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ABSTRACT 

 

Since the beginning of the 80’s, during the rise of relational databases, it has been 

developed many strategies to deal with problems of executing queries in a nested way. Most 

of these strategies are based on classification into generic query types, followed by an unnest 

technique for each type. The two main approaches to unnest are: source level and algebraic 

level. The latter has some advantages, as expressiveness. These publications were important 

to the success of relational database architectures. However, all this knowledge is not only 

useful for relational databases, but also for queries from non-relational databases, e.g. XML 

databases. Brackit is an open-source XQuery compilation engine, developed at Technische 

Universität Kaiserslautern. The compilation pipeline in this engine includes an optimization 

stage where we could develop unnesting algorithms. Aiming optimize the query evaluation in 

Brackit, we present how we applied algebraic equivalences to unnest queries. The 

contribution of this work is the implementation of an efficient and high level unnesting 

technique, easy to understand and to improve. This implementation reduces the heavy code 

legacy of the current optimizer version. The basis of these equivalences application was the 

good correspondence between the algebra and Brackit’s AST nodes. The optimization, thus, 

was based on AST manipulation. Here, we are going to call this manipulation as rewriting. 

For experimental analysis, it was performed simulations throw XQuery to prove the gain of 

the unnesting strategy. 
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1 INTRODUCTION 

 

The first publications on how to optimize query evaluation in DBMSs was focused 

on SQL queries (Kim 1982, Ganski 1987, Muralikrishna 1992). The reason for that was 

the increase of relational databases popularity, which brought up the need of strategies 

of how to decrease the time response of the queries since the data to deal with was 

getting bigger. Thenceforth, it has been pointed a main villain of query efficiency: the 

straightforward nested evaluation. 

One problem of the nested query evaluation is the overhead of initializing the inner 

query and loading the inner table(s) multiple times, the data in such way that the 

physical access to these data increases quadratically or worse, in case of more than one 

subquery. There is also the issue of not exploring the join selectivity, beyond other 

improvements that the optimizer could do since there are fewer query levels, which 

could be used to decrease the amount of disk access. To illustrate the idea of nested 

query, Figure 1.1 gives a simple example in SQL, with an equivalent unnested version. 

The first of these publications (Kim 1982) came up with a source level approach, 

classifying queries according to the class of the inner query and the relation between the 

inner query and the outer one. Then, for each class, it was specified a generic algorithm 

to unnest the query. Later, it appeared many other publications, with improvements on 

these ideas and bugs avoiding (Ganski 1987, Dayal 1987, Muralikrishna 1992). 

All these publications were very important to the improvement of SQL itself 

because from these ideas came the importance of adapting the SQL with operators 

aimed to unnested query evaluation. Whereas the rise of relational DBMSs has brought 

an increase of data to manipulate, these improvements became indispensable for SQL 

popularity keep growing since it got more expressive and delivered users better 

response times. However, these concepts were not only useful for relational databases, 

but also for queries from non-relational databases, e.g. XML databases. Hence, those 

studies could be extended to unnesting queries in XQuery, a data programming 

language developed to manipulate XML-based data. 

A good example of study at this line was developed at an algebraic level, whose 

some strategies were applied in this work. That study presented the Natix Algebra (May 

et al. 2006), which the XQueries would be translated to, and which the unnesting 

equivalence rules would be applied on, in order to obtain an optimized query. 

There are advantages of using an algebraic view for applying unnesting techniques 

instead of a language level approach, which was the case of the first publications. 

Probably the main one is the generic structure of the results because they can be applied 

directly to any other query language translatable into the underlying algebra. Another 

advantage is the possibility of integration into a cost-based plan generation.  

In summary, the unnesting strategies presented in that work were based on a 

translation to that algebra (which included a normalization step), followed by the 

application of algebraic equivalences, according to one of three decision trees. These 

decision trees were defined by the nesting type: existential quantifying, universal 

quantifying and implicit grouping.2011), 
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Then, it has come the idea to bring these strategies into Brackit (Sauer e Bächle 

2011), a data-independent XQuery compiler. Its compilation pipeline is divided into 

four steps: parsing (AST creation), analysis, optimization and translation (plan 

generation). Hence, our work goes into optimization step.  

The importance of this work is that the current unnest strategies were using 

operators with an unnecessary level of complexity, what used to make it hard to work 

on the following pipeline steps, beyond the difficulty of improving the optimization 

itself. Then, it would be important to restructure the optimizer, where one of the 

optimizations would be focused on algebraic query unnesting. For the development of 

this new unnesting in Brackit, it is possible to point another fundamental advantage 

from the algebraic level within the strategies shown at that study: the good 

correspondence between the algebra and Brackit’s AST structure. 

Therefore, the contribution of this work is the implementation of an efficient and 

higher level unnest technique for Brackit’s optimizer, with algorithms easier to 

understand and to improve. Furthermore, this implementation reduces the heavy code 

legacy caused by the complex operators. To get that, it was adapted general strategies 

for unnesting queries for XML databases into the Brackit’s system of AST rewrites, 

which is how most part of the query compilation process works in this engine. This 

adaptation consists on the implementation of the query normalization, the algebraic 

pattern recognition, the algebraic equivalence definition with a decision tree, and, 

finally, the AST rewrite matching the defined equivalence. To examine the performance 

improvement provided by this strategy, it was necessary to simulate the algebraic 

rewrite application. The obtained results give a preview of how useful these strategies 

can be, stimulating the continuation of this implementation in Brackit.     

This work continues with the following structure: Chapter 2 introduces XQuery and 

describes the structure of the engine, detailing the compilation steps, and presents the 

current unnest technique existent in Brackit (Bächle 2013). Chapter 3 describes the 

proposal of this work that is the implementation of unnesting strategies on our engine, 

creating the algebraic rewriter. Chapter 4 reports the experiment method, explaining 

how the simulated evaluation was performed and the importance of the results. The final 

statements and the opening of possible future works are made in Chapter 5.  

 

 
 

Figure 1.1: SQL Query with a nested query and the unnested version. 
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2 BACKGROUND  

 

The purpose of this chapter is to present Brackit (Sauer e Bächle 2011), the XQuery 

engine compiler, where the unnest techniques that will be detailed in this thesis were 

implemented. Here, we also come up with the current strategy for optimizing nested 

queries, focusing the pipeline optimization, which includes rewritings and new 

operators on the AST.  

But before that, we begin it introducing the XQuery itself, presenting the 

fundamentals of XQuery, defining the XQuery Data Model (XDM) structure and 

describing the most relevant expressions for this thesis. 

 

2.1 XQuery  

XQuery is a powerful functional programming and querying language, created to 

manipulate XML-based data (Katz et al. 2003). Initially created to implement 

declarative XML processing as designed by a sequence of efforts (W3C 1998, Robie et 

al. 2000), but then several revisions were done, resulting a versatile functional 

programming language, with significant strength in XML bulk processing. 

For the data manipulation, XQuery offers a large set of expressions, which includes 

the FLOWR expressions (query basis), path expressions, quantified expressions and 

many programming ones, such as comparisons, conditionals, arithmetic, references and 

function calls. Table 2.1 shows a complete overview of XQuery 3.0 expressions (W3C 

2010b). XQuery is defined as a transformation on the XQuery Data Model, also called 

XDM (W3C 2010a). XDM follows some XML standards (W3C 2004, W3C 2006). In 

XQuery, a query is defined as a tree of expressions evaluated to a sequence of items. 

 

2.1.1 XQuery Data Model 

The concepts of sequence and item are the basis of XDM, as illustrated by Figure 

2.1. A sequence is an ordered list of zero or more items. Even single data are treated as 

a sequence, i.e., values such as the integer 2 and the string “hello” are equivalent to the 

sequences (2) and (“hello”), respectively. Null values are defined by () – empty 

sequence – given that it is also used to represent missing data. 

The items in XDM are classified into three classes: atomic types, nodes, and 

functions. Atomic types are related to primitive types, such as integers, floats, strings, 

etc, including the “untyped” type. Nodes are the standard abstraction for representing 

structured and semi-structured XML data, according to properties defined in the XML 

Infoset specification (W3C 2004). Those properties include the seven node kinds 



 

 

18 

 

(Document, Element, Attribute, Comment, Text, Instruction, and Namespace) and 

several kind-specific properties. 

 

Expression Type Examples 

FLWOR Expression for $b in doc(“products.xml”)  
let $limit :=  100 
where $b.price lt $limit 
order by $b.price 
return $b.id 

Quantified Expression some $x in $y satisfies $x eq $z  (every) 
Path Expression (XPath) $ec/person-group[@person-group-type='author']/name 
Literal 123 
Filter Expression (4, 9, 2, 6)[.>5] 
Variable Reference $total 
Parenthesized Expression (…) 
Sequence Expression “abc”, $x*2, foo(2) 
Arithmetic Expression 12 + 3   (-, *, /, mod, div, idiv) 
String Concatenation “conca” || “tenation” 
Static Function Call fn:foo(“param”) 
Dynamic Function Call $fun("foo","bar") 
Named Function Reference fn:foo#1 
Inline Function Expression function($a as xs:double, $b as xs:double) as xs:double 

{$a *$b} 
Logical Expression 1 eq 1 and true   (or) 
Conditional Expression if ($x>9000) then “It’s over 9000” else “ok” 
Switch Expression switch($x) case “a” return 1 case “b” return 2 
Context Item Expression . 
Node Sequence 

Combination 
$seq1 union $seq2   (intersect, except) 

Node Constructor <count-books> { count($book) } <\count-books> 
Node Comparison <a>5</a> is <a>5</a>  (>>, <<) 
Value Comparison $i/price eq 25   (ne, gt, ge, lt, le) 
General Comparison $i/name = “John”   (!=, <, <=, >, >=) 
(Un-)ordered Expression unordered {...} ordered {...} 
Try/Catch Expression try { foo() } catch * { “Some error” } 
Range Expression 0 to 10 
Instance Of Expression 0.7 instance of xs:float 
Typeswitch Expression typeswitch ($team)  

case $n as element(*, franchise) return $n/owner  
case $n as element(*, club) return $n/president 

Cast Expression "0.7" castable as xs:double 
Castable Expression "0.7" castable as xs:double 
Constructor Function xs:boolean("true") 
Treat Expression treat $nums as xs:integer+ 
Validate Expression validate strict { doc(‘hamlet.xml’) } 

Table 2.1: Overview of expressions in XQuery 3.0. 
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   … 

Figure 2.1: XDM structure based on sequences of items. 

2.1.2 Relevant XQuery Expressions 

As already seen in Table 2.1, XQuery has a good variety of expressions. For this 

thesis, we point out four very relevant expression types within XQuery: FLWOR 

expressions, quantified expressions, path expressions and filter expressions. 

The basic tool for querying data in XQuery is the FLWOR expression (Katz et al. 

2003). This name comes from the 5 clauses which originally compose this kind of 

expression: for, let, where, order by and return (some of them are optional). These 

clauses represent, respectively, the language primitives for iterating a sequence of 

tuples, mapping values to variables, filtering tuples, sorting and projecting the 

remaining tuples. The minimal FLWOR structure is a for clause followed by a return 

clause. Another property of FLWOR expression is that it must begin with a for or a let 

clause because these are the clauses which can make the first variable binding start the 

query’s sequence stream. FLWOR expressions must also finish with a return clause 

because that is what reduces the sequence stream into a single XDM sequence. To 

illustrate all these concepts, it is used as example a simple FLWOR expression, with the 

Atomic Type Node Function 

xs:untyped 

xs:integer 

xs:string 

xs:date 

 

xs:boolean 
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Document 
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Attribute 
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Namespace 
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respective expression tree and a conceptual analysis of each clause, given by Figure 2.2 

After some revisions, to increase the language expressiveness and to let it be similar to 

other data programming languages (like the ones for relational databases), it was also 

introduced other optional clauses: group by, window and count (W3C 2010b). 

 

 
 

Figure 2.2: FLWOR expression example, with expression tree and conceptual analysis. 
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The second important kind of expressions is the quantified expression. It provides a 

boolean value according to the existentialism or the universality of a predicate in a 

collection, iterating over this collection. In a some quantified expression, it is returned 

true if exists a value inside the collection that makes the predicate which comes after the 

satisfies clause be evaluated as true. In an every quantified expression, it is only 

returned true if all values in the collection yield a true value for the predicate. The latter 

requires a special attention because they do not evaluate empty collections, since it 

would be discarded in the result instead of be evaluated as false.  

Quantified expressions have a very high relevance in this work: they represent an 

important part of query nesting cases in XQuery. Furthermore, in this thesis, these 

nesting cases will receive most of the focus (especially the existential case). It is 

reasonable to consider that the compiler may be able to understand the semantics of 

quantified expressions, thus performing its evaluation not in the most naïve way, i.e., 

stopping the nested loop as soon as possible. Even though, it remains the problems of 

nested straightforward evaluations, mainly in cases of an unfavorable order of the 

collection. 

The other two expression types previously highlighted, path and filter expressions, 

enable XML tree navigation and selection of values in a collection, respectively. The 

former’s general structure is e₁ / e₂, where e₁ and e₂ are individual subexpressions, but 

the evaluation of the second one is done in the first’s context. The latter’s general 

structure is e₁ [ e₂ ], where e₁ is a collection and e₂ is a position of this collection or a 

selective predicate, then the result of this type of expression is a collection with the 

items from e₁ which satisfies e₂.  

 

 

Figure 2.3: Semi-join example based on path and filter expressions. 
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Together, those two kinds of expressions are a useful tool for obtaining specific 

items from an XML database. Moreover, the combination of those expressions can be 

used to simulate a semi-join operation, and that is where it comes the relevance of those 

expressions for this thesis (more specifically, in Chapter 4, where the experimental 

analysis is done). For instance, let us consider the XML data structure and the query 

given by Figure 2.3. 

 The given query begins getting the author nodes whose country is Brazil. Then it 

performs a semi-join on the book nodes from the document “lib.xml”, selecting those 

whose author’s name matches one of the names of Brazilian authors obtained 

previously. 

 

2.2 Brackit Pipeline 

The pipeline of Brackit engine for XQuery processing is composed of 4 steps, as 

shown in Figure 2.4: parsing, analysis, optimization, and translation. The first step 

consists in a syntactical evaluation of the query (given by a string), where it is created 

an abstract syntax tree (AST) with each expression being represented by a node in this 

tree. This AST is the object which will be manipulated in the following steps through 

rewritings until translation, where the plan generation will take place. The second step 

performs the semantic analysis of the query, where it is done the static typing. 

 

Figure 2.4: High-level view of Brackit Pipeline. 

The third step is actually a group of smaller steps towards the query optimization. 

This group varies according to the compiler version. The current version, based on a 

pipeline lifting and using a 4-way Left Join (Bächle 2013), is detailed in section 2.3. It 

is also important to point that here is the relevant step for this thesis. 
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In the last step, it is generated an executable plan from the final AST, where it is 

assigned a concrete implementation for each expression type, compiling the expression 

tree in a single pass, from the roof to the right-most leaf. The translation process is quite 

simple because each subtree in the AST is self-contained and the plain variable 

references are the only dependencies. Accordingly, variable bindings are totally 

managed by its own expression or operator. In this process, the variable must be 

declared only before the respective sub-expression and undeclared at the end of its 

scope. In the case of variable dependency, a simple lookup in the variable table is 

enough to resolve the corresponding position in context tuples. 

The stable version of Brackit performs the query compilation based on its top-down 

perspective. In this version, the translation step creates a push-based pipeline, where 

each operator act as a sink, generating a tuple stream as output after receiving another 

tuple stream.  

But there is also the bottom-up compiler version, where the translator generates a 

pull-based pipeline, which is very similar to the other one, except for each operator 

being realized as a cursor, implementing a simple open-next-close interface (Graefe 

1994), which works in the opposite direction. In this translation, the cursor pipeline is 

initialized with a Start operator, and it uses this cursor to propagate the call to the last 

operator in the pipeline through the individual pipeline stages.  

As known, when a query is seen in an algebraic level, e.g. relational algebra or Natix 

Algebra (May et al. 2006), it is seen in a bottom-up perspective. For this reason, it was 

chosen the bottom-up version of Brackit compiler to implement the algebraic unnest (as 

it is going to be shown in Chapter 3), because then it was possible to apply the unnest 

strategies via AST rewritings. 

 

2.3 Brackit’s Optimizer 

In this section, it will be described the optimization stage of the stable version of the 

compilation pipeline in the engine, which we may call the state-of-the-art on query 

optimization in Brackit. As commented in the previous section, the optimization step of 

the Brackit’s pipeline can be defined as a set of minor steps. In an ideal compilation 

optimizer, such set includes simplification, pipelining, pipeline optimization, data 

access optimization, parallelization, and distribution. Most of these are present in 

Brackit. For this thesis, the focus goes to the pipeline optimization, where it is 

performed join unnesting using a 4-way Left Join (Bächle 2013), whose complexity is 

one of the points of restructuring the optimization in Brackit through algebraic 

unnesting. 

The first step at Brackit’s optimizer is the simplification, where it is done some basic 

pruning operations, like dead-code removal. In the following step, FLWOR clauses are 

converted into operator pipelines. To illustrate this procedure, Figure 2.5 brings the 

respective pipelined tree from the expression tree given by Figure 2.2. The importance 

of pipelining is the possibility applying set-oriented rewritings on the operator tree, 

including optimizations from the relational world. Such optimizations will be more 

detailed in the sequence of this chapter. 

After the optimizations on the pipeline operators, the optimizer in Brackit works on 

the physical data access level, with rewritings performed specifically to the target 

platform, introducing optimizations in multiple granules and multiple dimensions. 



 

 

24 

 

Examples of such operations are eager value coercion, indexing and the inclusion of a 

multi-bind operator, which reduces many binding twig branches to a single twig 

operator. And finally, the last optimization step improves parallel processing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Converted operator tree after pipelining. 

 

2.3.1 Pipeline Optimization 

As already commented, the pipelining process enables the optimizer to apply several 

modifications on the data operation flow based on set orientation, always without 

changing the outcome. In Brackit, the rewritings are mainly focused on increasing how 

join operations perform, since these operations use to be the bottleneck of query 

processing, and this condition depends a lot on the way the join is evaluated. 

The first operation in pipeline optimization is the pull-up of select predicates, in the 

same way that one may consider, in relational algebra, for pulling up a Selection before 

a Join/Cartesian product operation. For this process, it is analyzed the Select subtree, 

checking whether the predicate is independent of any upper operation, and then putting 

the Select to be evaluated before that. After this process, it begins the join 

optimizations. Naturally, the first thing to do is to recognize joins in the AST. The 
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importance of such procedure is the same as from relational data processing. Here, 

multiple for-bindings work as cartesian products, resulting on the undesirable nested-

loops. Hence, it is primordial to find the join possibilities and adapt the AST, in order to 

filter the tuple streaming. The relevance of this process increases as XQuery, in contrast 

to SQL, does not have specific operators for deploying joins explicitly, which means 

joins will always be defined implicitly, hidden under for clauses. Accordingly, the next 

step involves the insertion of join, which is detected in the case of a Cartesian product 

immediately followed by a Select that correlates items from each branch of the 

Cartesian product. This process is followed by the push-down of any independent 

binding placed before the join. However, it is important to note that not always it is 

possible to apply such push-down operation due to the complex binding structure. 

Hence, it is also added a join group demarcation stage, which searches these complex 

binding occurrences and inserts a Count operator between the variable binding and the 

inner join, in order to trigger a rebuild of the lookup table used by the join only when 

necessary, i.e., the bound variable has changed. This mechanism defines sequential 

groups of individual nested operations that can share intermediate results. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.6: XQuery and the respective AST, after optimization steps until 4-way left 

join generation.  

 

 

 

All those pipeline optimizations described above deal only with for-bound variables, 

which may form cartesian products that could (and should) be transformed into a join, 

or which could be manipulated to avoid unnecessary recomputations. However, XQuery 

allows nesting FLWOR expressions in let clauses, binding a whole sequence of values, 

for $x in (1,2,3) 
let $sub := for $y in (2,3,4) 
           where $x >= $y 
           return $y 
return ($x, $sub) 

pipe 

ForBind($x) 

Start 

(1,2,3) LeftJoin₌ 

End 

true() 

Join>= LetBind($sub) End 

($x, $sub) 

End End ForBind($y) $y 

true() 

GroupBy 

End $x 

(2,3,4) $y 
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e.g., subqueries, to a variable. The problem is that, in this case, previous evaluations of 

the nested FLWOR and lookup tables are lost, since pipeline sharing would violate the 

expression evaluation independence. To manage this situation, it was developed the 

Pipe Lifting. And here is the place where the optimization structure gets a bit complex. 

This process is composed of three steps that “lift” the pipelines nested inside a let-bind.  

The first step is the basic one: conversion of let-bind into a 4-way left join. This new 

operator is actually a macro, which is implemented by small operations to produce the 

lifting, executing: triggering of rebuild on the lookup table, filtering, concatenation of 

pipeline partitions and grouping. Further the 3 children that a normal join operator has 

in the AST (one for each input and the last one for the output), this special join has an 

additional child branch, related to the group generation. Once this conversion is done, 

one of left join inputs is the whole nested loop, and the other is empty, which means that 

it only echoes the tuple. To exemplify this conversion, let us consider the XQuery in 

Figure 2.6 and the respective AST, after all optimizations steps commented until now, 

including the 4-way left join conversion. 

The following two steps of Pipe lifting aim to simplify the left join structure 

generated previously, adapting it without that empty operator. To obtain that, it is made 

a swapping of the nested for-bind to an extra left join, and then the initial left join, 

which is unnecessary at this point, is removed. After that, the pipeline optimization 

finishes with some rewritings on join trees and group by aggregation. 

As one may notice, the previous steps of pipeline optimization have increased 

considerably the complexity of the AST that is manipulated, adding extra children to the 

operator nodes on the tree and several special operations. Accordingly, the 

implementation of further optimizations becomes harder, in different aspects: the 

walking process on the AST structure to visit the nodes and define rewritings or 

conversions need to consider those new exceptional operations and the new range of 

possible node children. In other words, it gets necessary to deal with some heavy code 

legacies in order to develop newer optimization steps. For this reason, it has come the 

idea to restructure the Brackit optimizer. 

 

 

2.4 Chapter Remarks 
 

In this chapter, it has been introduced the XQuery language, presenting the main 

concepts, with an overview on the sequence-based structure of XQuery Data Model and 

the language expressions. It was given a particular attention to four kinds of expressions 

in XQuery: FLWOR expressions, because they are the backbone of any query; 

Quantified expressions, because they correspond to the nesting type with more focus in 

our unnesting strategies, detailed in Chapter 3; Path expression and filter expression, 

because they, together, enable us to simulate semi-join operations, which was necessary 

to obtain the results on Chapter 4. 

The Brackit engine, an XQuery compiler, was also presented in this chapter. It was 

introduced Brackit’s compilation pipeline, detailing the optimizer, where the algebraic 

equivalence rules for unnesting queries were applied, which implementation is 

described in next chapter. Here, it was detailed the state-of-art version of the optimizer, 

which includes several complex rewritings on the query’s AST, creating some trouble to 

add further optimizations, and then encouraging us to restructure the pipeline 

optimization in Brackit as follows in Chapter 3. 
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3 UNNESTING QUERIES  

 

The objective of this chapter is to explain how the algebraic unnesting on Brackit 

optimizer was implemented, beginning the restructuring aspired in the previous chapter 

to reduce the AST manipulation and to simplify further optimizations. Initially, it is 

introduced the unnesting strategies for XML databases based on the translation of 

XQueries into an algebra, whose ideas are relevant for our work. Then, the motivations 

to bring these ideas to Brackit are presented, pointing out advantages and disadvantages 

of applying such strategies on the Brackit compilation pipeline, in order to obtain an 

optimized query evaluation. Finally, it is described how we implemented the algebraic 

rewriter, explaining how it works, detailing each step: normalization, algebraic pattern 

recognition, the decision tree – which defines the rewrite equivalence rule – and the 

rewrite itself.  

 

3.1 Unnesting Strategy 

As previously commented, lots of studies have been done towards query unnesting, 

with different approaches focused on distinct databases. We highlight one that is 

focused on XML databases, which is a framework based on unnesting queries after a 

translation into the Natix Algebra (May et al. 2006). This algebra includes some 

operators know from the relational algebra, e.g., Selection and Projection, and some 

new operators, e.g., Map and Unnest-Map, working on sequences of tuples. These four 

operators are the basis of the translation because they represent the clauses where, 

return, let and for, respectively. 

 

 Algebraic Pattern Example in XQuery 

Existential Quantifier σ ∃x∈e₂:p (e₁) where some $x in e₂ 
           satisfies p 

Universal Quantifier σ ∀x∈e₂:p (e₁) where every $x in e₂ 
           satisfies p 

Implicit Grouping χ g:f(σ p (e₂)) (e₁) let $g :=  
           for $a in c          [e₂] 
           where p 
           return r              [f] 

 

Table 3.1: Algebraic patterns and examples in XQuery. 
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In this research, the queries pass by a normalization phase, which transforms the 

query to simplify the algebraic pattern recognition and to enable the application of more 

equivalence rules. This normalization consists of steps like the break of any complex 

expression into simple ones (creating new variables for sub-expressions), the 

transformation of implicit computations into explicit ones and the normalization of 

predicates into conjunctive normal form (CNF). After normalization, the nested queries 

obtained from the translation from XQuery to that algebra are classified into three types: 

existential quantifiers, universal quantifiers, and implicit grouping. The first and the 

second are characterized by the occurrence of a quantified expression while the last 

occurs when the values returned by a FLWOR expression are aggregated into tuples 

from an outer one. This last one is called implicit grouping because it used to be the 

only way to perform grouping since explicit grouping was not provided originally in 

XQuery. Table 3.1 shows the three algebraic patterns and examples in XQuery, where 

the element e₁ corresponds to the rest of the query and is omitted in the examples. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.1: Example of a query with existential quantifier nesting. 

 

To illustrate the classification, let us consider the Figure 3.1, Figure 3.2 and Figure 

3.3. The first query, with existential quantifier, looks for speeches from “Romeo and 

Juliet” (r_and_j) that has a line equal to a line from speeches from “Hamlet”, returning 

the lines of that speech. The second one, with a universal quantifier, performs an anti-

join: it is searched citations from 2014’s publications whose authors does not appear in 

2013’s publications. The query used to illustrate implicit grouping is the same from 

Figure 2.6, used to show the 4-way left join insertion. 

For each query nesting type, there is a list of algebraic equivalence rules that can be 

applied to perform the query unnesting, i.e., to get a query equivalent to the first one 

that does not result in a naïve nested straightforward evaluation. To choose the 

equivalence rule(s), each query class has a decision tree, which according to some 

characteristics of the query, determines the best equivalence to be applied. Also, it 

includes some auxiliary equivalences, which may be used to manipulate the algebra if 

necessary. 

 

 

let $hamletSpeechs := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 
for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 
where some $j in $hamletSpeechs  

satisfies $i/LINE = $j/LINE 
return $i/LINE 
 

Algebra:  

Πi/LINE (σ∃j∈(hamletSpeechs):e₁ (Υi:e₂ (χhamletSpeechs:e₃ ))), 

where  

 e1: i/LINE = j/LINE 
e2: ('/db/apps/demo/data/r_and_j.xml')//SPEECH (□) 
e3: doc('/db/apps/demo/data/hamlet.xml')//SPEECH 
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Figure 3.2: Example of a query with universal quantifier nesting. 

 

 

 

 

 

 

 

 

 

Figure 3.3: Example of a query with implicit grouping. 

 

3.2 Importing Ideas to Brackit 

In the end of Chapter 2, it has been introduced one of the main goals of this work, 

which is the achievement of higher level optimizations, with reduced complexity and 

heavy code legacy, in comparison to the state-of-art version of Brackit’s optimizer. 

Another factor is that the top-down perspective used by that optimizer may not be 

considered the most intuitive view of the query to check out optimization algorithms 

and to manipulate. The usage of algebraic unnesting strategies, then, seemed to be a 

good approach to implement on the optimization pipeline of Brackit, because they do 

satisfy pretty well those targets. 

The main advantage of using those strategies to develop query optimizations is the 

good correspondence between the algebra and the Brackit operators. Accordingly, the 

application of algebraic unnesting equivalence rules could be performed via AST 

manipulation. This manipulation, as better detailed in the sequence of this chapter, is 

for $i in doc('publications-2014.xml')//element-citation 
where every $j in doc('publications-2013.xml')//element-citation  

satisfies ( $i/author/surname != $j/author/surname 
   or $i/author/name != $j/author/name) 

return $i 
 

Algebra:  

Πi (σ∀j∈e₁:e₂⋁e₃ (Υi:e₄ (□))), 

where  

 e1: doc('publications-2013.xml')//element-citation 
e2: i/author/surname != j/author/surname 
e3: i/author/name != j/author/name 
e4: doc('publications-2014.xml')//element-citation 

for $x in (1,2,3) 
let $sub := for $y in (2,3,4) 
          where $x >= $y 

          return $y 
return ($x, $sub) 
 

Algebra:  

Π(x, sub) (χsub:(Πy (σx≥y (Υy:(2,3,4)(□)))) (Υx:(1,2,3) (□))) 
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implemented in the form of rewrites of the operator tree. Furthermore, it is also 

important to highlight the fact that good correspondence means that there are only few 

physical operators of the algebra which need to be implemented. For the existential 

quantifiers nesting case, the implementation of three physical operators would be 

enough: Semi-join, Theta-join and Cartesian product. 

On the other hand, there is the fact that the bottom-up version of Brackit, which fits 

perfectly on the algebra, needs several complex code fixes to be able to evaluate 

queries. So the only stable version of Brackit works in a top-down fashion, which goes 

against the algebra structure, that is bottom-up by definition. For this reason, it was 

necessary to improvise a method to check the performance gains on applying these 

algebraic equivalence rules, which is discussed on Chapter 4. Despite that situation, we 

still decided to implement these unnesting strategies in Brackit, considering the 

advantages listed previously.  

The Brackit compilation process, as explained in Chapter 2, is composed of parsing, 

analysis, optimization, and translation. In this process, once the AST relative to the 

query is created and semantically analyzed, this AST is used at the optimization 

proceeding. The optimizer operation manipulates the AST in such way that the resulting 

AST whose translation will generate an execution plan with higher performance (in 

most cases) than the original AST would do. This manipulation can be seen as 

rewritings of the original AST based on strategies to optimize queries, inserting and 

removing nodes, modifying operators, changing the order of the operators, etc. The idea 

of implementing optimization strategies throw AST rewrites is the basis to understand 

how the unnesting strategies were developed on Brackit. 

From the three nesting classes described above, the chosen to be the focus of our 

work was the existential quantifier case. The factors of this decision were: 

 the complexity to recognize the algebraic pattern and to apply equivalence 

rules; 

 the relevance of the nesting type, i.e., how often the nesting type occurs in 

normal queries. 

Regarding the complexity of the nesting type, naturally the first case to be 

implemented would not be the most complex one. Accordingly, the chosen case was not 

the implicit grouping because the algebraic pattern is not so directly obtained from an 

arbitrary XQuery as the quantifiers cases are. And concerning the relevance of the 

nesting classes, the existential case corresponds to a very common expression type, 

standing out for being largely used to perform implicit semi-joins. In the universal case, 

though, the main usage is probably to perform implicit anti-joins, which is a not so 

common query type. Hence, the implementation of universal quantifiers and implicit 

grouping rewritings has become a matter for future work.  

 

3.3 Algebraic Rewriter 

The algebraic rewriter, as Figure 3.4 illustrates, is composed of 4 procedures: 

normalization, algebraic pattern recognition, choice of equivalence rule with a decision 

tree and tree rewriting. The special arrow on the unnesting pipeline refers to the fact 

that, as explained in the sequence of this chapter, part of the normalization can be done 

just before the decision tree. 
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3.3.1 Normalization 

Most of the normalization steps proposed on that research to precede the translation 

aim to favor the implicit group recognition and to apply its equivalence rules. 

Considering that the full implicit grouping implementation is not in the scope of this 

work, it was decided to only provide one normalization step, which is relevant to unnest 

existential quantifiers.  

Figure 3.4: Algebraic rewriter overview: query unnesting process. 

 

The normalization operation developed for the algebraic rewriter is the conversion 

of non-CNF predicates inside a Selection to CNF (conjunctive normal form) predicates. 

A CNF predicate is a predicate composed of 0 or more conjunctions of clauses, where 

the clauses are composed of 0 or more disjunctions of literals (bringing this definition to 

XQuery, a literal can be expressions like comparison, function, boolean value, etc.). 
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This conversion is based on logical properties, like commutative, distributive and 

Morgan’s laws. Figure 3.5 shows a simple AST conversion example. The importance of 

this normalization step is that it enables the separation of one conjunction branch from 

the rest of the predicate. This is useful to discover a better equivalence rule at the 

decision tree or to filter the tuple flow. It means that the conversion can be made just 

before the decision tree, which is actually done in Brackit. The advantage of doing this 

normalization after the algebraic pattern recognition is that after recognizing the pattern, 

we already know where the predicate to be normalized is.  

 

Figure 3.5: Converting predicate to CNF. 

 

3.3.2 Algebraic Pattern Recognition 

The pattern recognition, for quantifier cases, is a very simple step. The occurrence of 

existential quantifier nesting is given by the presence of a some-expression node at the 

AST, because the rest of the algebraic structure is just how the syntax of this kind of 

expression is defined in XQuery. Hence, this pattern can be recognized on a simple 

AST scan. The same works for universal quantifiers.  

The implicit grouping pattern is recognized if there is a let-bind node followed by a 

new pipe or a function call. The problem is that many further normalization steps are 

needed to let all the queries with implicit grouping be recognizable with this pattern. 

 

3.3.3 Decision Tree 

The next step consists on checking which algebraic equivalence rule to unnest the 

query is applicable on the normalized AST. To do this, it is used a decision tree, which 

analyzes aspects of the query like the type of selection predicate and variable 

dependencies between the inner and outer query. For each query nesting class, there is a 

correspondent decision tree. This is the reason for recognizing the algebraic pattern in 

the previous step.  

To exemplify this process, it will be considered the existential quantifier unnesting. 

Figure 3.6 shows the decision tree to unnest this kind of query.  
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Figure 3.6: Decision tree to unnest existential quantifiers. 

 

The first aspect to be checked is whether the evaluation of the inner (e₂) query is 

variable dependent on the outer (e₁) evaluation. This is done by verifying if the set of 

free variables in e₂ (i.e., references in e₂ which are not bound, and thus the value must 

be provided by the outside) and the set of bound variables (context coming from e₁) 

have any elements in common. If so, this means that it is not possible to unnest, and the 

only optimization to do is the elimination of duplicates, obtained applying Equivalence 

1. If not, the next aspect to check is the Selection predicate (the p from the algebraic 

pattern). If it does not correlate variables of e₁ and e₂, it is not possible to use any kind 

of join to unnest the query, and thus we apply the Equivalence 2, which is based on a 

Cartesian Product. Although, if it does correlate them, we verify how the correlation is 

done. It is important to note that the predicate can be rearranged to find a better 

unnesting equivalence. If there is a comparison by equality between variables of e₁ e e₂, 

we can apply the Equivalence 3, which is based on Semi-join. If there is a comparison 

with “higher than” or “less than” operator between them, we can instead use an 

aggregation function to unnest the query. The idea of this unnesting is that it is possible 

to get the correct boolean value of the query with only the minimal or maximal value 

coming from e₂. Considering the algebraic pattern, given by the expression 

σ∃x∈(σA₁θA₂(e₂)):p(e₁), where θ ∈ {<, ≤, >, ≥}, A₁ and A₂ are variables 
respectively coming from e₁ and e₂, 

it is reasonable to define that tuples from e₁ satisfies the existential quantification 

predicate if A₁ is in the range [min(A₂), +∞) or (-∞, max(A₂)], according to θ. And 
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finally, if the correlation is done without any of the comparison types commented 

above, we can only apply the Equivalence 5, which is based on Theta-join. To illustrate 

the application of these equivalences, it is shown below examples of queries that would 

fall into each type. 

 

QUERY FOR EQUIVALENCE 1: 

let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation 

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation 

for $i in $feb2014 

where some $j  

in $aug2014[person-group/name/surname=$i/person-group/name/surname] 

satisfies $i/year gt $j/year 
return <result> { $i/person-group/name/surname, $i/year } </result> 
 

QUERY FOR EQUIVALENCE 2: 

let $users := doc("users.xml")//usertuple 

let $items:= doc("items.xml")//itemtuple 

let $bids:= doc("bids.xml")//bidtuple 

for $i in $users 

where some $j in $items 

satisfies some $k in $bids 

satisfies ($i/userid eq $k/userid and $j/itemno eq $k/itemno) 

return $u/name 

 

QUERY FOR EQUIVALENCE 3: 
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation 

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation 

for $i in $feb2014 

let $ipsn := $i/person-group/name/surname 

let $iy := $i/year 

   where some $j in $aug2014 satisfies 

   let $jpsn := $j/person-group/name/surname 

   let $jy := $j/year 

       return $ipsn = $jpsn and $iy eq $jy 

return $i 

 

QUERY FOR EQUIVALENCE 4: 
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where some $j in $hamletSpeeches satisfies count($i/LINE) gt count($j/LINE) 

return $i/LINE 
 

QUERY FOR EQUIVALENCE 5: 

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where some $j in $hamletSpeeches satisfies contains($i/LINE, $j/LINE) 

return $i/LINE 
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3.3.4 AST Rewriting 

Once it is known the equivalence rule to be applied, we map this algebraic 

equivalence to a determined rewrite on the AST. This is done by inserting operators of 

Brackit that correspond to the algebraic expression and restructuring the AST, 

according to the equivalence. The best unnesting levels are obtained with rewrites based 

on equivalences 3, 4 and 5. To illustrate the application of the equivalences, it will be 

considered the generic ASTs. 

In the first equivalence, taking into account that the query actually cannot be 

unnested, it is only added a Count operator to the AST, just before the variable binding 

of the e₂ (the x from the algebraic pattern). This operator – introduced in Chapter 2, 

where some operators employed to optimize queries were described – is a data 

programming language operator that enumerates a relation and attaches to each tuple its 

position in the input relation (Bächle 2013). The basic idea of adding this operator is to 

eliminate duplicates. However, depending on the nesting structure, if it includes other 

nestings, it may also a significant performance gain by avoiding unnecessary 

recomputations. Moreover, it can be used on further optimizations that explore 

parallelism. Figure 3.7 shows the algebraic equivalence and the respective AST 

rewriting in Brackit. 

 

Figure 3.7: AST Rewriting using Equivalence 1, adding Count operator. 

 

The Equivalence 2 is based on a Cartesian product. Figure 3.8 illustrates it. Firstly, it 

is added a Count operator for the tuples coming from e₁ in the same way as done in the 

first rewriting, which provides the same benefits. Then, it is made a Cartesian product of 

the tuples coming from e₂ (whose values are bound to the variable ‘x’) and e₁ (which 

includes the binding of the variable ‘y’), followed by the filtering according to the 

selection predicate. Finally, it returns only the values generated in e₁. 
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Figure 3.8: AST Rewriting using Equivalence 2, based on Cartesian product. 

 

 

 

Figure 3.9: AST Rewriting using Equivalence 3, based on Semi-join. 
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The significant performance improvements with unnesting rewrites begin here, with 

the rewrite based on Equivalence 3. It basically adds an iteration over e₂ and a Semi-

join operator. The Semi-join filters the tuples in accordance with the equality 

comparison, selecting also by the rest of the predicate. Figure 3.9 illustrates that. 

The best optimization result is got with the Equivalence 4, due to the fact that it is 

necessary only one value from e₂ to be compared to the values from e₁. This value is 

obtained with the respective aggregation function after iterating over e₂ and filtering 

with the rest of the predicate. The aggregation function to be used is defined by θ, 

according to Table 3.2. In the example given by Figure 3.10, θ is a “greater than”. Thus, 

the aggregation function to use in the unnested AST is a min function. If no tuples come 

to the aggregation function (e.g., e₂ is empty), the aggregation variable must be assigned 

in the LetBind as +∞ or -∞, depending on θ. 

 

 

Figure 3.10: AST Rewriting using Equivalence 4, based on the comparison to the 

result of the aggregation function. 

 

The last rewrite possibility is based on Equivalence 5, which uses Theta-join. As 

illustrated by Figure 3.11, it is added a Count operator (in the same way of the first two 

rewrites) that controls any change on variable ‘y’, bound inside e₁. Then, it is made a 

Theta-join between the values coming from e₁ and the iteration over e₂, where θ=p. 

Finally, it is returned the selected values from e₁, eliminating duplicates. As one may 

notice, it was presented two algebraic unnesting equivalences. The second one, which 
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the rewrite is based on, is a simplified version of the original equivalence, and was 

created here due to being easier to express with Brackit operators. 

 

θ agg agg(∅) 

>, ≥ min +∞ 

<, ≤ max -∞ 

 

Table 3.2: Defining aggregation function to use and the aggregation value in empty 

case, according to θ. 

 

 

Figure 3.11: AST Rewriting using Equivalence 5, based on Theta-join. 

 

3.4 Chapter Remarks 

The purpose of this chapter was to explain how unnesting was developed inside 

Brackit’s optimizer, whose importance was described in the introduction and – 

specifically for Brackit – in Chapter 2. At first, it was introduced the origin of the 

algebraic unnesting strategies, explaining how to bring queries to an algebraic level 

towards query unnesting throw equivalence rules. 
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The second topic covered in this chapter was the advantages and issues of importing 

those unnesting strategies to Brackit, discussing which strategies would be applied and 

the reasons for applying them. Finally, it was presented the algebraic rewriter, which 

implements the unnesting strategies via rewrites on the AST generated from the query 

during the compilation process. It was detailed the four steps of this process, focusing 

the last one, where the algebraic equivalences are employed to apply the unnesting 

rewrites, whose performance improvements are analyzed in next chapter. 
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4 EXPERIMENTAL EVALUATION  

 

The goal of this chapter is to evaluate the performance gains that the unnesting 

rewrites developed for the Brackit optimizer – presented on Chapter 3, based on 

application of algebraic equivalence rules – can provide to the evaluation of queries in 

Brackit. The trouble is that, as commented in the second topic of Chapter 3, the bottom-

up compiler version of Brackit still has several points to be fixed in order to be 

evaluable. Bearing that in mind, the way found to check the evaluation improvement 

acquired by such optimization strategies was to simulate the unnesting rewrites using 

XQuery expressions presented in Chapter 2, applying them directly in queries and 

running them on an XQuery software.  

 

4.1 Experiment Environment 

The chosen XML database for XQuery processing evaluation was the eXistDB¹, a 

native open source XML database, with support to XQuery and cross-platform. This 

choice was made due to its popularity, large documentation, user-friendly IDE (eXide) 

and good fulfillment of our needs, including the possibility of using on any platform and 

satisfactory response times, without caring about transaction processing, since it has 

nothing to do with our tests. It was decided to use another engine instead of Brackit to 

execute our experiments because Brackit is currently not receiving support, then 

eventual trouble using it would require an extra unnecessary work since it would be 

done only for simulation purposes. 

After some preliminary tests, it was noticed a certain irregularity on the response 

times given by the engine, even reducing to a minimal number of concurrent processes 

on the CPU, supposedly caused eventual I/O usage of those processes and indexing, 

beyond the unknown (non-documented) cache usage. It was also noticed a tendency of 

the first run of each query to be the slowest one, probably caused by caching. All the 

tests were made in an Intel® Core™ i7 CPU. The operational system is Windows 7 

Professional, 64 bits.  

 

4.2 Evaluated Queries 

For this experimental evaluation, it has been used four XML documents as the 

database. Two of them are catalogs of chemistry publications² from 2014 and 2011. 

__________________________________________ 

¹: http://exist-db.org/exist/apps/doc/documentation.xml 

²:ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/articles.A-B.tar.gz and ftp://ftp.ncbi.nlm.nih.gov/pub/pmc/articles.C-

H.tar.gz 
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The other two native from eXistDB: documents with full Shakespeare’s plays (Hamlet, 

Romeo and Juliet). Figure 4.1 shows the data model of these documents. Figure 4.2 

shows the data model of the catalogs (Query 2 uses catalogs with citation attributes 

named “mixed-citation” instead of “element-citation”). The database of publications  is 

small, with hundreds of citation elements. The database of Shakespeare’s scenes, 

speeches and lines is a little bigger, with more than a thousand of speeches. 

 

<ACT> 
 <TITLE>Title</TITLE> 

 <SCENE> 
             <TITLE>Title</TITLE> 

             <STAGEDIR>Stagedir</STAGEDIR> 

             <SPEECH> 
                 <SPEAKER>Speaker</SPEAKER> 

                 <LINE>Line</LINE> 

<LINE>...</LINE> 

            </SPEECH> 

  <SPEECH> 
                 ... 

            </SPEECH> 

 </SCENE> 

 <SCENE> 
            ... 

 </SCENE> 

</ACT> 

 

Figure 4.1: Data model of Shakespeare’s plays. 

 

 

<element-citation> 
<person-group> 

<name> 
<surname>Surname</surname> 
<given-names>GN</given-names> 

</name> 
<name> 
 ... 
</name> 

</person-group> 
<article-title>Article Title</article-title> 
<source>Source</source> 
<year>Year</year> 
<volume>Volume</volume> 
<fpage>FPage</fpage> 
<lpage>LPage</lpage> 
<pub-id>Pid</pub-id> 

</element-citation> 
 

Figure 4.2: Data model of publication catalogs.  
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To simulate the performance gain that would be obtained in Brackit with the 

unnesting strategies, it is presented below a set of queries with existential quantifier 

nesting, followed by an equivalent query without the nesting. The unnested queries 

were obtained using expressions in XQuery that simulate the equivalence rules 

presented in Chapter 3. For instance, to simulate the application of Equivalence 3 of the 

unnesting decision tree, it was used path and filter expressions, which corresponds to a 

Semi-join operation (as explained in Section 2.1). That was the case of Query 1 and 

Query 5. It was also possible to simulate Equivalence 4 because it is based on simple 

expressions and does not use any operator inexistent in XQuery. That was the case of 

Query 2 and Query 3. Query 4 simulates the application of Equivalence 5. 

 

QUERY 1: NESTED 
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//speech 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where some $j in $hamletSpeeches satisfies $i/LINE = $j/LINE 

return $i/LINE 
 

QUERY 1: UNNESTED 

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH[LINE = 

$hamletSpeeches/LINE] 
return $i/LINE 
 

QUERY 2: NESTED 

let $mar2014 := doc('/db/apps/demo/data/nano_2014_mar.xml')//mixed-citation 

let $feb2011 := doc('/db/apps/demo/data/nano_2011_feb.xml')//mixed-citation 

for $i in $mar2014 

   where some $j in $feb2011 satisfies 

   $i/year lt $j/year and $j/volume > 10 

return $i 

 
QUERY 2: UNNESTED 

let $mar2014 := doc('/db/apps/demo/data/nano_2014_mar.xml')//mixed-citation 

let $feb2011 := doc('/db/apps/demo/data/nano_2011_feb.xml')//mixed-citation 

let $febYear := 

   for $j in $feb2011 

   where $j/volume > 10 

   return $j/year 

for $i in $mar2014 

   where $i/year < max($febYear)  

return $i 
 

QUERY 3: NESTED 
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where some $j in $hamletSpeeches satisfies count($i/LINE) gt count($j/LINE) 

return $i/LINE 
 
QUERY 3: UNNESTED 
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 
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let $countHamletSpeeches := 

   for $i in $hamletSpeeches 

   return count($i/LINE)   

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where count($i/LINE) gt min($countHamletSpeeches) 

return $i/LINE 

 

QUERY 4: NESTED 
let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH 

where some $j in $hamletSpeeches satisfies contains($i/LINE, $j/LINE) 

return $i/LINE 
 

QUERY 4: UNNESTED 

let $hamletSpeeches := doc('/db/apps/demo/data/hamlet.xml')//SPEECH 

for $i in doc('/db/apps/demo/data/r_and_j.xml')//SPEECH[contains(LINE, 

$hamletSpeeches/LINE)] 
return $i/LINE 
 

QUERY 5: NESTED 
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation 

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation 

for $i in $feb2014 

let $ipsn := $i/person-group/name/surname 

let $iy := $i/year 

   where some $j in $aug2014 satisfies 

   let $jpsn := $j/person-group/name/surname 

   let $jy := $j/year 

       return $ipsn = $jpsn and $iy eq $jy 

return $i 
 

QUERY 5: UNNESTED 
let $aug2014 := doc('/db/apps/demo/data/drugs_2014_aug.xml')//element-citation 

let $feb2014 := doc('/db/apps/demo/data/drugs_2014_feb.xml')//element-citation 

let $aug2014psn := $aug2014/person-group/name/surname 

let $feb2014_2 := $feb2014[person-group/name/surname = $aug2014psn] 

for $i in $feb2014_2 

   let $iy := $i/year 

   let $ipsn := $i/person-group/name/surname 

   for $j in $aug2014 

       let $jy := $j/year 

       let $jpsn := $j/person-group/name/surname 

       where $iy eq $jy and $ipsn = $jpsn 

return $i 

 

4.3 Experiments Results 

The focus of our experiments is to provide a notion of how improved would be the 

performance of query evaluation on Brackit if its bottom-up version was able to be 
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used, so that the query would pass by the optimizer’s algebraic rewrite steps. The 

performance improvement reflection obtained with these experiments might be 

considered minimalist, because database operations, such as Semi-join and Join, when 

implemented physically, can be implemented with optimized algorithms, such as bloom 

filters (bloom filter is a structure that uses hash functions to reduce the amount of 

transferred data).  

Given the low regularity of the running time of queries in using eXide, it has been 

performed, for each query, 5 runs. In most cases, the first run was the lowest one, 

increasing the average running time. We considered relevant to keep this value in the 

measurement to reflect a realistic scenario. In all queries, it is evaluated the performance 

gain of unnesting existential quantifiers, which is the focus of our initial version of 

optimization using the algebraic rewriter.  

The first query is a search for lines from speeches in “Romeo and Juliet” that 

contains a line equal to a line from Hamlet’s speeches. In the nested version of the 

query, the selection predicate enables unnesting with Equivalence 3 from the decision 

tree of existential quantifiers. The nested version of this query has run in an average 

time of 189.2128s while running the unnested version, the average response time was 

149.8846s, as shown in Figure 4.3. The query unnesting provided a reduction of 20% on 

the response time. 

 

Figure 4.3: Response time comparison of the two versions of Query 1. 

 

The second query returns citations from one catalog that are older (according to the 

year) than citations whose volume is higher than 10 from the other catalog. In the nested 

version of the query, the selection predicate enables unnesting with Equivalence 4 from 

the decision tree of existential quantifiers. The nested version of this query has run in an 

average time of 0.5868s while running the unnested version, the average response time 

was 0.1146s, as shown in Figure 4.4. The query unnesting provided a reduction of 80% 

on the response time. 

The third query gets the lines from speeches of “Romeo and Juliet” whose speech is 

longer (in terms of number of lines) than Hamlet’s speeches. In the nested version of the 

query, the selection predicate enables unnesting with Equivalence 4 from the decision 

tree of existential quantifiers. The nested version of this query has run in an average 

time of 19.704s while running the unnested version, the average response time was 

0.8652s, as shown in Figure 4.5. The query unnesting provided a reduction of 96% on 

the response time. 



 

 

46 

 

 

 

Figure 4.4: Response time comparison of the two versions of Query 2. 

 

Figure 4.5: Response time comparison of the two versions of Query 3. 

 

The fourth query gets the lines from speeches of “Romeo and Juliet” whose speech 

contains any Hamlet’s line. In the nested version of the query, the selection predicate 

enables unnesting with Equivalence 5 from the decision tree of existential quantifiers. 

The nested version of this query has run in an average time of 171.563s while running 

the unnested version, the average response time was 134.0466s, as shown in Figure 4.6. 

The query unnesting provided a reduction of 23% on the response time. 

 

Figure 4.6: Response time comparison of the two versions of Query 4. 

 



 

 

47 

 

Query 5 searches the citations from one catalog having the same surname and year 

of any citation in the second catalog. In the nested version of the query, the selection 

predicate enables unnesting with Equivalence 3 from the decision tree of existential 

quantifiers, doing initially a Semi-join on publications’ surnames and reducing the 

amount of data. The nested version of this query has run in an average time of 8.6838s 

while running the unnested version, the average response time was 4.0992s, as shown in 

Figure 4.7. The query unnesting provided a reduction of 51% on the response time. 

 

 

Figure 4.7: Response time comparison of the two versions of Query 5. 

 

 

Figure 4.8: Nested and unnested queries’ running time comparison. 

 

4.4 Results Analysis 

Figure 4.8 presents a comparison of running times between the nested and unnested 

query versions, measured in seconds. To make visible the evaluation result of the 

second query in the chart, it is used a logarithmic scale. The percentage performance 
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gain is illustrated by Figure 4.9. It is possible to note that the best results were obtained 

with Equivalence 4. This result was actually a bit obvious since using existential 

quantifiers on that kind of queries is absolutely not intelligent. The reason of that big 

difference is that using the Equivalence 4, the unnested query gets a lower level of 

complexity (it becomes Ο(n)). The other queries, optimized using Semi-joins and Joins, 

obtained smaller, but significant, performance gains. It is important to remember that, as 

commented previously, operators can be implemented to access data physically with 

different optimized algorithms, which would result in even shorter evaluation times. 

Furthermore, we must take into account that the experimental databases are small, and 

bigger ones might provide stronger differences between the nested and unnested 

versions. And last, but no least, it is important to ponder that we are using a centralized 

database, and unnesting strategies are known to present even better results when applied 

in a distributed environment. 

 

 

Figure 4.9: Percentage performance gains. 

 

All those facts enable us to consider the unnesting strategy using algebraic 

equivalence rules not only applicable in Brackit’s optimization pipeline, but also an 

important method to be added to Brackit to decrease the evaluation time of queries. 

Although it was only analyzed the existential quantifier case, the experimental results 

are enough to highlight the relevance of the algebraic rewriter as a part of the Brackit 

optimizer restructuring, encouraging the completion of these ideas to this open-source 

XQuery engine.  
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5 CONCLUSION  

 

Despite the unstoppable increase of processing power technologically available, 

performance care is, and will still be, necessary, given that databases and real-time 

computing also grow. After studying some strategies to perform unnesting – which is 

known to be an important method to optimize queries on databases –, including one 

specific for XML databases based on algebra, we decided to adapt some of these ideas 

to Brackit, our XQuery engine. In Brackit, most part of query compilation is based on 

manipulation of trees that represents in an abstract form (ASTs). Implementing those 

strategies on Brackit consists in an important step to restructure Brackit’s optimizer 

because this brings the optimization development to a higher level, decreasing the AST 

rewriting complexity and heavy code legacy of the currently stable version. 

This work presented how we adapted an unnesting strategy based on algebraic 

equivalence rules to Brackit through AST rewrites, inserting operators that manipulate 

data physically and modifying the structure of the tree. This strategy includes several 

steps to prepare the AST to be manipulated, to verify the nesting particulars, and to 

define which equivalence rule must be applied to rewrite the AST. As a first work, we 

focused on the implementation of unnesting existential quantifier expressions. 

The results obtained running the experimental queries, where we used native 

operators of XQuery to simulate the equivalence applied on Brackit, confirmed that 

even queries on small and centralized databases can be significantly improved removing 

naïve nestings. Moreover, the performance gain provided by unnesting would be higher 

than the simulated results if it were used specific operators to perform joins and semi-

joins because they can be implemented to access with optimized algorithms. 

The experimental results motivate us to resume the development in Brackit and to 

continue this work on query unnesting. The work for the future includes implementing 

the remaining physical operators necessary to apply the algebraic equivalences and also 

the remaining nesting cases: universal quantifiers and implicit grouping. 
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3.1 Citação Indireta 

 

 A citação indireta ou livre (paráfrase) é aquela citação na qual se expressa o 

pensamento de outra pessoa com nossas próprias palavras. Após fazer a citação, deve-se 

indicar o nome do autor em letras minúsculas se estiver no corpo do texto, e com letras 

maiúsculas se estiver dentro dos parênteses, juntamente com o ano da publicação da obra em 

que se encontra a ideia referida. Não são indicadas páginas já que a ideia pode estar resumida  

Havendo supressão de trechos no texto citado, faz-se a indicação com reticências entre 

colchetes, denominadas elipses [...]: "Na comunicação diária, aquela comunicação que 

utilizamos no dia-a-dia, além da referencialidade da linguagem [...] há pinceladas de função 

conativa [...]" (CHALHUB , 1991, p. 37). 

Em relação à citação de uma citação, é a reprodução de uma informação já citada por 

outro autor e, por sua vez, utiliza-se somente na impossibilidade de consultar o documento 

original. No texto, deve ser citado o sobrenome do autor do documento não consultado, 

seguido da expressão apud, e o nome do autor do documento consultado. Em nota de rodapé 

devem ser mencionados os dados do documento original. Na lista de referências 

bibliográficas, incluir o documento efetivamente consultado. Outra opção é incluir as duas 

referências dos documentos na lista de referências do trabalho; neste caso, não se inclui nota  

4 CONCLUSÃO 

 

Apresentar conclusão do trabalho xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx 

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
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