

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

INSTITUTO DE INFORMÁTICA

BACHELOR OF COMPUTER SCIENCE

AUGUSTO BARCELLOS BERND

Unnesting Queries Using Algebraic Equivalences

in an XQuery Engine

Graduation Thesis

M. Sc. Caetano Sauer

Advisor

Prof. Dr. Renata Galante

Coadvisor

Porto Alegre, July 2015

CIP – CATALOGIN-IN-PUBLICATION

Bernd, Augusto Barcellos

 Unnesting Queries Using Algebraic Equivalences

in an XQuery Engine / Augusto Barcellos Bernd. – Porto

Alegre: Graduação em Ciência da Computação da UFRGS,

2015

 52 f.: il.

 Graduation Thesis – Universidade Federal Do Rio Grande do

Sul. BACHELOR OF COMPUTER SCIENCE, Porto Alegre,

BR–RS, 2015. Advisor: Caetano Sauer; Coadvisor: Renata

Galante

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL

Reitor: Prof. Carlos Alexandre Netto

Vice-Reitor: Prof. Rui Vicente Oppermann

Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco

Diretor do Instituto de Informática: Prof. Luís da Cunha Lamb

Coordenador do Curso de Ciência da Computação: Prof. Raul Fernando Weber

Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

ACKOWLEDGEMENTS

I would like to thank my family, because they are the base of my life, giving me all the

love, patience, physical and emotional support to complete my graduation, including the time

I was living in Germany, I always felt I could stand by them, even far away.

I would like to thank Prof. Theo Härder for providing me the opportunity to study at

Technische Universität Kaiserslautern and join his research tem at DBIS, where beyond the

chance to develop this project, I could have an amazing academic and life experience. I also

have to thank Caetano Sauer for also being key part of this opportunity and giving me every

kind of support I needed while I was there, with much patience.

I would also like to thank Universidade Federal do Rio Grande do Sul (UFRGS) and

Instituto de Informática for affording a great academic environment, and all the professors. In

special, I thank Prof. Taisy Weber, for coordinating the exchange program to Kaiserslautern,

and Prof. Renata Galante for helping me to develop my Thesis with important advices.

And last, but not least, I would like all my friends from graduation along these 5 years,

including my friends from Kaiserslautern, for helping me on my studies and providing me

great moments in this challenging step of my life. And of course, I thank my friends from Xis

(which will last forever) because they were very important all this time long.

CONTENTS

LIST OF ABBREVIATIONS AND ACRONYMS ... 7

LIST OF FIGURES .. 9

LIST OF TABLES ... 11

ABSTRACT ... 13

1 INTRODUCTION .. 15

2 BACKGROUND .. 17

2.1 XQuery .. 17

2.1.1 XQuery Data Model .. 17

2.1.2 Relevant XQuery Expressions .. 19

2.2 Brackit Pipeline .. 22

2.3 Brackit's Optimizer .. 23

2.3.1 Pipeline Optimization .. 24

2.4 Chapter Remarks ... 26

3 UNNESTING QUERIES ... 27
3.1 Unnesting Strategy ... 27

3.2 Importing Ideas to Brackit .. 29

3.3 Algebraic Rewriter ... 30

3.3.1 Normalization .. 31

3.3.2 Algebraic Pattern Recognition ... 32

3.3.3 Decision Tree .. 32

3.3.4 AST Rewriting ... 35

3.4 Chapter Remarks ... 38

4 EXPERIMENTAL EVALUATION ... 41
4.1 Experiment Environment .. 41

3.2 Evaluated Queries .. 41

4.3 Experiments Results ... 44

4.4 Results Analysis .. 47

5 CONCLUSION ... 49

REFERENCES .. 51

LIST OF ABBREVIATIONS AND ACRONYMS

SQL Structured Query Language

XML eXtensible Markup Language

DBMS Database Management System

AST Abstract Syntax Tree

XDM XQuery Data Model

FLWOR For Let Where Order by Return

CNF Conjunctive Normal Form

IDE Integrated Development Environment

CPU Central Processing Unit

LIST OF FIGURES

Figure 1.1: SQL Query with a nested query and the unnested version. 16
Figure 2.1: XDM structure based on sequences of items. ... 19

Figure 2.2: FLWOR expression example, with expression tree and conceptual analysis. 20

Figure 2.3: Semi-join example based on path and filter expressions. 21

Figure 2.4: High-level view of Brackit Pipeline. .. 22

Figure 2.5: Converted operator tree after pipelining.. ... 24

Figure 2.6: XQuery and the respective AST, after optimization steps until 4-way left join

 generation. ... 25

Figure 3.1: Example of a query with existential quantifier nesting. 28

Figure 3.2: Example of a query with universal quantifier nesting. 29

Figure 3.3: Example of a query with implicit grouping. ... 29

Figure 3.4: Algebraic rewriter overview: query unnesting process....................................... 31

Figure 3.5: Converting predicate to CNF. ... 32

Figure 3.6: Decision tree to unnest existential quantifiers. ... 33

Figure 3.7: AST Rewriting using Equivalence 1, adding Count operator. 35

Figure 3.8: AST Rewriting using Equivalence 2, based on Cartesian product. 36

Figure 3.9: AST Rewriting using Equivalence 3, based on Semi-join. 36

Figure 3.10: AST Rewriting using Equivalence 4, based on the comparison to the result of

the aggregation function. ... 37

Figure 3.11: AST Rewriting using Equivalence 5, based on Theta-join. 38

Figure 4.1: Data model of Shakespeare’s plays. ... 42

Figure 4.2: Data model of publication catalogs. .. 42

Figure 4.3: Response time comparison of the two versions of Query 1. 45

Figure 4.4: Response time comparison of the two versions of Query 2. 46

Figure 4.5: Response time comparison of the two versions of Query 3. 46

Figure 4.6: Response time comparison of the two versions of Query 4. 46

Figure 4.7: Response time comparison of the two versions of Query 5. 47

Figure 4.8: Nested and unnested queries’ running time comparison. 47

Figure 4.9: Percentage performance gains. ... 48

LIST OF TABLES

Table 2.1: Overview of expressions in XQuery 3.0. .. 18

Table 3.1: Algebraic Patterns and examples in XQuery. ... 27

Table 3.2: Defining aggregation function to use and the aggregation value in empty case,

according to θ. ... 38

ABSTRACT

Since the beginning of the 80’s, during the rise of relational databases, it has been

developed many strategies to deal with problems of executing queries in a nested way. Most

of these strategies are based on classification into generic query types, followed by an unnest

technique for each type. The two main approaches to unnest are: source level and algebraic

level. The latter has some advantages, as expressiveness. These publications were important

to the success of relational database architectures. However, all this knowledge is not only

useful for relational databases, but also for queries from non-relational databases, e.g. XML

databases. Brackit is an open-source XQuery compilation engine, developed at Technische

Universität Kaiserslautern. The compilation pipeline in this engine includes an optimization

stage where we could develop unnesting algorithms. Aiming optimize the query evaluation in

Brackit, we present how we applied algebraic equivalences to unnest queries. The

contribution of this work is the implementation of an efficient and high level unnesting

technique, easy to understand and to improve. This implementation reduces the heavy code

legacy of the current optimizer version. The basis of these equivalences application was the

good correspondence between the algebra and Brackit’s AST nodes. The optimization, thus,

was based on AST manipulation. Here, we are going to call this manipulation as rewriting.

For experimental analysis, it was performed simulations throw XQuery to prove the gain of

the unnesting strategy.

Keywords: XQuery, unnesting, XML, database, subquery, optimization, algebraic,

equivalence, rewrite

15

1 INTRODUCTION

The first publications on how to optimize query evaluation in DBMSs was focused

on SQL queries (Kim 1982, Ganski 1987, Muralikrishna 1992). The reason for that was

the increase of relational databases popularity, which brought up the need of strategies

of how to decrease the time response of the queries since the data to deal with was

getting bigger. Thenceforth, it has been pointed a main villain of query efficiency: the

straightforward nested evaluation.

One problem of the nested query evaluation is the overhead of initializing the inner

query and loading the inner table(s) multiple times, the data in such way that the

physical access to these data increases quadratically or worse, in case of more than one

subquery. There is also the issue of not exploring the join selectivity, beyond other

improvements that the optimizer could do since there are fewer query levels, which

could be used to decrease the amount of disk access. To illustrate the idea of nested

query, Figure 1.1 gives a simple example in SQL, with an equivalent unnested version.

The first of these publications (Kim 1982) came up with a source level approach,

classifying queries according to the class of the inner query and the relation between the

inner query and the outer one. Then, for each class, it was specified a generic algorithm

to unnest the query. Later, it appeared many other publications, with improvements on

these ideas and bugs avoiding (Ganski 1987, Dayal 1987, Muralikrishna 1992).

All these publications were very important to the improvement of SQL itself

because from these ideas came the importance of adapting the SQL with operators

aimed to unnested query evaluation. Whereas the rise of relational DBMSs has brought

an increase of data to manipulate, these improvements became indispensable for SQL

popularity keep growing since it got more expressive and delivered users better

response times. However, these concepts were not only useful for relational databases,

but also for queries from non-relational databases, e.g. XML databases. Hence, those

studies could be extended to unnesting queries in XQuery, a data programming

language developed to manipulate XML-based data.

A good example of study at this line was developed at an algebraic level, whose

some strategies were applied in this work. That study presented the Natix Algebra (May

et al. 2006), which the XQueries would be translated to, and which the unnesting

equivalence rules would be applied on, in order to obtain an optimized query.

There are advantages of using an algebraic view for applying unnesting techniques

instead of a language level approach, which was the case of the first publications.

Probably the main one is the generic structure of the results because they can be applied

directly to any other query language translatable into the underlying algebra. Another

advantage is the possibility of integration into a cost-based plan generation.

In summary, the unnesting strategies presented in that work were based on a

translation to that algebra (which included a normalization step), followed by the

application of algebraic equivalences, according to one of three decision trees. These

decision trees were defined by the nesting type: existential quantifying, universal

quantifying and implicit grouping.2011),

16

Then, it has come the idea to bring these strategies into Brackit (Sauer e Bächle

2011), a data-independent XQuery compiler. Its compilation pipeline is divided into

four steps: parsing (AST creation), analysis, optimization and translation (plan

generation). Hence, our work goes into optimization step.

The importance of this work is that the current unnest strategies were using

operators with an unnecessary level of complexity, what used to make it hard to work

on the following pipeline steps, beyond the difficulty of improving the optimization

itself. Then, it would be important to restructure the optimizer, where one of the

optimizations would be focused on algebraic query unnesting. For the development of

this new unnesting in Brackit, it is possible to point another fundamental advantage

from the algebraic level within the strategies shown at that study: the good

correspondence between the algebra and Brackit’s AST structure.

Therefore, the contribution of this work is the implementation of an efficient and

higher level unnest technique for Brackit’s optimizer, with algorithms easier to

understand and to improve. Furthermore, this implementation reduces the heavy code

legacy caused by the complex operators. To get that, it was adapted general strategies

for unnesting queries for XML databases into the Brackit’s system of AST rewrites,

which is how most part of the query compilation process works in this engine. This

adaptation consists on the implementation of the query normalization, the algebraic

pattern recognition, the algebraic equivalence definition with a decision tree, and,

finally, the AST rewrite matching the defined equivalence. To examine the performance

improvement provided by this strategy, it was necessary to simulate the algebraic

rewrite application. The obtained results give a preview of how useful these strategies

can be, stimulating the continuation of this implementation in Brackit.

This work continues with the following structure: Chapter 2 introduces XQuery and

describes the structure of the engine, detailing the compilation steps, and presents the

current unnest technique existent in Brackit (Bächle 2013). Chapter 3 describes the

proposal of this work that is the implementation of unnesting strategies on our engine,

creating the algebraic rewriter. Chapter 4 reports the experiment method, explaining

how the simulated evaluation was performed and the importance of the results. The final

statements and the opening of possible future works are made in Chapter 5.

Figure 1.1: SQL Query with a nested query and the unnested version.

17

2 BACKGROUND

The purpose of this chapter is to present Brackit (Sauer e Bächle 2011), the XQuery

engine compiler, where the unnest techniques that will be detailed in this thesis were

implemented. Here, we also come up with the current strategy for optimizing nested

queries, focusing the pipeline optimization, which includes rewritings and new

operators on the AST.

But before that, we begin it introducing the XQuery itself, presenting the

fundamentals of XQuery, defining the XQuery Data Model (XDM) structure and

describing the most relevant expressions for this thesis.

2.1 XQuery

XQuery is a powerful functional programming and querying language, created to

manipulate XML-based data (Katz et al. 2003). Initially created to implement

declarative XML processing as designed by a sequence of efforts (W3C 1998, Robie et

al. 2000), but then several revisions were done, resulting a versatile functional

programming language, with significant strength in XML bulk processing.

For the data manipulation, XQuery offers a large set of expressions, which includes

the FLOWR expressions (query basis), path expressions, quantified expressions and

many programming ones, such as comparisons, conditionals, arithmetic, references and

function calls. Table 2.1 shows a complete overview of XQuery 3.0 expressions (W3C

2010b). XQuery is defined as a transformation on the XQuery Data Model, also called

XDM (W3C 2010a). XDM follows some XML standards (W3C 2004, W3C 2006). In

XQuery, a query is defined as a tree of expressions evaluated to a sequence of items.

2.1.1 XQuery Data Model

The concepts of sequence and item are the basis of XDM, as illustrated by Figure

2.1. A sequence is an ordered list of zero or more items. Even single data are treated as

a sequence, i.e., values such as the integer 2 and the string “hello” are equivalent to the

sequences (2) and (“hello”), respectively. Null values are defined by () – empty

sequence – given that it is also used to represent missing data.

The items in XDM are classified into three classes: atomic types, nodes, and

functions. Atomic types are related to primitive types, such as integers, floats, strings,

etc, including the “untyped” type. Nodes are the standard abstraction for representing

structured and semi-structured XML data, according to properties defined in the XML

Infoset specification (W3C 2004). Those properties include the seven node kinds

18

(Document, Element, Attribute, Comment, Text, Instruction, and Namespace) and

several kind-specific properties.

Expression Type Examples

FLWOR Expression for $b in doc(“products.xml”)
let $limit := 100
where $b.price lt $limit
order by $b.price
return $b.id

Quantified Expression some $x in $y satisfies $x eq $z (every)
Path Expression (XPath) $ec/person-group[@person-group-type='author']/name
Literal 123
Filter Expression (4, 9, 2, 6)[.>5]
Variable Reference $total
Parenthesized Expression (…)
Sequence Expression “abc”, $x*2, foo(2)
Arithmetic Expression 12 + 3 (-, *, /, mod, div, idiv)
String Concatenation “conca” || “tenation”
Static Function Call fn:foo(“param”)
Dynamic Function Call $fun("foo","bar")
Named Function Reference fn:foo#1
Inline Function Expression function($a as xs:double, $b as xs:double) as xs:double

{$a *$b}
Logical Expression 1 eq 1 and true (or)
Conditional Expression if ($x>9000) then “It’s over 9000” else “ok”
Switch Expression switch($x) case “a” return 1 case “b” return 2
Context Item Expression .
Node Sequence

Combination
$seq1 union $seq2 (intersect, except)

Node Constructor <count-books> { count($book) } <\count-books>
Node Comparison <a>5 is <a>5 (>>, <<)
Value Comparison $i/price eq 25 (ne, gt, ge, lt, le)
General Comparison $i/name = “John” (!=, <, <=, >, >=)
(Un-)ordered Expression unordered {...} ordered {...}
Try/Catch Expression try { foo() } catch * { “Some error” }
Range Expression 0 to 10
Instance Of Expression 0.7 instance of xs:float
Typeswitch Expression typeswitch ($team)

case $n as element(*, franchise) return $n/owner
case $n as element(*, club) return $n/president

Cast Expression "0.7" castable as xs:double
Castable Expression "0.7" castable as xs:double
Constructor Function xs:boolean("true")
Treat Expression treat $nums as xs:integer+
Validate Expression validate strict { doc(‘hamlet.xml’) }

Table 2.1: Overview of expressions in XQuery 3.0.

19

 …

Figure 2.1: XDM structure based on sequences of items.

2.1.2 Relevant XQuery Expressions

As already seen in Table 2.1, XQuery has a good variety of expressions. For this

thesis, we point out four very relevant expression types within XQuery: FLWOR

expressions, quantified expressions, path expressions and filter expressions.

The basic tool for querying data in XQuery is the FLWOR expression (Katz et al.

2003). This name comes from the 5 clauses which originally compose this kind of

expression: for, let, where, order by and return (some of them are optional). These

clauses represent, respectively, the language primitives for iterating a sequence of

tuples, mapping values to variables, filtering tuples, sorting and projecting the

remaining tuples. The minimal FLWOR structure is a for clause followed by a return

clause. Another property of FLWOR expression is that it must begin with a for or a let

clause because these are the clauses which can make the first variable binding start the

query’s sequence stream. FLWOR expressions must also finish with a return clause

because that is what reduces the sequence stream into a single XDM sequence. To

illustrate all these concepts, it is used as example a simple FLWOR expression, with the

Atomic Type Node Function

xs:untyped

xs:integer

xs:string

xs:date

xs:boolean

xs:QName

Document

Element

Attribute

Comment

Text

Instruction

Namespace

Sequence (, , ...) Item Item

20

respective expression tree and a conceptual analysis of each clause, given by Figure 2.2

After some revisions, to increase the language expressiveness and to let it be similar to

other data programming languages (like the ones for relational databases), it was also

introduced other optional clauses: group by, window and count (W3C 2010b).

Figure 2.2: FLWOR expression example, with expression tree and conceptual analysis.

21

The second important kind of expressions is the quantified expression. It provides a

boolean value according to the existentialism or the universality of a predicate in a

collection, iterating over this collection. In a some quantified expression, it is returned

true if exists a value inside the collection that makes the predicate which comes after the

satisfies clause be evaluated as true. In an every quantified expression, it is only

returned true if all values in the collection yield a true value for the predicate. The latter

requires a special attention because they do not evaluate empty collections, since it

would be discarded in the result instead of be evaluated as false.

Quantified expressions have a very high relevance in this work: they represent an

important part of query nesting cases in XQuery. Furthermore, in this thesis, these

nesting cases will receive most of the focus (especially the existential case). It is

reasonable to consider that the compiler may be able to understand the semantics of

quantified expressions, thus performing its evaluation not in the most naïve way, i.e.,

stopping the nested loop as soon as possible. Even though, it remains the problems of

nested straightforward evaluations, mainly in cases of an unfavorable order of the

collection.

The other two expression types previously highlighted, path and filter expressions,

enable XML tree navigation and selection of values in a collection, respectively. The

former’s general structure is e₁ / e₂, where e₁ and e₂ are individual subexpressions, but

the evaluation of the second one is done in the first’s context. The latter’s general

structure is e₁ [e₂], where e₁ is a collection and e₂ is a position of this collection or a

selective predicate, then the result of this type of expression is a collection with the

items from e₁ which satisfies e₂.

Figure 2.3: Semi-join example based on path and filter expressions.

22

Together, those two kinds of expressions are a useful tool for obtaining specific

items from an XML database. Moreover, the combination of those expressions can be

used to simulate a semi-join operation, and that is where it comes the relevance of those

expressions for this thesis (more specifically, in Chapter 4, where the experimental

analysis is done). For instance, let us consider the XML data structure and the query

given by Figure 2.3.

 The given query begins getting the author nodes whose country is Brazil. Then it

performs a semi-join on the book nodes from the document “lib.xml”, selecting those

whose author’s name matches one of the names of Brazilian authors obtained

previously.

2.2 Brackit Pipeline

The pipeline of Brackit engine for XQuery processing is composed of 4 steps, as

shown in Figure 2.4: parsing, analysis, optimization, and translation. The first step

consists in a syntactical evaluation of the query (given by a string), where it is created

an abstract syntax tree (AST) with each expression being represented by a node in this

tree. This AST is the object which will be manipulated in the following steps through

rewritings until translation, where the plan generation will take place. The second step

performs the semantic analysis of the query, where it is done the static typing.

Figure 2.4: High-level view of Brackit Pipeline.

The third step is actually a group of smaller steps towards the query optimization.

This group varies according to the compiler version. The current version, based on a

pipeline lifting and using a 4-way Left Join (Bächle 2013), is detailed in section 2.3. It

is also important to point that here is the relevant step for this thesis.

23

In the last step, it is generated an executable plan from the final AST, where it is

assigned a concrete implementation for each expression type, compiling the expression

tree in a single pass, from the roof to the right-most leaf. The translation process is quite

simple because each subtree in the AST is self-contained and the plain variable

references are the only dependencies. Accordingly, variable bindings are totally

managed by its own expression or operator. In this process, the variable must be

declared only before the respective sub-expression and undeclared at the end of its

scope. In the case of variable dependency, a simple lookup in the variable table is

enough to resolve the corresponding position in context tuples.

The stable version of Brackit performs the query compilation based on its top-down

perspective. In this version, the translation step creates a push-based pipeline, where

each operator act as a sink, generating a tuple stream as output after receiving another

tuple stream.

But there is also the bottom-up compiler version, where the translator generates a

pull-based pipeline, which is very similar to the other one, except for each operator

being realized as a cursor, implementing a simple open-next-close interface (Graefe

1994), which works in the opposite direction. In this translation, the cursor pipeline is

initialized with a Start operator, and it uses this cursor to propagate the call to the last

operator in the pipeline through the individual pipeline stages.

As known, when a query is seen in an algebraic level, e.g. relational algebra or Natix

Algebra (May et al. 2006), it is seen in a bottom-up perspective. For this reason, it was

chosen the bottom-up version of Brackit compiler to implement the algebraic unnest (as

it is going to be shown in Chapter 3), because then it was possible to apply the unnest

strategies via AST rewritings.

2.3 Brackit’s Optimizer

In this section, it will be described the optimization stage of the stable version of the

compilation pipeline in the engine, which we may call the state-of-the-art on query

optimization in Brackit. As commented in the previous section, the optimization step of

the Brackit’s pipeline can be defined as a set of minor steps. In an ideal compilation

optimizer, such set includes simplification, pipelining, pipeline optimization, data

access optimization, parallelization, and distribution. Most of these are present in

Brackit. For this thesis, the focus goes to the pipeline optimization, where it is

performed join unnesting using a 4-way Left Join (Bächle 2013), whose complexity is

one of the points of restructuring the optimization in Brackit through algebraic

unnesting.

The first step at Brackit’s optimizer is the simplification, where it is done some basic

pruning operations, like dead-code removal. In the following step, FLWOR clauses are

converted into operator pipelines. To illustrate this procedure, Figure 2.5 brings the

respective pipelined tree from the expression tree given by Figure 2.2. The importance

of pipelining is the possibility applying set-oriented rewritings on the operator tree,

including optimizations from the relational world. Such optimizations will be more

detailed in the sequence of this chapter.

After the optimizations on the pipeline operators, the optimizer in Brackit works on

the physical data access level, with rewritings performed specifically to the target

platform, introducing optimizations in multiple granules and multiple dimensions.

24

Examples of such operations are eager value coercion, indexing and the inclusion of a

multi-bind operator, which reduces many binding twig branches to a single twig

operator. And finally, the last optimization step improves parallel processing.

Figure 2.5: Converted operator tree after pipelining.

2.3.1 Pipeline Optimization

As already commented, the pipelining process enables the optimizer to apply several

modifications on the data operation flow based on set orientation, always without

changing the outcome. In Brackit, the rewritings are mainly focused on increasing how

join operations perform, since these operations use to be the bottleneck of query

processing, and this condition depends a lot on the way the join is evaluated.

The first operation in pipeline optimization is the pull-up of select predicates, in the

same way that one may consider, in relational algebra, for pulling up a Selection before

a Join/Cartesian product operation. For this process, it is analyzed the Select subtree,

checking whether the predicate is independent of any upper operation, and then putting

the Select to be evaluated before that. After this process, it begins the join

optimizations. Naturally, the first thing to do is to recognize joins in the AST. The

pipe

Start

ForBind($x)

() End

pipe

Start

() Selection

$y $x

<

2 4 7

ForBind($y)

3 5 8 LetBind($z)

-

$y $x

OrderBy

$z End

$z

25

importance of such procedure is the same as from relational data processing. Here,

multiple for-bindings work as cartesian products, resulting on the undesirable nested-

loops. Hence, it is primordial to find the join possibilities and adapt the AST, in order to

filter the tuple streaming. The relevance of this process increases as XQuery, in contrast

to SQL, does not have specific operators for deploying joins explicitly, which means

joins will always be defined implicitly, hidden under for clauses. Accordingly, the next

step involves the insertion of join, which is detected in the case of a Cartesian product

immediately followed by a Select that correlates items from each branch of the

Cartesian product. This process is followed by the push-down of any independent

binding placed before the join. However, it is important to note that not always it is

possible to apply such push-down operation due to the complex binding structure.

Hence, it is also added a join group demarcation stage, which searches these complex

binding occurrences and inserts a Count operator between the variable binding and the

inner join, in order to trigger a rebuild of the lookup table used by the join only when

necessary, i.e., the bound variable has changed. This mechanism defines sequential

groups of individual nested operations that can share intermediate results.

Figure 2.6: XQuery and the respective AST, after optimization steps until 4-way left

join generation.

All those pipeline optimizations described above deal only with for-bound variables,

which may form cartesian products that could (and should) be transformed into a join,

or which could be manipulated to avoid unnecessary recomputations. However, XQuery

allows nesting FLWOR expressions in let clauses, binding a whole sequence of values,

for $x in (1,2,3)
let $sub := for $y in (2,3,4)
 where $x >= $y
 return $y
return ($x, $sub)

pipe

ForBind($x)

Start

(1,2,3) LeftJoin₌

End

true()

Join>= LetBind($sub) End

($x, $sub)

End End ForBind($y) $y

true()

GroupBy

End $x

(2,3,4) $y

26

e.g., subqueries, to a variable. The problem is that, in this case, previous evaluations of

the nested FLWOR and lookup tables are lost, since pipeline sharing would violate the

expression evaluation independence. To manage this situation, it was developed the

Pipe Lifting. And here is the place where the optimization structure gets a bit complex.

This process is composed of three steps that “lift” the pipelines nested inside a let-bind.

The first step is the basic one: conversion of let-bind into a 4-way left join. This new

operator is actually a macro, which is implemented by small operations to produce the

lifting, executing: triggering of rebuild on the lookup table, filtering, concatenation of

pipeline partitions and grouping. Further the 3 children that a normal join operator has

in the AST (one for each input and the last one for the output), this special join has an

additional child branch, related to the group generation. Once this conversion is done,

one of left join inputs is the whole nested loop, and the other is empty, which means that

it only echoes the tuple. To exemplify this conversion, let us consider the XQuery in

Figure 2.6 and the respective AST, after all optimizations steps commented until now,

including the 4-way left join conversion.

The following two steps of Pipe lifting aim to simplify the left join structure

generated previously, adapting it without that empty operator. To obtain that, it is made

a swapping of the nested for-bind to an extra left join, and then the initial left join,

which is unnecessary at this point, is removed. After that, the pipeline optimization

finishes with some rewritings on join trees and group by aggregation.

As one may notice, the previous steps of pipeline optimization have increased

considerably the complexity of the AST that is manipulated, adding extra children to the

operator nodes on the tree and several special operations. Accordingly, the

implementation of further optimizations becomes harder, in different aspects: the

walking process on the AST structure to visit the nodes and define rewritings or

conversions need to consider those new exceptional operations and the new range of

possible node children. In other words, it gets necessary to deal with some heavy code

legacies in order to develop newer optimization steps. For this reason, it has come the

idea to restructure the Brackit optimizer.

2.4 Chapter Remarks

In this chapter, it has been introduced the XQuery language, presenting the main

concepts, with an overview on the sequence-based structure of XQuery Data Model and

the language expressions. It was given a particular attention to four kinds of expressions

in XQuery: FLWOR expressions, because they are the backbone of any query;

Quantified expressions, because they correspond to the nesting type with more focus in

our unnesting strategies, detailed in Chapter 3; Path expression and filter expression,

because they, together, enable us to simulate semi-join operations, which was necessary

to obtain the results on Chapter 4.

The Brackit engine, an XQuery compiler, was also presented in this chapter. It was

introduced Brackit’s compilation pipeline, detailing the optimizer, where the algebraic

equivalence rules for unnesting queries were applied, which implementation is

described in next chapter. Here, it was detailed the state-of-art version of the optimizer,

which includes several complex rewritings on the query’s AST, creating some trouble to

add further optimizations, and then encouraging us to restructure the pipeline

optimization in Brackit as follows in Chapter 3.

27

3 UNNESTING QUERIES

The objective of this chapter is to explain how the algebraic unnesting on Brackit

optimizer was implemented, beginning the restructuring aspired in the previous chapter

to reduce the AST manipulation and to simplify further optimizations. Initially, it is

introduced the unnesting strategies for XML databases based on the translation of

XQueries into an algebra, whose ideas are relevant for our work. Then, the motivations

to bring these ideas to Brackit are presented, pointing out advantages and disadvantages

of applying such strategies on the Brackit compilation pipeline, in order to obtain an

optimized query evaluation. Finally, it is described how we implemented the algebraic

rewriter, explaining how it works, detailing each step: normalization, algebraic pattern

recognition, the decision tree – which defines the rewrite equivalence rule – and the

rewrite itself.

3.1 Unnesting Strategy

As previously commented, lots of studies have been done towards query unnesting,

with different approaches focused on distinct databases. We highlight one that is

focused on XML databases, which is a framework based on unnesting queries after a

translation into the Natix Algebra (May et al. 2006). This algebra includes some

operators know from the relational algebra, e.g., Selection and Projection, and some

new operators, e.g., Map and Unnest-Map, working on sequences of tuples. These four

operators are the basis of the translation because they represent the clauses where,

return, let and for, respectively.

 Algebraic Pattern Example in XQuery

Existential Quantifier σ ∃x∈e₂:p (e₁) where some $x in e₂
 satisfies p

Universal Quantifier σ ∀x∈e₂:p (e₁) where every $x in e₂
 satisfies p

Implicit Grouping χ g:f(σ p (e₂)) (e₁) let $g :=
 for $a in c [e₂]
 where p
 return r [f]

Table 3.1: Algebraic patterns and examples in XQuery.

28

In this research, the queries pass by a normalization phase, which transforms the

query to simplify the algebraic pattern recognition and to enable the application of more

equivalence rules. This normalization consists of steps like the break of any complex

expression into simple ones (creating new variables for sub-expressions), the

transformation of implicit computations into explicit ones and the normalization of

predicates into conjunctive normal form (CNF). After normalization, the nested queries

obtained from the translation from XQuery to that algebra are classified into three types:

existential quantifiers, universal quantifiers, and implicit grouping. The first and the

second are characterized by the occurrence of a quantified expression while the last

occurs when the values returned by a FLWOR expression are aggregated into tuples

from an outer one. This last one is called implicit grouping because it used to be the

only way to perform grouping since explicit grouping was not provided originally in

XQuery. Table 3.1 shows the three algebraic patterns and examples in XQuery, where

the element e₁ corresponds to the rest of the query and is omitted in the examples.

Figure 3.1: Example of a query with existential quantifier nesting.

To illustrate the classification, let us consider the Figure 3.1, Figure 3.2 and Figure

3.3. The first query, with existential quantifier, looks for speeches from “Romeo and

Juliet” (r_and_j) that has a line equal to a line from speeches from “Hamlet”, returning

the lines of that speech. The second one, with a universal quantifier, performs an anti-

join: it is searched citations from 2014’s publications whose authors does not appear in

2013’s publications. The query used to illustrate implicit grouping is the same from

Figure 2.6, used to show the 4-way left join insertion.

For each query nesting type, there is a list of algebraic equivalence rules that can be

applied to perform the query unnesting, i.e., to get a query equivalent to the first one

that does not result in a naïve nested straightforward evaluation. To choose the

equivalence rule(s), each query class has a decision tree, which according to some

characteristics of the query, determines the best equivalence to be applied. Also, it

includes some auxiliary equivalences, which may be used to manipulate the algebra if

necessary.

let $hamletSpeechs := doc('/db/apps/demo/data/hamlet.xml')//SPEECH
for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH
where some $j in $hamletSpeechs

satisfies $i/LINE = $j/LINE
return $i/LINE

Algebra:

Πi/LINE (σ∃j∈(hamletSpeechs):e₁ (Υi:e₂ (χhamletSpeechs:e₃))),

where

 e1: i/LINE = j/LINE
e2: ('/db/apps/demo/data/r_and_j.xml')//SPEECH (□)
e3: doc('/db/apps/demo/data/hamlet.xml')//SPEECH

29

Figure 3.2: Example of a query with universal quantifier nesting.

Figure 3.3: Example of a query with implicit grouping.

3.2 Importing Ideas to Brackit

In the end of Chapter 2, it has been introduced one of the main goals of this work,

which is the achievement of higher level optimizations, with reduced complexity and

heavy code legacy, in comparison to the state-of-art version of Brackit’s optimizer.

Another factor is that the top-down perspective used by that optimizer may not be

considered the most intuitive view of the query to check out optimization algorithms

and to manipulate. The usage of algebraic unnesting strategies, then, seemed to be a

good approach to implement on the optimization pipeline of Brackit, because they do

satisfy pretty well those targets.

The main advantage of using those strategies to develop query optimizations is the

good correspondence between the algebra and the Brackit operators. Accordingly, the

application of algebraic unnesting equivalence rules could be performed via AST

manipulation. This manipulation, as better detailed in the sequence of this chapter, is

for $i in doc('publications-2014.xml')//element-citation
where every $j in doc('publications-2013.xml')//element-citation

satisfies ($i/author/surname != $j/author/surname
 or $i/author/name != $j/author/name)

return $i

Algebra:

Πi (σ∀j∈e₁:e₂⋁e₃ (Υi:e₄ (□))),

where

 e1: doc('publications-2013.xml')//element-citation
e2: i/author/surname != j/author/surname
e3: i/author/name != j/author/name
e4: doc('publications-2014.xml')//element-citation

for $x in (1,2,3)
let $sub := for $y in (2,3,4)
 where $x >= $y

 return $y
return ($x, $sub)

Algebra:

Π(x, sub) (χsub:(Πy (σx≥y (Υy:(2,3,4)(□)))) (Υx:(1,2,3) (□)))

30

implemented in the form of rewrites of the operator tree. Furthermore, it is also

important to highlight the fact that good correspondence means that there are only few

physical operators of the algebra which need to be implemented. For the existential

quantifiers nesting case, the implementation of three physical operators would be

enough: Semi-join, Theta-join and Cartesian product.

On the other hand, there is the fact that the bottom-up version of Brackit, which fits

perfectly on the algebra, needs several complex code fixes to be able to evaluate

queries. So the only stable version of Brackit works in a top-down fashion, which goes

against the algebra structure, that is bottom-up by definition. For this reason, it was

necessary to improvise a method to check the performance gains on applying these

algebraic equivalence rules, which is discussed on Chapter 4. Despite that situation, we

still decided to implement these unnesting strategies in Brackit, considering the

advantages listed previously.

The Brackit compilation process, as explained in Chapter 2, is composed of parsing,

analysis, optimization, and translation. In this process, once the AST relative to the

query is created and semantically analyzed, this AST is used at the optimization

proceeding. The optimizer operation manipulates the AST in such way that the resulting

AST whose translation will generate an execution plan with higher performance (in

most cases) than the original AST would do. This manipulation can be seen as

rewritings of the original AST based on strategies to optimize queries, inserting and

removing nodes, modifying operators, changing the order of the operators, etc. The idea

of implementing optimization strategies throw AST rewrites is the basis to understand

how the unnesting strategies were developed on Brackit.

From the three nesting classes described above, the chosen to be the focus of our

work was the existential quantifier case. The factors of this decision were:

 the complexity to recognize the algebraic pattern and to apply equivalence

rules;

 the relevance of the nesting type, i.e., how often the nesting type occurs in

normal queries.

Regarding the complexity of the nesting type, naturally the first case to be

implemented would not be the most complex one. Accordingly, the chosen case was not

the implicit grouping because the algebraic pattern is not so directly obtained from an

arbitrary XQuery as the quantifiers cases are. And concerning the relevance of the

nesting classes, the existential case corresponds to a very common expression type,

standing out for being largely used to perform implicit semi-joins. In the universal case,

though, the main usage is probably to perform implicit anti-joins, which is a not so

common query type. Hence, the implementation of universal quantifiers and implicit

grouping rewritings has become a matter for future work.

3.3 Algebraic Rewriter

The algebraic rewriter, as Figure 3.4 illustrates, is composed of 4 procedures:

normalization, algebraic pattern recognition, choice of equivalence rule with a decision

tree and tree rewriting. The special arrow on the unnesting pipeline refers to the fact

that, as explained in the sequence of this chapter, part of the normalization can be done

just before the decision tree.

31

3.3.1 Normalization

Most of the normalization steps proposed on that research to precede the translation

aim to favor the implicit group recognition and to apply its equivalence rules.

Considering that the full implicit grouping implementation is not in the scope of this

work, it was decided to only provide one normalization step, which is relevant to unnest

existential quantifiers.

Figure 3.4: Algebraic rewriter overview: query unnesting process.

The normalization operation developed for the algebraic rewriter is the conversion

of non-CNF predicates inside a Selection to CNF (conjunctive normal form) predicates.

A CNF predicate is a predicate composed of 0 or more conjunctions of clauses, where

the clauses are composed of 0 or more disjunctions of literals (bringing this definition to

XQuery, a literal can be expressions like comparison, function, boolean value, etc.).

32

This conversion is based on logical properties, like commutative, distributive and

Morgan’s laws. Figure 3.5 shows a simple AST conversion example. The importance of

this normalization step is that it enables the separation of one conjunction branch from

the rest of the predicate. This is useful to discover a better equivalence rule at the

decision tree or to filter the tuple flow. It means that the conversion can be made just

before the decision tree, which is actually done in Brackit. The advantage of doing this

normalization after the algebraic pattern recognition is that after recognizing the pattern,

we already know where the predicate to be normalized is.

Figure 3.5: Converting predicate to CNF.

3.3.2 Algebraic Pattern Recognition

The pattern recognition, for quantifier cases, is a very simple step. The occurrence of

existential quantifier nesting is given by the presence of a some-expression node at the

AST, because the rest of the algebraic structure is just how the syntax of this kind of

expression is defined in XQuery. Hence, this pattern can be recognized on a simple

AST scan. The same works for universal quantifiers.

The implicit grouping pattern is recognized if there is a let-bind node followed by a

new pipe or a function call. The problem is that many further normalization steps are

needed to let all the queries with implicit grouping be recognizable with this pattern.

3.3.3 Decision Tree

The next step consists on checking which algebraic equivalence rule to unnest the

query is applicable on the normalized AST. To do this, it is used a decision tree, which

analyzes aspects of the query like the type of selection predicate and variable

dependencies between the inner and outer query. For each query nesting class, there is a

correspondent decision tree. This is the reason for recognizing the algebraic pattern in

the previous step.

To exemplify this process, it will be considered the existential quantifier unnesting.

Figure 3.6 shows the decision tree to unnest this kind of query.

33

Figure 3.6: Decision tree to unnest existential quantifiers.

The first aspect to be checked is whether the evaluation of the inner (e₂) query is

variable dependent on the outer (e₁) evaluation. This is done by verifying if the set of

free variables in e₂ (i.e., references in e₂ which are not bound, and thus the value must

be provided by the outside) and the set of bound variables (context coming from e₁)

have any elements in common. If so, this means that it is not possible to unnest, and the

only optimization to do is the elimination of duplicates, obtained applying Equivalence

1. If not, the next aspect to check is the Selection predicate (the p from the algebraic

pattern). If it does not correlate variables of e₁ and e₂, it is not possible to use any kind

of join to unnest the query, and thus we apply the Equivalence 2, which is based on a

Cartesian Product. Although, if it does correlate them, we verify how the correlation is

done. It is important to note that the predicate can be rearranged to find a better

unnesting equivalence. If there is a comparison by equality between variables of e₁ e e₂,

we can apply the Equivalence 3, which is based on Semi-join. If there is a comparison

with “higher than” or “less than” operator between them, we can instead use an

aggregation function to unnest the query. The idea of this unnesting is that it is possible

to get the correct boolean value of the query with only the minimal or maximal value

coming from e₂. Considering the algebraic pattern, given by the expression

σ∃x∈(σA₁θA₂(e₂)):p(e₁), where θ ∈ {<, ≤, >, ≥}, A₁ and A₂ are variables
respectively coming from e₁ and e₂,

it is reasonable to define that tuples from e₁ satisfies the existential quantification

predicate if A₁ is in the range [min(A₂), +∞) or (-∞, max(A₂)], according to θ. And

34

finally, if the correlation is done without any of the comparison types commented

above, we can only apply the Equivalence 5, which is based on Theta-join. To illustrate

the application of these equivalences, it is shown below examples of queries that would

fall into each type.

QUERY FOR EQUIVALENCE 1:

let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation

for $i in $feb2014

where some $j

in $aug2014[person-group/name/surname=$i/person-group/name/surname]

satisfies $i/year gt $j/year
return <result> { $i/person-group/name/surname, $i/year } </result>

QUERY FOR EQUIVALENCE 2:

let $users := doc("users.xml")//usertuple

let $items:= doc("items.xml")//itemtuple

let $bids:= doc("bids.xml")//bidtuple

for $i in $users

where some $j in $items

satisfies some $k in $bids

satisfies ($i/userid eq $k/userid and $j/itemno eq $k/itemno)

return $u/name

QUERY FOR EQUIVALENCE 3:
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation

for $i in $feb2014

let $ipsn := $i/person-group/name/surname

let $iy := $i/year

 where some $j in $aug2014 satisfies

 let $jpsn := $j/person-group/name/surname

 let $jy := $j/year

 return $ipsn = $jpsn and $iy eq $jy

return $i

QUERY FOR EQUIVALENCE 4:
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where some $j in $hamletSpeeches satisfies count($i/LINE) gt count($j/LINE)

return $i/LINE

QUERY FOR EQUIVALENCE 5:

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where some $j in $hamletSpeeches satisfies contains($i/LINE, $j/LINE)

return $i/LINE

35

3.3.4 AST Rewriting

Once it is known the equivalence rule to be applied, we map this algebraic

equivalence to a determined rewrite on the AST. This is done by inserting operators of

Brackit that correspond to the algebraic expression and restructuring the AST,

according to the equivalence. The best unnesting levels are obtained with rewrites based

on equivalences 3, 4 and 5. To illustrate the application of the equivalences, it will be

considered the generic ASTs.

In the first equivalence, taking into account that the query actually cannot be

unnested, it is only added a Count operator to the AST, just before the variable binding

of the e₂ (the x from the algebraic pattern). This operator – introduced in Chapter 2,

where some operators employed to optimize queries were described – is a data

programming language operator that enumerates a relation and attaches to each tuple its

position in the input relation (Bächle 2013). The basic idea of adding this operator is to

eliminate duplicates. However, depending on the nesting structure, if it includes other

nestings, it may also a significant performance gain by avoiding unnecessary

recomputations. Moreover, it can be used on further optimizations that explore

parallelism. Figure 3.7 shows the algebraic equivalence and the respective AST

rewriting in Brackit.

Figure 3.7: AST Rewriting using Equivalence 1, adding Count operator.

The Equivalence 2 is based on a Cartesian product. Figure 3.8 illustrates it. Firstly, it

is added a Count operator for the tuples coming from e₁ in the same way as done in the

first rewriting, which provides the same benefits. Then, it is made a Cartesian product of

the tuples coming from e₂ (whose values are bound to the variable ‘x’) and e₁ (which

includes the binding of the variable ‘y’), followed by the filtering according to the

selection predicate. Finally, it returns only the values generated in e₁.

36

Figure 3.8: AST Rewriting using Equivalence 2, based on Cartesian product.

Figure 3.9: AST Rewriting using Equivalence 3, based on Semi-join.

37

The significant performance improvements with unnesting rewrites begin here, with

the rewrite based on Equivalence 3. It basically adds an iteration over e₂ and a Semi-

join operator. The Semi-join filters the tuples in accordance with the equality

comparison, selecting also by the rest of the predicate. Figure 3.9 illustrates that.

The best optimization result is got with the Equivalence 4, due to the fact that it is

necessary only one value from e₂ to be compared to the values from e₁. This value is

obtained with the respective aggregation function after iterating over e₂ and filtering

with the rest of the predicate. The aggregation function to be used is defined by θ,

according to Table 3.2. In the example given by Figure 3.10, θ is a “greater than”. Thus,

the aggregation function to use in the unnested AST is a min function. If no tuples come

to the aggregation function (e.g., e₂ is empty), the aggregation variable must be assigned

in the LetBind as +∞ or -∞, depending on θ.

Figure 3.10: AST Rewriting using Equivalence 4, based on the comparison to the

result of the aggregation function.

The last rewrite possibility is based on Equivalence 5, which uses Theta-join. As

illustrated by Figure 3.11, it is added a Count operator (in the same way of the first two

rewrites) that controls any change on variable ‘y’, bound inside e₁. Then, it is made a

Theta-join between the values coming from e₁ and the iteration over e₂, where θ=p.

Finally, it is returned the selected values from e₁, eliminating duplicates. As one may

notice, it was presented two algebraic unnesting equivalences. The second one, which

38

the rewrite is based on, is a simplified version of the original equivalence, and was

created here due to being easier to express with Brackit operators.

θ agg agg(∅)

>, ≥ min +∞

<, ≤ max -∞

Table 3.2: Defining aggregation function to use and the aggregation value in empty

case, according to θ.

Figure 3.11: AST Rewriting using Equivalence 5, based on Theta-join.

3.4 Chapter Remarks

The purpose of this chapter was to explain how unnesting was developed inside

Brackit’s optimizer, whose importance was described in the introduction and –

specifically for Brackit – in Chapter 2. At first, it was introduced the origin of the

algebraic unnesting strategies, explaining how to bring queries to an algebraic level

towards query unnesting throw equivalence rules.

39

The second topic covered in this chapter was the advantages and issues of importing

those unnesting strategies to Brackit, discussing which strategies would be applied and

the reasons for applying them. Finally, it was presented the algebraic rewriter, which

implements the unnesting strategies via rewrites on the AST generated from the query

during the compilation process. It was detailed the four steps of this process, focusing

the last one, where the algebraic equivalences are employed to apply the unnesting

rewrites, whose performance improvements are analyzed in next chapter.

40

41

4 EXPERIMENTAL EVALUATION

The goal of this chapter is to evaluate the performance gains that the unnesting

rewrites developed for the Brackit optimizer – presented on Chapter 3, based on

application of algebraic equivalence rules – can provide to the evaluation of queries in

Brackit. The trouble is that, as commented in the second topic of Chapter 3, the bottom-

up compiler version of Brackit still has several points to be fixed in order to be

evaluable. Bearing that in mind, the way found to check the evaluation improvement

acquired by such optimization strategies was to simulate the unnesting rewrites using

XQuery expressions presented in Chapter 2, applying them directly in queries and

running them on an XQuery software.

4.1 Experiment Environment

The chosen XML database for XQuery processing evaluation was the eXistDB¹, a

native open source XML database, with support to XQuery and cross-platform. This

choice was made due to its popularity, large documentation, user-friendly IDE (eXide)

and good fulfillment of our needs, including the possibility of using on any platform and

satisfactory response times, without caring about transaction processing, since it has

nothing to do with our tests. It was decided to use another engine instead of Brackit to

execute our experiments because Brackit is currently not receiving support, then

eventual trouble using it would require an extra unnecessary work since it would be

done only for simulation purposes.

After some preliminary tests, it was noticed a certain irregularity on the response

times given by the engine, even reducing to a minimal number of concurrent processes

on the CPU, supposedly caused eventual I/O usage of those processes and indexing,

beyond the unknown (non-documented) cache usage. It was also noticed a tendency of

the first run of each query to be the slowest one, probably caused by caching. All the

tests were made in an Intel® Core™ i7 CPU. The operational system is Windows 7

Professional, 64 bits.

4.2 Evaluated Queries

For this experimental evaluation, it has been used four XML documents as the

database. Two of them are catalogs of chemistry publications² from 2014 and 2011.

__

¹: http://exist-db.org/exist/apps/doc/documentation.xml

²:ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/articles.A-B.tar.gz and ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/articles.C-

H.tar.gz

42

The other two native from eXistDB: documents with full Shakespeare’s plays (Hamlet,

Romeo and Juliet). Figure 4.1 shows the data model of these documents. Figure 4.2

shows the data model of the catalogs (Query 2 uses catalogs with citation attributes

named “mixed-citation” instead of “element-citation”). The database of publications is

small, with hundreds of citation elements. The database of Shakespeare’s scenes,

speeches and lines is a little bigger, with more than a thousand of speeches.

<ACT>
 <TITLE>Title</TITLE>

 <SCENE>
 <TITLE>Title</TITLE>

 <STAGEDIR>Stagedir</STAGEDIR>

 <SPEECH>
 <SPEAKER>Speaker</SPEAKER>

 <LINE>Line</LINE>

<LINE>...</LINE>

 </SPEECH>

 <SPEECH>
 ...

 </SPEECH>

 </SCENE>

 <SCENE>
 ...

 </SCENE>

</ACT>

Figure 4.1: Data model of Shakespeare’s plays.

<element-citation>
<person-group>

<name>
<surname>Surname</surname>
<given-names>GN</given-names>

</name>
<name>
 ...
</name>

</person-group>
<article-title>Article Title</article-title>
<source>Source</source>
<year>Year</year>
<volume>Volume</volume>
<fpage>FPage</fpage>
<lpage>LPage</lpage>
<pub-id>Pid</pub-id>

</element-citation>

Figure 4.2: Data model of publication catalogs.

43

To simulate the performance gain that would be obtained in Brackit with the

unnesting strategies, it is presented below a set of queries with existential quantifier

nesting, followed by an equivalent query without the nesting. The unnested queries

were obtained using expressions in XQuery that simulate the equivalence rules

presented in Chapter 3. For instance, to simulate the application of Equivalence 3 of the

unnesting decision tree, it was used path and filter expressions, which corresponds to a

Semi-join operation (as explained in Section 2.1). That was the case of Query 1 and

Query 5. It was also possible to simulate Equivalence 4 because it is based on simple

expressions and does not use any operator inexistent in XQuery. That was the case of

Query 2 and Query 3. Query 4 simulates the application of Equivalence 5.

QUERY 1: NESTED
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//speech

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where some $j in $hamletSpeeches satisfies $i/LINE = $j/LINE

return $i/LINE

QUERY 1: UNNESTED

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH[LINE =

$hamletSpeeches/LINE]
return $i/LINE

QUERY 2: NESTED

let $mar2014 := doc('/db/apps/demo/data/nano_2014_mar.xml')//mixed-citation

let $feb2011 := doc('/db/apps/demo/data/nano_2011_feb.xml')//mixed-citation

for $i in $mar2014

 where some $j in $feb2011 satisfies

 $i/year lt $j/year and $j/volume > 10

return $i

QUERY 2: UNNESTED

let $mar2014 := doc('/db/apps/demo/data/nano_2014_mar.xml')//mixed-citation

let $feb2011 := doc('/db/apps/demo/data/nano_2011_feb.xml')//mixed-citation

let $febYear :=

 for $j in $feb2011

 where $j/volume > 10

 return $j/year

for $i in $mar2014

 where $i/year < max($febYear)

return $i

QUERY 3: NESTED
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where some $j in $hamletSpeeches satisfies count($i/LINE) gt count($j/LINE)

return $i/LINE

QUERY 3: UNNESTED
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

44

let $countHamletSpeeches :=

 for $i in $hamletSpeeches

 return count($i/LINE)

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where count($i/LINE) gt min($countHamletSpeeches)

return $i/LINE

QUERY 4: NESTED
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH

where some $j in $hamletSpeeches satisfies contains($i/LINE, $j/LINE)

return $i/LINE

QUERY 4: UNNESTED

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH[contains(LINE,

$hamletSpeeches/LINE)]
return $i/LINE

QUERY 5: NESTED
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation

for $i in $feb2014

let $ipsn := $i/person-group/name/surname

let $iy := $i/year

 where some $j in $aug2014 satisfies

 let $jpsn := $j/person-group/name/surname

 let $jy := $j/year

 return $ipsn = $jpsn and $iy eq $jy

return $i

QUERY 5: UNNESTED
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation

let $aug2014psn := $aug2014/person-group/name/surname

let $feb2014_2 := $feb2014[person-group/name/surname = $aug2014psn]

for $i in $feb2014_2

 let $iy := $i/year

 let $ipsn := $i/person-group/name/surname

 for $j in $aug2014

 let $jy := $j/year

 let $jpsn := $j/person-group/name/surname

 where $iy eq $jy and $ipsn = $jpsn

return $i

4.3 Experiments Results

The focus of our experiments is to provide a notion of how improved would be the

performance of query evaluation on Brackit if its bottom-up version was able to be

45

used, so that the query would pass by the optimizer’s algebraic rewrite steps. The

performance improvement reflection obtained with these experiments might be

considered minimalist, because database operations, such as Semi-join and Join, when

implemented physically, can be implemented with optimized algorithms, such as bloom

filters (bloom filter is a structure that uses hash functions to reduce the amount of

transferred data).

Given the low regularity of the running time of queries in using eXide, it has been

performed, for each query, 5 runs. In most cases, the first run was the lowest one,

increasing the average running time. We considered relevant to keep this value in the

measurement to reflect a realistic scenario. In all queries, it is evaluated the performance

gain of unnesting existential quantifiers, which is the focus of our initial version of

optimization using the algebraic rewriter.

The first query is a search for lines from speeches in “Romeo and Juliet” that

contains a line equal to a line from Hamlet’s speeches. In the nested version of the

query, the selection predicate enables unnesting with Equivalence 3 from the decision

tree of existential quantifiers. The nested version of this query has run in an average

time of 189.2128s while running the unnested version, the average response time was

149.8846s, as shown in Figure 4.3. The query unnesting provided a reduction of 20% on

the response time.

Figure 4.3: Response time comparison of the two versions of Query 1.

The second query returns citations from one catalog that are older (according to the

year) than citations whose volume is higher than 10 from the other catalog. In the nested

version of the query, the selection predicate enables unnesting with Equivalence 4 from

the decision tree of existential quantifiers. The nested version of this query has run in an

average time of 0.5868s while running the unnested version, the average response time

was 0.1146s, as shown in Figure 4.4. The query unnesting provided a reduction of 80%

on the response time.

The third query gets the lines from speeches of “Romeo and Juliet” whose speech is

longer (in terms of number of lines) than Hamlet’s speeches. In the nested version of the

query, the selection predicate enables unnesting with Equivalence 4 from the decision

tree of existential quantifiers. The nested version of this query has run in an average

time of 19.704s while running the unnested version, the average response time was

0.8652s, as shown in Figure 4.5. The query unnesting provided a reduction of 96% on

the response time.

46

Figure 4.4: Response time comparison of the two versions of Query 2.

Figure 4.5: Response time comparison of the two versions of Query 3.

The fourth query gets the lines from speeches of “Romeo and Juliet” whose speech

contains any Hamlet’s line. In the nested version of the query, the selection predicate

enables unnesting with Equivalence 5 from the decision tree of existential quantifiers.

The nested version of this query has run in an average time of 171.563s while running

the unnested version, the average response time was 134.0466s, as shown in Figure 4.6.

The query unnesting provided a reduction of 23% on the response time.

Figure 4.6: Response time comparison of the two versions of Query 4.

47

Query 5 searches the citations from one catalog having the same surname and year

of any citation in the second catalog. In the nested version of the query, the selection

predicate enables unnesting with Equivalence 3 from the decision tree of existential

quantifiers, doing initially a Semi-join on publications’ surnames and reducing the

amount of data. The nested version of this query has run in an average time of 8.6838s

while running the unnested version, the average response time was 4.0992s, as shown in

Figure 4.7. The query unnesting provided a reduction of 51% on the response time.

Figure 4.7: Response time comparison of the two versions of Query 5.

Figure 4.8: Nested and unnested queries’ running time comparison.

4.4 Results Analysis

Figure 4.8 presents a comparison of running times between the nested and unnested

query versions, measured in seconds. To make visible the evaluation result of the

second query in the chart, it is used a logarithmic scale. The percentage performance

48

gain is illustrated by Figure 4.9. It is possible to note that the best results were obtained

with Equivalence 4. This result was actually a bit obvious since using existential

quantifiers on that kind of queries is absolutely not intelligent. The reason of that big

difference is that using the Equivalence 4, the unnested query gets a lower level of

complexity (it becomes Ο(n)). The other queries, optimized using Semi-joins and Joins,

obtained smaller, but significant, performance gains. It is important to remember that, as

commented previously, operators can be implemented to access data physically with

different optimized algorithms, which would result in even shorter evaluation times.

Furthermore, we must take into account that the experimental databases are small, and

bigger ones might provide stronger differences between the nested and unnested

versions. And last, but no least, it is important to ponder that we are using a centralized

database, and unnesting strategies are known to present even better results when applied

in a distributed environment.

Figure 4.9: Percentage performance gains.

All those facts enable us to consider the unnesting strategy using algebraic

equivalence rules not only applicable in Brackit’s optimization pipeline, but also an

important method to be added to Brackit to decrease the evaluation time of queries.

Although it was only analyzed the existential quantifier case, the experimental results

are enough to highlight the relevance of the algebraic rewriter as a part of the Brackit

optimizer restructuring, encouraging the completion of these ideas to this open-source

XQuery engine.

49

5 CONCLUSION

Despite the unstoppable increase of processing power technologically available,

performance care is, and will still be, necessary, given that databases and real-time

computing also grow. After studying some strategies to perform unnesting – which is

known to be an important method to optimize queries on databases –, including one

specific for XML databases based on algebra, we decided to adapt some of these ideas

to Brackit, our XQuery engine. In Brackit, most part of query compilation is based on

manipulation of trees that represents in an abstract form (ASTs). Implementing those

strategies on Brackit consists in an important step to restructure Brackit’s optimizer

because this brings the optimization development to a higher level, decreasing the AST

rewriting complexity and heavy code legacy of the currently stable version.

This work presented how we adapted an unnesting strategy based on algebraic

equivalence rules to Brackit through AST rewrites, inserting operators that manipulate

data physically and modifying the structure of the tree. This strategy includes several

steps to prepare the AST to be manipulated, to verify the nesting particulars, and to

define which equivalence rule must be applied to rewrite the AST. As a first work, we

focused on the implementation of unnesting existential quantifier expressions.

The results obtained running the experimental queries, where we used native

operators of XQuery to simulate the equivalence applied on Brackit, confirmed that

even queries on small and centralized databases can be significantly improved removing

naïve nestings. Moreover, the performance gain provided by unnesting would be higher

than the simulated results if it were used specific operators to perform joins and semi-

joins because they can be implemented to access with optimized algorithms.

The experimental results motivate us to resume the development in Brackit and to

continue this work on query unnesting. The work for the future includes implementing

the remaining physical operators necessary to apply the algebraic equivalences and also

the remaining nesting cases: universal quantifiers and implicit grouping.

50

3.1 Citação Indireta

 A citação indireta ou livre (paráfrase) é aquela citação na qual se expressa o

pensamento de outra pessoa com nossas próprias palavras. Após fazer a citação, deve-se

indicar o nome do autor em letras minúsculas se estiver no corpo do texto, e com letras

maiúsculas se estiver dentro dos parênteses, juntamente com o ano da publicação da obra em

que se encontra a ideia referida. Não são indicadas páginas já que a ideia pode estar resumida

Havendo supressão de trechos no texto citado, faz-se a indicação com reticências entre

colchetes, denominadas elipses [...]: "Na comunicação diária, aquela comunicação que

utilizamos no dia-a-dia, além da referencialidade da linguagem [...] há pinceladas de função

conativa [...]" (CHALHUB , 1991, p. 37).

Em relação à citação de uma citação, é a reprodução de uma informação já citada por

outro autor e, por sua vez, utiliza-se somente na impossibilidade de consultar o documento

original. No texto, deve ser citado o sobrenome do autor do documento não consultado,

seguido da expressão apud, e o nome do autor do documento consultado. Em nota de rodapé

devem ser mencionados os dados do documento original. Na lista de referências

bibliográficas, incluir o documento efetivamente consultado. Outra opção é incluir as duas

referências dos documentos na lista de referências do trabalho; neste caso, não se inclui nota

4 CONCLUSÃO

Apresentar conclusão do trabalho xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxx

xxx

xxx

xxx

xxx

xxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

51

REFERENCES

[Kim 1982]KIM, W. On Optimizing an SQL-like Nested Query. Trans. on Database Systems,

Vol 9, No. 3, 1982.

[Dayal 1987]DAYAL, U. Of Nests and Trees: A Unified Approach to Processing Queries That

Contain Nested Subqueries, Aggregates, and Quantifiers. Proc. VLDB Conf., pp.197-202,

1987.

[Ganski 1987]GANSKI, R. A.; LONG, H. K. T., Optimization of nested SQL Queries

Revisited. Proc. SIGMOD Conf., pp. 23-33, 1987.

[Muralikrishna 1992]MURALIKRISHNA, M. Improved unnesting algorithms for join

aggregate sql queries. Proceedings of the 18th International Conference on Very Large Data

Bases, pp. 91- 102, 1992.

[Katz et al. 2003]KATZ, H. et al. XQuery from the Experts: A Guide to the W3C XML Query

Language. Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc., 2003. ISBN

0321180607.

[May et al. 2006]MAY, N.; HELMER S.; MOERKOTTE G. Strategies for Query Unnesting in

XML databases. ACM Transactions on Database Systems, Vol. 31, No. 3, 2006.

[Sauer e Bächle 2011]SAUER, C.; BÄCHLE, S. Unleashing xquery for data-independent

programming. 2011

[W3C 1998]W3C. XML Query Language (XQL). 1998. Available from Internet:

<http://www.w3.org/TandS/QL/QL98/pp/xql.html>.

[Robie et al. 2000] ROBIE, J.; CHAMBERLIN, D.; FLORESCU, D. Quilt: an XML Query

Language. <http://www.almaden.ibm.com/cs/people/chamberlin/quilt_euro.html>.

[W3C 2010a]W3C. XQuery 1.0: An XML Query Language (Second Edition). 2010. Available

from Internet: <http://www.w3.org/TR/xquery/>.

[W3C 2004]W3C. XML Information Set (Second Edition). 2004. Available from Internet:

<http://www.w3.org/TR/2004/REC-xml-infoset-20040204/>.

[W3C 2006]W3C. Extensible Markup Language (XML) 1.1 (Second Edition). 2006. Available

from Internet: <http://www.w3.org/TR/xml11/>.

[W3C 2010b]W3C. XQuery 3.0: An XML Query Language. 2010. Available from Internet:

<http: //www.w3.org/TR/xquery-30/>.

[Bächle 2013]BÄCHLE, S. Separating Key Concerns in Query Processing—Set Orientation,

Physical Data Independence, and Parallelism. 2013.

52

[Graefe 1994]GRAEFE, G. Volcano: An Extensible and Parallel Query Evaluation System.

IEEE Trans. on Knowl. and Data Eng., 6(1):120–135, 1994.

