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The generalized Weyl transform of index � is used to implement the time-slice definition of the phase

space path integral yielding the Feynman kernel in the case of noncommutative quantum mechanics. As

expected, this representation for the Feynman kernel is not unique but labeled by the real parameter �. We

succeed in proving that the �-dependent contributions disappear at the limit where the time slice goes to

zero. This proof of consistency turns out to be intricate because the Hamiltonian involves products of

noncommuting operators originating from the noncommutativity. The antisymmetry of the matrix

parametrizing the noncommutativity plays a key role in the cancellation mechanism of the

�-dependent terms.
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I. INTRODUCTION

In this work we shall be concerned with quantum sys-
tems whose dynamics is described by a self-adjoint
HamiltonianHðQ;PÞmade up of the Cartesian coordinates
Qj; j ¼ 1; . . . ; N and their canonically conjugate momenta
Pj; j ¼ 1; . . . ; N. However, unlike the usual case, coordi-
nates and momenta are supposed to obey the noncanonical
equal-time commutation rules

½Ql;Qj� ¼ �2i@�lj; (1.1a)

½Ql; Pj� ¼ i@�lj; (1.1b)

½Pl; Pj� ¼ 0: (1.1c)

The distinctive feature is, of course, that the coordinate
operators do not commute among themselves. The lack of
noncommutativity of the coordinates is parametrized by
the real antisymmetric N � N constant matrix k � k . In
Refs. [1–5] one finds specific examples of noncommutative
systems whose quantization has been carried out. The
conditions for the existence of the Born series and unitarity
were investigated in Ref. [6] while a general overview of
the connection linking noncommutative theories with con-
strained systems was presented in [7].

A realization of the algebra in Eq. (1.1) can be obtained
by writing

Ql � Xl þ �ljKj; (1.2a)

Pl � Kl; (1.2b)

where the X’s and K’s obey the canonical commutation
relations

½Xl; Xj� ¼ 0; (1.3a)

½Xl; Kj� ¼ i@�lj; (1.3b)

½Kl; Kj� ¼ 0; (1.3c)

while repeated indices sum from 1 to N. For a Hamiltonian

HðP;QÞ ¼ PlPl

2M
þ VðQÞ (1.4)

and, therefore,

HðKl; Xl þ �ljKjÞ ¼ KlKl

2M
þ VðXl þ �lkKkÞ

� H�ðKl; XlÞ; (1.5)

it has been shown elsewhere [2–4] that the time evolution
of the system, in the Schrödinger picture, is described by
the wave equation

� @
2

2M
r2

x�ðx; tÞ þ VðxÞ ?�ðx; tÞ ¼ i@
@�ðx; tÞ

@t
; (1.6)

where r2
x designates the Nth-dimensional Laplacian, M is

a constant with dimensions of mass while ? denotes the
Grönewold-Moyal product [8–10], namely,

VðxÞ ?�ðx; tÞ � VðxÞ
�
exp

�
�i@

@Q

@xl
�lj

~@

@xj

��
�ðx; tÞ

¼ V

�
xj � i@�jl

@

@xl

�
�ðx; tÞ: (1.7)

The last section in Ref. [7] was concerned with the
computation, in the case of the harmonic oscillator, of
the Feynman kernel Kðxf; tf; xin; tinÞ by explicitly evalu-

ating the corresponding phase space path integral.
However, no effort was made there to determine whether
this result is unique when the phase space integral is
defined through the time-slicing procedure [11–14]. This
is our main concern in this work.
In Sec. II we first pinpoint the main steps one goes

through for implementing the time-slice definition of the
phase space path integral yieldingKðxf; tf; xin; tinÞ. In this
regard, the generalized Weyl transform will be seen to play
a central role. As it has long been recognized [15–18],
Kðxf; tf; xin; tinÞ turns out not to possess a unique repre-

*fbemfica@if.ufrgs.br
†hgirotti@if.ufrgs.br

PHYSICAL REVIEW D 78, 125009 (2008)

1550-7998=2008=78(12)=125009(6) 125009-1 � 2008 The American Physical Society

http://dx.doi.org/10.1103/PhysRevD.78.125009


sentation in terms of canonical path integrals. This lack of
uniqueness becomes particularly critical for Hamiltonians
involving products of noncommuting operators, which is
an unavoidable feature of the Hamiltonian describing the
quantum dynamics of a noncommutative system [see
Eq. (1.5)]. In Sec. III we demonstrate that, nevertheless,
the antisymmetry of k � k suffices for reestablishing
uniqueness. Section IV contains the conclusions.

II. THE TIME-SLICING PROCEDURE AND THE
GENERALIZED WEYL TRANSFORM

We shall be looking for the path integral representation
of the matrix element

K �ðxf; tf; xin; tinÞ ¼ h ~xfje�ði=@Þðtf�tinÞHðP;QÞj ~xini
¼ h ~xfje�ði=@Þðtf�tinÞH�ðK;XÞj ~xini; (2.1)

where Eqs. (1.4) and (1.5) have been taken into account.
The definition of the phase space path integral through

the time-slicing procedure demands that one starts by
writing

K�ðxf; tf; xin; tinÞ

¼ lim
m!1
�!0

Z
dx1 � � �dxm

Ym
a¼0

K�ðxaþ1; taþ1; xa; taÞ; (2.2)

where dx stands for dNx. The time interval ðtf � tinÞ has
been divided out intomþ 1 subintervals of equal size. The
limit m ! 1 (� ! 0) must be understood as maxðtaþ1 �
taÞ ! 0 while

P
m
a¼0ðtaþ1 � taÞ ¼ tf � tin � T. Usually,

K�ðxaþ1; taþ1; xa; taÞ is referred to as the short-time
propagator. Then, if in Cohen’s general ordering scheme

[15,19] one replaces @ ~� ¼ ~x, @ ~� ¼ ~k, and then sets

fð ~x; ~kÞ ¼ eði=@Þ�~x� ~k; (2.3)

where � is a real dimensionless parameter such that

� 1

2
� � � þ 1

2
; (2.4)

one arrives at [19]

K�ðxaþ1; taþ1; xa; taÞ ¼ ð2�@Þ�N
Z

dk

� exp

�
i�

@

�
kja

xjaþ1 � xja

�

� h���
ðka; xa;aþ1ð�ÞÞ

��
: (2.5)

Here,

xja;aþ1ð�Þ �
�
1

2
þ �

�
xjaþ1 þ

�
1

2
� �

�
xja; (2.6)

dk stands for dNk, whereas

h���
ðk;xÞ� ð2�@ÞNtr½H�ðK;XÞ���ð ~K� ~k; ~X� ~xÞ�

¼ ð2�@ÞN
Z
dyh ~yjH�ðK;XÞ���ð ~K� ~k; ~X� ~xÞj ~yi

¼
Z
dyeði=@Þ ~k� ~y

�
~x�

�
1

2
þ�

�
~y

��������H�ðK;XÞ
�������� ~x

þ
�
1

2
��

�
~y

	
(2.7)

is the generalized Weyl transform of index � (GWT �) of
the operator H�ðK;XÞ. It is a generalization of the Weyl
correspondence rules [20,21]. Furthermore,

��ð ~K � ~k; ~X � ~xÞ � ð2�@Þ�2N
Z

dN�dN�

� eði=@Þ½��j�jþ�jðKj�kjÞþ�jðXj�xjÞ�

¼ ð2�@Þ�N
Z

d�e�ði=@Þ�iki
�������� ~x

�
�
1

2
þ �

�
~�

	�
~xþ

�
1

2
� �

�
~�

��������:
(2.8)

It is common use to symbolize the operation in Eq. (2.7) as

H�ðK;XÞ!��
h���

ðk; xÞ: (2.9)

By putting everything together one arrives at

K�ðxf; tf;xin; tinÞ ¼ lim
m!1
�!0

ð2�@Þ�Nðmþ1ÞZ �Ym
a¼1

dxa

�

�
�Ym
a¼0

dka

�
exp

�
i�

@

Xm
a¼0

�
kia

xiaþ1 � xia
�

� h���
ðka; xa;aþ1ð�ÞÞ

��
; (2.10)

which defines the path integral through the time-slicing
method. One is to notice that when inserting within the
path integral the GWT �one must, correspondingly, evalu-
ate the position dependent terms at the point xia;aþ1ð�Þ.
Hence, the dynamics of a quantum mechanical system
specified by a certain Hamiltonian operator does not have
a unique translation into the path integral language. This is
the converse of the operator ordering ambiguity arising
when performing the quantization in accordance with the
classical-quantum correspondence rules.
Of course, consistency requires that all the � depen-

dence in the right-hand side of Eq. (2.10) should disappear
after performing the limit � ! 0. Up to our knowledge, no
one has yet succeeded in carrying out such proof in full
generality. In particular, and since the Hamiltonian H�

involves products of noncommuting operators, the unique-
ness of the path integral representation of
K�ðxf; tf; xin; tinÞ remains an open question for noncom-

mutative systems. We shall address this question in the
next section.
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III. FUNCTIONAL FORMULATION OF THE
NONCOMMUTATIVE QUANTUM DYNAMICS

We start by looking for h���
ðk; xÞ. The absence of order-

ing problems in the first monomial of the middle term in
Eq. (1.5) implies that

KjKj!��ðkjkjÞ�� ¼ kjkj; (3.1)

as it can be checked by using Eq. (2.7).

As for

V�ðK;XÞ � VðXj þ �jlKlÞ; (3.2)

the situation is far from being simple since it necessarily
involves products of noncommuting operators. By starting
from Eq. (2.7) and after taking into account that

h ~yjVðXj þ �jlKlÞj ~k0i ¼ Vð ~yÞ ? h ~yj ~k0i ¼ Vð ~yÞe�i@ð@Q=@yjÞ�jlð ~@=@ylÞh ~yj ~k0i; (3.3a)

h ~yj ~ki � 1

ð2�@ÞN=2
eði=@Þyjkj ; (3.3b)

Z
dx�ð ~xÞ ? c ð ~xÞ ¼

Z
dx�ð ~xÞc ð ~xÞ; (3.3c)

h ~k0j���ð ~K � ~k; ~X � ~xÞj ~yi ¼ ð2�@Þð�3=2ÞN

ð��� 1
2ÞN

eði=@Þ ~y�fð�1=ð�þð1=2ÞÞÞ ~k�½1�ð1=ð�þð1=2ÞÞÞ� ~k0geð�i=@ð�þð1=2ÞÞÞ ~x�ð ~k0� ~kÞ; (3.3d)

eði=@Þk0jyj

ð2�@ÞN=2
? h ~k0j���ð ~K � ~k; ~X � ~xÞj ~yi ¼ ð2�@Þ�2N

ð��� 1
2ÞN

eð�i=@ð�þð1=2ÞÞÞð ~x� ~yÞ�ð ~k0� ~kÞeð�i=@ð�þð1=2ÞÞÞk0j�jlkl ; (3.3e)

one obtains

V�ðK;XÞ!��
v���

ðk; xÞ ¼ ð2�@ÞN
Z

dyh ~yjVðXj þ �jlKlÞ���ð ~K � ~k; ~X � ~xÞj ~yi

¼ ð2�@ÞN
Z

dy
Z

dk0Vð ~yÞ
�
eði=@Þkiyi

ð2�@ÞN=2
? h ~k0j���ð ~K � ~k; ~X� ~xÞj ~yi

�

¼ ð2�@Þ�N

ð��� 1
2ÞN

Z
dyVð ~yÞeði=@ð�þð1=2ÞÞÞ ~k�ð ~x� ~yÞ Z dk0eð�i=@ð�þð1=2ÞÞÞk0jðxj�yjþ�jlklÞ

¼ Vðxj þ �jlklÞeð�i=@ð�þð1=2ÞÞÞkj�jlkl ¼ Vðxj þ �jlklÞ: (3.4)

This result is of paramount importance because it states that the would-be � dependence of v���
ðk; xÞ is washed out by

the antisymmetry of the matrix k � k . We emphasize that this would not be the case for an arbitrary VðK;XÞ, involving
products of the noncommuting operators K and X. Presently, where K and X enter into V through the combination Xj þ
�jlKl, with �jl ¼ ��lj, such dependence does not occur, this being true irrespective of the functional form of VðxÞ.

By returning with Eqs. (3.1) and (3.4) into (2.10) one finds

K �ðxf; tf; xin; tinÞ ¼ lim
m!1
�!0

ð2�@Þ�Nðmþ1Þ Z �Ym
a¼1

dxa

��Ym
a¼0

dka

�
eði�=@Þ

P
m
a¼0

½kjaðxjaþ1
�xjaÞ=��ð ~k2a=2MÞ�Vðxj

a;aþ1
ð�Þþ�jlklaÞ�; (3.5)

which still contains �-dependent terms.
We are interested in proving the � independence of

K�ðxf; tf; xin; tinÞ without imposing restrictions on the

function VðuÞ, other than its analyticity at ~u ¼ 0. To this
end, we start by introducing external sources for the coor-
dinates and momenta, J and Z, respectively. This enables
us to rewrite Eq. (3.5) as

K�ðxf;tf;xin;tinÞ¼lim
m!1
�!0

e�ði�=@ÞPm
a¼0

Vð ~LaÞWðJ;Z;�;mÞ
��������J¼Z¼0

;

(3.6)
where

Lj
a � @

i�

�
�

�Jja
þ �jl

�

�Zl
a

�
(3.7)

and
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WðJ; Z; �;mÞ � ð2�@Þ�Nðmþ1Þ Z �Ym
a¼1

dxa

��Ym
a¼0

dka

�
eði�=@Þ

P
m
a¼0

½kjaðxjaþ1
�xjaÞ=��ð ~k2a=2MÞþJjax

j
a;aþ1

ð�ÞþZj
ak

j
a�: (3.8)

The momentum integrals in Eq. (3.5) are straightforward and after carrying them out one gets

WðJ; Z; �;mÞ ¼ ð2�@Þ�Nðmþ1Þ
�
2M�@

i�

�ðN=2Þðmþ1Þ Z �Ym
a¼1

dxa

�
eðiM�=2@Þ½Aþð1=�ÞPm

a¼1
	i

ax
i
aþð1=�2ÞPm

a;b¼1
xiaDabx

i
b
�; (3.9)

where

A � 2

M

�
1

2
þ �

�
xifJ

i
m þ 2

M

�
1

2
� �

�
xiinJ

i
0 þ

Xm
a¼0

~Z2
a þ 2

�
xifZ

i
m � 2

�
xiinZ

i
0 þ

~x2f þ ~x2in

�2
; (3.10a)

	i
a � � 2

�
xiin�a;1 � 2

�
xif�a;m þ 2ðZi

a�1 � Zi
aÞ þ 2�

M

�
1

2
ðJia�1 þ JiaÞ þ �ðJia�1 � JiaÞ

�
; a ¼ 1; . . . ; m; (3.10b)

Dab � 2�ab � ð�aþ1;b þ �a;bþ1Þ; a; b ¼ 1; . . . ; m: (3.10c)

The determinant and the inverse of the symmetric matrix
k D k can be computed at once and yield, respectively,

detðDabÞ ¼ mþ 1; (3.11a)

D�1
ab ¼ aðm� bþ 1Þ

mþ 1
; a � b: (3.11b)

In turn, this enables us to perform the x integrations in
Eq. (3.9) with the result

WðJ; Z; �;mÞ ¼
�

M

2�i@T

�
N=2

e�ðJ;K;�;mÞ; (3.12)

where

�ðJ; Z; �;mÞ � i�

@

�
MA

2
�M

8

Xm
a;b¼1

	i
aD

�1
ab 	

i
b

�
: (3.13)

We now return with Eq. (3.13) into Eq. (3.6). After doing
so, we shall be facing the problem of computing

½e�ði�=@ÞPm
a¼0

Vð ~LaÞ�e�ðJ;Z;�;mÞ ¼
�X1
r¼0

1

r!

�
� i�

@

� Xm
a¼0

Vð ~LaÞ
�
r
�
e�ðJ;Z;�;mÞ:

(3.14)

The analyticity of VðuÞ at ~u ¼ 0 allows one to write

Vð ~LaÞ ¼
X1
s¼0

1

s!

@sVðuÞ
@ui1 . . . @uis

��������u¼0
Li1
a . . .Lis

a : (3.15)

Hence,

Li1
a1L

i2
a2 . . .L

iv
ave

� (3.16)

is, up to coefficient functions not depending on the external
sources, the form of a generic term entering the right-hand
side of Eq. (3.14). Now, since � is at the most bilinear in
the external sources all monomials containing three or
more factors L applied to � vanish and, therefore, do not
contribute to Eq. (3.16). To phrase it differently, only

Li
a�ðJ; Z; �;mÞjJ¼Z¼0 and Li

aL
j
b�ðJ; Z; �;mÞjJ¼Z¼0 can

survive in Eq. (3.16). What remains to be done is to show
that the just-mentioned monomials are independent of �.
To the above end, we start by recalling Eqs. (3.10), (3.11),

and (3.13), and find

@

i�

��

�Jia
¼ �a;m

�
xif þ

�

T

�
1

2
� �

�
ðxif � xiinÞ

�
þ �a;0

�
xiin þ

�

T

�
1

2
þ �

�
ðxif � xiinÞ

�
þ ð1� �a;0 � �a;mÞ

�
xiin

�
1

2
þm� 2a

mþ 1

�

þ xif
a

mþ 1
þ �

T
½xif þ �ðxif � xiinÞ�

�
� �

Xm
b;c¼1

�
Zi
b�1 � Zi

b þ
�

M

�
1

2
þ �

�
Jib�1 þ

�

M

�
1

2
� �

�
Jib

�

�D�1
bc

��
1

2
þ �

�
�c;aþ1 þ

�
1

2
� �

�
�c;a

�
; (3.17a)

@

i�

��

�Zi
a

¼ MZi
a þM

T
ðxif � xiinÞ �M

Xm
b;c¼1

�
Zi
b�1 � Zi

b þ
�

M

�
1

2
þ �

�
Jib�1 þ

�

M

�
1

2
� �

�
Jib

�
D�1

b;cð�c;aþ1 � �c;aÞ: (3.17b)

Therefore, in accordance with Eq. (3.7),
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Li
a�ðJ;Z;�;mÞjJ¼Z¼0 ¼ �a;mx

i
f þ�a;0x

i
inþ

M

T
�ijðxjf � xjinÞ

þ ð1��a;0��a;mÞ
�
�
xiin

�
1

2
þm� 2a

mþ 1

�

þ xif
a

mþ 1

�
þOð�Þ; (3.18)

where Oð�Þ embodies all terms vanishing when � ! 0.
Thus, no �-dependent terms survive in this limit.

Next on the line is Li
aL

j
b�ðJ; Z; �;mÞ. We first notice

that

Li
aL

j
b�ðJ; Z; �;mÞ ¼

�
@

i�

�
2
�

�2

�Jia�J
j
b

þ �ik�jl
�2

�Zk
a�Z

l
b

þ �jl
�

�Jia

�

�Zl
b

þ �il
�

�Jjb

�

�Zl
a

�
�

(3.19)

and concentrate, afterwards, in computing each term in the
right-hand side of this last equation. We omit the details
and quote

�
@

i�

�
2 �2�

�Jia�J
j
b

¼ �ij i@�

M

Xm
c;d¼1

D�1
cd

�
1

4
ð�c;aþ1�d;bþ1 þ �a;c�d;bþ1 þ �aþ1;c�d;b þ �a;c�b;dÞ þ �ð�aþ1;c�bþ1;d � �a;c�b;dÞ

þ �2ð�aþ1;c�bþ1;d � �a;c�bþ1;d � �aþ1;c�b;d þ �ac�bdÞ
�

¼ �ij i@�

M

8>>>>>>>>>><
>>>>>>>>>>:

m
mþ1 ð12 þ �Þ2; a ¼ b ¼ 0

m
mþ1 ð12 þ �Þ2; a ¼ b ¼ m

�
T f14 ½4aðm� aÞ þm� þ �ðm� 2aÞ þm�2g; 0< a ¼ b < m

�
T f14 ½ð4aþ 2Þðm� bÞ þ aþ 1� þ �ðm� b� aÞg; 0< a< b <m

�
T f14 ½ð4aþ 2Þðm� bÞ þ bþ 1� þ �ðm� b� aÞg; 0< b< a <m

¼ �ij i@

4MT

8>>>>>><
>>>>>>:

Oð�Þ; a ¼ b ¼ 0; a ¼ b ¼ m

�2½4aðm� aÞ þm�jOð�Þ; 0< a ¼ b < m

�2½ð4aþ 2Þðm� bÞ� þOð�Þ; 0< a< b<m

�2½ð4bþ 2Þðm� aÞ� þOð�Þ; 0< b< a<m

; (3.20)

�
@

i�

�
2
�ik�jl

�2�

�Zk
a�Z

l
b

¼ �ik�jk
M@

i�

Xm
c;d¼1

D�1
cd ð�ac�bd

� �aþ1;c�bþ1;d þ �a;c�d;bþ1

þ �aþ1;c�b;d � �ac�bdÞ
¼ �ik�jk

M@

iT
; 8 a; b ¼ 0 . . .m;

(3.21)

�
@

i�

�
2
�
�jl

�

�Jia

�

�Zl
b

�
� ¼ þ �ij@

i

Xm
c;d¼1

��
1

2
þ �

�
�aþ1;c

þ
�
1

2
� �

�
�a;c

�
D�1

cd

� ð�d;bþ1 � �d;bÞ; (3.22)

and

�
@

i�

�
2
�
�il

�

�Jjb

�

�Zl
a

�
� ¼ ��ij@

i

Xm
c;d¼1

��
1

2
þ �

�
�bþ1;c

þ
�
1

2
� �

�
�b;c

�

�D�1
cd ð�d;aþ1 � �d;aÞ: (3.23)

Observe that a term like �2½4aðm� aÞ þm�, showing up
in the right-hand side of Eq. (3.20), is not eliminated by
taking � ! 0. To exemplify why this happens we set, for
instance, a ¼ m=2 and find

lim
�!0
m!1

�2
�
2m

�
m�m

2

�
þm

�
¼ T2 � 0: (3.24)

Similarly, the second, third, and fourth terms in the right-
hand side of Eq. (3.20) contain pieces that survive in the
limit � ! 0. However, all these contributions do not de-
pend on �. The same applies to the right-hand side of
Eq. (3.21), where the presence of the noncommutativity
should be noticed. As for the right-hand sides of Eqs. (3.22)
and (3.23) they add up to
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�
@

i�

�
2
�
�jl

�

�Jia

�

�Zl
b

þ �il
�

�Jjb

�

�Zl
a

�
�

¼ i@�ij
Xm

c;d¼1

D�1
c;dð�aþ1;c�b;d � �a;c�d;bþ1Þ

¼
8><
>:
0; a ¼ b
i@�ij mþ1þa�b

mþ1 ; 0 � a < b � m
�i@�ij mþ1þa�b

mþ1 ; 0 � b < a � m
; (3.25)

which are independent of �. This completes the pur-
ported proof concerning the � independence of
K�ðxf; tf; xin; tinÞ.

It is worth mentioning that, individually, Eqs. (3.22) and
(3.23) contribute, among other things, �-dependent terms.
However, after these contributions are added up the just-
mentioned terms cancel out among themselves. The anti-
symmetry of k � k is at the root of the cancellation
mechanism.

IV. CONCLUSIONS

The generalizedWeyl transform of index �was success-
fully employed for implementing the time-slice definition
of the phase space path integral. As expected, this integral

representation of the quantum dynamics turns out not to be
unique but parametrized by the index �. Of course, con-
sistency demands all physical quantities be unique and,
therefore, independent of �.
We turned then into studying the Feynman kernel for the

case of noncommutative quantum mechanics. The above-
mentioned lack of uniqueness appears to be particularly
severe due to the fact that the Hamiltonian under analysis
contains products of noncommuting operators.
Unexpectedly, the antisymmetry of the matrix k � k , pa-
rametrizing the noncommutativity, saves the day. In fact,
on the one hand, it kills the would-be alpha dependence of
the generalized Weyl transform while, on the other hand, it
also takes care of the � dependence arising from the point
on the slice where the coordinates are to be evaluated. The
above holds true for all potentials VðuÞ being analytic at
~u ¼ 0.
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