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ABSTRACT

In this thesis, we translated a state-of-the-art object detector (the Dóllar method) to the C++ pro-

gramming language and explored ways to use camera calibration to improve its performance by

reducing the amount of calculations necessary and to improve the results by taking away false

positives. We developed these techniques in the context of pedestrian detection.

On data sets more aligned with video surveillance applications (the camera is high in relation to

the ground and far from the area where objects are expected to be), we had great results across

the board: the amount of scales in the feature pyramid is reduced by about half, the amount of

times the classifier is applied is greatly reduced together with the number of false detections, all

while keeping the loss in detection coverage manageable.

We also tested our detector in one data set that closely resembles the use of detection in robotics

or self-driving systems for automobiles (camera closer to the ground plane and parallel to it).

The results suggest the method needs adjustments to be applied to this type of setting. Although

there was no loss in detection quality and both the number of scales in the feature pyramid and

the number of false positives were reduced, the amount of classifier applications seems ex-

cessive. To avoid this problem, we need to adjust the Dense Detection phase of our method

(subsection 3.2.2) to account for the fact that images created by these camera settings have a

bigger range of possible pedestrian heights and more portions of the image are plausible to pro-

vide detections.

Keywords: Computer Vision. Pedestrian Detection.
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1 INTRODUCTION

Pedestrian detection is a particular case of the object detection problem, which is a very

active research topic in recent years. It has applications in the fields of robotics, video surveil-

lance and automobile safety and self-driving systems, to name a few. Since it gathered so much

attention, this field (together with face detection) has been the main source of innovation in ob-

ject detection (SZELISKI, 2010; BENENSON et al., 2014; DOLLÁR; BELONGIE; PERONA,

2010). As such, a variety of methods have been developed in this field with the intention of

being applied to any other type of object, those are generic methods. These methods face chal-

lenges such as occlusion, high computation cost and false positives among the detections. If

we intend to get the best results while detecting specifically pedestrians we can make use of as-

sumptions about the scene geometry and object pose to reduce the influence of such difficulties,

improving the detection quality and the performance of the detector.

Our work here aims to improve existing detectors using a calibrated camera and in-

formation about the dimensions of the targeted object in the world coordinate system. Since

we assume the target object has its base on the ground plane and has a perpendicular posture

in relation to it, we focus on pedestrian detection. Our method reduces the range of window

sizes evaluated by the classifier, applies detection only in parts of the source image where it

is plausible that a detection might occur based on the geometry of the scene and, later, tweaks

the detection suppression step to avoid multiple detections of the same pedestrian while also

avoiding the loss of legitimate detections.

The detector we chose to base our methods in is the one described in the paper named

The Fastest Pedestrian Detector in the West (DOLLÁR; BELONGIE; PERONA, 2010). It

provides us good detection quality, performance comparable to the state of the art and an easily

available source code in the Matlab programming language. Note that the methods described

here can be applied to any pedestrian detector provided we have access to the classifier itself,

including any procedure it applies to the source image, and information about the camera. This

work was also briefly tested in an automobile detector with good results, although that will not

be explored here.

In chapter 2, we present some of the theory behind pedestrian detection and camera

calibration. Next, we describe our method (chapter 3) and document some of the results found

(chapter 4). In chapter 5, we draw conclusions about our findings.
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2 FUNDAMENTALS AND RELATED WORK

In this chapter, we explain some of the building blocks required by our method. Section

2.1 focuses on pedestrian detection, while section 2.2 describes the operations we are able to

make when we have a calibrated camera. We also give an overview of how to get the projection

matrix of a camera in section 2.3.

Most of this chapter’s content can also be found on Computer Vision: Algorithms and

Applications (SZELISKI, 2010), it is a very complete textbook for computer vision courses. For

a review of the state-of-the-art in object detection, we recommend the Ten Years of Pedestrian

Detection, What Have We Learned? survey (BENENSON et al., 2014).

2.1 Pedestrian Detection

The pedestrian detection problem is a specific case of the object detection problem.

Like the general case, it is usually solved by reducing it to multiple applications of the object

classification problem (classifying an image as belonging to the target class or not). This is

done by applying the trained classifier to different patches of the source image.

To detect pedestrians of different heights and positions, these patches tend to cover all

portions of the image and to vary in dimensions (scale) by quite a lot. The process of applying a

classifier to all of these patches in the source image is what is called sliding window detection.

Sliding window detectors are very common and show great results for generic images,

but even good ones usually present two flaws that we try to reduce by using camera calibration:

high computation cost and false detections. This is because the classifier is applied to windows

covering the whole image in all of the chosen scales and lots of these applications might prove

to be useless or, even, hurtful to the overall quality of the detections. In the case of objects that

don’t vary too much in real world dimensions, we might test and even detect candidates that

would have unrealistic dimensions. We saw it happen in several tests of classifiers throughout

the development of this work (as exemplified by figure 2.1).

The two most common approaches used in sliding window detectors are the ones that

use an image pyramid (subsection 2.1.1) and the ones that use a classifier pyramid (subsection

2.1.2). The previously mentioned Dóllar method (subsection 2.1.3) is a hybrid of both. Figure

2.2 shows a side-by-side comparison of the three.
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Figure 2.1: Common Detection Problems

This image is the result of applying the original The Fastest Pedestrian Detector in the West
code to a frame in the PETS 2009 data set (chapter 4). Detection 1 is an example of a detection
that is too tall in real-world coordinates, detection 2 is an example of a detection being too short
in real-world coordinates. The figure also contains several instances of multiple detections of a
single pedestrian.

2.1.1 Image Pyramid Detectors

Patches have fixed dimensions, but are retrieved from different scales of the source im-

age. This is the traditional approach, where a densely sampled image pyramid is created, then

features are extracted from each of the pyramid’s images. These features are, later, analyzed by

a sliding window classifier. This approach (used in (DALAL; TRIGGS, 2005)) results in great

detection quality, but the creation of such image pyramid has immense computational cost.

2.1.2 Classifier Pyramid Detectors

Patches change dimensions and the source image is used only in its original dimensions.

The features extracted from the source image can be easily rescaled and are easy to compute so
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Figure 2.2: Detector Types

This figure was taken from the paper which describes The Fastest Detector in the West (DOL-
LÁR; BELONGIE; PERONA, 2010). In (a), the features are extracted from all scales; in (b),
scale-invariant features are extracted from one scale and upsampled/downsampled for all others;
in (c), the features are extracted from some scales and upsampled/downsampled for the scales
close to the ones from which features were extracted.

there is no need to create an image pyramid. This approach was first explored by P. Viola and

M. Jones in the context of face detection (VIOLA; JONES, 2001). This method provides fast

multi-scale detection, but most of the useful image features for object detection cannot not be

used in it (because they are not scale-invariant), limiting its applications.

2.1.3 The Fastest Pedestrian Detector in the West

The Dóllar detector combines the two previous approaches by calculating image features

in a sparsely sampled image pyramid and approximating these features for all of the other scales

of the feature pyramid.

What makes this approach work is the fact that it is possible to get accurate results for

approximations of a great number of possible image features used in object detection (including

the widely popular histograms of oriented gradients (DALAL; TRIGGS, 2005)), provided the

source for the approximation is in a scale that is sufficiently close.

Extracting features from the octaves of the source image and approximating all other

scales from those features makes this method orders of magnitude faster than the ones that

use dense image pyramids and, according to the source paper, only sacrifices about one to two

percent of detection quality. This is the main reason we chose this detector as a base for our

work, we seek to combine good performance both in terms of detection quality and in terms of

computational cost.



11

2.2 Perspective Camera Model

The perspective camera model projects 3D scenes into an image plane. The light rays

captured by the lens pass through an aperture and meet on a single point inside the camera, the

center of projection, causing a perspective (projective) transformation. This is the most used

camera model in computer graphics and in computer vision because it closely relates to the

human eye, where the lens would be the cornea, the center of projection would be the retina and

the aperture would be the pupil.

2.2.1 The Projection Matrix

The distance between the center of projection and the image plane along the principal

axis is the focal length f . The point where the principal axis collides with the image plane is

called the principal point (u0, v0).

If the sensor is not perpendicular to the optical axis, the camera has a skew s. The image

might also be scaled along both the x and the y axes, so we can represent the focal length as

the tuple (fx, fy) to cover that possibility. These are the camera’s intrinsic parameters and are

commonly represented by the calibration matrix K.

K =


fx s u0

0 fy v0

0 0 1

 (2.1)

The calibration matrix represents the camera’s geometric and optical properties, to rep-

resent its orientation in the world we use a rotation matrix R and a translation vector t. The

translation vector is the position of the world coordinate system’s origin in camera coordinates

and the rotation matrix holds the transformation necessary to align the axes of the two coordi-

nate systems. The camera’s extrinsic matrix is a 3x4 transformation matrix that holds R and

t.

[R|t] =


R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

 (2.2)

Now, we have all the necessary information to represent the translation of points in the
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world into points in the image applying the following equation:


u′

v′

w

 = K[R|t]


x

y

z

1

 =


fx s u0

0 fy v0

0 0 1



R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3



x

y

z

1

 , (2.3)

where (u′, v′, w) is the resulting point in the image coordinate system and (x, y, z, 1) is the

source point in the world coordinate system, both are represented in homogeneous coordinates

to simplify matrix calculations. In this representation, a coordinate is added to the points, so we

extract the real image coordinates by dividing the first two coordinates by the last one:u
v

 =

u′/w
v′/w

 (2.4)

making (u, v) the recovered point in the image coordinate system.

The product between the intrinsic and extrinsic matrices of a camera (shown in equation

2.3) is its projection (or camera) matrix P = K[R|t] . The access to it is what we allude to

when we talk about a calibrated camera in the context of computer vision. Also in equation

2.3, it is possible to know the location of a pixel in the world coordinate system if we set it to a

plane. For the purpose of our work here, we want to know the location of pedestrians, assuming

their feet are on the ground plane (z = 0), therefore we often calculate the position of image

points in the ground plane using the following equation:


u

v

1

 =


P11 P12 P13 P14

P21 P22 P23 P24

P31 P32 P33 P34



x′

y′

0

w

 , (2.5)

where (u, v, 1) are the known pixel coordinates of the image point in question, in homogeneous

coordinates; (x, y, 0, w) will be the resulting point in the ground plane; and P is the camera’s

projection matrix. Since we know the resulting point has coordinate z = 0, we can suppress the

third column of P and the third coordinate of the point in the world coordinate system. We end
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up with 
u

v

1

 =


P11 P12 P14

P21 P22 P24

P31 P32 P34



x′

y′

w

 = H


x′

y′

w

 , (2.6)

where H is the 3x3 homography matrix of the ground plane. The advantage of using this matrix

is that it is invertible, so we can find the location of an image point in the ground plane with

reduced computational cost using


x′

y′

w

 = H−1


u

v

1

 , (2.7)

with x = x′/w, y = y′/w and z = 0.

We can also calculate the world height of a bounding box by choosing a point in its top

line (u, vt) and a point in its bottom line (u, vb). Assuming that the bottom point lies on the

ground plane, its world coordinates (x, y, 0) can be obtained using equation 2.7. For a person

with height hw assumed to be standing, equation 2.3 can be used to project the head point

(x, y, hw) back into image coordinates. Comparing the vertical coordinate of this point to vt

and solving for hw leads to

hw = −(vb − vt)/(P23(H
−1
31 u+H−132 vb +H−133 )− P33vt(H

−1
31 u+H−132 vb +H−133 )), (2.8)

where hw is the resulting world coordinate system height of the bounding box, P is the projec-

tion matrix of the camera and H−1 is the inverse of the homography matrix derived from the

projection matrix.

2.3 Camera Calibration

In the last section, we showed what we are able to do once we have a calibrated camera.

Here, we will briefly explore how to obtain the camera’s projection matrix.

Pose estimation (also called extrinsic calibration) is the traditional approach to camera

calibration. It requires a set correspondences between points in the image and their known

locations in the world. The projection matrix can be estimated by solving a system of linear
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equations knowing from equation 2.3 that

ui =
P11xi + P12yi + P13zi + P14

P31xi + P32yi + P33zi + P34

(2.9)

and

vi =
P21xi + P22yi + P23zi + P24

P31xi + P32yi + P33zi + P34

, (2.10)

where (ui, vi) are the pixel coordinates of point i, (xi, yi, zi) are its coordinates in the world

and P is the projection matrix to be estimated. At least six correspondences are necessary to

compute all of the unknowns in P , using the direct linear transform algorithm (SUTHERLAND,

1974).

It is also possible to first obtain the camera’s intrinsic matrix K to, then, estimate its pose

in the world. In this case, the amount of necessary 2D to 3D correspondences falls to three.

This intrinsic calibration can be achieved with the use of patterns with known dimen-

sions or (in the case where we have prior knowledge of objects in the scene) the image’s van-

ishing points.
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3 THE METHOD

In sections 3.1 through 3.4, we present our method. Figure 3.1 shows resulting images

of each step of the method. They were generated on the first frame of the PETS 2009 data set

(chapter 4), with a 2.0 resize factor (making the image twice the size of the original).

3.1 Selecting the Scales

The Dóllar method chooses the scales to which apply the classifier using the dimensions

of the source image and of the windows expected by the classifier and a parameter that deter-

mines the smallest possible image. Depending on the nature of the source image and the param-

eters provided, this might result in several unnecessary scales being calculated/approximated

and causes many applications of the classifier on windows which would contain objects with

unrealistic real world dimensions (a pedestrian standing 7m tall, for example).

To prevent this, we factor in the provided camera projection matrix in this decision.

First, we assume the source image (after applying the requested resize, which is also provided

as a parameter) is the biggest image we will deal with; this and the fact that the image patches

provided to the classifier have fixed dimensions make it so that in the first scale we are trying to

detect the smallest possible pedestrians. The next step is to decide how much we need to shrink

the current image in order for the classifier windows to be able to contain the tallest possible

object (in the real world) in all parts of the image. That will be the last (and smallest) scale we

deem necessary for detection.

The process works by assuming the camera is in an upright position (the ground plane

is in the bottom), which makes it so the tallest possible objects (in pixels) are in the bottom of

the image. Next, we find the biggest necessary bounding box in each of the bottom corners of

the image by starting with the smallest possible (with the dimensions of the windows that will

be analyzed by the classifier later) and gradually increasing its pixel height until its real-world

height is bigger or equal to the maximum object height in the world coordinate system. We,

then, choose the biggest of the two resulting values and the smallest necessary scale becomes

the ratio between the height of the classifier window and it.

Knowing the smallest necessary scale of the source image we will use, we calculate all

octaves between it and 1.0 (the biggest scale), where the octaves are the components of a set

ordered from biggest to smallest in which the images are half the size of the previous element

and double the size of the next one. The scales in-between octaves are approximated and the
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ratio between their dimensions and those of the source image is decided by using the detector

model parameter that describes how many scales should exist between two octaves. This way,

the distance between scales is the distance between the previous and next octave, divided by the

number of scales between octaves plus one.

As an example, consider the following scenario:

• The maximum object height in the world coordinate system should be 2.0m;

• The classifier expects images with 50 pixels of width and 100 pixels of height (h0);

• The detector expects 3 scales between each pair of octaves, so we have 4 scales per octave;

• We have the camera’s projection matrix (P ), from which we derive its homography matrix

(H);

• On the bottom left corner point a bounding box with 300 pixels of height (hn) would have

2.1m of real-world height and that bounding box is taller (in pixels) than that found using

the same procedure on the right corner.

The smallest necessary scale of the source image that would make a bounding box with

100 pixels of height contain the tallest possible object is

h0/hn = 100/300 = 0.3

and, from that, we know that the two octaves that we will calculate are 1.0 and 0.5 of the

source image dimensions. And the approximated scales will be calculated using the following

formula:

scalei = scalei−1 − (previousOctave− nextOctave)/scalesPerOctave. (3.1)

The resulting scale list (S) is

S = 1.0, 0.875, 0.75, 0.625, 0.5, 0.4375, 0.375, 0.3125.

Note that, in S, 1.0 and 0.5 correspond to the octaves and that the final scale is 0.3125

because the next one would be 0.25 and 0.25 is smaller than our last necessary scale (0.3).

Therefore, smaller scales would not be useful for us in this particular camera setup.
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3.2 Reducing Classifier Applications

Once we have the calibrated image pyramid, we reduce the amount of times the classifier

is used by dividing the detection phase into two steps. The first one, explained in subsection

3.2.1, is called the sparse step and consists of applying the classifier to windows that have

considerably large spacing between each other with the aim of covering all the parts of the

scene which might contain a detectable pedestrian while keeping the candidate patches at a

minimum. The detections found in this step will not be high quality ones, but they serve as

basis for the dense step. The dense step (in subsection 3.2.2) will generate more densely spaced

candidates around the resulting detections from the sparse step. This last step aims to provide

detections with the same quality as a generic method, while keeping the number of classifier

applications low because we only expand regions where there were detections in the previous

step, instead of the whole image.

3.2.1 Sparse Detection

Knowing the dimensions of the smallest possible bounding box (w0, h0), we start the

first line of new candidates at the point (0, h0) of the source image. For every new base point,

we save all the candidate bounding boxes that have height hi such that hi ≥ h0 in the image

coordinate system and height hw that is smaller or equal to the maximum object world height

and bigger or equal to the minimum object world height in the world coordinate system. The

procedure is repeated stepping the base point w0/2 to the right in each line and h0/2 down at

the end of a line; this is done so we guarantee that the candidates would share, at least, half

of their area with adjacent candidates, which gives us good coverage of the image even with a

small number of candidate patches when compared to the generic sliding window method.

Since we assume the same camera for the whole set of images, the sparse candidate

generation step is done only for the first frame of the sequence and the resulting candidates are

stored in order to be used in all other frames.

The classifier is, then, applied to all of those candidate patches. All detections outside

an existing dense candidate region are passed to next step (on the first frame of a sequence, all

detections go through).
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3.2.2 Dense Detection

The detections from the first stage of our classifier are sorted by score in descending

order and all detections that are near a detection with higher score are suppressed. We decide if

a detection is near enough another and needs to be suppressed taking in consideration the fact

that the dense region we will create around a detection has triple the base bounding box’s width

and double its height; so, if two bounding boxes would be inside the same region, we keep the

one with the highest score. We also restrict the dimensions of the dense regions so as to avoid

overlap between them.

After deciding which regions should be created, we generate candidates inside them by

saving all the candidates with valid world and image coordinate systems heights using steps of

one pixel (or the value of the detector model’s shrink factor, which makes the images in the

pyramid smaller to reduce computation cost, when used) for both the x and y coordinates of the

image and apply the classifier to the resulting candidates.

3.3 Two-step Suppression

Just like in the Dóllar method, the resulting detections are then submitted to a non-

maximal suppression step. It works by grouping together all detections that share a overlap

value that’s higher than the threshold provided as a parameter and keeping only the detection

with the highest score in each of those groups.

In our method, though, we submit the results of the first suppression step through an-

other one. This one works by comparing each detection to another one with higher score and

removing all of those that have a overlap ratio that is higher than the ratio between the lower and

the higher classifier score. This takes away false positives that remain after the first suppression

step.

3.4 Dense Region Removal

In the last step of the method, we remove all of the dense candidate regions in which

there are no detections in the current frame. This makes it so we don’t keep dense regions in

which we don’t expect to find target objects in the future.

This step could be adjusted if we took into consideration the frame rate of the source
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Figure 3.1: The Method, Step-by-Step

(a) Source Image (b) Sparse candidates (c) Sparse step detections

(d) Dense regions (e) Dense candidates (f) Detections

(g) Detections after the first
suppression

(h) Detections after the second
suppression

footage. We, in that case, could decide a number of frames that should elapse between appli-

cations of the dense region removal. Other possibility would be to count the amount of frames

where there were no detections inside a region and only remove it when that number becomes

higher than a threshold. In our experience though, this step didn’t cause too much overhead

and, as such, we execute it on every frame.
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4 RESULTS

For testing purposes, we created a generic version of our algorithm (and, thus, call the

method explored in our work here "calibrated" to contrast with it). The generic version follows

the same rules the Dóllar method does when selecting the feature pyramid’s scales, generating

candidate image patches for detection and suppressing detections. The only reason we do not

call it the Dóllar method is because we couldn’t replicate the results in the feature extraction

portion of the algorithm. Our findings, though, are not affected since this situation happens for

both the calibrated and generic methods, making comparisons fair.

The INRIA detector model, provided as part of the Dóllar Matlab toolbox, served as the

classifier for both detector versions in all of the testing process. This classifier expects candidate

patches of 100x41 pixels as input, we decided which "resizes" would be applied to the original

images based on the fact that the classifier works best if we have pedestrians that are not smaller

than that.

The other columns displayed in our Method Comparison tables are:

• Total Scales (Octaves): The amount of scales of the original image (after resizing) in

which features are extracted to form the feature pyramid and the total octaves contained

between those scales. The octaves are the scales for which the features are actually cal-

culated, making those scales much more computationally expensive.

• CApF: Classifier Applications per Frame; represents the amount of candidate patches

evaluated per image in the tested sequence. For the generic method, this number is con-

stant throughout all sequences and exactly the same as the Dóllar method produces. For

our method, the calibrated one, this number is an average since the classifier applications

vary between frames.

• TPR: True Positive Rate; using ground truth data, we calculate the ratio between detected

pedestrians and the total amount of pedestrians in the sequence. We deem a pedestrian to

be detected if there is one detection that has Jaccard Coeficient (JACCARD, 1901) over

0.5 when compared with the bounding box for that pedestrian in the ground truth. The

Jaccard Coeficient is the ratio between the size of the intersection and the size of the union

of two sample sets (S1 and S2, which, in this case, are rectangles in the image):

J =
|S1 ∩ S2|
|S1 ∪ S2|

. (4.1)

• FPpF: False Positives per Frame; serves as complement to the True Positive Rate metric
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since it would be easy to cover all pedestrians if we allow there to be massive amounts of

false positives. The perfect pedestrian detector would have TPR 1 and 0 FPpF and a good

result for a pedestrian is achieved by finding a satisfactory compromise between these

two metrics.

In table 4.1, we document the results found for the PETS 2009 data set (NEVATIA,

2012a) out of which we used a sample of 300 images. We also used a sample of 300 images of

the Town Centre data set (BENFOLD; REID, 2009) to create table 4.3. On the TUD Stadtmitte

(NEVATIA, 2012b) (results on table 4.2), we were only able to find 179 images for testing.

Figures 4.1, 4.2 and 4.3 show graphic versions of the data contained in those tables. Table 4.4

documents the time it takes for each method to process one frame, figure 4.4 has plots of the

results contained in this table. We also provide graphics containing the execution time of our

algorithm split between each of its parts in figure 4.5.

Note that we were not able to locate the actual ground truth data for the PETS 2009 data

set. The data we use as ground truth for the experiments in the data set is actually the result of

manual annotations in key frames with trajectory interpolation for all the other frames (found in

(MILAN; SCHINDLER; ROTH, 2013)). It is not a perfect method and, because of that, some

correct detections are documented as false positives.

In figures 4.6, 4.8 and 4.10, we display comparisons between the detections in our

method (top images) and those found while using the Dóllar detector’s original code (bottom

images). We did not capture numeric comparisons because the classifier in our code performs

worse due to the anomalies found in the feature extraction functions that were adapted to our

code from Dóllar’s to reduce the development time. Also, to be able to make such comparisons,

it would be necessary to make slight modifications to that code. So we decided to make all

comparisons inside our code and with a classifier that performs equally for both methods. The

images provided, nevertheless, give us an idea of how our method is capable of improving the

results of a detector.

Table 4.1: Method Comparison in the PETS 2009 Data Set
Method Resize Total Scales (Octaves) CApF TPR FPpF

Calibrated 1.5 11(2) 24527 0.68 0.40
Generic 1.5 25(4) 299973 0.85 5.9

Calibrated 2.0 14(2) 65404 0.84 0.54
Generic 2.0 29(4) 570135 0.89 7.2

Calibrated 2.5 16(2) 98573 0.86 0.71
Generic 2.5 31(4) 927349 0.88 8.4
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Table 4.2: Method Comparison in the TUD Stadtmitte Data Set
Method Resize Total Scales (Octaves) CApF TPR FPpF

Calibrated 1.0 16(2) 60405 0.72 1.37
Generic 1.0 19(3) 73888 0.71 4.55

Calibrated 1.5 21(3) 165793 0.74 1.11
Generic 1.5 23(3) 196871 0.73 5.28

Calibrated 2.0 24(3) 283121 0.74 1.92
Generic 2.0 27(4) 380700 0.74 5.34

Table 4.3: Method Comparison in the Town Centre Data Set
Method Resize Total Scales (Octaves) CApF TPR FPpF

Calibrated 0.5 5(1) 7739 0.13 0.62
Generic 0.5 20(3) 134982 0.30 5.87

Calibrated 0.75 9(2) 37444 0.39 4.47
Generic 0.75 25(3) 349444 0.58 13.01

Calibrated 1.0 13(2) 96323 0.47 5.23
Generic 1.0 28(4) 666870 0.59 16.68

Table 4.4: Execution Time Comparison Between Methods
Dataset Resize Frame Time(Calibrated) Frame Time(Generic)
PETS 1.5 0.167 s 0.232 s
PETS 2.0 0.315 s 0.432 s
PETS 2.5 0.499 s 0.673 s
TUD 1.0 0.118 s 0.086 s
TUD 1.5 0.269 s 0.176 s
TUD 2.0 0.514 s 0.347 s

Town Centre 0.5 0.071 s 0.153 s
Town Centre 0.75 0.217 s 0.365 s
Town Centre 1.0 0.340 s 0.609 s
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Figure 4.1: PETS 2009 Data Set Comparison Plots

Figure 4.2: TUD Stadtmitte Data Set Comparison Plots
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Figure 4.3: Town Centre Data Set Comparison Plots

Figure 4.4: Execution Time Comparison Plots
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Figure 4.5: Time Portion Spent on Each Part of the Algorithm

(a) PETS, Resize 1.5 (b) PETS, Resize 2.0 (c) PETS, Resize 2.5

(d) TUD, Resize 1.0 (e) TUD, Resize 1.5 (f) TUD, Resize 2.0

(g) Town Centre, Resize 0.5 (h) Town Centre, Resize 0.75 (i) Town Centre, Resize 1.0

The feature pyramid creation is comprised of calculating scales (Feature Extraction) and using
those results to approximate the rest of the scales (Scale Resampling). Sparse Detection, Dense
Detection and Candidate Generation/Removal compose the detection step of the algorithm. The
Suppression field was aggregated automatically into the Other field because not enough time
was spent on this phase.

Figure 4.6: Sample images of our method on the PETS 2009 data set.
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Figure 4.7: Sample images of Dóllar’s method on the PETS 2009 data set.

Figure 4.8: Sample images of our method on the TUD Stadtmitte data set.
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Figure 4.9: Sample images of Dóllar’s method on the TUD Stadtmitte data set.

Figure 4.10: Sample images of our method on the TUD Stadtmitte data set.

Figure 4.11: Sample images of Dóllar’s method on the TUD Stadtmitte data set.
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5 CONCLUSIONS

We were able to dramatically reduce the amount of classifier applications per frame in

both data sets were the camera is positioned well above the ground plane (PETS 2009 and Town

Centre). In the TUD Stadtmitte data set, though, we saw just a small reduction to this number

because of the camera’s angle in relation to the ground plane, which makes it so more areas of

the image are plausible to contain pedestrians and, as a result, increases the number of candidate

patches generated by our method.

Again, the angle of the camera was important to determine the reduction in the amount

of scales in the image features pyramid with the two data sets with the higher camera seeing the

biggest reduction.

The number of false detections dramatically decreased across the board, which com-

pensates for the reduction in detection coverage seen in two out of the three tested sequences.

The biggest loss in detection coverage when compared to the generic algorithm happened in

the Town Centre data set, but the generic method also generated the biggest amount of false

positives when applied to it.

The gains in execution time were not compatible with the reduction in scales of the

feature pyramid and in classifier applications due to the more complex data structure we use to

keep the candidate image patches and the overhead caused by adding, removing and accessing

its information. It is possible that more work towards the overall performance of the code could

provide a more favorable comparison towards the generic method in this area. These higher-

level data structures where used in order to have more legibility in the code during development.

We believe adjustments could be made to increase the amount of candidates in the sparse

phase and to reduce the density of the dense candidate regions. This change could improve the

detection coverage while keeping the gains in the total number of classifier applications and

could also solve the problem with cameras that are parallel to the ground.

Overall, though, the results were satisfactory based on the reduction in computational

costs and the better detection quality caused by the cut in false positives.
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