
UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
INSTITUTO DE INFORMÁTICA

BACHARELADO EM ENGENHARIA DE COMPUTAÇÃO

VITOR KIELING

An Area Efficient FPGA Implementation for the
Syndrome based Non Binary LDPC Check Node Algorithm

Trabalho de graduação

Trabalho realizado na
Technische Universität Kaiserslautern.

Orientador:
Dipl.-Ing. Philipp Schläfer

Co-orientador:
Prof. Dr. Valter Roesler

Porto Alegre
2015

UNIVERSIDADE FEDERAL DO RIO GRANDE DO SUL
Reitor: Prof. Carlos Alexandre Netto
Vice-Reitor: Prof. Rui Vicente Oppermann
Pró-Reitor de Graduação: Prof. Sérgio Roberto Kieling Franco
Diretor do Instituto de Informática: Prof. Lúıs da Cunha Lamb
Coordenador do ECP: Prof. Raul Fernando Weber
Bibliotecária-Chefe do Instituto de Informática: Beatriz Regina Bastos Haro

1 Resumo

Com os novos limites de taxa de transmissão impostos pelas aplicações dos
dias de hoje, arquiteturas de hardware dedicadas se fazem necessárias para
obtermos uma correção de erros adequada a estes. Para tal, a evolução das
soluções baseadas em códigos Low Density Parity Check para códigos não-
binários é necessária, e esta, implica em um aumento na complexidade de
decodificação. O melhor algoritmo desenvolvido até hoje que provê um bom
compromisso entre complexidade de hardware e performance é o Extended
Min-Sum usando o esquema de Forward Backward. Infelizmente, este apre-
senta baixa taxa de transferência e alta latência. Neste trabalho um novo
hardware para o Check-Node de um decodificador LDPC não-binário baseado
no algoritmo Syndrome-Based é apresentado. Ele mostra uma performance
equivalente ao EMS-FWBW, combinado de área reduzida, baixa latência e
alta vazão.

Lista de Abreviaturas e Siglas

CN Check-Node

EMS Extended Min-Sum

LDPC Low Density Parity Check

LLR Log-likelihood Ratio

NB-LDPC Non-Binary Low Density Parity Check

SYN Syndrome-Based

VN Variable Node

Lista de Figuras

1 Grafo de Tanner . 10
2 Comparação Binário x Não-Binário 10
3 Algoritmo de Syndrome . 11
4 Exemplo dos sets Di e Limites de Distância 12
5 Arquitetura inicial . 14
6 Mudança de posição do ordenador 15
7 Esquema de sondas . 16
8 Redução da sáıda do ordenador 16
9 Valores comuns aos cálculos de D1 17
10 Arquitetura de Hardware Final 18
11 Hardware Overview . 18
12 Communications Performance 19
13 Area comparison . 20
14 Throughput Comparison . 21

Lista de Tabelas

1 Parâmetros de código . 13
2 Parâmetros da implementação e do algoritmo SYN 13
3 Final results . 21

Sumário

1 Resumo 2

2 Introdução 7

3 Códigos LDPC Não-Binários 9
3.1 Algoritmo Syndrome-Based 11

4 Arquitetura de Hardware 12
4.1 Arquitetura Inicial . 13
4.2 Otimizações . 14
4.3 Arquitetura Final . 17

5 Resultados 19
5.1 Performance de Comunicação 19
5.2 Área . 20
5.3 Vazão . 20
5.4 Resultados Finais . 21

6 Conclusão 22
6.1 Trabalhos futuros . 22

Referências Bibliográficas 23

2 Introdução

Neste relatório é apresentado um resumo estendido em português para a
Universidade Federal do Rio Grande do Sul do trabalho original em anexo.
O trabalho de conclusão original, em inglês, foi realizado e apresentado na
Technische Universität Kaiserslautern, em Kaiserslautern, na Alemanha. As
referências encontram-se no trabalho completo em anexo.

A chave para o sucesso de sistemas de comunicação é, desde os primórdios,
confiabilidade de dados. O meio de aumentarmos essa confiabiliade é a codi-
ficação de canais. Em um caso t́ıpico, ao transmitirmos dados, estes podem
não chegar ao destino intactos, devido a rúıdos ou interferências de diferentes
causas que podem corromper a integridade dos dados. A codificação de canais
reduz os efeitos da corrupção de dados adicionando uma certa quantidade de
informação redundante num momento prévio à transmissão, o que chama-
mos de codificação, para então usando esses dados, recuperar a informação
corrompida ou destrúıda, que chamamos de decodificação.

Códigos Low Density Parity Check (LDPC) [1] são códigos de correção de
erros que tem sido usados com sucesso nas últimas decadas, em vários padrões
de comunicação, como WiMAX, WiFi, DVB-S2X, DVB-T2 e mostram uma
performance de correção que beira o limite teórico de Shannon para códigos
de palavras longas. Contudo, para códigos de palavras curtas ou médias,
estes, sofrem uma degradação na performance. Para solucionar tal problema
foram desenvolvidos códigos não-binários.

Códigos Non-Binary Low Density Parity Check (NB-LDPC) [2] não apre-
sentam o problema de degradação na performance para palavras curtas ou
médias, e conseguem reduzir ainda mais a lacuna entre o limite de perfor-
mance teórico e o das soluções existentes. Estes códigos, no entanto, trazem
porém um grande aumento na complexidade de decodificação. O algoritmo
de Extended Min-Sum (EMS) [3] é considerado o melhor algoritmo voltado
para arquiteturas de hardware publicado até o momento, porém, apresenta
baixa taxa de transferência e alta latência. Pensando em solucionar estes
problemas o algoritmo de Syndrome-Based (SYN) [4] foi desenvolvido.

O objetivo deste trabalho é desenvolver uma arquitetura de hardware
eficiente para o Check-Node de um decodificador NB-LDPC, baseada no al-
goritmo SYN. Se faz necessário que esta arquitetura mantenha a performance
de comunicação do estado da arte, aumente a eficiência e reduza a complexi-
dade de arquiteturas apresentadas até então baseadas no algoritmo de EMS.

7

Na seção 3 é apresentada uma breve introdução aos códigos NB-LDPC,
além do algoritmo de syndrome. Na seção seguinte, são apresentadas as
modificações realizadas no algoritmo e a arquitetura de hardware são intro-
duzidas. Na seção 5 temos os resultados deste trabalho, e na última seção as
conclusões obtidas e idéias para trabalhos futuros.

8

3 Códigos LDPC Não-Binários

A extensão de códigos LDPC para códigos NB-LDPC foi descoberta em 1998
por Mackay e Davey. Tal extensão é dada uma vez que códigos LDPC binários
estão definidos sobre um campo finito (também chamado Galois Field) de
tamanho 2 (GF (2)), e códigos não-binários por sua vez definem-se em campos
de tamanho 2p (GF (2p)). A diferença básica é que agora estamos processando
um agrupamento de bits, o qual nomeamos elemento, ao invés de somente
uns e zeros. A quantidade de bits q usada em cada elemento, varia de acordo
com o tamanho do campo finito utilizado em cada código (GF (2q)).

Códigos não-binários apresentam várias vantagens em relação à códigos
binários[5]: ótimo desempenho de comunicação mesmo com códigos de pala-
vras de tamanho pequeno, complexidade de modulação reduzida na cadeia
de comunicação, uma vez que os bits modulados podem ser mapeados dire-
tamente para śımbolos, e a performance superior mesmo se comparada com
turbo codes, que são até hoje amplamente utilizados.

Para representar um código LDPC usamos uma matriz de checagem de
paridade Hm,n, e nesta definimos:

- m linhas, onde cada uma representa uma equação de checagem de pari-
dade, que chamamos de Check-Node (CN) .

- n colunas, uma para cada bit de código, que chamamos de Variable Node
(VN) .

- dc : número de elementos não-zero de uma linha, chamado check node
degree.

- dv : número de elementos não-zero de uma coluna, chamado variable
node degree.

A partir disto, podemos representar o código como um grafo de Tanner.
As conexões são dadas de forma simples: um check node i está conectado a
um variable node j uma vez que haja um elemento não nulo na posição hij

da matriz.

9

CN1

VN1 VN2 VN3 VN4

CN2 CN3

Figura 1: Grafo de Tanner

A decodificação baseada nesta representação em grafo funciona da se-
guinte forma: os VNs recebem informações do canal, esta informação é
passada aos seus CNs conectados, que realizam operações baseado nas suas
informações recebidas de diferentes variable nodes, e passam tal informação
processada de volta a estes. Os VNs então verificam se a palavra esta decodi-
ficada, caso não esteja, uma nova iteração é iniciada, caso esteja decodificada
o processo termina.

Analisa-se o crescimento do número de mensagens trocadas na com-
paração entre um código LDPC binário e um não-binário. Ao invés de para
cada conexão enviarmos uma probabilidade associada a um bit ter o valor
1, agora estamos enviando q valores por cada conexão, e junto de cada um
deles uma probabilidade associada.

VN

CN

VN

CN

LDPC NB-LDPC Ex:GF(64)

[101001][1]

[101001][0]
[010010][1]
[111000][2]
[000110][3]

[001010][61]
[110100][62]
[010101][63]

Figura 2: Comparação Binário x Não-Binário

Como a operação realizada no check node (também chamada de Belief
Propagation) é uma convolução de todas as entradas, em uma implementação

10

direta a complexidade cresce com O(q2). Os algoritmos apresentados até o
momento só conseguem obter uma implementação de hardware com comple-
xidade aceitável para valores muito baixos de q, com q ≤ 16.

3.1 Algoritmo Syndrome-Based

O algoritmo Syndrome-Based[5] é uma primeira tentativa de decodificar efi-
cientemente códigos baseados em campos finitos de alta ordem (q > 16). A
idéia básica do algoritmo é construir conjuntos de syndromes baseado nas
probabilidades de cada śımbolo. Uma syndrome é definida como a soma de
uma tupla composta por um elemento do campo e sua probabilidade repre-
sentada em Log-likelihood Ratio (LLR) {GF (q), LLR} de cada conjunto de
entrada do check node. Na figura abaixo podemos ver alguns exemplos. É
considerado que as entradas estão ordenadas de acordo com a probabilidade
de cada elemento, sendo o elemento mais abaixo o mais confiável:

LLR | GF LLR | GF LLR | GF LLR | GF

0

nm-1

1

.

.

.

reliability

Figura 3: Algoritmo de Syndrome

Criado o conjunto S contendo todas as syndromes, estamos interessa-
dos nas syndromes com as melhores probabilidades. Analisando como as
syndromes são constrúıdas, podemos ver que elas quebram o prinćıpio de
Belief Propagation, que diz que cada valor de sáıda não pode estar correla-
cionado com a própria entrada. Assim é necessário um passo adicional para
remover a correlação de cada syndrome com o valor de entrada, gerando con-
juntos dedicados Si que não tem correlação com sua própria entrada i. Após

11

isso é feito um ordenamento de cada set Si e são selecionados os valores mais
confiáveis destes. Duas técnicas ainda são usadas para reduzir o número de
cálculos a serem feitos:

Primeiro constrúımos sets Di, sendo i o número de entradas do check
node, e separamos os sets em sub-sets. Em cada um desses sub-sets Di, es-
tarão syndromes que contém no máximo i elementos diferentes dos elementos
mais confiáveis. Assim, o subset D0 conterá somente uma syndrome, base-
ada em todos elementos mais confiáveis. Desta forma, as syndromes mais
confiáveis acabarão isoladas nestes sets, e podemos ver que syndromes em
sets mais altos como D3 e D4 raramente contribuirão para a sáıda, o que nos
permite limitar a quantidade de sub-sets a ser usada.

Junto desta técnica, limitamos a distância máxima dos elementos mais
confiáveis de cada syndrome em cada set Di, de forma a isolar syndromes mais
confiáveis. Cada set Di terá uma distância máxima di, porém respeitando
a regra de que se maior for o desvio permitido do elemento mais confiável,
menor será a distância máxima.

LLR | GF

0

LLR | GF LLR | GF LLR | GF

LLR | GF LLR | GF LLR | GF LLR | GF

LLR | GF LLR | GF LLR | GF LLR | GF

1

2

0

1

2

0

1

2

D0

D1

D2 0

LLR | GF

1

nm-1

d1

d2

LLR | GFLLR | GFLLR | GF

Figura 4: Exemplo dos sets Di e Limites de Distância

4 Arquitetura de Hardware

A partir do algoritmo descrito na seção anterior é preciso desenvolver uma
arquitetura de hardware adequada. É importante citar que tal arquitetura foi
desenvolvida e otimizada baseada em parâmetros de código previamente defi-

12

nidos, de forma a obter a melhor performance posśıvel para estes parâmetros.
Uma vez que estes sejam mudados, serão necessárias adaptações equivalentes
na arquitetura.

GF (q) 64
dc 4
dv 2
nm 13
Iterations 10

Tabela 1: Parâmetros de código

D1 18
D2 3
Sondas consideradas 6
I/O por clock cycle (elementos) 3

Tabela 2: Parâmetros da implementação e do algoritmo SYN

4.1 Arquitetura Inicial

Baseado no algoritmo descrito acima podemos imaginar uma arquitetura da
seguinte forma:

13

Syndrome Calculator

Decorrelator Decorrelator

Sorter Sorter

...

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm nm

Figura 5: Arquitetura inicial

Alguns problemas dessa arquitetura são o alto uso de registradores para
guardar as syndromes calculadas, a grande quantidade de ordenadores antes
de cada sáıda ser atualizada, e estes ainda sendo de tamanho grande, devido
ao tamanho dos sets Si.

4.2 Otimizações

Um meio de reduzir a quantidade de ordenadores e registradores é realizar
o ordenamento dos valores de entrada no ińıcio da cadeia, e então selecionar
uma parcela destes valores para serem geradas syndromes. Assim, usaremos
somente um ordenador, e ainda reduziremos o número de registradores a
serem usados dependendo do número de valores previamente já selecionados.

14

Syndrome Calculator

Decorrelator Decorrelator

Sorter Sorter

...

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm
S

Si Sd_c

Syndrome Calculator

Decorrelator Decorrelator

Sorter

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm
S

ns

Figura 6: Mudança de posição do ordenador

Analisando o decoder por inteiro, podemos notar que um ordenamento
exato não é necessário, pelo fato de que uma vez um VN recebendo mensagens
de seus CNs conectados, terá de reordená-las de qualquer jeito. Assim o
ordenador usado pode ser adaptado para um ordenamento sub-ótimo.

Baseado nessa análise, para reduzir o tamanho do módulo de ordena-
mento ainda mais, usa-se uma técnica de sondas. Um número de sondas é
distribúıdo sobre os valores de entrada, e então cada sonda é agrupada a seus
valores vizinhos. O ordenamento é então realizado baseado somente no valor
de probabilidade da sonda.

É posśıvel reduzir este módulo de ordenamento ainda mais se realizarmos
o ordenamento de somente um grupo de cada entrada por ciclo de clock,
como mostrado abaixo. Os blocos cinza são as sondas, e foram devidamente
agrupadas.

15

0

 1st CC

LLR | GF

nm-1

2nd CC

3rd CC

4th CC
}
}
}
}

Figura 7: Esquema de sondas

Com essa modificação, teŕıamos no módulo seguinte um número de syn-
dromes a ser calculado proporcional ao número de VNs conectados. Modifi-
cando o ordenador para obtermos somente uma sonda ordenada por ciclo de
clock, ao invés de ns como mostrado anteriormente, o módulo que cálcula as
syndromes é reduzido ainda mais.

Sorter

Syndrome Calculator

V(1)(nm) ...
V(d_c)(nm)

Sorter

Syndrome Calculator

V(1)(nh) ...
V(d_c)(nh)

ns 1

D2D1 D2D1

Figura 8: Redução da sáıda do ordenador

Sequencializando o processamento, teremos agora um valor para D1 sendo
calculado a cada ciclo de clock. Contudo, os valores para D2, dependem de
duas sondas. Estes valores não são necessáriamente sequenciais, pois uma vez

16

que duas sondas ordenadas são baseadas na mesma entrada, o valor formado
por estas não é um valor D2 válido, assim não sabemos ao certo quando
haverá um valor D2. Para o caso deste ser gerado em paralelo com D1,
precisamos um ordenador adicional na sáıda.

Analisando as syndromes D1 de uma mesma entrada, nota-se que elas
compartilham os mesmo valores nos cálculos. Para remover estes valores re-
dundantes foi criado um módulo que pré-calcula tais valores, a fim de reduzir
o hardware no módulo syndrome calculator. Este módulo pré-calcula valores
para cada set D1 e para todas possibilidades de sets D2 válidos.

0

LLR | GF

nm-1

D1,m,1

LLR | GFLLR | GFLLR | GF

D1,m,3

D1,m,5

Figura 9: Valores comuns aos cálculos de D1

4.3 Arquitetura Final

Juntando esta última modificação com o módulo adicional de ordenamento
temos uma nova arquitetura. Analisando-a, e comparando com a arquitetura
inicial, podemos ver que agora usamos apenas dois ordenadores de tamanho
reduzido, o modulo syndrome calculator foi também drásticamente redu-
zido em relação ao número de registradores necessários, e também a fiação
necessária é menor, pois levamos em conta valores baseados somente nos ele-
mentos mais confiáveis para a decorrelação. Todos os problemas existentes
na arquitetura anterior foram solucionados.

17

Sorter

Syndrome Calculator

V(1)(nh) ...
V(d_c)(nh)

1

Pre Calculations

V(1)(0)
...
V(d_c)(0)

Sorter

D2D1

Decorrelator Decorrelator...

D0

V(d_c)(nh)V(1)(nh)

Figura 10: Arquitetura de Hardware Final

Um overview da implementação realizada, de acordo com parâmetros ini-
ciais pré escolhidos pode ser visto abaixo, nota-se os registradores de pipeline
e larguras das interconexões usadas.

Figura 11: Hardware Overview

18

5 Resultados

Os resultados de śıntese apresentados nesta seção foram feitos usando um
FPGA Xilinx Virtex 5 XC5VLX50T com speed grade − 3. Todos foram ob-
tidos após o Place and Route. Foram realizadas comparações com o hardware
baseado no algoritmo de Extended Min-Sum usando o esquema de Forward
Backward, que é até hoje o melhor algoritmo desenvolvido voltado para im-
plementações de hardware.

5.1 Performance de Comunicação

Na figura abaixo comparamos a performance de comunicação do hardware
desenvolvido ao algoritmo de estado da arte até hoje utilizado. Para uma
comparação justa os parâmetros utilizados em ambos os códigos foram os
mesmos. Como pode ser observado, para valores de SNR de 2 a 4.5 a per-
formance atingida é equivalente, ainda, para valores de 4.5 a 5.5, o hardware
desenvolvido apresenta uma performance ainda melhor.

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 2.5 3 3.5 4 4.5 5 5.5

FE
R

SNR [dB]

GF(64)
nm = 13
dc = 4
nit = 10

FWBW Syndrom

Figura 12: Communications Performance

19

5.2 Área

Para a comparação de área, também é preciso ser dito que as quantizações
para amostragem dos bits em ambas implementações são exatamente as mes-
mas. A arquitetura apresentada apresenta apenas 41% da área ocupada pelos
registradores, e 48% da área ocupada pelas LUTs, se comparado à imple-
mentação do algoritmo de FWBW.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FWBW Syndrom

Area Comparision

Registers Luts

Figura 13: Area comparison

5.3 Vazão

Na análise de throughput, primeiro consideramos a quantidade de elementos,
e em segundo a relação da quantidade de elementos por unidade de área. Na
primeira, nossa arquitetura ultrapassa o estado da arte em mais de 6 vezes,
e na segunda o número chega a mais de 14 vezes.

20

0

100

200

300

400

500

600

700

800

900

FWBW Syndrom

Mel/s Throughput element

Figura 14: Throughput Comparison

5.4 Resultados Finais

Ainda, uma outra arquitetura foi desenvolvida, para testarmos a escalabili-
dade da arquitetura apresentada em termos de área e throughput. O resul-
tado obtido mostra um crescimento quase linear. Abaixo, segue a tabela com
todos os resultados de śıntese obtidos.

EMS-FWBW Syndrome-Based Scaled Syndrome
Registers 2426 1002 2200
Luts 1872 898 2077
Frequency (Mhz) 123.2 259.4 263.4
Throughput (Mel/s) 123.1 778.68 1592
Throughput/area (Kel/s/unit) 28.64 409.8 371.2
Latency (CC) 21 12 6

Tabela 3: Final results

21

6 Conclusão

Neste trabalho apresenta-se um novo hardware para o CN de um decodi-
ficador NB-LDPC. Ele é baseado no algoŕıtmo Syndrome-Based, que provê
implementações de hardware eficientes, e é uma alternativa ao até então
utilizado algoritmo de EMS-FWBW. Essa é a primeira tentativa de decodi-
ficação eficiente para um código baseado em campos de alta ordem (q > 64).
A arquitetura apresenta alta vazão, eficiência de área e baixa latência.

Em uma comparação direta com a arquitetura de estado da arte baseada
no algoritmo de EMS-FWBW, o hardware apresentado ocupa menos da me-
tade da área obtendo cerca de seis vezes a vazão. Em relação à performance
de comunicação, o hardware apresentado obtém a mesma performance do
estado da arte, podendo ainda para valores particulares de rúıdo excedê-la.

Na arquitetura apresentada, os parâmetros utilizados foram usados es-
tratégicamente baseado nos parâmetros do código a ser usado, caso modi-
ficaçoes neste sejam feitas, serão necessárias modificações no hardware, de
forma a atingir a mesma performance.

6.1 Trabalhos futuros

Tendo em mente tecnologias à serem desenvolvidas, modulações de ordem
mais alta (256QAM) terão de ser utilizadas em sistemas de comunicação.
Para isso seria interessante estender essa idéia e investigar o algoritmo Syndrome-
Based e uma implementação de hardware considerando campos de ordem
ainda maior, como q = 256.

Até hoje não foi apresentado algoritmo que escale eficientemente com
o valor de q para uma complexidade fixa. Como atingir tal, mantendo a
performance do estado da arte é chamado de Holy Grail da decodificação
não binária.

22

Referências

[1] Robert G. Gallager. Low Density Parity Check Codes. The Bell System
Technical Journal, 1963.

[2] Matthew C. Davey and David MacKay. Low-Density Parity Check Codes
over GF(q). IEEE COMUNICATIONS LETTERS, June 1998.

[3] D. Declercq and M. Fossorier. Decoding algorithms for nonbinary LDPC
codes over GF. IEEE Transactions on Communications, April 2007.

[4] P. Schläfer, N. Wehn, M. Alles, T. Lehnigk-Emden, and E. Boutillon.
Syndrome Based Check Node Processing of High Order NB-LDPC De-
coders. International Conference on Telecommunications, 2015.

[5] S. Pfletschinger, A. Mourad, E. Lopez, D. Declercq, and G. Bacci. Perfor-
mance evaluation of non-binary LDPC codes on wireless channels. Pro-
ceedings of ICT Mobile Summit, June 2009.

23

University of Kaiserslautern

Department of Electrical Engineering and Information Technology

Microelectronic Systems Design Research Group

Bachelor Thesis

An Area Efficient FPGA Implementation for the

Syndrome based Non Binary LDPC Check Node Algorithm

Presented: July 13, 2015

Author: Vitor Kieling

Research Group Chief: Prof. Dr.-Ing. N. Wehn

Tutor: Dipl.-Ing. Philipp Schläfer

Statement

I declare that this thesis was written solely by myself and exclusively with help of the
cited resources.

Porto Alegre, July 13, 2015

Vitor Kieling

Acknowledgments

I would like to express my special thanks to my advisor Dipl.-Ing. Philipp Schläfer. For
conducting my work at the University of Kaiserslautern, for all the knowledge shared,
virtuous ideas and guidance provided through the period of this work.

I am thankful to my co-advisor Msc. Vladimir Rybalkin, for his teaching, suggestions
and patience, and to Prof. Dr.-Ing. Norbert Wehn for the opportunity and the amazing
work structure provided at the Microelectronic Systems Design Research Group.

Last, I want to express all my gratitude to my parents, Gilberto Kieling and Ziara
Kieling, without them, nothing would have been possible.

Abstract

With the new throughput limits required for today applications, dedicated hardware
architectures are needed to obtain proper error correction. To achieve that, the evolution
from binary LDPC codes to non-binary LDPC codes is necessary, and this evolution
implies in a greater decoding complexity. The best algorithm that provides a good
hardware complexity and performance trade-off is the Extended Min-Sum using the
Forward Backward scheme. Unfortunately, it presents low throughput and high latency.
In this work, a new hardware for a check node of a NB-LDPC decoder based on the
Syndrome-Based algorithm is presented. It provides the state-of-the-art communication
performance, combined with reduced area,low latency and high throughput.

Contents

1 Introduction 5

2 Channel Coding 6
2.1 Basics . 6
2.2 Channel Capacity . 7
2.3 Linear Block Codes . 7

2.3.1 Generator Matrix . 8
2.3.2 Parity Check Matrix . 8

2.4 Convolutional Codes . 8
2.5 Decoding Algorithms . 9

2.5.1 Optimal Decoding Problem - Maximum Likelihood 10

3 Low Density Parity Check Codes 11
3.1 Representation . 11
3.2 Encoding . 12
3.3 Iterative Decoding . 13

3.3.1 Belief Propagation Decoding . 13
3.3.2 Bit Flipping Decoding . 15

3.4 Decoding Performance and Limitations . 16

4 Non Binary Low Density Parity Check Codes 18
4.1 Definition . 18
4.2 Advantages . 19
4.3 Decoding . 19

4.3.1 Reducing Complexity - Sub-Optimal Decoding 19
4.3.2 Extended Min-Sum Algorithm . 20
4.3.3 Syndrome-Based Algorithm . 23

4.3.3.1 Reducing Syndrome Set 24

5 Hardware Architecture 28
5.1 Existing Solutions Analysis . 28
5.2 Optimizing Area . 29
5.3 CSE Simulation Environment . 33
5.4 Hardware overview . 33

5.4.1 Probe Sorter . 35
5.4.2 Value Selector . 36
5.4.3 Subcalculations Module . 37
5.4.4 Dev1 Syndrom and Dev2 Syndrom 38
5.4.5 Output Updater . 39

6 Results 41
6.1 Communications Performance . 41
6.2 Area Analysis . 41
6.3 Throughput Analysis . 42
6.4 Scaling the architecture . 43
6.5 Final results . 44

7 Conclusion 45
7.1 Future Work . 45

3

Contents

8 Appendix 46
8.1 Galois Field Arithmetic . 46

8.1.1 Definition . 46
8.1.2 Construction . 46
8.1.3 Representation . 47
8.1.4 Addition and Multiplication . 48

8.2 Syndrome Algorithm Execution Example 48
8.3 Hardware Top Module Code . 53
List of Figures . 58
List of Tables . 60
List of Listings . 61
List of Abbreviations . 62
References . 63

4

1 Introduction

Nowadays we can not even picture a world without cell phones, internet, digital televi-
sion, and another hundreds of systems that comunicates with each other, and sometimes
even ubiquity, make our lives easier.

The key for the success of those communication systems is data reliability, and the most
well-known tool to achieve this reliability is channel coding. In a typical scenario, when
we transmit data, this data will not reach its destiny intact. There will be noise and
interference from different sources that will corrupt the integrity of this data, leading
us to not receive the data we wanted. Channel coding solve this problem by adding a
certain amount of redundant information, to this data we want to transmit. We call it
encoding. Using this data, at the receiver, we will be able to recover the original data,
even if it has been corrupted. That is what we call decoding.

Low Density Parity Check (LDPC) codes, first time presented by Gallager[1] in 1963,
are well-known error correction codes that has been used in the last decades in many
commercial communication standards, such as WiMAX, WiFi, DVB-S2X, DVB-S2,
DVB-T2. They have been proved to perform very close to the Shannon limit [2] for
very long codeword lenghts. However, when it comes to small or moderate code word
lengths, or when a high order modulation is used on the transmission (which is the case
for upcoming high-speed standards), the LDPC codes suffer an undesirable degradation
in communications performance.

This extension of the LDPC codes, called Non-Binary Low Density Parity Check (NB-
LDPC) codes [3], which are the topic of this thesis, resolve this problems by extending
the Galois Field (GF) size used in their binary counterpart from 2 to q (with q>2), and
allows for a simplified demapper, directly mapping the received information to groups
of bits that we call symbols, instead of single bits.

The gain in communication performance obtained with NB-LDPC codes comes with a
significant increase in the decoding complexity and there are already developed algo-
rithms with excellent communications performance using the Fourier domain [4]. To
match new communication standards, dedicated hardware architectures are needed, and
for that, those algorithms are still too complex. The best algorithm published so far
which provides a good hardware complexity and performance trade-off is the Extended
Min-Sum (EMS) Algorithm[13]. Unfortunately, it suffers from low throughput and
high latency. In this thesis a new check node hardware architecture, based on the
Syndrome-Based (SYN) Algorithm[5], is presented. It has state-of-the-art communica-
tions performance, combined with low area, low latency and high throughput.

In the first chapter we give a brief overview at the basics of channel coding. Section 3
explains a little about LDPC codes and in section 4, the extension of them to non-binary
codes. We give in section 5 all the explanation about the designed hardware, including
diagrams and circuits. In section 6 we present the results of our work, including a fair
comparison with today state-of-the-art decoders.

5

2 Channel Coding

2.1 Basics

To allow a better understanding of what Channel Coding is, it is necessary to describe
a communication system and its modules. The system below describes a basic commu-
nication system.

Figure 2.1: Communication Chain

Source and Sink : information source provided from any digital system that has some
data to be transmited.

Source encoder and source decoder : the encoder converts the information source bits
into a new bit sequency with a more efficient representation. It is also usually called
compression. For media related date (audio, video, image) we also define two kinds of
compression: lossless and lossy. The first generating a compressed file with no quality
loss, and the latter, reducing the information provided even further in the trade of
quality, frequently used where the loss can be acceptable or inconspicious.

Channel encoder and channel decoder : the idea behind the channel encoder is to add
some redundant information in order to protect the data, to be transmitted over a
channel that can be subjected to distortion, noise and interference. With these added
redundant bits, the decoder should be able to recover the original data, despite the noise
injected by the channel.

Modulator and demodulator : the modulator converts the bit stream provided by the
encoder to a signal in a form that should usually match with the channel to be used.
Common modulation methods are: amplitude modulation, frequency modulation and
phase modulation, which are sometimes combined. The demodulator makes the coun-
terpart, recover the bit stream based on the used modulation.

Channel : the channel is the physical medium through which the data stream is transmit-
ted. Channels can add noise and interference to the data being transmitted. We model
it, using a probabibilistic model. Therefore the channel output will be determined by
the sum of the input x with the noise n :

y = x+ n (2.1)

6

2.2 Channel Capacity

We usually define a communication channel with a triple, consistent of: an input al-
phabet, an output alphabet, and for each input-output pair, a transition probability
p(i, o).
Before defining a code, we describe channel capacity, and cite that there are two different
well-known types of codes, block and convolutional codes. Being the block codes, linear
or non-linear. In this thesis we focus on linear codes.

2.2 Channel Capacity

Based on the above mentioned model, Shannon defined channel capacity[2], which mea-
sures how much information can be transmitted through a channel. We must remember
that this notion of capacity is only a theorical limit, it does not guarantee the existance
of such a scheme that achieves this limit. This can be calculated as follows:

C = W log(1 + SNR) [bits/s] (2.2)

with SNR the signal-to-noise power ratio detected at the receiver and W the channel
bandwidth. Setting a tranmission rate R to a R < C value, an error probability as small
as desired can be achieved. In channel coding, the Sphere Packing Bound (SP59) limit
is also used. It is based on the Shannon limit, but takes also into account the code ratio
to calculate the communications limit.

2.3 Linear Block Codes

We define an alphabet over a finite field, also called Galoin field, of size 2, GF (2) (see
appendix), that means we have only two possible symbols, beeing them 0 and 1, one
bit. Using block coding, we segment the information sequence into blocks of a fixed size
k, having then K = 2k possible distinct messages. At the encoder, each of this input
messages will be encoded into a longer binary sequence of size n, being n > k, we call
that a codeword. With the set of all this messages, we have a (n, k) block code, with
n−k redundant bits, that will be used to correct the errors caused by the communication
noise or interference. The ratio between the number of information bits and the number
of redundant bits added by the encoder we call coderate.

Figure 2.2: Block code codeword

Another interesting parameter used in some linear block codes is the minimum distance,
or Hamming distance [6], which is the number of positions in which two different code-
words c1 and c2 differ. That means, a receiver based on a d distance code, is able to
detect up to d− 1 tranmission errors, since changing only d− 1 positions of a codeword
can never lead to an unwanted, but valid, codeword.

A popular notation used for a linear block code is (n, k, d)q, describing a block cover
over an alphabet of size q, with a block lenght n, message lenght k and distance d. For
maximum distance separable codes, the d parameter may be missing.
Some examples of famous linear block codes are: Reed-Solomon Codes, Hamming Codes,
Hadamard Codes.

7

2.4 Convolutional Codes

2.3.1 Generator Matrix

Since a linear block code C(n, k) is a k-dimensional subspace of all the possible combina-
tions over a GF (q), exists a set G of k independent codewords in C, G = (g0, g1, ..., gk),
such that every codeword v ∈ C is a linear combination of these k linearly independent
codewords. Simplifying, for a given information vector u = (u0, u1, ..., uk) to be encoded,
the resulting codeword v = (v0, v1, ..., vk) can be expressed as the linear combination of
the rows of a k × n matrix G with the information bits in u:

v = u.G (2.3)

This matrix G we call Generator Matrix for the given block code. Expanding it to a
better visualization:

v =




u0
u1
...
uk−1


 .




g0,0 g0,1 ... g0,n−1
g1,0 g1,1 ... g1,n−1
...

gk−1,0 gk−1,1 ... gk−1,n−1


 (2.4)

2.3.2 Parity Check Matrix

Defined the generator matrix, a parity check matrix can be derived from it (or vice-
versa). This latter matrix is used in the decoding to check if a codeword c is valid given
the linear block code C, respect to the equation:

H.cT = 0 (2.5)

or the common-used equivalent form

c.HT = 0 (2.6)

As C is a (n, k) k-dimensional block code, the null (or dual) space of this code, denoted
Cd, is a (n, n − k), (n − k)-dimensional code. Using H = (h0, h1, ..., hn−k−1) as the set
of n− k linearly independent codewords in the basis of Cd. Then, the codewords in Cd

form the following (n− k)× n parity check matrix:

H =




h0
h1
...

hn−k−1


 =




h0,0 h0,1 ... h0,n−1
h1,0 h1,1 ... h1,n−1
...

hn−k−1,0 hn−k−1,1 ... hn−k−1,n−1


 (2.7)

Then H is what we call a parity check matrix for the code C, which is also a generator
matrix for the dual code Cd, and C is said to be the nullspace of H. Following that, we
can also think of the equation

G.HT = O (2.8)

where O is the k × (n− k) zero matrix.

2.4 Convolutional Codes

Convolutional codes were introduced in 1955 by Peter Elias[7]. It was thought that
convolutional codes could be decoded with arbitrary quality at the expense of compu-
tation and delay. In 1967, Andrew Viterbi determined that convolutional codes could
be maximum-likelihood decoded with reasonable complexity using time invariant trellis

8

2.5 Decoding Algorithms

based decoders - the Viterbi algorithm[8]. Unlike block codes, where the information
bits are followed by the parity bits, convolutional coding spread the information bits
along the bit sequence. That means that the convolutional codes map information to
code bits not block wise, but sequentially convolve the sequence of information bits
according to some rule. We also have the n and k code parameters, but in addition, a
new m parameter, that is the number of memory elements (registers) used to store data
from past bits. That makes the code defined by a triple [n, k,m].

The encoder basically uses a sliding window, to calculate r > 1 parity bits by combining
various subsets of bits in the window. Then in every time step, this window overlap and
slide, calculating new parity bits. This sliding represents the convolution of the encoder
over the data, which provide the term convolutional codes.

Figure 2.3: Convolutional coding

In the example figure, we are generating 2 parity checks. One P1 based on the sec-
ond and third bits of the window, and one P2 based on the first and second bits of
the window. The size of the window, in bits, is called constraint length. With a
bigger window, the number of parity bits influenced by any information bit is larger.
Due to this fact, with a bigger window we might have some resilience to errors. The
trade-off is that it will also take more time to decode codes using a long constraint length.

The ability to perform economical maximum likelihood decoding is one of the major
benefits of convolutional codes. They are also especially useful for iterative processing,
for example, the turbo codes. Turbo codes are a new class of iterated short convolutional
codes, which can closely approach the Shannon limits with lower decoding complexity,
and are beeing sparsely used nowadays.

This is only a brief overview about convolutional codes since they are not the topic of
this thesis, but aswell important, beeing worth to be mentioned.

2.5 Decoding Algorithms

We usually deal with two distinct types of decoding: those based on hard decoding, and
those based on soft decoding. When hard decoding is used, we deal only with a sent
message, and if this message is either correct or not. When soft decoding is used, what
we use is an associated reliability with a sent message, that means, a probability that
the sent message is true or not. Of course, the soft decoding scheme performs better
in the presence of corrupted information than the hard decoding scheme, althought the
decoding of this type of messages is costly.

9

2.5 Decoding Algorithms

2.5.1 Optimal Decoding Problem - Maximum Likelihood

Based that we have sent a codeword, how to tell which codeword was sent if we know
that errors might have been inserted during the transmission and if we are not sure how
can we trust in this received information?

What we can do is analyse the probability that this codeword was sent, list all the
possible K codewords and a conditional probability for every one of them. After that,
return the one that have the highest probability. That is called Maximum Likelihood
(ML) Decoding.
In essence, what we want is to find a codeword ci ∈ C, given a received vector r which
maximizes P (c = ci|r). This is also called maximum a posteriori rule. By Bayes rule:

P (c|r) =
P (c)P (r|c)

P (r)
(2.9)

Since P (r) is independent of c, and if we assume that each codeword is chosen with an
equal probability, to maximize this equation we only have to maximize P (r|c):

P (r|c) =

n∏

i=1

P (ri|ci) (2.10)

The ML decoding is a NP-problem, that means the calculation complexity grows expo-
nentially with the number of input symbols. With the years, the to-be-achieved goal, is
to find an algorithm that provides a great performance as the ML, but with a reduced
calculation complexity.

10

3 Low Density Parity Check Codes

LDPC Codes are a class of the before mentioned linear block codes. They provide
communications performance near the Shannon limit and were first proposed by Gallager
in his PhD dissertation in 1960[1]. They remained silent for the followed 35 years. In
the mid 90s however, the study of this codes has been re-discovered, and up to today
they are widely used in many applications.
With the growing popularity of the non-binary LDPC codes, we usually call this codes
binary LDPC codes, since they are defined over a GF(2).

3.1 Representation

From their name, LDPC codes are codes defined by a very spare, or low density, parity
check matrix, that is, the H matrix has a very low number of non-zero entries. That
sparseness guarantee a decoding complexity that increases only linearly with the code
length.

H =




0 1 0 1 1 0 0 1
1 1 1 0 0 1 0 0
0 0 1 0 0 1 1 1
1 0 0 1 1 0 1 0


 (3.1)

LDPC codes are usually designed by first constructing a parity check matrix, and then
from this one derivating a generator matrix.
The difference between LDPC codes and other block codes is in the way they are de-
coded. Instead of using the ML scheme, that uses short block codes to make the ML
task less complex, LDPC codes are decoded iteratively, using a graphical representation
of the H matrix.

From the Hm,n matrix we observe:
- m rows, each one representing a parity check equation, that corresponds to the

function of a Check Node (CN) .
- n columns, one for each code bit, that corresponds to the function of a Variable

Node (VN) .
- dc : the number of non-zero elements in a row, we name it check node degree.
- dv : the number of non-zero elements in a column, we name it variable node degree.

Using that notation we can represent the H matrix using a Tanner graph, with the
defined nodes. The rule for the connections is simple: a check node j is connected to a
variable node i if the position hij in the H matrix is a 1.

CN1

VN1 VN2 VN3 VN4

CN2 CN3

Figure 3.1: Tanner Graph Representation

11

3.2 Encoding

Regarding the iterative process over this graph we may have two possible scheduling
schemes:

- parallel : in each iteration, all the CNs are updated, and after that, with the new
information computed by the CNs, the VNs are updated.

CN1

VN1 VN2 VN3 VN4

CN2 CN3 CN1

VN1 VN2 VN3 VN4

CN2 CN3

Figure 3.2: Parallel Scheduling

- serial : can be layered, or shuffled.
- layered : first one CN is updated, then after that, all the VNs connected to this

CN are updated, repeating that for the following CNs, until all of them are updated.
- shuffled : the opposite of the layered scheme, first one VN is updated, and after

that all the CNs connected to this VN are updated, repeating until all the VNs are
updated.

CN1

VN1 VN2 VN3 VN4

CN2 CN3 CN1

VN1 VN2 VN3 VN4

CN2 CN3

Figure 3.3: Serial Scheduling

The serial schedule reduces the possible parallelization, but also reduces the number of
iterations necessary by the used decoding algorithm to perform a full decoding.

3.2 Encoding

Encoding is done with a generator matrix, as shown in chapter 2. An usual approach
in LDPC codes is first to built a parity-check matrix H, and from this one, derivate the
generator matrix G:

c = [
s

p
]T (3.2)

The code vector c is divided into two systematic parts s and p. From c.HT = 0 we get:

[H1|H2].[
s

p
] = 0

H1.s+H2.p = 0
(3.3)

12

3.3 Iterative Decoding

The parity check matrix is divided into two parts. H1 for the systematic part and H2

for the quadratic part. After solving to the parity check vector we get:

p = H−12 .H1.s = G′.s (3.4)

To calculate the G matrix, this H2 part must be inversible. Then, we generate the G
matrix by adding the identity matrix:

G = [I|G′] (3.5)

3.3 Iterative Decoding

As mentioned above, LDPC codes uses an iterative decoding, also called message-passing
decoding, because messages are passed from VNs to CNs and vice-versa. The messages
are exchanged between VNs and CNs until the message is sucessfully decoded or a pre-
defined number of iterations is met. We may name different message-passing algorithms
based on the type of messages exchanged, or the type of operation performed on the
nodes. Some of them may use a hard decoding scheme, such as bit flipping algorithms,
and some a soft decoding scheme, for example, the belief propagation decoding.

3.3.1 Belief Propagation Decoding

The Belief Propagation (BF) Algorithm operates with bit probabilities. We usually use
log − likelihood ratios to represent the probabilities, for the mathematical convenience
of turning multiplications into additions, leading to a lower implementation complexity,
and for the robustness provided when quantizating messages with a small number of
bits. Therefore, this type of decoding is also called sum-product decoding, due to the
fact that it allows the CN and VN calculations to be done using only sum and product
operations. Since we are using only a binary representation, it is easy to see that for
example, once we have the probability of a bit to be 1, P (x = 1), it easy to find a
zero probability because P (x = 0) = 1− P (x = 1), therefore we only need to store one
probability for a given x value. To calculate the log-likelihood ratio we use:

L(x) = ln(
P (x = 0)

P (x = 1)
) (3.6)

If p(x = 0) > p(x = 1) then L(x) is positive, and we know that the bit is more probable
to be 0, else, if L(x) is negative, we know that the bit is more probable to be 1. In
every VN we have the instrinsic information, provided by the channel, and the extrinsic
information, received by every connected CN (parity checks). What we want is to
calculate the Maximum a Posteriory (MAP) probability for every codeword bit, which
is the probability of a bit n to be 1 conditional to the event N that all parity checks are
satifstied.

Pn = P (cn = 1|N) (3.7)

The extrinsic information received by the CNs must follow a basic principle: every
extrinsic information received by a VN m most not be correlated with its own intrinsic
information. This exact extrinsic message Rm,n from CN m to VN n is the Log-likelihood
Ratio (LLR) of the probability that the bit n causes the parity check m to be satisfied.
Wm,n is the message from VN to CN. N(m) is the set of variable nodes connected to the
mth check node, and M(n) the set of check nodes connected to the nth variable node.

13

3.3 Iterative Decoding

xn is the intrinsic channel information for a given VN. This probability if the VN bit n
is a 0 is given by:

P ext
m,n =

1

2
− 1

2

∏

n′∈M ′
n 6=n

(1− 2P int
n′) (3.8)

and then we calculate the LLR:

Rm,n = LLR(P ext
m,n) = ln

P ext
m,n

1− P ext
m,n

(3.9)

The total LLR for the nth VN, Ln, will be the sum of every message provide by the
connected CNs, plus its own instrinsic xn:

Ln = LLR(P int
n) = xn +

∑

n∈M(n)

Rm,n (3.10)

Below, we also add an algorithmic version of the Belief-Propagation Algorithm.

14

3.3 Iterative Decoding

1 procedure Decode (x)
2 It = 0 // I n i t i a l i z a t i o n
3 f o r n = 1 : N do
4 f o r m = 1 : M do
5 Wm,n = xn
6 end f o r
7 end f o r
8
9 repeat

10 f o r m = 1 : M do // Step 1 : Check node messages
11 f o r n ∈Mn do

12 Rm,n = log(
P ext
m,n

1−P ext
m,n

)

13 end f o r
14 end f o r
15
16 f o r n = 1 : N do // Test
17 Ln =

∑
n∈M(n)Rm,n + xn

18 cn = (1, Ln0|0, Ln > 0)
19 end f o r
20
21 i f It = Itmax or H.cT = 0 then
22 Fin i shed
23 e l s e
24 f o r n = 1 : N do // Step 2 : Var iab le node messages
25 f o r m ∈Mn do
26 Wm,n =

∑
n∈Mn

Rm,n + xn
27 end f o r
28 end f o r
29 It = It+ 1
30 end i f ;
31 u n t i l F in i shed
32 end procedure

Listing 3.1: Algorithm Belief-Propagation Decoding [9]

3.3.2 Bit Flipping Decoding

In the bit flipping algorithm only hard decision messages are exchanged between the
nodes. There is no probability, just a bit message. The check node detects if the parity
check is satisfied based on a module-2 sum of all the incoming bit messages, and then
send the result of this sum back to the variable nodes. If most of the messages received
by a variable node are different from its original value, it flips the current value.

The sparseness of the matrix H let the VN bits be spread over different parity check
equations and all of them are unlikely to contain the same set of variable node con-
nections. The basic principle is that if codeword bit is involved in a large number of
incorrect parity check equations, this bit is probably incorrect. The existance of cycles
or some similarity between the parity check equations may break this principle and

15

3.4 Decoding Performance and Limitations

therefore an incorrect bit may be considered correct, or flipped unnecessary.

It is also clear that if we have a very low Signal-to-noise Ratio (SNR) bit flippping
decoding is unpractical. However, for high SNR values, this type of decoding has been
shown to provide simplified hardware implementations, resulting in a really low hard-
ware cost, but mantaining a really good performance.

Below we add an algorithmic version of the Bit Flipping Algorithm.

1 procedure Decode (y)
2 It = 0 // I n i t i a l i z a t i o n
3 f o r n = 1 : N do
4 Wn = yn
5 end f o r
6
7 repeat
8 f o r m = 1 : M do // Step 1 : Check messages
9 f o r n = 1 : N do

10 Rm,n =
∑

n′∈Nm,n′ 6=n(Wn′ mod 2)

11 end f o r
12 end f o r
13
14 f o r n = 1 : N do // Step 2 : Bit messages
15 i f the messages Rm,n d i s a g r e e with yn then
16 Wn = (rn + 1 mod 2)
17 end i f
18 end f o r
19
20 f o r m = 1 : m do // Test
21 Lm =

∑
n′∈Nm

(Wn′ mod 2)

22 end f o r
23 i f a l l Lm = 0 or It = Itmax then
24 Fin i shed
25 e l s e
26 It = It+ 1
27 end i f
28 u n t i l F in i shed
29 end procedure

Listing 3.2: Algorithm Bit-flipping Decoding [9]

3.4 Decoding Performance and Limitations

LDPC codes can provide performance close to the Shannon limit, a high parallelizable
decoder and low error floor [10]. However, this is only obtainable using long codeword
lengths. If the codeword length is small or moderate, or high order modulation is used,
the decoding performance decreases. To address that problem, non-binary LDPC codes
have been designed for high order GF values and shown great potential. The figure
below shows a comparison between LDPC codes of different lengths:

16

3.4 Decoding Performance and Limitations

1.E-07

1.E-06

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

1 2 3 4 5

FE
R

SNR [dB]

LDPC Codes
Variable Lenght

ccsds(32,16) MacKay(96,48) WRAN(480,360) WiMax(864,720)

Figure 3.4: Comparison between LDPC codes of variable length

17

4 Non Binary Low Density Parity Check Codes

4.1 Definition

The extension of Gallagers LDPC codes over GF (2) to codes over GF (q) was first
discovered in 1998, by MacKay and Davey [3]. The basic difference from their binary
counterpart, is that in non-binary LDPC codes we are now using symbols defined over
a q value, with q = 2p, that we also call elements, instead of only having 1s and 0s, that
means we are grouping bits to symbols.

GF(64)

011001
110001
000011

25
49
3

Figure 4.1: Map bits to symbols over GF(q)

Analysing one edge of our Tanner Graph, with this scheme, we are now sending q
probability messages, related to q different elements, instead of only one probability
in the binary counterpart. It is clear that the number of necessary calculations, and
storage memory size, is way higher than before.

VN

CN

VN

CN

LDPC NB-LDPC Ex:GF(64)

[101001][1]

[101001][0]
[010010][1]
[111000][2]
[000110][3]

[001010][61]
[110100][62]
[010101][63]

Figure 4.2: Binary x Non Binary Comparison

At every VN n, given that where αk are the GF elements, i.e. GF (q) = α0, α1, ..., αq1

and y is the received symbol, we are now calculating for a received symbol a probability
for every other symbol:

∀x ∈ GF (q) : Ln(x) = ln(
P (cn = αk|y)

P (cn = α0|y)
) (4.1)

Since the BP check node operation is really a convolution of all his input messages,
therefore we have a complexity of O(q2) in a straight forward implementation. Besides
that, all the concepts used in binary LDPC codes are still valid. To define a code we will
need: (N,K) length, code rate R = K/N , the q field size, and the Hm,n parity check
matrix.

18

4.2 Advantages

4.2 Advantages

Besides a growing complexity, NB-LDPC codes have a great performance even for short
codes. They are proven to outperform LDPC codes and turbo codes [11]. Using them,
we can also have a reduced demapper complexity, because the modulated bits can be
directly mapped to symbols (using a matched modulation and field size).

4.3 Decoding

Optimal ML decoding solution is still unpractical with NB-LDPC codes. Their complex-
ity lead us to large area and low throughput hardware implementations. The state-of-
the-art techniques used nowadays are based on the BP algorithm, but using sub-optimal
techniques, reducing the decoding complexity, in order to achieve practical hardware
implementations.
First, an important technique to reduce check node complexity and memory usage will
be presented, and then two decoding algorithms: the EMS Algorithm, that is the
actual state-of-the-art algorithm used in hardware implementations, and the Syndrom
Algorithm, that is a new algorithm focusing on high order fields and possible hardware
solutions.

4.3.1 Reducing Complexity - Sub-Optimal Decoding

Considering that we have at a CN, for every connected input, a vector of size q messages.
We known that processing all those values is a complex task. A well known method [12]
to reduce the used memory and the number of calculations necessary, is to truncate the
number of input messages from q to a reduced number nm, and then also store only nm
values from every input vector.

CN

LLR GF LLR GF LLR GF

0

q-1

CN

LLR GF LLR GF LLR GF

0

n_m-1

Reduce

Figure 4.3: Input Reduction

For example if we consider a GF (64) and a dc equal to 4. In every message output,
we will need to find a minima based on qdc−1 possibilities. Selecting an nm value, for
example 13, we reduce the number of possibilities to nm

dc−1, example:

643 = 262144 (4.2)

19

4.3 Decoding

to
133 = 2197 (4.3)

It has been shown that the performance loss regarding the use of this truncation scheme
is small or negligible. In the graphic below we may see a comparison of some selected nm
values and their correspondent performance compared with the use of all the q elements:

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 2.5 3 3.5 4

FE
R

SNR [dB]

GF(64)
dc = 4
nit = 10

n_m=6 n_m=12 n_m=18 n_m=36 n_m=64

Figure 4.4: Performance comparison using different nm values

This comparison was done using the EMS algorithm with a forward backward scheme.
Analysing the figure we can see that with a nm equal to 36 we still have almost the same
performance of using all the elements. A very used value for the nm parameter is 12
since the performance loss is less than 0.5dB comparing to the full message input. If we
reduce it even further, to values lower than that, the performance loss is not negligible
and it becomes unworthy. This technique is largely used in NB-LDPC implementations.

4.3.2 Extended Min-Sum Algorithm

The EMS algorithm [13] using the Forward Backward (FWBW) scheme is the state-
of-the-art algorithm for hardware implementations. It offers a good trade-off between
hardware complexity and communications performance. The complexity is still on the
check node implementation. We can divide the decoding process in four parts: initial-
ization, VN update, CN update and permutations in Permutation Nodes (PN) .

First we have to calculate the LLR symbols for the received codeword. For a received
symbol yn in the VN n, a set of q LLR values must be calculated. We assume that all
symbols are equiprobable.

∀x ∈ GF (q) : Ln(x) = ln
(
P (yn|cv=xn)
P (yn|cv=x)

)
(4.4)

with xn = max∀x∈GF (q) P (yn|cn = x)

20

4.3 Decoding

This definition use an increasing LLR value to represent a decreasing realiability, being
that when the LLR = 0 we have the most realiable value. We denote:

- Uvp messages from V N to PN
- Upc messages from PN to CN
- Vcp messages from CN to PN
- Vpv messages from PN to V N .

In the first iteration the VNs forward the instrinsic channel values to the CNs. The
VNs outputs are directly the LLR values: Uvp[x] = Ln[x]. In the next iterations the VN
combine the instrinsic values with the dv incoming sets from the connectes CNs, so the
updated extrinsic message Uvp are calculated:

Uvp[x] = Ln(x) +
∑

t=1,t 6=p

dvVtv[x], ∀x ∈ GF (q), p = 1...dv. (4.5)

To achieve the same LLR structure, with the 0 as the most reliable and increasing value
for less reliable, a normalization must be applied of the Uvp messages, respect to the most
reliable symbol, to the output of the VN. The next step is the permutation according to
the matrix H, where hc,v is the GF element in the c, v position of the H matrix:

Upc[x] = Uvp[h
−1
c,v .x],∀x ∈ GF (q), p = 1...dv. (4.6)

Then at the CN update, we process dc edges from Upc:

Vcp[x] = min
∀permofxt

∑

t=1,t 6=p

dcUtc[xt],∀x ∈ GF (q), p = 1...dc. (4.7)

For every GF element x, all possible input permutations that mets the parity check
constrain, given by the sum of the according GF elements, must be calculated. After
that, the one with the highest reliability is chosen. This CN computation is where the
complexity of the decoder relies, given by the high number of possible elements.
The messages sent back to the VNs must be reverse permuted:

Vpv[x] = Vcp[hc,v.x],∀x ∈ GF (q), p = 1...dc. (4.8)

Before the next iteration, the decoder checks if the parity check is met based on the
most reliable of each VN n:

xn = min
x∈GF (q)

(Ln[x] +
∑

p=1

dvVpv[x]) (4.9)

Below we can see an algorithmic version of the EMS Algorithm:

21

4.3 Decoding

1 procedure Decode (X)
2 It = 0 // I n i t i a l i z a t i o n
3 f o r n = 1 : N do
4 f o r p = 1 : dv do
5 f o r x = 1 : Q do
6 Uvp[x] = Ln(x)
7 end f o r
8 end f o r
9 end f o r

10
11 repeat
12 f o r n = 1 : N do
13 f o r p = 1 : dv do
14 f o r x = 1 : Q do // Permutation o f the VN msgs
15 Upc[x] = Uvp[h

−1
c,v .x]

16 end f o r
17 end f o r
18 end f o r
19
20 f o r m = 1 : M do
21 f o r p = 1 : dc do // CN operat i on
22 f o r x = 1 : Q do
23 Vcp[x] = min∀permofxt

∑
t=1,t6=p dcUtc[xt]

24 // Reverse permutation
25 Vpv[x] = Vcp[hc,v.x]
26 end f o r
27 end f o r
28 end f o r
29
30 f o r n = 1 : N do // Get most r e l i a b l e
31 xn = minx∈GF (q)(Ln[x] +

∑
p=1 dvVpv[x])n

32 end f o r
33
34 i f It = Itmax or H.XT = 0 then
35 Fin i shed
36 e l s e
37 f o r n = 1 : N do
38 f o r p = 1 : dv do
39 f o r x = 1 : Q do // Process VN to PN msgs
40 Uvp[x] = Ln(x) +

∑
t=1,t6=p dvVtv[x]

41 end f o r
42 end f o r
43 end f o r
44 It = It+ 1
45 end i f ;
46 u n t i l F in i shed
47 end procedure

Listing 4.1: Extended Min-Sum Algorithm

22

4.3 Decoding

4.3.3 Syndrome-Based Algorithm

The Syndrome-Based check node algorithm [5] is a first approach for efficient computa-
tion of higher-order GF (q > 16). It aims to address the drawbacks of the state-of-the-art
algorithms, such as the EMS with the FWBW scheme, which are high latency and low
throughput. Up to today is has only been done for lower-order fields, but those dont
provide the gain in communications performance that we want to achieve comparing
with binary LDPC codes.

In the SYN algorithm, the basic idea is to build syndrome sets based in the inputs LLRs.
A syndrome is defined as a sum of one {GF (q), LLR} tuple from each input set. In the
figure below we can see some syndrome examples:

LLR | GF LLR | GF LLR | GF LLR | GF

0

nm-1

1

.

.

.

reliability

Figure 4.5: Syndrome Algorithm

Every VN input V carries nm messages. Kic is the set of the most reliable elements from
the ith VN connected to the CN c. We calculate the syndrome reliability R(x1, ..., xdc)
and GF element E(x1, ..., xdc) as:

R(x1, ..., xdc) =

dc∑

i=1

Vic[xi], xi ∈ Kic (4.10)

E(x1, ..., xdc) =

dc∑

i=1

xi, xi ∈ Kic (4.11)

One syndrome is then the combination of this two values:

SY N(x1, ..., xdc) = {R(x1, ..., xdc), E(x1, ..., xdc)} (4.12)

A syndrome set S contains all syndromes:

S = {SY N(x1, ..., xdc);∀x1, ..., xdc ∈ Ktc} (4.13)

If we analyse the way the syndromes are calculated, we can see that it breaks the basic
BP principle, which states that every output must not be correlated with his own input,
as we have seen in chapter 3. In that case, an additional step to decorrelate every input
and output is needed:

Ri(x1, ..., xdc) = R(x1, ..., xdc)− Vic[xi], xi ∈ Kic (4.14)

23

4.3 Decoding

Ei(x1, ..., xdc) = E(x1, ..., xdc)− xi, xi ∈ Kic (4.15)

With that we will have a dedicated syndrome set for every output i, that has no corre-
lation with its own input i:

SY N i(x1, ..., xdc) = {Ri(x1, ..., xdc), E
i(x1, ..., xdc)} (4.16)

Si = {SY N i(x1, ..., xdc);∀x1, ..., xdc ∈ Ktc} (4.17)

Once that is done, we sort the syndromes by their LLR values and use the nm most
realiable from each set as their output. With the explained algorithm, we may think of
an architecture as follows:

Syndrome Calculator

Decorrelator Decorrelator

Sorter Sorter

...

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm nm

Figure 4.6: SYN CN Architecture

The problems with this presented algorithm without further reductions is that we have
too many possible syndroms to calculate, resulting in big sets, and therefore alot of values
to sort in order to find the most reliable values. In the next sections, two approaches to
reduce the complexity of the algorithm will be presented.

4.3.3.1 Reducing Syndrome Set To compute the output, we use only a part of the calculated
syndroms, making all the other calculations redundant. The idea here is to reduce the
number of syndromes separating the ones that have a high reliability associated from
the others with a low reliability. We build dc + 1 deviation sets Di and separate the
syndrome sets in sub-sets:

S = ∪dci=0Di (4.18)

In each sub-set, every syndrome may only deviate in exactly i elements from the most
reliable element. The subset D0 will contain only one syndrome, based on all the most
reliable elements. In that way, it is easier to access syndroms with higher reliability.
After some observations, it has been seen that syndromes belonging to higher deviation
sets, such as D3 and D4 rarely contribute to the generation of the output. That allows
us to limit the number of sub-sets to the ones with low amount of deviations.

24

4.3 Decoding

LLR | GF

0

LLR | GF LLR | GF LLR | GF

LLR | GF LLR | GF LLR | GF LLR | GF

LLR | GF LLR | GF LLR | GF LLR | GF

1

2

0

1

2

0

1

2

D0

D1

D2

Figure 4.7: Di Sets - Syndrome examples

Another parameter introduced is a maximum allowed distance di from the most reliable
element for everyDi set. As we know that the higher position syndromes usually have low
reliabilties we limit the sets to lower values. Another restriction is used, the higher the
deviation i, the lower the maximum distance permitted from the most reliable element,
that is d1 ≥ d2 ≥ ... ≥ ddc. The size of the Di can be calculated as follows:

|Di| =





(
dc

i

)
.(di)

i, if di ≥ 1; i > 0

1, if i = 0

0 else

(4.19)

0

LLR | GF

1

nm-1

d1

d2

LLR | GFLLR | GFLLR | GF

Figure 4.8: Distance technique

Combining both techiniques we are able to calculate only the most reliable syndromes
and remove unreliable ones. Using some parametrization, and calculating only D0, D1,
and D2 with d0 = 0, d1 = nm − 1, d2 = 2, dc = 4 and nm = 13 for a GF (64) code; we
reduce the size of the set S from 28561 to 73.

25

4.3 Decoding

For the case that the algorithm functionally is not clear yet, an illustrated example of a
single iteration is presented in the appendix. Below we present an algorithmic version
of the Syndrome algorithm:

26

4.3 Decoding

1 procedure Decode (X)
2 It = 0 // I n i t i a l i z a t i o n
3 f o r n = 1 : N do
4 f o r m = 1 : dv do
5 f o r x = 1 : nm do // best n m symbols
6 Unm[x] = Ln(x)
7 end f o r
8 end f o r
9 end f o r

10
11 repeat
12 f o r m = 1 : M do
13 f o r i = 1 : dc do // CN operat i on .

14 Ri
m(x1, ..., xdc) =

∑dc
n=1 Unm[xi]− Unm[xi], xi ∈ Knm

15 Ei
m(x1, ..., xdc) =

∑dc
n=1 xi − xi, xi ∈ Knm

16 Si
m = {Ri

m, E
i
m}

17 Sort(Si
m)

18 Vmi = best nm o f Si
m

19 end f o r
20 end f o r
21
22 f o r n = 1 : N do // Get most r e l i a b l e
23 xn = minx∈GF (q)(Ln[x] +

∑
p=1 dvVpv[x])n

24 end f o r
25
26 i f It = Itmax or H.XT = 0 then
27 Fin i shed
28 e l s e
29 f o r n = 1 : N do
30 f o r m = 1 : dv do
31 f o r x = 1 : nm do // VN operat i on
32 Unm[x] = Ln(x) +

∑
t=1,t6=m dvVmn[x]

33 end f o r
34 end f o r
35 end f o r
36 It = It+ 1
37 end i f ;
38 u n t i l F in i shed
39 end procedure

Listing 4.2: Syndrome Algorithm

27

5 Hardware Architecture

Efficient hardware design is always a trade-off between communication performance,
flexibility, area and power consumption. Considering a NB-LDPC decoder, the check
node function accounts for the largest part of the decoders complexity.

5.1 Existing Solutions Analysis

Before the presentation of the hardware, we make an introduction to the pros and cons
of the existing non-binary decoding solutions up to today:

- EMS Decoder: [13]
Advantages:
Good performance.
Performs even better than the BP decoder in the error floor region.

Disadvantages:
Bottleneck of the decoder complexity is the check node update, complex implementation.

- Min-Max Decoder: [14]
Advantages:
Throughput is improved compared to the full-complexity Non-Binary Min-Sum decoder
Possible to perform a block implementation

Disadvantages:
Throughput is only slightly better than EMS decoder.
Looses more performance than the EMS decoder in the waterfall region.
Lack on quantization robustness (good performance with fixed quantization).

- Symbol Flipping Decoder: [15]
Advantages:
Increadibly low complexity hard decoding.
Requires minimal storage for the message values.
Could be an alternative to hard decoding of Reed-Solomon codes.

Disadvantages:
Large performance loss in the waterfall region : 1.5 dB to 2.5 dB for very small block-
lengths.
More research is needed to further improvement.

- Stochastic Decoder: [16]
Advantages:
Simple decoder.
Can achieve good performance.

Disadvantages:
Unpractical because of very high latency.
No hardware implementation proposed yet.

28

5.2 Optimizing Area

None of those algorithms scale well with a growing q for a fixed complexity. How to
achieve that with a good performance is the Holy Grail of Non-Binary Decoding.

We need to find a way to reduce the check node computation complexity, maintaining
the state-of-the-art performance, and achieving a reduce area architecture.

First the techniques and decisions used to reduce the hardware complexity will be pre-
sented, and in further sections, a detailed hardware overview of how every module was
designed is given.

5.2 Optimizing Area

Analysing the architecture based on the SYN CN algorithm, some problems might be
noticed. At the syndrome calculator module, we have a high register use to store all the
calculated syndromes. Before updating the outputs we have many sorters, one for each
connected VN, and the size of every one of those sorters is big, based on the number
of syndromes we are calculating and getting the nm best of them for each connected VN.

To reduce the number of sorters and registers, a scheme that uses only one sorter at the
input and then calculate syndromes only for a ns number of values can be used. The
idea is shown in the picture below:

Syndrome Calculator

Decorrelator Decorrelator

Sorter Sorter

...

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm
S

Si Sd_c

Syndrome Calculator

Decorrelator Decorrelator

Sorter

...

V(1)
...

V(d_c)

V(d_c)V(1)

nm
S

ns

Figure 5.1: Moving the sorter

With that scheme the number of sorters is reduced to one, and the size of the syndrome
calculator module is also reduced, because now it will have to calculate and store syn-
dromes only based on already sorted LLR values.

However, if we analyse the decoder as a whole, we may see that an exact sorting is
not needed, because once the VN receive all the a posteriori messages from the CNs, it
will need to resort all of them anyway. Therefore we adapt the sorter to a sub-optimal
sorting.
Based on this analisis, to reduce the size of this sorter module even further, we use a
probe technique, distributing probes over the CN inputs and then sorting values based

29

5.2 Optimizing Area

on those probes. For a given input of nm size, we distribute a certain number of probes
over the input messages. With those probes, we build sets of messages, grouping the
neightboring values to every probe. We sort all those sets using only the LLR value of
the probe associated to the set.

If we reduce the parallelization of this sorter here, we can reduce the size even more
simply by sorting only a single group from every VN input set on every clock cycle, as
shown below. Combined with the probe scheme, we are able to reduce the sorting size
from an initial nm.dc to only dc. In the picture, the grey blocks are the selected probes,
and we can see that a group from every connected VN is analysed in every clock cycle.

0

 1st CC

LLR | GF

nm-1

2nd CC

3rd CC

4th CC
}
}
}
}

Figure 5.2: Probe scheme

In this stage the syndrome calculator is reduced, but it still calculate syndromes in
parallel. One way to reduce the area of this, is to reduce the sorter input to only one
message, sequentializing the syndrome calculator module. Here we have the through-
put/area trade-off, but since we are optimizing the area, and we were still able to achieve
a good throughput (see in the results section), it is worth making this change.

30

5.2 Optimizing Area

Sorter

Syndrome Calculator

V(1)(nm) ...
V(d_c)(nm)

Sorter

Syndrome Calculator

V(1)(nh) ...
V(d_c)(nh)

ns 1

D2D1 D2D1

Figure 5.3: Sorter output reduce

Since we are now sequentializing the processment, we will have a D1 value processed in
every clock cycle. The D2 values in counterpart, depend on two sorted values. We can
not know in advance the actuall sorting order of D2. For the case when a D1 and a D2

are calculated in parallel, we need an additional sorter at the output to get the best of
those values first.

Analysing D1 syndromes beeing calculated based on the same VN input m, it can be
noticed that those calculated syndromes share the same values from the other inputs
(the most reliable) and are beeing calculated again for every syndrome.

0

LLR | GF

nm-1

D1,m,1

LLR | GFLLR | GFLLR | GF

D1,m,3

D1,m,5

Figure 5.4: Common Syndromes

To remove those redundant calculations, we pre calculate them in a newly added module,
and store this values to be used in the syndrome module. We pre-calculate dc values for
every D1 set, and dc!

(dc−2)!.2 for all the D2 possibilities. In that way we can reduce a little
further the size of the syndrome calculator module.

31

5.2 Optimizing Area

Sorter

Syndrome Calculator

V(1)(nh) ...
V(d_c)(nh)

1

Pre Calculations

V(1)(0)
...
V(d_c)(0)

Sorter

D2D1

Figure 5.5: Pre Calculations Module

Combining that last change together with what we had, and the additional sorting at the
output, we now have a new hardware architecture. If we analyse it, we can see that now
we have two small sorters, comparing with the first architecture, a low area syndrome
calculator with reduced register use, and reduced wiring needed to the decorrelator
modules, because of the consideration of values based only in the most realiable one.
With that we have addressed and solved all the problems we had in the first architecture.

Sorter

Syndrome Calculator

V(1)(nh) ...
V(d_c)(nh)

1

Pre Calculations

V(1)(0)
...
V(d_c)(0)

Sorter

D2D1

Decorrelator Decorrelator...

D0

V(d_c)(nh)V(1)(nh)

Figure 5.6: Final Hardware

Now we give a more detailed view about the tools used and how the simulation and
implementation process were done.

32

5.3 CSE Simulation Environment

5.3 CSE Simulation Environment

The Creonic Simulation Environment (CSE) [17] is a communication chain simulation
environment developed by Matthias Alles and Timo Lehnigk-Emden. It was developed
using a C++ programming language, for maximum portability and executing speed,
along with the ITPP library for mathematical calculations. Basically, it simulates a
communication chain and uses the object orientation paradigm to configurate it, letting
the user create new modules, that are encapsulated classes, for every part of the chain.
Every module is configured using a XML file, making it easier to make various simulations
without the need to recompile the code. After a full iteration is done, the Statistic Error
Rate module compares the input and the output files and generates a detailed XML file
with the simulation results.

Encoder Mapper

Channel

XML

Source

Decoder Demapper
Sink

Output File

Error Rates

BPSK
64QAM
16QAM ...

AWGN ...

NBLDPC
LDPC
CTC ...

Figure 5.7: CSE Communication Chain

Accordingly, the first process before initiating a real hardware implementation was to
develop a NB-LDPC decoder module for the CSE, based on the SYN algorithm. All ideas
have been checked first on the software model before being implemented in hardware.
Along with the SYN algorithm decoder module, we had already coded decoders based
on other algorithms, to make a fair comparison between the proposed implementation
and the already well-known state-of-the-art algorithms.

5.4 Hardware overview

The hardware implementation was done using the VHDL language and the Xilinx ISE
Design Suite tools. In the figure below we present an overview of the hardware imple-
mentation based on the architecture described. The pipeline registers, the size of every
bus used in the architecture and also the size of the inputs and outputs can be noticed

33

5.4 Hardware overview

in the figure.

Figure 5.8: Hardware Overview

Before further explanation, we may first define the parameters used for this implemen-
tation, as we have optimized it to those. They are:

Code Parameters: Implementation and Syndrome Parameters:
- GF (64) - input/output of 3 elements per clock cycle
- dc = 4 - best 6 probes sorted, with a sequential output
- dv = 2 - 18 D1 values
- nm = 13 - 3 D2 values
- itmax = 10

In the figure 5.8, 3 inputs and 2 outputs can be seen:
- the initial nm = 13 value is divided here. We get the most reliable elements from every
VN in a separated max elements vector and the other values at the input vector. We
consider an already sorted input, so in this other vector the values are already sorted
based on the LLRs.
- the decision to use only an input of three messages per VN per clock cycle was based
on a decision already presented in the Optimizing Area section.
- the probe input vector is only a separated signal derived from the input, it is not part
of the decoder input, for the sake of reducing size at the sorter and then passing to it
only one probe from every VN.
- matching the input parallelization, at the output we also have three messages for every
VN.
- additional to this messages, we also have a valid bit to every one of them, in order to
signalize to every VN if a message is valid or not.

The basic functionally of the hardware goes as described:
In the first clock cycle, we get the 3 first input messages from every VN at the check
node input. A separated input signal for the most realiable message of every VN was
created.In the next three clock cycles, we do the same thing, until we receive all the
messages. Every related probe from this messages will go to the Probe Sorter module
and all the messages will be stored at the Value Selector module. Once the Probe Sorter
sorts a probe, the address of this probe is passed to the Value Selector and then the
messages related to the sorted probe goes further in the chain. The Subvalue Calculator
module was shifted to the right just to reduce the number of pipeline registers needed.
With the sub-calculations made by this module and the sorted messages, the modules
Dev1 Syn and Dev2 Syn will be able to calculate the syndrome values. After that, those

34

5.4 Hardware overview

values are passed to the Output Updater module, where they are re-sorted and validated
based on which input has generated this messages (BP principle).

To optimize how many calculated syndromes should be used at the output, alot of
testing were done. We do not want to have an excess of calculations, because that would
lead to a huge hardware, but we also do not want to lose performance, due to a reduced
number of calculations. The best trade-off we found was to use the best 6 probes, out
of the 16 (remember, we are using 4 probes distributed over 4 inputs), and with those
we build the 6 possible D1 syndromes and 4 D2 syndromes. Considering the 3 message
output parallelization, chosen due to other optimizations, one may think of using all
those messages resulting in a total of 10 clock cycles output. Instead of doing that, after
analysing the contribution of the messages in the late clock cycles, we limit the output
to 7 clock cycles, since after simulations it has been seen that the last 3 messages dont
contribute that much. That results in a total of 21 syndromes.

5.4.1 Probe Sorter

To clarify the ideas behind this module we may first consider the full input set. Since
we had setted nm = 13 and dc = 4 over a GF (64), we have then, a total of 4 ∗ 12 = 52
inputs at the check node. Using the already presented probe scheme, we found that
grouping the messages 3 to 3 was a good trade-off, between size of the sorter and result-
ing performance. That leads us to 4 probes per VN input, and a total of 16 probes to
be sorted. Just to remember, we consider the VN inputs at the CN as sorted, then the
first message from every VN is the most reliable element, which do not need to be sorted.

However, sorting 16 numbers at once result in an undesired sorter size. An analysis of
the Batcher Odd-Even[18] sorting algorithm for sorting networks lead us to networks
with depth O(log2 n) and size O(n. log2 n)), and the following table:

n Depth Length

1 0 0
2 1 1
3 3 3
4 3 5
5 5 9
6 5 12
7 6 16
8 6 19
9 7 25
10 7 29
11 8 35
12 8 39
13 9 45
14 9 51
15 9 56
16 9 60

Table 5.1: Sorting complexity

35

5.4 Hardware overview

After the hardware considerations, regarding number of registers through the sorting
stages, number of comparators and total LUTs generated for each sorter size, we decided
to use a n = 4 and then use 4 clock cycles to read all the inputs. With that, the wiring
and routing at the check node input and outputs was also reduced, because instead of
having 64 inputs, we are now using 12 instead. After the sorting initiation, we have
a one clock cycle delay, and after that we output 1 sorted probe per clock cycle, until
the total number of probes are sorted. Another implementation reducing the sorting
even further and using 2 clock cycles per sorted probe was investigated, however, the
throughput loss regarding that implementation was undesirable, so we decided not to
use it.

D Q

4x1
sorter

D Q

D Q

D Q

min_4
probe_input(4)

reg_0_3

reg_4_7

reg_8_11

reg_12_15

input_ctrl
output_ctrl

probe_addr

4

4

4

4

4

LLR/ADDR
high LLR

low LLR

4 4

Figure 5.9: Probe Sorter

As shown in the figure 5.9 the 4 input messages are sorted, and then stored accordingly,
from the lowest LLR (most reliable message) to the highest (less reliable). One message
from every register is taken and then the most reliable from those is selected to the
output. We must do this because we cannot garantee that the first probes from every
VN are better than the other probes from the other VNs, it is usual that one VN can
have real good messages and other real bad messages. At the output we have the address
of the sorted probe, which will be sent to the Value Selector module.

5.4.2 Value Selector

The Value Selector module basically contains many registers to store all the input mes-
sages (LLRs and GF elements) and a selector, to output the desired messages related to
the sorted probe address, coming from the Probe Sorter module. After 4 clock cycles all
the registers received the input messages, and they remain there until the next decod-
ing iteration starts. The probe address coming from the Probe Sorter module have two

36

5.4 Hardware overview

fields: one says to which input the probe belongs, and the other which probe is that,
from the 4 probes of this particular input. Once that selection is done, the three input
messages related to this probe address are sent to the output.

D Q

input(1..4)(1..3)

input_reg(1)(12)

input_ctrl

probe_addr

sel_msgs(0)

sel_msgs(1)

sel_msgs(2)

D Q

D Q

input_reg(2)(12)

input_reg(3)(12)

input_reg(4)(12)

D Q

Stored input msgs

LLR value / element0

11

3

3

3

3

12

12
12

12

Figure 5.10: Value Selector

5.4.3 Subcalculations Module

As already explained, we have some syndromes that share the same calculations, there-
fore this module have been designed. It calculates subvalues for all possible combinations
of deviations that we can have, based on the dc = 4 input. That is 4 D1 combinations,
one for every input, and 6 D2 combinations, using the inputs combined 2 to 2. This
calculations are only based on the GF element of every message and are made using
XOR combinations.

37

5.4 Hardware overview

max(0)

max(1)

max(2)

max(3)

dev2_0_1

dev2_2_3

dev0

dev1(0)

dev1(1)

dev1(2)

dev1(3)

dev2_0_2dev2_0_3

dev2_1_3

dev2_1_2

Figure 5.11: Subcalculations module

5.4.4 Dev1 Syndrom and Dev2 Syndrom

Those two modules calculate the syndromes, using the sorted messages and the subcal-
culations performed.

The Dev1 Syndrome module selects the subcalculated value to be used, based on which
input the messages came from, and then with this value calculates the syndromes. This is
the calculation for the GF element of each syndrome, the LLR values calculation however
are not needed, because every D1 syndrome is based in only one message deviating from
the most reliable values (LLR = 0), so the LLR of this message is used directly.

sel_msg(0).element

sel_msg(1).element

sel_msg(2).element

dev1(0).element

dev1_sub(0...3)

sel_msg.edge

dev1(1).element

dev1(2).element

4

sorted
inputs

Figure 5.12: Dev1 Syndrome

38

5.4 Hardware overview

With the D2 syndromes, it is a little different, because every D2 is based on two values
that deviates from the most reliable ones. That means we need two sorted probes,
before we can do any calculation. It can also be the case that the sorted probes are
from the same input. If that is the case, a D2 value calculated base on those probes
is not valid, and must be not considered in the decoding. Having that in mind, we
see that we can not be sure when will we have a valid D2 to be outputed, if we have
any, because it can be also the case that all the 4 considered probes come from the
same input. Regardless of that, what we do is store the 4 considered probes, and
output every combination of them, using valid bits to signalize the Output Updater
when the D2 value is valid or not. A smart way to do that is just use a XOR with
the source address from both values, resulting in 0 in case they are from the same source.

As in the D1 module, the subcalculations values are selected based on the source of every
message (note that we have 2 different sources), and then the element calculations are
done combining the subcalculation with the registered inputs. In this module we also
need three adders, to calculate the resulting LLR value for every combination.

dev2(0).element

dev2(1).element

dev2(2).element

ADD

ADD

ADD

dev2(0).value

dev2(1).value

dev2(2).value

D Q

D Q

D Q

D Q

dev2_sub(0..5)

sel_values(0..1)

ctrl

ctrl

ctrl

el_sel

edge_sel

val_sel

input_ctrl

2

2

2

2

Figure 5.13: Dev2 Syndrome

5.4.5 Output Updater

The basic idea of the Output Updater is to check if the incoming syndromes are valid
for each connected VN, decorrelate them regarding the BP principle, and output them
accordingly. One may see that we can have D1 and D2 messages comming in parallel,
so since we use only a 3 messages output parallelization it would be as simple as getting
the best out of those 6 incoming messages. The problem, as seen in the Dev2 Syndrome
module, is that we are not sure in which clock cycle will we have a valid D2.

So the picture is: we have a D1 every clock cycle, and we may also have D2. Accordingly,
this scheme was used: in case we have a valid D2 at the input, we sort both D1 and
D2, totalizing 6 syndromes, the best 3 of those we use as output in this clock cycle, the

39

5.4 Hardware overview

other 3 we store in a register and sort with the next incoming messages. In case we
have at two sequential clock cycles both valid D1 and D2 inputs, the D1 is selected to
be sorted with the rest at the second clock cycle, because it is probably more reliable
than the D2. Remember that we have to aim for the most reliable syndromes. Once we
have at least one sorted value, the rest of this sorting will be always be resorted with the
incoming values in the following clock cycles, to keep the most reliable messages being
sequentially outputed.

Before outputting the syndromes, we must also decorrelate them, to keep the uncorre-
lated output, regarding the belief propagation principle. It is done by using the most
reliable values from the particular VN as input of a XOR with the incoming messages.
A message is valid for a particular VN if this VN has not contributed for its generation.
To set the valid bits, we use the source bit of a syndrome as input of an inverter.

2x3

dev1(0...2)

dev2(0..2)

dev0

max_el(0) dev0_out(0)

D Q

dev2_edge

max_el(x)

ctrl

ctrl

D
Q

max_el(1)

max_el(2)

max_el(3)

dev0_out(1)

dev0_out(2)

dev0_out(3)

ctrl

rest_reg(0)

rest_reg(1)

3

3

3

3

output(x)(0).element

output(x)(1).element

output(x)(2).element

valid(x)(0)

valid(x)(1)

valid(x)(2)

elements

3

3

source

output(x)(0).value

output(x)(2).value
output(x)(1).value

3
values

for every connected VNx range 0...3

sorter

Figure 5.14: Output Updater

40

6 Results

In this section, we analyse the implementation results of the check node architecture
detailed in the previous section and compare it to the state-of-the-art architectures used
up to today. All the synthesis results presented here were made using a Xilinx Virtex
5 FPGA device XC5VLX50T with speed grade -3. All the results were obtained after
Place and Route.

6.1 Communications Performance

In the figure below we analyse the communications performance of the developed check
node compared to the state-of-the-art FWBW CN. To a fair comparison, the code pa-
rameters are exactly the same. As observed, for a signal-to-noise ratio from 2 to 4.5,
we were able to achieve the same performance of the forward backward scheme. For a
SNR of 5 and 5.5 we were able to achieve an even better performance. After this SNR
range, the algorithms are in the so called error-floor range, so higher SNR values were
not considered. The y axis of the figure refers to Frame Error Rate (FER)

1.E-05

1.E-04

1.E-03

1.E-02

1.E-01

1.E+00

2 2.5 3 3.5 4 4.5 5 5.5

FE
R

SNR [dB]

GF(64)
nm = 13
dc = 4
nit = 10

FWBW Syndrom

Figure 6.1: Communications Performance

6.2 Area Analysis

Regarding the area comparison, it must be said that the same number of quantization
bits was the same in both implementations (6 bits for LLR values and 6 bits for element
representation). The syndrome implementation uses 41% of the register area and 48%
of the Lookup Table (LUT) area, comparing to the FWBW implementation.

41

6.3 Throughput Analysis

FWBW Syndrome

Registers 2426 1002
LUTs 1872 898

Total area 4298 1900

Table 6.1: Area comparison

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

FWBW Syndrom

Area Comparision

Registers Luts

Figure 6.2: Area comparison

6.3 Throughput Analysis

In the throughput analysis, we first consider the raw element throughput, and second, the
throughput per area unit achieved. In the first, our architecture surpasses the FWBW
architecture in more than 6 times, and in the latter, the number goes over 14 times.

FWBW Syndrome

Frequency (Mhz) 123.183 259.336
Throughput (Mel/s) 123.1 778.68
Throughput/area (Kel/s/unit) 28.64 409.8

Table 6.2: Throughput comparison

42

6.4 Scaling the architecture

0

100

200

300

400

500

600

700

800

900

FWBW Syndrom

Mel/s Throughput element

Figure 6.3: Throughput Comparison

6.4 Scaling the architecture

Last, but not least, another architecture has been develop, to check how the presented
syndrome architecture scales in terms of area and throghput. In the results we found
out that we can have an almost linear increase in throughput and area.

Syndrome Scaled Syndrome

Registers 1002 2200
Luts 898 2077
Frequency (Mhz) 259.336 263.351
Throughput (Mel/s) 778.68 1592
Throughput/area (Kel/s/unit) 409.8 371.2
Latency (CC) 12 6

Table 6.3: Sorting complexity

43

6.5 Final results

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Throughput [Mel/s] Area [LUTS+Regs]

Scaled Architecture Comparison

Reduced Syndrom Scaled Syndrom

Figure 6.4: Scaled architecture

6.5 Final results

In the table, a brief overview of the obtained results is shown. We were able to develop
a check node architecture with greatly reduced area, mantainig the good performance,
and achieving a way higher throughput than the actual state-of-the-art architecture.

EMS-FWBW Syndrome Scaled Syndrome

Registers 2426 1002 2200
Luts 1872 898 2077
Frequency (Mhz) 123.183 259.336 263.351
Throughput (Mel/s) 123.1 778.68 1592
Throughput/area (Kel/s/unit) 28.64 409.8 371.2
Latency (CC) 21 12 6

Table 6.4: Final results

44

7 Conclusion

In this thesis, a new non-binary LDPC check node hardware architecture has been
presented. It is based on the SYN CN Algorithm, which has been shown to provide ef-
ficient hardware implementations, and is one alternative to the commonly used FWBW
approach. This is the first approach for efficient parallel computation for a code based
on a higher order field q > 64. It is area efficient, has a high throughput and low latency.

In a direct comparison with the FWBW scheme, the presented hardware has less than
half the area, with over six times the throughput of the FWBW. Regarding the com-
munications performance, our hardware deliver state-of-the-art performance, and for
particular signal-to-noise ratio values, it can even exceed it.

For the presented architecture, the used parameters were chosen wisely, based on the
code parameters. If any changes in the code parameters must be done, algorithmic and
hardware modifications might be needed to achieve the same results presented in this
thesis.

7.1 Future Work

Having in mind the upcoming technologies, higher modulation will have to be used in
future communication schemes. Therefore it would be interesting to extend this idea and
investigate a check node implementation considering even higher order fields, q = 256
for example.

As it has been said, this was a first approach to efficient high-order field computation,
the performance of the syndrome algorithm must be further investigated for growing
modulation and data rates.

Up to today, no algorithm that scale well with a growing q number for a fixed complexity
was presented. A complexity grow in log q instead of q is what is desired. How to
achieve that, keeping the state-of-the-art performance, is the Holy-Grail of Non-Binary
Decoding.

45

8 Appendix

8.1 Galois Field Arithmetic

Finite field arithmetic is widely used in a variety of applications such as linear block
codes and cryptography algorithms. It differs from standard arithmetic for the fact that
there is a limited number of elements in that field, and every operation performed over
it, result in an element within. The number of elements that limits those fields, must
be given in the form pn, where p is a prime number, and n is a positive integer. The
integer n defines the dimension of the field, and the prime p the characteristic.

The finite field pn is also called Galois Field - GF (pn), in honor to the founder of
finite field theory, variste Galois. We are particular interested in the family of binary
fields with size 2m, due to the binary representation of numberic values used in our
applications. Here we may see that for the case of a GF (2), the addition will result in
an exclusive OR (XOR) operation and the multiplication in an AND operation.

Ideas from this section are based on the work [17].

8.1.1 Definition

A polynomial p(x) with grade grad p(x) is coefficients out of a prime field GF (p) is called
irreductible over GF (p) if it can not be constructed by multiplication of polynomials
with lower grade also having only coefficients out of GF (p).

We define an extension field GF (pm) over the prime field GF (p): assume an irreductible
polynomial p(x), with grad p(x) = m, over GF (p). Each of the pm − 1 lower graded
polynomials with coefficients out of GF (p) has an inverse polynomial. Therefore the set
of all these pm − 1 polynomials inlcuding the zero element, with the two operations of
addition and multiplication span a field GF (pm) containing pm elements. For the sake
of our applications we use p = 2, GF (2m).

8.1.2 Construction

An element α out of the field pm is called root of p(x) if p(α) = 0. The polynomial
p(x) = p0+p1.x+...+pm.x

m is called a primitive polynomial if a element α is root of p(x).

For each field GF (p) and each number m ∈ N at least one primitive polynomial
p(x) = p0 + p1.x+ ...+ pm.x

m exists. If more than one primitive polynome exists, they
span the same extension field, so knowing only one of them is enough.

Assuming GF (24) and the primitive polynomial p(x) = x4+x+1 with primitive element
α:

p(α) = α4 + α+ 1 := 0 => α4 = α+ 1

46

m Primitive Polynomial

1 x+ 1
2 x2 + x+ 1
3 x3 + x+ 1
4 x4 + x+ 1
5 x5 + x2 + 1
6 x6 + x+ 1
7 x7 + x+ 1
8 x8 + x6 + x5 + x4 + 1

Table 8.1: Primitive polynomials for GF (2m)

Step Power of α Corresponding Polynomial

1 −∞ 0
2 0 1
3 1 α
4 2 α2

5 3 α3

6 4 α4 mod (α4 + α+ 1) = α+ 1
7 5 α5 mod (α4 + α+ 1) = α2 + α
8 6 α6 mod (α4 + α+ 1) = α3 + α2

9 7 α7 mod (α4 + α+ 1) = α4 + α3 mod (α4 + α+ 1) = α3 + α+ 1
10 8 α8 mod (α4 + α+ 1) = α4 + α2 + α mod (α4 + α+ 1) = α2 + 1
11 9 α9 mod (α4 + α+ 1) = α3 + α
12 10 α10 mod (α4 + α+ 1) = α4 + α2 mod (α4 + α+ 1) = α2 + α+ 1
13 11 α11 mod (α4 + α+ 1) = α3 + α2 + α
14 12 α12 mod (α4 + α+ 1) = α4 + α3 + α2 mod (α4 + α+ 1) = α3 + α2 + α+ 1
15 13 α13 mod (α4 + α+ 1) = α4 + α3 + α2 + α mod (α4 + α+ 1) = α3 + α2 + 1
16 14 α14 mod (α4 + α+ 1) = α4 + α3 + α mod (α4 + α+ 1) = α3 + 1

Table 8.2: Generating all elements for GF (24)

8.1.3 Representation

There are four different ways to represent such extension field elements: exponential,
polynomial, components and decimal values.

Exponential representation: all elements except the zero element of an extension field
can be generated by exponentiation of the primitive element α. If the primitive element
α and the primitive polynomial p(x) are known we can represent each element by the
giving the related power of the element α.

Component representation: based on the polynomial representation, the unique coeffi-
cients of every polynomial is represented as a 1 if it is present or a 0 if it is not, using a
binary representation of size m.

47

Decimal representation: changing the primitive element α in a polynomial representation
to the prime number p of the field GF (p), we can obtain an unique decimal value for
each element.

Exponents Polynomials Components Decimal Values

−∞ 0 0000 0
0 1 0001 1
1 α 0010 2
2 α2 0100 4
3 α3 1000 8
4 α+ 1 0011 3
5 α2 + α 0110 6
6 α3 + α2 1100 12
7 α3 + α+ 1 1011 11
8 α2 + 1 0101 5
9 α3 + α 1010 10
10 α2 + α+ 1 0111 7
11 α3 + α2 + α 1110 14
12 α3 + α2 + α+ 1 1111 15
13 α3 + α2 + 1 1101 13
14 α3 + 1 1001 9

Table 8.3: Representation of GF (24) elements

8.1.4 Addition and Multiplication

The mathematical operations needed to perform our calculations in non binary LDPC
codes are addition and multiplication, thus, we define them as follows.
Addition ⊕ of extension field elements is based on the addition of the corresponding
prime field elements out of GF (p):

x⊕ y := (xm−1 ⊕ ym−1, ..., x1 ⊕ y1, x0 ⊕ y0)
In the case of the binary prime field GF (2), an addition is a bitwise exclusive OR (XOR)
of the two elements. Subtraction has the same result.
Multiplication ⊗ of extension field elements in exponenetial representation simply means
the addition of the exponenets modulo pm − 1:

x⊗ y := (x.y)modp(α)

8.2 Syndrome Algorithm Execution Example

In this appendix we present an execution example of the syndrome algorithm, to clarify
how this algorithm works, for the case the explanation given in chapter 4 was not enough
for a clear understanding.

Consider that are using a NB-LDPC code over GF (64), with nm = 13 and dc = 4. In
the figure below we can see the input of every connected VN at the check node, and
the sorted initial LLRs provided from every connection. Have in mind that every one of
this LLR values have with it a correspondent GF element, we are not showing them in

48

the figures because the algorithm decisions are based on the LLRs and therefore we can
simplify the images.

28

28

28

22

21

20

20

10

10

10

9

1

0

LLR

21

19

14

15

15

13

13

11

11

8

8

2

0

45

43

43

43

41

37

32

25

25

28

19

14

0

22

20

20

19

17

15

15

11

11

11

7

3

0

LLR LLR LLR

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 8.1: Input of the check node

One can remember that we use the probe scheme presented on chapter 5. We group the
inputs messages with their neighbours and make the sorting based only on one value of
each group to simply the sorting.

}

28

28

28

22

21

20

20

10

10

10

9

1

0

LLR

21

19

14

15

15

13

13

11

11

8

8

2

0

45

43

43

43

41

37

32

25

25

28

19

14

0

22

20

20

19

17

15

15

13

11

11

7

3

0

LLR LLR LLR

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 8.2: Probe scheme

Based on this probes we select the most reliables of them (lowest LLR values). In this
case we have chosen 8. It is also important to note from which input every sorted group
came from.

49

10

9

1

8

8

2

11

7

3

20

10

10

13

11

11

15

13

11

15

15

13

28

19

14

In{0} In{1} In{3} In{0} In{1} In{3} In{1} In{2}

Figure 8.3: Sorted groups of messages

We are considering here only values for deviation 1 and deviation 2. We calculate Dev1
values for every one of those sorted groups. As shown in chapter 4, a Dev1 value is
calculated summing one of each sorted value with the most reliable values from the
other inputs. Since we use LLR = 0 for the most reliable values, there is no need to
make any sum for Dev1.

28

28

28

22

21

20

20

10

10

10

9

1

0

LLR

21

19

14

15

15

13

13

11

11

8

8

2

0

45

43

43

43

41

37

32

25

25

28

19

14

0

22

20

20

19

17

15

15

11

11

11

7

3

0

LLR LLR LLR

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 8.4: How a dev1 is calculated

The deviation 2 calculation is a bit different. We use 2 sorted groups and calculate three
values, as shown in the figure below, for every possible combination. We will have 2
inputs contributing for one Dev2 calculation, if 2 sorted groups are from the same input,
their Dev2 calculation is not valid.

50

28

28

28

22

21

20

20

10

10

10

9

1

0

LLR

21

19

14

15

15

13

13

11

11

8

8

2

0

45

43

43

43

41

37

32

25

25

28

19

14

0

22

20

20

19

17

15

15

11

11

11

7

3

0

LLR LLR LLR

12

11

10

9

8

7

6

5

4

3

2

1

0

11

9

3

Input{0,1}

Figure 8.5: How a dev2 is calculated

In this case we considered 4 sorted groups to make Dev2 calculations. Therefore we will
have 6 possible combinations. Below we show all the generated values:

11

9

3

12

8

4

19

11

11

11

9

5

18

12

12

17

13

13

10

9

1

8

8

2

11

7

3

20

10

10

In{0} In{1} In{3} In{0}

In{0,1} In{0,3} In{0,0} In{1,3} In{1,0} In{3,0}

Sorted
Values

Generated
Dev2

Values

Figure 8.6: Generated Dev2 Syndromes

Based on the parameters used on this example, we have generated 8 groups of syndromes
for Dev1 and 6 for Dev2. One may notice that there is a Dev2 syndrome with both base
values from the first input, that means this syndrome is not valid.

51

10

9

1

8

8

2

11

7

3

20

10

10

13

11

11

15

13

11

15

15

13

28

19

14

In{0} In{1} In{3} In{0} In{1} In{3} In{1} In{2}

11

9

3

12

8

4

19

11

11

11

9

5

18

12

12

17

13

13

In{0,1} In{0,3} In{0,0} In{1,3} In{1,0} In{3,0}

Dev2
Values

Dev1
Values

Figure 8.7: All Generated Syndromes

After that, to update the output of every connection, we must select the nm best values
from those sorted sets, that are not based on the to-be-updated connection(belief prop-
agation principle). This makes the decorrelation easy, because all the values we need
to decorelate are based only on the most reliable value of this output. In the figure we
show possible values for the first output.

8

8

2

11

7

3

13

11

11

15

13

11

15

15

13

28

19

14

In{1} In{3} In{1} In{3} In{1} In{2}

11

9

5

In{1,3}

Figure 8.8: Possible values for output0

After all the values are selected we have an output like this:

52

11

11

11

11

11

9

8

8

7

5

3

2

0

LLR

11

11

11

10

10

10

9

8

7

4

3

1

0

9

9

8

8

8

7

5

4

3

3

2

1

0

11

11

10

10

10

9

9

8

8

3

2

1

0

LLR LLR LLR

12

11

10

9

8

7

6

5

4

3

2

1

0

Figure 8.9: Output

As the third output contributed with only one group of probes, it is likely that at his
output it will have the lowest values comparing with the others.

8.3 Hardware Top Module Code

Listing 1: Top Module of the Check Node implementation

1 library ieee;

2 use ieee.std_logic_1164.all;

3 use ieee.numeric_std.all;

4
5 library work;

6 use work.pkg_param.all;

7 use work.pkg_param_derived.all;

8 use work.pkg_types.all;

9 use work.pkg_components.all;

10
11 entity check_node_reduced_syn is

12 port(

13 -- INPUTS

14 rst : in std_logic;

15 clk : in std_logic;

16 en : in std_logic;

17
18 start : in std_logic;

19 max_elements : in t_max_vec;

20 input : in t_syn_gen_vec;

21
22 -- OUTPUTS

23 dev0_out : out t_dev0_vec;

24 output : out t_out_val_vec;

53

25 valid : out t_valid_vec

26);

27 end check_node_reduced_syn;

28
29 architecture behavioral of check_node_reduced_syn is

30
31 -- Probe sorter

32 signal probe_inputs : t_probe_input;

33 signal probe_addr_out: t_probe_addr;

34 signal probe_addr_out_reg: t_probe_addr;

35
36 -- Subvalue generator

37 signal dev0 : t_gf_element;

38 signal dev1_sub : t_sub_dev1_vec;

39 signal dev2_sub : t_sub_dev2_vec;

40
41 -- Pipeline regs

42 signal dev0_reg_1 : t_gf_element;

43 signal dev0_reg_2 : t_gf_element;

44
45 -- Values selector

46 signal dev_out : t_sub_syn_vec;

47 signal dev_out_reg : t_sub_syn_vec;

48
49 -- Dev1

50 signal dev1_in : t_syn_vec_dev1;

51 signal dev1_syn_val : t_syn_vec_dev1_out;

52 signal dev1_val_reg : t_syn_vec_dev1_out;

53
54 -- Dev2

55 signal dev2_in : t_syn_vec_dev2;

56 signal dev2_syn_val : t_syn_vec_dev2_out;

57 signal dev2_val_reg : t_syn_vec_dev2_out;

58
59 signal start_d1 : std_logic;

60 signal start_d2 : std_logic;

61 signal start_d3 : std_logic;

62 signal start_d4 : std_logic;

63 signal start_d5 : std_logic;

64
65 signal max_elements_d1 : t_max_vec;

66 signal max_elements_d2 : t_max_vec;

67 signal max_elements_d3 : t_max_vec;

68 signal max_elements_d4 : t_max_vec;

69 signal max_elements_d5 : t_max_vec;

70
71 begin

72 gen_sorter_in : for i in MAX_D_C -1 downto 0 generate

73 probe_inputs(i) <= input(i)(0).value;

74 end generate;

54

75
76 sorter : probe_sorter

77 port map (

78 -- INPUTS

79 rst => rst ,

80 clk => clk ,

81 start => start ,

82
83 -- OUTPUTS

84 probe_inputs => probe_inputs ,

85 dev_addr => probe_addr_out

86);

87
88 subvalue : subvalue_generator

89 port map(

90 -- INPUTS

91 max_elements => max_elements_d3 ,

92
93 -- OUTPUTS

94 dev0 => dev0 ,

95 dev1_sub => dev1_sub ,

96 dev2_sub => dev2_sub

97);

98
99 selector : values_selector

100 port map (

101 -- INPUTS

102 rst => rst ,

103 clk => clk ,

104 start => start ,

105 probe_addr => probe_addr_out_reg ,

106 input => input ,

107
108 -- OUTPUTS

109 dev_out => dev_out

110);

111
112 dev1_in (0) <= dev_out_reg (0);

113 dev1_in (1) <= dev_out_reg (1);

114 dev1_in (2) <= dev_out_reg (2);

115
116 dev2_in (0) <= dev_out_reg (0);

117 dev2_in (1) <= dev_out_reg (1);

118
119 dev1_calc: dev1_syndrome

120 port map (

121 -- INPUTS

122 dev1_probe => dev1_in ,

123 dev1_sub_vec => dev1_sub ,

124

55

125 -- OUTPUTS

126 dev1_syn => dev1_syn_val

127);

128
129 dev2_calc: dev2_syndrome

130 port map(

131 -- INPUTS

132 rst => rst ,

133 clk => clk ,

134 start => start_d4 ,

135
136 dev2_probe => dev2_in ,

137 dev2_sub_vec => dev2_sub ,

138
139 -- OUTPUTS

140 dev2_out => dev2_syn_val

141);

142
143 out_update: output_updater

144 port map(

145 -- INPUTS

146 rst => rst ,

147 clk => clk ,

148 start => start_d5 ,

149 dev0 => dev0_reg_2 ,

150 dev1_in => dev1_val_reg ,

151 dev2_in => dev2_val_reg ,

152 max_elements => max_elements_d5 ,

153
154 -- OUTPUTS

155 dev0_out => dev0_out ,

156 output => output ,

157 valid => valid

158);

159
160 pr_dev_reg : process(rst , clk)

161 begin

162 if rst = ’1’ then

163 start_d1 <= ’0’;

164 start_d2 <= ’0’;

165 start_d3 <= ’0’;

166 start_d4 <= ’0’;

167 start_d5 <= ’0’;

168 else

169 if rising_edge(clk) then

170 dev_out_reg <= dev_out;

171 probe_addr_out_reg <=

probe_addr_out;

172 max_elements_d1 <=

max_elements;

56

173 max_elements_d2 <=

max_elements_d1;

174 max_elements_d3 <=

max_elements_d2;

175 max_elements_d4 <=

max_elements_d3;

176 max_elements_d5 <=

max_elements_d4;

177 dev0_reg_1 <= dev0;

178 dev0_reg_2 <= dev0_reg_1;

179 dev1_val_reg <= dev1_syn_val

;

180 dev2_val_reg <= dev2_syn_val

;

181 start_d1 <= start;

182 start_d2 <= start_d1;

183 start_d3 <= start_d2;

184 start_d4 <= start_d3;

185 start_d5 <= start_d4;

186 end if;

187 end if;

188 end process;

189
190 end architecture behavioral;

57

List of Figures

2.1 Communication Chain . 6

2.2 Block code codeword . 7

2.3 Convolutional coding . 9

3.1 Tanner Graph Representation . 11

3.2 Parallel Scheduling . 12

3.3 Serial Scheduling . 12

3.4 Comparison between LDPC codes of variable length 17

4.1 Map bits to symbols over GF(q) . 18

4.2 Binary x Non Binary Comparison . 18

4.3 Input Reduction . 19

4.4 Performance comparison using different nm values 20

4.5 Syndrome Algorithm . 23

4.6 SYN CN Architecture . 24

4.7 Di Sets - Syndrome examples . 25

4.8 Distance technique . 25

5.1 Moving the sorter . 29

5.2 Probe scheme . 30

5.3 Sorter output reduce . 31

5.4 Common Syndromes . 31

5.5 Pre Calculations Module . 32

5.6 Final Hardware . 32

5.7 CSE Communication Chain . 33

5.8 Hardware Overview . 34

5.9 Probe Sorter . 36

5.10 Value Selector . 37

5.11 Subcalculations module . 38

5.12 Dev1 Syndrome . 38

5.13 Dev2 Syndrome . 39

58

5.14 Output Updater . 40

6.1 Communications Performance . 41

6.2 Area comparison . 42

6.3 Throughput Comparison . 43

6.4 Scaled architecture . 44

8.1 Input of the check node . 49

8.2 Probe scheme . 49

8.3 Sorted groups of messages . 50

8.4 How a dev1 is calculated . 50

8.5 How a dev2 is calculated . 51

8.6 Generated Dev2 Syndromes . 51

8.7 All Generated Syndromes . 52

8.8 Possible values for output0 . 52

8.9 Output . 53

59

List of Tables

5.1 Sorting complexity . 35

6.1 Area comparison . 42

6.2 Throughput comparison . 42

6.3 Sorting complexity . 43

6.4 Final results . 44

8.1 Primitive polynomials for GF (2m) . 47

8.2 Generating all elements for GF (24) . 47

8.3 Representation of GF (24) elements . 48

60

List of Listings

3.1 Algorithm Belief-Propagation Decoding [9] 15

3.2 Algorithm Bit-flipping Decoding [9] . 16

4.1 Extended Min-Sum Algorithm . 22

4.2 Syndrome Algorithm . 27

1 Top Module of the Check Node implementation 53

61

List of Abbreviations

BF Belief Propagation

CN Check Node

CSE Creonic Simulation Environment

EMS Extended Min-Sum

FER Frame Error Rate

FWBW Forward Backward

GF Galois Field

LDPC Low Density Parity Check

LLR Log-likelihood Ratio

LUT Lookup Table

MAP Maximum a Posteriory

ML Maximum Likelihood

NB-LDPC Non-Binary Low Density Parity Check

PN Permutation Nodes

SNR Signal-to-noise Ratio

SP59 Sphere Packing Bound

SYN Syndrome-Based

VN Variable Node

62

References

[1] Robert G. Gallager. Low Density Parity Check Codes. The Bell System Technical
Journal, 1963.

[2] Claude E. Shannon. A Mathematical Theory of Communication. The Bell System
Technical Journal, July 1948.

[3] Matthew C. Davey and David MacKay. Low-Density Parity Check Codes over
GF(q). IEEE COMUNICATIONS LETTERS, June 1998.

[4] L. Barnault and D. Declerq. Fast decoding algorithm for LDPC over GF(2q). IEEE
Information Theory Workshop, March 2003.

[5] P. Schläfer, N. Wehn, M. Alles, T. Lehnigk-Emden, and E. Boutillon. Syndrome
Based Check Node Processing of High Order NB-LDPC Decoders. International
Conference on Telecommunications, 2015.

[6] R. W. Hamming. Error detecting and error correcting codes. Bell Syst. Tech. J.,
April 1950.

[7] P. Elias. Coding for noisy channels. IRE Conv. Rec, March 1955.

[8] AJ. Viterbi. Error bounds for convolutional codes and an asymptotically optimum
decoding algorithm. IEEE Transactions on Information Theory, April 1967.

[9] Sarah J. Johnson. Introducing low-density parity-check. University of Newcastle.

[10] T.J Richardson, M.A. Shokrollahi, and R.L. Urbanke. Design of Capacity-
Approaching Low Density Parity Check Codes. IEEE Trans. Inf. Theory, February
2001.

[11] S. Pfletschinger, A. Mourad, E. Lopez, D. Declercq, and G. Bacci. Performance
evaluation of non-binary LDPC codes on wireless channels. Proceedings of ICT
Mobile Summit, June 2009.

[12] A. Voicila, F. Verdier, M. Fossorier, P. Urard, and D. Declerq. Low-complexity
decoding for non-binary LDPC codes in high order fields. IEEE Transactions on
Communications, August 2007.

[13] D. Declercq and M. Fossorier. Decoding algorithms for nonbinary LDPC codes over
GF. IEEE Transactions on Communications, April 2007.

[14] V. Savin. Min-Max Decoding for Non Binary LDPC Codes. Proceedings of ISIT,
July 2008.

[15] B. Liu, J. Gao., G. Dou, and W. Tao. Weighted Symbol-Flipping Decoding for
Nonbinary LDPC Codes. Int. Conf. on Network Security, Wireless Communications
and Trusted Computing, April 2010.

[16] G. Sarkis, S. Mannor, and W. J. Gross. Stochastic Decoding of LDPC codes over
GF(q). Proceedings of IEEE ICC, June 2009.

[17] Timo Lehnigk-Emden. Implementation and Simulation Aspects of Advanced Non-
Binary Iterative Coding Schemes. PhD thesis, Microeletronic Systems Design Re-
search Group - University of Kaiserslautern, 2011.

63

[18] K.E. Batcher. Sorting Networks and their Applications. AFIPS Spring Joint Com-
put. Conference, 1968.

64

