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Abstract: The presence of outliers in time series may cause some problems in
model specification, parameter estimation and forecasting. We propose a non-
parametric algorithm with three main objectives: clustering; testing groupings;
and classifying new time series. We employ a robust kernel quasi U-statistic and
show that it works well even if some (or all) time series are contaminated by
outliers. The set-up is based on models for which the probability of occurrence of
outliers may be time-dependent. We motivate the methodology through its the-
oretical properties. The procedure is then illustrated in a simulation study and
by its application in a real data set concerning Heart Rate Variability (HRV).
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1 Introduction

An Additive Outlier (AO) affects only a specific observation while the influ-
ence of an Innovational Outlier (IO) propagates to subsequent observations
(Fox, 1972). An extensive literature on outliers in time series is available
(Chang et al., 1988; Ljung,1993; Burridge et al., 2006; Huang et al., 2013).
Ma and Genton (2000) address the problem of the robustness of the sam-
ple autocovariance function. Recent discussions on outliers in time series
can be found in Fajardo et al. (2009), Hotta and Tsay (2011) and Reisen
and Molinares (2012). A communality in these works is that the probabil-
ity of occurrence of one or more outliers is constant in time. We consider
model with time-dependent probabilities, which can fit in a realistically
way phenomena under various external factors. As an example we analyze
the Heart Rate Variability (HRV) (Spang and Dutter, 2007). We study the
performance of clustering methods when data is contaminated, using tests
which belong to the class of quasi U-statistics (Pinheiro et al., 2011; Valk
and Pinheiro, 2012).

This paper was published as a part of the proceedings of the 29th Interna-
tional Workshop on Statistical Modelling, Georg-August-Universität Göttingen,
14–18 July 2014. The copyright remains with the author(s). Permission to repro-
duce or extract any parts of this abstract should be requested from the author(s).



2 Tests for contaminated time series

2 The Test Statistic

The model is defined by

Yt = Zt +

m∑
j=1

ωjXjt, (1)

where Xjt take values in {0, 1,−1}. We define P (Xjt = 1) = P (Xjt =
−1) = pjt/2 and P (Xjt = 0) = 1−pjt, for all t = 1, . . . , T and j = 1, . . . ,m.
Figure 1 presents six configurations for the vector of probabilities p which
are successful in modeling a wide range of data (Hotta and Tsay, 2011).
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FIGURE 1. Time dependent probabilities for outliers’s occurrence

Fajardo et al. (2009) proposes the robust estimator of the periodogram:

RSDE(ωj) =
1

2π

T−1∑
h=−(T−1)

γ̂R(h) cos(hωj). (2)

where γ̂
R

(h) = [Q2
n−h(u + v) + Q2

n−h(u − v)]/4, for vectors u and v of
the first n − h and last n − h observations, respectively (Ma and Genton,
2000). Qn(·) is the κth order statistic of

(
n
2

)
distances {|Zi − Zj |, i < j},

i.e., Qn(Z) = c × {|Zi − Zj |, i < j}(τ), for Z = (Z1, Z2, . . . , Zn) and c a
constant used to guarantee consistency.
We employ two quasi U -statistics. Bn is based on the usual periodogram,
and RBn is based on RSDE. We refer the reader to Pinheiro et al. (2011)
for the general properties of quasi U -statistics, and for Valk and Pinheiro
(2012) for the specific properties under a time series set-up. Basically, under
a null hypothesis of homogeneity between all pairs of groups, i.e., no real
groups do exist, B−n and RBn are centered at 0, n

√
TBn and n

√
TRBn are

asymptotically normal, where n is the sample size and T , the length of the
series. Under the alternative hypothesis of heterogeneous groups, Bn and
RBn have positive means and

√
nT (Bn−E[Bn]) and

√
nT (RBn−E[RBn])

are asymptotically normal.
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3 Simulation and Application to real data sample of
ECG

We use the six configurations in Figure 1. Three different amplitudes of the
outliers are considered w = 0, 3, 10, where w = 0 means no outliers. The
length of the time series varies as T = 250, 500, 1000. Two test statistics are
shown here: Bn, based on the usual periodogram; and RBn, based on the
robust spectral density estimator RSDE. The simulations are performed in
the software R with 1000 replications. Three underlying error structures
are used: M1 is a pure error; M2 is an AR(1) with φ = 0.5; and M3 is
an ARMA(1,1) with φ = 0.5 and θ = −0.8. Four series were generated in
each group being compared. Table 1 presents the empirical test sizes. An
amplitude of w = 0 means that the time series are not contaminated. The
significance level of the test is α = 0.05. One should note the good empirical
test sizes for RBn even for w = 10, and its overall superior performance
compared to Bn’s..

TABLE 1. Empirical Test Sizes for Bn and RBn.
cases for probability of occurence

a b c d e f

Amp. Model T RBn Bn RBn Bn RBn Bn RBn Bn RBn Bn RBn Bn
M1 250 0.04 0.91 0.05 0.26 0.08 0.75 0.02 0.19 0.04 0.35 0.05 0.04
× 500 0.05 1.00 0.06 0.60 0.06 1.00 0.02 0.58 0.05 0.55 0.05 0.14
M1 1000 0.05 1.00 0.05 0.85 0.06 1.00 0.08 0.92 0.04 0.81 0.04 0.24

0 M2 250 0.07 0.30 0.07 0.09 0.07 0.19 0.06 0.07 0.04 0.05 0.04 0.05
× × 500 0.04 0.63 0.07 0.09 0.05 0.73 0.04 0.15 0.05 0.11 0.05 0.06
3 M2 1000 0.06 0.95 0.06 0.21 0.05 1.00 0.05 0.13 0.05 0.16 0.04 0.04

M3 250 0.07 0.71 0.04 0.19 0.04 0.43 0.04 0.20 0.03 0.20 0.05 0.09
× 500 0.04 0.98 0.06 0.41 0.06 0.98 0.02 0.30 0.05 0.23 0.02 0.08
M3 1000 0.04 1.00 0.06 0.61 0.04 1.00 0.02 0.68 0.05 0.68 0.08 0.21

M1 250 0.07 1.00 0.08 0.97 0.06 1.00 0.05 0.93 0.03 0.97 0.02 0.72
× 500 0.05 1.00 0.04 1.00 0.07 1.00 0.05 1.00 0.05 1.00 0.07 0.96
M1 1000 0.09 1.00 0.06 1.00 0.06 1.00 0.06 1.00 0.05 1.00 0.06 1.00

0 M2 250 0.10 1.00 0.07 0.93 0.06 1.00 0.04 0.91 0.10 0.98 0.08 0.63
× × 500 0.10 1.00 0.04 1.00 0.07 1.00 0.05 1.00 0.06 1.00 0.06 0.85
10 M2 1000 0.07 1.00 0.06 1.00 0.06 1.00 0.06 1.00 0.05 1.00 0.05 1.00

M3 250 0.05 1.00 0.04 0.94 0.06 1.00 0.06 0.95 0.04 1.00 0.03 0.75
× 500 0.04 1.00 0.07 1.00 0.05 1.00 0.08 1.00 0.05 1.00 0.04 0.92
M3 1000 0.07 1.00 0.06 1.00 0.05 1.00 0.07 1.00 0.06 1.00 0.05 1.00

The ECG data set used here is available at the MIT-BIH Arrhythmia
Database (http://www.physionet.org/physiobank/database/mitdb/) and is
described in Moody and Mark (2001). It consists of ECG recordings of
healthy and unhealthy patients with clinically significant arrhythmias. We
focus on the Heart Rate Variability (HRV) which is a continuous beat-
by-beat measurement of interbeat intervals. The {RHRV} package from
software R was used to obtain the HRV time series from the ECG records.
Outliers in the HRV can appear by several factors such as activity, emo-
tion, sex, and age. However, in this case, the group of healthy patients is
medically homogeneous (Spangl and Dutter, 2007). Using the non robust
test Bn one finds two spurious groups of healthy patients. The robust test
provides the correct decision of not separating patients within the homo-
geneous group.
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4 Conclusions

We propose homogeneity tests for groups of time series. The importance of
a robust kernel is illustrated by simulation and in a real data time series
concerning MIT-BIH Arrhythmia. In both instances, spurious grouping
may result from lack of robustness of the test statistic. The test behavior
is greatly improved by the robust kernel.
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