
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

PROGRAMA DE PÓS-GRADUAÇÃO EM COMPUTAÇÃO

RODRIGO BARNI MUNARETTI

Perceptual Guidance in Mesh Processing
and Rendering Using Mesh Saliency

Thesis presented in partial fulfillment
of the requirements for the degree of
Master of Computer Science

Prof. Dr. João Luiz Dihl Comba
Advisor

Porto Alegre, May 2007

CIP – CATALOGING-IN-PUBLICATION

Barni Munaretti, Rodrigo

Perceptual Guidance in Mesh Processing and Rendering Us-
ing Mesh Saliency / Rodrigo Barni Munaretti. – Porto Alegre:
PPGC da UFRGS, 2007.

73 f.: il.

Thesis (Master) – Universidade Federal do Rio Grande do Sul.
Programa de Pós-Graduação em Computação, Porto Alegre, BR–
RS, 2007. Advisor: João Luiz Dihl Comba.

1. Mesh saliency. 2. Deformable meshes. 3. Mesh segmen-
tation. 4. View-dependent rendering. I. Comba, João Luiz Dihl.
II. Título.

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. José Carlos Ferraz Hennemann
Vice-Reitor: Prof. Pedro Cezar Dutra Fonseca
Pró-Reitora de Pós-Graduação: Profa. Valquíria Linck Bassani
Diretor do Instituto de Informática: Prof. Flávio Rech Wagner
Coordenadora do PPGC: Profa. Luciana Porcher Nedel
Bibliotecária-chefe do Instituto de Informática: Beatriz Regina Bastos Haro

Consistency is the last refuge of the unimaginative.
— OSCAR WYLDE

ACKNOWLEDGEMENTS

We thank Nicolas Clément for the Grunt and Orc datasets, the Stanford Graphics Lab
for the Bunny and Armadillo models, Cyberware for the Isis, Goddess1, Goddess2 and
Ganesh models and the AIM@SHAPE Shape Repository for the Hand dataset. The
Laçador dataset was kindly provided by LsDM - UFRGS (www.ufrgs.br/ndsm). We also
thank Amitabh Varshney for the help and support in understanding and expanding upon
the concept of Mesh Saliency.

This work is supported by a scholarship by CNPq.

TABLE OF CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS 9

LIST OF SYMBOLS . 11

LIST OF FIGURES . 13

LIST OF TABLES . 17

ABSTRACT . 19

RESUMO . 21

1 INTRODUCTION . 23
1.1 Multi-Pose Mesh Saliency . 23
1.2 Saliency-Guided Mesh Segmentation . 24
1.3 Contributions . 27

2 RELATED WORK . 29
2.1 Perceptual Considerations in Computer Graphics 29
2.2 Multi-Resolution Meshes . 30
2.3 Simplification of Deformable Meshes . 31
2.4 Mesh Segmentation . 32

3 SINGLE-POSE MESH SALIENCY . 35
3.1 Visual Attention Models . 35
3.2 Saliency Overview . 37
3.3 Geodesic Saliency . 38

4 MULTI-POSE MESH SALIENCY . 39
4.1 Multi-pose Salient Simplification . 40

5 SALIENT CLUSTERING . 45
5.1 Cluster Determination . 45
5.2 Cluster-level Properties . 46
5.3 Multi-resolution Salient Simplification 47

6 VIEW-DEPENDENT RENDERING . 51
6.1 Cluster Resolution Determination . 52
6.2 Level of Detail Selection . 54
6.3 Rendering . 56

7 RESULTS . 57
7.1 Multi-Pose Mesh Saliency . 57
7.2 Saliency-Guided Mesh Segmentation . 58

8 CONCLUSIONS AND FUTURE WORK 69
8.1 Multi-Pose Mesh Saliency . 69
8.2 Saliency-Guided Mesh Segmentation . 70

REFERENCES . 71

LIST OF ABBREVIATIONS AND ACRONYMS

GPU Graphics Processing Unit

FBO Framebuffer Object

BVI Base Vertex Index Texture

CVI Contracted Vertex Index Texture

SCI Shared Cluster Indices Texture

VCO Vertex Contraction Order Texture

CSO Cluster Stop Point Texture

FBOP Framebuffer Object for Contraction Processing

FBOPw FBOP write surface

FBOPr FBOP read surface

FBOC Framebuffer Object for Data Format Conversion

MAXORD Maximum contraction order for vertex contraction

LIST OF SYMBOLS

Si(v) Single-pose mesh saliency value for vertex i

Soi Multi-pose mesh saliency value for vertex i

Sbi Base mesh saliency value for vertex i

Si, j Mesh saliency value for vertex i in pose j

Sc0 Starting saliency value for cluster c

Sci Cluster-normalized saliency value for vertex i in cluster c

Smesh Accumulated saliency for the entire mesh

max(Sc) Maximum saliency value detected during growth phase for cluster c

µ(Sc) Mean saliency value for cluster c

C (v) Mean curvature value for vertex v

G(C (v),σ) Gaussian-weighted average of the mean curvature at neighborhood σ for
vertex v

N(v,σ) Local vertex neighborhood at scale σ

Mb Base mesh for multi-pose saliency computation

P Set of all poses or deformations for multi-pose saliency computation

p Pose or deformation, element of set P

W Single-pose saliency weight map

Wo Multi-pose saliency weight map

λc User-defined multiplier for seed selection pool

λperc User-defined percentage for contraction distribution

λn User-defined normal vector contribution factor

C User-defined cluster count

µ(−→nc) Mean cluster normal for cluster c

xc Spatial centroid for cluster c

rc Radius of cluster bounding sphere for cluster c

Rglobal Global resolution target for vertex contraction

Rlocal Local resolution target for vertex contraction

Aest Estimated screen-space visibility

pcam Camera position

Iest Visual Importance estimation

VC(vi) Contracted vertex index for vertex i

LIST OF FIGURES

Figure 1.1: Solution overview: Multi-scale curvature analysis is used to calcu-
late mesh saliency. Analysis of saliency values for multiple poses
results in multi-pose mesh saliency, which is combined with QSlim
to generate mesh simplifications suitable for all possible poses. Mesh
saliency can also guide mesh segmentation and real-time importance
estimation, which are in turn used in a view-dependent rendering sys-
tem. 24

Figure 1.2: Multi-pose mesh saliency takes as input a base mesh and a set of
key poses or deformations, computes saliency values for each mesh
configuration, and computes a measure of perceptual importance over
the entire range of poses. On the left we show the base mesh of the
arm and two key poses with their curvature and saliency maps; on the
right we show the multi-pose mesh saliency. The detail-box shows
the close-up around the elbow. 25

Figure 1.3: Mesh saliency is used to perform salient clustering which is suitable
for view-dependent rendering. Segmentation results for the Grunt,
Bunny, Hand and Goddess1 datasets. 26

Figure 1.4: Saliency-guided view-dependent rendering steps: saliency computa-
tion (a) is used to perform salient clustering (b). View dependent
and saliency information are used to estimate cluster importance (c),
which is passed to a fragment program that calculates the right reso-
lution for each cluster inside the GPU. Final rendering of the multi-
resolution mesh is shown in (d). 27

Figure 2.1: Partial shape matching through salient feature detection (GAL; COHEN-
OR, 2006). 30

Figure 2.2: Visualization of the error quadrics employed by the QSlim method
to guide vertex pair contraction. Bunny dataset simplified to 1.4% of
original resolution (GAL; COHEN-OR, 2006). 31

Figure 2.3: User-guided simplification. On the left, fully automatic QSlim. On
the right, guided simplification. Results from (KHO; GARLAND,
2003). 31

Figure 2.4: User-guided propagative mesh segmentation. Propagation is performed
in order to provide best rectangular fit. Results from (CARR, N. A.
et al., 2006). 33

Figure 3.1: Importance estimation comparison: original mesh (a), local curvature
(b) and mesh saliency (c). 35

Figure 3.2: Saliency computation uses a center-surround mechanism to combine
curvature information obtained at different scales. 36

Figure 3.3: Example of a situation where Euclidean distance may yield wrong
saliency results. (a) shows, in green, the local neighborhood as deter-
mined by the Euclidean distance, encompassing areas from a differ-
ent section of the mesh. (b) shows, in blue, neighborhood calculated
through geodesic distance, correctly capturing the vertex neighbors
over the mesh surface. The source vertex is shown in red in both cases. 37

Figure 3.4: Comparison of saliency computation using different distance metrics.
The leftmost column shows the model used, formed by two spheres;
in the original configuration (top row) and after suffering deforma-
tion (bottom row). The middle column shows saliency results using
the Euclidean distance; notice how saliency on the rightmost sphere
is affected by deformation on its neighbor. The rightmost column
shows results for geodesic distance: only the deformed section suf-
fers variation in saliency values. 38

Figure 4.1: Mesh saliency comparison. From left to right: (a) base mesh, (b)
single-pose saliency values for the base mesh,(c-f) four additional
poses, (g) resulting multi-pose mesh saliency. Results for the Grunt
and Cylinder datasets. 40

Figure 4.2: Mesh saliency comparison. From left to right: (a) base mesh, (b)
single-pose saliency values for the base mesh,(c-f) four additional
poses, (g) resulting multi-pose mesh saliency. Results for the Sphere
and Arm datasets. 42

Figure 4.3: Comparison of simplification results, after deformation. Top row:
simplification results using standard QSlim, QSlim plus single-pose
saliency from the base mesh, and QSlim using multi-pose saliency.
Bottom row: relative face sizes for each simplification; lighter faces
are larger. 43

Figure 4.4: Comparison of simplification results using QSlim weighted by mesh
saliency values. From left to right: the first column shows multi-
pose saliency values, the second column shows the difference be-
tween multi-pose mesh saliency and single-pose saliency as com-
puted for the base mesh, the third column shows simplification re-
sults using QSlim weighted by single-pose saliency and the fourth
column shows simplification results using QSlim weighted by multi-
pose mesh saliency. From top to bottom, results for the Cylinder,
Sphere, Arm and Grunt datasets, respectively. 44

Figure 4.5: Detail of simplification results. For the Arm dataset, using (a) single-
pose saliency and (b) multi-pose saliency. For the Grunt dataset, us-
ing (c) single-pose saliency and (d) multi-pose saliency. Notice the
higher concentration of detail on regions where visually interesting
features are likely to undergo deformation. 44

Figure 5.1: Comparison of clustering results: Salient clustering (a) and non-salient
propagative clustering (b). 47

Figure 5.2: Saliency Comparison: original saliency (a), smoothed and ampli-
fied saliency and resulting simplified mesh (b) and cluster-localized
saliency and resulting simplified mesh (c). 49

Figure 6.1: System Overview: In a preprocessing stage a salient-based cluster-
ing algorithm generates mesh clusters that are simplified based on
saliency information. CLOD selection through vertex contractions is
performed on the GPU using view-dependent information, generat-
ing an array of vertex indices that define the multi-resolution mesh to
be rendered. 51

Figure 6.2: Cluster bounding spheres and mean normals. 53

Figure 6.3: Visual Importance Estimation: Lighter regions have greater impor-
tance values. 54

Figure 6.4: Vertex Contraction Shader: First it checks if a vertex has a contraction
target (channel G: vertices with no target receive value -1). If no
target exists, the value is maintained; otherwise, coordinates stored on
channels B and A are decoded. The first is used to load contraction
data from CVI, while the second is used to access data from both
SVI and VCO. Each channel on SCI is used for additional texture
indirection, now reading from CSP; the four values read from CSP
are compared, and the highest order value MAXORD is selected. If
the global vertex order, read from VCO, is smaller than MAXORD the
vertex must be contracted, and the output value is updated with the
one read from CVI. 56

Figure 7.1: Difference between single-pose and multi-pose saliency for the multi-
pose cylinder of Figure 4.1. Top row: base mesh, and single-pose
saliency for base mesh. Bottom row: multi-pose saliency and differ-
ence between multi-pose and single-pose saliency for the base mesh.
Lighter colors indicate greater difference. 58

Figure 7.2: Comparison of simplification results for the multi-pose sphere of Fig-
ure 4.1. From left to right: mesh saliency, simplified mesh using QS-
lim weighted by saliency values, relative triangle sizes for simplified
mesh. The top row shows results for single-pose saliency, computed
from the base mesh; the bottom row displays results for multi-pose
mesh saliency. The different deformations undergone by the Sphere
model can be seen on Figure 4.1. 59

Figure 7.3: View-dependent rendering results for the Ganesh dataset, at 35% of
original resolution, with framerate increasing from 64 to 283 FPS.
Original mesh (a), simplified mesh (b) and difference image — nearly
no difference (c). 60

Figure 7.4: Armadillo results. Original Mesh, QSlim simplification to 1% (pro-
gressive mesh backstop point), Saliency-guided Simplification using
clustering to 35% of original resolution (with and without wireframe).
Notice how most relevant details were preserved on the mesh simpli-
fied to 35% when compared to the full resolution. 61

Figure 7.5: Laçador results. Original Mesh, QSlim simplification to 1% (pro-
gressive mesh backstop point), Saliency-guided Simplification using
clustering to 35% of original resolution (with and without wireframe).
Notice how most relevant details were preserved on the mesh simpli-
fied to 35% when compared to the full resolution. 62

Figure 7.6: Armadillo and Laçador Results. Detail from Original Mesh and Saliency-
guided Simplification to 5% of original resolution. 63

Figure 7.7: Comparison of Clustering Techniques for the Armadillo: Salient Clus-
tering (a), Distance+normal Propagative Clustering (b) and K-Means
Clustering (c). Notice the improved cluster convergence around in-
teresting features, such as faces and hands when salient clustering is
used. 64

Figure 7.8: Comparison of Clustering Techniques for the Goddess2 Dataset: Salient
Clustering (a), Distance+normal Propagative Clustering (b) and K-
Means Clustering (c). 65

Figure 7.9: Comparison of Clustering Techniques for the Dragon Dataset: Salient
Clustering (a), Distance+normal Propagative Clustering (b) and K-
Means Clustering (c). 66

Figure 7.10: Comparison of Clustering Techniques for the Isis Dataset: Salient
Clustering (a), Distance+normal Propagative Clustering (b) and K-
Means Clustering (c). 67

Figure 7.11: Comparison of Clustering Techniques for the Laçador Dataset: Salient
Clustering (a), Distance+normal Propagative Clustering (b) and K-
Means Clustering (c). 68

LIST OF TABLES

Table 5.1: Saliency Properties per cluster. 48

Table 7.1: Datasets . 58
Table 7.2: Saliency computation and clustering times, in seconds. 60
Table 7.3: FPS for full mesh, CPU and GPU optimization. 60

ABSTRACT

Considerations on perceptual information are quickly gaining importance in mesh repre-
sentation, analysis and display research. User studies, eye tracking and other techniques
are able to provide ever more useful insights for many user-centric systems, which form
the bulk of computer graphics applications. In this work we build upon the concept of
Mesh Saliency — an automatic measure of visual importance for triangle meshes based
on models of low-level human visual attention — improving, extending and integrating it
with different applications.

We extend the concept of Mesh Saliency to encompass deformable objects, showing how
a vertex-level saliency map can be constructed that accurately captures the regions of
high perceptual importance over a range of mesh poses or deformations. We define multi-
pose saliency as a multi-scale aggregate of curvature values over a locally stable vertex
neighborhood together with deformations over multiple poses. We replace the use of the
Euclidean distance by geodesic distance thereby providing superior estimates of the local
neighborhood. Results show that multi-pose saliency generates more visually appealing
mesh simplifications when compared to a single-pose mesh saliency.

We also apply Mesh Saliency to the problem of mesh segmentation and view-dependent
rendering, introducing a technique for segmentation that partitions an object into a set of
face clusters, each encompassing a group of locally interesting features. Mesh Saliency
is incorporated in a propagative mesh clustering framework, guiding cluster seed selec-
tion and triangle propagation costs and leading to a convergence of face clusters around
perceptually important features. We compare our technique with different fully automatic
segmentation algorithms, showing that it provides similar or better segmentation with-
out the need for user input. Since the proposed clustering algorithm is specially suitable
for multi-resolution rendering, we illustrate application of our clustering results through
a saliency-guided view-dependent rendering system, achieving significant framerate in-
creases with little loss of visual detail.

Keywords: Mesh saliency, deformable meshes, mesh segmentation, view-dependent ren-
dering.

RESUMO

Direcionamento Perceptual em Processamento de Malhas Utilizando Saliência

Considerações de informação perceptual têm ganhado espaço rapidamente em pesquisas
referentes a representação, análise e exibição de malhas. Estudos com usuários, eye track-
ing e outras técnicas são capazes de fornecer informações cada vez mais úteis para sis-
temas voltados a usuário, que formam a maioria das aplicações em computação gráfica.
Neste trabalho nós expandimos sobre o conceito de Saliência de Malhas — uma me-
dida automática de importância visual para malhas de triângulos baseada em modelos de
atenção humana em baixo nível — melhorando, extendendo e realizando integração com
diferentes aplicações.

Nós extendemos o conceito de Saliência de Malhas para englobar objetos deformáveis,
mostrando como um mapa de saliência em nível de vértice pode ser construído capturando
corretamente regiões de alta importância perceptual através de um conjunto de poses
ou deformações. Nós definimos saliência multi-pose como um agregado multi-escala
de valores de curvatura sobre uma vizinhança localmente estável, em conjunto com de-
formações desta vizinhança em múltiplas poses. Nós substituímos distância Euclideana
por geodésica, assim fornecendo melhores estimativas de vizinhança local. Resultados
mostram que saliência multi-pose gera resultados visualmente mais interessantes em sim-
plificações quando comparado à saliência em uma única pose.

Nós também aplicamos saliência de malhas ao problema de segmentação e rendering de-
pendente de ponto de vista, introduzindo uma técnica para segmentação que particiona
um objeto em um conjunto de clusters, cada um englobando um grupo de característi-
cas localmente interessantes. Saliência de malhas é incorporada em um framework para
clustering propagativo, guiando seleção de pontos de partida para clusters e custos de
propagação de faces, levando a uma convergência de clusters ao redor de características
perceptualmente importantes. Nós comparamos nossa técnica com diferentes métodos
automáticos para segmentação, mostrando que ela fornece segmentação melhor ou com-
parável sem necessidade de intervenção do usuário. Uma vez que o algoritmo de seg-
mentação proposto é especialmente aplicável a rendering multi-resolução, nós ilustramos
uma aplicação do mesmo através de um sistema de rendering baseado em ponto de vista
guiado por saliência, alcançando melhorias consideráveis em framerate com muito pouca
perda de qualidade visual.

Palavras-chave: saliência de malhas, malhas deformáveis, segmentação de malhas, ren-
dering dependente de ponto de vista.

23

1 INTRODUCTION

Perceptual considerations are becoming increasingly important in mesh processing, anal-
ysis and display techniques (O’SULLIVAN, C. et al., 2004). User-centric systems form
the bulk of computer graphics applications, and displaying results that are visually ap-
pealing while maintaining interactivity for datasets that become larger and more detailed
is proving to be a difficult task. Extensive research has been — and is being — conducted
in order to tackle such a problem, but the need to process and render ever more complex
meshes keeps outpacing the capacity of state of the art systems.

Many techniques have been developed to help alleviate this issue; among them, mesh
simplification and segmentation proved to be particularly useful in reducing the overall
size of datasets to be processed or displayed (LUEBKE, 2001). Even methods such as
these have their limitations, tough: greatly simplified meshes may lose detail to a point
where features of interest may be lost, and segmentation may group faces into clusters
that do not represent interesting regions of an object, especially when perceptual factors
must be considered. If regions of high interest in a particular dataset could be reliably
identified, these — and other — processes could be greatly improved.

Mesh saliency (LEE; VARSHNEY; JACOBS, 2005) provides exactly such information.
Using multi-scale curvature analysis based on a center-surround operator, it reliably sep-
arates what most observers consider to be interesting regions from the surrounding con-
text, in an entirely automated process. In this work, we improve and extend the concept
of mesh saliency, integrating into it a better method for neighborhood estimation, gen-
eralizing the operator for posable or deformable objects, and integrating it into a mesh
segmentation framework. Applications in mesh simplification and view-dependent ren-
dering are used to illustrate these contributions. Figure 1.1 gives an overview of our work
and contributions.

1.1 Multi-Pose Mesh Saliency

Deformable or articulated meshes are ubiquitous among computer graphics applications
such as simulations, games and others. As the need for additional detail has increased,
dealing with massive deformable meshes has become a challenge — not only for interac-
tive rendering, but also for other operations such as mesh filtering, mesh simplification,
mesh segmentation, shape matching, and lighting design. Incorporating a measure of per-
ceptual importance in mesh processing greatly enhances the relevance and usability of
such processing in a wide variety of user-centric visual applications. Mesh Saliency, in-

24

Compute Vertex
Curvatures

Determine
Local Geodesic
Neighborhoods

Multi-scale
Curvature Analysis

Compute Salient
Clusters

Perform Salient
Simplification

Determine Cluster
Resolution

Perform
View-Dependent

Rendering

Combine Per-pose
Saliency Values

Multi-Pose
Mesh Saliency

Vertex-level
Mesh Saliency

Perform Multi-pose
Salient Simplification

Figure 1.1: Solution overview: Multi-scale curvature analysis is used to calculate mesh
saliency. Analysis of saliency values for multiple poses results in multi-pose mesh
saliency, which is combined with QSlim to generate mesh simplifications suitable for
all possible poses. Mesh saliency can also guide mesh segmentation and real-time impor-
tance estimation, which are in turn used in a view-dependent rendering system.

troduced in (LEE; VARSHNEY; JACOBS, 2005) as a computational model of multi-scale
perceptual importance based on a center-surround mechanism, provides a mathematical
framework to compute such a perceptual measure on static meshes. We extend the con-
cept of static mesh saliency to cover a broader class of deformable meshes with multiple
poses. Our technique takes as input the original mesh and a set of key deformations or
poses and outputs a scalar multi-pose saliency map. We show the effectiveness of our new
multi-pose saliency measure for the example application of mesh simplification. Figure
1.2 illustrates multi-pose saliency on a simple dataset.

1.2 Saliency-Guided Mesh Segmentation

Mesh segmentation forms the cornerstone of many object manipulation, parameterization
and analysis techniques (JI, J. et al., 2006; JULIUS; KRAEVOY; SHEFFER, 2005; NE-
HAB; BARCZAK; SANDER, 2006; QU; MEYER, 2006; LAI et al., 2006). Most mesh
segmentation algorithms work directly on raw, scale-independent, geometric information,
such as local curvature and face normals (SANDER, P. V. et al., 2003); even those that
attempt to detect prominent features do so without taking into account their perceptual im-
portance. Available techniques that employ visual importance estimation usually require
user input to determine areas of high interest to guide the the segmentation process(KHO;

25

Figure 1.2: Multi-pose mesh saliency takes as input a base mesh and a set of key poses
or deformations, computes saliency values for each mesh configuration, and computes a
measure of perceptual importance over the entire range of poses. On the left we show the
base mesh of the arm and two key poses with their curvature and saliency maps; on the
right we show the multi-pose mesh saliency. The detail-box shows the close-up around
the elbow.

26

GARLAND, 2003; CARR, N. A. et al., 2006).

Figure 1.3: Mesh saliency is used to perform salient clustering which is suitable for view-
dependent rendering. Segmentation results for the Grunt, Bunny, Hand and Goddess1
datasets.

We integrate mesh saliency (LEE; VARSHNEY; JACOBS, 2005) with mesh segmentation
in order to partition a triangle mesh into a set of face clusters representing what most will
agree are perceptually interesting features. Our technique builds upon the propagative
segmentation algorithm introduced in (SANDER, P. V. et al., 2003), incorporating mesh
saliency values for the cluster seed selection and propagation cost computation steps.

As recent surveys (ATTENE, M. et al., 2006) indicate, evaluating the quality of different
mesh segmentation algorithms can be a difficult task. We compare our approach against k-
means clustering and propagative segmentation, which are fully automatic and considered
to be representative techniques. We also validate our results through improved view-
dependent rendering of multi-resolution meshes: being driven by a perceptual importance
metric, our segmentation technique generates results that are particularly suitable for this
application. A multi-resolution representation of the mesh is computed in pre-processing
time, guided by cluster-normalized mesh saliency values; later, in render time, cluster

27

importance is estimated through analysis of cluster-level saliency and viewing parameters.
We use this perceptual importance estimate to select each cluster’s level of detail, while
maintaining a given global mesh resolution target. The final mesh for rendering is then
constructed in real time through a GPU-based vertex contraction algorithm.

(a) (b)

(c) (d)

Figure 1.4: Saliency-guided view-dependent rendering steps: saliency computation (a) is
used to perform salient clustering (b). View dependent and saliency information are used
to estimate cluster importance (c), which is passed to a fragment program that calculates
the right resolution for each cluster inside the GPU. Final rendering of the multi-resolution
mesh is shown in (d).

1.3 Contributions

Our main contributions in this work can be summarized as follows:

• Improved single-pose mesh saliency: We use the geodesic distance, instead of Eu-
clidean, to determine the local neighborhood for computing the single-pose saliency.

28

This yields superior estimates of visual importance, due to reduced error in neigh-
borhood estimation.

• Multi-pose mesh saliency: We introduce the concept of multi-pose saliency, com-
puting a single saliency map over several deformations of a mesh to provide an
aggregate measure of importance. Vertices that remain important over multiple
poses are assigned higher overall saliency than others. Multi-pose mesh saliency
can be integrated into processing of deformable meshes.

• Multi-pose simplification: We illustrate the use of multi-pose mesh saliency in de-
formable mesh processing through the example application of simplification using
edge collapses. Our technique is able to better preserve regions of high importance
over the range of deformations when compared with simplifications based on just
the quadric-error metric or a combination of quadric-error metric with single-pose
saliency.

• Salient clustering: We use saliency as a measure of perceptual importance to de-
termine cluster starting points and propagation, so that we can join triangles into
meaningful groups, each containing a set of locally interesting features. Segmenta-
tion results obtained through this technique are as good as or better than comparable
techniques, and are particularly suitable for perceptually-guided processes, such as
view-dependent rendering.

• Multi-resolution salient simplification: We perform mesh simplification over the
entire mesh through saliency-guided QSlim (GARLAND; HECKBERT, 1997),
weighted by the cluster-localized saliency map to preserve interesting cluster-level
features. A multi-resolution representation of the object is created, where regions
of high local — e.g. cluster level neighborhood — importance are preserved.

• Saliency-guided view-dependent rendering: We analyze each cluster indepen-
dently based on factors such as saliency and expected screen-space area. Resolu-
tion is preserved for clusters with high estimated saliency and visibility. A vertex
contraction algorithm running on the GPU is used to compute updated vertex index
lists in real time, thus greatly improving framerates while maintaining high visual
fidelity.

Figure 1.3 shows an example of our saliency-based segmentation algorithm, while Fig-
ure 1.4 showcases the steps of our proposed view-dependent rendering system and their
respective results. The rest of this document is organized as follows. Chapter 2 reviews
related work in the field. Chapter 3 reviews saliency concepts and shows our improved
single-pose saliency computation method, while Chapter 4 discusses the multi-pose mesh
saliency algorithm and describes application of multi-pose saliency to mesh simplifica-
tion. The saliency-guided mesh segmentation technique and multi-resolution rendering
system are described in Chapters 5 and 6. Results are discussed in Chapter 7, followed
by conclusions and directions for future work.

29

2 RELATED WORK

A large body of literature exists concerning the individual issues we tackle in this work.
Our review shows that while perceptual considerations are rapidly gaining importance in
many areas of computer graphics research, little work has been done regarding integra-
tion of measures of perceptual importance into mesh analysis and processing applications
— even more so for fully automatic measures. In this chapter we review related works
regarding multi-resolution meshes, deformable meshes and mesh segmentation under the
light of perceptually-guided processing.

2.1 Perceptual Considerations in Computer Graphics

Sullivan et al.’s report on perceptually adaptive graphics (O’SULLIVAN, C. et al., 2004)
discusses how perceptual information is used to evaluate and improve many visual ap-
plications, such as mesh optimization, animation, collision detection, non-photorealistic
rendering and global illumination, as well as saliency estimation through gaze-directed
user experiments. They provide an extensive survey of recent work regarding perceptual
considerations on several fields of computer graphics research, showing that solutions
where human perception is taken into account are able to provide greatly improved visual
results.

Howlett et al. have conducted eye-tracking experiments to identify and predict feature
saliency for three-dimensional objects (HOWLETT; HAMILL; O’SULLIVAN, 2005),
and show that higher visual fidelity can be attained on low level-of-detail optimizations
when using saliency as guiding element. Saliency information is extracted through hu-
man gaze data obtained over a set of eye-tracking experiments, and then employed to
guide mesh simplification. They observe that while using saliency to guide simplification
of natural objects generally provides simplifications with better visual fidelity, for man-
made objects the opposite is true - concluding that saliency prediction for artificial objects
is more difficult.

The work of (GAL; COHEN-OR, 2006) describes a method for partial matching of tri-
angular meshes, through identification of unique salient features over a set of low level
surface descriptors. Such descriptors are independent from the object’s underlying trian-
gulation, and can match similar objects or regions with different representations. They
define salient features as clusters of local descriptors that form a non-trivial region of the
surface. Similar regions are then found through indexing of rotation-invariant features
and a voting scheme. Excellent results in shape matching can be obtained through this

30

method, as seen on Figure 2.1; focusing on shape matching, though, this work does not
assign perceptual importance to different regions of an object.

The concept of mesh saliency as an automatic perceptual metric was first introduced
on (LEE; VARSHNEY; JACOBS, 2005), as a measure of regional importance based on
multi-scale curvature estimations. This technique is based on computational models of
human visual perception, building upon methods already well established in the field of
image processing, and is able to reliably identify in triangular meshes regions that most
observers would find of high visual importance. Their paper also presents techniques for
viewpoint selection and saliency-guided optimization. The latter, which serves as start-
ing point for our work, greatly improves preservation of perceptually interesting features
during optimization, without the need for any kind of user input.

Figure 2.1: Partial shape matching through salient feature detection (GAL; COHEN-OR,
2006).

2.2 Multi-Resolution Meshes

Progressive meshes were introduced in (HOPPE, 1996) as an efficient representation
of triangular meshes for optimization, transmission and level-of-detail approximation,
among other applications. Their representation is based on edge collapses — where edges
are progressively collapsed into a single vertex during simplification and expanded dur-
ing reconstruction — allows rapid retrieval of arbitrary levels of detail from optimized
triangular meshes, a key factor for continuous level-of-detail techniques.

(GARLAND; HECKBERT, 1997) introduced QSlim, a method which uses quadric er-
ror metrics (Figure 2.2) for fast and high-quality optimization of triangle meshes through
iterative contraction of vertex pairs. Any arbitrary vertex pair within a user-defined dis-
tance limit can be considered for contraction, instead of only pairs belonging to the same
edge. This method supports non-manifold surfaces, allows error bounding, and is directly
applicable to the creation of progressive meshes.

The work of (KHO; GARLAND, 2003) introduces a user-guided simplification method,
allowing preservation of key perceptual features on very low level-of-detail optimiza-
tions through user selection of interesting areas. They extend the QSlim simplifica-

31

Figure 2.2: Visualization of the error quadrics employed by the QSlim method to guide
vertex pair contraction. Bunny dataset simplified to 1.4% of original resolution (GAL;
COHEN-OR, 2006).

tion technique, modifying the quadric error values associated with each vertex through
user-provided importance estimation and introducing additional constraint quadrics, ef-
fectively guiding the order of vertex pair contractions. While good results can be obtained
when proper importance values are provided, as seen on Figure 2.3, no automatic measure
of perceptual importance is applied.

Figure 2.3: User-guided simplification. On the left, fully automatic QSlim. On the right,
guided simplification. Results from (KHO; GARLAND, 2003).

2.3 Simplification of Deformable Meshes

Deformable meshes are common across a significant range of computer graphics ap-
plications, and a large body of literature exists on the subject of multi-pose analysis or
pose-independent operations for deformable meshes. While work exists which takes into
account perceptual issues, such as (LEE; VARSHNEY; JACOBS, 2005), few tackle the
issue of perceptual importance estimation for deformable or posable meshes.

In (SCHMALSTIEG; FUHRMANN, 1999), Schmalstieg and Fuhrmann introduce a tech-
nique to simplify deformable objects that requires the user to specify areas that may un-
dergo deformation as part of ASLOD (Animated Smooth Level of Detail), a comprehen-
sive method for multi-resolution representation of scenes. Areas specified by the user
as deformable are then preserved to a greater extent than non-deformable ones. Only
the mesh representation on the original pose is maintained — when displaying simpli-

32

fied visualizations of the deformable areas, the simplified skin is modified through linear
interpolation, following the underlying skeleton.

Poulin and Houle, on (HOULE; POULIN, 2001), propose treating the base mesh of an
articulated model as a static mesh, simplifying it maintaining a progressive mesh represen-
tation, and then applying the vertex split operations on the deformed vertex to construct
the proper level of detail for any specific pose. A morphing technique is introduced to
adapt the vertex split operations to the deformed bone space. No perceptual information
is taken into account — in fact, the proposed technique is independent of simplification
method, any algorithm that constructs a progressive mesh representation can be employed.

In (MOHR; GLEICHER, 2003), Mohr and Gleicher introduce a deformation-sensitive
decimation technique, analyzing vertex contraction error on several input poses when de-
termining contraction costs for deformable meshes. Based on QSlim, their method takes
as input a representative sample of poses or deformations, and considers the contraction
cost of any vertex pair to be the sum of the contraction costs for that pair over the en-
tire range of representative poses. Simplification proceeds as described in (GARLAND;
HECKBERT, 1997). Here, also, perceptual metrics are not considered.

DeCoro and Rusinkiewicz present a similar technique (DECORO; RUSINKIEWICZ,
2005), but specifically for skeletally articulated objects: only the base mesh, skeleton and
skinning information are required as input. They also extend the QSlim method, combin-
ing error quadrics from the range of possible poses — now obtained through Monte Carlo
integration over a pose probability function that dictates the skeleton constraints — in
order to minimize the average error of the deforming mesh. All quadrics are transformed
to a common coordinate system prior to consideration, avoiding possible error magnifi-
cation problems. Meshes that undergo other types of deformation, such as morphing or
free-form deformations, are not supported.

2.4 Mesh Segmentation

Mesh segmentation — or triangle clustering — techniques have been applied to the so-
lution of many different mesh-related problems, from render-time optimization to control
skeleton extraction.

Multi-chart geometry images, introduced in (SANDER, P. V. et al., 2003), employ clus-
tering algorithms to break a triangle mesh into a set of manageable subdivisions used to
build a 2D mesh atlas representing the whole object, which can then be used to reconstruct
the original mesh. A propagative clustering framework is used — clusters are constructed
through a Dijkstra-like search on the dual graph of the mesh — where spatial proximity
and normal are used to determine face propagation costs. This provides good results for
mesh planarization, generating clusters that are mostly flat and with compact boundaries.

The technique presented in (NEHAB; BARCZAK; SANDER, 2006) divides a mesh into
a set of planar clusters, sorted in a view-independent manner that greatly reduces over-
draw, therefore reducing rendering time. Here, also, a propagative clustering technique is
used; since their main concern during segmentation is cluster planarity, the only metric
considered in cost computation during cluster propagation is based on the cluster average
normal and the candidate face normal.

33

Though methodologies vary — from adaptations of vector quantization algorithms (LINDE;
BUZO; GRAY, 1980) to Dijkstra-like propagation tuned for best rectangular fit (CARR,
N. A. et al., 2006) (Figure 2.4) — most clustering algorithms are guided either by sim-
ple geometric information, such as distance and normal deviation (SANDER, P. V. et al.,
2003), ignoring perceptual characteristics, or require user input to define interesting ar-
eas(CARR, N. A. et al., 2006).

Figure 2.4: User-guided propagative mesh segmentation. Propagation is performed in
order to provide best rectangular fit. Results from (CARR, N. A. et al., 2006).

Exceptions exist, though: (KATZ; TAL, 2003) introduces a hierarchical segmentation
technique based on fuzzy clustering and spectral cuts, divided in two stages which are ap-
plied recursively. The first stage determines the probability of a face belonging to a given
cluster, while the second stage computes the actual boundary between clusters. Each
iteration treats a binary case, dividing the mesh into two clusters; recursive application
can generate the desired number of subdivisions. A set of stopping conditions is used to
automatically guide the recursive process. It segments a mesh into meaningful pieces,
resulting, generally, in cuts at regions of deep concavities; jagged boundaries are avoided.
Effectiveness of the technique is demonstrated through a control skeleton extraction ap-
plication. Only single-scale geometric information is employed, though; no perceptual
information is considered.

A technique for mesh decomposition based on expanding spheres around each vertex is
presented in (MORTARA et al., 2003). A spherical bubble is expanded from each mesh
vertex, and the intersection of the bubble with the surrounding mesh is studied, taking
into account not only the curvature of the surrounding surface but its topology as well.
The surrounding surface is then characterized according to a set of criteria, based on the
intersection curves, at each vertex, and this information is then used to segment the mesh.
While shape analysis is performed at multiple scales, this is not translated into a measure
of perceptual importance.

The segmentation technique introduced in (ZHANG; LIU, 2005) uses visually-salient
spectral cuts, but saliency is defined only for entire mesh regions and not on the vertex
level. Subdivisions are always binary, and performed recursively; cuts are performed at
negative minima of surface principal curvatures — shape context is analysed and salient
parts are identified in 1D embedding space for cut placement. Intuitively meaningful
results can be obtained through this method, but no relative perceptual importance is

34

assigned to regions.

(KATZ; LEIFMAN; TAL, 2005) introduces a method for segmentation through feature
point and core extraction, which is invariant regarding object pose and component pro-
portion. In this technique, the input mesh undergoes a coarsening process beforehand in
order to reduce computational time and decrease sensitivity to noise. A canonical, pose-
invariant representation of the mesh is then constructed, where Euclidean distance be-
tween two points is similar to the geodesic distance between the same points in any pose.
Feature points are detected, followed by core component extraction — other segments
are then obtained by subtracting the core component from the rest of the mesh. Feature
points are defined as those resting on the tips of prominent components of a model, and
not through perceptual importance estimation.

In (LAI et al., 2006) a feature-sensitive segmentation technique based on k-means clus-
tering is introduced that divides a mesh into meaningful pieces. Feature-sensitive remesh-
ing is employed to build a hierarchy of meshes, then used in hierarchical segmentation.
Geodesic distance, curvature and texture information are used during face cost compu-
tation for cluster propagation. While segmentation results are visually interesting, no
perceptual information is employed or extracted during the process.

35

3 SINGLE-POSE MESH SALIENCY

Determining regional importance over a mesh surface is a critical step in many applica-
tions such as simplification and segmentation. Until recently, most techniques employed
purely geometric measures — such as local curvature — or required user input to indi-
cate important areas. Geometric measures such as curvature maxima or minima do not
always correlate with perceptual importance. For example, as seen on Figure 3.1, regions
with dense patterns of repeated high-curvature bumps may be fairly ordinary from a per-
ceptual point of view, even though single-scale curvature analysis would indicate high
importance. Relying on user input reduces automation and offers additional problems,
i.e. when processing a large number of different meshes. Mesh saliency builds upon
computational models of human attention to automatically extract a multi-scale measure
of vertex-level importance.

(a) (b) (c)

Figure 3.1: Importance estimation comparison: original mesh (a), local curvature (b) and
mesh saliency (c).

3.1 Visual Attention Models

Understanding how humans interpret complex scenes is a key factor in perceptually-
guided applications. Recent models of human visual attention (ITTI; KOCH, 2001) point
to a two-component framework, where scenes are analysed for interesting objects in both
a bottom-up, image-based manner and in a top-down, task-oriented manner. Most com-
putational approaches to model visual attention focus on the first component, since it is

36

Figure 3.2: Saliency computation uses a center-surround mechanism to combine curvature
information obtained at different scales.

able to indicate regions of high interest independently of the task being performed, and is
thus applicable to a wide range of problems.

Such models rely heavily on saliency — a measure of visual conspicuousness — to
quickly select areas likely to be of high importance. Koch and Ullman were the first
to propose this (KOCH; ULLMAN, 1985); they introduced the notion of a "‘saliency
map"’ that combined all available visual information and indicated areas of relative im-
portance. The visual focus then simply scanned the saliency map in order of decreasing
saliency to identify interesting objects. Studies indicate that what matters most in the
early stages of bottom-up attention is feature contrast, and not feature strength. Due to
this observation, most models agree that center-surround analysis is essential in separat-
ing salient regions from their surrounding context (ITTI; KOCH; NIEBUR, 1998), even
though different strategies for building a saliency map may exist for different input types
— i.e., when analysing an image several factors must be accounted for, such as color,
intensity, orientation and contrast. Additionally, important features may exist in varying
relative sizes, leading to multi-scale considerations (ITTI; KOCH; NIEBUR, 1998; LEE;
VARSHNEY; JACOBS, 2005).

Several works modeled saliency as a hybrid process combining bottom-up and top-down
analysis (WOLFE, 1994; TSOTSOS, J. K. et al., 1995), where high-level guidance is nec-
essary in the earlier stages of attention; Itti et. al, in (ITTI; KOCH; NIEBUR, 1998),
proposed a purely bottom-up strategy, where saliency is modeled directly after surround
modulation effects using gaussian filters at multiple scales. This latter proved to be ex-
tremely effective at many applications, including traffic sign detection, recognition of
pedestrians in natural scenes and detection of military vehicles, serving as basis for sev-
eral other works, including mesh saliency (LEE; VARSHNEY; JACOBS, 2005).

37

(a) (b)

Figure 3.3: Example of a situation where Euclidean distance may yield wrong saliency
results. (a) shows, in green, the local neighborhood as determined by the Euclidean dis-
tance, encompassing areas from a different section of the mesh. (b) shows, in blue, neigh-
borhood calculated through geodesic distance, correctly capturing the vertex neighbors
over the mesh surface. The source vertex is shown in red in both cases.

3.2 Saliency Overview

Inspired by the concept of saliency for two-dimensional images presented in (ITTI; KOCH;
NIEBUR, 1998), mesh saliency was introduced in (LEE; VARSHNEY; JACOBS, 2005)
as a vertex-level measure of multi-scale regional importance. This method effectively
separates important regions from the surrounding context, providing a reliable automatic
measure of perceptual importance for triangle meshes.

Mesh saliency applies the center-surround operation presented in (ITTI; KOCH; NIEBUR,
1998) to triangle meshes, substituting local mesh curvature for image color. Vertex-level
mesh saliency Si(v) for a given vertex v is given by:

Si(v) = |G(C (v),σi)−G(C (v),2σi)| (3.1)

where G(C (v),σ) corresponds to a Gaussian-weighted average of the mean curvature
C (v), and σi corresponds to the standard deviation of the Gaussian filter at scale i. For all
results presented in this work, we have used five scales σi ∈ {2ε , 3ε , 4ε , 5ε , 6ε}, where
ε is defined as 0.3% of the length of the diagonal of the object’s bounding box. Note that
σi only determines the size of the neighborhood being considered — for a given saliency
computation, all measurements are extracted from the same mesh.

For mesh saliency as introduced in (LEE; VARSHNEY; JACOBS, 2005), G(C (v),σ) is
calculated over a local neighborhood N(v,σ) defined by Euclidean distance; N(v,σ) =
{x|||x− v|| < σ , x is a mesh point}. This is a good measure for most cases, but may
generate false results, as exemplified by Figure 3.3. While this might not be critical
for static meshes, this is specially important for deformable or articulated meshes. To
avoid such issues, we have replaced the Euclidean distance by the geodesic distance for
neighborhood determination and Gaussian computation, which gives us an accurate and
reliable two-dimensional neighborhood over the surface of the triangle mesh.

38

Figure 3.4: Comparison of saliency computation using different distance metrics. The
leftmost column shows the model used, formed by two spheres; in the original con-
figuration (top row) and after suffering deformation (bottom row). The middle column
shows saliency results using the Euclidean distance; notice how saliency on the rightmost
sphere is affected by deformation on its neighbor. The rightmost column shows results
for geodesic distance: only the deformed section suffers variation in saliency values.

3.3 Geodesic Saliency

We calculate the geodesic distance using the method presented in (SURAZHSKY, V.
et al., 2005), which is itself a modification of the "single source, all destination" Mitchell-
Mount-Papadimitriou (MMP) algorithm. The distance function is parameterized over
mesh edges; each edge is partitioned into a set of intervals, or windows, representing a
group of shortest geodesic paths to the source vertex v. Windows are propagated from the
source vertex in a Dijkstra-like manner; the queue is ordered by geodesic distance to the
source.

Propagation stops when distance exceeds σ , the limit of the desired local neighborhood.
Computation is performed per vertex; neighborhoods from the smallest to the largest
scale are determined in order, and distance values from the previous scale are maintained.
Effectively, a single geodesic distance computation step is executed per vertex, with prop-
agation stopping at the largest value of σ required for saliency determination.

Figure 3.4 compares results of saliency computation using Euclidean distance to saliency
computation using geodesic distance, for two distinct configurations of a deformable
mesh.

39

4 MULTI-POSE MESH SALIENCY

Although mesh saliency provides a reliable measure of perceptual importance for static
meshes, it may generate false or incomplete results for objects that undergo deforma-
tions or are skeletally animated. Local mesh curvature is an essential component of mesh
saliency computation and it can vary wildly on deformable objects, drastically changing
importance estimation from one pose to another. Our objective is to compute a single
mesh saliency map, indicating potential perceptual importance for any possible pose.

We must, then, evaluate saliency across the entire range of deformations and extract a
single importance value per vertex. This process requires, as input, the base mesh Mb
plus the set of all key poses (or deformations) P. Each pose p ∈ P must preserve vertex
correspondence, as well as topology information, in relation to the base mesh. The process
for calculating multi-pose saliency is as follows.

Per-pose saliency computation is first performed for every pose. Mesh saliency maps
— using geodesic distance for neighborhood determination, as detailed on Section 3 —
are computed for the base mesh and all input poses. This gives us the range of possible
saliency values for each mesh vertex, across the range of possible poses or deformations.

Multi-pose mesh saliency can then be obtained by combining all the per-pose saliency
values. Defining the base saliency Sbi for a vertex vi as the lowest saliency value obtained
during per-pose saliency computation, the multi-pose mesh saliency value Soi for vertex
vi is given by:

Soi = Sbi +
|P|

∑
j=0

(Si, j−Sbi) (4.1)

where Si, j is the mesh saliency value for vertex vi in pose p j. Intuitively, we are defining
multi-pose saliency as a multi-scale aggregate of curvature values over a locally stable
vertex neighborhood together with the deformations of that neighborhood over multiple
poses. The sum of saliency difference across all poses, in relation to the base saliency
value, captures saliency persistence and variation for each vertex. Figures 4.1 and 4.2
exemplify this process for the Grunt, Cylinder, Sphere and Arm datasets. On the Arm
dataset, high importance is assigned to the inner and outer sections of the elbow, even
though both regions have relatively low saliency in the base mesh; this is due to the high
curvature variation experienced during deformation, which significantly changes local
perceptual importance. The sides of the elbow largely maintain the original saliency value
since little variation is encountered. Similar results can be observed on other datasets.

40

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.1: Mesh saliency comparison. From left to right: (a) base mesh, (b) single-pose
saliency values for the base mesh,(c-f) four additional poses, (g) resulting multi-pose
mesh saliency. Results for the Grunt and Cylinder datasets.

4.1 Multi-pose Salient Simplification

Mesh simplification methods are plentiful and varied (LUEBKE et al., 2002). Most take
into account purely geometric information — such as local curvature and measured er-
ror — to guide the simplification process (HECKBERT; GARLAND, 1999). Several
methods take into account possible mesh deformations, be it in the form of key poses or
skeletal articulation (MOHR; GLEICHER, 2003; DECORO; RUSINKIEWICZ, 2005).
Very few have considered perceptual information (LUEBKE; HALLEN, 2001; WAT-
SON; WALKER; HODGES, 2004; REDDY., 2001). To demonstrate the effectiveness of
our multi-pose mesh saliency metric, we have extended the QSlim method (GARLAND;
HECKBERT, 1997), by weighting the error quadrics used by the algorithm by the multi-
pose mesh saliency. We follow the salient simplification algorithm presented in (LEE;
VARSHNEY; JACOBS, 2005), substituting the mesh saliency map for our multi-pose
mesh saliency map.

QSlim works through successive vertex pair contractions, ordered by increasing quadric
error. Considering P to be the set of planes associated with triangles adjacent to a vertex v.

41

Each plane p∈ P defined by the equation ax+by+cz+d = 0, represented by (a,b,c,d)T

and with associated quadric Qp = ppT has an associated error — defined by the squared
distance of v to p — given by vT Qpv. The quadric Q associated with v is given by the
sum of all quadrics of the neighboring planes, Q = ∑ p∈PQp. For a potential contraction
pair (vi,v j), an optimal contraction target v that minimizes error is calculated; contraction
error for v is given by vT (Qi + Q j)v, where Qi and Q j are quadrics for vi and v j, respec-
tively. Pair contractions are then performed iteratively, starting from the pair with lowest
contraction error. The quadric for a new point v is obtained simply by adding both of its
parents’ quadrics, Qi +Q j.

Following (LEE; VARSHNEY; JACOBS, 2005), we guide simplification using a weight
map Wo, based on the multi-pose mesh saliency So. High saliency vertices are amplified,
thus ensuring better preservation of visually interesting detail. The amplification operator
A introduced in (LEE; VARSHNEY; JACOBS, 2005) is used, based on a threshold α and
amplifying parameter λ ; saliency values greater than α are amplified by a factor of λ . Wo
is then computed as follows:

Wo(v) = A(So(v),α,λ) =
{

λSo(v) i f So(v)≥ α

So(v) i f So(v) < α
(4.2)

Vertex quadrics computed in the initialization phase of the QSlim algorithm are multi-
plied by their respective weight map value; for a given vertex v, with associated quadric
Q, Q←Wo(v)Q. Analogously to (LEE; VARSHNEY; JACOBS, 2005), weight map value
for a contracted vertex v, obtained by the contraction of a vertex pair (vi,v j), is given by
Wo(vi)+Wo(v j). For all our experiments, λ was set to 100, and α to 70% of the maxi-
mum measured multi-pose saliency value. All vertices were defined by four-component
homogeneous coordinates.

This ensures that interesting features — for all relevant poses or deformations — are
preserved longer. Figure 7.2 compares the results of multi-pose salient simplification to
single-pose salient simplification and the standard QSlim method.

We note that it is not our goal to preserve deformation weights for articulated meshes
or similar parameters for other deformable objects. Several works, such as (DECORO;
RUSINKIEWICZ, 2005) and (HOULE; POULIN, 2001), have proposed different tech-
niques to solve this problem, and their approaches could be adapted to our solution if so
desired.

42

(a) (b) (c) (d)

(e) (f) (g)

Figure 4.2: Mesh saliency comparison. From left to right: (a) base mesh, (b) single-pose
saliency values for the base mesh,(c-f) four additional poses, (g) resulting multi-pose
mesh saliency. Results for the Sphere and Arm datasets.

43

Figure 4.3: Comparison of simplification results, after deformation. Top row: simplifica-
tion results using standard QSlim, QSlim plus single-pose saliency from the base mesh,
and QSlim using multi-pose saliency. Bottom row: relative face sizes for each simplifica-
tion; lighter faces are larger.

44

Figure 4.4: Comparison of simplification results using QSlim weighted by mesh saliency
values. From left to right: the first column shows multi-pose saliency values, the second
column shows the difference between multi-pose mesh saliency and single-pose saliency
as computed for the base mesh, the third column shows simplification results using QS-
lim weighted by single-pose saliency and the fourth column shows simplification results
using QSlim weighted by multi-pose mesh saliency. From top to bottom, results for the
Cylinder, Sphere, Arm and Grunt datasets, respectively.

(a) (b) (c) (d)

Figure 4.5: Detail of simplification results. For the Arm dataset, using (a) single-pose
saliency and (b) multi-pose saliency. For the Grunt dataset, using (c) single-pose saliency
and (d) multi-pose saliency. Notice the higher concentration of detail on regions where
visually interesting features are likely to undergo deformation.

45

5 SALIENT CLUSTERING

Mesh segmentation consists of partitioning a triangle mesh into a set of face clusters,
each comprised of a subset of the original object’s triangles. Faces assigned to each clus-
ter share a few common properties, such as spatial proximity and orientation. We define
salient clustering as the process of segmenting a triangle mesh into a group of clusters,
where each cluster encompasses a local set of interesting features as defined by mesh
saliency. This section describes a segmentation approach that reliably detects and groups
triangles belonging to interesting features by integrating vertex-level mesh saliency in-
formation into a propagative clustering framework. Note that both static and deformable
meshes can benefit from this method, simply by substituting standard, single-pose mesh
saliency for multi-pose mesh saliency when applying it to posable or deformable objects.

5.1 Cluster Determination

Our clustering technique is a variation of the chartification algorithm based on Lloyd-
Max Quantization presented in (SANDER, P. V. et al., 2003), modified to consider mesh
saliency information during cluster computation. As in (SANDER, P. V. et al., 2003), it is
an iterative process, alternatingly propagating and re-centering face clusters starting from
an initial set of seed elements. Another key difference of our method is that it starts from
an already pre-selected set of seed elements, instead of gradually building the cluster list
as iterations are performed. Our method is composed of a seed initialization phase, as well
as iterative cluster growth and re-seeding phases, which are executed until convergence is
reached.

Seed initialization is done by sampling from the regions of highest importance in the
mesh. A vertex pool is created, containing the λc ∗C highest-saliency vertices, where λc
is a user-defined multiplier and C is the desired cluster count; C seeds are then randomly
chosen from this pool. Each cluster is initialized with saliency, normal and position val-
ues. All faces that share a seed vertex are placed on the cluster propagation queue. For all
our experiments λc was set to 5.

Cluster growth works through Dijkstra-like searches, performed simultaneously for all
clusters. The dual graph of the mesh, where pairs of faces are connected by edges, is
used as propagation medium. Each search starts on the highest-saliency face already in
the queue; subsequent faces are evaluated through a cost function that considers normal
deviation, distance and saliency variation. This promotes fairly planar clusters over areas
of similar saliency, thus tending to encompass single prominent salient features or sets of

46

similar and closely-packed features. More accurately, the edge cost between a face f on
a cluster c and a candidate face f ′ adjacent to it is defined by:

cost(f , f ′) =(λn− (µ(−→nc) ·−→n f ′)) ∗
(|µ(Sc)−S f ′| ∗ |Sc0−S f ′| ∗ |S f −S f ′|) ∗
(|x f ′− x f |)

(5.1)

where µ(−→nc) is the mean cluster normal, −→n f ′ is the normal vector for f ′, x f , x f ′ , S f and
S f ′ are, respectively, the centroids and saliency values for f and f ′, µ(Sc) is the cluster
mean saliency and Sc0 is the cluster starting saliency value. Relative weight for normal
contribution is adjusted by λn. Note that the scale of each component is not important
— since each component multiplies the others, only relative magnitude needs to be con-
sidered. Scale is assumed to be constant for any given component in any given mesh.
Growth proceeds until all mesh faces are assigned to a cluster. For all our experiments λn
was set to 1.

Cluster re-seeding is performed next. Each cluster has its seed and initial data updated;
the new seed should be the most interior high-saliency vertex possible. New seeds are
also selected through Dijkstra search, now starting from all faces located at the cluster
border and advancing inwards. Edge cost is now defined by a combination of distance
and saliency variation:

cost(f , f ′) = (x f ′− x f)∗ (S f ′/max(Sc)) (5.2)

where max(Sc) is the cluster maximum saliency value detected during the growth phase.
The new seed will be the highest-saliency vertex belonging to the last face reached during
propagation.

Convergence happens through successive growth and re-seeding phases: both are re-
peated in order until the new seeds are identical to those encountered on the previous
iteration. As in (SANDER, P. V. et al., 2003), we check for the existence of possible
cycles in the convergence process; in such a case, any point on the cycle is acceptable.

Figure 5.1 compares examples of triangle meshes partitioned using salient clustering and
non-salient propagative clustering. Notice how in Figure 5.1.a each finger is effectively
isolated in a single cluster, while features are much less distinct in 5.1.b. This comparison
is extended in Figure 7.7 to include the clustering algorithm using the K-means algorithm
based on the LBG algorithm (LINDE; BUZO; GRAY, 1980).

5.2 Cluster-level Properties

Once all clusters have been determined, each one is analyzed and a set of cluster level
properties is determined (Table 5.1),including saliency-based information. Since our clus-
tering method generates segmentations suitable for multi-resolution rendering, we further
exploit saliency information at render-time for estimating the screen-space area and per-
ceptual importance of each cluster.

47

(a)

(b)

Figure 5.1: Comparison of clustering results: Salient clustering (a) and non-salient prop-
agative clustering (b).

5.3 Multi-resolution Salient Simplification

Again, as in Section 4.1, we extend the salient simplification method presented in (LEE;
VARSHNEY; JACOBS, 2005) to generate multi-resolution representations of a clustered
triangular mesh. This can be seen as an extension of the quadrics-based simplification
method (QSlim) where mesh saliency is incorporated as a quadric weighting factor.

Our extension uses a cluster-localized saliency map to guide simplification contractions,
better preserving detail that is significant inside a specific cluster. This map is computed
by normalizing saliency values inside each cluster, on a linear scale that ranges from zero
(at the cluster base saliency) to one (at the cluster peak saliency), and then adding the
normalized saliency values to the cluster mean saliency:

Sci = ((Si−min(Sc))/(max(Sc)−min(Sc)))+ µ(Sc) (5.3)

This localized map is smoothed and amplified as in (LEE; VARSHNEY; JACOBS, 2005),
and its values are then used to weight the quadrics computed by the QSlim method. Op-
timization is performed over the entire mesh, so connectivity at cluster boundaries can
be maintained. Figure 5.2 compares original saliency values to smoothed and amplified
saliency and to cluster-normalized saliency.

48

Table 5.1: Saliency Properties per cluster.
Property Description

Total saliency Sum of the saliency contributions from
each vertex belonging to the cluster

Mean saliency Average of the saliency contributions from
each vertex belonging to the cluster

Peak saliency Maximum saliency value encountered
among elements of the cluster

Base saliency Minimum saliency value encountered
among elements of the cluster

Total area Sum of the area of all cluster faces
Mean normal Average of all cluster face normals
Peak normal Maximum deviation from the mean normal

We observe that globally important details are better preserved when the original saliency
is used, while regions with high local saliency are preserved when we use cluster-localized
saliency values. Since our goal is to adaptively preserve detail in a view-dependent man-
ner during render-time, the second option is preferred: using global saliency can lead to
vast regions of the model suffering from heavy optimization while detail is carefully pre-
served on relatively small areas. This would jeopardize our ability to select an adequate
level-of-detail in render-time; i.e. when regions that originally had high saliency values
are selected for extensive simplification.

49

(a) (b) (c)

Figure 5.2: Saliency Comparison: original saliency (a), smoothed and amplified saliency
and resulting simplified mesh (b) and cluster-localized saliency and resulting simplified
mesh (c).

50

51

6 VIEW-DEPENDENT RENDERING

Multi-resolution rendering involves selecting the proper level-of-detail for each rendered
object based on application requirements, which typically emphasize shorter rendering
times while maintaining the best possible visual result. We propose a saliency-guided
system, taking advantage of results generated by saliency-guided mesh segmentation to
effectively estimate visual importance in real time, feeding a GPU-based vertex contrac-
tion system. Figure 6.1 illustrates the interconnection between system components.

Calculate Vertex-level
Mesh Saliency

Salient Clustering

Multi-resolution
Salient

Simplification

Cluster Resolution
Determination

Perform Vertex
Contractions

Render

Preprocessing CPU GPU

RenderTime

Figure 6.1: System Overview: In a preprocessing stage a salient-based clustering algo-
rithm generates mesh clusters that are simplified based on saliency information. CLOD
selection through vertex contractions is performed on the GPU using view-dependent in-
formation, generating an array of vertex indices that define the multi-resolution mesh to
be rendered.

Our technique works by estimating cluster screen-space visibility and perceptual impor-
tance by comparing its position and orientation relative to the camera against a set of
previously calculated attributes (detailed in section 5.2). This data is then used to de-
termine the cluster rendering resolution, which serves as input to a GPU-based level-of-
detail selector that builds the proper vertex index arrays to be used for rendering. While
resolutions are selected independently for each cluster and vertex indices reference lo-
calized cluster vertex arrays, a global resolution-matching step is executed to guarantee
hole-free cluster boundaries, removing the need for additional zippering and minimizing
face overlap.

52

Salient clustering is an essential component of our solution because it fulfills the following
requirements:

1. Identify sets of triangles that comprise distinct salient features of the original
object: Different features can have different levels of visual importance to an ob-
server. Using mesh saliency, a measure of global importance can be extracted for
each cluster, and each can be displayed at a resolution appropriate to the estimated
importance. Having similar and spatially-close features within a single cluster al-
lows us to quickly select the level of detail at run-time without the need for extensive
computation.

2. Reduce processing and bandwidth requirements for level-of-detail selection
during render-time: Processing a vertex list for multi-resolution rendering is a
time-consuming task. Performing it on the CPU is relatively slow, and occupies a
processor that would otherwise be employed for other tasks. A GPU solution can
be much faster, but data-transfer bandwidth issues must be carefully considered;
dividing an object into clusters can reduce the number of bits required to store a
vertex index, thus reducing the required bandwidth.

We evaluated different clustering techniques, and while most of them were able to gen-
erate results that satisfied the second requirement, all failed on properly detecting and
grouping perceptually interesting features without user input, excepting saliency-guided
mesh segmentation.

6.1 Cluster Resolution Determination

Once a global resolution target (Rglobal) for an object to be rendered is chosen, we must
determine how each cluster will be optimized to generate the best possible visual results.
Two factors are taken into account when level-of-detail for a cluster is being calculated:
estimated screen-space visibility and estimated visual importance. Both can be obtained
when the cluster position and orientation relative to the camera are compared to the set of
cluster attributes obtained in the pre-processing stage.

Estimated screen-space visibility (Aest) is basically a factor of the cluster distance from
the camera, total area, mean normal and peak normal deviation. We assume, conserva-
tively, that when the vector pointing from the cluster centroid to the camera is perfectly
aligned with the cluster mean normal, the entire cluster is visible. As the angle between
these vectors increases, visible area decreases proportionally; when it is greater than the
cluster peak normal deviation visibility can be expected to be very low. More specifically,
we define the visualization angle factor as:

λangle = 6 (−−→vcam,µ(−→nc))− peak(−→nc) (6.1)

where−−→vcam is the vector from the cluster centroid to the camera, µ(−→nc) is the cluster mean
normal, and peak(−→nc) is the cluster peak normal deviation (maximum angle between the
normal of a face belonging to the cluster and the cluster’s mean normal). While this is
not a precise measure of visibility — to have such a measure visibility for every face in
the cluster would have to be evaluated — it is a suitable approximation for our purposes.
Additionally, distance from the camera must be taken into account: the farther away from

53

the camera an object is, the smaller its associated area will be. Distance factor is defined
as:

λdist = |xc− pcam|− rc (6.2)

where xc is the cluster centroid, pcam is the camera position, and rc is the radius of the
cluster bounding sphere (Figure 6.2). Multiplying the visualization angle by the inverse
of the distance factor and by the cluster area gives us the combined screen-space area
estimate:

Aest = λangle ∗1/λdist ∗Acluster (6.3)

Note that the case where the distance factor (λdist) is zero must be considered. Treatment
is application-specific; for our tests, when a value of zero was found, the last non-zero
value previously encountered was applied.

Figure 6.2: Cluster bounding spheres and mean normals.

Visual importance estimation (Iest) takes into account a cluster’s total, mean and peak
saliency values. Highest contribution is obtained when high values exist for the three
saliency metrics, giving us the visual importance estimate:

Iest = (Sc ∗ peak(Sc)∗µ(Sc))/Smesh (6.4)

where Smesh denotes accumulated saliency for the entire mesh. Examples of importance
estimation from different points of view are shown in Figure 6.3.

Contraction distribution sorts clusters by Aest ∗ Iest . Those with lower area and im-
portance values are rendered with lower resolution, while higher values have more detail
preserved. For practical purposes, we define a cluster’s resolution by the number of vertex

54

Figure 6.3: Visual Importance Estimation: Lighter regions have greater importance val-
ues.

pair contractions to be performed over its multi-resolution representation; contractions are
then distributed across the cluster list in order. The lowest importance cluster is assigned:

Rlocal = λperc ∗Rglobal (6.5)

contractions, where λperc is a user-defined percentage value. Rlocal is clamped to the max-
imum number of contractions allowed on the cluster. This number is then subtracted from
the global contraction target and the next cluster is evaluated, until the global contraction
target has been reached. If Rglobal is not reached after the last cluster on the list is eval-
uated, the process continues from the beginning of the list. For all our experiments λperc
was set to 0.02.

Neighbor matching is executed after all clusters have received a contraction target: a
vertex pair contraction can only be performed if all contractions leading to it have already
been performed. To guarantee this, we keep the global order of the last required pair
contraction associated with each vertex contraction. For each cluster, the largest parent-
contraction order is determined, and neighboring clusters are evaluated; if the neighbor
contraction stop point is smaller than this largest contraction order, the neighbor stop point
is replaced by this value. This ensures gap-free boundaries, and minimizes face overlap
problems. Some overlap may still occur, especially over regions where significant differ-
ence in resolution targets for a local group of clusters is encountered, but such artifacts
are rare.

6.2 Level of Detail Selection

Once a resolution target is determined, we must perform vertex pair contractions over
each cluster vertex list until its target is reached. While this is a straightforward process,
it is considerably time consuming: index lists must be processed several times until all
contractions are performed. Updated lists must be uploaded to GPU memory for render-
ing, thus increasing CPU-GPU bandwidth usage. To speed up this process, we introduce
a GPU-based level-of-detail selector, which performs the entire process on GPU memory,
and reduces both execution and index list update times. Our GPU-based level-of-detail
selector is composed of a single fragment shader, two framebuffer objects and a set of
data textures.

55

Five textures contain all the information required to initialize and run the vertex pair
contraction process. The first two textures encode, for each vertex of a given cluster, its
initial and subsequent contractions:

• Base Vertex Index (BVI) texture (2D, RGBA32F): initial contraction: vertex index
(vi), contracted vertex index (VC(vi)), 1D coordinates for the CVI texture (icvi) and
for both the SCI and CSP textures (isci).

• Contracted Vertex Index (CVI) texture (2D, RGBA32F): subsequent contractions,
same format as the BVI texture.

Since a vertex is processed separately for each cluster, we need to ensure that a vertex that
appears on multiple clusters undergoes the same number of contractions, thus avoiding
cracks in the final mesh. The remaining three textures encode information used in this
process:

• Shared Cluster Indices (SCI) texture (2D, RGBA32F): cluster IDs for all clusters
associated with a given vertex.

• Vertex Contraction Order (VCO) texture (2D, R32F): global pair contraction order
of a given vertex.

• Cluster Stop Point (CSP) texture (1D, R32F): cluster stop points selected during
resolution estimation.

Framebuffer objects (FBOs) are used for both processing (FBOP) and data format conver-
sion (FBOC). The first (FBOP) is used during the iterative vertex pair contraction process
and matches the information stored on the BVI and CVI textures, having two surfaces
(FBOPr and FBOPw) for ping-pong rendering. The second (FBOC) is used for data type
conversion and copy. Both framebuffer objects share the size defined for BVI. The ver-
tex contraction fragment shader takes CVI, SCI, VCO and CSP as input textures, as well
as the texture associated with FBOPr and the widths and heights for the CVI, SCI and
VCO textures. It is executed over the domain defined by FBOP, where each pixel maps
directly to one vertex index in the clustered index buffer. Level-of-detail selection works
as follows:

Algorithm 1 VERTEX CONTRACTION ALGORITHM

1: Read surface on FBOPr with initial BVI values
2: for i = 1 to maxContractionLevel do
3: Execute shader over FBOPr, writing on FBOPw
4: Swap FBOPr and FBOPw
5: end for
6: Write contents of FBOPr to FBOC
7: Copy FBOC to vertex index buffer for rendering

The value maxContractionLevel represents the highest level of any pair contraction tar-
get that must be reached among all clusters, and can be calculated with no additional
complexity during the cluster resolution determination step. Figure 6.4 further details the
contraction shader.

After the vertex contraction shader has executed maxContractionLevel times, FBOPr con-
tains the updated index array. We copy these values, through a single rendering pass, to

56

cluster 0 cluster 1

cluster 3

... cluster c-2 cluster c-1

...

...

vi VC(vi)

BVI

icvi

CVI

isci

c0

c1

c2

cluster 2

icvi!(ucvi,vcvi)

r g b a

icvi!(ucvi,vcvi)

VBO Cluster 0

x,y,z,...

x,y,z,...

x,y,z,...

...

SCI

CSP

vi VC(vi) icvi isci

isci!(usci,vsci)

c3
VCO

max
MAXORD

<

CONTRACTION NO CONTRACTION

Figure 6.4: Vertex Contraction Shader: First it checks if a vertex has a contraction target
(channel G: vertices with no target receive value -1). If no target exists, the value is
maintained; otherwise, coordinates stored on channels B and A are decoded. The first
is used to load contraction data from CVI, while the second is used to access data from
both SVI and VCO. Each channel on SCI is used for additional texture indirection, now
reading from CSP; the four values read from CSP are compared, and the highest order
value MAXORD is selected. If the global vertex order, read from VCO, is smaller than
MAXORD the vertex must be contracted, and the output value is updated with the one
read from CVI.

FBOC - which shares the same internal format as the index buffer - from whence val-
ues are copied to the index buffer to be used for rendering. For some graphics cards, we
observed rounding problems when unsigned integer values are manipulated by fragment
shaders. Unsigned short did not present such errors, with the added benefit of lower data
transfer times, so this format was adopted instead. However, it limits clusters to a maxi-
mum of 216 vertices, a restriction which can be easily enforced during pre-processing.

6.3 Rendering

Rendering is relatively straightforward. We have a single vertex index buffer, where
cluster-localized vertex indices are stored; this buffer is bound at all times. For each
cluster, its associated vertex data buffer (where vertex positions, normals, color, etc. are
stored) is bound, and the portion of the index buffer relative to the cluster is rendered.
It is interesting to note that other cluster-level optimization algorithms, such as partial
ordering (NEHAB; BARCZAK; SANDER, 2006), can be used in conjunction with our
method without the need for adaptations.

57

7 RESULTS

7.1 Multi-Pose Mesh Saliency

Previous sections described a method to extract multi-pose saliency information from a
base mesh and a set of key poses, using an improved single-pose saliency computation
technique as the starting step. To evaluate the effectiveness of multi-pose saliency, we
have modified the QSlim method, weighting the vertex error quadrics by a weight map
derived from multi-pose mesh saliency.

Figure 3.4 compares perceptual importance as estimated by standard mesh saliency to
mesh saliency using geodesic distance. Notice how deforming one of the spheres causes
variations in saliency values on its undeformed neighbor when the Euclidean distance is
used — the same does not happen when geodesic distance is used; mesh saliency values
are correctly preserved. Comparison of saliency values for the Cylinder dataset can be
seen in Figure 7.1, single-pose saliency values are given using our modified saliency met-
ric. Observe the differences in the region near the joint; single-pose saliency fails to report
any importance for such regions whereas our multi-pose saliency approach correctly as-
signs high saliency values to them.

For our experiments, all datasets were simplified from the base mesh, deformations were
re-applied over the simplified representations using the original skeleton and bone influ-
ence fields. An example of simplification results for the base mesh is shown on Fig-
ure 7.2. Notice how detail is better preserved around the visually interesting portions of
the deformed regions when multi-pose saliency is used as the weighting factor. For the
Sphere dataset detail is better preserved on the side that suffers deformation with multi-
pose salient simplification whereas single-pose salient simplification results in a roughly
uniform tessellation.

Figure 4.3 shows results for the Arm dataset, with deformation re-applied after simplifica-
tion. Regions around the joint are better preserved with multi-pose salient simplification,
resulting in an improved visualization when deformation is applied; low-saliency, static
regions undergo greater simplification. Single-pose saliency better preserves static fea-
tures present on the base mesh, at the cost of lower detail on joints and deformed regions,
while using standard QSlim we achieve more uniform simplification along the surface of
the object, at the cost of ignoring possibly salient regions. Figure 4.4 shows simplification
results for all datasets, while figure 4.5 has a close-up look to illustrate how detail is kept
on features that are likely to undergo deformation.

58

Figure 7.1: Difference between single-pose and multi-pose saliency for the multi-pose
cylinder of Figure 4.1. Top row: base mesh, and single-pose saliency for base mesh. Bot-
tom row: multi-pose saliency and difference between multi-pose and single-pose saliency
for the base mesh. Lighter colors indicate greater difference.

7.2 Saliency-Guided Mesh Segmentation

We have tested our segmentation algorithm with several datasets, covering a broad range
of geometric and topological complexity. All experiments were conducted on an Athlon
64 3500+, with 2GB of RAM and an NVIDIA GeForce 8800 GTX 768 graphics card.
Table 7.1 gives more specific information on each dataset used. Execution times for
segmentation are given in Table 7.2; while k-means clustering takes considerably less time
than our technique, its results are relatively poor. Times for propagative segmentation are
similar to those of our technique, but it fails to detect salient features, generally targeting
flat regions. Figures 7.7 to 7.11 illustrate the segmentation results for several datasets.

Table 7.1: Datasets
Dataset Vertices Faces Edges Clusters
Grunt 26143 52282 78423 45
Bunny 35947 69451 104288 10
Hand 136663 273060 409724 10
Isis 187644 375284 562926 30

Ganesh 206618 413236 619827 30
Dragon 240057 480076 720114 45

Goddess1 137406 274822 412231 30
Goddess2 523578 1047330 1570923 30
Armadillo 172974 345944 518916 45
Laçador 653891 1307794 1961691 45

Significantly better frame-rates - when compared both to full resolution representations
and optimization through CPU-based pair contraction - were observed for all models
when using our method, for meshes rendered at 5% of the original resolution. Com-
putation time for each mesh update was amortized over 10 frames for both the GPU and
CPU implementations. Table 7.3 summarize these results.

59

Figure 7.2: Comparison of simplification results for the multi-pose sphere of Figure 4.1.
From left to right: mesh saliency, simplified mesh using QSlim weighted by saliency
values, relative triangle sizes for simplified mesh. The top row shows results for single-
pose saliency, computed from the base mesh; the bottom row displays results for multi-
pose mesh saliency. The different deformations undergone by the Sphere model can be
seen on Figure 4.1.

Advantage gained in relation to rendering the full-resolution mesh decreases when less
optimization is performed, but even at as much as 60% of the original resolution improve-
ments in framerate are significative when amortization is performed. Still, this loss could
be minimized through greater amortization, setting a cutoff point (optimizing meshes only
when significant simplification is required) or other render-time resolution selection tech-
niques. Rendering multiple instances of the same optimized mesh, such as characters or
repeating scenery objects in massively populated environments, will also decrease relative
costs. As an example, rendering nine instances of the Armadillo dataset simplified to 60%
of its original resolution more than doubles the framerate: from 20 FPS when rendering
the full resolution mesh to 42 FPS when our method is enabled, with minimal visual loss.
Results practically indistinguishable from the original mesh can be obtained at up to 35%
simplification, as shown on Figure 7.3, and with minimal difference at 5% (Figures 7.4
and 7.6).

60

Table 7.2: Saliency computation and clustering times, in seconds.
Dataset Saliency Salient Prop. K-Mean

Comp. Seg. Seg. Seg.
Grunt 8.516 13.859 21.203 0.14
Bunny 5.187 30.359 64.844 0.172
Hand 78.219 247.39 218.687 0.625
Isis 136.781 861.547 1104.55 2.002

Ganesh 80.516 545.328 925.672 2.531
Dragon 187.906 865.437 602.187 3.563

Goddess1 56.531 578.61 833.843 0.906
Goddess2 1049.27 7534.73 4058.34 3.438
Armadillo 91.047 417.265 623.688 1.609
Laçador 1747.53 6945.98 7141.34 8.063

Table 7.3: FPS for full mesh, CPU and GPU optimization.
Dataset No CPU GPU

Opt. (5%) (5%) (35%) (60%)
Grunt 1087 685 2220 1759 1419
Bunny 817 475 2147 1507 1126
Hand 241 116 823 518 357
Isis 154 68 505 266 190

Ganesh 160 64 482 283 222
Dragon 127 55 398 336 261

Goddess1 216 127 839 423 328
Goddess2 64 26 272 134 84
Armadillo 184 93 783 341 262
Laçador 50 21 234 105 75

(a) Original (b) 35% (c) Difference

Figure 7.3: View-dependent rendering results for the Ganesh dataset, at 35% of original
resolution, with framerate increasing from 64 to 283 FPS. Original mesh (a), simplified
mesh (b) and difference image — nearly no difference (c).

61

Figure 7.4: Armadillo results. Original Mesh, QSlim simplification to 1% (progressive
mesh backstop point), Saliency-guided Simplification using clustering to 35% of original
resolution (with and without wireframe). Notice how most relevant details were preserved
on the mesh simplified to 35% when compared to the full resolution.

62

Figure 7.5: Laçador results. Original Mesh, QSlim simplification to 1% (progressive
mesh backstop point), Saliency-guided Simplification using clustering to 35% of original
resolution (with and without wireframe). Notice how most relevant details were preserved
on the mesh simplified to 35% when compared to the full resolution.

63

Figure 7.6: Armadillo and Laçador Results. Detail from Original Mesh and Saliency-
guided Simplification to 5% of original resolution.

64

(a) (b)

(c)

Figure 7.7: Comparison of Clustering Techniques for the Armadillo: Salient Clustering
(a), Distance+normal Propagative Clustering (b) and K-Means Clustering (c). Notice the
improved cluster convergence around interesting features, such as faces and hands when
salient clustering is used.

65

(a) (b)

(c)

Figure 7.8: Comparison of Clustering Techniques for the Goddess2 Dataset: Salient Clus-
tering (a), Distance+normal Propagative Clustering (b) and K-Means Clustering (c).

66

(a) (b)

(c)

Figure 7.9: Comparison of Clustering Techniques for the Dragon Dataset: Salient Clus-
tering (a), Distance+normal Propagative Clustering (b) and K-Means Clustering (c).

67

(a) (b)

(c)

Figure 7.10: Comparison of Clustering Techniques for the Isis Dataset: Salient Clustering
(a), Distance+normal Propagative Clustering (b) and K-Means Clustering (c).

68

(a) (b)

(c)

Figure 7.11: Comparison of Clustering Techniques for the Laçador Dataset: Salient Clus-
tering (a), Distance+normal Propagative Clustering (b) and K-Means Clustering (c).

69

8 CONCLUSIONS AND FUTURE WORK

In this work we have extended the concept of mesh saliency and integrated it into sev-
eral applications. This chapter summarizes our contributions and improvements when
compared to competing techniques and indicates possible courses for future research.

8.1 Multi-Pose Mesh Saliency

We have extended the concept of mesh saliency to take into account variations on per-
ceptual importance caused by mesh deformations. An improved approach to computation
of single-pose mesh saliency was presented, using geodesic distance instead of the Eu-
clidean distance for local neighborhood determination, generating more robust perceptual
importance estimations. A method to calculate a single multi-pose mesh saliency value
from a base mesh and a set of key poses or deformations was also introduced, using our
modified single-pose saliency metric to analyze each pose. Saliency values are then com-
bined, taking into account saliency persistency and variation across the set of key poses;
regions with high saliency across all poses receive higher multi-pose saliency values than
those with high saliency only on few poses.

Effectiveness of our multi-pose saliency metric is demonstrated through application on
a mesh simplification problem. We show that weighting the simplification process with
multi-pose saliency results in simplifications that better fit the key poses while maintain-
ing detail in the regions of interest across the pose set when compared to simple error-
guided simplification, or simplification weighted by single-pose mesh saliency.

Multi-pose mesh saliency provides a reasonable metric of visual importance for deformable
objects. Currently our method takes into account only mesh curvature information across
a set of key poses. It will be interesting to generalize it to not only take into account other
visual attributes, such as color and texture, but also deformation velocity and other spec-
tral attributes of the deformation process. Extending our technique to work from a base
mesh with associated skeleton and skinning information, as on (DECORO; RUSINKIEWICZ,
2005), can prove to be useful for already skinned objects, requiring no further work from
the artist. Integrating multi-pose saliency with a view-dependent rendering framework is
another promising research prospect.

70

8.2 Saliency-Guided Mesh Segmentation

We described a method to reliably segment a triangle mesh into a set of clusters containing
visually interesting features. The method uses mesh saliency as a computational model
of perceptual importance to iteratively determine face clusters through propagation from
a starting point selected from a pool of high-saliency vertices. No user input is required,
and salient regions are correctly captured. We show how segmentation of equal or better
quality than comparable methods is achieved, in similar computational times.

Additional validation was performed through a view-dependent rendering system, where
salient clusters were assigned different mesh resolutions at render-time based on their
visual importance, calculated from viewpoint information and combined cluster saliency
data; high simplification rates were achieved with little visual loss, resulting in greatly
improved framerates.

Further refinements may be possible, though. Saliency computation can benefit from
better metrics for neighborhood determination, such as geodesic distance, consequently
improving segmentation results; salient feature detection — recognition of individual in-
teresting features by local saliency peak analysis — may improve both the results of the
segmentation process and of the cluster importance estimation step. Validation of our vi-
sual importance metric through user studies can provide a more solid basis for employing
mesh saliency as an automatic metric for perceptual importance. We intend to investigate
these directions as a part of our future work.

71

REFERENCES

ATTENE, M. et al. Mesh Segmentation - A Comparative Study. In: IEEE INTERNA-
TIONAL CONFERENCE ON SHAPE MODELING AND APPLICATIONS, SMI, 2006.
Proceedings. . . [S.l.]: IEEE Computer Society, 2006.

CARR, N. A. et al. Rectangular Multi-Chart Geometry Images. In: EUROGRAPHICS
SYMPOSIUM ON GEOMETRY PROCESSING, 4., 2006. Proceedings. . . [S.l.: s.n.],
2006.

DECORO, C.; RUSINKIEWICZ, S. Pose-independent Simplification of Articulated
Meshes. In: ACMSIGGRAPH SYMPOSIUM ON INTERACTIVE 3D GRAPHICS AND
GAMES, SI3D, 2005. Proceedings. . . New York, NY, USA: ACM Press, 2005.

GAL, R.; COHEN-OR, D. Salient geometric features for partial shape matching and sim-
ilarity. ACM Trans. Graph., New York, NY, USA, v.25, n.1, p.130–150, 2006.

GARLAND, M.; HECKBERT, P. S. Surface simplification using quadric error metrics.
Computer Graphics, New York, v.31, n.4, p.209-216, Nov. 1997. Work presented on An-
nual Conference on Computer Graphics and Interactive Techniques (SIGGRAPH), 1997.

HECKBERT, P. S.; GARLAND, M. Optimal Triangulation and Quadric-Based Surface
Simplification. Computational Geometry, [S.l.], v.14, p.49–65, 1999.

HOPPE, H. Progressive meshes. In: COMPUTER GRAPHICS AND INTERACTIVE
TECHNIQUES, SIGGRAPH, 23., 1996. Proceedings. . . New York, NY, USA: ACM
Press, 1996. p.99–108.

HOULE, J.; POULIN, P. Simplification and real-time smooth transitions of articulated
meshes. In: GRAPHICS INTERFACE, GRIN, 2001. Proceedings. . . Toronto, Ont.,
Canada: Canadian Information Processing Society, 2001. p.55–60.

HOWLETT, S.; HAMILL, J.; O’SULLIVAN, C. Predicting and Evaluating Saliency for
Simplified Polygonal Models. ACM Trans. Appl. Percept., New York, NY, USA, v.2,
n.3, p.286–308, 2005.

ITTI, L.; KOCH, C. Computational Modeling of Visual Attention. Nature Reviews Neu-
roscience, [S.l.], v.2, n.3, p.194–203, Mar.2001.

ITTI, L.; KOCH, C.; NIEBUR, E. A Model of Saliency-Based Visual Attention for Rapid
Scene Analysis. IEEE Transactions on Pattern Analysis and Machine Intelligence,
Los Alamitos, CA, USA, v.20, n.11, p.1254–1259, 1998.

72

JI, J. et al. View-dependent refinement of multiresolution meshes using programmable
graphics hardware. Vis. Comput., Secaucus, NJ, USA, v.22, n.6, p.424–433, 2006.

JULIUS, D.; KRAEVOY, V.; SHEFFER, A. D-Charts: quasi-developable mesh segmen-
tation. Computer Graphics Forum, Amsterdam, v.24, n.3, p.581-590, 2005.

KATZ, S.; LEIFMAN, G.; TAL, A. Mesh segmentation using feature point and core
extraction. The Visual Computer, [S.l.], v.21, n.8-10, p.649–658, 2005.

KATZ, S.; TAL, A. Hierarchical mesh decomposition using fuzzy clustering and cuts.
ACM Transactions on Graphics, New York, v.22, n.3, p.954-961, July 2003.

KHO, Y.; GARLAND, M. User-guided simplification. In: SYMPOSIUM ON INTER-
ACTIVE 3D GRAPHICS AND GAMES, SI3D, 2003. Proceedings. . . New York, NY,
USA: ACM Press, 2003. p.123–126.

KOCH, C.; ULLMAN, S. Shifts in selective visual attention: towards the underlying
neural circuitry. Human Neurobiology, [S.l.], v.4, n.4, p.219–227, 1985.

LAI, Y.-K. et al. Feature sensitive mesh segmentation. In: ACM SYMPOSIUM ON
SOLID AND PHYSICAL MODELING, SPM, 2006. Proceedings. . . New York, NY,
USA: ACM Press, 2006. p.17–25.

LEE, C. H.; VARSHNEY, A.; JACOBS, D. W. Mesh saliency. ACM Trans. Graph.,
New York, NY, USA, v.24, n.3, p.659–666, 2005.

LINDE, Y.; BUZO, A.; GRAY, R. M. An Algorithm for Vector Quantizer Design. IEEE
Transactions on Communications, [S.l.], v.28, p.84–95, 1980.

LUEBKE, D. A developer’s survey of polygonal simplification algorithms. IEEE Com-
puter Graphics and Applications, [S.l.], v.21, n.3, p.24–35, 2001.

LUEBKE, D.; HALLEN, B. Perceptually-Driven Simplification for Interactive Render-
ing. In: EUROGRAPHICS WORKSHOP ON RENDERING TECHNIQUES, 2001. Pro-
ceedings. . . [S.l.: s.n.], 2001. p.223–234.

LUEBKE, D. et al. Level of Detail for 3D Graphics. New York, NY, USA: Elsevier
Science, 2002.

MOHR, A.; GLEICHER, M. Deformation Sensitive Decimation. Madison: University
of Winsconsin, 2003. Technical Report.

MORTARA, M. et al. Blowing Bubbles for Multi-Scale Analysis and Decomposition of
Triangle Meshes. Algorithmica, Secaucus, NJ, USA, v.38, n.1, p.227–248, 2003.

NEHAB, D.; BARCZAK, J.; SANDER, P. V. Triangle order optimization for graphics
hardware computation culling. In: SYMPOSIUM ON INTERACTIVE 3D GRAPHICS
AND GAMES, SI3D, 2006. Proceedings. . . New York, NY, USA: ACM Press, 2006.
p.207–211.

O’SULLIVAN, C. et al. Perceptually Adaptive Graphics. In: EUROGRAPHICS, 2004.
Proceedings. . . [S.l.]: INRIA and the Eurographics Association, 2004. p.141–164. (State
of the Art Reports, n.STAR-6)

73

QU, L.; MEYER, G. W. Perceptually driven interactive geometry remeshing. In: SYM-
POSIUM ON INTERACTIVE 3D GRAPHICS AND GAMES, SI3D, 2006. Proceed-
ings. . . New York, NY, USA: ACM Press, 2006. p.199–206.

REDDY., M. Perceptually Optimized 3D Graphics. IEEE Computer Graphics and Ap-
plications, [S.l.], v.21, n.5, p.68–75, 2001.

SANDER, P. V. et al. Multi-chart geometry images. In: EUROGRAPHICS/ACM SIG-
GRAPH SYMPOSIUM ON GEOMETRY PROCESSING, SGP, 2003. Proceedings. . .
Aire-la-Ville, Switzerland: Eurographics Association, 2003. p.146–155.

SCHMALSTIEG, D.; FUHRMANN, A. Coarse viewdependent levels of detail for hi-
erarchical and deformable models. [S.l.]: University of Vienna, 1999. Technical Report.

SURAZHSKY, V. et al. Fast exact and approximate geodesics on meshes. ACM Trans-
actions on Graphics, New York, v.24, n.3, p.553-560, July 2005.

TSOTSOS, J. K. et al. Modeling visual attention via selective tuning. Artif. Intell., Essex,
UK, v.78, n.1-2, p.507–545, 1995.

WATSON, B.; WALKER, N.; HODGES, L. F. Supra-threshold control of peripheral
LOD. ACM Transactions on Graphics, [S.l.], v.23, n.3, p.750–759, 2004.

WOLFE, J. M. Visual search in continuous, naturalistic stimuli. Vision research, [S.l.],
v.34, n.9, p.1187–1195, 1994.

ZHANG, H.; LIU, R. Mesh Segmentation via Recursive and Visually Salient Spectral
Cuts. In: VISION, MODELING, AND VISUALIZATION, 2005, Berlin. Proceedings. . .
[S.l.]: Akademische Verlagsgesellschaft Aka GmbH, 2005. p.429–436.

