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ABSTRACT

In this work we introduce an extended version of the formalism proposed originally by Taurines et al. that
considers the effects of many-body forces simulated by nonlinear self-couplings and meson—-meson interaction
contributions. In this extended version of the model, we assume that matter is at zero temperature, charge neutral,

and in beta-equilibrium, considering that the baryon octet interacts by the exchange of scalar-isoscalar (o, o),
vector—isoscalar (w, ¢), vector—isovector (¢), and scalar-isovector (6) meson fields. Using nuclear matter
properties, we constrain the parameters of the model that describe the intensity of the indirectly density dependent
baryon—meson couplings to a small range of possible values. We then investigate asymmetric hyperonic matter
properties. We report that the formalism developed in this work is in reasonable agreement with experimental data
and also allows for the existence of massive hyperon stars (with more than 2 M.,) with small radii, compatible with

astrophysical observations.
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1. INTRODUCTION

In the last decades, the determination of the equation of state
(EOS) of nuclear matter at high densities has become one of
the main goals of nuclear astrophysics. Experimental nuclear
data together with neutron star observational measurements
can and should be used to restrict the parameters of the models
used to describe the EOS of neutron stars, not only at low, but
also at high densities. For example, Schaffner-Bielich (2008)
showed that hypernuclear data impose contraints in the
composition of hyperon stars (see also references cited in
Schaffner-Bielich 2008). More specifically, observations of
2 My neutron stars (Demorest et al. 2010; Antoniadis
et al. 2013) constrain the EOS of neutron stars, in particular
its stiffness in the high density regime. A theoretical study that
calculates the radii of 1.4 M, neutron stars also discusses the
role played by matter above saturation density on neutron star
properties (Fortin et al. 2014). Such compact stars are
considered canonical stars because the most accurate mass
measurement from the binary pulsar system PSR 1913+16,
predicts masses of 1.3867 £ 0.0002 M, and
1.4414 + 0.0002 M, (Lattimer & Prakash 2005; Weisberg &
Taylor 2005).

Although the fundamental physics has to be described in
terms of quarks and gluons, at scales of energy where only the
baryon degrees of freedom are relevant, the residuum of the
strong interaction between quarks can be described by effective
hadronic models. The first attempts to describe the properties of
nuclear matter were made in the 1950s, with the works of
Johnson & Teller (Johnson & Teller 1955), which introduced
classical nuclear potentials whose quanta were 7 mesons, and
of Duerr (Duerr 1956), which reformulated this previous
formalism in a relativistic approach, able to explain spin—orbit
coupling. These two works were the seeds of a particular class
of models, denominated relativistic mean field (RMF) models,
in which the nuclear interaction is usually described by the

exchange of scalar—isoscalar and vector—isoscalar mesons with
minimal Yukawa coupling in a quantum field theory approach.
These terms represent the attractive and repulsive components
of the nuclear force in the long and short range regimes,
respectively.

The first RMF model for nuclear matter was proposed in
1974 by Walecka et al. (Serot & Walecka 1986), introducing
the description of nuclear matter in the exchange of scalar and
vector mesons. This model, however, was not able to
reproduce correctly the compressibility modulus of nuclear
matter and the nucleon effective mass at saturation. As a
consequence, several extensions of the model were developed
in order to overcome the problem. Boguta and Bodmer
proposed additional terms in the scalar sector by taking into
account the nonlinear third and fourth orders of the o meson
self-interaction terms. With this, they could simulate field-
dependent correlations in the in-medium nucleon—nucleon
interaction (Boguta & Bodmer 1977). In later works, this
same feature was extended to the w meson (Sugahara &
Toki 1994; Toki et al. 1995) and the case with crossed
scalar—vector interaction terms was also investigated (Todd-
Rutel & Piekarewicz 2005; Kumar et al. 2006). The meson—
baryon coupling was also modified in other models, such as
the ZM models with a derivative coupling (Zimanyi &
Moszkowski 1990) and the density dependent meson—
baryon coupling model proposed in Typel & Wolter (1999),
as an alternative to the minimal coupling proposed by
Walecka.

In particular, the models introduced by the works in
Zimanyi & Moszkowski (1990) and Delfino et al.
(1995a, 1995b) replace the Yukawa coupling g, 1ot by a
derivative coupling (g,0 /M )157“8“1/} in a class of models

denominated derivative scalar coupling models (DSCM).
These models are Lorentz invariant but not renormalizable,
and present the important features of a field dependence in the
baryon—-meson coupling, introducing an indirect density
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dependence. Also the nonlinear terms for the scalar fields can
be interpreted as many-body forces contributions. The DSCM
were widely applied to study the bulk properies of nuclear
matter (Choudhury & Rakshit 1993; Delfino et al. 1995a;
Aguirre et al. 1996; Bhattacharyya & Raha 1996), finite nuclei
(Biro & Zimanyi 1997; Chiapparini et al. 1997), hypernuclear
matter (Barranco et al. 1991; Lombard et al. 1995), neutron
stars (Glendenning et al. 1992), and also quark-meson
coupling models (Aguirre & Schvellinger 1997) and beyond
mean field approaches (Aguirre 2001). Finally, some attempts
to introduce theoretical fundaments to the DSCM are
presented in Miyazaki (1994), in which it is shown that such
models are related to SU(6) model for the meson-baryon
couplings, and also in Miyazaki (1995), in which results show
similarities between a DSCM based approach and Dirac—
Brueckner-Hartree—Fock theory.

Since the characteristic timescale for the population of
neutron stars is long compared to the typical weak-interaction
timescale, strangeness is not conserved in their interiors, for
the appearance of net strangeness, which means hyperonic
degrees of freedom. The topic of hyperons in neutron stars has
been extensively discussed in the literature. In particular, the
discussion relating new degrees of freedom to the softening of
the EOS and, consequently, to the lowering of neutron stars
maximum masses received renewed attention (Sahakian &
Vartanian 1963; Glendenning 1982, 1985; Knorren et al. 1995;
Hanauske et al. 2000; Schaffner-Bielich et al. 2002) due to the
observations of massive neutron stars. However, as first shown
in (Schaffner & Mishustin 1996), this problem is avoided by

the addition of the pair of strange mesons o* and ¢
(associated, respectively, to f;, (975 MeV) and ¢ (1020 MeV);
Beringer et al. 2012), where the latter one introduces a new
repulsion to the interaction of hyperons. Although additional
uncertainties concerning the hyperonic coupling are added to
the formalism (Fortin et al. 2014), in the presence of these
additional mesons, several authors succeeded in describing
massive hyperon stars using different models (Dexheimer &
Schramm 2008; Bednarek et al. 2012; Bonanno & Sedra-
kian 2012; Lastowiecki et al. 2012; Weissenborn et al. 2012a,
2012b; Banik et al. 2014; Bhowmick et al. 2014; Gusakov
et al. 2014; Lopes & Menezes 2014b; van Dalen et al. 2014;
Yamamoto et al. 2014).

The formulation used in this work is based on the model
proposed in Taurines et al. (2001) as an attempt to unify the
Walecka and ZM models in a general fashion. This formalism
considers a parametric derivative coupling that simulates the
many-body forces by including nonlinear self-interaction and
meson—meson interaction terms for the scalar mesons in the
Lagrangian density of the theory. The meson—baryon cou-
plings are implicitly density dependent and parametrized by a
constant. The parametric coupling formalism reproduces
successfully nuclear matter properties and has been applied
to investigate different topics related to nuclear physics, such
as the nuclear matter compressibility (Dexheimer et al. 2008),
hadron-quark phase transitions (Burigo et al. 2010), kaon
condensation (Razeira et al. 2011), symmetry energy (Mar-
ranghello et al. 2010), and effects of magnetic fields on
neutron stars (Gomes et al. 2014a, 2014b).

In this work, we present an extended version of the
parametric model including the entire set of mesons relevant
to the scale of energy and mean field approximation: scalar—

isoscalar (o, o*), vector-isoscalar (w, ¢), vector—isovector
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(0), and scalar—isovector () meson fields. The ¢ and 6 mesons
are very important for the description of neutron stars, as these
are highly isopin asymmetric objects (Kubis & Kutschera 1997;
Liu et al. 2002; Menezes & Providencia 2004). Also, the
strange mesons ¢ and o*, which are often disregarded, are
important for the description of hyperon—hyperon interaction,
and hence have an important impact on the description of
neutrons stars.

The model presented in this paper is constrained by finding
the parametrization that best describes symmetric nuclear
matter properties (effective nucleon mass and the compressi-
bility modulus at saturation density) and asymmetric
matter properties (symmetry energy and its slope), for fixed
values of saturation density and binding energy. We determine
the hyperon—meson coupling constants for the vector mesons
by the SU(6) symmetry relations and the scalar meson
coupling by the fitting of hyperon potentials to experimental
data. We analyze how nuclear matter properties, hyperon—
nucleon, and hyperon—hyperon interactions affect the predic-
tions of the neutron star properties. Also, we identify the
effects of the new mesonic degrees of freedom on these
properties.

The paper is organized as follows. In Section 2 we present
the many-body formalism introduced in the Lagrangian density
and analyze its effects on the EOS and chemical equilibrium for
the model; the nuclear matter properties at saturation density
are calculated in Section 3, when we set the parameters of the
model; Section 4 is dedicated to the study of asymmetric
matter; we discuss the astrophysical applications of the model
in the description of hyperon stars concerning the meson fields
and hyperon interactions in Section 5 and, finally, we present
our conclusions in Section 6.

2. MANY-BODY COUPLING RELATIVISTIC FIELD
FORMALISM

2.1. Formalism

As a conventional way of classifying and organizing
interaction terms in effective field theory approaches, as well
as to introduce a guideline for the strengths of the various
couplings, we adopt the concept of naturalness. Naturalness is
related to effective interactions field theories that can be
truncated within a phenomenological domain of the theory.
However, there is no general proof of naturalness property as,
although the attempts of lattice QCD and chiral effective fields
theories, currently no derivation of the strong interaction
lagrangian density is well established. Nevertheless, the
validity of naturalness is supported by phenomenology (see,
e.g., Vasconcellos et al. 2014).

The formalism developed in Taurines et al. (2001) takes into
account many-body contributions to the nuclear force by
introducing the concept of naturalness and a parameterized
derivative coupling for the mesons. In this extended version of
the formalism, we introduce the new mesonic degrees of
freedom 6, o*, and ¢. The § meson is introduced in order to
better describe the properties of asymmetric matter, while the
strange mesons (o, ¢) have important impact on hyperon
interactions. The general Lagrangian density of the model is:
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Table 1
Baryon and Lepton Properties
Particle Mass (MeV) P s qe 5
p 939.6 172 1 +1 0
n 938.3 -1/2 1 0 0
A 1116 0 1 0 -1
o+ 1189 +1 1 +1 -1
0 1193 0 1 0 -1
P 1197 -1 1 -1 -1
=0 1315 +1/2 1 0 -2
= 1321 -1/2 1 -1 -2
e 0.511 0 0 -1 0
wo 105.7 0 0 -1 0

Note. The rows indicate different particles and P, qb, 4., and s stand for the
isopin projection in the z-direction, baryon charge, electric charge, and
strangeness, respectively.

L= Z%[%(l@" - g;bgwﬂ - g;b,ﬁ-,(b# - g;bnbbgg)
b

Py

- (mb — 8,0 — 8;,%0* - 852[31;53)
1 2
— Po — 2

+ 3 (8M08 oc—mjo )

1 % ) 1 . 2¢2
+ 5(8/1,0 oHo™ — m?o ) + 5(6'/,,638/ 03 — m§ 53)

+ % —%w,ﬂ,w”” + mfwuw“]

1 1 uv 2 1
+ E _5¢;LU¢ +mg ¢,u,¢

1 1 3 Qv 2 3 o
+E _EQ/WQS +mgl.0p,‘ @3
+ > (i — my).

[
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The subscripts b and [ label, respectively, the baryon octet
(n, p, A, ¥, X0, ¥, ==, =°) and lepton (e~, p~) degrees of
freedom. The first and last terms represent the Dirac
Lagrangian density for baryons and leptons, respectively. The
other terms represent the Lagrangian densities of the mesons,
where we assume a Klein—Gordon Lagrangian density for the

scalar o, 8, and o fields and a Proca Lagrangian density for the
vector w, ¢, and ¢ fields. The meson—baryon coupling is
introduced by the coupling constants present in the first term of
Equation (1). We allow the system to be isospin asymmetric by
choosing the z-axis as the axis of isospin quantization and
coupling the components 83 and o3 of the isovector fields to the
isospin current I = 1, y"ky1),, where L, is the baryon
isospin component in the z—direction (see Table 1). In
particular, the baryonic scalar (p,, = ¥,1,) and vector

densities (p,, = 1, 1;,) read:

Table 2
Meson Fields Properties Considered in the Formalism
Meson Particle Classification Coupling Mass
constant (MeV)
o o Scalar—isoscalar & 550
6 agp Scalar—isovector 8 980
Wy w Vector—isoscalar 8 782
o, p Vector—isovector 8o 770
* fo Scalar—isoscalar 8.5 975
@, 17/ Vector—isoscalar 8s, 1020

where kp, and m,, stand for the Fermi momenta and effective

masses of each baryon. The baryon, lepton, and meson
properties are found in Tables 1 and 2.

The general definition of the meson—baryon couplings are:

8ope =M 8o 8ape = M, 8sp»

8 =My 8oy Gy = M, 8upy

* =
o*b(

* — * * j— *
g_ob/-c = mnb,» gyb’ g@‘bn = mnbi gq}ba (3)
where the parametric coefficient my;, introduces the nonlinear
contributions:

-

b0 + 8,0 + g0
my, = 1+gb 8o 851303 , (4)
' )\mbi

for A = &k,1,C
The main motivation for this formalism is to introduce a
parameterized derivative coupling that can be expanded in a

series of nonlinear couplings terms between the scalar o, o*,
and 6 mesons. Each term of the expansion correponds to a
medium effect contribution from many-body forces. Ulti-
mately, the complete series expansion, controlled by the A = &,
K,m,¢ parameter, allows the description of genuine many-body
forces, which are introduced as medium effects in the mean
field approximation.

Each set of parameters generates different EOSs and
population profiles and must be analyzed to cover the range
of uncertainties of nuclear saturation properties. We emphasize
that, since the meson fields change their values with density,
the scalar mesons coupling constants present a density
dependence through the coupling of the fields. Note, however,
that such an approach is thermodynamically consistent.

As a first approach, we consider the so-called scalar version
of the model, in which the nonlinear contributions affect only
the scalar mesons, ie, £ = 0, = 0,n = 0, = 0. See
Vasconcellos et al. (2014) for a discussion of other possible
parameterization choices.

The effective mass of baryons in this model reads:

mlj,-( = mp, — mﬁ,i (ggbU + go‘*bo—* + g5b13h53): (5)

where one can see the influence of the nonlinear contributions
of scalar mesons, controlled through the parameter (.
Furthermore, as the effective mass of baryons depends on the
(-parameter, the chemical potential of the interacting particles
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is also affected by many-body forces as

uy, = k3, + (mie)

+ 8w + ggbIsz.OS + g¢b¢, (6)

where k 5 is the baryon Fermi momentum and I3, is the baryon
isospin projection in the z-direction.

In order to obtain the equations of motion, we perform mean
field approximation so that the fields transform as: o—
(0) = 00, 0% — (0%) = g5, W — (W) = ebwn, ¢ — (#")
=cb dg.08 — (0%) = € 003,03 — (03) = o3, where ¢fj cor-
responds to the Kronecker delta and oy, wo, 00, 00, ¢, and oy
denote the classical expectation values of the meson fields. We
then obtain the mean field equations:

0o = —; gab(m@i) - %(’”CZ,') ¢

8 = m_(gz . g&b(mgi’i) - j%b[(mﬁn)T

X (gnbUO + gw05 PP + go*ho'g)}ISb Psb

(S22
oy = Py go*b(mé),) - i::b (m§>) ¢

*b,‘ i

[

X (gnbUO + g0 17 + go*ho'g)}pxbi’

1
0(3) = _2285;1; rr Pby

1
wo = — Zgwbpbi,
my p, my p,

Do ="—3 2 8o Pb: (7

1
me b,

As the density increases, it is more energetically favorable
for the system to populate new degrees of freedom in order to
lower its Fermi energy. In particular, due to strong interaction
processes, hyperon species are predicted to start to become
important at densities around 2p,, where p, is the nuclear
saturation density. Assuming that the matter is in (-
equilibrium, one can easily verify that the many-body forces
also play a role in the particle threshold, as each particle species
is populated beyond the following threshold:

oy = Aoty = ety — 8upo
— 85003 — 8400 = M, (8

where g, and g, represent the baryon and electric charges,

respectively, and 4 and 4 are the neutron and electron
effective chemical potentials, respectively.

Assuming chemical equilibrium and, depending on the
system to be analyzed, isospin symmetry, or charge neutrality,
we calculate the EOS for the model from the components of the
stress-energy tensor. The pressure and energy density of the
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model have the standard expressions

1 1 1 2

p=- Emﬁag — 5m52632 — Emﬁag
1 2,2 1 2 2 1 2.2
+ EmwwO + Emg go:; + §m¢ ¢0

1 k.%b,,lz (m};,]i )2
2128

X kfbi.li k]%}li,li + (m;i’li )2

(mb*,,l; )4 kgt \/k};,,x,,‘ + (m}f,-,z,» )2

8 m;[sli

+

1 2. 2 1 2

2
e=—mso0y + —m
2 o Y0 2 o

1 2
63 + —mlog
3T 0

L o5 o 1 55 L 500
+ Emwwo + Emg 003 T Emg) o

.9

my,, . stands for m,, for baryons and m;, for leptons. The many-
body contributions are introduced in the effective masses of the
baryons and in the scalar mesons, as well as in their coupling
constants.

Note that the inclusion of additional meson fields in the
model has a direct effect on the behavior of matter at high
densities. The presence of the 6 meson also affects asymmetric
nuclear matter at saturation density. In the following sections,
we analyze the results of the formalism proposed in this work
for describing the properties of nuclear matter in both low and
high densities regimes. In order to study matter at high
densities, we discuss the nucleon—hyperon interaction in what
follows.

2.2. Nucleon—Hyperon Interaction

Since hyperons are not present in nuclear matter at saturation
density and experimental data concerning their interaction are
scarce in the literature, many authors in the past proposed
models to describe the meson-hyperon coupling (Mosz-
kowski 1974; Glendenning & Moszkowski 1991; Pal
et al. 1999). However, in the last decades various efforts were
made in order to understand this sector of strong interactions in
more detail and, as a consequence, we have some experimental
constraints regarding mainly the hyperon—nucleon interaction.

In particular, the existence of bound A-hypernuclear states
indicates an attractive potential Uy = —30 MeV at saturation
(Millener et al. 1988). Concerning X-nucleon interactions, the
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absence of bound states in a survey for ¥ atoms (Mares
et al. 1995; Bart et al. 1999) and also scattering studies point
toward a repulsive potential (for a review of the topic see
Friedman & Gal 2007 and references therein). Investigations
on quasi-free production of =’s indicate an attractive potential
of about UL = —18 MeV (Fukuda et al. 1998; Khaustov
et al. 2000; Schaffner-Bielich & Gal 2000; for this topic one
can check again Friedman & Gal 2007). On the other hand, still
little is known about the hyperon—hyperon interaction resulting
from the limited knowledge of double-A hypernuclei
(Gal 2005; Ahn et al. 2013). The few experimental data point
toward a weakly attractive U /{\ potential (Takahashi et al. 2001;
Gal & Millener 2012; Ahn et al. 2013). Nothing can be said
about A= and == interactions.

In this work, we define the hyperonic coupling constants g,
8,v> 8y» and g,y by using the SU(6) spin-flavor symmetry
(Dover & Gal 1985; Schaffner et al. 1994) for the vector
mesons, described as follows:

1 1

g WwN — ngl\ = ngE = 8=
1
8N = Eg!fz =8z &nr=0
242
R 28,0 = 2845 = 84z (10)

where N = n, p, and assuming simple isospin scaling for the
coupling of the 6 meson:

8N = =8&yx = &=> 8 =0. (11)

2

Thus, the hyperonic couplings to the vector mesons are
proportional to the number of strange quarks present inside
each particle. The rule for the isovector mesons is given by the
proportion between the nucleon and the hyperon isospin. For
example, since the A-hyperon is a singlet, it has zero isospin
and, therefore, does not couple to the ¢ and 6 mesons.

We obtain the hyperon—sigma coupling associated to the
attractive interaction between hyperons and nucleons by fitting
the potential depths of the hyperons in nuclear matter
(Glendenning & Moszkowski 1991; Schaffner et al. 1992):

Uy = g,ywo(py) — &yoo(py), (12)

following the values of (Schaffner-Bielich & Gal 2000):
UY = —28 MeV, U = +30MeV, and U2 = —18 MeV.

At first, we only consider the scalar-owgd¢ version of the
model, for fixed values of the hyperon potentials. Then, in
Section 5, we come back to the role of the o*-meson
introducing the cwgdpo™ version of the model in order to
verify the effects of coupling constants on the macroscopic
properties of neutron stars. In particular, we study the effects of
the potential depths and of g_., on the maximum mass, radii,
and particle abundances of neutron stars.

3. NUCLEAR MATTER PROPERTIES AT SATURATION

Our model should be in agreement with experimental data
for the properties of saturated nuclear matter. For this reason,
we impose a saturation density of p, = 0.15 fm 3, a binding
energy per baryon of B/A = —1575MeV (Serot &
Walecka 1986), and infer the nucleon—-meson coupling
constants by fitting the standard values of nuclear matter
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properties at saturation (details in the following). The ¢
parameter, associated with the many-body forces, is con-
strained to describe a realistic (Dirac) effective mass of the
nucleon my; at saturation between 0.66 and 0.78 my (Johnson
et al. 1987; Jaminon & Mahaux 1989), a compressibility
modulus K, between about 200 and 300 MeV (see Stone
et al. 2014, and references therein), a symmetry energy asg),m
between 25 and 35MeV (Tsang et al. 2012; Lattimer &
Lim 2013; Horowitz et al. 2014), and a symmetry energy slope
Ly between 60 and 115 MeV (Chen et al. 2005b; Lopes &
Menezes 2014a).

At saturation, the isopin-symmetric nuclear matter has
vanishing pressure, and is not populated by leptons nor
hyperons (by definition). Also, due to the isospin symmetry,
the mean values of the isovector mesons ¢ and § are zero. To

determine the constants (g(,N/mg)z, (ng/mw)z, and the

effective mass of the nucleon my at saturation, we solve the
system of equations of zero pressure, experimental value of the
binding energy per nucleon and the oy field equation of motion
self-consistently.

We calculate the compressibility modulus for symmetric
nuclear matter, which is related to the curvature of the EOS by:

Ko =9, d(e/p)

; 13)

P=Po

where K, corresponds to the value of the compressibility
modulus at saturation density p, and € is the corresponding
energy density of the system. It is important to note that the (-
parameter relates the effective mass to the compressibility
modulus (Dexheimer et al. 2008), meaning that for each choice
of (, Ky is calculated independently and is not used as an input
to parameterize the model, as is the case in most RMF models.

The values of (g,y/m,)*, (g./m.)’ my, and K, for
different choices of parametrizations (different ¢) are shown
in Table 3. Figure 1 shows that these quantities rapidly
converge as a function of (, leaving a small range of values of
my and K|, that fit the experimental values. We remark that low
values of the parameter ¢ (lower effective mass and higher
compressibility modulus) generate stronger coupling constants
for the scalar o-meson as well as for the vector w-meson. The
decrease of the attraction provided by the many-body forces
(through the scalar mesons) together with the constant coupling
of the vector mesons allows matter to be more repulsive for
smaller values of the ( parameter. We also checked the
dependence of the binding energy as a function of density on
the many-body forces parameter, from which we have found
that larger values of the { parameter allow for more bound, i.e.,
more attractive matter. This behavior of matter has a direct
impact on the EOS for higher densities and, thus, on the
observational properties of neutron stars, as we discuss in
Section 5.

In order to determine the coupling constants of the nucleon
with respect to the isovector mesons, we must fit the properties
of asymmetric nuclear matter. When only the ¢ meson is
considered, the respective coupling constant is fitted to the
symmetry energy and the value of the slope of the symmetry
energy at saturation is obtained directly from that. However, as
pointed out by Lopes et. al. (Lopes & Menezes 2014a), the
inclusion of the 6 meson breaks this relation. In this case, it is
necessary to consider the EOS of asymmetric nuclear matter (in
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Table 3
Normalized Effective Mass of the Nucleon, Compressibility Modulus, and
Coupling Constants for Different Parametrizations of the Model (Different (’s)

¢ m/m, Ko (MeV) (&on/mo) (gun/mu)*
0.040 0.66 297 14.51 8.74
0.045 0.67 282 14.22 8.40
0.049 0.68 272 13.99 8.14
0.054 0.69 262 13.71 7.83
0.059 0.70 253 13.44 7.55
0.065 0.71 244 13.12 7.23
0.071 0.72 237 12.82 6.94
0.078 0.73 230 12.50 6.63
0.085 0.74 225 12.21 6.37
0.094 0.75 220 11.86 6.05
0.104 0.76 216 11.53 5.75
0.115 0.77 213 11.20 5.46
0.129 0.78 211 10.84 5.16

the absence of leptons) and solve the system of equations of the
symmetry energy and its slope to find the corresponding values
of (g, /m, )? and (gzy /ms)*, according to

d*(e/p)
dt?

Asym

dp

1
0

Asym = =
)

. 14

P=Po

» Lo=3p,
t=0

where the asymmetry between protons and neutrons is
quantified by = (p, — pn)/ph.

It is important to note that, in this formalism, the many-body
contributions correlate the effective mass of the nucleon and
the scalar field equations in the presence of the delta meson
(see Equation (4)). In other words, to determine the EOS of
asymmetric matter at saturation, it is necessary to first solve
self-consistently a system of equations for the expressions of
m,’(, (m,’\‘}, a0, 50), O'Q(m;\k/, a0, (S()) and 60(1’”;\{}, a0, (50) for a non-
vanishing isospin system.

The slope of the symmetry energy has become a very
prominent constraint for the EOS in the past years, as its
measurements (through, for example, neutron skin experi-
ments) have become more accurate. These results seem to
indicate low values (Lo < 60 MeV) for this quantity (Steiner
& Gandolfi 2012; Lattimer & Lim 2013; Li & Han 2013).
Note, however, that some works (such as those in Chen
et al. 2005b; Tsang et al. 2012; Cozma et al. 2013; Wang
et al. 2014 and Sotani et al. 2015) found much higher values
for the slope of the symmetry energy Lo =, 90 MeV. Because
its values still lie in a large accepted range, we perform a large
scan of values with our model in order to find the isovector-
mesons coupling constants suitable to describe massive
hyperon stars.

In summary, the methodology used to describe nuclear
properties in this formalism is the following: by the analysis of
the properties of symmetric matter at saturation, we choose the
nonlinearity parameter ¢ that will determine the g, and g
coupling constants and give the values of the effective mass of
the nucleon and the compressibility modulus by a one-to-one
relation. However, since the choice of the parameter ( is not
enough to determine g, and g, uniquely, we must analyze the
new parameter space given by the isovector meson coupling
constants, the symmetry energy and its slope as shown in
Figures 2—4 for different choices of (.
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Figure 1. Nuclear matter properties at saturation densitiy as a function of the
parameter (. The top panel shows the effective mass of the nucleon my, the
middle panel shows the compressibility modulus K, and the bottom panel
shows the coupling constants of the mesons ¢ and w.

Differently from the case of symmetric matter, where for a
given value of the effective nucleon mass there is only one
possible value for the compressibility modulus Figures 1-4
show that for a given value of the symmetry energy asgm, one

can have different values of the slope Ly. The choices of as(;m

and L, result in different values of the coupling constants of the

mesons g and 6, and are also dependent on the parameter (.
The parameter space for ¢ = 0.040 is shown in Figure 2. The

panels show the coupling constants in a color scale as a
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function of asgm and L. The color scale on the left panel
corresponds to the values of (g, /m )% The same is shown for

(&sn /mg)z on the right panel. The white regions in the figures
correspond to the cases where no numerical solution for the
system of equations exists. Obviously, the values of the
coupling constants must be selected simultaneously in both
panels, in order to guarantee that their values are associated
with the same solutions for as(;m and L.

Note that, by the comparison between different choices of the
parameter ¢, there is a substantial change in the possible range of
solutions for the same values of the coupling constants. For
example, comparing the right panels in Figures 2 and 4, one

verifies that the solution for (g5 /ms)* = 12fm? is found in the

interval of aJ,, ~ 25—27 MeV and L =~ 111—-115 MeV for
¢ = 0.040, while for ( = 0.129 the interval is increased to

agm =~ 25—-31.5 MeV and L, =~ 102—115 MeV. This analysis

was carried out only in the range of 25 < asgm < 35MeV and

60 < Ly < 115 MeV in this work.

The maps for the symmetry energy and its slope show that the
minimum values found for the asymmetry energy slope are those
that correspond to the higher values of the parameter ¢. The lowest
value for the slope can be seen in Figure 4, where for
as(;m = 25 MeV, the solution of Ly = 68 MeV is associated with

(gg,\,/mg)2 =296 fm* (left panel) and (ggz /ms)*=0.07 fm?
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sym

(right panel). Figure 5 allows us to better visualize the relation
between the coupling constants intensity and the slope L for
different choices of (. The left and right panels show simultaneous
solutions for (g, /m,)* and (gzy/ms)*, from which we verify a
linear relation with respect to the slope of the symmetry energy L.
The higher values of the parameter ( are those which provide
lower L values, but higher coupling constants (g, /m 0 )> and

(&sn /m5)2. In particular, this result is important in the light of
recent works pointing toward low values of L, (Hebeler
et al. 2013), meaning that the § meson contribution should not
be too large.

A recent work by Dutra et al. that carries out a review of
263 parametrizations of different RMF models reported that
the value of the volume part of the isospin incompressibility,
denoted K., can also be used as a constraint for the
description of nuclear matter (Dutra et al. 2014). This
quantity reads:

0
K =|Kgm — 6L — ?OLO : (15)

0

where K, and L are the compressibility modulus and the slope
of the symmetry energy at saturation. The quantities Qy and

Ks(})/m are the skewness coefficient of the EOS and the curvature

GOMES ET AL.

Table 4
Volume Part of The Isospin Incompressibility K,,, Curvature of The Symmetry
Energy K?ym, Skewness Coefficient of the Symmetry Energy ngm, and of the
Equation of State Q, at Saturation for Different Parametrizations of the Model

¢ KO (MeV) K3m(MeV) 03 (MeV) 0o (MeV)
0.040 558 30.85 184.5 213
0.049 —484 31.23 197.8 ~188.2
0.059 —412 30.72 192.3 ~364.6
0.071 -346 29.30 176.1 ~505.9
0.085 —291 27.36 150.4 —612.1
0.104 243 25.01 114.8 ~698.8
0.129 214 22.57 783 7511

Note. The values of the symmetry energy and its slope are fixed to
ad, = 32MeV and Ly = 97 MeV.

of the symmetry energy, respectively:

d3(e/
dp p=po:t=0
d*(dsym)
KSm = 9p2 — i (16)
p P=Po

The values of K and Q, lay in a wide range of

uncertainties, KTOV = —550 + 150 MeV that come from the
overlap of the analysis of isospin diffusion (Chen et al. 2005a),
neutron skin (Centelles et al. 2009) and measurement of Sn
isotopes (Li et al. 2007), and Qy = —700 + 500 MeV from
the investigation of isoscalar giant monopole resonance (Farine
et al. 1997; Khan & Margueron 2013; for indirect methods, see
Steiner et al. 2010; Chen 2011). We have also calculated the
symmetry energy skewness at saturation
3
Qs())/m = 27p03(d;;m
for different parametrizations of the model are shown in
Table 4.

We find that the parametrizations ¢ = 0.040-0.071 present
values of K in agreement with the literature. The results for
the skewneess coefficient Q for the parametrizations ¢ = 0.040
and ¢ = 0.049, are smaller than the threshold value. However,
we must emphasize that the quantities analyzed in Table 4 have
a wide range of uncertainties and are based on the overlap of
experimental data that carry large uncertainties themselves.
Also, the calculation of these quantities depends directly on the
values of the symmetry energy and its slope and the results
presented in Table 4 are for fixed values of the as(;m and Ly. A
wider study regarding these quantities is out of the scope of this
present work.

)p=p,> and the values of all these quantities

4. PROPERTIES OF ASYMMETRIC NUCLEAR MATTER
AT HIGH DENSITIES

Before turning our attention to neutron star matter, we
discuss the behavior of asymmetric matter properties at high
densities. The symmetry energy and its slope can be used to
extrapolate the description of nuclear matter to isospin
asymmetric nuclear matter at higher densities. Also, as was
already pointed out by Lopes et al. (Lopes & Menezes 2014a)
and other authors, the behavior of the properties of asymmetric
nuclear matter in the high density regime has a significant
impact on the observable properties of neutron stars.
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Allowing matter to be populated by nucleons and hyperons,
we assume conserved isospin (e.g., purely neutron matter only
or symmetric matter only) and baryon number, and set the
strangeness chemical potential y to zero. We start by
calculating the compressibility for symmetric nuclear matter
as a function of the density, using the general expression

dP

K(p) =9 2| . (17)
’ dp]tO

The behavior of the compressibility as a function of density
is shown in the top panel of Figure 6 for different choices of the
parameter ¢ and for fixed values of the hyperon potentials
UY = —28MeV, U = 30MeV, UY = —18 MeV), sym-
metry energy as(;m = 32MeV and slope Ly =97 MeV at
saturation. The results shown in the top panel of Figure 6 point
to the fact that the lower values of { generate higher values of
the compressibility for high densities, analagously to the
behavior at saturation density.

The impact of the appearance of new degrees of freedom can
be verified at densities around 0.5 and 0.7 fm~3, which
correspond to the densities where the A and = hyperons
appear. As the density increases and new degrees of freedom
are populated, the compressibility modulus decreases due to the
softening of the EOS (when a hyperon appears). The density
continues to increase and the Fermi momentum of the new
particle species increases, making the EOS stiff again, until
another particle appears.

We calculate the symmetry energy and its slope by
extending the expressions in Equation (14) to higher densities.
The respective results are shown in middle and bottom panels
of Figure 6 and correspond, again, to different choices of the
parameter ( at fixed values of the hyperon potentials, symmetry
energy as(;m = 32 MeV and slope Ly = 97 MeV at saturation.
Figure 6 shows that the symmetry energy is not affected by the
parameter ¢ at low densities, as expected from our previous
fitting, and starts to present an interesting behavior only for
densities of about 3p,, which correspond to the point where
hyperons (appear for symmetric matter).

For fixed values of as(;m and its slope L at saturation, higher
values of the ¢ parameter introduce larger differences between
symmetric and asymmetric matter EOS’s. This behavior is due
to the fact that the coupling constants of the isovector mesons
are also dependent on the values of the ( parameter, generating
a competition between the attraction and repulsion from the
isoscalar and isovector mesons. In particular, higher values of ¢
generate stronger couplings of the ¢ meson, which contribute
only to the asymmetric EOS and are of importance at high
densities. The strongest repulsive contribution provided by the
higher values of the ¢ parameter (higher ¢ couplings) allows
for a stiffer EOS that differs more from the symmetric EOS (in
the absence of the isovector mesons contributions) and, since
the symmetry energy relates precisely this difference, the
parametrization with higher values of ( yields higher values of
the symmetry energy as a function of density.

Since the symmetry energy and the slope of the symmetry
energy are correlated quantities, it is natural that they present a
similar behavior: the higher (lower) the ¢ parameter, the higher
(lower) are the values of the symmetry energy and its slope as a
function of the density. The peaks in bottom panel of Figure 6
are again due to the appearance of the hyperons.
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Figure 6. Properties of asymmetric matter (containing hyperons) as a function
of baryon density. The compressibility modulus K (p) (top panel), symmetry
energy dgym (p) (middle panel), and slope L (p) (bottom panel) are plotted for
different choices of (.

It is worth mentioning that different values of the symmetry
energy as(;m and its slope L at saturation also have an impact
on their behavior at higher densities. In particular, smaller
values of as(;m and higher values of L, allow for a higher
increase in the slope. We will come back to this topic in next
section, when the impact of these properties on the radii of
neutron stars is investigated.

Finally, we mention that, although the meson fields are
density dependent in every RMF model, in the formalism
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adopted in this work the coupling between baryons and scalar
mesons depends on the nonlinear contributions of the meson
fields themselves. This feature of the model implies that the
behavior of the scalar mesons effective coupling constants (g,

g,» and g:*b) as a function of the density is affected by the

many-body contributions, generating a direct impact on the
baryon effective masses and, consequently, on the global
behavior of the matter. This behavior is quantified in Figures 7
and 8, where we show the effective coupling constants of the
scalar mesons and the effective mass of the nucleons as a
function of baryon density. We show results for different
versions of the model (with different meson content) as well as
different choices of the { parameter.

In the top panel of Figure 7, we show that the introduction of
the 6 meson breaks the isospin degeneracy in the coupling
constants of protons and neutrons. The difference is more
pronounced for higher values of ¢, which correspond to
stronger many-body contributions. The delta meson increases
the positive isospin particles coupling with respect to the scalar
mesons and decreases the coupling for negative isospin
particles, meaning that the first generates more attraction. On
the other hand, from Equation (7), one can see that the isospin
of the particles affects all scalar mesons non-trivially due to the
nonlinear contributions. Hence, the competition between the
amount of particles with positive and negative isospin plays an
important role for the global attractive or repulsive response of
matter.

The introduction of the o* meson has impact on all of the
scalar field equations as well. The top and middle panels of
Figure 7 show that this meson contributes to a faster decrease
of the effective coupling constants, due to its extra contribution
to the many-body forces that change the couplings. Also, from
the bottom panel of Figure 7 one can see that the proton and
neutron coupling constants departure from the degenerate case
is more notable when all scalar fields, together with higher
values of the many-body forces contribution, are assumed.

The effective mass of the nucleon as a function of the density
in Figure 8 presents a similar response to the introduction of the

6 and o* mesons. The § meson splits the masses of protons and

neutrons and the o™ meson makes their decrease faster due to
the extra contribution in the many-body forces. Both effects are
extremely relevant to the chemical equilibrium and, conse-
quently, to the global behavior of the matter. In the next

section, we will come back to the effects of the o* meson for
neutron star matter with hyperons.

5. ASTROPHYSICAL APPLICATION

In this section, we apply the formalism developed so far to
describe hyperon matter inside neutron stars. We compare our
predictions with the recently observed massive neutron stars
PSR J038+0432 and PSR J1614-2230 (Demorest et al. 2010;
Antoniadis et al. 2013). We have already shown that our model
is in agreement with nuclear matter properties at saturation
density, and now a comparison with astrophysical properties
characterizes a second test of the underlying microscopic
model. In addition, aiming to verify the impact of future
hypernuclear data in the context of neutron stars, we investigate
the effects of different values of the hyperon potentials and the
coupling constant of the o*-meson on macroscopic properties
of neutron stars.
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Figure 7. Effective coupling constants of the scalar mesons as a function of

baryon density. The coupling of the & (top panel), § (middle panel), and o*
(bottom panel) are plotted for protons and neutrons for different values of (.
The different versions of the model are indicated by colors: cwg (magenta),

owgd (blue), and owodpo™ (gray).

Assuming that matter is in [-equilibrium and is locally
charge neutral, we use the EOS of the model as an input to
solve the Tolman-Oppenheimer—Volkoff (TOV) equations
(Tolman 1939; Oppenheimer & Volkoff 1939) and obtain
the macroscopic structure of stars for different parametriza-
tions. The EOS and the mass—radius diagram for each
parametrization studied, including hyperons, can be found in
Figures 9 and 10, respectively.



THE ASTROPHYSICAL JOURNAL, 808:8 (21pp), 2015 July 20

i =n,p, owo |

i =p, owed
i=mn, owed -

i =p, owedpo*
i=mn, owedpo* -

900 |

800

700 -
600 |
500

(MeV)

*
i

m;

400 -
300 -
200

100 +

L L L

04 05 06
py (fm~?)

0.8

0.1 0.2 0.3 0.7 0.9

Figure 8. Effective mass of protons and neutrons as a function of baryon
density for ¢ = 0.040 and ¢ = 0.129. Each color corresponds to a different
version of the model.

5.1. The Role of C on the Properties of Hyperon Star

The dependence of the EOS on the parameters of the model
is shown in Figure 9. In particular, the lowest value of (
generates the stiffer EOS and, consequently, allows for a higher
stellar mass. The argument here is the same as the one
discussed in Section 3: since a stiffer EOS is related to higher
values of the internal pressure of the system and, accordingly,
to higher values of the compressibility modulus of nuclear
matter, this in turn requires stronger contributions from
repulsive components of the nuclear force. In our general
approach, however, many-body forces lower the strengths both
of attractive and repulsive interaction terms due to shielding
effects, which result in higher (lower) values of the
compressibility modulus of nuclear matter in the case of higher
(lower) relative reduction of the attractive contributions. Our
present results are consistent with the analysis above, since we
have obtained a stiffer EOS for lower values of the { parameter,
which corresponds to stronger repulsion.

In summary, lower values of the ( parameter generate
more repulsive nuclear matter which is able to support more
gravity and, consequently, create a macroscopic object with
higher mass. In particular, the highest stellar mass
generated by the extended version of model including
hyperons is 2.15 M, (for ¢ = 0.040), in agreement with
pulsars PSR J16142230 (M = 1.97 + 0.04 M) (Demorest
et al. 2010), and PSR J0348+0432 (M = 2.01 + 0.04 M)
(Antoniadis et al. 2013), as is shown in Figure 10.

For completeness, in Table 5 we present results of different
versions of the model. The first and second columns represent
different meson content versions of the model and values of the
¢ parameter, respectively. We also show maximum mass results
for nucleonic and hyperon stars, in the third and fourth
columns, respectively. Also, since the owp version of the
model has a one-to-one relation between as(;m and L,, we show
values of L in the fifth column.

All nucleonic stars in the range of parameters of
¢ = 0.040-0.129 are in agreement with observational data. In
particular, the most massive nucleonic star described by the
model is the one for ¢ = 0.040, with 2.57 M. We also verify
that the inclusion of the 6 meson does not affect significantly
the maximum mass of the stars, introducing a difference of
only 0.01 M, in the model. The weak contribution of the
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parameters.

meson in the results comes from the low values of gs, chosen
in order to reproduce low values of the slope L.

The ¢ meson introduces a repulsion between protons and
neutrons. As this repulsion favors the neutron population, the
Fermi momenta of neutrons harden the EOS, generating more
massive nucleonic stars. In the case of hyperon stars, the 6
meson shifts the appearance of hyperons to lower densities,
preventing a strong stiffening of the EOS and even softening it
in some cases. Therefore, in general, for the nucleonic stars, the
¢ meson has the effect of increasing the maximum star mass,
while for hyperon stars, the meson decreases its maximum
value (Menezes & Providencia 2004).

Assuming that hyperons are present in compact stars,
ensuring that the model is in accordance with the observational
data puts additional constraints on nuclear properties at
saturation. The comparison between the parametrizations in
Tables 3 and 5 shows that the version of the model presented in
this work constrains the effective mass of the nucleon and the
compressibility modulus on ranges of 0.66-0.70my and
253-297MeV (associated to the range of ¢ = 0.040-0.059),
respectively. Also, from the parametrization ¢ = 0.059, the
lowest values of the slope in agreement with nuclear and
observational data is Lo = 94 MeV (for as(;m = 32 MeV).
Such a conclusion can be reached because a change in the slope
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Table 5
Maximum Masses of Nucleonic and Hyperon Stars for Different Versions of
the Model, Ly, and (-Parameter

Model ¢ Mo (M) MM (M) Lo(MeV)
owo 0.040 2.57 1.90 96.16
0.049 2.49 1.83 94.68
0.059 2.41 1.76 93.22
0.071 2.32 1.69 92.05
0.085 224 1.62 90.92
0.104 2.15 1.55 89.82
0.129 2.06 1.49 88.86
owod 0.040 2.57 1.90 97.0
0.049 2.50 1.83 97.0
0.059 242 1.76 97.0
0.071 2.33 1.68 97.0
0.085 2.25 1.61 97.0
0.104 2.16 1.55 97.0
0.129 2.07 1.49 97.0
owob) 0.040 2.57 2.15 97.0
0.049 2.50 2.07 97.0
0.059 242 1.99 97.0
0.071 2.33 1.91 97.0
0.085 2.25 1.83 97.0
0.104 2.16 1.74 97.0
0.129 2.07 1.65 97.0

Note. The hyperon potentials are fixed to UY = —28 MeV, U = + 30 MeV
UY = —18 MeV and the symmetry a2, = 32 MeV.

sym

Ly from 97 to 115 MeV only contributes to a tiny decrease of
less that 0.0035 M, in the maximum mass of stars. We also
find a decrease of 0.01 M, in the maximum star mass when the

symmetry energy as(;m is changed from 30 to 33 MeV.

One can also clearly see from Figure 10 that the radius of the
star is affected by the ( parameter. We will come back to this
topic in Section 5.4, where we investigate all quantities that
affect the radius of the canonical star.

In the last section, it was discussed that the many-body
contributions present in the scalar meson couplings have a
direct influence on the behavior of particles in hyperonic
matter, since they affect the chemical equilibrium equations.
Also, since the ( parameter dictates the strength of the
nonlinear contributions, we analyze its effects on the particle
population in Figure 11. The figure shows the fraction of
particles as a function of baryon density for two choices of
parameters and for fixed values of the hyperon potentials,
symmetry energy as(;m = 32 MeV, and slope Ly = 97 MeV at
saturation.

The results in Figure 11 show that, as the value of (
increases, the densitiy corresponding to the appearance of each
hyperon is shifted to higher values. For the choices ¢ = 0.040
(left panel) and ¢ = 0.129 (right panel), the thresholds of the
A% =~ and Z° hyperons are shifted from 0.30 to 0.36 fm 3,
0.38 to 0.45 fm 3, and 0.90 to 1.1 fm~3, respectively. Although
the dependence of the beta equilibrium on the { parameter, one
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can also verify that the threshold for the p~ lepton is not
strongly affected.

In order to specify the strangeness content of the stars, we
define the parameter f;

PiQs  pp+ py+ 2pz
f = Z = ,

i Pp Py

(18)

that corresponds simply to the number of strange quarks per
baryon in the particle population (where Q;. corresponds to the
strangeness charge). Figure 12 shows f; as a function of the
radius for the most massive star provided by each parametriza-
tion. We have plotted the strangeness profiles only for the
parametrizations that generate stars with masses of at least
1.99 M,,. As discussed above, lower values of the ¢ parameter
allow for the early appearance of hyperons in the star (i.e.,
outer layers). On the other hand, the growth of the hyperon
content is slower for these cases (small (), providing a slightly
lower central fraction of strangeness. We have computed the
strangeness content only for the parametrizations in agreement
with observational data, from which we conclude that the star’s
central values of strangeness do not depart much from
fi.e = 0.65, for a range of ¢ = 0.040-0.059. Finally, it is
important to emphasize that all results concerning the (
parameter are directly related to the effective mass of the
nucleon and the compressibility modulus at saturation, as
already discussed in Section 3.

5.2. The Role of The Hyperon Potentials on the
Properties of Hyperon Stars

Although not much is known about hyperon—hyperon
interactions, the hyperon—nucleon interactions are a little more
constrained from hypernuclear data: the AN interaction has a
well-constrained potential of about —28 MeV; the YN interac-
tion points toward a repulsive potential; the =N interaction also
presents an attractive potential, but not as well constrained as
the AN.

Several works have investigated both attractive and repulsive
U potentials (Knorren et al. 1995; Schaffner & Mishus-
tin 1996; Mi et al. 2007; Schaffner-Bielich 2008; Negreiros
et al. 2010; Vasconcellos et al. 2014) in the description of
hadronic matter. In particular, we mention the analysis of the
impact of different values of hyperon potentials on the
properties of neutrons stars carried out by Weissenborn et al.
(2012a) and also recently by Bhowmick et al. (2014), both
using different RMF models. Following these works, in this
subsection we aim to verify the effects of hyperon potentials in
our model.

Initially, we vary UY and UY around 4+2MeV and
+20 MeV, respectively. Fixing the values of the remaining
hyperon potential, we solve the TOV equations for different
choices of the ( parameter. From this case, no significant effect
on the maximum mass and radius of the neutron stars are
found. The results for our model agree with those found in
Weissenborn et al. (2012a) and Bhowmick et al. (2014) for
different RMF models.

We then varied the U2 potential around +10 MeV, from
which we found a relevant alteration of the maximum mass of
the stars predicted by the model. Figure 13 shows the mass—
radius relation for different U2 potentials and choices of the
(-parameter. The other hyperon potentials are fixed to
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Figure 11. Particle population dependence on the parameter . The left panel shows the population for ¢ = 0.040 and the right for { = 0.129. The x-axis represents the
baryon density and the y-axis the fraction of each particle specie normalized by the total baryon density.
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Figure 12. Fraction of strangeness f; as a function of the radius for the
maximum mass star provided for the (-parameter. The hyperon potentials are
fixed to UY = —28MeV, UY = +30MeV, and UL = —18 MeV, and
symmetry energy and its slope at saturation are asgm =32MeV and
Lo = 97 MeV, respectively. We have plotted only the parametrizations that
are in agreement with observational data.

UY = —28 MeV and UL +30MeV, and the symmetry
energy and its slope at saturation are as(;m = 32MeV and
Lo =97 MeV. The results presented here only include the
three choices of the ¢ parameter (0.040, 0.049, 0.065,
corresponding to the higher, medium, and lower branches,
respectively) that provide massive stars. We conclude that,
for our model, a change of 10MeV in the UZ potentials
results in a change of approximately 0.02 M, in the possible
maximum masses of the stars.

From all of the star properties analyzed so far, we come to
the conclusion that the ¢ parameter and the U2’ potential are the
only quantities that have a significant impact on the maximum
star mass predicted by our model (in the cwgd¢ version). For
this reason, in Figure 14, we present the parameter space of
these quantities related to the maximum mass of the stars. The
vertical axis corresponds to the U2’ potential in the range of —3
to —48 MeV, the horizontal axis corresponds to the  parameter
in a range of 0.040-0.071, and the scale of colors correspond to
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Figure 13. Mass—radius relation of hyperonic matter shown for different U’
potentials and choices of (-parameter.

the stars’s maximum mass (in M) provided by each choice of
parameters. We indicate the limit of 1.97 M, that corresponds
to the lower mass limit of the pulsar PSR J0348+0432.

The results in Figures 13 and 14 show that the maximum
masses of the stars are higher as the attraction of the U2
potential becomes weaker. Weak UZ potentials shift the
threshold of the =’s to higher densities, leaving hadronic
matter to be populated mainly by npeu A degrees of freedom at
very high densities. In such a scenario, the filling of the energy
states turns the EOS very stiff, which ultimately generates
massive neutron stars. Note that the results in Figure 14,
actually relate nuclear, hypernuclear and astrophysical data,
since the ¢ parameter has a direct relation with the effective
mass of the nucleon and the compressibility modulus at
saturation.

We now turn our attention to the effect of hyperon potentials
on the strangeness content inside the stars. Since the Uy
potential should not depart much from the value of —28 MeV
from experimental data, we have verified the particle popula-
tion of the model changing this value by £2 MeV. In this case,
no significant change was found.
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Figure 14. Parameter space related to the maximum star mass in the model.
The horizontal and vertical axes correspond to the ¢ parameter and the UL,
respectively. The other hyperon potentials are fixed to Uy = —28 MeV and
UY = 430MeV, and symmetry energy and its slope at saturation are
as()’,m = 32 MeV and Ly = 97 MeV, respectively.

Figure 15 shows the particle population for different Uy
potentials. The left panel corresponds to U = +10 MeV and
the right one to UEN = 450 MeV, for ¢ = 0.040. The results
show that the ¥t populate matter only at very high densities
(0.86 fm™®) in the case of a weak repulsion of
U = 410 MeV. This result departs from the usual appear-
ance of the X~ before of the X1, which is due to the fact that, at
these high densities, the charge neutrality is generated by the
=7, with only small contributions from the leptons. Further-
more, the major contribution to the isospin density comes from
the neutrons, which is the source term for the ¢ meson. As the
>t has a strong attractive interaction via the ¢ meson, this
hyperon appears at smaller densities than the >~.

We report a threshold value of U = 426 MeV for the
vanishing of X particles in our model in a range of 0 — 10p,

(for fixed UY = —28 MeV and U2 = —18 MeV), which does
not depend on the ( parameter. As X.’s appear only at very high
densities, that usually exceed the central densities in neutron
stars in certain models, the value of Uév does not bring
important astrophysics predictions concerning neutron stars in
those cases, as already pointed out by Schaffner (Schaffner-
Bielich 2008).

The particle population for different U2 potentials is shown
in Figure 16, where the left and right panels correspond to
UEN = —8MeV and UEN = —28 MeV, respectively, for
¢ = 0.040. It can be seen that an attractive UEN potential, such
as the one at the bottom panel, pulls the appearance of =’s to
lower densities. Ultimately, a very strong attraction can reverse
the order of appearance of the A and =~ baryons. In particular,
a difference of 20 MeV in the U2 potential shifts the density

threshold for the appearance of =~ and Z° by about 0.07 fm™3
and 0.15 fm 3, respectively.

Since different values of the U2 potential significantly affect
the hyperon population, in Figure 17 we investigate the
strangeness content f; (vertical axis) as a function of the radius
of the maximum mass star reproduced (horizontal axis) for
fixed ¢ = 0.040. The mass and central densities of the
corresponding stars ranges from 2.09 M, and 0.90 fm~ (for
UY = —-48MeV) to 2.18M, and 0.83fm> (for
UY = —3 MeV). The curves in Figure 17 indicate an increase
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in the fraction of strangeness as the attraction of the potential
UY gets stronger. Strong attractive UZ potentials shift the
threshold of hyperons appearance to lower densities (higher
radius), leaving a broader range of densities for f; (hyperon
population) to grow. Hence, the potentials that allow the
appearance of hyperons at lower densities provide more
strangeness at the center of the star. In particular, the range
of =3 to —48 MeV for U2’ provides central values of f, of about
0.62-0.74.

Note that, since varying U, and Uy generate always the
same family of stars, the f; profile is not altered by the change
of their values. Finally, we again stress that the hyperon
potentials concerning the hyperon—nucleon (YN) interactions
have no effect on the radius of neutron stars, in agreement with
Weissenborn et al. (2012a) and Bhowmick et al. (2014). This
result is not dependent on different choices of parameters of the
model.

5.3. The Role of o Meson on the Properties of Hyperon Stars

In order to introduce the remaining interaction between

hyperons due to the meson ¢o*, we vary the strengh of the
coupling constant g sy, Setting g «\ = g,#x = g,#z. 1his
approach allows us to constrain hyperon-hyperon interactions
through astrophysical data investigation, differently from fixing
a value of the hyperon—hyperon potential (U;Y) (Schaffner &
Mishustin 1996; Mi & You 2010).

To do so, we solve the TOV equations for coupling constants
ranging g+, = 0 to 5.0, as shown in Figure 18, for ¢ = 0.040.
The results show that the o* meson has effects on both the
maximum mass and the radius of the stars generated by the
model. The increase of the o* coupling allows for more
attraction in the matter, consequently lowering the maximum
mass and radius predicted by the model.

In order to better quantify each effect, in Figure 19
we present the change in the radius of the canonical star of
1.4 M, as a function of the coupling g +,. The choices of the
parameter ( are those which, in the absence of the o* meson,
reach the minimum star mass value of 1.97 M. In particular,
paying attention to the parametrization that provides the higher
neutron star mass (¢ = 0.040), we verify that, for a range
8,4y = 0—15.5, the radius of the canonical star decreases by
0.52km and the maximum mass drops from 2.15 M. to
2.12 M. 1t is important to note that the value of the coupling
8,+y cannot be simply increased, since it has a direct impact on
the effective mass of the baryons. As already pointed out in the
literature, at the density in which the effective masses of
baryons reaches a zero value, it is necessary to use a formalism
beyond mean field approximation and purely baryonic matter
(Schaffner & Mishustin 1996; Taurines et al. 2001).

Analogously to the analysis carried out for the UZ
potential, in Figure 20 we present the parameter space
concerning the g ., coupling, the { parameter (related to

my and Kj), and the maximum mass of stars produced by our
model. As already discussed above, the lower values of g+,
and ( are those that provide the highest star masses, as shown
in the bottom left region of the plot. The threshold of the
possible minimum mass is traced by the 1.97 M. curve,
according to astrophysical data.

We also analyze the effect of the g+, coupling on the
particle population in Figure 21. The left and right panels show
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Figure 17. Fraction of strangeness f; as a function of radius of the maximum
mass star provided by ¢ = 0.040 for different choices of the U’ potential. The
other hyperon potentials are fixed to U5’ —28MeV and U = +30MeV,
and symmetry energy and its slope at saturation are as())/m = 32MeV and
Lo = 97 MeV, respectively.
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Figure 18. Mass—radius relation of hyperonic matter, for ¢ = 0.040, shown for
different choices of g ., coupling constants. The hyperon potentials are fixed

toUY = —28MeV,UY = + 30MeV, and U = —18 MeV, and symmetry
energy and its slope at saturation are as‘;m =32MeV and Ly = 97 MeV,
respectively.
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the population in the absence of the o* meson and the case in
which g+, = 5.0 (for ( = 0.040). The g+, coupling has
impact only on the particle population at high densities, shifting
the threshold of appearance of Z° to lower densities (from
about 0.9 to 0.82 fm3).

More dramatically, the extra attraction introduced by the o*
meson pushes the X1 hyperon threshold back to the range of
densities between O and 10p,. In particular, for g« = 5.0,

these particles appear at 1.15 fm~3, which cannot quite be
reached in neutron stars. Moreover, as such high densities are
only reached in the core of neutron stars, we also verified that
the g+ coupling does not have significant effects on the
strangeness profile of the stars.

Finally, we show in Table 6 the change in the values of the

hyperon-hyperon potetials due to the introduction of the o*
meson with a coupling g_+y. In the second column we show the

nucleon—nucleon potential U} that becomes less attractive for
higher values of the ( parameter, changing from —66.90 MeV
for ¢ = 0.040 to —64.47 MeV for ¢ = 0.059. The value of Uy
continues decreasing for higher values of (, reaching
-59.56 MeV for ¢ = 0.129, which corresponds to the limiting
value to reproduce the properties of nuclear matter at saturation
density.

The introduction of the o* meson produces a stronger
attraction among the A particles, changing U;* from +4.54 to
-20.86 MeV for (¢ and from -2.58 to —-27.23MeV for
¢ = 0.059. Like the nucleon—nucleon potential, the value of
U,f continues to decrease for higher values of (, reaching
-14.86 MeV (for g «, = 0) and —-38.19 MeV (for g+, = 5),
for ¢ = 0.129. All the other hyperons present repulsive

interactions, even with the extra attraction introduced by the o*
meson. Although the only measurement of the double-A
hypernuclei points toward a weak AA depth potential (Millener
et al. 1988), only more hypernuclear data will be able to better

constrain the o* coupling constants. The same applies to the
other YY potentials, from which, so far, no accurate
experimental data exist.
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5.4. The Radius of the Canonical Star

Thus far in this paper we have investigated the effects of the
parameters of the formalism on the properties of neutron stars,
except the radius. Since most measured neutron star masses are
clustered around 1.4 M, we now study all quantities that have
impact on the radius of these stars.

We have discussed in previous sections that the parameter ¢,
which relates the effective mass of the nucleon to the
compressibility modulus at saturation, alters both the mass
and the radius of compact stars. As already explained,  reflects
how the many-body forces influence nuclear matter. In
Section 4 we have shown that this parameter has an impact
on the behavior of star matter properties at high densities, such
as the density dependence of the compressibility modulus,
symmetry energy, and its slope.

Lopes & Menezes (2014a) showed how an arbitrary
variation of the slope L, changes the radius of the canonical
star. In the particular case of our model, we verify that the only
quantities that affect the behavior of the symmetry energy agym
and its slope L at high densities are the { parameter and the
constraints of these values (asg),m and L) at saturation. From
this, we conclude that in our case the variation of the slope Ly
with respect to different densities, would arise from different
behavior of many-body forces, for fixed values of as(;m and Ly.

Figure 22 shows the change of the radius of the canonical
star as a function of the ( parameter. Again, we stress that the
change of the radius is directly related to the values of the
effective mass and the compressibility modulus at saturation in
this model. We observe that, for the range of values that fits
nuclear data, the radius of the star changes about 0.8 km, but
when we impose the observational limit of 1.97 M;, (corre-
sponding to the parametrization ¢ = 0.04-0.059), this value
drops to 0.2 km.

Since the values of the symmetry energy and its slope also
alter the radius of the stars, in Table 7 we quantify changes on
the radius considering uncertainties in these values. Also, as the
¢ parameter was shown to also affect the radius of neutron
stars, we show these changes on the radius for the three
parametrizations ¢ = 0.040, 0.049, 0.059.

For a 1.4 M, star that belongs to the family that predicts at
least 1.97 M, maximum mass stars, we find that the smallest
radius is 13.725km, for the parametrization ( = 0.059,
Ggym = 32MeV, Lo=94MeV, and g, = 4.0. Relaxing
the values of the asymmetry properties at saturation, the
smallest radius of the 1.4 M., star drops to 13.54 km, for the
parametrization ¢ = 0.059, ag, = 29 MeV, Lo = 85 MeV,
and g+ = 5.2. Note that, although smaller values of agym
increase the radius of the stars for fixed values of slope Lo,
these smaller values of agy, also allow for smaller values of Lo
(as already shown in Figures2—4) and, thus, smaller radii.

6. SUMMARY AND CONCLUSIONS

Substantial efforts have been made to determine the behavior
of nuclear matter at high densities. Recent observations of
massive neutron stars have renewed the interest in such studies.
Given these massive stars, it has been suggested that hyperonic
matter might not exist in compact stars, due to a possible
excessive softnening of the EOS caused by these new degrees
of freedom. Moreover, the comparison between the radius of
nucleonic and hyperon stars predicted by several models has
been reviewed, indicating that the radius of hyperon stars is
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+30MeV, and UY = —18 MeV and the symmetry energy and its slope are as(;m = 32MeV and Ly = 97 MeV.

substantialy larger than models fitted for nucleonic matter only
(Fortin et al. 2014). In this work we extended the formalism
proposed by Taurines et al. (2001) in order to describe hyperon
stars. In the light of this extended model, we succeeded in
describing neutron stars that agree with recent observations,
despite the fact that it contains a considerable amount of
hyperonic matter.

We have developed a new class of EOSs that allows for the
presence of hyperons, and in which the baryon interactions are
mediated by mesonic fields in a parametric derivative coupling.
We extended the original version of the model by considering

the complete set of scalar—isoscalar (o, o*), vector—isoscalar
(w, @), vector—isovector (g), and scalar—isovector (§) meson

fields. We introduced the 8, o*, and ¢ mesons, since the first
allows for a better extrapolation to asymmetric matter and the
last two mesons play an important role in the description of
hyperon interactions.

This approach allowed us to take nuclear medium effects
into account, as the derivative coupling introduces an analogy
to many-body forces, characterized by a single ({) parameter.
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Table 6

Hyperon—Hyperon Potentials for Different Values of the ¢ Parameter and g .,
Hyperon potentials/ Uy (MeV) Up (MeV) U (MeV) 2 (MeV) Uy (MeV) Uy (MeV) UZ (MeV) Ux (MeV) Us (MeV) UZ (MeV)
¢
¢ = 0.040, 8ty = 0 -66.90 +4.54 +46.25 +49.89 +41.54 +72.48 +69.13 +44.72 +67.92 +121.75
¢ = 0.040, 80y = 5 -66.90 -20.86 +20.53 +23.96 +15.10 +45.70 +42.12 +17.87 +40.70 +95
(= 0.049, 8ry = 0 -65.79 +0.95 +43.25 +44.58 +38.27 +69.02 +64.03 +39.14 +62.87 +111.98
¢ = 0.049, 8y = 5 -65.79 -24.06 +17.85 +18.98 +12.13 +42.46 +37.24 +12.53 +35.83 +84.71
¢ = 0.059, 8y = 0 -64.47 -2.58 +40.36 +39.34 +35.14 +65.65 +59.06 +33.71 +58.01 +102.36
¢ = 0.059, 8ry = 5 -64.47 -27.23 +15.26 +14.03 +9.25 +39.25 +32.44 +7.29 +31.10 +72.53

Note. The first column corresponds to the chosen parametrizations. In the second column we show the nucleon—nucleon potential refering to each parametrization. The third, fourth, and fifth columns show the
corresponding values of the A, ¥, and = potentials with respect to the A matter. The sixth, seventh, and eighth columns show the corresponding values of the A, 3, and = potentials with respect to the ¥ matter. The
ninth, tenth, and eleventh columns show the corresponding values of the A, 3, and = potentials with respect to the = matter. the nucleon-hyperon potentials, the symmetry energy, and its slope at saturation are fixed to
UY = —28MeV, U = +30MeV, and UY = —18 MeV; a,, = 32 MeV and Ly = 97 MeV.
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Table 7
Summary of the Properties That Affect Star Radii in the Model

ARy, ¢ =0.040 ¢ =0.049 ¢ =0.059
[Ri4mo (Lo = 110 MeV) — Ry 4p, (Lo = 97 MeV)] 0.33 km 0.35km 0.37 km
[Ri4um (@0 = 30 MeV) — Rigp, (a0 = 33 MeV)] 0.12 km 0.13 km 0.15 km
[Ri4ao (8 ey = 0) — Rians, (g,0y = 5.5)] 0.52 km 0.57 km 0.62 km

Note. The results are shown for hyperon stars for different parametrizations. The hyperon potentials are fixed to UL =

—28MeV, UY = +30MeV,

UY = —18MeV and the symmetry energy, the slope of the symmetry energy, and the hyperon—hyperon coupling constant in relation to the o* meson are varied. In
the first line, the symmetry energy is fixed to asgm =32MeV and g ., = 0. In the second line, the slope of the symmetry energy is fixed to Ly = 101 MeV and

0

84y = 0. In the third line, the symmetry energy and its slope are fixed to Agym

agreement with the observational data.

The many-body contributions were introduced as nonlinear
terms contributions to the effective coupling constants of the
model, whose effect is to turn them indirectly density
dependent and also to lower the effective masses of the
baryons. We also point out that, since the density dependence
of the couplings comes from the scalar fields in this formalism,
we avoid the rearrangement terms necessary in explicit density
dependent formalisms (Typel & Wolter 1999).

The decrease of the coupling constants and the effective
mass of the nucleon as a function of density has interesting
phenomenological consequences, as it relates to the restoration
of chiral symmetry and asymptotic freedom. However, an
extensive analysis concerning this behavior must be carried out
in detail in a future publication.

Each parametrization of the model generates a new EOS and,
for particular parametrizations, it is possible to describe models
already present in the literature such as Serot & Walecka (1986)
and Zimanyi & Moszkowski (1990). Initially, we determined
the connection between the ¢ parameter and symmetric nuclear
matter properties at saturation, from which we concluded that
smaller values of the ¢ parameter allows for lower (higher)
nucleonic effective masses (compressibility modulus). In
particular, we pointed out that the parameter ( allows to
determine both the effective mass of the nucleon and the
compressibility modulus, differently from other models that
need an extra parameter to fix these values (Boguta &
Bodmer 1977; Typel & Wolter 1999).

We have also analyzed the parameter space that relates the
symmetry energy as(;m and its slope L, to the coupling
constants g, and g in order to determine the coupling
constants of the isovector mesons to the nucleon at saturation
density. Finally, we calculated the volume part of the isospin
incompressibility and the skewness of the symmetry energy,
from which we concluded that several parametrizations of the
model are in good agreement with the tests carried out in the
literature (Dutra et al. 2014).

Choosing the parameters according to nuclear matter
saturation properties and the available hypernuclear data, we
concluded that smaller values of ( yield stiffer EOSs. We
verified that different parametrizations also yield quantitatively
different particle populations, but in all cases the hyperon
population threshold density was kept at ~2p,,.

In order to further validate the microscopic model used,
we compared macroscopic predictions with observed data.
We calculated the mass-radius diagram for the parame-
trizations able to describe nuclear saturation properties. We
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= 32MeV and Ly = 97 MeV. The results are shown only for the parametrizations in

have found that only the parametrizations with
0.040 < ( £ 0.059 were able to match recently observed
masses of objects PSR J038+0432 (M = 2.01 £ 0.04M,
(Antoniadis et al. 2013)) and PSR J1614-2230
(M =197 £+ 0.04M.; Demorest et al. 2010), for fixed
values of hyperon potentials. We have demonstrated that,
since the value of the coupling constant gz, must remain
small in order to ensure lower values of the slope L, the
introduction of the § meson does not have a strong effect on
the maximum mass of the stars. On the other hand, we
showed that the inclusion of the ¢ meson is crucial for the
description of a 2 M, hyperon star.

Following previous works (Weissenborn et al. 2012a;
Bhowmick et al. 2014), we have calculated the dependence
of the star’s observational properties on the hyperon potentials.
Our results support those found in the literature, in which only
the U2 potential has a significant effect on the maximum mass
of stars and, none of the hyperon potentials affect the radius of
the stars. In order to find all quantities that modify star masses,
we generated the parameter space that relates U2, ¢, and M.y,
or hypernuclear, nuclear, and astrophysical observational data.

We carried out a similar analysis concerning the o* meson,
from which a new parameter space, relating g »y, ¢, and My,
was generated. As far as we know, we report for the first time
that nonzero values of the g_«, coupling decrease the radius of
neutron stars significantly. We summarized the effects of all
properties present in our model that modify the radius of the
canonical star and we concluded that the many-body forces
parameter contributes to the behavior of the nuclear asymmetric
properties at high densities, which are reflected in the radii of
these stars.

We must still make a final remark regarding the limitations
of the formalism that we have developed and, most
importantly, its uncertainties regarding the description of
hyperon stars. First, we developed a model to describe
nuclear matter at high densities by extrapolating the behavior
of symmetric matter at saturation density to highly asym-
metric matter at densities of about 8—10p, (Schaffner &
Mishustin 1996). Also, the introduction of hyperons in the
system brings uncertainties related to the poor data from
hypernuclear matter, such as the hyperon potentials, the
assumption of a SU(6) symmetry and the YY interacion
concerning the o*(Fortin et al. 2014). There are works in the

literature that consider approaches beyond SU(6) (Mi
et al. 2007; Lopes & Menezes 2014b; Weissenborn et al.
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2012b) and the universality of g «y = g,+= = &, (Schaff-
ner-Bielich & Gal 2000; Mi & You 2010; Gusakov
et al. 2014). However, only new data will allow for a better
understanding of hyperon matter at very high densities, for
instance, from the possible measurements of multi-hyper
nuclei such as those that will be provided by FAIR in the near
future, and also from the analysis of hyperon—hyperon
correlation in heavy-ion collisions (as originally proposed
in Greiner & Muller 1989), and improved lattice QCD
calculations of the YY potentials (Inoue et al. 2010).

Also, similarly, only new accurate observational data may
provide reliable information regarding the radii of compact
stars. Efforts in this direction have been made, mostly from the
analysis of quiescent low-mass X-ray binaries (Guillot &
Rutledge 2014; Lattimer & Steiner 2014). Still, there is a role
played by different atmosphere modeling in these calculations,
which provides a spectrum of results.

Our purpose with this study was to develop a new model for
nuclear matter that takes into account nonlinear terms that
simulate many-body forces and apply the formalism to describe
hyperon stars in accordance with recent observations (Demor-
est et al. 2010; Antoniadis et al. 2013). A very straightforward
extension of this work is the inclusion of nonlinear contribu-
tions to the coupling of isoscalar-vector and isovector-vector
mesons, which requires a new analysis of saturation and
asymmetric matter properties in the model. Also, in a future
work, we plan to investigate the thermal evolution of such
stars, which depends on their particle composition. Further-
more, we plan to investigate the phase transition to quark
matter, which may take place in the core of high density
neutron stars, and the effects of magnetic field on the
microscopic and macroscopic properties of such stars. This
work is already in progress.
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