
performed by (ROLOFF et al., 2012b). Their work showed how a migrated suite of
benchmarks performed in this cloud environment. They concluded that performance
is acceptable in that cloud service, and that is a promising platform for science.

A case study of running data-intensive research in the cloud was performed by (LU;
JACKSON; BARGA, 2010). They used a BLAST algorithm for bioinformatics. They
found that, in some cases, having the ability to abort a long-running job is more
desirable than waiting for a failing node to recover. They concluded that while high
performance is often considered desirable, scalability and reliability are usually more
important for scientific applications.

A satellite propagation and collision system was implemented by (JOHNSTON;
COX; TAKEDA, 2011) in Microsoft Azure. They developed a scalable architecture
that provided burst capabilities to their algorithm. They conclude that there is
great potential for cloud-based architectures to deliver cost-effective solutions and
confront large-scale problems in science, engineering, and business. (SIMALANGO;
OH, 2010) performed a feasibility study on using the cloud to process large data sets.
They concluded that cloud environments could provide some benefits like better
resource utilization. They also raise a warning about the costs of performing massive
computation on a public cloud.

(HERNÁNDEZ et al., 2013) evaluate whether cloud computing could be an
alternative environment to annotate educational content. They remark that the
cloud is useful for particular situations like fault recovery and dealing with demand
peaks. They conclude that the usage of this paradigm give an opportunity to increase
the reliability of scientific computations thanks to the high availability of the cloud,
which is much higher than what a real-world cluster and grid provide.

(EVOY; SCHULZE, 2011) performed an analysis of the implications of the
scheduling on the virtualized resources of a cloud service. They found that even when
the virtualization overhead is minimal for raw computation combined workloads in
virtualized hardware produce complex interactions between computational resources.

Regarding the deployment, performance and cost efficiency of HPC applications
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in the cloud, Roloff et al. (ROLOFF et al., 2012a) created a model to establish the
breaking point to perform HPC in the cloud. They conclude that usage of cloud
for this kind of experiments could be restricted by the actual amount of utilization
compared to on-premises deployment.

(HUMPHREY et al., 2011) performed an analysis of the value of cloudbursting.
Cloudbursting allows expand dynamically the local computing resources by tempo-
rary adding cloud resources for large-scale applications. The application processed
environmental results from satellite imagery. They compared three versions of the
application to identify which properties of the application determine the potential
benefits of cloudbursting.

2.5 Migrating Applications to the Cloud

Migration in the cloud computing context means taking an application from
an on-premises deployment to a cloud environment. Because scientific and HPC
applications require specific settings to run, minimal modifications to the source
code may be well adjusted to a migration process in order to prevent a significant
impact on the development of the application. Menychtas et al. (MENYCHTAS
et al., 2013) developed a migration model to automatize the migration analysis of
business applications, mostly web applications. They used source code analysis and
reverse engineering to determine how much does an application has to change to
be migrated successfully to the cloud. Their methodology considers both technical
and business aspects of the legacy applications. However, they focus on the cost of
re-factoring and re-developing code, not the migration of applications as they are
used in the original environments. Others take this refactoring approach too (LV;
LIU, 2013; ANDRIKOPOULOS et al., 2013; WARD et al., 2010; TAK; TANG,
2014).

An economic approach for migration was developed by (TRAN et al., 2011),
they proposed Cloud Migration Point, a modification of a well-known software size
estimation model called Function Point for estimating the size of cloud migration
projects. They validated their model as a predictor of effort estimation for cloud
migration projects and concluded that software size is an important measure for
legacy-to-cloud migration projects.

Numerous models deal with the economics of cloud adoption while disregarding the
equally important performance evaluation. Others focus their work on the economic
aspect of the migration (HAJJAT et al., 2010; BESERRA et al., 2012; HERNÁNDEZ
et al., 2013; HOHENSTEIN et al., 2013; WU et al., 2014; SIMALANGO; OH, 2010).

There are currently no major migration approaches or models available that are
sufficiently applicable to most HPC or eScience applications.
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2.6 Summary

Cloud computing provides cost-effective, fast, and a considerable pool of virtu-
alized resources for large-scale applications, it is used as utility computing where
the computing, storage, and networking services are provided on-demand and as
needed. The economics related to hardware investment budgets and the need for
energy efficiency has motivated more research in executing applications on the cloud.
Cloud computing presents an attractive model that solves some of the problems that
arise when you purchase a system for HPC.

By studying related work, we observe that previous research refer mostly to porting
applications to existing cloud environments and performance evaluation of cloud
systems. Some migration work focus on the economic aspect of moving to the cloud,
but most of them only analyze web applications and their requirements, databases,
storage, etc. Other works use weather models only to benchmark HPC performance
versus cloud, but none of them evaluates the deployment of the application or how
user the constraints can accept the final results as valid for their experiments.
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3 BRAZILIAN REGIONAL ATMOSPHERIC MODELING
SYSTEM (BRAMS)

One of the most widely employed numerical models in regional weather centers
in Brazil is the Brazilian Regional Atmospheric Modeling System (BRAMS) (CPTEC-
INPE, 2014), a model based on the Regional Atmospheric Modeling System (RAMS) (PIELKE
et al., 1992). RAMS, was developed by the Atmospheric Science Department at
the Colorado State University, it is a numerical weather prediction model used to
simulate atmospheric conditions. The developments integrated into BRAMS include
computational modules modified to simulate in a better way the tropical atmosphere.
The primary objective of BRAMS is to provide a single model to brazilian regional
weather centers.

The execution of BRAMS requires downloading the input data to create the initial
conditions and the satellite data pre-processed by the Centro de Previsão de Tempo

Figure 3.1 – Illustration of BRAMS regional model depicting the interactions between
atmospheric variables (CCATT-BRAMS) (LONGO et al., 2013).
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e Estudos Climáticos (CPTEC) using their global and regional model. The output
of CPTEC contains the complete South American territory. Also, CPTEC publishes
other input data that BRAMS need to execute, like fire location, environmental
chemistry among others. A generic overview of the BRAMS model and its submodels
is depicted on Figure 3.1.

Multiple weather research centers in South America use the consolidated input
datasets produced by CPTEC for their Numerical Weather Prediction (NWP)
simulations. NWP is the usage of mathematical models to predict accurately
atmospheric behavior for a future period. The results are denominated weather or
climate forecasts, a few days for the weather, months for the climate. (SOUTO et
al., 2007)

Some of these research centers also use BRAMS in grid environments for their
regional forecasts. Because input datasets concentrates the data for the unified
continent, each weather prediction center have to download that dataset for the
entire South America region, even if they are going to use just a part of the dataset
for their regional forecasting.

3.1 BRAMS workflow

As depicted in Figure 3.2, one execution of BRAMS consists of a pre-processing
stage, three main stages to generate the forecasts files and a post-processing stage
to produce the forecast visualization. These stages need to be executed in order, a
more detailed description of each one of them and how their characteristics were
ported to the cloud are described in the following subsections.

Stage 1 Stage 2 Stage 3 Stage 4 Stage 5

Download/
Convert
Initial data

Run
MAKESFC
stage

Run
MAKEV-
FILE stage

Run
INITIAL
stage

Run
Post-
processing

Time

Figure 3.2 – Workflow of BRAMS running in a local environment.

We used BRAMS version 5.0 Beta, available online directly on the website of
CPTEC 1. Test-case data is also available at the same website.

1<http://brams.cptec.inpe.br>

http://brams.cptec.inpe.br
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3.1.1 Stage 1: Download and Convert Initial Data

The preprocessing stage of executing BRAMS depends on various factors. If
it is the first time the model is going to be executed to be forecasted, data must
be already available in the storage system. For this task, some scripts download
the up-to-date input data needed for the next stages. Some files are available in a
format not compatible with the one used by BRAMS, because of this, they need to
be converted to BRAMS format.

3.1.2 Stage 2: MAKESFC

The second stage is the first processing stage, it is called MAKESFC. In this
stage the global data files of soil type, sea surface temperature and topography
are converted to files that cover only the area that is going to be forecasted. In
Figure 3.3 is depicted the input data in the upper part. Some data is downloaded
only once as the topography data, another data is not available from recent dates as
the vegetation index. Asterisks are used to clarify that the output data is a modified
version of the input data, which is the reason that the name it is the same as in the
input.

SST Topo Veg NDVISoil

SST* Topo* Veg* Soil* NDVI*

BRAMS

Soil Humid

Soil Humid*

MAKESFC

Output files for the forecast grid domain

Figure 3.3 – MAKESFC stage. Depiction of the input and output data flow.

BRAMS performs this stage in a sequential fashion, so it is performed by only
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Initial
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Observational
Data*

Output files for the forecast grid domain

Figure 3.4 – MAKEVFILE stage. The depiction of the input and output data of this
stage.

one process in the workflow of the application. The output of this stage produces
data restricted to the grid domain configured on the model. After this stage finishes
BRAMS does not continue automatically, it is necessary to reconfigure the model
settings file to perform the next stages.

3.1.3 Stage 3: MAKEVFILE

The second processing stage, MAKEVFILE, generates files with the initial and
boundary conditions of each grid in the area to be analyzed for the integration
(forecasting) time, as shown in Figure 3.4. This stage performs data analysis over
one or more observational datasets and produces variable initialization files, called
varfiles. These varfiles contain the atmospheric fields defined on the model grids for
the specified grid domain.

In this stage, also only one core performs the processing. The output files contain
data restricted only to the grid domain configured on the model. Again, after this
stage finishes BRAMS does not continue automatically to the next stage.
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Figure 3.5 – INITIAL stage. The depiction of the input and output data of this stage.

3.1.4 Stage 4: INITIAL

The third of the processing stages is the actual simulation and forecast. As
depicted on Figure 3.5 the output data from the MAKESFC and MAKEVFILE are
used as input for the execution of this stage. This stage, called INITIAL, uses the
number of cores available in the environment, and it is executed in parallel using
MPI. The output of this stage contains the analysis files with the forecast data.

Also, depending on the configuration of the variables it could also save history
files. These files allow check-pointing during the forecast process to continue in case
something fails. If output variables are defined on the post-processing sections of
the BRAMS configuration file, the files ready for post-processing are also saved.
This stage is the most compute intensive of the three stages and also the one that
generates the largest amount of data.

3.1.5 Stage 5: Post-Processing

After the forecast simulation has finished, a post-processing stage is performed
on the output data to visualize the forecasts. For this step, a different application is
used, not BRAMS. Multiple iterations over the output data are required to produce
the visualization for each one of the weather variables defined in the model forecast
configuration. This stage is also performed by only one CPU process.
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Table 3.1 – Size of the input dataset files used for the experiments.

Content Size (GB)
CLIMATOLOGY 0.52
DP 86.00
EMISSION-DATA 3.60
FIRES-DATA/DSA 0.05
FIRES-DATA/MODIS 0.18
SOIL-MOISTURE 23.00
SURFACE-DATA 8.80
Total 122.15

3.2 BRAMS datasets

BRAMS data dependencies are organized based on the frequency of their avail-
ability. Most of the data are generated every day and preprocessed by the INPE
before being published. Another data are generated every week. Those datasets are
used on the different stages of the workflow as depicted on Figures 3.3, 3.4 and 3.5.

For the experiments of this thesis the INPE help us by providing us the complete
input dataset of the year 2009. The size of the entire dataset and the name of its
input folders are shown on Table 3.1. DP files were already converted from GRIB
format to the format used by BRAMS. Another set of input data was used for
different experiments and will be described in Section refresults.

3.3 Summary

This chapter described the workflow of the scientific application we ported to the
cloud environment. The primary objective of this chapter was to help to understand
the workflow and the terminology used in the next chapters of this work. Explaining
each one of the stages and presenting the amount of data used by the application
allows getting insights on the requirements for the cloud. In the next chapter,
we introduce the migration procedure and discuss the solutions proposed for this
process.



39

4 MIGRATING BRAMS TO THE CLOUD

Migrating a scientific application to a cloud environment is a challenging task.
The change in the amount of control of the environments and resources compared to
executing the application over on-premises machines represents a limitation for some
migration efforts. But the benefits of using the cloud should not be underestimated.

One of the concerns from migrating HPC applications is performance. As
presented in Section 2, related work on moving an application into the cloud conclude
that focusing on performance would yield acceptable results at most. But some
applications presents other constraints besides raw performance. There are other
aspects that should be analyzed using the cloud for scientific applications.

In numerical weather prediction (NWP), the results are valid only for a limited
timeframe, that is the forecasted period. While porting the application, we focused not
only on performance but also on how to run the forecast inside this timeframe while
preserving the usability of the application and automating most of the procedures.
Because we are using the Infrastructure as a Service cloud model (IaaS), the service
provider would charge the usage of three main aspects: storage, networking and
deployed time of every instance. We analyzed those meaningful aspects that could
be charged while executing the application.

In this section, we discuss our approach to migrating the NWP application to the
cloud. We present an analysis of the challenges and solutions we provide based on
our findings while trying to migrate the application. After that, we explain how we
created the BRAMS service in the cloud and how we managed this service for our
experiments. Finally, we show how we modified the workflow of BRAMS to reduce
the costs of porting and executing BRAMS in the cloud while maintaining the time
to completion of the forecast into an acceptable timeframe.

4.1 Migrating BRAMS: Challenges and Solutions

In IaaS cloud environments, the users have the responsibility to set up the entire
software stack starting from the OS to the compilers and required libraries before
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they can compile and execute their applications. Besides, most of the time the
application source code requires several modifications to run in those environments.
Cloud services, such as Microsoft Azure, present a distinctly different environment
from that encountered by a user on a traditional HPC system. Thus migrating the
complete application code becomes a challenging, expensive and time-consuming
task as BRAMS is composed of more than 350,000 lines of code in Fortran.

Setting up, configuring and testing a base VM image for deployment represented
another challenge for porting. The source code provided for HPC applications often
lack good documentation, code comments and most of the time has been optimized
for a very specific type of machine or architecture. We have to experiment with
several versions of system libraries, compilers, frameworks and combinations of them
to get BRAMS running correctly in a virtual machine. Recompiling and modifying
BRAMS was not an easy task. Using the same environment (VMs) in which the
application was going to be executed in the cloud, allowed us to generate the necessary
tools to test the BRAMS execution and automate all the process. Given that one
of the essential characteristics of the cloud is the virtualization, we initially used
local virtual machines in this step, reducing costs. At the end of this process, each
one of the VM instances must have a working BRAMS setup with all the necessary
configuration to execute the forecasting jobs sent by the frontend. Configuration
includes the access to the shared storage subsystem.

One of the challenges we found while migrating BRAMS to the cloud was the
access to the legacy file-system BRAMS used. Storing such large amount of data in
one VM would create a bottleneck for the application. On the other hand, copying
the datasets on every machine would be expensive because of transfer time and
replication.

At grid environments, it is common to use a dedicated network storage device
with a distributed file system. Using on-premises computers, the network usage
is limited only by the hardware available. In contrast, in the Cloud the network
transfer is charged, because of this, the amount of bandwidth required by HPC
applications constitutes another challenge to use the cloud as a viable alternative.
Thus minimizing the costs to run the experiments and the network usage is a
requirement in the cloud.

An additional challenge was setting up a reproducible process for compiling,
installing all the software needed, setting up the cloud service and controlling the
lifecycle of BRAMS. This process needs to be completely automated to allow a
complete pay-as-you-go usage of BRAMS in the cloud. As indicated before, the
Azure cluster was configured to replicate an HPC environment with a frontend node,
which the users could use as a login node to launch BRAMS. We used the Microsoft



41

Azure cross platform command line tool (azure-CLI1) to control the workflow of the
cloud service creation of BRAMS.

The process to setup the environment and creating the initial scripts to launch the
VMs is complicated. However, once set up, adding more nodes and scaling the cluster
size is straightforward. In a cloud service, the time and resources spent configuring,
compiling the applications and getting the initial instance ready is charged. The
process to experiment until the base image is ready has to be taken into account. To
minimize unnecessary costs using the cloud environment, is important to automate
most of the tasks, from the creation of an initial cloud instance to the deployment
steps before begin processing.

In order to perform forecasts using BRAMS in the cloud each one of those
issues, namely the storage, networking and deployment aspects should be addressed.
The next subsections show how we solved these challenges and how these solutions
modified the BRAMS workflow.

4.1.1 Storage

Our solution in order to port the storage aspect of the HPC application was testing
two different mechanisms in the cloud. In the cloud, the storage access depends on
the features available by the cloud provider. Our initial approach was to implement
a distributed file system. We looked into the manageability of the file system, and
possible scalability taking into account the way a numerical weather application
behaves. In order to replicate the behavior of a file system with those characteristics,
we selected two options based on the possibilities in the cloud provider.

The first one, Fraunhofer Parallel File System, FhGFS2, was selected by looking
into the options available for distributed storage in the cloud. We tried Ceph3 file
system and FhGFS but as we found some issues related to the configuration in the
cloud environment, we decided to use only FhGFS. FhGFS is an scalable file system
used in several HPC projects. After experimenting and running some benchmarks,
we decided that FhGFS fitted better with the requirements of BRAMS. FhGFS
provided high throughput and scalability and was suitable to the cloud infrastructure.
The scalable metadata replication on FhGFS provided the best option based on the
requirements of BRAMS. The architecture of the FhGFS file system on BRAMS is
depicted in Figure 4.1.

As shown in Figure 4.1, a computing infrastructure of a weather research center
was replicated inside an Azure datacenter. On this virtual research center, we have

1https://www.npmjs.com/package/azure-cli
2http://fhgfs.com
3http://ceph.com
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Figure 4.1 – Architecture of the implemented storage system using FhGFS. All the nodes
are virtual machines. Each storage node with a capacity of 1TB.

the computing and storage. The storage was provided by 8 A3 instances each one
with 1TB disk using the Fraunhofer Parallel File System. The computing nodes were
used on demand. One of the main issues we found implementing the data storage
architecture is that from a cost perspective, is expensive to have some VMs only
for storage. Scaling would depend mostly on the paying capacity of the user and
not on the amount of data stored. The metadata VM were very delicate parts of
the architecture, and they are not as scalable as the storage VMs, managing those
machines was a complex part in the implementation. Only preliminary experiments
were performed using this storage system. The Azure subscription have a CPU-core
quota limit, CPU cores used on storage VM also limited the number of VMs available
to processing. Implementing other distributed filesystems, for instance, GlusterFS4

or Lustre5, would present the same issues, managing the storage infrastructure and
wasting resources on idle VMs. Those VM were used during initial testing, but we
found that a better solution have to be implemented to make an efficient usage of
the cloud resources.

4http://gluster.org
5http://lustre.org
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Figure 4.2 – BRAMS in the cloud using Azure File Service as storage. No more compute
resources are spent on storage deployments.

The second option used the cloud storage services provided in Microsoft Azure.
Azure allows storing files using two different mechanisms; one called blobs to store
using a proprietary API and a second one called Azure File Service (AFS) that uses
Server Message Block protocol(SMB).

We opted for using the AFS as the usage of blobs required an intrusive modification
of optimized input/output mechanisms of BRAMS. As we mentioned before, we
focused in porting the application performing the minimal amount of modifications
to the source code. Because of the high volume of data required to perform NWP
we store the input dataset for the simulations and all the output files also in AFS.
Figure 4.2 depicts the changes related to the FhGFS implementation. We do not
need to spend resources on VMs to store the data, this is managed directly by the
service provider.

AFS allow sharing data between virtual machine (VMs) instances and between
cloud services within the same Azure region. Sharing input and output datasets cre-
ates an interesting opportunity to integrate multiple cloud services of meteorological
centers executing BRAMS within Azure to share their resulting datasets.
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By using the AFS approach, we used SMB to access a shared directory with all
the files that BRAMS requires to execute. Using AFS allowed us to use BRAMS
with minimal modifications and focus on the rest of the issues. The main advantage
is that AFS does not require using VMs to keep the data available, minimizing the
costs to pay only for the size of the stored data.

4.1.2 Networking

The networking aspect of the cloud represented a challenge that is not presented
in a grid or cluster infrastructure, paying by the amount of transferred data. Cloud
service providers charges by the amount of bandwidth used. In the case of Microsoft
Azure transferring data outside the datacenter in which the VM is located is charged,
however, transfer in is free. Transferring outside the Azure infrastructure is charged,
but also data ingress to their infrastructure is free.

Considering this scenario we could upload and store the complete input dataset
provide by INPE to the AFS system without paying for the transferring. Communica-
tion between the computing nodes would be very expensive while processing data in
the forecast execution stage. The solution to this issue is the usage of affinity groups
and using the same datacenter for the location of storage account and the compute
nodes. Azure does not charge anything for traffic kept inside the same datacenter.
By taking advantage of this feature, we could reduce the cost of performing the
weather forecast significantly. The only transfer data charged would be related to
getting data out of the datacenter. Keeping data in the cloud service, is precisely one
of the main purposes of performing processing in the cloud, for this reason moving
large amounts of data out of the cloud service is not expected.

4.2 BRAMS Lifecycle in Azure

Addressing the deployment challenge, including the setup of the initial environ-
ment and launching the VMs, we automated all these steps to execute BRAMS in
the cloud. We developed complete lifecycle fo BRAMS, from the creation of the
cloud service, passing by the instantiation of VM to perform the forecast going
until deleting everything that was used in Azure. These features are necessary also
to reproduce the experiments and evaluate the impact of changing configuration
parameters in Azure. Figure 4.3 shows the complete lifecycle of BRAMS service on
the cloud. This section describes each one of the lifecycle stages and steps.

In order to set up, configure and manage the environment in Microsoft Azure
using IaaS, we used the Azure command line interface tool provided by Microsoft.
This Azure-CLI is the core of the developed lifecycle control. Azure offers several
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Figure 4.3 – Lifecycle of BRAMS service on Azure.

options regarding the OS based on GNU/Linux: Debian, Ubuntu, Suse, and CentOS.
Each one of the distributions is also available in more than one release. For the
operating system, we chose Ubuntu 14.04. Ubuntu is a popular distribution, because
of that, the learning curve for users of the BRAMS service would be easier. We
selected the 14.04 release, the more recent LTS version.

4.2.1 Create

Using the available options of the Azure CLI we can start the lifecycle of BRAMS
in the cloud. For the create stage of the cloud service, the user needs to follow three
initial steps.
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• Create an Affinity Group: This is a crucial step for the service. If the affinity
group is defined, all the VM instances are going to be placed as close as physi-
cally possible by the resource scheduler of Azure. The parameters configurable
for this step are the affinity group name and the datacenter name, basically
its location. This setting impacts directly on the networking aspect of the
deployment. If it is not configured, the machines could be allocated anywhere
on the datacenter, affecting latency between VMs.

• Create storage account: The storage account would act as a container for
the OS virtual hard drives (VHD) of the VMs, the attached VHDs for the
storage model and to save the files using AFS. We could modify which kind of
replication we want to use, base on the characteristics of the data to be stored.

• Create cloud service: The cloud service is the access point to the service, is a
web address that allows resolving the public IP address of our service. The
cloud service could be seen as a container for the VMs of the deployment.
Using this address and endpoints we could access any of the machines inside
the deployment.

Those initial steps allow us to create a container for our virtual machines and a
way to locate the cloud service on the internet. After this create stage, we go to the
deployment of the Base VM.

4.2.2 Base VM

The Base VM is an instantiable object of our deployment, it could be replicated
as much as is needed to. In this stage, this VM is created. This VM must contain
all the software, tuning and configuration that allow the machine to act as a part of
a cluster without further modifications. This Base VM is the stepping stone of the
usage of the cloud to replicate experiments and to use the same environment.

• Instantiate: In this step we instantiate a VM specifying the instance size we
require to install and configure the application we are going to use. This
VM size does not need to be the exactly the same used when running the
application, it can be changed on posterior deployments. We must include in
the instantiation parameters the specific OS that we are going to use. Also,
we use authentication using certificates, by using this method we can allow
passwordless access to the virtual machines, which is an important setting to
use MPI. We installed and configured the BRAMS version modified to be used
on this VM environment. This process is fully automated to allow creating
a new version of BRAMS with only changes in the install scripts. After the
machine is completely configured, we could go to the next step.



47

• Capture VM: The process to capture a VM allow us to save the machine in an
state called deprovisioned. This state basically removes the parameters that
make the VM unique and allow further utilization of the same image. The
only parameter required for this step is the name that the Base VM will have.
After the machine is captured, it is stored as an operating system image and
could be instantiated by passing the image name as a parameter in the place
of the OS.

4.2.3 Instantiate

After instantiate, the cloud service of the application is usable. The frontend
of the cloud service should be able to access all the compute nodes that the cloud
deployment will have. We notice that to make the environment homogeneous, all
the virtual instances, including the frontend should be instantiated using the Base
VM captured. In this way, we need to add the software needed by the frontend and
configure some parts of it. The nodes need minimal configuration to work as a part
of the cloud cluster.

• Frontend: Frontend instantiation requires some individual settingsThe pa-
rameters to instantiate includes name of the frontend, the name of the cloud
service, the base VM image name and the service endpoints. The VM is
configured to allow monitoring the compute nodes using Ganglia6, an open
source monitoring utility. Also, the configuration allows post processing of
BRAMS data and implementing a notification system to the end user. The
frontend can passwordless access all the compute nodes in order to execute
BRAMS forecasts.

• Compute nodes: The compute nodes are almost entirely configured at instan-
tiation time. The only parameters different from the frontend instantiation
are the name of each node. Compute nodes do not require endpoints as they
are used on the internal Azure network. They need information about the
frontend in order to send monitoring information. The customization of each
VM includes setting the variables or information for the forecasting process.

4.2.4 Control

To take advantage of the on-demand characteristics of the cloud, we must control
when the VMs are running and when they need to stop to reduce the billing by the
service provider. The control stage of the lifecycle was developed to manage those

6http://ganglia.sourceforge.net
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steps based on what is required at the time by BRAMS.

• Start Frontend: In case the frontend is stopped, like after using the stop
frontend step, we need to start the frontend again. Stopping the frontend
depends on how the service is going to be used. If using the service in full
on-demand mode, the frontend is stopped and only started again using this
step when there is data to process.

• Stop frontend: As mentioned in the previous step when using entirely on-
demand these steps are used. Both control steps are used from a computer
outside Azure infrastructure.

• Start compute nodes: When a new processing task is ready to start as depicted
in Figure 4.4 this step is executed. As the VMs are already configured this
step only require the names of the VM instances to start again.

• Stop compute nodes: After the INITIAL stage of BRAMS the compute VM
instances are not needed anymore, this step takes care of releasing those
resources to stop being charged for them. When a node is stopped, we are
charged only for the VHD size of each node stopped.

4.2.5 Delete

The final step in the lifecycle is the elimination of resources used on the cloud
architecture for the application. Most of these steps are performed as final procedures
before finishing the experiments. The step delete compute nodes was used when we
performed initial experiments deleting the VMs and re-instantiating them to measure
the time spent on deployment operations.

• Compute nodes: Deletes the stopped computed nodes and each one of their
VHDs.

• Frontend: Deletes the frontend and its associated VHD.
• Base VM: Deletes the Base VM image and removes the entry from the available

images list.
• Storage account: By removing the storage account, ALL the data stored in the

cloud service is deleted. It is not possible to recover the data after this step is
performed.

• Cloud service: Deletes the cloud service, releasing the DNS name in Azure.
• Affinity group: Deletes the affinity group.

The last two steps delete parts of the service that are not charged by Azure. The
affinity group and the cloud service could be left undeleted to save some steps in the
future if we need to re-create the service.



49

4.3 Adapted workflow in the cloud

Executing BRAMS in the cloud required modifying the workflow presented in
Section 3.1. The modified workflow is described in this section, Figure 4.4 shows the
changes introduced. In this adapted workflow is assumed that the frontend instance
is left deployed. The frontend VM is in charge of executing the tasks related to
controlling the workflow execution.

The workflow starts as soon as a new processing task is received by the frontend.
The processing task could start with the availability of new data to process or with
a forecast experiment.

The frontend checks the availability of the distributed storage because all the data
in the following steps are stored in it. Contrary to a physical grid or cluster in which
all the machines are powered even if they are not processing in the pay-as-you-go
model the virtual machines are not available until they are provisioned. It would
be a waste of resources to create instances if it is not possible to save anything. If
everything is in order, the allocation of the processing nodes starts using the lifecycle
stage control, and the start step. At the same time the download of the new data,
if required begins. The frontend checks when a processing VM is ready to start
processing to start running the next stages.

The MAKESFC and MAKEVFILE stages could start as soon as the first instance
is available. Because these stages only use one CPU core they could start the
processing with only one VM. This process could also be performed by the frontend,
but as we used a frontend VM with lower specifications than the processing nodes,
we decided not doing it.

After those initial stages of the workflow, the frontend needs to wait until all the
compute instances are deployed and ready. The barrier stage in Figure 4.4 represents
that.

When all the instances are deployed and ready to compute the INITIAL stage
starts. The frontend waits until the end of the forecast execution, as soon as

Starting/creating compute intensive VMs

Run
MAKESFC
stage

Run
VFILE
stage

Stopping/deleting
compute intensive
VMs Waiting

/starting
new pro-
cessing
task

(Barrier) Check that
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VMs are available
to start parallel
processing stage

Receive
new
processing
task Start resource allocation

and checking availability
of communication with dis-
tributed storage.

Check if first node is
available to perform
sequencial stages

Run
INITIAL
stage Run

Post-
processing

Send
email
/notification
to user

Time

Figure 4.4 – BRAMS execution workflow, the white boxes are the steps to perform a
simulation in an environment with physical machines already provisioned like a grid or
cluster, gray boxes indicates the steps introduced to run BRAMS on-demand in the cloud.
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the forecast finishes the post-processing stage is started. The post-processing was
performed by the frontend as it is not a compute intensive operation. Simultaneously
to the post-processing the compute VMs are stopped or deleted depending on the
selected configuration in the lifecycle stage. An analysis of the differences between
stopping or deleting the compute VM is performed on Chapter 6.

At the end of the post-processing, the user is notified about the status of the
forecast and the frontend returns to its awaiting state.

4.4 Concluding Remarks

In this Chapter, we showed how BRAMS was migrated from a traditional HPC
environment to a cloud infrastructure. As described along this section identifying
the significant aspects of running HPC in the cloud was a challenging task. To
evaluate the migration impact, storage, networking and time spent on computing
and non-computing operations should be analyzed.

The lifecycle technique proposed in this chapter could be applied to others
applications in order to make the managing process easier while reducing cost when
moving to the cloud. In the next Chapter, the methodology to perform the evaluation
of aspects is discussed. Then, in Chapter 6 the experimental results of the evaluation
are presented.
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5 EVALUATION METHODOLOGY

In this chapter, we present the methodology used to conduct the experiments.
Two different scenarios are proposed to evaluate the main aspects related to migrating
BRAMS to the cloud. The first one is using a single deployment of BRAMS in the
cloud, performing forecast simulations.

The second scenario is composed of the creation of multiple deployments of
BRAMS in the cloud, each one acting as an independent service. We refer to this
scenario as MBRAMS, meaning multiple BRAMS. With MBRAMS, we intended
to simulate the deployment of BRAMS environment for multiple weather research
centers. Those scenarios and the aspects analyzed on each one will be discussed in
this chapter.

5.1 Evaluation of aspects: BRAMS

The methodology to evaluate the aspects and its purpose is defined in each section.
Most aspects could be evaluated from an economic point of view. Those aspects are
based on the analysis performed on Chapter 4. The architecture of BRAMS ported
and deployed to the cloud is depicted in the Figure 5.1. In the figure the frontend is
the only instance with external communication, all other instances are confined to
Azure infrastructure.

5.1.1 Performance and Scalability

In order to analyze and compare the performance of BRAMS in a cloud envi-
ronment, we ran a series of experiments in a local cluster and compared it with the
version running on the Azure platform. The tests were performed by scaling the
number of nodes available. The experiment consisted of performing a simulation five
times using computing nodes with 8 CPU cores. At every iteration, we added a new
node up to 8 nodes (64 CPU cores). With this experiment, we intended to compare
the performance of different Azure instances sizes against the real hardware in a local
cluster. This experiment also allowed us to check the scalability of BRAMS in those
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Figure 5.1 – Single deployment of BRAMS in the Cloud. The Figure illustrates the
deployed architecture.

two environments and help us to identify possible issues related to the migration to
the cloud.

Scalability in the Cloud is used to establish the possibility of an application to use
more resources in case it need to use them. Scalability could be seen on two different
axes, horizontal or vertical scaling. Because we are comparing a cloud version of
an application used in on-premises computers we need to clarify what scalability
means for us in both environments.

In the cloud, horizontal scaling is referred to the possibility of adding more virtual
machines to the workflow. These new machines could reach a limit in which adding
more machines only causes growing the prices of the experiment but does not add
more performance benefits. We tested the limits on the horizontal scalability of the
application in order to find that limit.

Vertical scaling in the cloud is used commonly to upgrade the characteristics of
the instance running a service. Usually, this process occurs on-demand and over
a running instance. Is not realistic to run an application that balances resources
usage and uses homogeneous characteristics between the machines while upgrades
the instance characteristics in the middle of an experiment. Because of this, our
vertical scaling experiments were based on using cloud instances with different sizes,
but maintaining the same NWP configuration for all the machines during each
experiment. Using this approach we could measure in which point was not possible
to get more performance gains using BRAMS in the cloud.
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5.1.2 Storage

The methodology was to measure the amount of data required by the modified
workflow and analyze the different options regarding replication in Azure. Because
AFS was in preview stage, performance evaluation was not a priority for our deploy-
ments. The pricing scheme and how to optimize the usage of the storage system was
the focus of these experiments. To evaluate two options we analyze the stability and
the pricing characteristics of each one.

5.1.3 Networking

The networking aspect is one of the most important factors in the cloud. As
the entire concept of the cloud is based on the availability of remote resources, the
network is expected to impact strongly on the results of the experiments. In order
to approximate the network hops between virtual machines, we performed a series of
experiments using Nmap1. Using this tool we could calculate the number of hops,
and determine if using some characteristics of the cloud service allow us to optimize
the networking performance of the application in the cloud. In the local environment,
we also measured this metric.

Another aspect measured was the latency between the virtual machines and the
frontend. HPC applications require low network latency values. We also used Nmap
to retrieve the values. This metric in some cases influence more the performance than
the bandwidth. We obtained this metric by calculating the latency between the virtual
machines and the computing nodes. The large amount of communication between
the processing instances and also to the frontend instance during the INITIAL step
of the workflow could be impacted by the latency.

Considering that cloud network infrastructure varies on each VM allocation, we
design an experiment to collect networking data using eight computing nodes.We
obtained their latencies and the number of hops between these VMs.The experiment
consisted of 2 scenarios with two types of network analysis. The first one started by
creating 8 Azure instances of BRAMS and analyzed the hops between each node.
After obtaining data, the VMs were deleted and created again. The same process
was repeated five times from each one of the 8 VMs. In the second scenario, the
VMs were not deleted but stopped. The Azure VM managing mechanism could
reallocate in different physical machines the instances that are stopped when started
again. The second one obtained the hops from the frontend to the eight instances.
We wanted to analyze the latencies in those cases too.

Network stability was measured by taking into account failures during the experi-
1http://nmap.org
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ments and connection issues.

5.1.4 Provisioning

In a final experiment, we analyzed the time spent in the provisioning and control-
ling operations in the cloud service, namely start, stop, delete and create instances.
The time spent in this operations affect the costs of running a cluster service on
demand.We measured the time spent when machines are deallocated or deleted at
the end of each experiment, and when started or reallocated at the beginning of the
next one. We notice that those control operations in Azure blocked the subscription
from performing another task. The time it takes to perform these operations affect
the expected run time of the experiments as we perceived that those operations are
performed as a sequential procedure. In the cloud, we are charged by the number
of virtual machines allocated even if they are not performing useful computing we
wanted to know how much time was spent on each one of those operations.

5.1.5 Pricing

Cloud computing is at its core a commercial model, monetization of services is
the motivation of its growth and the optimal usage of the resources provided by this
paradigm allow us to evaluate how to use them.

We calculate the prices of each experiment taking into account the variables more
important to execute a scientific application as BRAMS in a cloud environment. The
experiments evaluate the price on several datacenters of the service provider and
calculate the approximate price of running the workflow of BRAMS during realistic
periods of time. These results were compared afterward with the price of buying
on-premises server to provide the same service, including the associated cost that
are eliminated by cloud as power bill, refrigeration, placing, security aspects, etc.

Table 5.1 – Virtual machine instance sizes selected for the experiments. Prices in US
dollars. The Azure datacenter used was Europe North.

Standard tier Compute + SSD Network
Instance Size A4 A7 D13 D14 A8 A9
CPU cores 8 8 8 16 8 16
Memory [GB] 14 56 56 112 56 112
Disk Size [GB] 605 605 400 800 382 382
Price/hour 0.720 1.200 1.318 2.372 2.450 4.900
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5.1.6 Environments

The environments used in our experiments were a set of cloud clusters and a local
cluster. The characteristics of each environment are described in this section. A
summary of the hardware details of the machines used and characteristics is depicted
in Table 5.2.

Each local machine consists of two Intel Xeon E5310 Processors, each one with
four cores running at 1.60GHz and 8 GB of memory, Interconnected by a Gigabit
switch.

For the local cluster machines, we used eight server machines of the same model
with the same characteristics. The storage was provided by four nodes with the same
characteristics but not involved in processing.

In Microsoft Azure using IaaS, we avoided using the smaller Linux compute
instances available for our subscription to minimize the communication overhead
of the HPC application. We use the compute instances that were closer to the
characteristics of the local machines. As can be seen in Table 5.2 the D13, A4, A7
and A8 instance types include 8 CPU cores. Only D14 and A9 include 16 CPU cores.
Those instances with 16 CPU cores were used with eight cores during some of the
scaling tests, to obtain comparable figures. The cloud service provider defined the
name of the instances types.

Each one of those virtual machines is advertised in categories for specific scenarios
like fast networking, performance computing and intensive I/O usage. We use two
machines of each category to compare them. The bandwidth available for the network
interconnection in each instance is different and is a hard limit imposed by the service
provider. For the storage, we used SMB shares in AFS to save the input and output
datasets of the experiments.

Table 5.2 – Specifications of the local machines and the virtual instances used for perfor-
mance experiments. Networking bandwidth limits on the VMs are imposed by the service
provider.

Characteristic Local Cluster
Cloud Instances

A4 A7 D13 D14 A8 A9
Processor Model Xeon E5310 Xeon E5-2660 Xeon E5-2670
Processor Speed (GHz) 1.6 2.2 2.6
Number of CPU Cores 8 8 8 8 16 8 16
Memory (GB) 8 14 56 56 112 56 112
Networking (Mbps) 1000 800 2000 1000 2000 5000 10000

The experiments on this scenario consisted of executing BRAMS to perform a
forecast of 72 hours with an spatial resolution of 50 km covering a square perimeter
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Figure 5.2 – Geographic area used for forecasting during the initial experiments using the
local cluster and the cloud instances. BRAMS with a model resolution of 50KM

of 6000 km, an area of 1500x1500 km. The forecasted geographic area was always
the same for all of the experiments in this scenario. Figure 5.2 shows the area. All
of them were executed in the same Azure datacenter location using affinity groups
in order to achieve a better performance as the VM would be as physically close
to each other as possible. The datacenter we selected was Europe North. This
datacenter provided the lowest cost and included access to the A8 and A9 instances,
such instances sizes were not available on every datacenter when the experiments
were performed.

5.2 Evaluation of aspects: MBRAMS

As a final evaluation of the viability of cloud for HPC, we run multiple BRAMS
deployments in parallel sharing the input datasets in order to simulate an integration
of multiple users.

The multiple deployment characteristic of MBRAMS is depicted in Figure 5.3.
Each one of the BRAMS deployments has access to a shared AFS storage account in
charge of obtaining the input datasets from the sources. The main difference with
the single deployment is that a shared storage account is used between them. In one
scenario data produced by each deployment will be saved in its own AFS storage
account, only input data will be shared. In a second scenario, the shared account
will be used to store input and output data.
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Figure 5.3 – Multiple deployments of BRAMS in the Cloud. The deployments share input
files, and they could share output files if they need to, by using the storage system.

To achieve this, we run forecast with several resolutions over different areas
of South America. Figure 5.4 shows the areas used for forecasting using a 50 km
resolution. Most of the aspects are evaluated in the same way as with BRAMS, the
differences in the methodology are discussed next.

5.2.1 Aspects

We did not apply the methodology to evaluate pricing, networking and provision-
ing in this scenario. The storage evaluation differs because we wanted to measure how
much was the performance impacted mostly when the input datasets were shared
between the multiple deployments.

For this aspect, we wanted to analyze the impact on the execution time, based
on shared storage between multiple instances of BRAMS running in parallel. We
evaluated whether using the same storage account to save the input and output
datasets created any difference.
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Figure 5.4 – Regions over South America used for the simultaneous 50KM resolution
forecasting.

5.2.2 Environments

For these experiments, we used the same VM instance size for all of the deploy-
ments. We selected the A8 size because it have the fastest network interface (10Gb).
The forecasted geographic area changed in all the deployments for the experiments
in this scenario. As we wanted to simulate real weather research centers, the areas
were established on locations of interest for the GPPD. The GPPD is part of some
research initiatives, as the Latin American Grid for Climate, LAGClima. The Areas
were centered spatially over Argentina (Córdoba), Brazil (São Paulo), Peru and
Uruguay.

The first environment includes running BRAMS on each deployment over a
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Figure 5.5 – Regions over South America used for the simultaneous 20KM resolution
forecasting experiments.

different geographic area. Figure 5.4 depicts the four regions over which the model
was run. In the Figure 5.4 is shown that the model resolution is more than enough to
cover the area of a small-sized country, as Uruguay. In the other cases, some parts of
the country are not included in the forecast. We used 50 km as an initial resolution
because on the single deployment of BRAMS we used the same model resolution.

Each one of these BRAMS deployments was created using the same lifecycle
procedures. The only difference was the customization of each instance. This process

Figure 5.6 – Two city areas in South America used for the simultaneous 5KM resolution
forecasting.
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included the configuration of the shared storage account to be used by all of the
deployments.

Because it would be expected to run the BRAMS model with a higher resolution
over some regions we performed experiments using 20 km as a model resolution. In
this case, we evaluated two parallel deployments of BRAMS. Figure 5.5 depicts the
two regions in which the model was run. Those two areas are centered spatially
over Uruguay (center) and Argentina (the Rio de la Plata Basin). This resolution
was enough to cover Uruguay completely, but only a region of Argentina. This
environment was used to evaluate a more detailed BRAMS forecast.

Finally, we performed experiments using 5 km model resolutions over two cities in
South America. The forecasted areas are shown in Figure 5.6 We wanted insight on
the performance of this high-resolution forecasting as is the most resource demanding
resolution for the BRAMS model. This resolution cover the geographic area of a city.
Those two regions are centered spatially over Colombia (Bucaramanga) and Brasil
(Porto Alegre).

5.3 Final Remarks

Defining the experiments to evaluate a migration represented another challenge
because there is not a clear procedure to follow. The evaluation must include the
relevant aspects of the application in the cloud but also must allow getting an insight
into possible issues generated by the migration.

The next section presents the experimental results of the numerical weather
application migration to the cloud.
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6 EXPERIMENTAL RESULTS

In the first part of this chapter, we show and discuss the results of BRAMS in the
cloud experiments and their significance. These results include our findings regarding
the network latencies and how they could impact the execution of NWP, and also
the overhead created by the provisioning operations.Then we analyze the scaling
of BRAMS in the cloud and the pricing and cost efficiency. Finally, we show how
BRAMS execution in the cloud using multiple parallel running of the model using
several cloud services.

6.1 Processing

The experiment consisted of running a complete weather forecast scaling hori-
zontally from one node up to 8 nodes both locally and in Azure. We performed five
runs of the INITIAL stage in the forecast simulation for each number of nodes and
instances and use the average. BRAMS stages MAKESFC and MAKEVFILE were
not taken into account because they were developed to use only one CPU core, that
means they receive no performance gains by changing the number of nodes.

For some of the executions, the local machine was faster than some of the cloud
instances as depicted in Table 6.1. However, the results differ depending notably
between instance sizes.

Table 6.1 – Performance of BRAMS in the cloud using AFS. For each instance we have the
execution time and the standard deviation at its right, all values in seconds. Experiments
shown relatively low variability as none of the standard deviation values is higher than
0.04% of the execution time.

Cores
Cluster Cloud Instances
Local A4 A7 D13 D14 A8 A9

8 6828.54 6.59 7046.46 23.89 7042.57 22.17 4362.22 32.90 2230.84 55.30 3305.54 14.59 3301.70 22.97
16 3148.36 0.95 3458.10 3.08 3505.88 23.31 2260.46 19.58 1797.90 36.85 1730.78 27.01 1733.76 30.25
24 2347.30 0.68 2671.32 11.66 2675.86 32.07 1804.64 29.60 1797.90 36.85 1387.94 22.13 1376.64 7.32
32 1976.72 0.70 2313.34 10.33 2446.62 16.80 1649.56 73.83 1602.82 22.38 1288.04 25.85 1260.60 30.60
40 1371.04 0.79 1756.42 8.82 1865.88 23.44 1299.42 28.92 1268.52 35.55 974.08 6.95 997.86 11.81
48 1363.54 0.31 1683.10 5.88 1840.02 41.45 1267.86 17.95 1212.74 13.68 940.32 8.70 989.56 6.73
56 1125.08 0.34 1448.72 3.62 1593.16 18.17 1138.48 8.90 1095.18 18.47 861.08 16.38 931.20 15.80
64 1126.72 1.06 1438.96 7.41 1606.02 12.64 1127.38 19.87 1128.96 30.35 860.58 13.74 958.98 24.59
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Figure 6.1 – Variation in execution time of different cloud instance sizes for a 72 hours
forecast. Horizontal axis shows the number of cores. Values were normalized to the
execution time of the local cluster. Lower values mean faster execution times in the
instances compared with the local cluster.

As shown in Table 6.1, A8 and A9 instances got faster execution times for most of
the experiments, except in the case of 8 cores in which D14 was faster. D14 finished
in 33 percent of the time compared to local, A8 and A9 finished in 48 percent less
time. D13 and D14 started with good performance, but the performance got worse
as more nodes were added to the experiments, with 64 cores the execution time was
almost equal to local. The standard size A4 and A7 instances perform increasingly
worse in all the cases. A7 spent 43 percent more time than the local machines with
64 cores. Interestingly the A7 has better specifications than A4, nevertheless the
performance of A7 was worse than A4 in all the experiments but the first.

The CPU frequency difference between the local machines with 1.60 GHz against
the 2.20 GHz of the A4 and A7 instances is 37.5 percent. As shown with the results
this fact did not reflect an equivalent advantage for those Azure instances. We found
that the amount of performance degradation due to the virtualization was higher
than the expected in the A4 and A7 instances.

Generally speaking the performance is worse as more nodes were added to the
experiment for all the instance sizes. This issue can be attributed to the fact that
BRAMS is a CPU bound application with a high amount of communication between
cores and nodes. For this reason, adding more nodes impacts network performance,
preventing a better scaling of the cloud cluster.

The best results overall were obtained by the A8 instance, reaching 76 percent
with 64 cores. The A8 instance size is not the best instance according its specifications
but performed a little better than A9, a similar instance size with twice the number
of cores and price than A8. In some cases, the A8 instance was 5 percent faster than
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A9. This behavior did not appear between D13 and D14 sizes, two similar instances
also. From 32 to 64 cores, the difference was kept under 5% with faster results
for D14. With eight cores, the difference against the local cluster was 31 percent.
With 16 was 25 percent, on both cases D14 got better results. It is interesting that
instance sizes with better specifications in some of the categories did not represent a
remarkable benefit in performance.

In Figure 6.1 are depicted normalized results of the BRAMS execution experiments.
Execution times of A4 and A7 in all cases were worse than local. The performance
behavior of all instances is similar, suggesting scaling issues.

The variability of these experiments was low, around 2.92 seconds (0.16%) on
average on Azure and 1.43 seconds (0.05%) on the local cluster. Results obtained in
this section, and their consistency shows that BRAMS behavior was uniform between
experiments. Also, that is possible to scale BRAMS horizontally using the Azure
infrastructure with an acceptable performance even with the penalty imposed by the
virtualization overhead.

6.2 Networking

For HPC applications like NWP, the network latency impacts the scalability and
performance. As defined in Section 5.1.3 we measure the network latency, and the
possible impact on it caused by reallocation or redeployment. The frontend was
instantiated only once; the nodes were the ones redeployed or reallocated.

The first part of the results of this experiment is shown in the Figure 6.2. By
using the cloud deployment of A4 instances we obtain an average of 70 µs with a 24
percent standard deviation. The high variability suggests high networking traffic in
the datacenter. However, the latency value did not change a lot in the experiments,
on average latency was 70.25 µs, and the standard deviation was less than 5 percent.
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Figure 6.2 – Shows network latency between the nodes and frontend.
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Figure 6.3 – Network latency between the nodes on varying instance sizes.

We could conclude that reallocating or creating nodes do not impact on latency.

The number of hops between nodes was consistent, four hops in 99 percent of
the cases. The hops are the number of networking devices between the source and
destination of a packet. The lower the number of hops, the better for communication.
The number of hops suggested that the processing nodes were located close in the
datacenter as expected by the usage of affinity groups in Azure. Contrasting the
latencies obtained in Azure, the local cluster with only one hop had an average
latency of 12µs. For HPC applications like BRAMS, the latency in Azure network
impacts the scalability and performance.

We also evaluate if latency values were altered using different instance sizes. In
order to do that we used the six types of instances selected and instantiated 32 VM
of each one, we measured latency between all the nodes, five times from each node.

Results of this evaluation are show in Figure 6.3. Some instances sizes, namely
A8 and A9 had low latency compared with the other instance sizes. A8 and A9 are
instances advertised for its networking capabilities; they have Infiniband connections
only usable from Windows-based deployments. Based on the results obtained we
could infer that the network infrastructure for this type of machines is better even
when not using Infiniband. Latency in average on the A8 was 29.78 µs, on A9 was
25.93 µs. Instance type A7 presented 60.14 µs latency with a high variability. On
D13 and D14 instances results were closer to the previous ones, D13 74.77 µs and
D14 64.45 µs. Variability on D14 was the lowest of the 155 tests performed with
each instance type with 4.72 percent.

The relatively high latencies could impact the deployment of larger BRAMS
simulations in Azure. The networking latencies in this tightly coupled application
could be limiting factor for running bigger experiments due to the performance loss
compared with the gains in raw processing power.



65

6.3 Provisioning and Controlling Operations

The life cycle of a VM instance includes the steps to create, start, reboot, stop
and delete the instance. Those operations are an essential part of the pay-as-you-go
model since each deployed VM has to pass for some of them. The cloud provider
begins charging from the moment of the VM creation to the release of its resources,
not only for the actual computing usage. We measured the time spent in each one of
those operations.

Results are presented in Figure 6.4. We noticed that in some cases, the time spent
in node creation is more than twice the time of the other three operations. We found
a significant variability, up to 16 percent in the case of stopping nodes. The behavior
observed could be due to a situation generated by the command line tools of Azure.
We found that it was not possible to create and add a VM to a cloud service without
assigning it a public SSH endpoint, even if the VM was not going to use it. Regarding
security concerns, we proceed to delete the SSH endpoint after the provisioning of
the VM. This operation halts the creation of new nodes until it finishes. Besides this,
the Azure subscription is restricted to only one deployment operation at the same
time, preventing a faster generation of experiments that include instantiating a lot
of VMs. The time it would take to start or create a greater number of VMs could be
larger than the time the experiment would take to finish.

Time spent in operations not related to an actual processing usage could impose
an adoption barrier to analyze further HPC applications in Azure. The processing
stage in applications like BRAMS require all the processing nodes ready before
starting. In this case, all the instances already allocated are in the waiting for the
last instance in the deployment queue to start. An approach to minimize this delay
is not recreating the instances but redeploying. However, batch operations from the
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Figure 6.4 – Time spent on the deployment operations in the cloud service, Provision-
ing/Controlling. Time per operation.
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service provider are needed to simplify this kind of situations.
The delay creates a non-processing state in which the VMs already started are

waiting to start processing but waiting noticeable amounts of time before performing
a useful computation. In this waiting state, all the idle VMs generate costs that are
expected to be reduced by the usage of a cloud infrastructure.

6.4 Scalability

The results of the processing section, shown in Table 6.1 showed some peculiarities.
The execution time in some cases was faster with 56 cores than with 64. In order to
analyze if the execution time of BRAMS is reduced more after 64 cores, we measured
the processing scalability of the application. In this case, we were not focused on
running the experiments on different instances but in a larger number of them.
BRAMS was scaled until reaching 168 cores.

The first experiment was performed with standard A4 and A7 instances, VMs
with eight cores each but different memory sizes. As depicted in Figure 6.5 the
application was not able to scale well beyond 88 cores. Even using that amount of
cores is not worth it, passing 56 cores the time reduction is less than two percent.
Basically, the application is not scaling horizontally as much as expected.

We evaluated if the reason why BRAMS did not scale was because the instances
used were not the ones with the best performance in the previous experiments. We
performed another pair of experiments using the instance sizes with better networking
capabilities.

The results are shown on Figure 6.6. This experiment was performed using
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Figure 6.5 – Scaling experiments with 168 cores using a 20KM model resolution with A4
and A7 VM instances.
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Figure 6.6 – Experiments with 160 cores and a 5KM model resolution using A8 and A9
VM instances.

A8 and A9 instances, because of the difference in the number of cores, we run the
forecasts only using 16 cores at a time for the A9 instance or pairs of A8 instances.

In this case, BRAMS behaves a little different but also confirming that scalability
was limited. The application scaled correctly up to near 80 cores. After that point,
performance was worse with each node added to the A9 instances, for the A8 after
88 cores performance gains were low.

Regarding the experiment results of this section we conclude that there is a
very specific point in which is better to use a few virtual machines. That point
would depend on the characteristics of the application. In some cases, running the
application on instances with low-performance characteristics would be a better
option than scaling, especially when the performance benefits are so minimal that
running the application would mean wasting the available budget.

6.5 Pricing

The price of using BRAMS to execute weather forecast are subject to the funda-
mental aspects of the cloud model, storage, networking and utilization time of those
resources. To simplify the calculations, we are going to use a period of one month,
running BRAMS every 6 hours, using a growing amount of data and an established
bandwidth usage.

We use a period of one month to calculate deployment prices because it is the
minimum billing period for our subscription for the services in Azure. The price of
an experiment depends on the amount of storage used, the network transfer caused
by communication outside the datacenter and the deployed and running time of the
instances. Other aspects of pricing as the deploying operations were are not taken
into account.
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In order to calculate the price of an experiment we need to evaluate the following
equation:

PE = S + N + Pt (6.1)

Where PE is the final price of an experiment, S is the price of amount of storage
used, N is the cost of networking bandwidth and Pt is the cost of running the selected
VM during the processing time.

The next subsections describe how each variable on Equation 6.1 was calculated
and then the final price of running the experiments is discussed.

6.5.1 Storage

The storage used is calculated as follows In Azure storage is charged as the
average of time of the month that a gigabyte was used. Pricing of using Local
Redundant Storage (LRS) or Geographically Redundant Storage (GRS) varies. The
fundamental difference between both of them is the amount of copies performed
on saved data and the location of the copy. Saving more copies and using different
datacenters are more expensive. For some kinds of applications with critical data,
data replication has benefits. The drawback on replication is that data throughput
is reduced, as when using GRS. The prices are shown in Table 6.2, prices are for the
first stored terabyte per month.

Table 6.2 – Price per gigabyte on Azure Files in USD dollars.

Datacenter Locally Redundant Storage (LRS) Geo-redundant storage (GRS)
Europe North 0.040 0.050

To calculate the price we use the information from Table 3.1, it includes the
amount of yearly input data required by BRAMS. We are going to assume for these
two scenarios that in a month, in average, a twelve part of that data is going to be
stored. That means 10.17 GB data stored per month, only for input data.

For the output data, the calculation is trickier, from what we could conclude
from our experiments and the forecasts results, output data size depends on the grid
size configured on BRAMS, not the model resolution. Table 6.3 shows the results on
data usage on each experiment. If output data is not deleted after a forecast, the
cost associated with this data increases nearly the same amount every 6 hours.

At the end of the month, we could have 152 GB of output data in total, but
by using the average of each experiment, the service provider will charge for 18.05
GB of the output data. This value could be calculated as a progression of the value
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Table 6.3 – Data size of output files in one BRAMS experiment.

Output data Size [GB]
MAKESFC & MAKEVFILE 0.012
Analysis 1.100
History 0.147
Post-process 0.008
Total 1.267

charged by the fraction of the month that the output files have been stored. So the
price paid each month for storage will be the value of the input and output data
sizes multiplied by the datacenter storage price:

S = (Si + So) × DCs

= (18.05 + 10.17) × 0.40
= 11.29 USD/Month

(6.2)

Where Si is the amount of stored input data, So represents the amount of stored
output data and DCs is the price for storage in the selected datacenter. This monthly
cost is calculated only for the first month, as storage usage grows with time, usage
has to be optimized to prevent uncontrolled growing, reducing the costs associated.

6.5.2 Networking

As discussed in Section 4.1.2 we used a feature of Azure to reduce the costs
related to bandwidth usage. To compare the cost reduction of using this feature for
BRAMS, we calculate the price of having the data stored in a different datacenter,
generating traffic in the same zone. Transfer prices are shown in Table 6.4

Table 6.4 – Outbound data transfer prices, price per gigabyte on USD.

Transfer Size Zone 1 Zone 2 Zone 3
5 GB–10.0 TB 0.087 0.138 0.181

10–50 TB 0.083 0.135 0.175
50–150 TB 0.070 0.130 0.170
150–500 TB 0.050 0.120 0.160

Zone 1: US West, US East, US North Central, US South Central, US East 2, US
Central, Europe West, Europe North
Zone 2: Asia Pacific East, Asia Pacific Southeast, Japan East, Japan West, Australia
East, Australia Southeast
Zone 3: Brazil South
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In the first networking scenario, we use the Zone 3, that includes the Azure
datacenter located in Brazil. In this case, we would need to pay for the networking
transfers outside Zone 3.

As calculated in the previous subsection the output data from the experiments is
152 GB. Transferring this amount of between nodes would be charged using the first
limit shown in Table 6.4.

N = To × DCn

= 152 × 0.181
= 27.51 USD/Month

(6.3)

Where To is the amount of outbound transferred data and DCn is the price of
transferring outside the selected datacenter.

In the second scenario, all the BRAMS deployment is inside the same datacenter.
Because the price is zero no matter which datacenter is used in this scenario, we
could use Zone 3 for calculation again.

N = To × DCn

= 152 × 0.00
= 0.00 USD/Month

In Section 4.1.2 we discussed the fact that using this feature represented a big
benefit while porting BRAMS to the cloud. Having a 100% price reduction in some
of the core aspects of the cloud represents significant savings in a cloud deployment.

These two scenarios are analyzed because storing the data near the source, in
this case the INPE in Brasil, could lead to better transfer speeds. On the other hand,
price difference on the computing instances should compensate . Most of the instance
sizes in Brazil datacenter are more expensive when compared to the instances prices
in the other Azure datacenters.

6.5.3 Processing

Using the performance results obtained in Section 6.1 we calculate the price of
running each experiment depending on the number of instances deployed. The prices
were calculated using the following expression:

P = Pt × V Mn × DCp (6.4)

Where Pt is the execution time of the experiment, V Mn is the number of VMs
deployed for the experiment and DCp is the Datacenter price of the deployed instance
size.
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Table 6.5 – Price per experiment based on instance size, number of instances and duration
of the experiment. Include only include compute costs. Prices in USD.

Cores A4 A7 D13 D14 A8 A9
8 1.41 2.35 1.60 1.47 2.25 4.49
16 1.38 2.34 1.66 1.18 2.36 2.36
24 1.60 2.68 1.98 2.37 2.83 3.75
32 1.85 3.26 2.42 2.11 3.51 3.43
40 1.76 3.11 2.38 2.51 3.31 4.07
48 2.02 3.68 2.79 2.40 3.84 4.04
56 2.03 3.72 2.92 2.89 4.10 5.07
64 2.30 4.28 3.30 2.98 4.69 5.22

The price of the instance is charged by the minute even if it is commonly advertised
as by the hour. Results of are depicted in Table 6.5.

All the prices were calculated using Europe North datacenter. The prices were
obtained in January of 2015.

6.5.4 Final Cost per Experiment

With all the variables calculated we could finally arrive at the final costs of
running forecast experiments using BRAMS in the cloud. Using Table 6.5 data and
the results of Equation 6.2 and Equation 6.3. we could use the Equation 6.1.

Results of computed final price are depicted in Table 6.6. The price reduction by
using networking in same datacenter is about 5.88 percent.

We can conclude that taking advantages of the features of a cloud provider, and
creating an automated environment we could perform high performance computing
in the cloud with low budget. Regarding the reductions in networking costs, in
practice the deployment will have some amount of outbound transfer, even using

Table 6.6 – Price per experiment based on instance size, number of instances, duration of
the experiment, storage and network transfer. Prices in USD.

Cores A4 A7 D13 D14 A8 A9
8 1.50 2.44 1.69 1.56 2.34 4.58
16 1.47 2.43 1.74 1.27 2.45 2.45
24 1.69 2.77 2.07 2.46 2.92 3.84
32 1.94 3.35 2.51 2.20 3.60 3.52
40 1.85 3.20 2.47 2.60 3.40 4.16
48 2.11 3.77 2.87 2.49 3.93 4.13
56 2.12 3.81 3.01 2.98 4.19 5.16
64 2.39 4.37 3.39 3.07 4.77 5.31
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an SSH connection would be charged because is accessed from outside the cloud
infrastructure. However, keeping most of the data in the cloud and transferring only
the data that critically needs to get out of the cloud, as the forecast visualization
files, the transfer amount will still be low compared to moving complete datasets.

6.5.5 Cost Efficiency

The final decision about moving entirely to the cloud based on pricing depends
completely on the user constraints. For example, for a user it would be acceptable
having results in 1438.96 seconds paying $2.39, as in the results we obtained using
A4 instances. However, another user could consider that time unacceptable and set
its requirements on 860.58 seconds. In that case, the user would pay for A8 instances,
$4.77

A question that could arise from those case examples is if it is worth paying
almost two times more for a 40 percent reduction in execution time. Or as the issue
related to A9 instances, without insight comparing different results, the end user
could end up paying for a more expensive machine and receiving worse performance.

Analyzing the user constraints is complicated because of the amount of evaluations
involved. In order to simplify this process, we could use a cost efficiency model
to help the user in the decision to move to the cloud. In Figure 6.7 the results
of execution time are plotted against the execution cost of an experiment. Two
execution time values were not plotted to allow easier scaling the number of symbols
in the figure. The values are over 7,000 seconds in the A4 and A7 instances.

An example of a user constraint could be the following: we would execute
forecasting using BRAMS in the cloud only if execution time is less than 1,500
seconds and if price per experiment is less than $3 USD.

In that case, the selection of the instances inside the area of those two constraints
is a reduced subset of all the possible options. With those constraints, the user
would probably select D14 with 48 cores because is cheaper than other options and
execution time difference is low enough to be accepted.

6.6 MBRAMS: BRAMS as Multiple Cloud Services

We performed experiments over several geographic areas as proposed in Section 5.2.
This group of experiments consisted of running a complete weather forecast scaling
horizontally from one node up to 8 nodes in Azure. The Figures show the average
execution time of 5 runs of the INITIAL stage in the forecast simulation for each
number of nodes using A8 instances. BRAMS stages MAKESFC and MAKEVFILE
were not taken into account because they were developed to use only one CPU core,
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Figure 6.7 – Cost-efficiency of BRAMS instances deployed on Azure. The number inside
the symbol indicates the number of cores. Instances closer to the origin have a higher cost
efficiency ratio.

that means they receive no performance gains by changing the number of nodes.
Results are detailed taking into account the scenarios sharing storage accounts in
MBRAMS.

6.6.1 Processing and Storage

The first experiments evaluate the usage of a sharing storage account. Each one
of the deployments of BRAMS has access to two storage accounts. One account
shared containing input data and another for each deployment output data.
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Figure 6.8 – Average execution time reduction while using a shared storage account for
input and output data. All tests using A8 VM instances.

The results of running forecast over the four geographic areas using 50KM
resolution are depicted in Figure 6.8. As seen in the Figure, results were homogeneous
between the four deployments. Scaling was consistent between deployments all the
way to 64 cores. Standard deviation was low in the experiments, under three percents
in all cases. These results show the usage of a shared storage account for input and
output data.

Executing the same set of experiments but setting the storage of output files
into another storage account yield interesting results. These results are depicted on
Figure 6.9. As seen in the Figure, there was a significant reduction in the execution
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Figure 6.9 – Average execution time reduction while using a shared storage account only
for input data. All tests using A8 VM instances.
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Figure 6.10 – Average reduction in execution time while using a shared storage account
only for input data. All tests using A8 VM instances.

time for all of the experiments. The execution time reduction is significant using
this storage approach.

A comparison of the results is shown in Figure 6.10. On average time reduction
was 14.75 percent, in the cloud as time is money, these results reduce the cost of
the experiments. Those results confirm our ideas about how sharing cloud storage
impacts performance for MBRAMS. It is important to say that using different storage
accounts does not increase the cost of the deployment. In Azure, the number of
storage accounts is not billed. However, the user subscription has a limit on the
number of accounts that can create. We conclude that is possible to optimize the
impact of storage on performance, but an in-depth analysis of how storage should be
used while keeping the system manageable is required.

6.6.2 Scaling Resolution

In order to evaluate this MBRAMS scenario in a more detailed forecast, we per-
formed more experiments scaling the BRAMS model resolution. These experiments
used the storage system sharing input data but storing in its own account. The first
group of experiments was conducted using a 20KM spatial resolution. Results are
depicted in Figure 6.11.

As shown in Figure 6.11 the results were similar to the previous ones, execution
time was acceptable, and the application managed to scale. MBRAMS behavior on
the reduction in the percentage of performance gains as more instances were added
was similar to that found in the previous experiments when scaling up to 64 cores.

Interestingly, execution time did not increase that much with the change in model
resolution. We expected at least twice the execution time, but on average the increase
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Figure 6.11 – Average execution time reduction while using a shared storage account only
for input data. All tests using A8 VM instances.

was nearly 18% in both cases, with 4.99% standard deviation in the case of Argentina
and 2.9% for Uruguay.

The next scaling experiment was performed scaling to a 5KM model resolution.
Figure 6.12 show the results. MBRAMS deployments scaled correctly, time to
execution increases more than in 20KM experiments. Again execution time was
not heavily impacted; this time resolution change was greater than in the previous
experiment and execution time increased 26.75% in average, with 4.22% standard
deviation.
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Figure 6.12 – 5KM model resolution, Average execution time reduction while using a
shared storage account only for input data. All tests using A8 VM instances.
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6.7 BRAMS Post-processing

The post processing stage requires the sequential execution of GrADS1. GrADS,
Grid Analysis, and Display System, allows access, manipulation, and visualization of
BRAMS and other scientific applications. The tool reads the output data of BRAMS
and extracts the data for each forecasted variable and print the output to a graphic
file.

We used the post-processing output files to visualize if output data was consistent
between experiments. Those graphics are also automatically generated by using the
developed scripts that control BRAMS executions. We used BING maps2, a mapping
technology from Microsoft to include location information in the background of the
forecast resulting image. The purpose of this section is to show some examples of this
output files and how was the integration with BING maps. Visualization examples

1http://www.iges.org/grads
2http://www.bingmapsportal.com

Figure 6.13 – 2 meter height air temperature in celsius degrees, resolution 50KM
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Figure 6.14 – Post processing on the 20 KM forecast results

of the output obtained while running MBRAMS are depicted as follows. All the
figures were generated using the actual forecast produced by BRAMS as part of the
adapted workflow in the cloud. The figures from a forecast of the same date and
hour in all cases.

Figure 6.13 shows the output of the forecasted area, country level, for each one of
the experiments using the 50 KM resolutions of BRAMS. The four deployments of
BRAMS were executed simultaneously. Figure 6.14 shows the output of the forecasted
area, state level, for each one of the experiments using the 20 KM resolutions of
BRAMS. Both deployments of BRAMS were executed simultaneously. Figure 6.15
shows the output of the forecasted area, in this case, at the city level, for each one of
the experiments using the 5 KM resolutions of BRAMS.

Figure 6.15 – Post processing on the 5 KM forecast results
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7 CONCLUSION

This work presented the challenges in running an HPC application in a cloud
computing infrastructure using IaaS. We present our solutions for the process of
porting BRAMS to the Microsoft Azure Cloud platform. Performance results show
that cloud infrastructure offers possibilities to move applications from legacy code and
that it is possible to provide an environment for the application while reducing the
setup complexity when running HPC applications. Variability between experiments
was low in Azure, which is an important characteristic for HPC as it leads to a higher
predictability of experiments, both in the time it takes and how much it will cost.

The scalability experiments show that is possible to scale BRAMS up to 168
CPU cores with certain mistrust. Our results showed that reduction in execution
time beyond 88 CPU cores is less than two percent at every scaling step. Also, we
performed scaling test with BRAMS model resolution from 50km to 5km in the
cloud deployment.

In the networking aspect of the migration, by using the same datacenter for the
deployment we reduced the transfer bandwidth cost to almost zero percent during
the processing stage. This decision reduced in nearly 6% the total costs executing
BRAMS in the cloud. We obtain network latency results of 70 µs in average, with a
24% standard deviation for some instance sizes. The instances with better network
capabilities showed better results in this aspect with 25.93 µs, near the 12 µs latency
of the local cluster. The relatively high latencies create an issue for the deployment of
larger BRAMS simulations in Azure and in general for any kind of HPC application
ported to this infrastructure.

Regarding storage, by defining an storage condition for output files it was possible
a reduction of 14.75% in execution time when multiple BRAMS deployments are
using the shared storage accounts for input files.

The overhead caused by latencies and the time spent in operations not related to
an actual usage could impose an adoption barrier to analyze further HPC applications
in Azure. This overhead creates a non-processing state in which the VMs already
started are waiting to start processing but waiting noticeable amounts of time before
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performing a useful computation. In this waiting state, all the idle VMs generate
costs that are expected to be reduced by the usage of a cloud infrastructure.

The lifecycle technique developed for this thesis could be applied to others
applications in order to make the managing process easier, reducing costs when
moving to the cloud. The cost efficiency plot allows a quick and precise way to
check if user constraints allows the execution of an application in the cloud. One
of the expected primary contributions of our work is to create the possibility of
small research centers in South America to perform weather prediction of their
regions.Without depending on supercomputers, and with limited, or absent, upfront
costs. Using shared storage accounts to allow the creation of research networks using
the same datasets.

We expect that performing this kind of experiments in other cloud providers as
Amazon EC2 and Google Compute shows similar results, as most of the commodity
hardware in their datacenters still uses high-latency network links. This network-
intensive usage limitation is not unique of BRAMS, as it is present in more HPC
applications using the distributed memory paradigm. We hope that the experience
obtained can be applied to port other HPC applications. Cloud computing is an
evolving, promising alternative, as long as providers upgrade their hardware and
keep lowering the prices of their services, driven by the competitive market.

For the future, we intend to perform a full analysis of the cost of running BRAMS
simulations in the cloud, as some aspects of the deployment cost require a more
detailed study. We also plan to capture more metrics to cover all the aspects of the
execution and try to improve the performance of this HPC application in a cloud
environment.



81

REFERENCES

ANDRIKOPOULOS, V. et al. How to adapt applications for the Cloud environment:
Challenges and solutions in migrating applications to the Cloud. Computing, v. 95,
n. 6, p. 493–535, 2013. ISSN 0010485X. One citation in page 31.

BENEDICT, S. Performance issues and performance analysis tools for hpc cloud
applications: a survey. Computing, Springer Vienna, v. 95, n. 2, p. 89–108, 2013.
ISSN 0010-485X. One citation in page 22.

BESERRA, P. V. et al. Cloudstep: A step-by-step decision process to support legacy
application migration to the cloud. In: 2012 IEEE 6TH INTERNATIONAL WORK-
SHOP ON THE MAINTENANCE AND EVOLUTION OF SERVICE-ORIENTED
AND CLOUD-BASED SYSTEMS, MESOCA 2012. Proceedings... Trento, Italy,
2012. p. 7–16. One citation in page 31.

BROWN, D. et al. Scientific grand challenges: Crosscutting technologies for compu-
ting at the exascale. Pacific Northwest National Laboratory, PNNL-20168,
February, 2010. One citation in page 29.

CARREÑO, E.; ROLOFF, E.; NAVAUX, P. O. A. Challenges and Solutions in
Executing Numerical Weather Prediction in a Cloud Infrastructure. In: INTER-
NATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE. Proceedings...
Reykjavík, Iceland, 2015. (ISCC 2015). One citation in page 26.

CPTEC-INPE. Brazilian Regional Atmospheric Modelling System
(BRAMS). 2014. <http://www.cptec.inpe.br/brams>. Accessed August 10, 2014.
One citation in page 33.

DONGARRA, J. et al. The international exascale software project roadmap. IJH-
PCA, v. 25, n. 1, p. 3–60, 2011. One citation in page 29.

EVANGELINOS, C.; HILL, C. N. Cloud Computing for parallel Scientific HPC
Applications: Feasibility of Running Coupled Atmosphere-Ocean Climate Models on
Amazon’s EC2. In: IN THE 1ST WORKSHOP ON CLOUD COMPUTING AND
ITS APPLICATIONS (CCA). Proceedings... [S.l.], 2008. 2 citations in pages 21
and 29.

EVOY, G. M.; SCHULZE, B. Understanding scheduling implications for scientific
applications in clouds. In: PROCEEDINGS OF THE 9TH INTERNATIONAL
WORKSHOP ON MIDDLEWARE FOR GRIDS, CLOUDS AND E-SCIENCE.

http://www.cptec.inpe.br/brams


82

Proceedings... New York, NY, USA: ACM, 2011. (MGC ’11), p. 3:1–3:6. ISBN
978-1-4503-1068-0. One citation in page 30.

FOSTER, I. et al. Cloud computing and grid computing 360-degree compared.
In: GRID COMPUTING ENVIRONMENTS WORKSHOP 2008 (GCE ’08). Pro-
ceedings... [S.l.], 2008. p. 1–10. ISBN 978-1-4244-2860-1. One citation in page
25.

FOX, A. et al. Above the clouds: A Berkeley view of cloud computing. Dept.
Electrical Eng. and Comput. Sciences, University of California, Berkeley,
Rep. UCB/EECS, v. 28, p. 13, 2009. One citation in page 25.

HAJJAT, M. et al. Cloudward Bound : Planning for Beneficial Migration of Enterprise
Applications to the Cloud. Configurations, ACM, v. 40, n. 4, p. 243–254, 2010.
One citation in page 31.

HERNÁNDEZ, S. et al. Cost evaluation of migrating a computation intensive
problem from clusters to cloud. In: ALTMANN, J.; VANMECHELEN, K.; RANA,
O. (Ed.). Economics of Grids, Clouds, Systems, and Services. [S.l.]: Springer
International Publishing, 2013, (Lecture Notes in Computer Science, v. 8193). p.
90–105. ISBN 978-3-319-02413-4. 2 citations in pages 30 and 31.

HOHENSTEIN, U. et al. Towards Cost Aspects in Cloud Architectures. In: IVANOV,
I. et al. (Ed.). Cloud Computing and Services Science. [S.l.]: Springer Interna-
tional Publishing, 2013, (Communications in Computer and Information Science,
v. 367). p. 117–134. ISBN 978-3-319-04518-4. One citation in page 31.

HUBER, N. et al. Evaluating and modeling virtualization performance overhead for
cloud environments. In: CLOSER. Proceedings... [S.l.], 2011. p. 563–573. One
citation in page 25.

HUMPHREY, M. et al. Assessing the value of cloudbursting: A case study of satellite
image processing on windows azure. In: E-SCIENCE (E-SCIENCE), 2011 IEEE 7TH
INTERNATIONAL CONFERENCE ON. Proceedings... [S.l.], 2011. p. 126–133.
One citation in page 30.

IOSUP, A. et al. Performance analysis of cloud computing services for many-tasks
scientific computing. IEEE Trans. Parallel Distrib. Syst., IEEE Press, Piscat-
away, NJ, USA, v. 22, n. 6, p. 931–945, jun. 2011. ISSN 1045-9219. One citation in
page 21.

ISO/IEC. Information technology – Cloud computing – Overview and vo-
cabulary. [S.l.]: ISO, 2014. v. 2014. One citation in page 25.

JOHNSTON, S.; COX, S.; TAKEDA, K. Scientific computation and data manage-
ment using microsoft windows azure. In: FIORE, S.; ALOISIO, G. (Ed.). Grid
and Cloud Database Management. [S.l.]: Springer Berlin Heidelberg, 2011. p.
169–192. ISBN 978-3-642-20044-1. One citation in page 30.

LANGMEAD, B. et al. Searching for snps with cloud computing. Genome Biology,
BioMed Central, v. 10, n. 11, 2009. One citation in page 29.



83

LONGO, K. M. et al. The Chemistry CATT-BRAMS model (CCATT-BRAMS
4.5): A regional atmospheric model system for integrated air quality and weather
forecasting and research. Geoscientific Model Development, v. 6, n. 5, p. 1389–
1405, 2013. ISSN 1991959X. One citation in page 33.

LU, W.; JACKSON, J.; BARGA, R. AzureBlast: A Case Study of Developing Science
Applications on the Cloud. In: 19TH ACM INTERNATIONAL SYMPOSIUM ON
HIGH PERFORMANCE DISTRIBUTED COMPUTING. Proceedings... New
York, NY, USA: ACM, 2010. (HPDC ’10), p. 413–420. ISBN 978-1-60558-942-8. One
citation in page 30.

LV, H.; LIU, J. RCMS: Rapid Cloud Migration Solution. In: COMPUTATIONAL
INTELLIGENCE AND DESIGN (ISCID), 2013 SIXTH INTERNATIONAL SYM-
POSIUM ON. Proceedings... [S.l.], 2013. v. 1, p. 426–429. One citation in page
31.

MELL, P.; GRANCE, T. The NIST Definition of Cloud Computing. 26.
ed. [S.l.], 2011. Available from Internet: <http://www.csrc.nist.gov/groups/SNS/
cloud-computing/>. One citation in page 25.

MENYCHTAS, A. et al. Artist methodology and framework: A novel approach for
the migration of legacy software on the cloud. In: SYMBOLIC AND NUMERIC
ALGORITHMS FOR SCIENTIFIC COMPUTING (SYNASC), 2013 15TH INTER-
NATIONAL SYMPOSIUM ON. Proceedings... [S.l.], 2013. p. 424–431. One
citation in page 31.

PIELKE, R. et al. A comprehensive meteorological modeling system - RAMS. Me-
teorology and Atmospheric Physics, Springer-Verlag, v. 49, n. 1-4, p. 69–91,
1992. ISSN 0177-7971. One citation in page 33.

RAMAKRISHNAN, L. et al. Evaluating interconnect and virtualization performance
for high performance computing. In: PROCEEDINGS OF THE SECOND INTER-
NATIONAL WORKSHOP ON PERFORMANCE MODELING, BENCHMARK-
ING AND SIMULATION OF HIGH PERFORMANCE COMPUTING SYSTEMS.
Proceedings... New York, NY, USA: ACM, 2011. (PMBS ’11), p. 1–2. ISBN
978-1-4503-1102-1. One citation in page 25.

REED, D. A. et al. Computational science: ensuring America’s competitive-
ness. [S.l.], 2005. One citation in page 29.

ROLOFF, E. et al. Evaluating high performance computing on the windows azure
platform. In: CLOUD COMPUTING (CLOUD), 2012 IEEE 5TH INTERNATIONAL
CONFERENCE ON. Proceedings... [S.l.], 2012. p. 803–810. ISSN 2159-6182. 2
citations in pages 26 and 30.

ROLOFF, E. et al. High performance computing in the cloud: Deployment, per-
formance and cost efficiency. In: CLOUD COMPUTING TECHNOLOGY AND
SCIENCE (CLOUDCOM), 2012 IEEE 4TH INTERNATIONAL CONFERENCE
ON. Proceedings... [S.l.], 2012. p. 371–378. One citation in page 30.

http://www.csrc.nist.gov/groups/SNS/cloud-computing/
http://www.csrc.nist.gov/groups/SNS/cloud-computing/


84

SIMALANGO, M.; OH, S. Feasibility study and experience on using cloud infras-
tructure and platform for scientific computing. In: FURHT, B.; ESCALANTE, A.
(Ed.). Handbook of Cloud Computing. [S.l.]: Springer US, 2010. p. 535–551.
ISBN 978-1-4419-6523-3. 2 citations in pages 30 and 31.

SIMON, H. Exascale challenges for the computational science community. Lawrence
Berkeley National Laboratory and UC Berkeley, Tech. Rep, 2010. One
citation in page 29.

SOUTO, R. et al. Processing mesoscale climatology in a grid environment. In:
CLUSTER COMPUTING AND THE GRID, 2007. CCGRID 2007. SEVENTH
IEEE INTERNATIONAL SYMPOSIUM ON. Proceedings... [S.l.], 2007. p. 363–
370. 2 citations in pages 21 and 34.

TAK, B. C.; TANG, C. AppCloak: Rapid Migration of Legacy Applications into
Cloud. In: CLOUD COMPUTING (CLOUD), 2014 IEEE 7TH INTERNATIONAL
CONFERENCE ON. Proceedings... [S.l.], 2014. p. 810–817. One citation in page
31.

TOP500. http://www.top500.org. 2014. Available from Internet: <http://www.
top500.org>. One citation in page 29.

TRAN, V. T. et al. Size estimation of cloud migration projects with cloud migration
point (cmp). In: 2013 ACM / IEEE INTERNATIONAL SYMPOSIUM ON EM-
PIRICAL SOFTWARE ENGINEERING AND MEASUREMENT. Proceedings...
Los Alamitos, CA, USA: IEEE Computer Society, 2011. v. 0, p. 265–274. ISBN
978-0-7695-4604-9. One citation in page 31.

VECCHIOLA, C.; PANDEY, S.; BUYYA, R. High-performance cloud computing:
A view of scientific applications. In: PERVASIVE SYSTEMS, ALGORITHMS,
AND NETWORKS (ISPAN), 2009 10TH INTERNATIONAL SYMPOSIUM ON.
Proceedings... [S.l.], 2009. p. 4–16. 2 citations in pages 21 and 25.

WARD, C. et al. Workload migration into clouds - Challenges, experiences, opportuni-
ties. In: 2010 IEEE 3RD INTERNATIONAL CONFERENCE ON CLOUD COMPU-
TING, CLOUD 2010. Proceedings... [S.l.], 2010. p. 164–171. ISBN 9780769541303.
One citation in page 31.

WU, J. et al. Migrating a digital library to a private cloud. In: CLOUD ENGINEER-
ING (IC2E), 2014 IEEE INTERNATIONAL CONFERENCE ON. Proceedings...
[S.l.], 2014. p. 97–106. One citation in page 31.

YANG, X. et al. Cloud computing in e-science: research challenges and opportunities.
The Journal of Supercomputing, Springer US, v. 70, n. 1, p. 408–464, 2014.
ISSN 0920-8542. One citation in page 22.

http://www.top500.org
http://www.top500.org

	Acknowledgments
	List of Abbreviations and Acronyms
	List of Figures
	List of Tables
	Contents
	Abstract
	Resumo
	1 Introduction
	1.1 Motivation
	1.2 Objectives
	1.3 Text Organization

	2 Background
	2.1 Cloud Computing
	2.2 Microsoft Azure
	2.3 High Performance Computing
	2.4 HPC Applications in the Cloud
	2.5 Migrating Applications to the Cloud
	2.6 Summary

	3 Brazilian Regional Atmospheric Modeling System (BRAMS)
	3.1 BRAMS workflow
	3.1.1 Stage 1: Download and Convert Initial Data
	3.1.2 Stage 2: MAKESFC
	3.1.3 Stage 3: MAKEVFILE
	3.1.4 Stage 4: INITIAL
	3.1.5 Stage 5: Post-Processing

	3.2 BRAMS datasets
	3.3 Summary

	4 Migrating BRAMS to the Cloud
	4.1 Migrating BRAMS: Challenges and Solutions
	4.1.1 Storage
	4.1.2 Networking

	4.2 BRAMS Lifecycle in Azure
	4.2.1 Create
	4.2.2 Base VM
	4.2.3 Instantiate
	4.2.4 Control
	4.2.5 Delete

	4.3 Adapted workflow in the cloud
	4.4 Concluding Remarks

	5 Evaluation Methodology
	5.1 Evaluation of aspects: BRAMS
	5.1.1 Performance and Scalability
	5.1.2 Storage
	5.1.3 Networking
	5.1.4 Provisioning
	5.1.5 Pricing
	5.1.6 Environments

	5.2 Evaluation of aspects: MBRAMS
	5.2.1 Aspects
	5.2.2 Environments

	5.3 Final Remarks

	6 Experimental Results
	6.1 Processing
	6.2 Networking
	6.3 Provisioning and Controlling Operations
	6.4 Scalability
	6.5 Pricing
	6.5.1 Storage
	6.5.2 Networking
	6.5.3 Processing
	6.5.4 Final Cost per Experiment
	6.5.5 Cost Efficiency

	6.6 MBRAMS: BRAMS as Multiple Cloud Services
	6.6.1 Processing and Storage
	6.6.2 Scaling Resolution

	6.7 BRAMS Post-processing

	7 Conclusion
	References



